1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // See the Attributor.h file comment and the class descriptions in that file for
10 // more information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/Attributor.h"
15 
16 #include "llvm/ADT/SCCIterator.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AssumeBundleQueries.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/CaptureTracking.h"
22 #include "llvm/Analysis/LazyValueInfo.h"
23 #include "llvm/Analysis/MemoryBuiltins.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/NoFolder.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 
34 #include <cassert>
35 
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "attributor"
39 
40 static cl::opt<bool> ManifestInternal(
41     "attributor-manifest-internal", cl::Hidden,
42     cl::desc("Manifest Attributor internal string attributes."),
43     cl::init(false));
44 
45 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
46                                        cl::Hidden);
47 
48 template <>
49 unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
50 
51 static cl::opt<unsigned, true> MaxPotentialValues(
52     "attributor-max-potential-values", cl::Hidden,
53     cl::desc("Maximum number of potential values to be "
54              "tracked for each position."),
55     cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
56     cl::init(7));
57 
58 STATISTIC(NumAAs, "Number of abstract attributes created");
59 
60 // Some helper macros to deal with statistics tracking.
61 //
62 // Usage:
63 // For simple IR attribute tracking overload trackStatistics in the abstract
64 // attribute and choose the right STATS_DECLTRACK_********* macro,
65 // e.g.,:
66 //  void trackStatistics() const override {
67 //    STATS_DECLTRACK_ARG_ATTR(returned)
68 //  }
69 // If there is a single "increment" side one can use the macro
70 // STATS_DECLTRACK with a custom message. If there are multiple increment
71 // sides, STATS_DECL and STATS_TRACK can also be used separately.
72 //
73 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \
74   ("Number of " #TYPE " marked '" #NAME "'")
75 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
76 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
77 #define STATS_DECL(NAME, TYPE, MSG)                                            \
78   STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
79 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
80 #define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \
81   {                                                                            \
82     STATS_DECL(NAME, TYPE, MSG)                                                \
83     STATS_TRACK(NAME, TYPE)                                                    \
84   }
85 #define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \
86   STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
87 #define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \
88   STATS_DECLTRACK(NAME, CSArguments,                                           \
89                   BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
90 #define STATS_DECLTRACK_FN_ATTR(NAME)                                          \
91   STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
92 #define STATS_DECLTRACK_CS_ATTR(NAME)                                          \
93   STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
94 #define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \
95   STATS_DECLTRACK(NAME, FunctionReturn,                                        \
96                   BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
97 #define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \
98   STATS_DECLTRACK(NAME, CSReturn,                                              \
99                   BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
100 #define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \
101   STATS_DECLTRACK(NAME, Floating,                                              \
102                   ("Number of floating values known to be '" #NAME "'"))
103 
104 // Specialization of the operator<< for abstract attributes subclasses. This
105 // disambiguates situations where multiple operators are applicable.
106 namespace llvm {
107 #define PIPE_OPERATOR(CLASS)                                                   \
108   raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) {                  \
109     return OS << static_cast<const AbstractAttribute &>(AA);                   \
110   }
111 
112 PIPE_OPERATOR(AAIsDead)
113 PIPE_OPERATOR(AANoUnwind)
114 PIPE_OPERATOR(AANoSync)
115 PIPE_OPERATOR(AANoRecurse)
116 PIPE_OPERATOR(AAWillReturn)
117 PIPE_OPERATOR(AANoReturn)
118 PIPE_OPERATOR(AAReturnedValues)
119 PIPE_OPERATOR(AANonNull)
120 PIPE_OPERATOR(AANoAlias)
121 PIPE_OPERATOR(AADereferenceable)
122 PIPE_OPERATOR(AAAlign)
123 PIPE_OPERATOR(AANoCapture)
124 PIPE_OPERATOR(AAValueSimplify)
125 PIPE_OPERATOR(AANoFree)
126 PIPE_OPERATOR(AAHeapToStack)
127 PIPE_OPERATOR(AAReachability)
128 PIPE_OPERATOR(AAMemoryBehavior)
129 PIPE_OPERATOR(AAMemoryLocation)
130 PIPE_OPERATOR(AAValueConstantRange)
131 PIPE_OPERATOR(AAPrivatizablePtr)
132 PIPE_OPERATOR(AAUndefinedBehavior)
133 PIPE_OPERATOR(AAPotentialValues)
134 PIPE_OPERATOR(AANoUndef)
135 
136 #undef PIPE_OPERATOR
137 } // namespace llvm
138 
139 namespace {
140 
141 static Optional<ConstantInt *>
142 getAssumedConstantInt(Attributor &A, const Value &V,
143                       const AbstractAttribute &AA,
144                       bool &UsedAssumedInformation) {
145   Optional<Constant *> C = A.getAssumedConstant(V, AA, UsedAssumedInformation);
146   if (C.hasValue())
147     return dyn_cast_or_null<ConstantInt>(C.getValue());
148   return llvm::None;
149 }
150 
151 /// Get pointer operand of memory accessing instruction. If \p I is
152 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
153 /// is set to false and the instruction is volatile, return nullptr.
154 static const Value *getPointerOperand(const Instruction *I,
155                                       bool AllowVolatile) {
156   if (auto *LI = dyn_cast<LoadInst>(I)) {
157     if (!AllowVolatile && LI->isVolatile())
158       return nullptr;
159     return LI->getPointerOperand();
160   }
161 
162   if (auto *SI = dyn_cast<StoreInst>(I)) {
163     if (!AllowVolatile && SI->isVolatile())
164       return nullptr;
165     return SI->getPointerOperand();
166   }
167 
168   if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
169     if (!AllowVolatile && CXI->isVolatile())
170       return nullptr;
171     return CXI->getPointerOperand();
172   }
173 
174   if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
175     if (!AllowVolatile && RMWI->isVolatile())
176       return nullptr;
177     return RMWI->getPointerOperand();
178   }
179 
180   return nullptr;
181 }
182 
183 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
184 /// advanced by \p Offset bytes. To aid later analysis the method tries to build
185 /// getelement pointer instructions that traverse the natural type of \p Ptr if
186 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence
187 /// through a cast to i8*.
188 ///
189 /// TODO: This could probably live somewhere more prominantly if it doesn't
190 ///       already exist.
191 static Value *constructPointer(Type *ResTy, Value *Ptr, int64_t Offset,
192                                IRBuilder<NoFolder> &IRB, const DataLayout &DL) {
193   assert(Offset >= 0 && "Negative offset not supported yet!");
194   LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
195                     << "-bytes as " << *ResTy << "\n");
196 
197   // The initial type we are trying to traverse to get nice GEPs.
198   Type *Ty = Ptr->getType();
199 
200   SmallVector<Value *, 4> Indices;
201   std::string GEPName = Ptr->getName().str();
202   while (Offset) {
203     uint64_t Idx, Rem;
204 
205     if (auto *STy = dyn_cast<StructType>(Ty)) {
206       const StructLayout *SL = DL.getStructLayout(STy);
207       if (int64_t(SL->getSizeInBytes()) < Offset)
208         break;
209       Idx = SL->getElementContainingOffset(Offset);
210       assert(Idx < STy->getNumElements() && "Offset calculation error!");
211       Rem = Offset - SL->getElementOffset(Idx);
212       Ty = STy->getElementType(Idx);
213     } else if (auto *PTy = dyn_cast<PointerType>(Ty)) {
214       Ty = PTy->getElementType();
215       if (!Ty->isSized())
216         break;
217       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
218       assert(ElementSize && "Expected type with size!");
219       Idx = Offset / ElementSize;
220       Rem = Offset % ElementSize;
221     } else {
222       // Non-aggregate type, we cast and make byte-wise progress now.
223       break;
224     }
225 
226     LLVM_DEBUG(errs() << "Ty: " << *Ty << " Offset: " << Offset
227                       << " Idx: " << Idx << " Rem: " << Rem << "\n");
228 
229     GEPName += "." + std::to_string(Idx);
230     Indices.push_back(ConstantInt::get(IRB.getInt32Ty(), Idx));
231     Offset = Rem;
232   }
233 
234   // Create a GEP if we collected indices above.
235   if (Indices.size())
236     Ptr = IRB.CreateGEP(Ptr, Indices, GEPName);
237 
238   // If an offset is left we use byte-wise adjustment.
239   if (Offset) {
240     Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
241     Ptr = IRB.CreateGEP(Ptr, IRB.getInt32(Offset),
242                         GEPName + ".b" + Twine(Offset));
243   }
244 
245   // Ensure the result has the requested type.
246   Ptr = IRB.CreateBitOrPointerCast(Ptr, ResTy, Ptr->getName() + ".cast");
247 
248   LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
249   return Ptr;
250 }
251 
252 /// Recursively visit all values that might become \p IRP at some point. This
253 /// will be done by looking through cast instructions, selects, phis, and calls
254 /// with the "returned" attribute. Once we cannot look through the value any
255 /// further, the callback \p VisitValueCB is invoked and passed the current
256 /// value, the \p State, and a flag to indicate if we stripped anything.
257 /// Stripped means that we unpacked the value associated with \p IRP at least
258 /// once. Note that the value used for the callback may still be the value
259 /// associated with \p IRP (due to PHIs). To limit how much effort is invested,
260 /// we will never visit more values than specified by \p MaxValues.
261 template <typename AAType, typename StateTy>
262 static bool genericValueTraversal(
263     Attributor &A, IRPosition IRP, const AAType &QueryingAA, StateTy &State,
264     function_ref<bool(Value &, const Instruction *, StateTy &, bool)>
265         VisitValueCB,
266     const Instruction *CtxI, bool UseValueSimplify = true, int MaxValues = 16,
267     function_ref<Value *(Value *)> StripCB = nullptr) {
268 
269   const AAIsDead *LivenessAA = nullptr;
270   if (IRP.getAnchorScope())
271     LivenessAA = &A.getAAFor<AAIsDead>(
272         QueryingAA, IRPosition::function(*IRP.getAnchorScope()),
273         /* TrackDependence */ false);
274   bool AnyDead = false;
275 
276   using Item = std::pair<Value *, const Instruction *>;
277   SmallSet<Item, 16> Visited;
278   SmallVector<Item, 16> Worklist;
279   Worklist.push_back({&IRP.getAssociatedValue(), CtxI});
280 
281   int Iteration = 0;
282   do {
283     Item I = Worklist.pop_back_val();
284     Value *V = I.first;
285     CtxI = I.second;
286     if (StripCB)
287       V = StripCB(V);
288 
289     // Check if we should process the current value. To prevent endless
290     // recursion keep a record of the values we followed!
291     if (!Visited.insert(I).second)
292       continue;
293 
294     // Make sure we limit the compile time for complex expressions.
295     if (Iteration++ >= MaxValues)
296       return false;
297 
298     // Explicitly look through calls with a "returned" attribute if we do
299     // not have a pointer as stripPointerCasts only works on them.
300     Value *NewV = nullptr;
301     if (V->getType()->isPointerTy()) {
302       NewV = V->stripPointerCasts();
303     } else {
304       auto *CB = dyn_cast<CallBase>(V);
305       if (CB && CB->getCalledFunction()) {
306         for (Argument &Arg : CB->getCalledFunction()->args())
307           if (Arg.hasReturnedAttr()) {
308             NewV = CB->getArgOperand(Arg.getArgNo());
309             break;
310           }
311       }
312     }
313     if (NewV && NewV != V) {
314       Worklist.push_back({NewV, CtxI});
315       continue;
316     }
317 
318     // Look through select instructions, visit both potential values.
319     if (auto *SI = dyn_cast<SelectInst>(V)) {
320       Worklist.push_back({SI->getTrueValue(), CtxI});
321       Worklist.push_back({SI->getFalseValue(), CtxI});
322       continue;
323     }
324 
325     // Look through phi nodes, visit all live operands.
326     if (auto *PHI = dyn_cast<PHINode>(V)) {
327       assert(LivenessAA &&
328              "Expected liveness in the presence of instructions!");
329       for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
330         BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
331         if (A.isAssumedDead(*IncomingBB->getTerminator(), &QueryingAA,
332                             LivenessAA,
333                             /* CheckBBLivenessOnly */ true)) {
334           AnyDead = true;
335           continue;
336         }
337         Worklist.push_back(
338             {PHI->getIncomingValue(u), IncomingBB->getTerminator()});
339       }
340       continue;
341     }
342 
343     if (UseValueSimplify && !isa<Constant>(V)) {
344       bool UsedAssumedInformation = false;
345       Optional<Constant *> C =
346           A.getAssumedConstant(*V, QueryingAA, UsedAssumedInformation);
347       if (!C.hasValue())
348         continue;
349       if (Value *NewV = C.getValue()) {
350         Worklist.push_back({NewV, CtxI});
351         continue;
352       }
353     }
354 
355     // Once a leaf is reached we inform the user through the callback.
356     if (!VisitValueCB(*V, CtxI, State, Iteration > 1))
357       return false;
358   } while (!Worklist.empty());
359 
360   // If we actually used liveness information so we have to record a dependence.
361   if (AnyDead)
362     A.recordDependence(*LivenessAA, QueryingAA, DepClassTy::OPTIONAL);
363 
364   // All values have been visited.
365   return true;
366 }
367 
368 const Value *stripAndAccumulateMinimalOffsets(
369     Attributor &A, const AbstractAttribute &QueryingAA, const Value *Val,
370     const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
371     bool UseAssumed = false) {
372 
373   auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
374     const IRPosition &Pos = IRPosition::value(V);
375     // Only track dependence if we are going to use the assumed info.
376     const AAValueConstantRange &ValueConstantRangeAA =
377         A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
378                                          /* TrackDependence */ UseAssumed);
379     ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed()
380                                      : ValueConstantRangeAA.getKnown();
381     // We can only use the lower part of the range because the upper part can
382     // be higher than what the value can really be.
383     ROffset = Range.getSignedMin();
384     return true;
385   };
386 
387   return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
388                                                 AttributorAnalysis);
389 }
390 
391 static const Value *getMinimalBaseOfAccsesPointerOperand(
392     Attributor &A, const AbstractAttribute &QueryingAA, const Instruction *I,
393     int64_t &BytesOffset, const DataLayout &DL, bool AllowNonInbounds = false) {
394   const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
395   if (!Ptr)
396     return nullptr;
397   APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
398   const Value *Base = stripAndAccumulateMinimalOffsets(
399       A, QueryingAA, Ptr, DL, OffsetAPInt, AllowNonInbounds);
400 
401   BytesOffset = OffsetAPInt.getSExtValue();
402   return Base;
403 }
404 
405 static const Value *
406 getBasePointerOfAccessPointerOperand(const Instruction *I, int64_t &BytesOffset,
407                                      const DataLayout &DL,
408                                      bool AllowNonInbounds = false) {
409   const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
410   if (!Ptr)
411     return nullptr;
412 
413   return GetPointerBaseWithConstantOffset(Ptr, BytesOffset, DL,
414                                           AllowNonInbounds);
415 }
416 
417 /// Helper function to clamp a state \p S of type \p StateType with the
418 /// information in \p R and indicate/return if \p S did change (as-in update is
419 /// required to be run again).
420 template <typename StateType>
421 ChangeStatus clampStateAndIndicateChange(StateType &S, const StateType &R) {
422   auto Assumed = S.getAssumed();
423   S ^= R;
424   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
425                                    : ChangeStatus::CHANGED;
426 }
427 
428 /// Clamp the information known for all returned values of a function
429 /// (identified by \p QueryingAA) into \p S.
430 template <typename AAType, typename StateType = typename AAType::StateType>
431 static void clampReturnedValueStates(Attributor &A, const AAType &QueryingAA,
432                                      StateType &S) {
433   LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
434                     << QueryingAA << " into " << S << "\n");
435 
436   assert((QueryingAA.getIRPosition().getPositionKind() ==
437               IRPosition::IRP_RETURNED ||
438           QueryingAA.getIRPosition().getPositionKind() ==
439               IRPosition::IRP_CALL_SITE_RETURNED) &&
440          "Can only clamp returned value states for a function returned or call "
441          "site returned position!");
442 
443   // Use an optional state as there might not be any return values and we want
444   // to join (IntegerState::operator&) the state of all there are.
445   Optional<StateType> T;
446 
447   // Callback for each possibly returned value.
448   auto CheckReturnValue = [&](Value &RV) -> bool {
449     const IRPosition &RVPos = IRPosition::value(RV);
450     const AAType &AA = A.getAAFor<AAType>(QueryingAA, RVPos);
451     LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
452                       << " @ " << RVPos << "\n");
453     const StateType &AAS = AA.getState();
454     if (T.hasValue())
455       *T &= AAS;
456     else
457       T = AAS;
458     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
459                       << "\n");
460     return T->isValidState();
461   };
462 
463   if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
464     S.indicatePessimisticFixpoint();
465   else if (T.hasValue())
466     S ^= *T;
467 }
468 
469 /// Helper class for generic deduction: return value -> returned position.
470 template <typename AAType, typename BaseType,
471           typename StateType = typename BaseType::StateType>
472 struct AAReturnedFromReturnedValues : public BaseType {
473   AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
474       : BaseType(IRP, A) {}
475 
476   /// See AbstractAttribute::updateImpl(...).
477   ChangeStatus updateImpl(Attributor &A) override {
478     StateType S(StateType::getBestState(this->getState()));
479     clampReturnedValueStates<AAType, StateType>(A, *this, S);
480     // TODO: If we know we visited all returned values, thus no are assumed
481     // dead, we can take the known information from the state T.
482     return clampStateAndIndicateChange<StateType>(this->getState(), S);
483   }
484 };
485 
486 /// Clamp the information known at all call sites for a given argument
487 /// (identified by \p QueryingAA) into \p S.
488 template <typename AAType, typename StateType = typename AAType::StateType>
489 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
490                                         StateType &S) {
491   LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
492                     << QueryingAA << " into " << S << "\n");
493 
494   assert(QueryingAA.getIRPosition().getPositionKind() ==
495              IRPosition::IRP_ARGUMENT &&
496          "Can only clamp call site argument states for an argument position!");
497 
498   // Use an optional state as there might not be any return values and we want
499   // to join (IntegerState::operator&) the state of all there are.
500   Optional<StateType> T;
501 
502   // The argument number which is also the call site argument number.
503   unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo();
504 
505   auto CallSiteCheck = [&](AbstractCallSite ACS) {
506     const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
507     // Check if a coresponding argument was found or if it is on not associated
508     // (which can happen for callback calls).
509     if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
510       return false;
511 
512     const AAType &AA = A.getAAFor<AAType>(QueryingAA, ACSArgPos);
513     LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
514                       << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
515     const StateType &AAS = AA.getState();
516     if (T.hasValue())
517       *T &= AAS;
518     else
519       T = AAS;
520     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
521                       << "\n");
522     return T->isValidState();
523   };
524 
525   bool AllCallSitesKnown;
526   if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
527                               AllCallSitesKnown))
528     S.indicatePessimisticFixpoint();
529   else if (T.hasValue())
530     S ^= *T;
531 }
532 
533 /// Helper class for generic deduction: call site argument -> argument position.
534 template <typename AAType, typename BaseType,
535           typename StateType = typename AAType::StateType>
536 struct AAArgumentFromCallSiteArguments : public BaseType {
537   AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
538       : BaseType(IRP, A) {}
539 
540   /// See AbstractAttribute::updateImpl(...).
541   ChangeStatus updateImpl(Attributor &A) override {
542     StateType S(StateType::getBestState(this->getState()));
543     clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
544     // TODO: If we know we visited all incoming values, thus no are assumed
545     // dead, we can take the known information from the state T.
546     return clampStateAndIndicateChange<StateType>(this->getState(), S);
547   }
548 };
549 
550 /// Helper class for generic replication: function returned -> cs returned.
551 template <typename AAType, typename BaseType,
552           typename StateType = typename BaseType::StateType>
553 struct AACallSiteReturnedFromReturned : public BaseType {
554   AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A)
555       : BaseType(IRP, A) {}
556 
557   /// See AbstractAttribute::updateImpl(...).
558   ChangeStatus updateImpl(Attributor &A) override {
559     assert(this->getIRPosition().getPositionKind() ==
560                IRPosition::IRP_CALL_SITE_RETURNED &&
561            "Can only wrap function returned positions for call site returned "
562            "positions!");
563     auto &S = this->getState();
564 
565     const Function *AssociatedFunction =
566         this->getIRPosition().getAssociatedFunction();
567     if (!AssociatedFunction)
568       return S.indicatePessimisticFixpoint();
569 
570     IRPosition FnPos = IRPosition::returned(*AssociatedFunction);
571     const AAType &AA = A.getAAFor<AAType>(*this, FnPos);
572     return clampStateAndIndicateChange(S, AA.getState());
573   }
574 };
575 
576 /// Helper function to accumulate uses.
577 template <class AAType, typename StateType = typename AAType::StateType>
578 static void followUsesInContext(AAType &AA, Attributor &A,
579                                 MustBeExecutedContextExplorer &Explorer,
580                                 const Instruction *CtxI,
581                                 SetVector<const Use *> &Uses,
582                                 StateType &State) {
583   auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
584   for (unsigned u = 0; u < Uses.size(); ++u) {
585     const Use *U = Uses[u];
586     if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
587       bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
588       if (Found && AA.followUseInMBEC(A, U, UserI, State))
589         for (const Use &Us : UserI->uses())
590           Uses.insert(&Us);
591     }
592   }
593 }
594 
595 /// Use the must-be-executed-context around \p I to add information into \p S.
596 /// The AAType class is required to have `followUseInMBEC` method with the
597 /// following signature and behaviour:
598 ///
599 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
600 /// U - Underlying use.
601 /// I - The user of the \p U.
602 /// Returns true if the value should be tracked transitively.
603 ///
604 template <class AAType, typename StateType = typename AAType::StateType>
605 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
606                              Instruction &CtxI) {
607 
608   // Container for (transitive) uses of the associated value.
609   SetVector<const Use *> Uses;
610   for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
611     Uses.insert(&U);
612 
613   MustBeExecutedContextExplorer &Explorer =
614       A.getInfoCache().getMustBeExecutedContextExplorer();
615 
616   followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S);
617 
618   if (S.isAtFixpoint())
619     return;
620 
621   SmallVector<const BranchInst *, 4> BrInsts;
622   auto Pred = [&](const Instruction *I) {
623     if (const BranchInst *Br = dyn_cast<BranchInst>(I))
624       if (Br->isConditional())
625         BrInsts.push_back(Br);
626     return true;
627   };
628 
629   // Here, accumulate conditional branch instructions in the context. We
630   // explore the child paths and collect the known states. The disjunction of
631   // those states can be merged to its own state. Let ParentState_i be a state
632   // to indicate the known information for an i-th branch instruction in the
633   // context. ChildStates are created for its successors respectively.
634   //
635   // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
636   // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
637   //      ...
638   // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
639   //
640   // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
641   //
642   // FIXME: Currently, recursive branches are not handled. For example, we
643   // can't deduce that ptr must be dereferenced in below function.
644   //
645   // void f(int a, int c, int *ptr) {
646   //    if(a)
647   //      if (b) {
648   //        *ptr = 0;
649   //      } else {
650   //        *ptr = 1;
651   //      }
652   //    else {
653   //      if (b) {
654   //        *ptr = 0;
655   //      } else {
656   //        *ptr = 1;
657   //      }
658   //    }
659   // }
660 
661   Explorer.checkForAllContext(&CtxI, Pred);
662   for (const BranchInst *Br : BrInsts) {
663     StateType ParentState;
664 
665     // The known state of the parent state is a conjunction of children's
666     // known states so it is initialized with a best state.
667     ParentState.indicateOptimisticFixpoint();
668 
669     for (const BasicBlock *BB : Br->successors()) {
670       StateType ChildState;
671 
672       size_t BeforeSize = Uses.size();
673       followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState);
674 
675       // Erase uses which only appear in the child.
676       for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
677         It = Uses.erase(It);
678 
679       ParentState &= ChildState;
680     }
681 
682     // Use only known state.
683     S += ParentState;
684   }
685 }
686 
687 /// -----------------------NoUnwind Function Attribute--------------------------
688 
689 struct AANoUnwindImpl : AANoUnwind {
690   AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
691 
692   const std::string getAsStr() const override {
693     return getAssumed() ? "nounwind" : "may-unwind";
694   }
695 
696   /// See AbstractAttribute::updateImpl(...).
697   ChangeStatus updateImpl(Attributor &A) override {
698     auto Opcodes = {
699         (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
700         (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
701         (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
702 
703     auto CheckForNoUnwind = [&](Instruction &I) {
704       if (!I.mayThrow())
705         return true;
706 
707       if (const auto *CB = dyn_cast<CallBase>(&I)) {
708         const auto &NoUnwindAA =
709             A.getAAFor<AANoUnwind>(*this, IRPosition::callsite_function(*CB));
710         return NoUnwindAA.isAssumedNoUnwind();
711       }
712       return false;
713     };
714 
715     if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes))
716       return indicatePessimisticFixpoint();
717 
718     return ChangeStatus::UNCHANGED;
719   }
720 };
721 
722 struct AANoUnwindFunction final : public AANoUnwindImpl {
723   AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
724       : AANoUnwindImpl(IRP, A) {}
725 
726   /// See AbstractAttribute::trackStatistics()
727   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
728 };
729 
730 /// NoUnwind attribute deduction for a call sites.
731 struct AANoUnwindCallSite final : AANoUnwindImpl {
732   AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
733       : AANoUnwindImpl(IRP, A) {}
734 
735   /// See AbstractAttribute::initialize(...).
736   void initialize(Attributor &A) override {
737     AANoUnwindImpl::initialize(A);
738     Function *F = getAssociatedFunction();
739     if (!F || F->isDeclaration())
740       indicatePessimisticFixpoint();
741   }
742 
743   /// See AbstractAttribute::updateImpl(...).
744   ChangeStatus updateImpl(Attributor &A) override {
745     // TODO: Once we have call site specific value information we can provide
746     //       call site specific liveness information and then it makes
747     //       sense to specialize attributes for call sites arguments instead of
748     //       redirecting requests to the callee argument.
749     Function *F = getAssociatedFunction();
750     const IRPosition &FnPos = IRPosition::function(*F);
751     auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos);
752     return clampStateAndIndicateChange(getState(), FnAA.getState());
753   }
754 
755   /// See AbstractAttribute::trackStatistics()
756   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
757 };
758 
759 /// --------------------- Function Return Values -------------------------------
760 
761 /// "Attribute" that collects all potential returned values and the return
762 /// instructions that they arise from.
763 ///
764 /// If there is a unique returned value R, the manifest method will:
765 ///   - mark R with the "returned" attribute, if R is an argument.
766 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
767 
768   /// Mapping of values potentially returned by the associated function to the
769   /// return instructions that might return them.
770   MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
771 
772   /// Mapping to remember the number of returned values for a call site such
773   /// that we can avoid updates if nothing changed.
774   DenseMap<const CallBase *, unsigned> NumReturnedValuesPerKnownAA;
775 
776   /// Set of unresolved calls returned by the associated function.
777   SmallSetVector<CallBase *, 4> UnresolvedCalls;
778 
779   /// State flags
780   ///
781   ///{
782   bool IsFixed = false;
783   bool IsValidState = true;
784   ///}
785 
786 public:
787   AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A)
788       : AAReturnedValues(IRP, A) {}
789 
790   /// See AbstractAttribute::initialize(...).
791   void initialize(Attributor &A) override {
792     // Reset the state.
793     IsFixed = false;
794     IsValidState = true;
795     ReturnedValues.clear();
796 
797     Function *F = getAssociatedFunction();
798     if (!F || F->isDeclaration()) {
799       indicatePessimisticFixpoint();
800       return;
801     }
802     assert(!F->getReturnType()->isVoidTy() &&
803            "Did not expect a void return type!");
804 
805     // The map from instruction opcodes to those instructions in the function.
806     auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
807 
808     // Look through all arguments, if one is marked as returned we are done.
809     for (Argument &Arg : F->args()) {
810       if (Arg.hasReturnedAttr()) {
811         auto &ReturnInstSet = ReturnedValues[&Arg];
812         if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret))
813           for (Instruction *RI : *Insts)
814             ReturnInstSet.insert(cast<ReturnInst>(RI));
815 
816         indicateOptimisticFixpoint();
817         return;
818       }
819     }
820 
821     if (!A.isFunctionIPOAmendable(*F))
822       indicatePessimisticFixpoint();
823   }
824 
825   /// See AbstractAttribute::manifest(...).
826   ChangeStatus manifest(Attributor &A) override;
827 
828   /// See AbstractAttribute::getState(...).
829   AbstractState &getState() override { return *this; }
830 
831   /// See AbstractAttribute::getState(...).
832   const AbstractState &getState() const override { return *this; }
833 
834   /// See AbstractAttribute::updateImpl(Attributor &A).
835   ChangeStatus updateImpl(Attributor &A) override;
836 
837   llvm::iterator_range<iterator> returned_values() override {
838     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
839   }
840 
841   llvm::iterator_range<const_iterator> returned_values() const override {
842     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
843   }
844 
845   const SmallSetVector<CallBase *, 4> &getUnresolvedCalls() const override {
846     return UnresolvedCalls;
847   }
848 
849   /// Return the number of potential return values, -1 if unknown.
850   size_t getNumReturnValues() const override {
851     return isValidState() ? ReturnedValues.size() : -1;
852   }
853 
854   /// Return an assumed unique return value if a single candidate is found. If
855   /// there cannot be one, return a nullptr. If it is not clear yet, return the
856   /// Optional::NoneType.
857   Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
858 
859   /// See AbstractState::checkForAllReturnedValues(...).
860   bool checkForAllReturnedValuesAndReturnInsts(
861       function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
862       const override;
863 
864   /// Pretty print the attribute similar to the IR representation.
865   const std::string getAsStr() const override;
866 
867   /// See AbstractState::isAtFixpoint().
868   bool isAtFixpoint() const override { return IsFixed; }
869 
870   /// See AbstractState::isValidState().
871   bool isValidState() const override { return IsValidState; }
872 
873   /// See AbstractState::indicateOptimisticFixpoint(...).
874   ChangeStatus indicateOptimisticFixpoint() override {
875     IsFixed = true;
876     return ChangeStatus::UNCHANGED;
877   }
878 
879   ChangeStatus indicatePessimisticFixpoint() override {
880     IsFixed = true;
881     IsValidState = false;
882     return ChangeStatus::CHANGED;
883   }
884 };
885 
886 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
887   ChangeStatus Changed = ChangeStatus::UNCHANGED;
888 
889   // Bookkeeping.
890   assert(isValidState());
891   STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
892                   "Number of function with known return values");
893 
894   // Check if we have an assumed unique return value that we could manifest.
895   Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
896 
897   if (!UniqueRV.hasValue() || !UniqueRV.getValue())
898     return Changed;
899 
900   // Bookkeeping.
901   STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
902                   "Number of function with unique return");
903 
904   // Callback to replace the uses of CB with the constant C.
905   auto ReplaceCallSiteUsersWith = [&A](CallBase &CB, Constant &C) {
906     if (CB.use_empty())
907       return ChangeStatus::UNCHANGED;
908     if (A.changeValueAfterManifest(CB, C))
909       return ChangeStatus::CHANGED;
910     return ChangeStatus::UNCHANGED;
911   };
912 
913   // If the assumed unique return value is an argument, annotate it.
914   if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
915     if (UniqueRVArg->getType()->canLosslesslyBitCastTo(
916             getAssociatedFunction()->getReturnType())) {
917       getIRPosition() = IRPosition::argument(*UniqueRVArg);
918       Changed = IRAttribute::manifest(A);
919     }
920   } else if (auto *RVC = dyn_cast<Constant>(UniqueRV.getValue())) {
921     // We can replace the returned value with the unique returned constant.
922     Value &AnchorValue = getAnchorValue();
923     if (Function *F = dyn_cast<Function>(&AnchorValue)) {
924       for (const Use &U : F->uses())
925         if (CallBase *CB = dyn_cast<CallBase>(U.getUser()))
926           if (CB->isCallee(&U)) {
927             Constant *RVCCast =
928                 CB->getType() == RVC->getType()
929                     ? RVC
930                     : ConstantExpr::getTruncOrBitCast(RVC, CB->getType());
931             Changed = ReplaceCallSiteUsersWith(*CB, *RVCCast) | Changed;
932           }
933     } else {
934       assert(isa<CallBase>(AnchorValue) &&
935              "Expcected a function or call base anchor!");
936       Constant *RVCCast =
937           AnchorValue.getType() == RVC->getType()
938               ? RVC
939               : ConstantExpr::getTruncOrBitCast(RVC, AnchorValue.getType());
940       Changed = ReplaceCallSiteUsersWith(cast<CallBase>(AnchorValue), *RVCCast);
941     }
942     if (Changed == ChangeStatus::CHANGED)
943       STATS_DECLTRACK(UniqueConstantReturnValue, FunctionReturn,
944                       "Number of function returns replaced by constant return");
945   }
946 
947   return Changed;
948 }
949 
950 const std::string AAReturnedValuesImpl::getAsStr() const {
951   return (isAtFixpoint() ? "returns(#" : "may-return(#") +
952          (isValidState() ? std::to_string(getNumReturnValues()) : "?") +
953          ")[#UC: " + std::to_string(UnresolvedCalls.size()) + "]";
954 }
955 
956 Optional<Value *>
957 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
958   // If checkForAllReturnedValues provides a unique value, ignoring potential
959   // undef values that can also be present, it is assumed to be the actual
960   // return value and forwarded to the caller of this method. If there are
961   // multiple, a nullptr is returned indicating there cannot be a unique
962   // returned value.
963   Optional<Value *> UniqueRV;
964 
965   auto Pred = [&](Value &RV) -> bool {
966     // If we found a second returned value and neither the current nor the saved
967     // one is an undef, there is no unique returned value. Undefs are special
968     // since we can pretend they have any value.
969     if (UniqueRV.hasValue() && UniqueRV != &RV &&
970         !(isa<UndefValue>(RV) || isa<UndefValue>(UniqueRV.getValue()))) {
971       UniqueRV = nullptr;
972       return false;
973     }
974 
975     // Do not overwrite a value with an undef.
976     if (!UniqueRV.hasValue() || !isa<UndefValue>(RV))
977       UniqueRV = &RV;
978 
979     return true;
980   };
981 
982   if (!A.checkForAllReturnedValues(Pred, *this))
983     UniqueRV = nullptr;
984 
985   return UniqueRV;
986 }
987 
988 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
989     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
990     const {
991   if (!isValidState())
992     return false;
993 
994   // Check all returned values but ignore call sites as long as we have not
995   // encountered an overdefined one during an update.
996   for (auto &It : ReturnedValues) {
997     Value *RV = It.first;
998 
999     CallBase *CB = dyn_cast<CallBase>(RV);
1000     if (CB && !UnresolvedCalls.count(CB))
1001       continue;
1002 
1003     if (!Pred(*RV, It.second))
1004       return false;
1005   }
1006 
1007   return true;
1008 }
1009 
1010 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
1011   size_t NumUnresolvedCalls = UnresolvedCalls.size();
1012   bool Changed = false;
1013 
1014   // State used in the value traversals starting in returned values.
1015   struct RVState {
1016     // The map in which we collect return values -> return instrs.
1017     decltype(ReturnedValues) &RetValsMap;
1018     // The flag to indicate a change.
1019     bool &Changed;
1020     // The return instrs we come from.
1021     SmallSetVector<ReturnInst *, 4> RetInsts;
1022   };
1023 
1024   // Callback for a leaf value returned by the associated function.
1025   auto VisitValueCB = [](Value &Val, const Instruction *, RVState &RVS,
1026                          bool) -> bool {
1027     auto Size = RVS.RetValsMap[&Val].size();
1028     RVS.RetValsMap[&Val].insert(RVS.RetInsts.begin(), RVS.RetInsts.end());
1029     bool Inserted = RVS.RetValsMap[&Val].size() != Size;
1030     RVS.Changed |= Inserted;
1031     LLVM_DEBUG({
1032       if (Inserted)
1033         dbgs() << "[AAReturnedValues] 1 Add new returned value " << Val
1034                << " => " << RVS.RetInsts.size() << "\n";
1035     });
1036     return true;
1037   };
1038 
1039   // Helper method to invoke the generic value traversal.
1040   auto VisitReturnedValue = [&](Value &RV, RVState &RVS,
1041                                 const Instruction *CtxI) {
1042     IRPosition RetValPos = IRPosition::value(RV);
1043     return genericValueTraversal<AAReturnedValues, RVState>(
1044         A, RetValPos, *this, RVS, VisitValueCB, CtxI,
1045         /* UseValueSimplify */ false);
1046   };
1047 
1048   // Callback for all "return intructions" live in the associated function.
1049   auto CheckReturnInst = [this, &VisitReturnedValue, &Changed](Instruction &I) {
1050     ReturnInst &Ret = cast<ReturnInst>(I);
1051     RVState RVS({ReturnedValues, Changed, {}});
1052     RVS.RetInsts.insert(&Ret);
1053     return VisitReturnedValue(*Ret.getReturnValue(), RVS, &I);
1054   };
1055 
1056   // Start by discovering returned values from all live returned instructions in
1057   // the associated function.
1058   if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}))
1059     return indicatePessimisticFixpoint();
1060 
1061   // Once returned values "directly" present in the code are handled we try to
1062   // resolve returned calls. To avoid modifications to the ReturnedValues map
1063   // while we iterate over it we kept record of potential new entries in a copy
1064   // map, NewRVsMap.
1065   decltype(ReturnedValues) NewRVsMap;
1066 
1067   auto HandleReturnValue = [&](Value *RV,
1068                                SmallSetVector<ReturnInst *, 4> &RIs) {
1069     LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned value: " << *RV << " by #"
1070                       << RIs.size() << " RIs\n");
1071     CallBase *CB = dyn_cast<CallBase>(RV);
1072     if (!CB || UnresolvedCalls.count(CB))
1073       return;
1074 
1075     if (!CB->getCalledFunction()) {
1076       LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB
1077                         << "\n");
1078       UnresolvedCalls.insert(CB);
1079       return;
1080     }
1081 
1082     // TODO: use the function scope once we have call site AAReturnedValues.
1083     const auto &RetValAA = A.getAAFor<AAReturnedValues>(
1084         *this, IRPosition::function(*CB->getCalledFunction()));
1085     LLVM_DEBUG(dbgs() << "[AAReturnedValues] Found another AAReturnedValues: "
1086                       << RetValAA << "\n");
1087 
1088     // Skip dead ends, thus if we do not know anything about the returned
1089     // call we mark it as unresolved and it will stay that way.
1090     if (!RetValAA.getState().isValidState()) {
1091       LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB
1092                         << "\n");
1093       UnresolvedCalls.insert(CB);
1094       return;
1095     }
1096 
1097     // Do not try to learn partial information. If the callee has unresolved
1098     // return values we will treat the call as unresolved/opaque.
1099     auto &RetValAAUnresolvedCalls = RetValAA.getUnresolvedCalls();
1100     if (!RetValAAUnresolvedCalls.empty()) {
1101       UnresolvedCalls.insert(CB);
1102       return;
1103     }
1104 
1105     // Now check if we can track transitively returned values. If possible, thus
1106     // if all return value can be represented in the current scope, do so.
1107     bool Unresolved = false;
1108     for (auto &RetValAAIt : RetValAA.returned_values()) {
1109       Value *RetVal = RetValAAIt.first;
1110       if (isa<Argument>(RetVal) || isa<CallBase>(RetVal) ||
1111           isa<Constant>(RetVal))
1112         continue;
1113       // Anything that did not fit in the above categories cannot be resolved,
1114       // mark the call as unresolved.
1115       LLVM_DEBUG(dbgs() << "[AAReturnedValues] transitively returned value "
1116                            "cannot be translated: "
1117                         << *RetVal << "\n");
1118       UnresolvedCalls.insert(CB);
1119       Unresolved = true;
1120       break;
1121     }
1122 
1123     if (Unresolved)
1124       return;
1125 
1126     // Now track transitively returned values.
1127     unsigned &NumRetAA = NumReturnedValuesPerKnownAA[CB];
1128     if (NumRetAA == RetValAA.getNumReturnValues()) {
1129       LLVM_DEBUG(dbgs() << "[AAReturnedValues] Skip call as it has not "
1130                            "changed since it was seen last\n");
1131       return;
1132     }
1133     NumRetAA = RetValAA.getNumReturnValues();
1134 
1135     for (auto &RetValAAIt : RetValAA.returned_values()) {
1136       Value *RetVal = RetValAAIt.first;
1137       if (Argument *Arg = dyn_cast<Argument>(RetVal)) {
1138         // Arguments are mapped to call site operands and we begin the traversal
1139         // again.
1140         bool Unused = false;
1141         RVState RVS({NewRVsMap, Unused, RetValAAIt.second});
1142         VisitReturnedValue(*CB->getArgOperand(Arg->getArgNo()), RVS, CB);
1143         continue;
1144       }
1145       if (isa<CallBase>(RetVal)) {
1146         // Call sites are resolved by the callee attribute over time, no need to
1147         // do anything for us.
1148         continue;
1149       }
1150       if (isa<Constant>(RetVal)) {
1151         // Constants are valid everywhere, we can simply take them.
1152         NewRVsMap[RetVal].insert(RIs.begin(), RIs.end());
1153         continue;
1154       }
1155     }
1156   };
1157 
1158   for (auto &It : ReturnedValues)
1159     HandleReturnValue(It.first, It.second);
1160 
1161   // Because processing the new information can again lead to new return values
1162   // we have to be careful and iterate until this iteration is complete. The
1163   // idea is that we are in a stable state at the end of an update. All return
1164   // values have been handled and properly categorized. We might not update
1165   // again if we have not requested a non-fix attribute so we cannot "wait" for
1166   // the next update to analyze a new return value.
1167   while (!NewRVsMap.empty()) {
1168     auto It = std::move(NewRVsMap.back());
1169     NewRVsMap.pop_back();
1170 
1171     assert(!It.second.empty() && "Entry does not add anything.");
1172     auto &ReturnInsts = ReturnedValues[It.first];
1173     for (ReturnInst *RI : It.second)
1174       if (ReturnInsts.insert(RI)) {
1175         LLVM_DEBUG(dbgs() << "[AAReturnedValues] Add new returned value "
1176                           << *It.first << " => " << *RI << "\n");
1177         HandleReturnValue(It.first, ReturnInsts);
1178         Changed = true;
1179       }
1180   }
1181 
1182   Changed |= (NumUnresolvedCalls != UnresolvedCalls.size());
1183   return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
1184 }
1185 
1186 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
1187   AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A)
1188       : AAReturnedValuesImpl(IRP, A) {}
1189 
1190   /// See AbstractAttribute::trackStatistics()
1191   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
1192 };
1193 
1194 /// Returned values information for a call sites.
1195 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
1196   AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A)
1197       : AAReturnedValuesImpl(IRP, A) {}
1198 
1199   /// See AbstractAttribute::initialize(...).
1200   void initialize(Attributor &A) override {
1201     // TODO: Once we have call site specific value information we can provide
1202     //       call site specific liveness information and then it makes
1203     //       sense to specialize attributes for call sites instead of
1204     //       redirecting requests to the callee.
1205     llvm_unreachable("Abstract attributes for returned values are not "
1206                      "supported for call sites yet!");
1207   }
1208 
1209   /// See AbstractAttribute::updateImpl(...).
1210   ChangeStatus updateImpl(Attributor &A) override {
1211     return indicatePessimisticFixpoint();
1212   }
1213 
1214   /// See AbstractAttribute::trackStatistics()
1215   void trackStatistics() const override {}
1216 };
1217 
1218 /// ------------------------ NoSync Function Attribute -------------------------
1219 
1220 struct AANoSyncImpl : AANoSync {
1221   AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
1222 
1223   const std::string getAsStr() const override {
1224     return getAssumed() ? "nosync" : "may-sync";
1225   }
1226 
1227   /// See AbstractAttribute::updateImpl(...).
1228   ChangeStatus updateImpl(Attributor &A) override;
1229 
1230   /// Helper function used to determine whether an instruction is non-relaxed
1231   /// atomic. In other words, if an atomic instruction does not have unordered
1232   /// or monotonic ordering
1233   static bool isNonRelaxedAtomic(Instruction *I);
1234 
1235   /// Helper function used to determine whether an instruction is volatile.
1236   static bool isVolatile(Instruction *I);
1237 
1238   /// Helper function uset to check if intrinsic is volatile (memcpy, memmove,
1239   /// memset).
1240   static bool isNoSyncIntrinsic(Instruction *I);
1241 };
1242 
1243 bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) {
1244   if (!I->isAtomic())
1245     return false;
1246 
1247   AtomicOrdering Ordering;
1248   switch (I->getOpcode()) {
1249   case Instruction::AtomicRMW:
1250     Ordering = cast<AtomicRMWInst>(I)->getOrdering();
1251     break;
1252   case Instruction::Store:
1253     Ordering = cast<StoreInst>(I)->getOrdering();
1254     break;
1255   case Instruction::Load:
1256     Ordering = cast<LoadInst>(I)->getOrdering();
1257     break;
1258   case Instruction::Fence: {
1259     auto *FI = cast<FenceInst>(I);
1260     if (FI->getSyncScopeID() == SyncScope::SingleThread)
1261       return false;
1262     Ordering = FI->getOrdering();
1263     break;
1264   }
1265   case Instruction::AtomicCmpXchg: {
1266     AtomicOrdering Success = cast<AtomicCmpXchgInst>(I)->getSuccessOrdering();
1267     AtomicOrdering Failure = cast<AtomicCmpXchgInst>(I)->getFailureOrdering();
1268     // Only if both are relaxed, than it can be treated as relaxed.
1269     // Otherwise it is non-relaxed.
1270     if (Success != AtomicOrdering::Unordered &&
1271         Success != AtomicOrdering::Monotonic)
1272       return true;
1273     if (Failure != AtomicOrdering::Unordered &&
1274         Failure != AtomicOrdering::Monotonic)
1275       return true;
1276     return false;
1277   }
1278   default:
1279     llvm_unreachable(
1280         "New atomic operations need to be known in the attributor.");
1281   }
1282 
1283   // Relaxed.
1284   if (Ordering == AtomicOrdering::Unordered ||
1285       Ordering == AtomicOrdering::Monotonic)
1286     return false;
1287   return true;
1288 }
1289 
1290 /// Checks if an intrinsic is nosync. Currently only checks mem* intrinsics.
1291 /// FIXME: We should ipmrove the handling of intrinsics.
1292 bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) {
1293   if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1294     switch (II->getIntrinsicID()) {
1295     /// Element wise atomic memory intrinsics are can only be unordered,
1296     /// therefore nosync.
1297     case Intrinsic::memset_element_unordered_atomic:
1298     case Intrinsic::memmove_element_unordered_atomic:
1299     case Intrinsic::memcpy_element_unordered_atomic:
1300       return true;
1301     case Intrinsic::memset:
1302     case Intrinsic::memmove:
1303     case Intrinsic::memcpy:
1304       if (!cast<MemIntrinsic>(II)->isVolatile())
1305         return true;
1306       return false;
1307     default:
1308       return false;
1309     }
1310   }
1311   return false;
1312 }
1313 
1314 bool AANoSyncImpl::isVolatile(Instruction *I) {
1315   assert(!isa<CallBase>(I) && "Calls should not be checked here");
1316 
1317   switch (I->getOpcode()) {
1318   case Instruction::AtomicRMW:
1319     return cast<AtomicRMWInst>(I)->isVolatile();
1320   case Instruction::Store:
1321     return cast<StoreInst>(I)->isVolatile();
1322   case Instruction::Load:
1323     return cast<LoadInst>(I)->isVolatile();
1324   case Instruction::AtomicCmpXchg:
1325     return cast<AtomicCmpXchgInst>(I)->isVolatile();
1326   default:
1327     return false;
1328   }
1329 }
1330 
1331 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
1332 
1333   auto CheckRWInstForNoSync = [&](Instruction &I) {
1334     /// We are looking for volatile instructions or Non-Relaxed atomics.
1335     /// FIXME: We should improve the handling of intrinsics.
1336 
1337     if (isa<IntrinsicInst>(&I) && isNoSyncIntrinsic(&I))
1338       return true;
1339 
1340     if (const auto *CB = dyn_cast<CallBase>(&I)) {
1341       if (CB->hasFnAttr(Attribute::NoSync))
1342         return true;
1343 
1344       const auto &NoSyncAA =
1345           A.getAAFor<AANoSync>(*this, IRPosition::callsite_function(*CB));
1346       if (NoSyncAA.isAssumedNoSync())
1347         return true;
1348       return false;
1349     }
1350 
1351     if (!isVolatile(&I) && !isNonRelaxedAtomic(&I))
1352       return true;
1353 
1354     return false;
1355   };
1356 
1357   auto CheckForNoSync = [&](Instruction &I) {
1358     // At this point we handled all read/write effects and they are all
1359     // nosync, so they can be skipped.
1360     if (I.mayReadOrWriteMemory())
1361       return true;
1362 
1363     // non-convergent and readnone imply nosync.
1364     return !cast<CallBase>(I).isConvergent();
1365   };
1366 
1367   if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this) ||
1368       !A.checkForAllCallLikeInstructions(CheckForNoSync, *this))
1369     return indicatePessimisticFixpoint();
1370 
1371   return ChangeStatus::UNCHANGED;
1372 }
1373 
1374 struct AANoSyncFunction final : public AANoSyncImpl {
1375   AANoSyncFunction(const IRPosition &IRP, Attributor &A)
1376       : AANoSyncImpl(IRP, A) {}
1377 
1378   /// See AbstractAttribute::trackStatistics()
1379   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
1380 };
1381 
1382 /// NoSync attribute deduction for a call sites.
1383 struct AANoSyncCallSite final : AANoSyncImpl {
1384   AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
1385       : AANoSyncImpl(IRP, A) {}
1386 
1387   /// See AbstractAttribute::initialize(...).
1388   void initialize(Attributor &A) override {
1389     AANoSyncImpl::initialize(A);
1390     Function *F = getAssociatedFunction();
1391     if (!F || F->isDeclaration())
1392       indicatePessimisticFixpoint();
1393   }
1394 
1395   /// See AbstractAttribute::updateImpl(...).
1396   ChangeStatus updateImpl(Attributor &A) override {
1397     // TODO: Once we have call site specific value information we can provide
1398     //       call site specific liveness information and then it makes
1399     //       sense to specialize attributes for call sites arguments instead of
1400     //       redirecting requests to the callee argument.
1401     Function *F = getAssociatedFunction();
1402     const IRPosition &FnPos = IRPosition::function(*F);
1403     auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos);
1404     return clampStateAndIndicateChange(getState(), FnAA.getState());
1405   }
1406 
1407   /// See AbstractAttribute::trackStatistics()
1408   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
1409 };
1410 
1411 /// ------------------------ No-Free Attributes ----------------------------
1412 
1413 struct AANoFreeImpl : public AANoFree {
1414   AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
1415 
1416   /// See AbstractAttribute::updateImpl(...).
1417   ChangeStatus updateImpl(Attributor &A) override {
1418     auto CheckForNoFree = [&](Instruction &I) {
1419       const auto &CB = cast<CallBase>(I);
1420       if (CB.hasFnAttr(Attribute::NoFree))
1421         return true;
1422 
1423       const auto &NoFreeAA =
1424           A.getAAFor<AANoFree>(*this, IRPosition::callsite_function(CB));
1425       return NoFreeAA.isAssumedNoFree();
1426     };
1427 
1428     if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this))
1429       return indicatePessimisticFixpoint();
1430     return ChangeStatus::UNCHANGED;
1431   }
1432 
1433   /// See AbstractAttribute::getAsStr().
1434   const std::string getAsStr() const override {
1435     return getAssumed() ? "nofree" : "may-free";
1436   }
1437 };
1438 
1439 struct AANoFreeFunction final : public AANoFreeImpl {
1440   AANoFreeFunction(const IRPosition &IRP, Attributor &A)
1441       : AANoFreeImpl(IRP, A) {}
1442 
1443   /// See AbstractAttribute::trackStatistics()
1444   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
1445 };
1446 
1447 /// NoFree attribute deduction for a call sites.
1448 struct AANoFreeCallSite final : AANoFreeImpl {
1449   AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
1450       : AANoFreeImpl(IRP, A) {}
1451 
1452   /// See AbstractAttribute::initialize(...).
1453   void initialize(Attributor &A) override {
1454     AANoFreeImpl::initialize(A);
1455     Function *F = getAssociatedFunction();
1456     if (!F || F->isDeclaration())
1457       indicatePessimisticFixpoint();
1458   }
1459 
1460   /// See AbstractAttribute::updateImpl(...).
1461   ChangeStatus updateImpl(Attributor &A) override {
1462     // TODO: Once we have call site specific value information we can provide
1463     //       call site specific liveness information and then it makes
1464     //       sense to specialize attributes for call sites arguments instead of
1465     //       redirecting requests to the callee argument.
1466     Function *F = getAssociatedFunction();
1467     const IRPosition &FnPos = IRPosition::function(*F);
1468     auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos);
1469     return clampStateAndIndicateChange(getState(), FnAA.getState());
1470   }
1471 
1472   /// See AbstractAttribute::trackStatistics()
1473   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
1474 };
1475 
1476 /// NoFree attribute for floating values.
1477 struct AANoFreeFloating : AANoFreeImpl {
1478   AANoFreeFloating(const IRPosition &IRP, Attributor &A)
1479       : AANoFreeImpl(IRP, A) {}
1480 
1481   /// See AbstractAttribute::trackStatistics()
1482   void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
1483 
1484   /// See Abstract Attribute::updateImpl(...).
1485   ChangeStatus updateImpl(Attributor &A) override {
1486     const IRPosition &IRP = getIRPosition();
1487 
1488     const auto &NoFreeAA =
1489         A.getAAFor<AANoFree>(*this, IRPosition::function_scope(IRP));
1490     if (NoFreeAA.isAssumedNoFree())
1491       return ChangeStatus::UNCHANGED;
1492 
1493     Value &AssociatedValue = getIRPosition().getAssociatedValue();
1494     auto Pred = [&](const Use &U, bool &Follow) -> bool {
1495       Instruction *UserI = cast<Instruction>(U.getUser());
1496       if (auto *CB = dyn_cast<CallBase>(UserI)) {
1497         if (CB->isBundleOperand(&U))
1498           return false;
1499         if (!CB->isArgOperand(&U))
1500           return true;
1501         unsigned ArgNo = CB->getArgOperandNo(&U);
1502 
1503         const auto &NoFreeArg = A.getAAFor<AANoFree>(
1504             *this, IRPosition::callsite_argument(*CB, ArgNo));
1505         return NoFreeArg.isAssumedNoFree();
1506       }
1507 
1508       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
1509           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
1510         Follow = true;
1511         return true;
1512       }
1513       if (isa<ReturnInst>(UserI))
1514         return true;
1515 
1516       // Unknown user.
1517       return false;
1518     };
1519     if (!A.checkForAllUses(Pred, *this, AssociatedValue))
1520       return indicatePessimisticFixpoint();
1521 
1522     return ChangeStatus::UNCHANGED;
1523   }
1524 };
1525 
1526 /// NoFree attribute for a call site argument.
1527 struct AANoFreeArgument final : AANoFreeFloating {
1528   AANoFreeArgument(const IRPosition &IRP, Attributor &A)
1529       : AANoFreeFloating(IRP, A) {}
1530 
1531   /// See AbstractAttribute::trackStatistics()
1532   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
1533 };
1534 
1535 /// NoFree attribute for call site arguments.
1536 struct AANoFreeCallSiteArgument final : AANoFreeFloating {
1537   AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
1538       : AANoFreeFloating(IRP, A) {}
1539 
1540   /// See AbstractAttribute::updateImpl(...).
1541   ChangeStatus updateImpl(Attributor &A) override {
1542     // TODO: Once we have call site specific value information we can provide
1543     //       call site specific liveness information and then it makes
1544     //       sense to specialize attributes for call sites arguments instead of
1545     //       redirecting requests to the callee argument.
1546     Argument *Arg = getAssociatedArgument();
1547     if (!Arg)
1548       return indicatePessimisticFixpoint();
1549     const IRPosition &ArgPos = IRPosition::argument(*Arg);
1550     auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos);
1551     return clampStateAndIndicateChange(getState(), ArgAA.getState());
1552   }
1553 
1554   /// See AbstractAttribute::trackStatistics()
1555   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
1556 };
1557 
1558 /// NoFree attribute for function return value.
1559 struct AANoFreeReturned final : AANoFreeFloating {
1560   AANoFreeReturned(const IRPosition &IRP, Attributor &A)
1561       : AANoFreeFloating(IRP, A) {
1562     llvm_unreachable("NoFree is not applicable to function returns!");
1563   }
1564 
1565   /// See AbstractAttribute::initialize(...).
1566   void initialize(Attributor &A) override {
1567     llvm_unreachable("NoFree is not applicable to function returns!");
1568   }
1569 
1570   /// See AbstractAttribute::updateImpl(...).
1571   ChangeStatus updateImpl(Attributor &A) override {
1572     llvm_unreachable("NoFree is not applicable to function returns!");
1573   }
1574 
1575   /// See AbstractAttribute::trackStatistics()
1576   void trackStatistics() const override {}
1577 };
1578 
1579 /// NoFree attribute deduction for a call site return value.
1580 struct AANoFreeCallSiteReturned final : AANoFreeFloating {
1581   AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
1582       : AANoFreeFloating(IRP, A) {}
1583 
1584   ChangeStatus manifest(Attributor &A) override {
1585     return ChangeStatus::UNCHANGED;
1586   }
1587   /// See AbstractAttribute::trackStatistics()
1588   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
1589 };
1590 
1591 /// ------------------------ NonNull Argument Attribute ------------------------
1592 static int64_t getKnownNonNullAndDerefBytesForUse(
1593     Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
1594     const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
1595   TrackUse = false;
1596 
1597   const Value *UseV = U->get();
1598   if (!UseV->getType()->isPointerTy())
1599     return 0;
1600 
1601   Type *PtrTy = UseV->getType();
1602   const Function *F = I->getFunction();
1603   bool NullPointerIsDefined =
1604       F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
1605   const DataLayout &DL = A.getInfoCache().getDL();
1606   if (const auto *CB = dyn_cast<CallBase>(I)) {
1607     if (CB->isBundleOperand(U)) {
1608       if (RetainedKnowledge RK = getKnowledgeFromUse(
1609               U, {Attribute::NonNull, Attribute::Dereferenceable})) {
1610         IsNonNull |=
1611             (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
1612         return RK.ArgValue;
1613       }
1614       return 0;
1615     }
1616 
1617     if (CB->isCallee(U)) {
1618       IsNonNull |= !NullPointerIsDefined;
1619       return 0;
1620     }
1621 
1622     unsigned ArgNo = CB->getArgOperandNo(U);
1623     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
1624     // As long as we only use known information there is no need to track
1625     // dependences here.
1626     auto &DerefAA = A.getAAFor<AADereferenceable>(QueryingAA, IRP,
1627                                                   /* TrackDependence */ false);
1628     IsNonNull |= DerefAA.isKnownNonNull();
1629     return DerefAA.getKnownDereferenceableBytes();
1630   }
1631 
1632   // We need to follow common pointer manipulation uses to the accesses they
1633   // feed into. We can try to be smart to avoid looking through things we do not
1634   // like for now, e.g., non-inbounds GEPs.
1635   if (isa<CastInst>(I)) {
1636     TrackUse = true;
1637     return 0;
1638   }
1639 
1640   if (isa<GetElementPtrInst>(I)) {
1641     TrackUse = true;
1642     return 0;
1643   }
1644 
1645   int64_t Offset;
1646   const Value *Base =
1647       getMinimalBaseOfAccsesPointerOperand(A, QueryingAA, I, Offset, DL);
1648   if (Base) {
1649     if (Base == &AssociatedValue &&
1650         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
1651       int64_t DerefBytes =
1652           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()) + Offset;
1653 
1654       IsNonNull |= !NullPointerIsDefined;
1655       return std::max(int64_t(0), DerefBytes);
1656     }
1657   }
1658 
1659   /// Corner case when an offset is 0.
1660   Base = getBasePointerOfAccessPointerOperand(I, Offset, DL,
1661                                               /*AllowNonInbounds*/ true);
1662   if (Base) {
1663     if (Offset == 0 && Base == &AssociatedValue &&
1664         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
1665       int64_t DerefBytes =
1666           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType());
1667       IsNonNull |= !NullPointerIsDefined;
1668       return std::max(int64_t(0), DerefBytes);
1669     }
1670   }
1671 
1672   return 0;
1673 }
1674 
1675 struct AANonNullImpl : AANonNull {
1676   AANonNullImpl(const IRPosition &IRP, Attributor &A)
1677       : AANonNull(IRP, A),
1678         NullIsDefined(NullPointerIsDefined(
1679             getAnchorScope(),
1680             getAssociatedValue().getType()->getPointerAddressSpace())) {}
1681 
1682   /// See AbstractAttribute::initialize(...).
1683   void initialize(Attributor &A) override {
1684     Value &V = getAssociatedValue();
1685     if (!NullIsDefined &&
1686         hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
1687                 /* IgnoreSubsumingPositions */ false, &A)) {
1688       indicateOptimisticFixpoint();
1689       return;
1690     }
1691 
1692     if (isa<ConstantPointerNull>(V)) {
1693       indicatePessimisticFixpoint();
1694       return;
1695     }
1696 
1697     AANonNull::initialize(A);
1698 
1699     bool CanBeNull = true;
1700     if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull)) {
1701       if (!CanBeNull) {
1702         indicateOptimisticFixpoint();
1703         return;
1704       }
1705     }
1706 
1707     if (isa<GlobalValue>(&getAssociatedValue())) {
1708       indicatePessimisticFixpoint();
1709       return;
1710     }
1711 
1712     if (Instruction *CtxI = getCtxI())
1713       followUsesInMBEC(*this, A, getState(), *CtxI);
1714   }
1715 
1716   /// See followUsesInMBEC
1717   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
1718                        AANonNull::StateType &State) {
1719     bool IsNonNull = false;
1720     bool TrackUse = false;
1721     getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
1722                                        IsNonNull, TrackUse);
1723     State.setKnown(IsNonNull);
1724     return TrackUse;
1725   }
1726 
1727   /// See AbstractAttribute::getAsStr().
1728   const std::string getAsStr() const override {
1729     return getAssumed() ? "nonnull" : "may-null";
1730   }
1731 
1732   /// Flag to determine if the underlying value can be null and still allow
1733   /// valid accesses.
1734   const bool NullIsDefined;
1735 };
1736 
1737 /// NonNull attribute for a floating value.
1738 struct AANonNullFloating : public AANonNullImpl {
1739   AANonNullFloating(const IRPosition &IRP, Attributor &A)
1740       : AANonNullImpl(IRP, A) {}
1741 
1742   /// See AbstractAttribute::updateImpl(...).
1743   ChangeStatus updateImpl(Attributor &A) override {
1744     const DataLayout &DL = A.getDataLayout();
1745 
1746     DominatorTree *DT = nullptr;
1747     AssumptionCache *AC = nullptr;
1748     InformationCache &InfoCache = A.getInfoCache();
1749     if (const Function *Fn = getAnchorScope()) {
1750       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
1751       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
1752     }
1753 
1754     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
1755                             AANonNull::StateType &T, bool Stripped) -> bool {
1756       const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V));
1757       if (!Stripped && this == &AA) {
1758         if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
1759           T.indicatePessimisticFixpoint();
1760       } else {
1761         // Use abstract attribute information.
1762         const AANonNull::StateType &NS = AA.getState();
1763         T ^= NS;
1764       }
1765       return T.isValidState();
1766     };
1767 
1768     StateType T;
1769     if (!genericValueTraversal<AANonNull, StateType>(
1770             A, getIRPosition(), *this, T, VisitValueCB, getCtxI()))
1771       return indicatePessimisticFixpoint();
1772 
1773     return clampStateAndIndicateChange(getState(), T);
1774   }
1775 
1776   /// See AbstractAttribute::trackStatistics()
1777   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
1778 };
1779 
1780 /// NonNull attribute for function return value.
1781 struct AANonNullReturned final
1782     : AAReturnedFromReturnedValues<AANonNull, AANonNull> {
1783   AANonNullReturned(const IRPosition &IRP, Attributor &A)
1784       : AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {}
1785 
1786   /// See AbstractAttribute::getAsStr().
1787   const std::string getAsStr() const override {
1788     return getAssumed() ? "nonnull" : "may-null";
1789   }
1790 
1791   /// See AbstractAttribute::trackStatistics()
1792   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
1793 };
1794 
1795 /// NonNull attribute for function argument.
1796 struct AANonNullArgument final
1797     : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
1798   AANonNullArgument(const IRPosition &IRP, Attributor &A)
1799       : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
1800 
1801   /// See AbstractAttribute::trackStatistics()
1802   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
1803 };
1804 
1805 struct AANonNullCallSiteArgument final : AANonNullFloating {
1806   AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
1807       : AANonNullFloating(IRP, A) {}
1808 
1809   /// See AbstractAttribute::trackStatistics()
1810   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
1811 };
1812 
1813 /// NonNull attribute for a call site return position.
1814 struct AANonNullCallSiteReturned final
1815     : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
1816   AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
1817       : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {}
1818 
1819   /// See AbstractAttribute::trackStatistics()
1820   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
1821 };
1822 
1823 /// ------------------------ No-Recurse Attributes ----------------------------
1824 
1825 struct AANoRecurseImpl : public AANoRecurse {
1826   AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
1827 
1828   /// See AbstractAttribute::getAsStr()
1829   const std::string getAsStr() const override {
1830     return getAssumed() ? "norecurse" : "may-recurse";
1831   }
1832 };
1833 
1834 struct AANoRecurseFunction final : AANoRecurseImpl {
1835   AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
1836       : AANoRecurseImpl(IRP, A) {}
1837 
1838   /// See AbstractAttribute::initialize(...).
1839   void initialize(Attributor &A) override {
1840     AANoRecurseImpl::initialize(A);
1841     if (const Function *F = getAnchorScope())
1842       if (A.getInfoCache().getSccSize(*F) != 1)
1843         indicatePessimisticFixpoint();
1844   }
1845 
1846   /// See AbstractAttribute::updateImpl(...).
1847   ChangeStatus updateImpl(Attributor &A) override {
1848 
1849     // If all live call sites are known to be no-recurse, we are as well.
1850     auto CallSitePred = [&](AbstractCallSite ACS) {
1851       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
1852           *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
1853           /* TrackDependence */ false, DepClassTy::OPTIONAL);
1854       return NoRecurseAA.isKnownNoRecurse();
1855     };
1856     bool AllCallSitesKnown;
1857     if (A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown)) {
1858       // If we know all call sites and all are known no-recurse, we are done.
1859       // If all known call sites, which might not be all that exist, are known
1860       // to be no-recurse, we are not done but we can continue to assume
1861       // no-recurse. If one of the call sites we have not visited will become
1862       // live, another update is triggered.
1863       if (AllCallSitesKnown)
1864         indicateOptimisticFixpoint();
1865       return ChangeStatus::UNCHANGED;
1866     }
1867 
1868     // If the above check does not hold anymore we look at the calls.
1869     auto CheckForNoRecurse = [&](Instruction &I) {
1870       const auto &CB = cast<CallBase>(I);
1871       if (CB.hasFnAttr(Attribute::NoRecurse))
1872         return true;
1873 
1874       const auto &NoRecurseAA =
1875           A.getAAFor<AANoRecurse>(*this, IRPosition::callsite_function(CB));
1876       if (!NoRecurseAA.isAssumedNoRecurse())
1877         return false;
1878 
1879       // Recursion to the same function
1880       if (CB.getCalledFunction() == getAnchorScope())
1881         return false;
1882 
1883       return true;
1884     };
1885 
1886     if (!A.checkForAllCallLikeInstructions(CheckForNoRecurse, *this))
1887       return indicatePessimisticFixpoint();
1888     return ChangeStatus::UNCHANGED;
1889   }
1890 
1891   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
1892 };
1893 
1894 /// NoRecurse attribute deduction for a call sites.
1895 struct AANoRecurseCallSite final : AANoRecurseImpl {
1896   AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
1897       : AANoRecurseImpl(IRP, A) {}
1898 
1899   /// See AbstractAttribute::initialize(...).
1900   void initialize(Attributor &A) override {
1901     AANoRecurseImpl::initialize(A);
1902     Function *F = getAssociatedFunction();
1903     if (!F || F->isDeclaration())
1904       indicatePessimisticFixpoint();
1905   }
1906 
1907   /// See AbstractAttribute::updateImpl(...).
1908   ChangeStatus updateImpl(Attributor &A) override {
1909     // TODO: Once we have call site specific value information we can provide
1910     //       call site specific liveness information and then it makes
1911     //       sense to specialize attributes for call sites arguments instead of
1912     //       redirecting requests to the callee argument.
1913     Function *F = getAssociatedFunction();
1914     const IRPosition &FnPos = IRPosition::function(*F);
1915     auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos);
1916     return clampStateAndIndicateChange(getState(), FnAA.getState());
1917   }
1918 
1919   /// See AbstractAttribute::trackStatistics()
1920   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
1921 };
1922 
1923 /// -------------------- Undefined-Behavior Attributes ------------------------
1924 
1925 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
1926   AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
1927       : AAUndefinedBehavior(IRP, A) {}
1928 
1929   /// See AbstractAttribute::updateImpl(...).
1930   // through a pointer (i.e. also branches etc.)
1931   ChangeStatus updateImpl(Attributor &A) override {
1932     const size_t UBPrevSize = KnownUBInsts.size();
1933     const size_t NoUBPrevSize = AssumedNoUBInsts.size();
1934 
1935     auto InspectMemAccessInstForUB = [&](Instruction &I) {
1936       // Skip instructions that are already saved.
1937       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
1938         return true;
1939 
1940       // If we reach here, we know we have an instruction
1941       // that accesses memory through a pointer operand,
1942       // for which getPointerOperand() should give it to us.
1943       const Value *PtrOp = getPointerOperand(&I, /* AllowVolatile */ true);
1944       assert(PtrOp &&
1945              "Expected pointer operand of memory accessing instruction");
1946 
1947       // Either we stopped and the appropriate action was taken,
1948       // or we got back a simplified value to continue.
1949       Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I);
1950       if (!SimplifiedPtrOp.hasValue())
1951         return true;
1952       const Value *PtrOpVal = SimplifiedPtrOp.getValue();
1953 
1954       // A memory access through a pointer is considered UB
1955       // only if the pointer has constant null value.
1956       // TODO: Expand it to not only check constant values.
1957       if (!isa<ConstantPointerNull>(PtrOpVal)) {
1958         AssumedNoUBInsts.insert(&I);
1959         return true;
1960       }
1961       const Type *PtrTy = PtrOpVal->getType();
1962 
1963       // Because we only consider instructions inside functions,
1964       // assume that a parent function exists.
1965       const Function *F = I.getFunction();
1966 
1967       // A memory access using constant null pointer is only considered UB
1968       // if null pointer is _not_ defined for the target platform.
1969       if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
1970         AssumedNoUBInsts.insert(&I);
1971       else
1972         KnownUBInsts.insert(&I);
1973       return true;
1974     };
1975 
1976     auto InspectBrInstForUB = [&](Instruction &I) {
1977       // A conditional branch instruction is considered UB if it has `undef`
1978       // condition.
1979 
1980       // Skip instructions that are already saved.
1981       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
1982         return true;
1983 
1984       // We know we have a branch instruction.
1985       auto BrInst = cast<BranchInst>(&I);
1986 
1987       // Unconditional branches are never considered UB.
1988       if (BrInst->isUnconditional())
1989         return true;
1990 
1991       // Either we stopped and the appropriate action was taken,
1992       // or we got back a simplified value to continue.
1993       Optional<Value *> SimplifiedCond =
1994           stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
1995       if (!SimplifiedCond.hasValue())
1996         return true;
1997       AssumedNoUBInsts.insert(&I);
1998       return true;
1999     };
2000 
2001     auto InspectCallSiteForUB = [&](Instruction &I) {
2002       // Check whether a callsite always cause UB or not
2003 
2004       // Skip instructions that are already saved.
2005       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2006         return true;
2007 
2008       // Check nonnull and noundef argument attribute violation for each
2009       // callsite.
2010       CallBase &CB = cast<CallBase>(I);
2011       Function *Callee = CB.getCalledFunction();
2012       if (!Callee)
2013         return true;
2014       for (unsigned idx = 0; idx < CB.getNumArgOperands(); idx++) {
2015         // If current argument is known to be simplified to null pointer and the
2016         // corresponding argument position is known to have nonnull attribute,
2017         // the argument is poison. Furthermore, if the argument is poison and
2018         // the position is known to have noundef attriubte, this callsite is
2019         // considered UB.
2020         if (idx >= Callee->arg_size())
2021           break;
2022         Value *ArgVal = CB.getArgOperand(idx);
2023         if (!ArgVal)
2024           continue;
2025         // Here, we handle three cases.
2026         //   (1) Not having a value means it is dead. (we can replace the value
2027         //       with undef)
2028         //   (2) Simplified to undef. The argument violate noundef attriubte.
2029         //   (3) Simplified to null pointer where known to be nonnull.
2030         //       The argument is a poison value and violate noundef attribute.
2031         IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
2032         auto &NoUndefAA = A.getAAFor<AANoUndef>(*this, CalleeArgumentIRP,
2033                                                 /* TrackDependence */ false);
2034         if (!NoUndefAA.isKnownNoUndef())
2035           continue;
2036         auto &ValueSimplifyAA = A.getAAFor<AAValueSimplify>(
2037             *this, IRPosition::value(*ArgVal), /* TrackDependence */ false);
2038         if (!ValueSimplifyAA.isKnown())
2039           continue;
2040         Optional<Value *> SimplifiedVal =
2041             ValueSimplifyAA.getAssumedSimplifiedValue(A);
2042         if (!SimplifiedVal.hasValue() ||
2043             isa<UndefValue>(*SimplifiedVal.getValue())) {
2044           KnownUBInsts.insert(&I);
2045           continue;
2046         }
2047         if (!ArgVal->getType()->isPointerTy() ||
2048             !isa<ConstantPointerNull>(*SimplifiedVal.getValue()))
2049           continue;
2050         auto &NonNullAA = A.getAAFor<AANonNull>(*this, CalleeArgumentIRP,
2051                                                 /* TrackDependence */ false);
2052         if (NonNullAA.isKnownNonNull())
2053           KnownUBInsts.insert(&I);
2054       }
2055       return true;
2056     };
2057 
2058     auto InspectReturnInstForUB =
2059         [&](Value &V, const SmallSetVector<ReturnInst *, 4> RetInsts) {
2060           // Check if a return instruction always cause UB or not
2061           // Note: It is guaranteed that the returned position of the anchor
2062           //       scope has noundef attribute when this is called.
2063           //       We also ensure the return position is not "assumed dead"
2064           //       because the returned value was then potentially simplified to
2065           //       `undef` in AAReturnedValues without removing the `noundef`
2066           //       attribute yet.
2067 
2068           // When the returned position has noundef attriubte, UB occur in the
2069           // following cases.
2070           //   (1) Returned value is known to be undef.
2071           //   (2) The value is known to be a null pointer and the returned
2072           //       position has nonnull attribute (because the returned value is
2073           //       poison).
2074           bool FoundUB = false;
2075           if (isa<UndefValue>(V)) {
2076             FoundUB = true;
2077           } else {
2078             if (isa<ConstantPointerNull>(V)) {
2079               auto &NonNullAA = A.getAAFor<AANonNull>(
2080                   *this, IRPosition::returned(*getAnchorScope()),
2081                   /* TrackDependence */ false);
2082               if (NonNullAA.isKnownNonNull())
2083                 FoundUB = true;
2084             }
2085           }
2086 
2087           if (FoundUB)
2088             for (ReturnInst *RI : RetInsts)
2089               KnownUBInsts.insert(RI);
2090           return true;
2091         };
2092 
2093     A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
2094                               {Instruction::Load, Instruction::Store,
2095                                Instruction::AtomicCmpXchg,
2096                                Instruction::AtomicRMW},
2097                               /* CheckBBLivenessOnly */ true);
2098     A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
2099                               /* CheckBBLivenessOnly */ true);
2100     A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this);
2101 
2102     // If the returned position of the anchor scope has noundef attriubte, check
2103     // all returned instructions.
2104     if (!getAnchorScope()->getReturnType()->isVoidTy()) {
2105       const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope());
2106       if (!A.isAssumedDead(ReturnIRP, this, nullptr)) {
2107         auto &RetPosNoUndefAA =
2108             A.getAAFor<AANoUndef>(*this, ReturnIRP,
2109                                   /* TrackDependence */ false);
2110         if (RetPosNoUndefAA.isKnownNoUndef())
2111           A.checkForAllReturnedValuesAndReturnInsts(InspectReturnInstForUB,
2112                                                     *this);
2113       }
2114     }
2115 
2116     if (NoUBPrevSize != AssumedNoUBInsts.size() ||
2117         UBPrevSize != KnownUBInsts.size())
2118       return ChangeStatus::CHANGED;
2119     return ChangeStatus::UNCHANGED;
2120   }
2121 
2122   bool isKnownToCauseUB(Instruction *I) const override {
2123     return KnownUBInsts.count(I);
2124   }
2125 
2126   bool isAssumedToCauseUB(Instruction *I) const override {
2127     // In simple words, if an instruction is not in the assumed to _not_
2128     // cause UB, then it is assumed UB (that includes those
2129     // in the KnownUBInsts set). The rest is boilerplate
2130     // is to ensure that it is one of the instructions we test
2131     // for UB.
2132 
2133     switch (I->getOpcode()) {
2134     case Instruction::Load:
2135     case Instruction::Store:
2136     case Instruction::AtomicCmpXchg:
2137     case Instruction::AtomicRMW:
2138       return !AssumedNoUBInsts.count(I);
2139     case Instruction::Br: {
2140       auto BrInst = cast<BranchInst>(I);
2141       if (BrInst->isUnconditional())
2142         return false;
2143       return !AssumedNoUBInsts.count(I);
2144     } break;
2145     default:
2146       return false;
2147     }
2148     return false;
2149   }
2150 
2151   ChangeStatus manifest(Attributor &A) override {
2152     if (KnownUBInsts.empty())
2153       return ChangeStatus::UNCHANGED;
2154     for (Instruction *I : KnownUBInsts)
2155       A.changeToUnreachableAfterManifest(I);
2156     return ChangeStatus::CHANGED;
2157   }
2158 
2159   /// See AbstractAttribute::getAsStr()
2160   const std::string getAsStr() const override {
2161     return getAssumed() ? "undefined-behavior" : "no-ub";
2162   }
2163 
2164   /// Note: The correctness of this analysis depends on the fact that the
2165   /// following 2 sets will stop changing after some point.
2166   /// "Change" here means that their size changes.
2167   /// The size of each set is monotonically increasing
2168   /// (we only add items to them) and it is upper bounded by the number of
2169   /// instructions in the processed function (we can never save more
2170   /// elements in either set than this number). Hence, at some point,
2171   /// they will stop increasing.
2172   /// Consequently, at some point, both sets will have stopped
2173   /// changing, effectively making the analysis reach a fixpoint.
2174 
2175   /// Note: These 2 sets are disjoint and an instruction can be considered
2176   /// one of 3 things:
2177   /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
2178   ///    the KnownUBInsts set.
2179   /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
2180   ///    has a reason to assume it).
2181   /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
2182   ///    could not find a reason to assume or prove that it can cause UB,
2183   ///    hence it assumes it doesn't. We have a set for these instructions
2184   ///    so that we don't reprocess them in every update.
2185   ///    Note however that instructions in this set may cause UB.
2186 
2187 protected:
2188   /// A set of all live instructions _known_ to cause UB.
2189   SmallPtrSet<Instruction *, 8> KnownUBInsts;
2190 
2191 private:
2192   /// A set of all the (live) instructions that are assumed to _not_ cause UB.
2193   SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
2194 
2195   // Should be called on updates in which if we're processing an instruction
2196   // \p I that depends on a value \p V, one of the following has to happen:
2197   // - If the value is assumed, then stop.
2198   // - If the value is known but undef, then consider it UB.
2199   // - Otherwise, do specific processing with the simplified value.
2200   // We return None in the first 2 cases to signify that an appropriate
2201   // action was taken and the caller should stop.
2202   // Otherwise, we return the simplified value that the caller should
2203   // use for specific processing.
2204   Optional<Value *> stopOnUndefOrAssumed(Attributor &A, const Value *V,
2205                                          Instruction *I) {
2206     const auto &ValueSimplifyAA =
2207         A.getAAFor<AAValueSimplify>(*this, IRPosition::value(*V));
2208     Optional<Value *> SimplifiedV =
2209         ValueSimplifyAA.getAssumedSimplifiedValue(A);
2210     if (!ValueSimplifyAA.isKnown()) {
2211       // Don't depend on assumed values.
2212       return llvm::None;
2213     }
2214     if (!SimplifiedV.hasValue()) {
2215       // If it is known (which we tested above) but it doesn't have a value,
2216       // then we can assume `undef` and hence the instruction is UB.
2217       KnownUBInsts.insert(I);
2218       return llvm::None;
2219     }
2220     Value *Val = SimplifiedV.getValue();
2221     if (isa<UndefValue>(Val)) {
2222       KnownUBInsts.insert(I);
2223       return llvm::None;
2224     }
2225     return Val;
2226   }
2227 };
2228 
2229 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
2230   AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
2231       : AAUndefinedBehaviorImpl(IRP, A) {}
2232 
2233   /// See AbstractAttribute::trackStatistics()
2234   void trackStatistics() const override {
2235     STATS_DECL(UndefinedBehaviorInstruction, Instruction,
2236                "Number of instructions known to have UB");
2237     BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
2238         KnownUBInsts.size();
2239   }
2240 };
2241 
2242 /// ------------------------ Will-Return Attributes ----------------------------
2243 
2244 // Helper function that checks whether a function has any cycle which we don't
2245 // know if it is bounded or not.
2246 // Loops with maximum trip count are considered bounded, any other cycle not.
2247 static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
2248   ScalarEvolution *SE =
2249       A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
2250   LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
2251   // If either SCEV or LoopInfo is not available for the function then we assume
2252   // any cycle to be unbounded cycle.
2253   // We use scc_iterator which uses Tarjan algorithm to find all the maximal
2254   // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
2255   if (!SE || !LI) {
2256     for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
2257       if (SCCI.hasCycle())
2258         return true;
2259     return false;
2260   }
2261 
2262   // If there's irreducible control, the function may contain non-loop cycles.
2263   if (mayContainIrreducibleControl(F, LI))
2264     return true;
2265 
2266   // Any loop that does not have a max trip count is considered unbounded cycle.
2267   for (auto *L : LI->getLoopsInPreorder()) {
2268     if (!SE->getSmallConstantMaxTripCount(L))
2269       return true;
2270   }
2271   return false;
2272 }
2273 
2274 struct AAWillReturnImpl : public AAWillReturn {
2275   AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
2276       : AAWillReturn(IRP, A) {}
2277 
2278   /// See AbstractAttribute::initialize(...).
2279   void initialize(Attributor &A) override {
2280     AAWillReturn::initialize(A);
2281 
2282     Function *F = getAnchorScope();
2283     if (!F || F->isDeclaration() || mayContainUnboundedCycle(*F, A))
2284       indicatePessimisticFixpoint();
2285   }
2286 
2287   /// See AbstractAttribute::updateImpl(...).
2288   ChangeStatus updateImpl(Attributor &A) override {
2289     auto CheckForWillReturn = [&](Instruction &I) {
2290       IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
2291       const auto &WillReturnAA = A.getAAFor<AAWillReturn>(*this, IPos);
2292       if (WillReturnAA.isKnownWillReturn())
2293         return true;
2294       if (!WillReturnAA.isAssumedWillReturn())
2295         return false;
2296       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(*this, IPos);
2297       return NoRecurseAA.isAssumedNoRecurse();
2298     };
2299 
2300     if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this))
2301       return indicatePessimisticFixpoint();
2302 
2303     return ChangeStatus::UNCHANGED;
2304   }
2305 
2306   /// See AbstractAttribute::getAsStr()
2307   const std::string getAsStr() const override {
2308     return getAssumed() ? "willreturn" : "may-noreturn";
2309   }
2310 };
2311 
2312 struct AAWillReturnFunction final : AAWillReturnImpl {
2313   AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
2314       : AAWillReturnImpl(IRP, A) {}
2315 
2316   /// See AbstractAttribute::trackStatistics()
2317   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
2318 };
2319 
2320 /// WillReturn attribute deduction for a call sites.
2321 struct AAWillReturnCallSite final : AAWillReturnImpl {
2322   AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
2323       : AAWillReturnImpl(IRP, A) {}
2324 
2325   /// See AbstractAttribute::initialize(...).
2326   void initialize(Attributor &A) override {
2327     AAWillReturn::initialize(A);
2328     Function *F = getAssociatedFunction();
2329     if (!F || !A.isFunctionIPOAmendable(*F))
2330       indicatePessimisticFixpoint();
2331   }
2332 
2333   /// See AbstractAttribute::updateImpl(...).
2334   ChangeStatus updateImpl(Attributor &A) override {
2335     // TODO: Once we have call site specific value information we can provide
2336     //       call site specific liveness information and then it makes
2337     //       sense to specialize attributes for call sites arguments instead of
2338     //       redirecting requests to the callee argument.
2339     Function *F = getAssociatedFunction();
2340     const IRPosition &FnPos = IRPosition::function(*F);
2341     auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos);
2342     return clampStateAndIndicateChange(getState(), FnAA.getState());
2343   }
2344 
2345   /// See AbstractAttribute::trackStatistics()
2346   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
2347 };
2348 
2349 /// -------------------AAReachability Attribute--------------------------
2350 
2351 struct AAReachabilityImpl : AAReachability {
2352   AAReachabilityImpl(const IRPosition &IRP, Attributor &A)
2353       : AAReachability(IRP, A) {}
2354 
2355   const std::string getAsStr() const override {
2356     // TODO: Return the number of reachable queries.
2357     return "reachable";
2358   }
2359 
2360   /// See AbstractAttribute::initialize(...).
2361   void initialize(Attributor &A) override { indicatePessimisticFixpoint(); }
2362 
2363   /// See AbstractAttribute::updateImpl(...).
2364   ChangeStatus updateImpl(Attributor &A) override {
2365     return indicatePessimisticFixpoint();
2366   }
2367 };
2368 
2369 struct AAReachabilityFunction final : public AAReachabilityImpl {
2370   AAReachabilityFunction(const IRPosition &IRP, Attributor &A)
2371       : AAReachabilityImpl(IRP, A) {}
2372 
2373   /// See AbstractAttribute::trackStatistics()
2374   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
2375 };
2376 
2377 /// ------------------------ NoAlias Argument Attribute ------------------------
2378 
2379 struct AANoAliasImpl : AANoAlias {
2380   AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
2381     assert(getAssociatedType()->isPointerTy() &&
2382            "Noalias is a pointer attribute");
2383   }
2384 
2385   const std::string getAsStr() const override {
2386     return getAssumed() ? "noalias" : "may-alias";
2387   }
2388 };
2389 
2390 /// NoAlias attribute for a floating value.
2391 struct AANoAliasFloating final : AANoAliasImpl {
2392   AANoAliasFloating(const IRPosition &IRP, Attributor &A)
2393       : AANoAliasImpl(IRP, A) {}
2394 
2395   /// See AbstractAttribute::initialize(...).
2396   void initialize(Attributor &A) override {
2397     AANoAliasImpl::initialize(A);
2398     Value *Val = &getAssociatedValue();
2399     do {
2400       CastInst *CI = dyn_cast<CastInst>(Val);
2401       if (!CI)
2402         break;
2403       Value *Base = CI->getOperand(0);
2404       if (!Base->hasOneUse())
2405         break;
2406       Val = Base;
2407     } while (true);
2408 
2409     if (!Val->getType()->isPointerTy()) {
2410       indicatePessimisticFixpoint();
2411       return;
2412     }
2413 
2414     if (isa<AllocaInst>(Val))
2415       indicateOptimisticFixpoint();
2416     else if (isa<ConstantPointerNull>(Val) &&
2417              !NullPointerIsDefined(getAnchorScope(),
2418                                    Val->getType()->getPointerAddressSpace()))
2419       indicateOptimisticFixpoint();
2420     else if (Val != &getAssociatedValue()) {
2421       const auto &ValNoAliasAA =
2422           A.getAAFor<AANoAlias>(*this, IRPosition::value(*Val));
2423       if (ValNoAliasAA.isKnownNoAlias())
2424         indicateOptimisticFixpoint();
2425     }
2426   }
2427 
2428   /// See AbstractAttribute::updateImpl(...).
2429   ChangeStatus updateImpl(Attributor &A) override {
2430     // TODO: Implement this.
2431     return indicatePessimisticFixpoint();
2432   }
2433 
2434   /// See AbstractAttribute::trackStatistics()
2435   void trackStatistics() const override {
2436     STATS_DECLTRACK_FLOATING_ATTR(noalias)
2437   }
2438 };
2439 
2440 /// NoAlias attribute for an argument.
2441 struct AANoAliasArgument final
2442     : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
2443   using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
2444   AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
2445 
2446   /// See AbstractAttribute::initialize(...).
2447   void initialize(Attributor &A) override {
2448     Base::initialize(A);
2449     // See callsite argument attribute and callee argument attribute.
2450     if (hasAttr({Attribute::ByVal}))
2451       indicateOptimisticFixpoint();
2452   }
2453 
2454   /// See AbstractAttribute::update(...).
2455   ChangeStatus updateImpl(Attributor &A) override {
2456     // We have to make sure no-alias on the argument does not break
2457     // synchronization when this is a callback argument, see also [1] below.
2458     // If synchronization cannot be affected, we delegate to the base updateImpl
2459     // function, otherwise we give up for now.
2460 
2461     // If the function is no-sync, no-alias cannot break synchronization.
2462     const auto &NoSyncAA = A.getAAFor<AANoSync>(
2463         *this, IRPosition::function_scope(getIRPosition()));
2464     if (NoSyncAA.isAssumedNoSync())
2465       return Base::updateImpl(A);
2466 
2467     // If the argument is read-only, no-alias cannot break synchronization.
2468     const auto &MemBehaviorAA =
2469         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition());
2470     if (MemBehaviorAA.isAssumedReadOnly())
2471       return Base::updateImpl(A);
2472 
2473     // If the argument is never passed through callbacks, no-alias cannot break
2474     // synchronization.
2475     bool AllCallSitesKnown;
2476     if (A.checkForAllCallSites(
2477             [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
2478             true, AllCallSitesKnown))
2479       return Base::updateImpl(A);
2480 
2481     // TODO: add no-alias but make sure it doesn't break synchronization by
2482     // introducing fake uses. See:
2483     // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
2484     //     International Workshop on OpenMP 2018,
2485     //     http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
2486 
2487     return indicatePessimisticFixpoint();
2488   }
2489 
2490   /// See AbstractAttribute::trackStatistics()
2491   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
2492 };
2493 
2494 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
2495   AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
2496       : AANoAliasImpl(IRP, A) {}
2497 
2498   /// See AbstractAttribute::initialize(...).
2499   void initialize(Attributor &A) override {
2500     // See callsite argument attribute and callee argument attribute.
2501     const auto &CB = cast<CallBase>(getAnchorValue());
2502     if (CB.paramHasAttr(getCallSiteArgNo(), Attribute::NoAlias))
2503       indicateOptimisticFixpoint();
2504     Value &Val = getAssociatedValue();
2505     if (isa<ConstantPointerNull>(Val) &&
2506         !NullPointerIsDefined(getAnchorScope(),
2507                               Val.getType()->getPointerAddressSpace()))
2508       indicateOptimisticFixpoint();
2509   }
2510 
2511   /// Determine if the underlying value may alias with the call site argument
2512   /// \p OtherArgNo of \p ICS (= the underlying call site).
2513   bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
2514                             const AAMemoryBehavior &MemBehaviorAA,
2515                             const CallBase &CB, unsigned OtherArgNo) {
2516     // We do not need to worry about aliasing with the underlying IRP.
2517     if (this->getCalleeArgNo() == (int)OtherArgNo)
2518       return false;
2519 
2520     // If it is not a pointer or pointer vector we do not alias.
2521     const Value *ArgOp = CB.getArgOperand(OtherArgNo);
2522     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
2523       return false;
2524 
2525     auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
2526         *this, IRPosition::callsite_argument(CB, OtherArgNo),
2527         /* TrackDependence */ false);
2528 
2529     // If the argument is readnone, there is no read-write aliasing.
2530     if (CBArgMemBehaviorAA.isAssumedReadNone()) {
2531       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
2532       return false;
2533     }
2534 
2535     // If the argument is readonly and the underlying value is readonly, there
2536     // is no read-write aliasing.
2537     bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
2538     if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
2539       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
2540       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
2541       return false;
2542     }
2543 
2544     // We have to utilize actual alias analysis queries so we need the object.
2545     if (!AAR)
2546       AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
2547 
2548     // Try to rule it out at the call site.
2549     bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
2550     LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
2551                          "callsite arguments: "
2552                       << getAssociatedValue() << " " << *ArgOp << " => "
2553                       << (IsAliasing ? "" : "no-") << "alias \n");
2554 
2555     return IsAliasing;
2556   }
2557 
2558   bool
2559   isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
2560                                          const AAMemoryBehavior &MemBehaviorAA,
2561                                          const AANoAlias &NoAliasAA) {
2562     // We can deduce "noalias" if the following conditions hold.
2563     // (i)   Associated value is assumed to be noalias in the definition.
2564     // (ii)  Associated value is assumed to be no-capture in all the uses
2565     //       possibly executed before this callsite.
2566     // (iii) There is no other pointer argument which could alias with the
2567     //       value.
2568 
2569     bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
2570     if (!AssociatedValueIsNoAliasAtDef) {
2571       LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
2572                         << " is not no-alias at the definition\n");
2573       return false;
2574     }
2575 
2576     A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
2577 
2578     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
2579     auto &NoCaptureAA =
2580         A.getAAFor<AANoCapture>(*this, VIRP, /* TrackDependence */ false);
2581     // Check whether the value is captured in the scope using AANoCapture.
2582     //      Look at CFG and check only uses possibly executed before this
2583     //      callsite.
2584     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
2585       Instruction *UserI = cast<Instruction>(U.getUser());
2586 
2587       // If user if curr instr and only use.
2588       if (UserI == getCtxI() && UserI->hasOneUse())
2589         return true;
2590 
2591       const Function *ScopeFn = VIRP.getAnchorScope();
2592       if (ScopeFn) {
2593         const auto &ReachabilityAA =
2594             A.getAAFor<AAReachability>(*this, IRPosition::function(*ScopeFn));
2595 
2596         if (!ReachabilityAA.isAssumedReachable(A, *UserI, *getCtxI()))
2597           return true;
2598 
2599         if (auto *CB = dyn_cast<CallBase>(UserI)) {
2600           if (CB->isArgOperand(&U)) {
2601 
2602             unsigned ArgNo = CB->getArgOperandNo(&U);
2603 
2604             const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
2605                 *this, IRPosition::callsite_argument(*CB, ArgNo));
2606 
2607             if (NoCaptureAA.isAssumedNoCapture())
2608               return true;
2609           }
2610         }
2611       }
2612 
2613       // For cases which can potentially have more users
2614       if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) ||
2615           isa<SelectInst>(U)) {
2616         Follow = true;
2617         return true;
2618       }
2619 
2620       LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n");
2621       return false;
2622     };
2623 
2624     if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
2625       if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
2626         LLVM_DEBUG(
2627             dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
2628                    << " cannot be noalias as it is potentially captured\n");
2629         return false;
2630       }
2631     }
2632     A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
2633 
2634     // Check there is no other pointer argument which could alias with the
2635     // value passed at this call site.
2636     // TODO: AbstractCallSite
2637     const auto &CB = cast<CallBase>(getAnchorValue());
2638     for (unsigned OtherArgNo = 0; OtherArgNo < CB.getNumArgOperands();
2639          OtherArgNo++)
2640       if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
2641         return false;
2642 
2643     return true;
2644   }
2645 
2646   /// See AbstractAttribute::updateImpl(...).
2647   ChangeStatus updateImpl(Attributor &A) override {
2648     // If the argument is readnone we are done as there are no accesses via the
2649     // argument.
2650     auto &MemBehaviorAA =
2651         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(),
2652                                      /* TrackDependence */ false);
2653     if (MemBehaviorAA.isAssumedReadNone()) {
2654       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
2655       return ChangeStatus::UNCHANGED;
2656     }
2657 
2658     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
2659     const auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, VIRP,
2660                                                   /* TrackDependence */ false);
2661 
2662     AAResults *AAR = nullptr;
2663     if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
2664                                                NoAliasAA)) {
2665       LLVM_DEBUG(
2666           dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
2667       return ChangeStatus::UNCHANGED;
2668     }
2669 
2670     return indicatePessimisticFixpoint();
2671   }
2672 
2673   /// See AbstractAttribute::trackStatistics()
2674   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
2675 };
2676 
2677 /// NoAlias attribute for function return value.
2678 struct AANoAliasReturned final : AANoAliasImpl {
2679   AANoAliasReturned(const IRPosition &IRP, Attributor &A)
2680       : AANoAliasImpl(IRP, A) {}
2681 
2682   /// See AbstractAttribute::initialize(...).
2683   void initialize(Attributor &A) override {
2684     AANoAliasImpl::initialize(A);
2685     Function *F = getAssociatedFunction();
2686     if (!F || F->isDeclaration())
2687       indicatePessimisticFixpoint();
2688   }
2689 
2690   /// See AbstractAttribute::updateImpl(...).
2691   virtual ChangeStatus updateImpl(Attributor &A) override {
2692 
2693     auto CheckReturnValue = [&](Value &RV) -> bool {
2694       if (Constant *C = dyn_cast<Constant>(&RV))
2695         if (C->isNullValue() || isa<UndefValue>(C))
2696           return true;
2697 
2698       /// For now, we can only deduce noalias if we have call sites.
2699       /// FIXME: add more support.
2700       if (!isa<CallBase>(&RV))
2701         return false;
2702 
2703       const IRPosition &RVPos = IRPosition::value(RV);
2704       const auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, RVPos);
2705       if (!NoAliasAA.isAssumedNoAlias())
2706         return false;
2707 
2708       const auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, RVPos);
2709       return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
2710     };
2711 
2712     if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
2713       return indicatePessimisticFixpoint();
2714 
2715     return ChangeStatus::UNCHANGED;
2716   }
2717 
2718   /// See AbstractAttribute::trackStatistics()
2719   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
2720 };
2721 
2722 /// NoAlias attribute deduction for a call site return value.
2723 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
2724   AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
2725       : AANoAliasImpl(IRP, A) {}
2726 
2727   /// See AbstractAttribute::initialize(...).
2728   void initialize(Attributor &A) override {
2729     AANoAliasImpl::initialize(A);
2730     Function *F = getAssociatedFunction();
2731     if (!F || F->isDeclaration())
2732       indicatePessimisticFixpoint();
2733   }
2734 
2735   /// See AbstractAttribute::updateImpl(...).
2736   ChangeStatus updateImpl(Attributor &A) override {
2737     // TODO: Once we have call site specific value information we can provide
2738     //       call site specific liveness information and then it makes
2739     //       sense to specialize attributes for call sites arguments instead of
2740     //       redirecting requests to the callee argument.
2741     Function *F = getAssociatedFunction();
2742     const IRPosition &FnPos = IRPosition::returned(*F);
2743     auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos);
2744     return clampStateAndIndicateChange(getState(), FnAA.getState());
2745   }
2746 
2747   /// See AbstractAttribute::trackStatistics()
2748   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
2749 };
2750 
2751 /// -------------------AAIsDead Function Attribute-----------------------
2752 
2753 struct AAIsDeadValueImpl : public AAIsDead {
2754   AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
2755 
2756   /// See AAIsDead::isAssumedDead().
2757   bool isAssumedDead() const override { return getAssumed(); }
2758 
2759   /// See AAIsDead::isKnownDead().
2760   bool isKnownDead() const override { return getKnown(); }
2761 
2762   /// See AAIsDead::isAssumedDead(BasicBlock *).
2763   bool isAssumedDead(const BasicBlock *BB) const override { return false; }
2764 
2765   /// See AAIsDead::isKnownDead(BasicBlock *).
2766   bool isKnownDead(const BasicBlock *BB) const override { return false; }
2767 
2768   /// See AAIsDead::isAssumedDead(Instruction *I).
2769   bool isAssumedDead(const Instruction *I) const override {
2770     return I == getCtxI() && isAssumedDead();
2771   }
2772 
2773   /// See AAIsDead::isKnownDead(Instruction *I).
2774   bool isKnownDead(const Instruction *I) const override {
2775     return isAssumedDead(I) && getKnown();
2776   }
2777 
2778   /// See AbstractAttribute::getAsStr().
2779   const std::string getAsStr() const override {
2780     return isAssumedDead() ? "assumed-dead" : "assumed-live";
2781   }
2782 
2783   /// Check if all uses are assumed dead.
2784   bool areAllUsesAssumedDead(Attributor &A, Value &V) {
2785     auto UsePred = [&](const Use &U, bool &Follow) { return false; };
2786     // Explicitly set the dependence class to required because we want a long
2787     // chain of N dependent instructions to be considered live as soon as one is
2788     // without going through N update cycles. This is not required for
2789     // correctness.
2790     return A.checkForAllUses(UsePred, *this, V, DepClassTy::REQUIRED);
2791   }
2792 
2793   /// Determine if \p I is assumed to be side-effect free.
2794   bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
2795     if (!I || wouldInstructionBeTriviallyDead(I))
2796       return true;
2797 
2798     auto *CB = dyn_cast<CallBase>(I);
2799     if (!CB || isa<IntrinsicInst>(CB))
2800       return false;
2801 
2802     const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
2803     const auto &NoUnwindAA = A.getAndUpdateAAFor<AANoUnwind>(
2804         *this, CallIRP, /* TrackDependence */ false);
2805     if (!NoUnwindAA.isAssumedNoUnwind())
2806       return false;
2807     if (!NoUnwindAA.isKnownNoUnwind())
2808       A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL);
2809 
2810     const auto &MemBehaviorAA = A.getAndUpdateAAFor<AAMemoryBehavior>(
2811         *this, CallIRP, /* TrackDependence */ false);
2812     if (MemBehaviorAA.isAssumedReadOnly()) {
2813       if (!MemBehaviorAA.isKnownReadOnly())
2814         A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
2815       return true;
2816     }
2817     return false;
2818   }
2819 };
2820 
2821 struct AAIsDeadFloating : public AAIsDeadValueImpl {
2822   AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
2823       : AAIsDeadValueImpl(IRP, A) {}
2824 
2825   /// See AbstractAttribute::initialize(...).
2826   void initialize(Attributor &A) override {
2827     if (isa<UndefValue>(getAssociatedValue())) {
2828       indicatePessimisticFixpoint();
2829       return;
2830     }
2831 
2832     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
2833     if (!isAssumedSideEffectFree(A, I))
2834       indicatePessimisticFixpoint();
2835   }
2836 
2837   /// See AbstractAttribute::updateImpl(...).
2838   ChangeStatus updateImpl(Attributor &A) override {
2839     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
2840     if (!isAssumedSideEffectFree(A, I))
2841       return indicatePessimisticFixpoint();
2842 
2843     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
2844       return indicatePessimisticFixpoint();
2845     return ChangeStatus::UNCHANGED;
2846   }
2847 
2848   /// See AbstractAttribute::manifest(...).
2849   ChangeStatus manifest(Attributor &A) override {
2850     Value &V = getAssociatedValue();
2851     if (auto *I = dyn_cast<Instruction>(&V)) {
2852       // If we get here we basically know the users are all dead. We check if
2853       // isAssumedSideEffectFree returns true here again because it might not be
2854       // the case and only the users are dead but the instruction (=call) is
2855       // still needed.
2856       if (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I)) {
2857         A.deleteAfterManifest(*I);
2858         return ChangeStatus::CHANGED;
2859       }
2860     }
2861     if (V.use_empty())
2862       return ChangeStatus::UNCHANGED;
2863 
2864     bool UsedAssumedInformation = false;
2865     Optional<Constant *> C =
2866         A.getAssumedConstant(V, *this, UsedAssumedInformation);
2867     if (C.hasValue() && C.getValue())
2868       return ChangeStatus::UNCHANGED;
2869 
2870     // Replace the value with undef as it is dead but keep droppable uses around
2871     // as they provide information we don't want to give up on just yet.
2872     UndefValue &UV = *UndefValue::get(V.getType());
2873     bool AnyChange =
2874         A.changeValueAfterManifest(V, UV, /* ChangeDropppable */ false);
2875     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
2876   }
2877 
2878   /// See AbstractAttribute::trackStatistics()
2879   void trackStatistics() const override {
2880     STATS_DECLTRACK_FLOATING_ATTR(IsDead)
2881   }
2882 };
2883 
2884 struct AAIsDeadArgument : public AAIsDeadFloating {
2885   AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
2886       : AAIsDeadFloating(IRP, A) {}
2887 
2888   /// See AbstractAttribute::initialize(...).
2889   void initialize(Attributor &A) override {
2890     if (!A.isFunctionIPOAmendable(*getAnchorScope()))
2891       indicatePessimisticFixpoint();
2892   }
2893 
2894   /// See AbstractAttribute::manifest(...).
2895   ChangeStatus manifest(Attributor &A) override {
2896     ChangeStatus Changed = AAIsDeadFloating::manifest(A);
2897     Argument &Arg = *getAssociatedArgument();
2898     if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
2899       if (A.registerFunctionSignatureRewrite(
2900               Arg, /* ReplacementTypes */ {},
2901               Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
2902               Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
2903         Arg.dropDroppableUses();
2904         return ChangeStatus::CHANGED;
2905       }
2906     return Changed;
2907   }
2908 
2909   /// See AbstractAttribute::trackStatistics()
2910   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
2911 };
2912 
2913 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
2914   AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
2915       : AAIsDeadValueImpl(IRP, A) {}
2916 
2917   /// See AbstractAttribute::initialize(...).
2918   void initialize(Attributor &A) override {
2919     if (isa<UndefValue>(getAssociatedValue()))
2920       indicatePessimisticFixpoint();
2921   }
2922 
2923   /// See AbstractAttribute::updateImpl(...).
2924   ChangeStatus updateImpl(Attributor &A) override {
2925     // TODO: Once we have call site specific value information we can provide
2926     //       call site specific liveness information and then it makes
2927     //       sense to specialize attributes for call sites arguments instead of
2928     //       redirecting requests to the callee argument.
2929     Argument *Arg = getAssociatedArgument();
2930     if (!Arg)
2931       return indicatePessimisticFixpoint();
2932     const IRPosition &ArgPos = IRPosition::argument(*Arg);
2933     auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos);
2934     return clampStateAndIndicateChange(getState(), ArgAA.getState());
2935   }
2936 
2937   /// See AbstractAttribute::manifest(...).
2938   ChangeStatus manifest(Attributor &A) override {
2939     CallBase &CB = cast<CallBase>(getAnchorValue());
2940     Use &U = CB.getArgOperandUse(getCallSiteArgNo());
2941     assert(!isa<UndefValue>(U.get()) &&
2942            "Expected undef values to be filtered out!");
2943     UndefValue &UV = *UndefValue::get(U->getType());
2944     if (A.changeUseAfterManifest(U, UV))
2945       return ChangeStatus::CHANGED;
2946     return ChangeStatus::UNCHANGED;
2947   }
2948 
2949   /// See AbstractAttribute::trackStatistics()
2950   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
2951 };
2952 
2953 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
2954   AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
2955       : AAIsDeadFloating(IRP, A), IsAssumedSideEffectFree(true) {}
2956 
2957   /// See AAIsDead::isAssumedDead().
2958   bool isAssumedDead() const override {
2959     return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
2960   }
2961 
2962   /// See AbstractAttribute::initialize(...).
2963   void initialize(Attributor &A) override {
2964     if (isa<UndefValue>(getAssociatedValue())) {
2965       indicatePessimisticFixpoint();
2966       return;
2967     }
2968 
2969     // We track this separately as a secondary state.
2970     IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
2971   }
2972 
2973   /// See AbstractAttribute::updateImpl(...).
2974   ChangeStatus updateImpl(Attributor &A) override {
2975     ChangeStatus Changed = ChangeStatus::UNCHANGED;
2976     if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
2977       IsAssumedSideEffectFree = false;
2978       Changed = ChangeStatus::CHANGED;
2979     }
2980 
2981     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
2982       return indicatePessimisticFixpoint();
2983     return Changed;
2984   }
2985 
2986   /// See AbstractAttribute::trackStatistics()
2987   void trackStatistics() const override {
2988     if (IsAssumedSideEffectFree)
2989       STATS_DECLTRACK_CSRET_ATTR(IsDead)
2990     else
2991       STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
2992   }
2993 
2994   /// See AbstractAttribute::getAsStr().
2995   const std::string getAsStr() const override {
2996     return isAssumedDead()
2997                ? "assumed-dead"
2998                : (getAssumed() ? "assumed-dead-users" : "assumed-live");
2999   }
3000 
3001 private:
3002   bool IsAssumedSideEffectFree;
3003 };
3004 
3005 struct AAIsDeadReturned : public AAIsDeadValueImpl {
3006   AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
3007       : AAIsDeadValueImpl(IRP, A) {}
3008 
3009   /// See AbstractAttribute::updateImpl(...).
3010   ChangeStatus updateImpl(Attributor &A) override {
3011 
3012     A.checkForAllInstructions([](Instruction &) { return true; }, *this,
3013                               {Instruction::Ret});
3014 
3015     auto PredForCallSite = [&](AbstractCallSite ACS) {
3016       if (ACS.isCallbackCall() || !ACS.getInstruction())
3017         return false;
3018       return areAllUsesAssumedDead(A, *ACS.getInstruction());
3019     };
3020 
3021     bool AllCallSitesKnown;
3022     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
3023                                 AllCallSitesKnown))
3024       return indicatePessimisticFixpoint();
3025 
3026     return ChangeStatus::UNCHANGED;
3027   }
3028 
3029   /// See AbstractAttribute::manifest(...).
3030   ChangeStatus manifest(Attributor &A) override {
3031     // TODO: Rewrite the signature to return void?
3032     bool AnyChange = false;
3033     UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
3034     auto RetInstPred = [&](Instruction &I) {
3035       ReturnInst &RI = cast<ReturnInst>(I);
3036       if (!isa<UndefValue>(RI.getReturnValue()))
3037         AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
3038       return true;
3039     };
3040     A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret});
3041     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3042   }
3043 
3044   /// See AbstractAttribute::trackStatistics()
3045   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
3046 };
3047 
3048 struct AAIsDeadFunction : public AAIsDead {
3049   AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3050 
3051   /// See AbstractAttribute::initialize(...).
3052   void initialize(Attributor &A) override {
3053     const Function *F = getAnchorScope();
3054     if (F && !F->isDeclaration()) {
3055       // We only want to compute liveness once. If the function is not part of
3056       // the SCC, skip it.
3057       if (A.isRunOn(*const_cast<Function *>(F))) {
3058         ToBeExploredFrom.insert(&F->getEntryBlock().front());
3059         assumeLive(A, F->getEntryBlock());
3060       } else {
3061         indicatePessimisticFixpoint();
3062       }
3063     }
3064   }
3065 
3066   /// See AbstractAttribute::getAsStr().
3067   const std::string getAsStr() const override {
3068     return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
3069            std::to_string(getAnchorScope()->size()) + "][#TBEP " +
3070            std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
3071            std::to_string(KnownDeadEnds.size()) + "]";
3072   }
3073 
3074   /// See AbstractAttribute::manifest(...).
3075   ChangeStatus manifest(Attributor &A) override {
3076     assert(getState().isValidState() &&
3077            "Attempted to manifest an invalid state!");
3078 
3079     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
3080     Function &F = *getAnchorScope();
3081 
3082     if (AssumedLiveBlocks.empty()) {
3083       A.deleteAfterManifest(F);
3084       return ChangeStatus::CHANGED;
3085     }
3086 
3087     // Flag to determine if we can change an invoke to a call assuming the
3088     // callee is nounwind. This is not possible if the personality of the
3089     // function allows to catch asynchronous exceptions.
3090     bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
3091 
3092     KnownDeadEnds.set_union(ToBeExploredFrom);
3093     for (const Instruction *DeadEndI : KnownDeadEnds) {
3094       auto *CB = dyn_cast<CallBase>(DeadEndI);
3095       if (!CB)
3096         continue;
3097       const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3098           *this, IRPosition::callsite_function(*CB), /* TrackDependence */ true,
3099           DepClassTy::OPTIONAL);
3100       bool MayReturn = !NoReturnAA.isAssumedNoReturn();
3101       if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
3102         continue;
3103 
3104       if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
3105         A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
3106       else
3107         A.changeToUnreachableAfterManifest(
3108             const_cast<Instruction *>(DeadEndI->getNextNode()));
3109       HasChanged = ChangeStatus::CHANGED;
3110     }
3111 
3112     STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
3113     for (BasicBlock &BB : F)
3114       if (!AssumedLiveBlocks.count(&BB)) {
3115         A.deleteAfterManifest(BB);
3116         ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
3117       }
3118 
3119     return HasChanged;
3120   }
3121 
3122   /// See AbstractAttribute::updateImpl(...).
3123   ChangeStatus updateImpl(Attributor &A) override;
3124 
3125   bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override {
3126     return !AssumedLiveEdges.count(std::make_pair(From, To));
3127   }
3128 
3129   /// See AbstractAttribute::trackStatistics()
3130   void trackStatistics() const override {}
3131 
3132   /// Returns true if the function is assumed dead.
3133   bool isAssumedDead() const override { return false; }
3134 
3135   /// See AAIsDead::isKnownDead().
3136   bool isKnownDead() const override { return false; }
3137 
3138   /// See AAIsDead::isAssumedDead(BasicBlock *).
3139   bool isAssumedDead(const BasicBlock *BB) const override {
3140     assert(BB->getParent() == getAnchorScope() &&
3141            "BB must be in the same anchor scope function.");
3142 
3143     if (!getAssumed())
3144       return false;
3145     return !AssumedLiveBlocks.count(BB);
3146   }
3147 
3148   /// See AAIsDead::isKnownDead(BasicBlock *).
3149   bool isKnownDead(const BasicBlock *BB) const override {
3150     return getKnown() && isAssumedDead(BB);
3151   }
3152 
3153   /// See AAIsDead::isAssumed(Instruction *I).
3154   bool isAssumedDead(const Instruction *I) const override {
3155     assert(I->getParent()->getParent() == getAnchorScope() &&
3156            "Instruction must be in the same anchor scope function.");
3157 
3158     if (!getAssumed())
3159       return false;
3160 
3161     // If it is not in AssumedLiveBlocks then it for sure dead.
3162     // Otherwise, it can still be after noreturn call in a live block.
3163     if (!AssumedLiveBlocks.count(I->getParent()))
3164       return true;
3165 
3166     // If it is not after a liveness barrier it is live.
3167     const Instruction *PrevI = I->getPrevNode();
3168     while (PrevI) {
3169       if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
3170         return true;
3171       PrevI = PrevI->getPrevNode();
3172     }
3173     return false;
3174   }
3175 
3176   /// See AAIsDead::isKnownDead(Instruction *I).
3177   bool isKnownDead(const Instruction *I) const override {
3178     return getKnown() && isAssumedDead(I);
3179   }
3180 
3181   /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
3182   /// that internal function called from \p BB should now be looked at.
3183   bool assumeLive(Attributor &A, const BasicBlock &BB) {
3184     if (!AssumedLiveBlocks.insert(&BB).second)
3185       return false;
3186 
3187     // We assume that all of BB is (probably) live now and if there are calls to
3188     // internal functions we will assume that those are now live as well. This
3189     // is a performance optimization for blocks with calls to a lot of internal
3190     // functions. It can however cause dead functions to be treated as live.
3191     for (const Instruction &I : BB)
3192       if (const auto *CB = dyn_cast<CallBase>(&I))
3193         if (const Function *F = CB->getCalledFunction())
3194           if (F->hasLocalLinkage())
3195             A.markLiveInternalFunction(*F);
3196     return true;
3197   }
3198 
3199   /// Collection of instructions that need to be explored again, e.g., we
3200   /// did assume they do not transfer control to (one of their) successors.
3201   SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
3202 
3203   /// Collection of instructions that are known to not transfer control.
3204   SmallSetVector<const Instruction *, 8> KnownDeadEnds;
3205 
3206   /// Collection of all assumed live edges
3207   DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges;
3208 
3209   /// Collection of all assumed live BasicBlocks.
3210   DenseSet<const BasicBlock *> AssumedLiveBlocks;
3211 };
3212 
3213 static bool
3214 identifyAliveSuccessors(Attributor &A, const CallBase &CB,
3215                         AbstractAttribute &AA,
3216                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3217   const IRPosition &IPos = IRPosition::callsite_function(CB);
3218 
3219   const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3220       AA, IPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
3221   if (NoReturnAA.isAssumedNoReturn())
3222     return !NoReturnAA.isKnownNoReturn();
3223   if (CB.isTerminator())
3224     AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
3225   else
3226     AliveSuccessors.push_back(CB.getNextNode());
3227   return false;
3228 }
3229 
3230 static bool
3231 identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
3232                         AbstractAttribute &AA,
3233                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3234   bool UsedAssumedInformation =
3235       identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
3236 
3237   // First, determine if we can change an invoke to a call assuming the
3238   // callee is nounwind. This is not possible if the personality of the
3239   // function allows to catch asynchronous exceptions.
3240   if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
3241     AliveSuccessors.push_back(&II.getUnwindDest()->front());
3242   } else {
3243     const IRPosition &IPos = IRPosition::callsite_function(II);
3244     const auto &AANoUnw = A.getAndUpdateAAFor<AANoUnwind>(
3245         AA, IPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
3246     if (AANoUnw.isAssumedNoUnwind()) {
3247       UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
3248     } else {
3249       AliveSuccessors.push_back(&II.getUnwindDest()->front());
3250     }
3251   }
3252   return UsedAssumedInformation;
3253 }
3254 
3255 static bool
3256 identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
3257                         AbstractAttribute &AA,
3258                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3259   bool UsedAssumedInformation = false;
3260   if (BI.getNumSuccessors() == 1) {
3261     AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3262   } else {
3263     Optional<ConstantInt *> CI = getAssumedConstantInt(
3264         A, *BI.getCondition(), AA, UsedAssumedInformation);
3265     if (!CI.hasValue()) {
3266       // No value yet, assume both edges are dead.
3267     } else if (CI.getValue()) {
3268       const BasicBlock *SuccBB =
3269           BI.getSuccessor(1 - CI.getValue()->getZExtValue());
3270       AliveSuccessors.push_back(&SuccBB->front());
3271     } else {
3272       AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3273       AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
3274       UsedAssumedInformation = false;
3275     }
3276   }
3277   return UsedAssumedInformation;
3278 }
3279 
3280 static bool
3281 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
3282                         AbstractAttribute &AA,
3283                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3284   bool UsedAssumedInformation = false;
3285   Optional<ConstantInt *> CI =
3286       getAssumedConstantInt(A, *SI.getCondition(), AA, UsedAssumedInformation);
3287   if (!CI.hasValue()) {
3288     // No value yet, assume all edges are dead.
3289   } else if (CI.getValue()) {
3290     for (auto &CaseIt : SI.cases()) {
3291       if (CaseIt.getCaseValue() == CI.getValue()) {
3292         AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
3293         return UsedAssumedInformation;
3294       }
3295     }
3296     AliveSuccessors.push_back(&SI.getDefaultDest()->front());
3297     return UsedAssumedInformation;
3298   } else {
3299     for (const BasicBlock *SuccBB : successors(SI.getParent()))
3300       AliveSuccessors.push_back(&SuccBB->front());
3301   }
3302   return UsedAssumedInformation;
3303 }
3304 
3305 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
3306   ChangeStatus Change = ChangeStatus::UNCHANGED;
3307 
3308   LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
3309                     << getAnchorScope()->size() << "] BBs and "
3310                     << ToBeExploredFrom.size() << " exploration points and "
3311                     << KnownDeadEnds.size() << " known dead ends\n");
3312 
3313   // Copy and clear the list of instructions we need to explore from. It is
3314   // refilled with instructions the next update has to look at.
3315   SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
3316                                                ToBeExploredFrom.end());
3317   decltype(ToBeExploredFrom) NewToBeExploredFrom;
3318 
3319   SmallVector<const Instruction *, 8> AliveSuccessors;
3320   while (!Worklist.empty()) {
3321     const Instruction *I = Worklist.pop_back_val();
3322     LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
3323 
3324     // Fast forward for uninteresting instructions. We could look for UB here
3325     // though.
3326     while (!I->isTerminator() && !isa<CallBase>(I)) {
3327       Change = ChangeStatus::CHANGED;
3328       I = I->getNextNode();
3329     }
3330 
3331     AliveSuccessors.clear();
3332 
3333     bool UsedAssumedInformation = false;
3334     switch (I->getOpcode()) {
3335     // TODO: look for (assumed) UB to backwards propagate "deadness".
3336     default:
3337       assert(I->isTerminator() &&
3338              "Expected non-terminators to be handled already!");
3339       for (const BasicBlock *SuccBB : successors(I->getParent()))
3340         AliveSuccessors.push_back(&SuccBB->front());
3341       break;
3342     case Instruction::Call:
3343       UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
3344                                                        *this, AliveSuccessors);
3345       break;
3346     case Instruction::Invoke:
3347       UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
3348                                                        *this, AliveSuccessors);
3349       break;
3350     case Instruction::Br:
3351       UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
3352                                                        *this, AliveSuccessors);
3353       break;
3354     case Instruction::Switch:
3355       UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
3356                                                        *this, AliveSuccessors);
3357       break;
3358     }
3359 
3360     if (UsedAssumedInformation) {
3361       NewToBeExploredFrom.insert(I);
3362     } else {
3363       Change = ChangeStatus::CHANGED;
3364       if (AliveSuccessors.empty() ||
3365           (I->isTerminator() && AliveSuccessors.size() < I->getNumSuccessors()))
3366         KnownDeadEnds.insert(I);
3367     }
3368 
3369     LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
3370                       << AliveSuccessors.size() << " UsedAssumedInformation: "
3371                       << UsedAssumedInformation << "\n");
3372 
3373     for (const Instruction *AliveSuccessor : AliveSuccessors) {
3374       if (!I->isTerminator()) {
3375         assert(AliveSuccessors.size() == 1 &&
3376                "Non-terminator expected to have a single successor!");
3377         Worklist.push_back(AliveSuccessor);
3378       } else {
3379         // record the assumed live edge
3380         AssumedLiveEdges.insert(
3381             std::make_pair(I->getParent(), AliveSuccessor->getParent()));
3382         if (assumeLive(A, *AliveSuccessor->getParent()))
3383           Worklist.push_back(AliveSuccessor);
3384       }
3385     }
3386   }
3387 
3388   ToBeExploredFrom = std::move(NewToBeExploredFrom);
3389 
3390   // If we know everything is live there is no need to query for liveness.
3391   // Instead, indicating a pessimistic fixpoint will cause the state to be
3392   // "invalid" and all queries to be answered conservatively without lookups.
3393   // To be in this state we have to (1) finished the exploration and (3) not
3394   // discovered any non-trivial dead end and (2) not ruled unreachable code
3395   // dead.
3396   if (ToBeExploredFrom.empty() &&
3397       getAnchorScope()->size() == AssumedLiveBlocks.size() &&
3398       llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
3399         return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
3400       }))
3401     return indicatePessimisticFixpoint();
3402   return Change;
3403 }
3404 
3405 /// Liveness information for a call sites.
3406 struct AAIsDeadCallSite final : AAIsDeadFunction {
3407   AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
3408       : AAIsDeadFunction(IRP, A) {}
3409 
3410   /// See AbstractAttribute::initialize(...).
3411   void initialize(Attributor &A) override {
3412     // TODO: Once we have call site specific value information we can provide
3413     //       call site specific liveness information and then it makes
3414     //       sense to specialize attributes for call sites instead of
3415     //       redirecting requests to the callee.
3416     llvm_unreachable("Abstract attributes for liveness are not "
3417                      "supported for call sites yet!");
3418   }
3419 
3420   /// See AbstractAttribute::updateImpl(...).
3421   ChangeStatus updateImpl(Attributor &A) override {
3422     return indicatePessimisticFixpoint();
3423   }
3424 
3425   /// See AbstractAttribute::trackStatistics()
3426   void trackStatistics() const override {}
3427 };
3428 
3429 /// -------------------- Dereferenceable Argument Attribute --------------------
3430 
3431 template <>
3432 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
3433                                                      const DerefState &R) {
3434   ChangeStatus CS0 =
3435       clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
3436   ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
3437   return CS0 | CS1;
3438 }
3439 
3440 struct AADereferenceableImpl : AADereferenceable {
3441   AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
3442       : AADereferenceable(IRP, A) {}
3443   using StateType = DerefState;
3444 
3445   /// See AbstractAttribute::initialize(...).
3446   void initialize(Attributor &A) override {
3447     SmallVector<Attribute, 4> Attrs;
3448     getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
3449              Attrs, /* IgnoreSubsumingPositions */ false, &A);
3450     for (const Attribute &Attr : Attrs)
3451       takeKnownDerefBytesMaximum(Attr.getValueAsInt());
3452 
3453     const IRPosition &IRP = this->getIRPosition();
3454     NonNullAA = &A.getAAFor<AANonNull>(*this, IRP,
3455                                        /* TrackDependence */ false);
3456 
3457     bool CanBeNull;
3458     takeKnownDerefBytesMaximum(
3459         IRP.getAssociatedValue().getPointerDereferenceableBytes(
3460             A.getDataLayout(), CanBeNull));
3461 
3462     bool IsFnInterface = IRP.isFnInterfaceKind();
3463     Function *FnScope = IRP.getAnchorScope();
3464     if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) {
3465       indicatePessimisticFixpoint();
3466       return;
3467     }
3468 
3469     if (Instruction *CtxI = getCtxI())
3470       followUsesInMBEC(*this, A, getState(), *CtxI);
3471   }
3472 
3473   /// See AbstractAttribute::getState()
3474   /// {
3475   StateType &getState() override { return *this; }
3476   const StateType &getState() const override { return *this; }
3477   /// }
3478 
3479   /// Helper function for collecting accessed bytes in must-be-executed-context
3480   void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
3481                               DerefState &State) {
3482     const Value *UseV = U->get();
3483     if (!UseV->getType()->isPointerTy())
3484       return;
3485 
3486     Type *PtrTy = UseV->getType();
3487     const DataLayout &DL = A.getDataLayout();
3488     int64_t Offset;
3489     if (const Value *Base = getBasePointerOfAccessPointerOperand(
3490             I, Offset, DL, /*AllowNonInbounds*/ true)) {
3491       if (Base == &getAssociatedValue() &&
3492           getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
3493         uint64_t Size = DL.getTypeStoreSize(PtrTy->getPointerElementType());
3494         State.addAccessedBytes(Offset, Size);
3495       }
3496     }
3497     return;
3498   }
3499 
3500   /// See followUsesInMBEC
3501   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
3502                        AADereferenceable::StateType &State) {
3503     bool IsNonNull = false;
3504     bool TrackUse = false;
3505     int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
3506         A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
3507     LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
3508                       << " for instruction " << *I << "\n");
3509 
3510     addAccessedBytesForUse(A, U, I, State);
3511     State.takeKnownDerefBytesMaximum(DerefBytes);
3512     return TrackUse;
3513   }
3514 
3515   /// See AbstractAttribute::manifest(...).
3516   ChangeStatus manifest(Attributor &A) override {
3517     ChangeStatus Change = AADereferenceable::manifest(A);
3518     if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
3519       removeAttrs({Attribute::DereferenceableOrNull});
3520       return ChangeStatus::CHANGED;
3521     }
3522     return Change;
3523   }
3524 
3525   void getDeducedAttributes(LLVMContext &Ctx,
3526                             SmallVectorImpl<Attribute> &Attrs) const override {
3527     // TODO: Add *_globally support
3528     if (isAssumedNonNull())
3529       Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
3530           Ctx, getAssumedDereferenceableBytes()));
3531     else
3532       Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
3533           Ctx, getAssumedDereferenceableBytes()));
3534   }
3535 
3536   /// See AbstractAttribute::getAsStr().
3537   const std::string getAsStr() const override {
3538     if (!getAssumedDereferenceableBytes())
3539       return "unknown-dereferenceable";
3540     return std::string("dereferenceable") +
3541            (isAssumedNonNull() ? "" : "_or_null") +
3542            (isAssumedGlobal() ? "_globally" : "") + "<" +
3543            std::to_string(getKnownDereferenceableBytes()) + "-" +
3544            std::to_string(getAssumedDereferenceableBytes()) + ">";
3545   }
3546 };
3547 
3548 /// Dereferenceable attribute for a floating value.
3549 struct AADereferenceableFloating : AADereferenceableImpl {
3550   AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
3551       : AADereferenceableImpl(IRP, A) {}
3552 
3553   /// See AbstractAttribute::updateImpl(...).
3554   ChangeStatus updateImpl(Attributor &A) override {
3555     const DataLayout &DL = A.getDataLayout();
3556 
3557     auto VisitValueCB = [&](const Value &V, const Instruction *, DerefState &T,
3558                             bool Stripped) -> bool {
3559       unsigned IdxWidth =
3560           DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
3561       APInt Offset(IdxWidth, 0);
3562       const Value *Base =
3563           stripAndAccumulateMinimalOffsets(A, *this, &V, DL, Offset, false);
3564 
3565       const auto &AA =
3566           A.getAAFor<AADereferenceable>(*this, IRPosition::value(*Base));
3567       int64_t DerefBytes = 0;
3568       if (!Stripped && this == &AA) {
3569         // Use IR information if we did not strip anything.
3570         // TODO: track globally.
3571         bool CanBeNull;
3572         DerefBytes = Base->getPointerDereferenceableBytes(DL, CanBeNull);
3573         T.GlobalState.indicatePessimisticFixpoint();
3574       } else {
3575         const DerefState &DS = AA.getState();
3576         DerefBytes = DS.DerefBytesState.getAssumed();
3577         T.GlobalState &= DS.GlobalState;
3578       }
3579 
3580       // For now we do not try to "increase" dereferenceability due to negative
3581       // indices as we first have to come up with code to deal with loops and
3582       // for overflows of the dereferenceable bytes.
3583       int64_t OffsetSExt = Offset.getSExtValue();
3584       if (OffsetSExt < 0)
3585         OffsetSExt = 0;
3586 
3587       T.takeAssumedDerefBytesMinimum(
3588           std::max(int64_t(0), DerefBytes - OffsetSExt));
3589 
3590       if (this == &AA) {
3591         if (!Stripped) {
3592           // If nothing was stripped IR information is all we got.
3593           T.takeKnownDerefBytesMaximum(
3594               std::max(int64_t(0), DerefBytes - OffsetSExt));
3595           T.indicatePessimisticFixpoint();
3596         } else if (OffsetSExt > 0) {
3597           // If something was stripped but there is circular reasoning we look
3598           // for the offset. If it is positive we basically decrease the
3599           // dereferenceable bytes in a circluar loop now, which will simply
3600           // drive them down to the known value in a very slow way which we
3601           // can accelerate.
3602           T.indicatePessimisticFixpoint();
3603         }
3604       }
3605 
3606       return T.isValidState();
3607     };
3608 
3609     DerefState T;
3610     if (!genericValueTraversal<AADereferenceable, DerefState>(
3611             A, getIRPosition(), *this, T, VisitValueCB, getCtxI()))
3612       return indicatePessimisticFixpoint();
3613 
3614     return clampStateAndIndicateChange(getState(), T);
3615   }
3616 
3617   /// See AbstractAttribute::trackStatistics()
3618   void trackStatistics() const override {
3619     STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
3620   }
3621 };
3622 
3623 /// Dereferenceable attribute for a return value.
3624 struct AADereferenceableReturned final
3625     : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
3626   AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
3627       : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
3628             IRP, A) {}
3629 
3630   /// See AbstractAttribute::trackStatistics()
3631   void trackStatistics() const override {
3632     STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
3633   }
3634 };
3635 
3636 /// Dereferenceable attribute for an argument
3637 struct AADereferenceableArgument final
3638     : AAArgumentFromCallSiteArguments<AADereferenceable,
3639                                       AADereferenceableImpl> {
3640   using Base =
3641       AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
3642   AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
3643       : Base(IRP, A) {}
3644 
3645   /// See AbstractAttribute::trackStatistics()
3646   void trackStatistics() const override {
3647     STATS_DECLTRACK_ARG_ATTR(dereferenceable)
3648   }
3649 };
3650 
3651 /// Dereferenceable attribute for a call site argument.
3652 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
3653   AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
3654       : AADereferenceableFloating(IRP, A) {}
3655 
3656   /// See AbstractAttribute::trackStatistics()
3657   void trackStatistics() const override {
3658     STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
3659   }
3660 };
3661 
3662 /// Dereferenceable attribute deduction for a call site return value.
3663 struct AADereferenceableCallSiteReturned final
3664     : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> {
3665   using Base =
3666       AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>;
3667   AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
3668       : Base(IRP, A) {}
3669 
3670   /// See AbstractAttribute::trackStatistics()
3671   void trackStatistics() const override {
3672     STATS_DECLTRACK_CS_ATTR(dereferenceable);
3673   }
3674 };
3675 
3676 // ------------------------ Align Argument Attribute ------------------------
3677 
3678 static unsigned getKnownAlignForUse(Attributor &A,
3679                                     AbstractAttribute &QueryingAA,
3680                                     Value &AssociatedValue, const Use *U,
3681                                     const Instruction *I, bool &TrackUse) {
3682   // We need to follow common pointer manipulation uses to the accesses they
3683   // feed into.
3684   if (isa<CastInst>(I)) {
3685     // Follow all but ptr2int casts.
3686     TrackUse = !isa<PtrToIntInst>(I);
3687     return 0;
3688   }
3689   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3690     if (GEP->hasAllConstantIndices()) {
3691       TrackUse = true;
3692       return 0;
3693     }
3694   }
3695 
3696   MaybeAlign MA;
3697   if (const auto *CB = dyn_cast<CallBase>(I)) {
3698     if (CB->isBundleOperand(U) || CB->isCallee(U))
3699       return 0;
3700 
3701     unsigned ArgNo = CB->getArgOperandNo(U);
3702     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
3703     // As long as we only use known information there is no need to track
3704     // dependences here.
3705     auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP,
3706                                         /* TrackDependence */ false);
3707     MA = MaybeAlign(AlignAA.getKnownAlign());
3708   }
3709 
3710   const DataLayout &DL = A.getDataLayout();
3711   const Value *UseV = U->get();
3712   if (auto *SI = dyn_cast<StoreInst>(I)) {
3713     if (SI->getPointerOperand() == UseV)
3714       MA = SI->getAlign();
3715   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
3716     if (LI->getPointerOperand() == UseV)
3717       MA = LI->getAlign();
3718   }
3719 
3720   if (!MA || *MA <= 1)
3721     return 0;
3722 
3723   unsigned Alignment = MA->value();
3724   int64_t Offset;
3725 
3726   if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
3727     if (Base == &AssociatedValue) {
3728       // BasePointerAddr + Offset = Alignment * Q for some integer Q.
3729       // So we can say that the maximum power of two which is a divisor of
3730       // gcd(Offset, Alignment) is an alignment.
3731 
3732       uint32_t gcd =
3733           greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
3734       Alignment = llvm::PowerOf2Floor(gcd);
3735     }
3736   }
3737 
3738   return Alignment;
3739 }
3740 
3741 struct AAAlignImpl : AAAlign {
3742   AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
3743 
3744   /// See AbstractAttribute::initialize(...).
3745   void initialize(Attributor &A) override {
3746     SmallVector<Attribute, 4> Attrs;
3747     getAttrs({Attribute::Alignment}, Attrs);
3748     for (const Attribute &Attr : Attrs)
3749       takeKnownMaximum(Attr.getValueAsInt());
3750 
3751     Value &V = getAssociatedValue();
3752     // TODO: This is a HACK to avoid getPointerAlignment to introduce a ptr2int
3753     //       use of the function pointer. This was caused by D73131. We want to
3754     //       avoid this for function pointers especially because we iterate
3755     //       their uses and int2ptr is not handled. It is not a correctness
3756     //       problem though!
3757     if (!V.getType()->getPointerElementType()->isFunctionTy())
3758       takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
3759 
3760     if (getIRPosition().isFnInterfaceKind() &&
3761         (!getAnchorScope() ||
3762          !A.isFunctionIPOAmendable(*getAssociatedFunction()))) {
3763       indicatePessimisticFixpoint();
3764       return;
3765     }
3766 
3767     if (Instruction *CtxI = getCtxI())
3768       followUsesInMBEC(*this, A, getState(), *CtxI);
3769   }
3770 
3771   /// See AbstractAttribute::manifest(...).
3772   ChangeStatus manifest(Attributor &A) override {
3773     ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
3774 
3775     // Check for users that allow alignment annotations.
3776     Value &AssociatedValue = getAssociatedValue();
3777     for (const Use &U : AssociatedValue.uses()) {
3778       if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
3779         if (SI->getPointerOperand() == &AssociatedValue)
3780           if (SI->getAlignment() < getAssumedAlign()) {
3781             STATS_DECLTRACK(AAAlign, Store,
3782                             "Number of times alignment added to a store");
3783             SI->setAlignment(Align(getAssumedAlign()));
3784             LoadStoreChanged = ChangeStatus::CHANGED;
3785           }
3786       } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
3787         if (LI->getPointerOperand() == &AssociatedValue)
3788           if (LI->getAlignment() < getAssumedAlign()) {
3789             LI->setAlignment(Align(getAssumedAlign()));
3790             STATS_DECLTRACK(AAAlign, Load,
3791                             "Number of times alignment added to a load");
3792             LoadStoreChanged = ChangeStatus::CHANGED;
3793           }
3794       }
3795     }
3796 
3797     ChangeStatus Changed = AAAlign::manifest(A);
3798 
3799     Align InheritAlign =
3800         getAssociatedValue().getPointerAlignment(A.getDataLayout());
3801     if (InheritAlign >= getAssumedAlign())
3802       return LoadStoreChanged;
3803     return Changed | LoadStoreChanged;
3804   }
3805 
3806   // TODO: Provide a helper to determine the implied ABI alignment and check in
3807   //       the existing manifest method and a new one for AAAlignImpl that value
3808   //       to avoid making the alignment explicit if it did not improve.
3809 
3810   /// See AbstractAttribute::getDeducedAttributes
3811   virtual void
3812   getDeducedAttributes(LLVMContext &Ctx,
3813                        SmallVectorImpl<Attribute> &Attrs) const override {
3814     if (getAssumedAlign() > 1)
3815       Attrs.emplace_back(
3816           Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
3817   }
3818 
3819   /// See followUsesInMBEC
3820   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
3821                        AAAlign::StateType &State) {
3822     bool TrackUse = false;
3823 
3824     unsigned int KnownAlign =
3825         getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
3826     State.takeKnownMaximum(KnownAlign);
3827 
3828     return TrackUse;
3829   }
3830 
3831   /// See AbstractAttribute::getAsStr().
3832   const std::string getAsStr() const override {
3833     return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
3834                                 "-" + std::to_string(getAssumedAlign()) + ">")
3835                              : "unknown-align";
3836   }
3837 };
3838 
3839 /// Align attribute for a floating value.
3840 struct AAAlignFloating : AAAlignImpl {
3841   AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
3842 
3843   /// See AbstractAttribute::updateImpl(...).
3844   ChangeStatus updateImpl(Attributor &A) override {
3845     const DataLayout &DL = A.getDataLayout();
3846 
3847     auto VisitValueCB = [&](Value &V, const Instruction *,
3848                             AAAlign::StateType &T, bool Stripped) -> bool {
3849       const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V));
3850       if (!Stripped && this == &AA) {
3851         int64_t Offset;
3852         unsigned Alignment = 1;
3853         if (const Value *Base =
3854                 GetPointerBaseWithConstantOffset(&V, Offset, DL)) {
3855           Align PA = Base->getPointerAlignment(DL);
3856           // BasePointerAddr + Offset = Alignment * Q for some integer Q.
3857           // So we can say that the maximum power of two which is a divisor of
3858           // gcd(Offset, Alignment) is an alignment.
3859 
3860           uint32_t gcd = greatestCommonDivisor(uint32_t(abs((int32_t)Offset)),
3861                                                uint32_t(PA.value()));
3862           Alignment = llvm::PowerOf2Floor(gcd);
3863         } else {
3864           Alignment = V.getPointerAlignment(DL).value();
3865         }
3866         // Use only IR information if we did not strip anything.
3867         T.takeKnownMaximum(Alignment);
3868         T.indicatePessimisticFixpoint();
3869       } else {
3870         // Use abstract attribute information.
3871         const AAAlign::StateType &DS = AA.getState();
3872         T ^= DS;
3873       }
3874       return T.isValidState();
3875     };
3876 
3877     StateType T;
3878     if (!genericValueTraversal<AAAlign, StateType>(A, getIRPosition(), *this, T,
3879                                                    VisitValueCB, getCtxI()))
3880       return indicatePessimisticFixpoint();
3881 
3882     // TODO: If we know we visited all incoming values, thus no are assumed
3883     // dead, we can take the known information from the state T.
3884     return clampStateAndIndicateChange(getState(), T);
3885   }
3886 
3887   /// See AbstractAttribute::trackStatistics()
3888   void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
3889 };
3890 
3891 /// Align attribute for function return value.
3892 struct AAAlignReturned final
3893     : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
3894   using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>;
3895   AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
3896 
3897   /// See AbstractAttribute::initialize(...).
3898   void initialize(Attributor &A) override {
3899     Base::initialize(A);
3900     Function *F = getAssociatedFunction();
3901     if (!F || F->isDeclaration())
3902       indicatePessimisticFixpoint();
3903   }
3904 
3905   /// See AbstractAttribute::trackStatistics()
3906   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
3907 };
3908 
3909 /// Align attribute for function argument.
3910 struct AAAlignArgument final
3911     : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
3912   using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
3913   AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
3914 
3915   /// See AbstractAttribute::manifest(...).
3916   ChangeStatus manifest(Attributor &A) override {
3917     // If the associated argument is involved in a must-tail call we give up
3918     // because we would need to keep the argument alignments of caller and
3919     // callee in-sync. Just does not seem worth the trouble right now.
3920     if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
3921       return ChangeStatus::UNCHANGED;
3922     return Base::manifest(A);
3923   }
3924 
3925   /// See AbstractAttribute::trackStatistics()
3926   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
3927 };
3928 
3929 struct AAAlignCallSiteArgument final : AAAlignFloating {
3930   AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
3931       : AAAlignFloating(IRP, A) {}
3932 
3933   /// See AbstractAttribute::manifest(...).
3934   ChangeStatus manifest(Attributor &A) override {
3935     // If the associated argument is involved in a must-tail call we give up
3936     // because we would need to keep the argument alignments of caller and
3937     // callee in-sync. Just does not seem worth the trouble right now.
3938     if (Argument *Arg = getAssociatedArgument())
3939       if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
3940         return ChangeStatus::UNCHANGED;
3941     ChangeStatus Changed = AAAlignImpl::manifest(A);
3942     Align InheritAlign =
3943         getAssociatedValue().getPointerAlignment(A.getDataLayout());
3944     if (InheritAlign >= getAssumedAlign())
3945       Changed = ChangeStatus::UNCHANGED;
3946     return Changed;
3947   }
3948 
3949   /// See AbstractAttribute::updateImpl(Attributor &A).
3950   ChangeStatus updateImpl(Attributor &A) override {
3951     ChangeStatus Changed = AAAlignFloating::updateImpl(A);
3952     if (Argument *Arg = getAssociatedArgument()) {
3953       // We only take known information from the argument
3954       // so we do not need to track a dependence.
3955       const auto &ArgAlignAA = A.getAAFor<AAAlign>(
3956           *this, IRPosition::argument(*Arg), /* TrackDependence */ false);
3957       takeKnownMaximum(ArgAlignAA.getKnownAlign());
3958     }
3959     return Changed;
3960   }
3961 
3962   /// See AbstractAttribute::trackStatistics()
3963   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
3964 };
3965 
3966 /// Align attribute deduction for a call site return value.
3967 struct AAAlignCallSiteReturned final
3968     : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> {
3969   using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>;
3970   AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
3971       : Base(IRP, A) {}
3972 
3973   /// See AbstractAttribute::initialize(...).
3974   void initialize(Attributor &A) override {
3975     Base::initialize(A);
3976     Function *F = getAssociatedFunction();
3977     if (!F || F->isDeclaration())
3978       indicatePessimisticFixpoint();
3979   }
3980 
3981   /// See AbstractAttribute::trackStatistics()
3982   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
3983 };
3984 
3985 /// ------------------ Function No-Return Attribute ----------------------------
3986 struct AANoReturnImpl : public AANoReturn {
3987   AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
3988 
3989   /// See AbstractAttribute::initialize(...).
3990   void initialize(Attributor &A) override {
3991     AANoReturn::initialize(A);
3992     Function *F = getAssociatedFunction();
3993     if (!F || F->isDeclaration())
3994       indicatePessimisticFixpoint();
3995   }
3996 
3997   /// See AbstractAttribute::getAsStr().
3998   const std::string getAsStr() const override {
3999     return getAssumed() ? "noreturn" : "may-return";
4000   }
4001 
4002   /// See AbstractAttribute::updateImpl(Attributor &A).
4003   virtual ChangeStatus updateImpl(Attributor &A) override {
4004     auto CheckForNoReturn = [](Instruction &) { return false; };
4005     if (!A.checkForAllInstructions(CheckForNoReturn, *this,
4006                                    {(unsigned)Instruction::Ret}))
4007       return indicatePessimisticFixpoint();
4008     return ChangeStatus::UNCHANGED;
4009   }
4010 };
4011 
4012 struct AANoReturnFunction final : AANoReturnImpl {
4013   AANoReturnFunction(const IRPosition &IRP, Attributor &A)
4014       : AANoReturnImpl(IRP, A) {}
4015 
4016   /// See AbstractAttribute::trackStatistics()
4017   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
4018 };
4019 
4020 /// NoReturn attribute deduction for a call sites.
4021 struct AANoReturnCallSite final : AANoReturnImpl {
4022   AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
4023       : AANoReturnImpl(IRP, A) {}
4024 
4025   /// See AbstractAttribute::initialize(...).
4026   void initialize(Attributor &A) override {
4027     AANoReturnImpl::initialize(A);
4028     if (Function *F = getAssociatedFunction()) {
4029       const IRPosition &FnPos = IRPosition::function(*F);
4030       auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos);
4031       if (!FnAA.isAssumedNoReturn())
4032         indicatePessimisticFixpoint();
4033     }
4034   }
4035 
4036   /// See AbstractAttribute::updateImpl(...).
4037   ChangeStatus updateImpl(Attributor &A) override {
4038     // TODO: Once we have call site specific value information we can provide
4039     //       call site specific liveness information and then it makes
4040     //       sense to specialize attributes for call sites arguments instead of
4041     //       redirecting requests to the callee argument.
4042     Function *F = getAssociatedFunction();
4043     const IRPosition &FnPos = IRPosition::function(*F);
4044     auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos);
4045     return clampStateAndIndicateChange(getState(), FnAA.getState());
4046   }
4047 
4048   /// See AbstractAttribute::trackStatistics()
4049   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
4050 };
4051 
4052 /// ----------------------- Variable Capturing ---------------------------------
4053 
4054 /// A class to hold the state of for no-capture attributes.
4055 struct AANoCaptureImpl : public AANoCapture {
4056   AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
4057 
4058   /// See AbstractAttribute::initialize(...).
4059   void initialize(Attributor &A) override {
4060     if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
4061       indicateOptimisticFixpoint();
4062       return;
4063     }
4064     Function *AnchorScope = getAnchorScope();
4065     if (isFnInterfaceKind() &&
4066         (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
4067       indicatePessimisticFixpoint();
4068       return;
4069     }
4070 
4071     // You cannot "capture" null in the default address space.
4072     if (isa<ConstantPointerNull>(getAssociatedValue()) &&
4073         getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
4074       indicateOptimisticFixpoint();
4075       return;
4076     }
4077 
4078     const Function *F = isArgumentPosition() ? getAssociatedFunction() : AnchorScope;
4079 
4080     // Check what state the associated function can actually capture.
4081     if (F)
4082       determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
4083     else
4084       indicatePessimisticFixpoint();
4085   }
4086 
4087   /// See AbstractAttribute::updateImpl(...).
4088   ChangeStatus updateImpl(Attributor &A) override;
4089 
4090   /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
4091   virtual void
4092   getDeducedAttributes(LLVMContext &Ctx,
4093                        SmallVectorImpl<Attribute> &Attrs) const override {
4094     if (!isAssumedNoCaptureMaybeReturned())
4095       return;
4096 
4097     if (isArgumentPosition()) {
4098       if (isAssumedNoCapture())
4099         Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
4100       else if (ManifestInternal)
4101         Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
4102     }
4103   }
4104 
4105   /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
4106   /// depending on the ability of the function associated with \p IRP to capture
4107   /// state in memory and through "returning/throwing", respectively.
4108   static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
4109                                                    const Function &F,
4110                                                    BitIntegerState &State) {
4111     // TODO: Once we have memory behavior attributes we should use them here.
4112 
4113     // If we know we cannot communicate or write to memory, we do not care about
4114     // ptr2int anymore.
4115     if (F.onlyReadsMemory() && F.doesNotThrow() &&
4116         F.getReturnType()->isVoidTy()) {
4117       State.addKnownBits(NO_CAPTURE);
4118       return;
4119     }
4120 
4121     // A function cannot capture state in memory if it only reads memory, it can
4122     // however return/throw state and the state might be influenced by the
4123     // pointer value, e.g., loading from a returned pointer might reveal a bit.
4124     if (F.onlyReadsMemory())
4125       State.addKnownBits(NOT_CAPTURED_IN_MEM);
4126 
4127     // A function cannot communicate state back if it does not through
4128     // exceptions and doesn not return values.
4129     if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
4130       State.addKnownBits(NOT_CAPTURED_IN_RET);
4131 
4132     // Check existing "returned" attributes.
4133     int ArgNo = IRP.getCalleeArgNo();
4134     if (F.doesNotThrow() && ArgNo >= 0) {
4135       for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
4136         if (F.hasParamAttribute(u, Attribute::Returned)) {
4137           if (u == unsigned(ArgNo))
4138             State.removeAssumedBits(NOT_CAPTURED_IN_RET);
4139           else if (F.onlyReadsMemory())
4140             State.addKnownBits(NO_CAPTURE);
4141           else
4142             State.addKnownBits(NOT_CAPTURED_IN_RET);
4143           break;
4144         }
4145     }
4146   }
4147 
4148   /// See AbstractState::getAsStr().
4149   const std::string getAsStr() const override {
4150     if (isKnownNoCapture())
4151       return "known not-captured";
4152     if (isAssumedNoCapture())
4153       return "assumed not-captured";
4154     if (isKnownNoCaptureMaybeReturned())
4155       return "known not-captured-maybe-returned";
4156     if (isAssumedNoCaptureMaybeReturned())
4157       return "assumed not-captured-maybe-returned";
4158     return "assumed-captured";
4159   }
4160 };
4161 
4162 /// Attributor-aware capture tracker.
4163 struct AACaptureUseTracker final : public CaptureTracker {
4164 
4165   /// Create a capture tracker that can lookup in-flight abstract attributes
4166   /// through the Attributor \p A.
4167   ///
4168   /// If a use leads to a potential capture, \p CapturedInMemory is set and the
4169   /// search is stopped. If a use leads to a return instruction,
4170   /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed.
4171   /// If a use leads to a ptr2int which may capture the value,
4172   /// \p CapturedInInteger is set. If a use is found that is currently assumed
4173   /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies
4174   /// set. All values in \p PotentialCopies are later tracked as well. For every
4175   /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0,
4176   /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger
4177   /// conservatively set to true.
4178   AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA,
4179                       const AAIsDead &IsDeadAA, AANoCapture::StateType &State,
4180                       SmallVectorImpl<const Value *> &PotentialCopies,
4181                       unsigned &RemainingUsesToExplore)
4182       : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State),
4183         PotentialCopies(PotentialCopies),
4184         RemainingUsesToExplore(RemainingUsesToExplore) {}
4185 
4186   /// Determine if \p V maybe captured. *Also updates the state!*
4187   bool valueMayBeCaptured(const Value *V) {
4188     if (V->getType()->isPointerTy()) {
4189       PointerMayBeCaptured(V, this);
4190     } else {
4191       State.indicatePessimisticFixpoint();
4192     }
4193     return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4194   }
4195 
4196   /// See CaptureTracker::tooManyUses().
4197   void tooManyUses() override {
4198     State.removeAssumedBits(AANoCapture::NO_CAPTURE);
4199   }
4200 
4201   bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override {
4202     if (CaptureTracker::isDereferenceableOrNull(O, DL))
4203       return true;
4204     const auto &DerefAA = A.getAAFor<AADereferenceable>(
4205         NoCaptureAA, IRPosition::value(*O), /* TrackDependence */ true,
4206         DepClassTy::OPTIONAL);
4207     return DerefAA.getAssumedDereferenceableBytes();
4208   }
4209 
4210   /// See CaptureTracker::captured(...).
4211   bool captured(const Use *U) override {
4212     Instruction *UInst = cast<Instruction>(U->getUser());
4213     LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst
4214                       << "\n");
4215 
4216     // Because we may reuse the tracker multiple times we keep track of the
4217     // number of explored uses ourselves as well.
4218     if (RemainingUsesToExplore-- == 0) {
4219       LLVM_DEBUG(dbgs() << " - too many uses to explore!\n");
4220       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4221                           /* Return */ true);
4222     }
4223 
4224     // Deal with ptr2int by following uses.
4225     if (isa<PtrToIntInst>(UInst)) {
4226       LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
4227       return valueMayBeCaptured(UInst);
4228     }
4229 
4230     // Explicitly catch return instructions.
4231     if (isa<ReturnInst>(UInst))
4232       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4233                           /* Return */ true);
4234 
4235     // For now we only use special logic for call sites. However, the tracker
4236     // itself knows about a lot of other non-capturing cases already.
4237     auto *CB = dyn_cast<CallBase>(UInst);
4238     if (!CB || !CB->isArgOperand(U))
4239       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4240                           /* Return */ true);
4241 
4242     unsigned ArgNo = CB->getArgOperandNo(U);
4243     const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
4244     // If we have a abstract no-capture attribute for the argument we can use
4245     // it to justify a non-capture attribute here. This allows recursion!
4246     auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos);
4247     if (ArgNoCaptureAA.isAssumedNoCapture())
4248       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4249                           /* Return */ false);
4250     if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
4251       addPotentialCopy(*CB);
4252       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4253                           /* Return */ false);
4254     }
4255 
4256     // Lastly, we could not find a reason no-capture can be assumed so we don't.
4257     return isCapturedIn(/* Memory */ true, /* Integer */ true,
4258                         /* Return */ true);
4259   }
4260 
4261   /// Register \p CS as potential copy of the value we are checking.
4262   void addPotentialCopy(CallBase &CB) { PotentialCopies.push_back(&CB); }
4263 
4264   /// See CaptureTracker::shouldExplore(...).
4265   bool shouldExplore(const Use *U) override {
4266     // Check liveness and ignore droppable users.
4267     return !U->getUser()->isDroppable() &&
4268            !A.isAssumedDead(*U, &NoCaptureAA, &IsDeadAA);
4269   }
4270 
4271   /// Update the state according to \p CapturedInMem, \p CapturedInInt, and
4272   /// \p CapturedInRet, then return the appropriate value for use in the
4273   /// CaptureTracker::captured() interface.
4274   bool isCapturedIn(bool CapturedInMem, bool CapturedInInt,
4275                     bool CapturedInRet) {
4276     LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
4277                       << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
4278     if (CapturedInMem)
4279       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
4280     if (CapturedInInt)
4281       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
4282     if (CapturedInRet)
4283       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
4284     return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4285   }
4286 
4287 private:
4288   /// The attributor providing in-flight abstract attributes.
4289   Attributor &A;
4290 
4291   /// The abstract attribute currently updated.
4292   AANoCapture &NoCaptureAA;
4293 
4294   /// The abstract liveness state.
4295   const AAIsDead &IsDeadAA;
4296 
4297   /// The state currently updated.
4298   AANoCapture::StateType &State;
4299 
4300   /// Set of potential copies of the tracked value.
4301   SmallVectorImpl<const Value *> &PotentialCopies;
4302 
4303   /// Global counter to limit the number of explored uses.
4304   unsigned &RemainingUsesToExplore;
4305 };
4306 
4307 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
4308   const IRPosition &IRP = getIRPosition();
4309   const Value *V =
4310       isArgumentPosition() ? IRP.getAssociatedArgument() : &IRP.getAssociatedValue();
4311   if (!V)
4312     return indicatePessimisticFixpoint();
4313 
4314   const Function *F =
4315       isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
4316   assert(F && "Expected a function!");
4317   const IRPosition &FnPos = IRPosition::function(*F);
4318   const auto &IsDeadAA =
4319       A.getAAFor<AAIsDead>(*this, FnPos, /* TrackDependence */ false);
4320 
4321   AANoCapture::StateType T;
4322 
4323   // Readonly means we cannot capture through memory.
4324   const auto &FnMemAA =
4325       A.getAAFor<AAMemoryBehavior>(*this, FnPos, /* TrackDependence */ false);
4326   if (FnMemAA.isAssumedReadOnly()) {
4327     T.addKnownBits(NOT_CAPTURED_IN_MEM);
4328     if (FnMemAA.isKnownReadOnly())
4329       addKnownBits(NOT_CAPTURED_IN_MEM);
4330     else
4331       A.recordDependence(FnMemAA, *this, DepClassTy::OPTIONAL);
4332   }
4333 
4334   // Make sure all returned values are different than the underlying value.
4335   // TODO: we could do this in a more sophisticated way inside
4336   //       AAReturnedValues, e.g., track all values that escape through returns
4337   //       directly somehow.
4338   auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
4339     bool SeenConstant = false;
4340     for (auto &It : RVAA.returned_values()) {
4341       if (isa<Constant>(It.first)) {
4342         if (SeenConstant)
4343           return false;
4344         SeenConstant = true;
4345       } else if (!isa<Argument>(It.first) ||
4346                  It.first == getAssociatedArgument())
4347         return false;
4348     }
4349     return true;
4350   };
4351 
4352   const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
4353       *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
4354   if (NoUnwindAA.isAssumedNoUnwind()) {
4355     bool IsVoidTy = F->getReturnType()->isVoidTy();
4356     const AAReturnedValues *RVAA =
4357         IsVoidTy ? nullptr
4358                  : &A.getAAFor<AAReturnedValues>(*this, FnPos,
4359                                                  /* TrackDependence */ true,
4360                                                  DepClassTy::OPTIONAL);
4361     if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
4362       T.addKnownBits(NOT_CAPTURED_IN_RET);
4363       if (T.isKnown(NOT_CAPTURED_IN_MEM))
4364         return ChangeStatus::UNCHANGED;
4365       if (NoUnwindAA.isKnownNoUnwind() &&
4366           (IsVoidTy || RVAA->getState().isAtFixpoint())) {
4367         addKnownBits(NOT_CAPTURED_IN_RET);
4368         if (isKnown(NOT_CAPTURED_IN_MEM))
4369           return indicateOptimisticFixpoint();
4370       }
4371     }
4372   }
4373 
4374   // Use the CaptureTracker interface and logic with the specialized tracker,
4375   // defined in AACaptureUseTracker, that can look at in-flight abstract
4376   // attributes and directly updates the assumed state.
4377   SmallVector<const Value *, 4> PotentialCopies;
4378   unsigned RemainingUsesToExplore =
4379       getDefaultMaxUsesToExploreForCaptureTracking();
4380   AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies,
4381                               RemainingUsesToExplore);
4382 
4383   // Check all potential copies of the associated value until we can assume
4384   // none will be captured or we have to assume at least one might be.
4385   unsigned Idx = 0;
4386   PotentialCopies.push_back(V);
4387   while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size())
4388     Tracker.valueMayBeCaptured(PotentialCopies[Idx++]);
4389 
4390   AANoCapture::StateType &S = getState();
4391   auto Assumed = S.getAssumed();
4392   S.intersectAssumedBits(T.getAssumed());
4393   if (!isAssumedNoCaptureMaybeReturned())
4394     return indicatePessimisticFixpoint();
4395   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
4396                                    : ChangeStatus::CHANGED;
4397 }
4398 
4399 /// NoCapture attribute for function arguments.
4400 struct AANoCaptureArgument final : AANoCaptureImpl {
4401   AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
4402       : AANoCaptureImpl(IRP, A) {}
4403 
4404   /// See AbstractAttribute::trackStatistics()
4405   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
4406 };
4407 
4408 /// NoCapture attribute for call site arguments.
4409 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
4410   AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
4411       : AANoCaptureImpl(IRP, A) {}
4412 
4413   /// See AbstractAttribute::initialize(...).
4414   void initialize(Attributor &A) override {
4415     if (Argument *Arg = getAssociatedArgument())
4416       if (Arg->hasByValAttr())
4417         indicateOptimisticFixpoint();
4418     AANoCaptureImpl::initialize(A);
4419   }
4420 
4421   /// See AbstractAttribute::updateImpl(...).
4422   ChangeStatus updateImpl(Attributor &A) override {
4423     // TODO: Once we have call site specific value information we can provide
4424     //       call site specific liveness information and then it makes
4425     //       sense to specialize attributes for call sites arguments instead of
4426     //       redirecting requests to the callee argument.
4427     Argument *Arg = getAssociatedArgument();
4428     if (!Arg)
4429       return indicatePessimisticFixpoint();
4430     const IRPosition &ArgPos = IRPosition::argument(*Arg);
4431     auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos);
4432     return clampStateAndIndicateChange(getState(), ArgAA.getState());
4433   }
4434 
4435   /// See AbstractAttribute::trackStatistics()
4436   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
4437 };
4438 
4439 /// NoCapture attribute for floating values.
4440 struct AANoCaptureFloating final : AANoCaptureImpl {
4441   AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
4442       : AANoCaptureImpl(IRP, A) {}
4443 
4444   /// See AbstractAttribute::trackStatistics()
4445   void trackStatistics() const override {
4446     STATS_DECLTRACK_FLOATING_ATTR(nocapture)
4447   }
4448 };
4449 
4450 /// NoCapture attribute for function return value.
4451 struct AANoCaptureReturned final : AANoCaptureImpl {
4452   AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
4453       : AANoCaptureImpl(IRP, A) {
4454     llvm_unreachable("NoCapture is not applicable to function returns!");
4455   }
4456 
4457   /// See AbstractAttribute::initialize(...).
4458   void initialize(Attributor &A) override {
4459     llvm_unreachable("NoCapture is not applicable to function returns!");
4460   }
4461 
4462   /// See AbstractAttribute::updateImpl(...).
4463   ChangeStatus updateImpl(Attributor &A) override {
4464     llvm_unreachable("NoCapture is not applicable to function returns!");
4465   }
4466 
4467   /// See AbstractAttribute::trackStatistics()
4468   void trackStatistics() const override {}
4469 };
4470 
4471 /// NoCapture attribute deduction for a call site return value.
4472 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
4473   AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
4474       : AANoCaptureImpl(IRP, A) {}
4475 
4476   /// See AbstractAttribute::trackStatistics()
4477   void trackStatistics() const override {
4478     STATS_DECLTRACK_CSRET_ATTR(nocapture)
4479   }
4480 };
4481 
4482 /// ------------------ Value Simplify Attribute ----------------------------
4483 struct AAValueSimplifyImpl : AAValueSimplify {
4484   AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
4485       : AAValueSimplify(IRP, A) {}
4486 
4487   /// See AbstractAttribute::initialize(...).
4488   void initialize(Attributor &A) override {
4489     if (getAssociatedValue().getType()->isVoidTy())
4490       indicatePessimisticFixpoint();
4491   }
4492 
4493   /// See AbstractAttribute::getAsStr().
4494   const std::string getAsStr() const override {
4495     return getAssumed() ? (getKnown() ? "simplified" : "maybe-simple")
4496                         : "not-simple";
4497   }
4498 
4499   /// See AbstractAttribute::trackStatistics()
4500   void trackStatistics() const override {}
4501 
4502   /// See AAValueSimplify::getAssumedSimplifiedValue()
4503   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
4504     if (!getAssumed())
4505       return const_cast<Value *>(&getAssociatedValue());
4506     return SimplifiedAssociatedValue;
4507   }
4508 
4509   /// Helper function for querying AAValueSimplify and updating candicate.
4510   /// \param QueryingValue Value trying to unify with SimplifiedValue
4511   /// \param AccumulatedSimplifiedValue Current simplification result.
4512   static bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
4513                              Value &QueryingValue,
4514                              Optional<Value *> &AccumulatedSimplifiedValue) {
4515     // FIXME: Add a typecast support.
4516 
4517     auto &ValueSimplifyAA = A.getAAFor<AAValueSimplify>(
4518         QueryingAA, IRPosition::value(QueryingValue));
4519 
4520     Optional<Value *> QueryingValueSimplified =
4521         ValueSimplifyAA.getAssumedSimplifiedValue(A);
4522 
4523     if (!QueryingValueSimplified.hasValue())
4524       return true;
4525 
4526     if (!QueryingValueSimplified.getValue())
4527       return false;
4528 
4529     Value &QueryingValueSimplifiedUnwrapped =
4530         *QueryingValueSimplified.getValue();
4531 
4532     if (AccumulatedSimplifiedValue.hasValue() &&
4533         !isa<UndefValue>(AccumulatedSimplifiedValue.getValue()) &&
4534         !isa<UndefValue>(QueryingValueSimplifiedUnwrapped))
4535       return AccumulatedSimplifiedValue == QueryingValueSimplified;
4536     if (AccumulatedSimplifiedValue.hasValue() &&
4537         isa<UndefValue>(QueryingValueSimplifiedUnwrapped))
4538       return true;
4539 
4540     LLVM_DEBUG(dbgs() << "[ValueSimplify] " << QueryingValue
4541                       << " is assumed to be "
4542                       << QueryingValueSimplifiedUnwrapped << "\n");
4543 
4544     AccumulatedSimplifiedValue = QueryingValueSimplified;
4545     return true;
4546   }
4547 
4548   /// Returns a candidate is found or not
4549   template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
4550     if (!getAssociatedValue().getType()->isIntegerTy())
4551       return false;
4552 
4553     const auto &AA =
4554         A.getAAFor<AAType>(*this, getIRPosition(), /* TrackDependence */ false);
4555 
4556     Optional<ConstantInt *> COpt = AA.getAssumedConstantInt(A);
4557 
4558     if (!COpt.hasValue()) {
4559       SimplifiedAssociatedValue = llvm::None;
4560       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
4561       return true;
4562     }
4563     if (auto *C = COpt.getValue()) {
4564       SimplifiedAssociatedValue = C;
4565       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
4566       return true;
4567     }
4568     return false;
4569   }
4570 
4571   bool askSimplifiedValueForOtherAAs(Attributor &A) {
4572     if (askSimplifiedValueFor<AAValueConstantRange>(A))
4573       return true;
4574     if (askSimplifiedValueFor<AAPotentialValues>(A))
4575       return true;
4576     return false;
4577   }
4578 
4579   /// See AbstractAttribute::manifest(...).
4580   ChangeStatus manifest(Attributor &A) override {
4581     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4582 
4583     if (SimplifiedAssociatedValue.hasValue() &&
4584         !SimplifiedAssociatedValue.getValue())
4585       return Changed;
4586 
4587     Value &V = getAssociatedValue();
4588     auto *C = SimplifiedAssociatedValue.hasValue()
4589                   ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue())
4590                   : UndefValue::get(V.getType());
4591     if (C) {
4592       // We can replace the AssociatedValue with the constant.
4593       if (!V.user_empty() && &V != C && V.getType() == C->getType()) {
4594         LLVM_DEBUG(dbgs() << "[ValueSimplify] " << V << " -> " << *C
4595                           << " :: " << *this << "\n");
4596         if (A.changeValueAfterManifest(V, *C))
4597           Changed = ChangeStatus::CHANGED;
4598       }
4599     }
4600 
4601     return Changed | AAValueSimplify::manifest(A);
4602   }
4603 
4604   /// See AbstractState::indicatePessimisticFixpoint(...).
4605   ChangeStatus indicatePessimisticFixpoint() override {
4606     // NOTE: Associated value will be returned in a pessimistic fixpoint and is
4607     // regarded as known. That's why`indicateOptimisticFixpoint` is called.
4608     SimplifiedAssociatedValue = &getAssociatedValue();
4609     indicateOptimisticFixpoint();
4610     return ChangeStatus::CHANGED;
4611   }
4612 
4613 protected:
4614   // An assumed simplified value. Initially, it is set to Optional::None, which
4615   // means that the value is not clear under current assumption. If in the
4616   // pessimistic state, getAssumedSimplifiedValue doesn't return this value but
4617   // returns orignal associated value.
4618   Optional<Value *> SimplifiedAssociatedValue;
4619 };
4620 
4621 struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
4622   AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
4623       : AAValueSimplifyImpl(IRP, A) {}
4624 
4625   void initialize(Attributor &A) override {
4626     AAValueSimplifyImpl::initialize(A);
4627     if (!getAnchorScope() || getAnchorScope()->isDeclaration())
4628       indicatePessimisticFixpoint();
4629     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated,
4630                  Attribute::StructRet, Attribute::Nest},
4631                 /* IgnoreSubsumingPositions */ true))
4632       indicatePessimisticFixpoint();
4633 
4634     // FIXME: This is a hack to prevent us from propagating function poiner in
4635     // the new pass manager CGSCC pass as it creates call edges the
4636     // CallGraphUpdater cannot handle yet.
4637     Value &V = getAssociatedValue();
4638     if (V.getType()->isPointerTy() &&
4639         V.getType()->getPointerElementType()->isFunctionTy() &&
4640         !A.isModulePass())
4641       indicatePessimisticFixpoint();
4642   }
4643 
4644   /// See AbstractAttribute::updateImpl(...).
4645   ChangeStatus updateImpl(Attributor &A) override {
4646     // Byval is only replacable if it is readonly otherwise we would write into
4647     // the replaced value and not the copy that byval creates implicitly.
4648     Argument *Arg = getAssociatedArgument();
4649     if (Arg->hasByValAttr()) {
4650       // TODO: We probably need to verify synchronization is not an issue, e.g.,
4651       //       there is no race by not copying a constant byval.
4652       const auto &MemAA = A.getAAFor<AAMemoryBehavior>(*this, getIRPosition());
4653       if (!MemAA.isAssumedReadOnly())
4654         return indicatePessimisticFixpoint();
4655     }
4656 
4657     bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
4658 
4659     auto PredForCallSite = [&](AbstractCallSite ACS) {
4660       const IRPosition &ACSArgPos =
4661           IRPosition::callsite_argument(ACS, getCallSiteArgNo());
4662       // Check if a coresponding argument was found or if it is on not
4663       // associated (which can happen for callback calls).
4664       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
4665         return false;
4666 
4667       // We can only propagate thread independent values through callbacks.
4668       // This is different to direct/indirect call sites because for them we
4669       // know the thread executing the caller and callee is the same. For
4670       // callbacks this is not guaranteed, thus a thread dependent value could
4671       // be different for the caller and callee, making it invalid to propagate.
4672       Value &ArgOp = ACSArgPos.getAssociatedValue();
4673       if (ACS.isCallbackCall())
4674         if (auto *C = dyn_cast<Constant>(&ArgOp))
4675           if (C->isThreadDependent())
4676             return false;
4677       return checkAndUpdate(A, *this, ArgOp, SimplifiedAssociatedValue);
4678     };
4679 
4680     bool AllCallSitesKnown;
4681     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
4682                                 AllCallSitesKnown))
4683       if (!askSimplifiedValueForOtherAAs(A))
4684         return indicatePessimisticFixpoint();
4685 
4686     // If a candicate was found in this update, return CHANGED.
4687     return HasValueBefore == SimplifiedAssociatedValue.hasValue()
4688                ? ChangeStatus::UNCHANGED
4689                : ChangeStatus ::CHANGED;
4690   }
4691 
4692   /// See AbstractAttribute::trackStatistics()
4693   void trackStatistics() const override {
4694     STATS_DECLTRACK_ARG_ATTR(value_simplify)
4695   }
4696 };
4697 
4698 struct AAValueSimplifyReturned : AAValueSimplifyImpl {
4699   AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
4700       : AAValueSimplifyImpl(IRP, A) {}
4701 
4702   /// See AbstractAttribute::updateImpl(...).
4703   ChangeStatus updateImpl(Attributor &A) override {
4704     bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
4705 
4706     auto PredForReturned = [&](Value &V) {
4707       return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue);
4708     };
4709 
4710     if (!A.checkForAllReturnedValues(PredForReturned, *this))
4711       if (!askSimplifiedValueForOtherAAs(A))
4712         return indicatePessimisticFixpoint();
4713 
4714     // If a candicate was found in this update, return CHANGED.
4715     return HasValueBefore == SimplifiedAssociatedValue.hasValue()
4716                ? ChangeStatus::UNCHANGED
4717                : ChangeStatus ::CHANGED;
4718   }
4719 
4720   ChangeStatus manifest(Attributor &A) override {
4721     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4722 
4723     if (SimplifiedAssociatedValue.hasValue() &&
4724         !SimplifiedAssociatedValue.getValue())
4725       return Changed;
4726 
4727     Value &V = getAssociatedValue();
4728     auto *C = SimplifiedAssociatedValue.hasValue()
4729                   ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue())
4730                   : UndefValue::get(V.getType());
4731     if (C) {
4732       auto PredForReturned =
4733           [&](Value &V, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
4734             // We can replace the AssociatedValue with the constant.
4735             if (&V == C || V.getType() != C->getType() || isa<UndefValue>(V))
4736               return true;
4737 
4738             for (ReturnInst *RI : RetInsts) {
4739               if (RI->getFunction() != getAnchorScope())
4740                 continue;
4741               auto *RC = C;
4742               if (RC->getType() != RI->getReturnValue()->getType())
4743                 RC = ConstantExpr::getBitCast(RC,
4744                                               RI->getReturnValue()->getType());
4745               LLVM_DEBUG(dbgs() << "[ValueSimplify] " << V << " -> " << *RC
4746                                 << " in " << *RI << " :: " << *this << "\n");
4747               if (A.changeUseAfterManifest(RI->getOperandUse(0), *RC))
4748                 Changed = ChangeStatus::CHANGED;
4749             }
4750             return true;
4751           };
4752       A.checkForAllReturnedValuesAndReturnInsts(PredForReturned, *this);
4753     }
4754 
4755     return Changed | AAValueSimplify::manifest(A);
4756   }
4757 
4758   /// See AbstractAttribute::trackStatistics()
4759   void trackStatistics() const override {
4760     STATS_DECLTRACK_FNRET_ATTR(value_simplify)
4761   }
4762 };
4763 
4764 struct AAValueSimplifyFloating : AAValueSimplifyImpl {
4765   AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
4766       : AAValueSimplifyImpl(IRP, A) {}
4767 
4768   /// See AbstractAttribute::initialize(...).
4769   void initialize(Attributor &A) override {
4770     // FIXME: This might have exposed a SCC iterator update bug in the old PM.
4771     //        Needs investigation.
4772     // AAValueSimplifyImpl::initialize(A);
4773     Value &V = getAnchorValue();
4774 
4775     // TODO: add other stuffs
4776     if (isa<Constant>(V))
4777       indicatePessimisticFixpoint();
4778   }
4779 
4780   /// Check if \p ICmp is an equality comparison (==/!=) with at least one
4781   /// nullptr. If so, try to simplify it using AANonNull on the other operand.
4782   /// Return true if successful, in that case SimplifiedAssociatedValue will be
4783   /// updated and \p Changed is set appropriately.
4784   bool checkForNullPtrCompare(Attributor &A, ICmpInst *ICmp,
4785                               ChangeStatus &Changed) {
4786     if (!ICmp)
4787       return false;
4788     if (!ICmp->isEquality())
4789       return false;
4790 
4791     // This is a comparison with == or !-. We check for nullptr now.
4792     bool Op0IsNull = isa<ConstantPointerNull>(ICmp->getOperand(0));
4793     bool Op1IsNull = isa<ConstantPointerNull>(ICmp->getOperand(1));
4794     if (!Op0IsNull && !Op1IsNull)
4795       return false;
4796 
4797     LLVMContext &Ctx = ICmp->getContext();
4798     // Check for `nullptr ==/!= nullptr` first:
4799     if (Op0IsNull && Op1IsNull) {
4800       Value *NewVal = ConstantInt::get(
4801           Type::getInt1Ty(Ctx), ICmp->getPredicate() == CmpInst::ICMP_EQ);
4802       assert(!SimplifiedAssociatedValue.hasValue() &&
4803              "Did not expect non-fixed value for constant comparison");
4804       SimplifiedAssociatedValue = NewVal;
4805       indicateOptimisticFixpoint();
4806       Changed = ChangeStatus::CHANGED;
4807       return true;
4808     }
4809 
4810     // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the
4811     // non-nullptr operand and if we assume it's non-null we can conclude the
4812     // result of the comparison.
4813     assert((Op0IsNull || Op1IsNull) &&
4814            "Expected nullptr versus non-nullptr comparison at this point");
4815 
4816     // The index is the operand that we assume is not null.
4817     unsigned PtrIdx = Op0IsNull;
4818     auto &PtrNonNullAA = A.getAAFor<AANonNull>(
4819         *this, IRPosition::value(*ICmp->getOperand(PtrIdx)));
4820     if (!PtrNonNullAA.isAssumedNonNull())
4821       return false;
4822 
4823     // The new value depends on the predicate, true for != and false for ==.
4824     Value *NewVal = ConstantInt::get(Type::getInt1Ty(Ctx),
4825                                      ICmp->getPredicate() == CmpInst::ICMP_NE);
4826 
4827     assert((!SimplifiedAssociatedValue.hasValue() ||
4828             SimplifiedAssociatedValue == NewVal) &&
4829            "Did not expect to change value for zero-comparison");
4830 
4831     bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
4832     SimplifiedAssociatedValue = NewVal;
4833 
4834     if (PtrNonNullAA.isKnownNonNull())
4835       indicateOptimisticFixpoint();
4836 
4837     Changed = HasValueBefore ? ChangeStatus::UNCHANGED : ChangeStatus ::CHANGED;
4838     return true;
4839   }
4840 
4841   /// See AbstractAttribute::updateImpl(...).
4842   ChangeStatus updateImpl(Attributor &A) override {
4843     bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
4844 
4845     ChangeStatus Changed;
4846     if (checkForNullPtrCompare(A, dyn_cast<ICmpInst>(&getAnchorValue()),
4847                                Changed))
4848       return Changed;
4849 
4850     auto VisitValueCB = [&](Value &V, const Instruction *CtxI, bool &,
4851                             bool Stripped) -> bool {
4852       auto &AA = A.getAAFor<AAValueSimplify>(*this, IRPosition::value(V));
4853       if (!Stripped && this == &AA) {
4854         // TODO: Look the instruction and check recursively.
4855 
4856         LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V
4857                           << "\n");
4858         return false;
4859       }
4860       return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue);
4861     };
4862 
4863     bool Dummy = false;
4864     if (!genericValueTraversal<AAValueSimplify, bool>(
4865             A, getIRPosition(), *this, Dummy, VisitValueCB, getCtxI(),
4866             /* UseValueSimplify */ false))
4867       if (!askSimplifiedValueForOtherAAs(A))
4868         return indicatePessimisticFixpoint();
4869 
4870     // If a candicate was found in this update, return CHANGED.
4871 
4872     return HasValueBefore == SimplifiedAssociatedValue.hasValue()
4873                ? ChangeStatus::UNCHANGED
4874                : ChangeStatus ::CHANGED;
4875   }
4876 
4877   /// See AbstractAttribute::trackStatistics()
4878   void trackStatistics() const override {
4879     STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
4880   }
4881 };
4882 
4883 struct AAValueSimplifyFunction : AAValueSimplifyImpl {
4884   AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
4885       : AAValueSimplifyImpl(IRP, A) {}
4886 
4887   /// See AbstractAttribute::initialize(...).
4888   void initialize(Attributor &A) override {
4889     SimplifiedAssociatedValue = &getAnchorValue();
4890     indicateOptimisticFixpoint();
4891   }
4892   /// See AbstractAttribute::initialize(...).
4893   ChangeStatus updateImpl(Attributor &A) override {
4894     llvm_unreachable(
4895         "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
4896   }
4897   /// See AbstractAttribute::trackStatistics()
4898   void trackStatistics() const override {
4899     STATS_DECLTRACK_FN_ATTR(value_simplify)
4900   }
4901 };
4902 
4903 struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
4904   AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
4905       : AAValueSimplifyFunction(IRP, A) {}
4906   /// See AbstractAttribute::trackStatistics()
4907   void trackStatistics() const override {
4908     STATS_DECLTRACK_CS_ATTR(value_simplify)
4909   }
4910 };
4911 
4912 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyReturned {
4913   AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
4914       : AAValueSimplifyReturned(IRP, A) {}
4915 
4916   /// See AbstractAttribute::manifest(...).
4917   ChangeStatus manifest(Attributor &A) override {
4918     return AAValueSimplifyImpl::manifest(A);
4919   }
4920 
4921   void trackStatistics() const override {
4922     STATS_DECLTRACK_CSRET_ATTR(value_simplify)
4923   }
4924 };
4925 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
4926   AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
4927       : AAValueSimplifyFloating(IRP, A) {}
4928 
4929   /// See AbstractAttribute::manifest(...).
4930   ChangeStatus manifest(Attributor &A) override {
4931     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4932 
4933     if (SimplifiedAssociatedValue.hasValue() &&
4934         !SimplifiedAssociatedValue.getValue())
4935       return Changed;
4936 
4937     Value &V = getAssociatedValue();
4938     auto *C = SimplifiedAssociatedValue.hasValue()
4939                   ? dyn_cast<Constant>(SimplifiedAssociatedValue.getValue())
4940                   : UndefValue::get(V.getType());
4941     if (C) {
4942       Use &U = cast<CallBase>(&getAnchorValue())
4943                    ->getArgOperandUse(getCallSiteArgNo());
4944       // We can replace the AssociatedValue with the constant.
4945       if (&V != C && V.getType() == C->getType()) {
4946         if (A.changeUseAfterManifest(U, *C))
4947           Changed = ChangeStatus::CHANGED;
4948       }
4949     }
4950 
4951     return Changed | AAValueSimplify::manifest(A);
4952   }
4953 
4954   void trackStatistics() const override {
4955     STATS_DECLTRACK_CSARG_ATTR(value_simplify)
4956   }
4957 };
4958 
4959 /// ----------------------- Heap-To-Stack Conversion ---------------------------
4960 struct AAHeapToStackImpl : public AAHeapToStack {
4961   AAHeapToStackImpl(const IRPosition &IRP, Attributor &A)
4962       : AAHeapToStack(IRP, A) {}
4963 
4964   const std::string getAsStr() const override {
4965     return "[H2S] Mallocs: " + std::to_string(MallocCalls.size());
4966   }
4967 
4968   ChangeStatus manifest(Attributor &A) override {
4969     assert(getState().isValidState() &&
4970            "Attempted to manifest an invalid state!");
4971 
4972     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
4973     Function *F = getAnchorScope();
4974     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
4975 
4976     for (Instruction *MallocCall : MallocCalls) {
4977       // This malloc cannot be replaced.
4978       if (BadMallocCalls.count(MallocCall))
4979         continue;
4980 
4981       for (Instruction *FreeCall : FreesForMalloc[MallocCall]) {
4982         LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
4983         A.deleteAfterManifest(*FreeCall);
4984         HasChanged = ChangeStatus::CHANGED;
4985       }
4986 
4987       LLVM_DEBUG(dbgs() << "H2S: Removing malloc call: " << *MallocCall
4988                         << "\n");
4989 
4990       Align Alignment;
4991       Constant *Size;
4992       if (isCallocLikeFn(MallocCall, TLI)) {
4993         auto *Num = cast<ConstantInt>(MallocCall->getOperand(0));
4994         auto *SizeT = cast<ConstantInt>(MallocCall->getOperand(1));
4995         APInt TotalSize = SizeT->getValue() * Num->getValue();
4996         Size =
4997             ConstantInt::get(MallocCall->getOperand(0)->getType(), TotalSize);
4998       } else if (isAlignedAllocLikeFn(MallocCall, TLI)) {
4999         Size = cast<ConstantInt>(MallocCall->getOperand(1));
5000         Alignment = MaybeAlign(cast<ConstantInt>(MallocCall->getOperand(0))
5001                                    ->getValue()
5002                                    .getZExtValue())
5003                         .valueOrOne();
5004       } else {
5005         Size = cast<ConstantInt>(MallocCall->getOperand(0));
5006       }
5007 
5008       unsigned AS = cast<PointerType>(MallocCall->getType())->getAddressSpace();
5009       Instruction *AI =
5010           new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment,
5011                          "", MallocCall->getNextNode());
5012 
5013       if (AI->getType() != MallocCall->getType())
5014         AI = new BitCastInst(AI, MallocCall->getType(), "malloc_bc",
5015                              AI->getNextNode());
5016 
5017       A.changeValueAfterManifest(*MallocCall, *AI);
5018 
5019       if (auto *II = dyn_cast<InvokeInst>(MallocCall)) {
5020         auto *NBB = II->getNormalDest();
5021         BranchInst::Create(NBB, MallocCall->getParent());
5022         A.deleteAfterManifest(*MallocCall);
5023       } else {
5024         A.deleteAfterManifest(*MallocCall);
5025       }
5026 
5027       // Zero out the allocated memory if it was a calloc.
5028       if (isCallocLikeFn(MallocCall, TLI)) {
5029         auto *BI = new BitCastInst(AI, MallocCall->getType(), "calloc_bc",
5030                                    AI->getNextNode());
5031         Value *Ops[] = {
5032             BI, ConstantInt::get(F->getContext(), APInt(8, 0, false)), Size,
5033             ConstantInt::get(Type::getInt1Ty(F->getContext()), false)};
5034 
5035         Type *Tys[] = {BI->getType(), MallocCall->getOperand(0)->getType()};
5036         Module *M = F->getParent();
5037         Function *Fn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys);
5038         CallInst::Create(Fn, Ops, "", BI->getNextNode());
5039       }
5040       HasChanged = ChangeStatus::CHANGED;
5041     }
5042 
5043     return HasChanged;
5044   }
5045 
5046   /// Collection of all malloc calls in a function.
5047   SmallSetVector<Instruction *, 4> MallocCalls;
5048 
5049   /// Collection of malloc calls that cannot be converted.
5050   DenseSet<const Instruction *> BadMallocCalls;
5051 
5052   /// A map for each malloc call to the set of associated free calls.
5053   DenseMap<Instruction *, SmallPtrSet<Instruction *, 4>> FreesForMalloc;
5054 
5055   ChangeStatus updateImpl(Attributor &A) override;
5056 };
5057 
5058 ChangeStatus AAHeapToStackImpl::updateImpl(Attributor &A) {
5059   const Function *F = getAnchorScope();
5060   const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5061 
5062   MustBeExecutedContextExplorer &Explorer =
5063       A.getInfoCache().getMustBeExecutedContextExplorer();
5064 
5065   auto FreeCheck = [&](Instruction &I) {
5066     const auto &Frees = FreesForMalloc.lookup(&I);
5067     if (Frees.size() != 1)
5068       return false;
5069     Instruction *UniqueFree = *Frees.begin();
5070     return Explorer.findInContextOf(UniqueFree, I.getNextNode());
5071   };
5072 
5073   auto UsesCheck = [&](Instruction &I) {
5074     bool ValidUsesOnly = true;
5075     bool MustUse = true;
5076     auto Pred = [&](const Use &U, bool &Follow) -> bool {
5077       Instruction *UserI = cast<Instruction>(U.getUser());
5078       if (isa<LoadInst>(UserI))
5079         return true;
5080       if (auto *SI = dyn_cast<StoreInst>(UserI)) {
5081         if (SI->getValueOperand() == U.get()) {
5082           LLVM_DEBUG(dbgs()
5083                      << "[H2S] escaping store to memory: " << *UserI << "\n");
5084           ValidUsesOnly = false;
5085         } else {
5086           // A store into the malloc'ed memory is fine.
5087         }
5088         return true;
5089       }
5090       if (auto *CB = dyn_cast<CallBase>(UserI)) {
5091         if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
5092           return true;
5093         // Record malloc.
5094         if (isFreeCall(UserI, TLI)) {
5095           if (MustUse) {
5096             FreesForMalloc[&I].insert(UserI);
5097           } else {
5098             LLVM_DEBUG(dbgs() << "[H2S] free potentially on different mallocs: "
5099                               << *UserI << "\n");
5100             ValidUsesOnly = false;
5101           }
5102           return true;
5103         }
5104 
5105         unsigned ArgNo = CB->getArgOperandNo(&U);
5106 
5107         const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
5108             *this, IRPosition::callsite_argument(*CB, ArgNo));
5109 
5110         // If a callsite argument use is nofree, we are fine.
5111         const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
5112             *this, IRPosition::callsite_argument(*CB, ArgNo));
5113 
5114         if (!NoCaptureAA.isAssumedNoCapture() ||
5115             !ArgNoFreeAA.isAssumedNoFree()) {
5116           LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
5117           ValidUsesOnly = false;
5118         }
5119         return true;
5120       }
5121 
5122       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
5123           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
5124         MustUse &= !(isa<PHINode>(UserI) || isa<SelectInst>(UserI));
5125         Follow = true;
5126         return true;
5127       }
5128       // Unknown user for which we can not track uses further (in a way that
5129       // makes sense).
5130       LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
5131       ValidUsesOnly = false;
5132       return true;
5133     };
5134     A.checkForAllUses(Pred, *this, I);
5135     return ValidUsesOnly;
5136   };
5137 
5138   auto MallocCallocCheck = [&](Instruction &I) {
5139     if (BadMallocCalls.count(&I))
5140       return true;
5141 
5142     bool IsMalloc = isMallocLikeFn(&I, TLI);
5143     bool IsAlignedAllocLike = isAlignedAllocLikeFn(&I, TLI);
5144     bool IsCalloc = !IsMalloc && isCallocLikeFn(&I, TLI);
5145     if (!IsMalloc && !IsAlignedAllocLike && !IsCalloc) {
5146       BadMallocCalls.insert(&I);
5147       return true;
5148     }
5149 
5150     if (IsMalloc) {
5151       if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(0)))
5152         if (Size->getValue().ule(MaxHeapToStackSize))
5153           if (UsesCheck(I) || FreeCheck(I)) {
5154             MallocCalls.insert(&I);
5155             return true;
5156           }
5157     } else if (IsAlignedAllocLike && isa<ConstantInt>(I.getOperand(0))) {
5158       // Only if the alignment and sizes are constant.
5159       if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(1)))
5160         if (Size->getValue().ule(MaxHeapToStackSize))
5161           if (UsesCheck(I) || FreeCheck(I)) {
5162             MallocCalls.insert(&I);
5163             return true;
5164           }
5165     } else if (IsCalloc) {
5166       bool Overflow = false;
5167       if (auto *Num = dyn_cast<ConstantInt>(I.getOperand(0)))
5168         if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(1)))
5169           if ((Size->getValue().umul_ov(Num->getValue(), Overflow))
5170                   .ule(MaxHeapToStackSize))
5171             if (!Overflow && (UsesCheck(I) || FreeCheck(I))) {
5172               MallocCalls.insert(&I);
5173               return true;
5174             }
5175     }
5176 
5177     BadMallocCalls.insert(&I);
5178     return true;
5179   };
5180 
5181   size_t NumBadMallocs = BadMallocCalls.size();
5182 
5183   A.checkForAllCallLikeInstructions(MallocCallocCheck, *this);
5184 
5185   if (NumBadMallocs != BadMallocCalls.size())
5186     return ChangeStatus::CHANGED;
5187 
5188   return ChangeStatus::UNCHANGED;
5189 }
5190 
5191 struct AAHeapToStackFunction final : public AAHeapToStackImpl {
5192   AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
5193       : AAHeapToStackImpl(IRP, A) {}
5194 
5195   /// See AbstractAttribute::trackStatistics().
5196   void trackStatistics() const override {
5197     STATS_DECL(
5198         MallocCalls, Function,
5199         "Number of malloc/calloc/aligned_alloc calls converted to allocas");
5200     for (auto *C : MallocCalls)
5201       if (!BadMallocCalls.count(C))
5202         ++BUILD_STAT_NAME(MallocCalls, Function);
5203   }
5204 };
5205 
5206 /// ----------------------- Privatizable Pointers ------------------------------
5207 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
5208   AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
5209       : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {}
5210 
5211   ChangeStatus indicatePessimisticFixpoint() override {
5212     AAPrivatizablePtr::indicatePessimisticFixpoint();
5213     PrivatizableType = nullptr;
5214     return ChangeStatus::CHANGED;
5215   }
5216 
5217   /// Identify the type we can chose for a private copy of the underlying
5218   /// argument. None means it is not clear yet, nullptr means there is none.
5219   virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
5220 
5221   /// Return a privatizable type that encloses both T0 and T1.
5222   /// TODO: This is merely a stub for now as we should manage a mapping as well.
5223   Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
5224     if (!T0.hasValue())
5225       return T1;
5226     if (!T1.hasValue())
5227       return T0;
5228     if (T0 == T1)
5229       return T0;
5230     return nullptr;
5231   }
5232 
5233   Optional<Type *> getPrivatizableType() const override {
5234     return PrivatizableType;
5235   }
5236 
5237   const std::string getAsStr() const override {
5238     return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
5239   }
5240 
5241 protected:
5242   Optional<Type *> PrivatizableType;
5243 };
5244 
5245 // TODO: Do this for call site arguments (probably also other values) as well.
5246 
5247 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
5248   AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
5249       : AAPrivatizablePtrImpl(IRP, A) {}
5250 
5251   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
5252   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
5253     // If this is a byval argument and we know all the call sites (so we can
5254     // rewrite them), there is no need to check them explicitly.
5255     bool AllCallSitesKnown;
5256     if (getIRPosition().hasAttr(Attribute::ByVal) &&
5257         A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
5258                                true, AllCallSitesKnown))
5259       return getAssociatedValue().getType()->getPointerElementType();
5260 
5261     Optional<Type *> Ty;
5262     unsigned ArgNo = getIRPosition().getCallSiteArgNo();
5263 
5264     // Make sure the associated call site argument has the same type at all call
5265     // sites and it is an allocation we know is safe to privatize, for now that
5266     // means we only allow alloca instructions.
5267     // TODO: We can additionally analyze the accesses in the callee to  create
5268     //       the type from that information instead. That is a little more
5269     //       involved and will be done in a follow up patch.
5270     auto CallSiteCheck = [&](AbstractCallSite ACS) {
5271       IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
5272       // Check if a coresponding argument was found or if it is one not
5273       // associated (which can happen for callback calls).
5274       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
5275         return false;
5276 
5277       // Check that all call sites agree on a type.
5278       auto &PrivCSArgAA = A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos);
5279       Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
5280 
5281       LLVM_DEBUG({
5282         dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
5283         if (CSTy.hasValue() && CSTy.getValue())
5284           CSTy.getValue()->print(dbgs());
5285         else if (CSTy.hasValue())
5286           dbgs() << "<nullptr>";
5287         else
5288           dbgs() << "<none>";
5289       });
5290 
5291       Ty = combineTypes(Ty, CSTy);
5292 
5293       LLVM_DEBUG({
5294         dbgs() << " : New Type: ";
5295         if (Ty.hasValue() && Ty.getValue())
5296           Ty.getValue()->print(dbgs());
5297         else if (Ty.hasValue())
5298           dbgs() << "<nullptr>";
5299         else
5300           dbgs() << "<none>";
5301         dbgs() << "\n";
5302       });
5303 
5304       return !Ty.hasValue() || Ty.getValue();
5305     };
5306 
5307     if (!A.checkForAllCallSites(CallSiteCheck, *this, true, AllCallSitesKnown))
5308       return nullptr;
5309     return Ty;
5310   }
5311 
5312   /// See AbstractAttribute::updateImpl(...).
5313   ChangeStatus updateImpl(Attributor &A) override {
5314     PrivatizableType = identifyPrivatizableType(A);
5315     if (!PrivatizableType.hasValue())
5316       return ChangeStatus::UNCHANGED;
5317     if (!PrivatizableType.getValue())
5318       return indicatePessimisticFixpoint();
5319 
5320     // The dependence is optional so we don't give up once we give up on the
5321     // alignment.
5322     A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
5323                         /* TrackDependence */ true, DepClassTy::OPTIONAL);
5324 
5325     // Avoid arguments with padding for now.
5326     if (!getIRPosition().hasAttr(Attribute::ByVal) &&
5327         !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(),
5328                                                 A.getInfoCache().getDL())) {
5329       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
5330       return indicatePessimisticFixpoint();
5331     }
5332 
5333     // Verify callee and caller agree on how the promoted argument would be
5334     // passed.
5335     // TODO: The use of the ArgumentPromotion interface here is ugly, we need a
5336     // specialized form of TargetTransformInfo::areFunctionArgsABICompatible
5337     // which doesn't require the arguments ArgumentPromotion wanted to pass.
5338     Function &Fn = *getIRPosition().getAnchorScope();
5339     SmallPtrSet<Argument *, 1> ArgsToPromote, Dummy;
5340     ArgsToPromote.insert(getAssociatedArgument());
5341     const auto *TTI =
5342         A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
5343     if (!TTI ||
5344         !ArgumentPromotionPass::areFunctionArgsABICompatible(
5345             Fn, *TTI, ArgsToPromote, Dummy) ||
5346         ArgsToPromote.empty()) {
5347       LLVM_DEBUG(
5348           dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
5349                  << Fn.getName() << "\n");
5350       return indicatePessimisticFixpoint();
5351     }
5352 
5353     // Collect the types that will replace the privatizable type in the function
5354     // signature.
5355     SmallVector<Type *, 16> ReplacementTypes;
5356     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
5357 
5358     // Register a rewrite of the argument.
5359     Argument *Arg = getAssociatedArgument();
5360     if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
5361       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
5362       return indicatePessimisticFixpoint();
5363     }
5364 
5365     unsigned ArgNo = Arg->getArgNo();
5366 
5367     // Helper to check if for the given call site the associated argument is
5368     // passed to a callback where the privatization would be different.
5369     auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
5370       SmallVector<const Use *, 4> CallbackUses;
5371       AbstractCallSite::getCallbackUses(CB, CallbackUses);
5372       for (const Use *U : CallbackUses) {
5373         AbstractCallSite CBACS(U);
5374         assert(CBACS && CBACS.isCallbackCall());
5375         for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
5376           int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
5377 
5378           LLVM_DEBUG({
5379             dbgs()
5380                 << "[AAPrivatizablePtr] Argument " << *Arg
5381                 << "check if can be privatized in the context of its parent ("
5382                 << Arg->getParent()->getName()
5383                 << ")\n[AAPrivatizablePtr] because it is an argument in a "
5384                    "callback ("
5385                 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
5386                 << ")\n[AAPrivatizablePtr] " << CBArg << " : "
5387                 << CBACS.getCallArgOperand(CBArg) << " vs "
5388                 << CB.getArgOperand(ArgNo) << "\n"
5389                 << "[AAPrivatizablePtr] " << CBArg << " : "
5390                 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
5391           });
5392 
5393           if (CBArgNo != int(ArgNo))
5394             continue;
5395           const auto &CBArgPrivAA =
5396               A.getAAFor<AAPrivatizablePtr>(*this, IRPosition::argument(CBArg));
5397           if (CBArgPrivAA.isValidState()) {
5398             auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
5399             if (!CBArgPrivTy.hasValue())
5400               continue;
5401             if (CBArgPrivTy.getValue() == PrivatizableType)
5402               continue;
5403           }
5404 
5405           LLVM_DEBUG({
5406             dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
5407                    << " cannot be privatized in the context of its parent ("
5408                    << Arg->getParent()->getName()
5409                    << ")\n[AAPrivatizablePtr] because it is an argument in a "
5410                       "callback ("
5411                    << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
5412                    << ").\n[AAPrivatizablePtr] for which the argument "
5413                       "privatization is not compatible.\n";
5414           });
5415           return false;
5416         }
5417       }
5418       return true;
5419     };
5420 
5421     // Helper to check if for the given call site the associated argument is
5422     // passed to a direct call where the privatization would be different.
5423     auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
5424       CallBase *DC = cast<CallBase>(ACS.getInstruction());
5425       int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
5426       assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->getNumArgOperands() &&
5427              "Expected a direct call operand for callback call operand");
5428 
5429       LLVM_DEBUG({
5430         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
5431                << " check if be privatized in the context of its parent ("
5432                << Arg->getParent()->getName()
5433                << ")\n[AAPrivatizablePtr] because it is an argument in a "
5434                   "direct call of ("
5435                << DCArgNo << "@" << DC->getCalledFunction()->getName()
5436                << ").\n";
5437       });
5438 
5439       Function *DCCallee = DC->getCalledFunction();
5440       if (unsigned(DCArgNo) < DCCallee->arg_size()) {
5441         const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
5442             *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)));
5443         if (DCArgPrivAA.isValidState()) {
5444           auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
5445           if (!DCArgPrivTy.hasValue())
5446             return true;
5447           if (DCArgPrivTy.getValue() == PrivatizableType)
5448             return true;
5449         }
5450       }
5451 
5452       LLVM_DEBUG({
5453         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
5454                << " cannot be privatized in the context of its parent ("
5455                << Arg->getParent()->getName()
5456                << ")\n[AAPrivatizablePtr] because it is an argument in a "
5457                   "direct call of ("
5458                << ACS.getInstruction()->getCalledFunction()->getName()
5459                << ").\n[AAPrivatizablePtr] for which the argument "
5460                   "privatization is not compatible.\n";
5461       });
5462       return false;
5463     };
5464 
5465     // Helper to check if the associated argument is used at the given abstract
5466     // call site in a way that is incompatible with the privatization assumed
5467     // here.
5468     auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
5469       if (ACS.isDirectCall())
5470         return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
5471       if (ACS.isCallbackCall())
5472         return IsCompatiblePrivArgOfDirectCS(ACS);
5473       return false;
5474     };
5475 
5476     bool AllCallSitesKnown;
5477     if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
5478                                 AllCallSitesKnown))
5479       return indicatePessimisticFixpoint();
5480 
5481     return ChangeStatus::UNCHANGED;
5482   }
5483 
5484   /// Given a type to private \p PrivType, collect the constituates (which are
5485   /// used) in \p ReplacementTypes.
5486   static void
5487   identifyReplacementTypes(Type *PrivType,
5488                            SmallVectorImpl<Type *> &ReplacementTypes) {
5489     // TODO: For now we expand the privatization type to the fullest which can
5490     //       lead to dead arguments that need to be removed later.
5491     assert(PrivType && "Expected privatizable type!");
5492 
5493     // Traverse the type, extract constituate types on the outermost level.
5494     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
5495       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
5496         ReplacementTypes.push_back(PrivStructType->getElementType(u));
5497     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
5498       ReplacementTypes.append(PrivArrayType->getNumElements(),
5499                               PrivArrayType->getElementType());
5500     } else {
5501       ReplacementTypes.push_back(PrivType);
5502     }
5503   }
5504 
5505   /// Initialize \p Base according to the type \p PrivType at position \p IP.
5506   /// The values needed are taken from the arguments of \p F starting at
5507   /// position \p ArgNo.
5508   static void createInitialization(Type *PrivType, Value &Base, Function &F,
5509                                    unsigned ArgNo, Instruction &IP) {
5510     assert(PrivType && "Expected privatizable type!");
5511 
5512     IRBuilder<NoFolder> IRB(&IP);
5513     const DataLayout &DL = F.getParent()->getDataLayout();
5514 
5515     // Traverse the type, build GEPs and stores.
5516     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
5517       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
5518       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
5519         Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
5520         Value *Ptr = constructPointer(
5521             PointeeTy, &Base, PrivStructLayout->getElementOffset(u), IRB, DL);
5522         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
5523       }
5524     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
5525       Type *PointeePtrTy = PrivArrayType->getElementType()->getPointerTo();
5526       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeePtrTy);
5527       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
5528         Value *Ptr =
5529             constructPointer(PointeePtrTy, &Base, u * PointeeTySize, IRB, DL);
5530         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
5531       }
5532     } else {
5533       new StoreInst(F.getArg(ArgNo), &Base, &IP);
5534     }
5535   }
5536 
5537   /// Extract values from \p Base according to the type \p PrivType at the
5538   /// call position \p ACS. The values are appended to \p ReplacementValues.
5539   void createReplacementValues(Align Alignment, Type *PrivType,
5540                                AbstractCallSite ACS, Value *Base,
5541                                SmallVectorImpl<Value *> &ReplacementValues) {
5542     assert(Base && "Expected base value!");
5543     assert(PrivType && "Expected privatizable type!");
5544     Instruction *IP = ACS.getInstruction();
5545 
5546     IRBuilder<NoFolder> IRB(IP);
5547     const DataLayout &DL = IP->getModule()->getDataLayout();
5548 
5549     if (Base->getType()->getPointerElementType() != PrivType)
5550       Base = BitCastInst::CreateBitOrPointerCast(Base, PrivType->getPointerTo(),
5551                                                  "", ACS.getInstruction());
5552 
5553     // Traverse the type, build GEPs and loads.
5554     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
5555       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
5556       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
5557         Type *PointeeTy = PrivStructType->getElementType(u);
5558         Value *Ptr =
5559             constructPointer(PointeeTy->getPointerTo(), Base,
5560                              PrivStructLayout->getElementOffset(u), IRB, DL);
5561         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
5562         L->setAlignment(Alignment);
5563         ReplacementValues.push_back(L);
5564       }
5565     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
5566       Type *PointeeTy = PrivArrayType->getElementType();
5567       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
5568       Type *PointeePtrTy = PointeeTy->getPointerTo();
5569       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
5570         Value *Ptr =
5571             constructPointer(PointeePtrTy, Base, u * PointeeTySize, IRB, DL);
5572         LoadInst *L = new LoadInst(PointeePtrTy, Ptr, "", IP);
5573         L->setAlignment(Alignment);
5574         ReplacementValues.push_back(L);
5575       }
5576     } else {
5577       LoadInst *L = new LoadInst(PrivType, Base, "", IP);
5578       L->setAlignment(Alignment);
5579       ReplacementValues.push_back(L);
5580     }
5581   }
5582 
5583   /// See AbstractAttribute::manifest(...)
5584   ChangeStatus manifest(Attributor &A) override {
5585     if (!PrivatizableType.hasValue())
5586       return ChangeStatus::UNCHANGED;
5587     assert(PrivatizableType.getValue() && "Expected privatizable type!");
5588 
5589     // Collect all tail calls in the function as we cannot allow new allocas to
5590     // escape into tail recursion.
5591     // TODO: Be smarter about new allocas escaping into tail calls.
5592     SmallVector<CallInst *, 16> TailCalls;
5593     if (!A.checkForAllInstructions(
5594             [&](Instruction &I) {
5595               CallInst &CI = cast<CallInst>(I);
5596               if (CI.isTailCall())
5597                 TailCalls.push_back(&CI);
5598               return true;
5599             },
5600             *this, {Instruction::Call}))
5601       return ChangeStatus::UNCHANGED;
5602 
5603     Argument *Arg = getAssociatedArgument();
5604     // Query AAAlign attribute for alignment of associated argument to
5605     // determine the best alignment of loads.
5606     const auto &AlignAA = A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg));
5607 
5608     // Callback to repair the associated function. A new alloca is placed at the
5609     // beginning and initialized with the values passed through arguments. The
5610     // new alloca replaces the use of the old pointer argument.
5611     Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
5612         [=](const Attributor::ArgumentReplacementInfo &ARI,
5613             Function &ReplacementFn, Function::arg_iterator ArgIt) {
5614           BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
5615           Instruction *IP = &*EntryBB.getFirstInsertionPt();
5616           auto *AI = new AllocaInst(PrivatizableType.getValue(), 0,
5617                                     Arg->getName() + ".priv", IP);
5618           createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn,
5619                                ArgIt->getArgNo(), *IP);
5620           Arg->replaceAllUsesWith(AI);
5621 
5622           for (CallInst *CI : TailCalls)
5623             CI->setTailCall(false);
5624         };
5625 
5626     // Callback to repair a call site of the associated function. The elements
5627     // of the privatizable type are loaded prior to the call and passed to the
5628     // new function version.
5629     Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
5630         [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI,
5631                       AbstractCallSite ACS,
5632                       SmallVectorImpl<Value *> &NewArgOperands) {
5633           // When no alignment is specified for the load instruction,
5634           // natural alignment is assumed.
5635           createReplacementValues(
5636               assumeAligned(AlignAA.getAssumedAlign()),
5637               PrivatizableType.getValue(), ACS,
5638               ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
5639               NewArgOperands);
5640         };
5641 
5642     // Collect the types that will replace the privatizable type in the function
5643     // signature.
5644     SmallVector<Type *, 16> ReplacementTypes;
5645     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
5646 
5647     // Register a rewrite of the argument.
5648     if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
5649                                            std::move(FnRepairCB),
5650                                            std::move(ACSRepairCB)))
5651       return ChangeStatus::CHANGED;
5652     return ChangeStatus::UNCHANGED;
5653   }
5654 
5655   /// See AbstractAttribute::trackStatistics()
5656   void trackStatistics() const override {
5657     STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
5658   }
5659 };
5660 
5661 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
5662   AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
5663       : AAPrivatizablePtrImpl(IRP, A) {}
5664 
5665   /// See AbstractAttribute::initialize(...).
5666   virtual void initialize(Attributor &A) override {
5667     // TODO: We can privatize more than arguments.
5668     indicatePessimisticFixpoint();
5669   }
5670 
5671   ChangeStatus updateImpl(Attributor &A) override {
5672     llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
5673                      "updateImpl will not be called");
5674   }
5675 
5676   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
5677   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
5678     Value *Obj = getUnderlyingObject(&getAssociatedValue());
5679     if (!Obj) {
5680       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
5681       return nullptr;
5682     }
5683 
5684     if (auto *AI = dyn_cast<AllocaInst>(Obj))
5685       if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
5686         if (CI->isOne())
5687           return Obj->getType()->getPointerElementType();
5688     if (auto *Arg = dyn_cast<Argument>(Obj)) {
5689       auto &PrivArgAA =
5690           A.getAAFor<AAPrivatizablePtr>(*this, IRPosition::argument(*Arg));
5691       if (PrivArgAA.isAssumedPrivatizablePtr())
5692         return Obj->getType()->getPointerElementType();
5693     }
5694 
5695     LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
5696                          "alloca nor privatizable argument: "
5697                       << *Obj << "!\n");
5698     return nullptr;
5699   }
5700 
5701   /// See AbstractAttribute::trackStatistics()
5702   void trackStatistics() const override {
5703     STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
5704   }
5705 };
5706 
5707 struct AAPrivatizablePtrCallSiteArgument final
5708     : public AAPrivatizablePtrFloating {
5709   AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
5710       : AAPrivatizablePtrFloating(IRP, A) {}
5711 
5712   /// See AbstractAttribute::initialize(...).
5713   void initialize(Attributor &A) override {
5714     if (getIRPosition().hasAttr(Attribute::ByVal))
5715       indicateOptimisticFixpoint();
5716   }
5717 
5718   /// See AbstractAttribute::updateImpl(...).
5719   ChangeStatus updateImpl(Attributor &A) override {
5720     PrivatizableType = identifyPrivatizableType(A);
5721     if (!PrivatizableType.hasValue())
5722       return ChangeStatus::UNCHANGED;
5723     if (!PrivatizableType.getValue())
5724       return indicatePessimisticFixpoint();
5725 
5726     const IRPosition &IRP = getIRPosition();
5727     auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, IRP);
5728     if (!NoCaptureAA.isAssumedNoCapture()) {
5729       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
5730       return indicatePessimisticFixpoint();
5731     }
5732 
5733     auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP);
5734     if (!NoAliasAA.isAssumedNoAlias()) {
5735       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
5736       return indicatePessimisticFixpoint();
5737     }
5738 
5739     const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(*this, IRP);
5740     if (!MemBehaviorAA.isAssumedReadOnly()) {
5741       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
5742       return indicatePessimisticFixpoint();
5743     }
5744 
5745     return ChangeStatus::UNCHANGED;
5746   }
5747 
5748   /// See AbstractAttribute::trackStatistics()
5749   void trackStatistics() const override {
5750     STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
5751   }
5752 };
5753 
5754 struct AAPrivatizablePtrCallSiteReturned final
5755     : public AAPrivatizablePtrFloating {
5756   AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
5757       : AAPrivatizablePtrFloating(IRP, A) {}
5758 
5759   /// See AbstractAttribute::initialize(...).
5760   void initialize(Attributor &A) override {
5761     // TODO: We can privatize more than arguments.
5762     indicatePessimisticFixpoint();
5763   }
5764 
5765   /// See AbstractAttribute::trackStatistics()
5766   void trackStatistics() const override {
5767     STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
5768   }
5769 };
5770 
5771 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
5772   AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
5773       : AAPrivatizablePtrFloating(IRP, A) {}
5774 
5775   /// See AbstractAttribute::initialize(...).
5776   void initialize(Attributor &A) override {
5777     // TODO: We can privatize more than arguments.
5778     indicatePessimisticFixpoint();
5779   }
5780 
5781   /// See AbstractAttribute::trackStatistics()
5782   void trackStatistics() const override {
5783     STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
5784   }
5785 };
5786 
5787 /// -------------------- Memory Behavior Attributes ----------------------------
5788 /// Includes read-none, read-only, and write-only.
5789 /// ----------------------------------------------------------------------------
5790 struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
5791   AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
5792       : AAMemoryBehavior(IRP, A) {}
5793 
5794   /// See AbstractAttribute::initialize(...).
5795   void initialize(Attributor &A) override {
5796     intersectAssumedBits(BEST_STATE);
5797     getKnownStateFromValue(getIRPosition(), getState());
5798     AAMemoryBehavior::initialize(A);
5799   }
5800 
5801   /// Return the memory behavior information encoded in the IR for \p IRP.
5802   static void getKnownStateFromValue(const IRPosition &IRP,
5803                                      BitIntegerState &State,
5804                                      bool IgnoreSubsumingPositions = false) {
5805     SmallVector<Attribute, 2> Attrs;
5806     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
5807     for (const Attribute &Attr : Attrs) {
5808       switch (Attr.getKindAsEnum()) {
5809       case Attribute::ReadNone:
5810         State.addKnownBits(NO_ACCESSES);
5811         break;
5812       case Attribute::ReadOnly:
5813         State.addKnownBits(NO_WRITES);
5814         break;
5815       case Attribute::WriteOnly:
5816         State.addKnownBits(NO_READS);
5817         break;
5818       default:
5819         llvm_unreachable("Unexpected attribute!");
5820       }
5821     }
5822 
5823     if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
5824       if (!I->mayReadFromMemory())
5825         State.addKnownBits(NO_READS);
5826       if (!I->mayWriteToMemory())
5827         State.addKnownBits(NO_WRITES);
5828     }
5829   }
5830 
5831   /// See AbstractAttribute::getDeducedAttributes(...).
5832   void getDeducedAttributes(LLVMContext &Ctx,
5833                             SmallVectorImpl<Attribute> &Attrs) const override {
5834     assert(Attrs.size() == 0);
5835     if (isAssumedReadNone())
5836       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
5837     else if (isAssumedReadOnly())
5838       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
5839     else if (isAssumedWriteOnly())
5840       Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
5841     assert(Attrs.size() <= 1);
5842   }
5843 
5844   /// See AbstractAttribute::manifest(...).
5845   ChangeStatus manifest(Attributor &A) override {
5846     if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
5847       return ChangeStatus::UNCHANGED;
5848 
5849     const IRPosition &IRP = getIRPosition();
5850 
5851     // Check if we would improve the existing attributes first.
5852     SmallVector<Attribute, 4> DeducedAttrs;
5853     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
5854     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
5855           return IRP.hasAttr(Attr.getKindAsEnum(),
5856                              /* IgnoreSubsumingPositions */ true);
5857         }))
5858       return ChangeStatus::UNCHANGED;
5859 
5860     // Clear existing attributes.
5861     IRP.removeAttrs(AttrKinds);
5862 
5863     // Use the generic manifest method.
5864     return IRAttribute::manifest(A);
5865   }
5866 
5867   /// See AbstractState::getAsStr().
5868   const std::string getAsStr() const override {
5869     if (isAssumedReadNone())
5870       return "readnone";
5871     if (isAssumedReadOnly())
5872       return "readonly";
5873     if (isAssumedWriteOnly())
5874       return "writeonly";
5875     return "may-read/write";
5876   }
5877 
5878   /// The set of IR attributes AAMemoryBehavior deals with.
5879   static const Attribute::AttrKind AttrKinds[3];
5880 };
5881 
5882 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
5883     Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
5884 
5885 /// Memory behavior attribute for a floating value.
5886 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
5887   AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
5888       : AAMemoryBehaviorImpl(IRP, A) {}
5889 
5890   /// See AbstractAttribute::initialize(...).
5891   void initialize(Attributor &A) override {
5892     AAMemoryBehaviorImpl::initialize(A);
5893     addUsesOf(A, getAssociatedValue());
5894   }
5895 
5896   /// See AbstractAttribute::updateImpl(...).
5897   ChangeStatus updateImpl(Attributor &A) override;
5898 
5899   /// See AbstractAttribute::trackStatistics()
5900   void trackStatistics() const override {
5901     if (isAssumedReadNone())
5902       STATS_DECLTRACK_FLOATING_ATTR(readnone)
5903     else if (isAssumedReadOnly())
5904       STATS_DECLTRACK_FLOATING_ATTR(readonly)
5905     else if (isAssumedWriteOnly())
5906       STATS_DECLTRACK_FLOATING_ATTR(writeonly)
5907   }
5908 
5909 private:
5910   /// Return true if users of \p UserI might access the underlying
5911   /// variable/location described by \p U and should therefore be analyzed.
5912   bool followUsersOfUseIn(Attributor &A, const Use *U,
5913                           const Instruction *UserI);
5914 
5915   /// Update the state according to the effect of use \p U in \p UserI.
5916   void analyzeUseIn(Attributor &A, const Use *U, const Instruction *UserI);
5917 
5918 protected:
5919   /// Add the uses of \p V to the `Uses` set we look at during the update step.
5920   void addUsesOf(Attributor &A, const Value &V);
5921 
5922   /// Container for (transitive) uses of the associated argument.
5923   SmallVector<const Use *, 8> Uses;
5924 
5925   /// Set to remember the uses we already traversed.
5926   SmallPtrSet<const Use *, 8> Visited;
5927 };
5928 
5929 /// Memory behavior attribute for function argument.
5930 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
5931   AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
5932       : AAMemoryBehaviorFloating(IRP, A) {}
5933 
5934   /// See AbstractAttribute::initialize(...).
5935   void initialize(Attributor &A) override {
5936     intersectAssumedBits(BEST_STATE);
5937     const IRPosition &IRP = getIRPosition();
5938     // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
5939     // can query it when we use has/getAttr. That would allow us to reuse the
5940     // initialize of the base class here.
5941     bool HasByVal =
5942         IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
5943     getKnownStateFromValue(IRP, getState(),
5944                            /* IgnoreSubsumingPositions */ HasByVal);
5945 
5946     // Initialize the use vector with all direct uses of the associated value.
5947     Argument *Arg = getAssociatedArgument();
5948     if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent()))) {
5949       indicatePessimisticFixpoint();
5950     } else {
5951       addUsesOf(A, *Arg);
5952     }
5953   }
5954 
5955   ChangeStatus manifest(Attributor &A) override {
5956     // TODO: Pointer arguments are not supported on vectors of pointers yet.
5957     if (!getAssociatedValue().getType()->isPointerTy())
5958       return ChangeStatus::UNCHANGED;
5959 
5960     // TODO: From readattrs.ll: "inalloca parameters are always
5961     //                           considered written"
5962     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) {
5963       removeKnownBits(NO_WRITES);
5964       removeAssumedBits(NO_WRITES);
5965     }
5966     return AAMemoryBehaviorFloating::manifest(A);
5967   }
5968 
5969   /// See AbstractAttribute::trackStatistics()
5970   void trackStatistics() const override {
5971     if (isAssumedReadNone())
5972       STATS_DECLTRACK_ARG_ATTR(readnone)
5973     else if (isAssumedReadOnly())
5974       STATS_DECLTRACK_ARG_ATTR(readonly)
5975     else if (isAssumedWriteOnly())
5976       STATS_DECLTRACK_ARG_ATTR(writeonly)
5977   }
5978 };
5979 
5980 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
5981   AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
5982       : AAMemoryBehaviorArgument(IRP, A) {}
5983 
5984   /// See AbstractAttribute::initialize(...).
5985   void initialize(Attributor &A) override {
5986     // If we don't have an associated attribute this is either a variadic call
5987     // or an indirect call, either way, nothing to do here.
5988     Argument *Arg = getAssociatedArgument();
5989     if (!Arg) {
5990       indicatePessimisticFixpoint();
5991       return;
5992     }
5993     if (Arg->hasByValAttr()) {
5994       addKnownBits(NO_WRITES);
5995       removeKnownBits(NO_READS);
5996       removeAssumedBits(NO_READS);
5997     }
5998     AAMemoryBehaviorArgument::initialize(A);
5999     if (getAssociatedFunction()->isDeclaration())
6000       indicatePessimisticFixpoint();
6001   }
6002 
6003   /// See AbstractAttribute::updateImpl(...).
6004   ChangeStatus updateImpl(Attributor &A) override {
6005     // TODO: Once we have call site specific value information we can provide
6006     //       call site specific liveness liveness information and then it makes
6007     //       sense to specialize attributes for call sites arguments instead of
6008     //       redirecting requests to the callee argument.
6009     Argument *Arg = getAssociatedArgument();
6010     const IRPosition &ArgPos = IRPosition::argument(*Arg);
6011     auto &ArgAA = A.getAAFor<AAMemoryBehavior>(*this, ArgPos);
6012     return clampStateAndIndicateChange(getState(), ArgAA.getState());
6013   }
6014 
6015   /// See AbstractAttribute::trackStatistics()
6016   void trackStatistics() const override {
6017     if (isAssumedReadNone())
6018       STATS_DECLTRACK_CSARG_ATTR(readnone)
6019     else if (isAssumedReadOnly())
6020       STATS_DECLTRACK_CSARG_ATTR(readonly)
6021     else if (isAssumedWriteOnly())
6022       STATS_DECLTRACK_CSARG_ATTR(writeonly)
6023   }
6024 };
6025 
6026 /// Memory behavior attribute for a call site return position.
6027 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
6028   AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
6029       : AAMemoryBehaviorFloating(IRP, A) {}
6030 
6031   /// See AbstractAttribute::initialize(...).
6032   void initialize(Attributor &A) override {
6033     AAMemoryBehaviorImpl::initialize(A);
6034     Function *F = getAssociatedFunction();
6035     if (!F || F->isDeclaration())
6036       indicatePessimisticFixpoint();
6037   }
6038 
6039   /// See AbstractAttribute::manifest(...).
6040   ChangeStatus manifest(Attributor &A) override {
6041     // We do not annotate returned values.
6042     return ChangeStatus::UNCHANGED;
6043   }
6044 
6045   /// See AbstractAttribute::trackStatistics()
6046   void trackStatistics() const override {}
6047 };
6048 
6049 /// An AA to represent the memory behavior function attributes.
6050 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
6051   AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
6052       : AAMemoryBehaviorImpl(IRP, A) {}
6053 
6054   /// See AbstractAttribute::updateImpl(Attributor &A).
6055   virtual ChangeStatus updateImpl(Attributor &A) override;
6056 
6057   /// See AbstractAttribute::manifest(...).
6058   ChangeStatus manifest(Attributor &A) override {
6059     Function &F = cast<Function>(getAnchorValue());
6060     if (isAssumedReadNone()) {
6061       F.removeFnAttr(Attribute::ArgMemOnly);
6062       F.removeFnAttr(Attribute::InaccessibleMemOnly);
6063       F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
6064     }
6065     return AAMemoryBehaviorImpl::manifest(A);
6066   }
6067 
6068   /// See AbstractAttribute::trackStatistics()
6069   void trackStatistics() const override {
6070     if (isAssumedReadNone())
6071       STATS_DECLTRACK_FN_ATTR(readnone)
6072     else if (isAssumedReadOnly())
6073       STATS_DECLTRACK_FN_ATTR(readonly)
6074     else if (isAssumedWriteOnly())
6075       STATS_DECLTRACK_FN_ATTR(writeonly)
6076   }
6077 };
6078 
6079 /// AAMemoryBehavior attribute for call sites.
6080 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
6081   AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
6082       : AAMemoryBehaviorImpl(IRP, A) {}
6083 
6084   /// See AbstractAttribute::initialize(...).
6085   void initialize(Attributor &A) override {
6086     AAMemoryBehaviorImpl::initialize(A);
6087     Function *F = getAssociatedFunction();
6088     if (!F || F->isDeclaration())
6089       indicatePessimisticFixpoint();
6090   }
6091 
6092   /// See AbstractAttribute::updateImpl(...).
6093   ChangeStatus updateImpl(Attributor &A) override {
6094     // TODO: Once we have call site specific value information we can provide
6095     //       call site specific liveness liveness information and then it makes
6096     //       sense to specialize attributes for call sites arguments instead of
6097     //       redirecting requests to the callee argument.
6098     Function *F = getAssociatedFunction();
6099     const IRPosition &FnPos = IRPosition::function(*F);
6100     auto &FnAA = A.getAAFor<AAMemoryBehavior>(*this, FnPos);
6101     return clampStateAndIndicateChange(getState(), FnAA.getState());
6102   }
6103 
6104   /// See AbstractAttribute::trackStatistics()
6105   void trackStatistics() const override {
6106     if (isAssumedReadNone())
6107       STATS_DECLTRACK_CS_ATTR(readnone)
6108     else if (isAssumedReadOnly())
6109       STATS_DECLTRACK_CS_ATTR(readonly)
6110     else if (isAssumedWriteOnly())
6111       STATS_DECLTRACK_CS_ATTR(writeonly)
6112   }
6113 };
6114 
6115 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
6116 
6117   // The current assumed state used to determine a change.
6118   auto AssumedState = getAssumed();
6119 
6120   auto CheckRWInst = [&](Instruction &I) {
6121     // If the instruction has an own memory behavior state, use it to restrict
6122     // the local state. No further analysis is required as the other memory
6123     // state is as optimistic as it gets.
6124     if (const auto *CB = dyn_cast<CallBase>(&I)) {
6125       const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
6126           *this, IRPosition::callsite_function(*CB));
6127       intersectAssumedBits(MemBehaviorAA.getAssumed());
6128       return !isAtFixpoint();
6129     }
6130 
6131     // Remove access kind modifiers if necessary.
6132     if (I.mayReadFromMemory())
6133       removeAssumedBits(NO_READS);
6134     if (I.mayWriteToMemory())
6135       removeAssumedBits(NO_WRITES);
6136     return !isAtFixpoint();
6137   };
6138 
6139   if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this))
6140     return indicatePessimisticFixpoint();
6141 
6142   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
6143                                         : ChangeStatus::UNCHANGED;
6144 }
6145 
6146 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
6147 
6148   const IRPosition &IRP = getIRPosition();
6149   const IRPosition &FnPos = IRPosition::function_scope(IRP);
6150   AAMemoryBehavior::StateType &S = getState();
6151 
6152   // First, check the function scope. We take the known information and we avoid
6153   // work if the assumed information implies the current assumed information for
6154   // this attribute. This is a valid for all but byval arguments.
6155   Argument *Arg = IRP.getAssociatedArgument();
6156   AAMemoryBehavior::base_t FnMemAssumedState =
6157       AAMemoryBehavior::StateType::getWorstState();
6158   if (!Arg || !Arg->hasByValAttr()) {
6159     const auto &FnMemAA = A.getAAFor<AAMemoryBehavior>(
6160         *this, FnPos, /* TrackDependence */ true, DepClassTy::OPTIONAL);
6161     FnMemAssumedState = FnMemAA.getAssumed();
6162     S.addKnownBits(FnMemAA.getKnown());
6163     if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
6164       return ChangeStatus::UNCHANGED;
6165   }
6166 
6167   // Make sure the value is not captured (except through "return"), if
6168   // it is, any information derived would be irrelevant anyway as we cannot
6169   // check the potential aliases introduced by the capture. However, no need
6170   // to fall back to anythign less optimistic than the function state.
6171   const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
6172       *this, IRP, /* TrackDependence */ true, DepClassTy::OPTIONAL);
6173   if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
6174     S.intersectAssumedBits(FnMemAssumedState);
6175     return ChangeStatus::CHANGED;
6176   }
6177 
6178   // The current assumed state used to determine a change.
6179   auto AssumedState = S.getAssumed();
6180 
6181   // Liveness information to exclude dead users.
6182   // TODO: Take the FnPos once we have call site specific liveness information.
6183   const auto &LivenessAA = A.getAAFor<AAIsDead>(
6184       *this, IRPosition::function(*IRP.getAssociatedFunction()),
6185       /* TrackDependence */ false);
6186 
6187   // Visit and expand uses until all are analyzed or a fixpoint is reached.
6188   for (unsigned i = 0; i < Uses.size() && !isAtFixpoint(); i++) {
6189     const Use *U = Uses[i];
6190     Instruction *UserI = cast<Instruction>(U->getUser());
6191     LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << **U << " in " << *UserI
6192                       << " [Dead: " << (A.isAssumedDead(*U, this, &LivenessAA))
6193                       << "]\n");
6194     if (A.isAssumedDead(*U, this, &LivenessAA))
6195       continue;
6196 
6197     // Droppable users, e.g., llvm::assume does not actually perform any action.
6198     if (UserI->isDroppable())
6199       continue;
6200 
6201     // Check if the users of UserI should also be visited.
6202     if (followUsersOfUseIn(A, U, UserI))
6203       addUsesOf(A, *UserI);
6204 
6205     // If UserI might touch memory we analyze the use in detail.
6206     if (UserI->mayReadOrWriteMemory())
6207       analyzeUseIn(A, U, UserI);
6208   }
6209 
6210   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
6211                                         : ChangeStatus::UNCHANGED;
6212 }
6213 
6214 void AAMemoryBehaviorFloating::addUsesOf(Attributor &A, const Value &V) {
6215   SmallVector<const Use *, 8> WL;
6216   for (const Use &U : V.uses())
6217     WL.push_back(&U);
6218 
6219   while (!WL.empty()) {
6220     const Use *U = WL.pop_back_val();
6221     if (!Visited.insert(U).second)
6222       continue;
6223 
6224     const Instruction *UserI = cast<Instruction>(U->getUser());
6225     if (UserI->mayReadOrWriteMemory()) {
6226       Uses.push_back(U);
6227       continue;
6228     }
6229     if (!followUsersOfUseIn(A, U, UserI))
6230       continue;
6231     for (const Use &UU : UserI->uses())
6232       WL.push_back(&UU);
6233   }
6234 }
6235 
6236 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use *U,
6237                                                   const Instruction *UserI) {
6238   // The loaded value is unrelated to the pointer argument, no need to
6239   // follow the users of the load.
6240   if (isa<LoadInst>(UserI))
6241     return false;
6242 
6243   // By default we follow all uses assuming UserI might leak information on U,
6244   // we have special handling for call sites operands though.
6245   const auto *CB = dyn_cast<CallBase>(UserI);
6246   if (!CB || !CB->isArgOperand(U))
6247     return true;
6248 
6249   // If the use is a call argument known not to be captured, the users of
6250   // the call do not need to be visited because they have to be unrelated to
6251   // the input. Note that this check is not trivial even though we disallow
6252   // general capturing of the underlying argument. The reason is that the
6253   // call might the argument "through return", which we allow and for which we
6254   // need to check call users.
6255   if (U->get()->getType()->isPointerTy()) {
6256     unsigned ArgNo = CB->getArgOperandNo(U);
6257     const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
6258         *this, IRPosition::callsite_argument(*CB, ArgNo),
6259         /* TrackDependence */ true, DepClassTy::OPTIONAL);
6260     return !ArgNoCaptureAA.isAssumedNoCapture();
6261   }
6262 
6263   return true;
6264 }
6265 
6266 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use *U,
6267                                             const Instruction *UserI) {
6268   assert(UserI->mayReadOrWriteMemory());
6269 
6270   switch (UserI->getOpcode()) {
6271   default:
6272     // TODO: Handle all atomics and other side-effect operations we know of.
6273     break;
6274   case Instruction::Load:
6275     // Loads cause the NO_READS property to disappear.
6276     removeAssumedBits(NO_READS);
6277     return;
6278 
6279   case Instruction::Store:
6280     // Stores cause the NO_WRITES property to disappear if the use is the
6281     // pointer operand. Note that we do assume that capturing was taken care of
6282     // somewhere else.
6283     if (cast<StoreInst>(UserI)->getPointerOperand() == U->get())
6284       removeAssumedBits(NO_WRITES);
6285     return;
6286 
6287   case Instruction::Call:
6288   case Instruction::CallBr:
6289   case Instruction::Invoke: {
6290     // For call sites we look at the argument memory behavior attribute (this
6291     // could be recursive!) in order to restrict our own state.
6292     const auto *CB = cast<CallBase>(UserI);
6293 
6294     // Give up on operand bundles.
6295     if (CB->isBundleOperand(U)) {
6296       indicatePessimisticFixpoint();
6297       return;
6298     }
6299 
6300     // Calling a function does read the function pointer, maybe write it if the
6301     // function is self-modifying.
6302     if (CB->isCallee(U)) {
6303       removeAssumedBits(NO_READS);
6304       break;
6305     }
6306 
6307     // Adjust the possible access behavior based on the information on the
6308     // argument.
6309     IRPosition Pos;
6310     if (U->get()->getType()->isPointerTy())
6311       Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(U));
6312     else
6313       Pos = IRPosition::callsite_function(*CB);
6314     const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
6315         *this, Pos,
6316         /* TrackDependence */ true, DepClassTy::OPTIONAL);
6317     // "assumed" has at most the same bits as the MemBehaviorAA assumed
6318     // and at least "known".
6319     intersectAssumedBits(MemBehaviorAA.getAssumed());
6320     return;
6321   }
6322   };
6323 
6324   // Generally, look at the "may-properties" and adjust the assumed state if we
6325   // did not trigger special handling before.
6326   if (UserI->mayReadFromMemory())
6327     removeAssumedBits(NO_READS);
6328   if (UserI->mayWriteToMemory())
6329     removeAssumedBits(NO_WRITES);
6330 }
6331 
6332 } // namespace
6333 
6334 /// -------------------- Memory Locations Attributes ---------------------------
6335 /// Includes read-none, argmemonly, inaccessiblememonly,
6336 /// inaccessiblememorargmemonly
6337 /// ----------------------------------------------------------------------------
6338 
6339 std::string AAMemoryLocation::getMemoryLocationsAsStr(
6340     AAMemoryLocation::MemoryLocationsKind MLK) {
6341   if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
6342     return "all memory";
6343   if (MLK == AAMemoryLocation::NO_LOCATIONS)
6344     return "no memory";
6345   std::string S = "memory:";
6346   if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
6347     S += "stack,";
6348   if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
6349     S += "constant,";
6350   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
6351     S += "internal global,";
6352   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
6353     S += "external global,";
6354   if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
6355     S += "argument,";
6356   if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
6357     S += "inaccessible,";
6358   if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
6359     S += "malloced,";
6360   if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
6361     S += "unknown,";
6362   S.pop_back();
6363   return S;
6364 }
6365 
6366 namespace {
6367 struct AAMemoryLocationImpl : public AAMemoryLocation {
6368 
6369   AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
6370       : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
6371     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
6372       AccessKind2Accesses[u] = nullptr;
6373   }
6374 
6375   ~AAMemoryLocationImpl() {
6376     // The AccessSets are allocated via a BumpPtrAllocator, we call
6377     // the destructor manually.
6378     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
6379       if (AccessKind2Accesses[u])
6380         AccessKind2Accesses[u]->~AccessSet();
6381   }
6382 
6383   /// See AbstractAttribute::initialize(...).
6384   void initialize(Attributor &A) override {
6385     intersectAssumedBits(BEST_STATE);
6386     getKnownStateFromValue(A, getIRPosition(), getState());
6387     AAMemoryLocation::initialize(A);
6388   }
6389 
6390   /// Return the memory behavior information encoded in the IR for \p IRP.
6391   static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
6392                                      BitIntegerState &State,
6393                                      bool IgnoreSubsumingPositions = false) {
6394     // For internal functions we ignore `argmemonly` and
6395     // `inaccessiblememorargmemonly` as we might break it via interprocedural
6396     // constant propagation. It is unclear if this is the best way but it is
6397     // unlikely this will cause real performance problems. If we are deriving
6398     // attributes for the anchor function we even remove the attribute in
6399     // addition to ignoring it.
6400     bool UseArgMemOnly = true;
6401     Function *AnchorFn = IRP.getAnchorScope();
6402     if (AnchorFn && A.isRunOn(*AnchorFn))
6403       UseArgMemOnly = !AnchorFn->hasLocalLinkage();
6404 
6405     SmallVector<Attribute, 2> Attrs;
6406     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
6407     for (const Attribute &Attr : Attrs) {
6408       switch (Attr.getKindAsEnum()) {
6409       case Attribute::ReadNone:
6410         State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
6411         break;
6412       case Attribute::InaccessibleMemOnly:
6413         State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
6414         break;
6415       case Attribute::ArgMemOnly:
6416         if (UseArgMemOnly)
6417           State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
6418         else
6419           IRP.removeAttrs({Attribute::ArgMemOnly});
6420         break;
6421       case Attribute::InaccessibleMemOrArgMemOnly:
6422         if (UseArgMemOnly)
6423           State.addKnownBits(inverseLocation(
6424               NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
6425         else
6426           IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly});
6427         break;
6428       default:
6429         llvm_unreachable("Unexpected attribute!");
6430       }
6431     }
6432   }
6433 
6434   /// See AbstractAttribute::getDeducedAttributes(...).
6435   void getDeducedAttributes(LLVMContext &Ctx,
6436                             SmallVectorImpl<Attribute> &Attrs) const override {
6437     assert(Attrs.size() == 0);
6438     if (isAssumedReadNone()) {
6439       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
6440     } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
6441       if (isAssumedInaccessibleMemOnly())
6442         Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
6443       else if (isAssumedArgMemOnly())
6444         Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
6445       else if (isAssumedInaccessibleOrArgMemOnly())
6446         Attrs.push_back(
6447             Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
6448     }
6449     assert(Attrs.size() <= 1);
6450   }
6451 
6452   /// See AbstractAttribute::manifest(...).
6453   ChangeStatus manifest(Attributor &A) override {
6454     const IRPosition &IRP = getIRPosition();
6455 
6456     // Check if we would improve the existing attributes first.
6457     SmallVector<Attribute, 4> DeducedAttrs;
6458     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
6459     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
6460           return IRP.hasAttr(Attr.getKindAsEnum(),
6461                              /* IgnoreSubsumingPositions */ true);
6462         }))
6463       return ChangeStatus::UNCHANGED;
6464 
6465     // Clear existing attributes.
6466     IRP.removeAttrs(AttrKinds);
6467     if (isAssumedReadNone())
6468       IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
6469 
6470     // Use the generic manifest method.
6471     return IRAttribute::manifest(A);
6472   }
6473 
6474   /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
6475   bool checkForAllAccessesToMemoryKind(
6476       function_ref<bool(const Instruction *, const Value *, AccessKind,
6477                         MemoryLocationsKind)>
6478           Pred,
6479       MemoryLocationsKind RequestedMLK) const override {
6480     if (!isValidState())
6481       return false;
6482 
6483     MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
6484     if (AssumedMLK == NO_LOCATIONS)
6485       return true;
6486 
6487     unsigned Idx = 0;
6488     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
6489          CurMLK *= 2, ++Idx) {
6490       if (CurMLK & RequestedMLK)
6491         continue;
6492 
6493       if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
6494         for (const AccessInfo &AI : *Accesses)
6495           if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
6496             return false;
6497     }
6498 
6499     return true;
6500   }
6501 
6502   ChangeStatus indicatePessimisticFixpoint() override {
6503     // If we give up and indicate a pessimistic fixpoint this instruction will
6504     // become an access for all potential access kinds:
6505     // TODO: Add pointers for argmemonly and globals to improve the results of
6506     //       checkForAllAccessesToMemoryKind.
6507     bool Changed = false;
6508     MemoryLocationsKind KnownMLK = getKnown();
6509     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
6510     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
6511       if (!(CurMLK & KnownMLK))
6512         updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
6513                                   getAccessKindFromInst(I));
6514     return AAMemoryLocation::indicatePessimisticFixpoint();
6515   }
6516 
6517 protected:
6518   /// Helper struct to tie together an instruction that has a read or write
6519   /// effect with the pointer it accesses (if any).
6520   struct AccessInfo {
6521 
6522     /// The instruction that caused the access.
6523     const Instruction *I;
6524 
6525     /// The base pointer that is accessed, or null if unknown.
6526     const Value *Ptr;
6527 
6528     /// The kind of access (read/write/read+write).
6529     AccessKind Kind;
6530 
6531     bool operator==(const AccessInfo &RHS) const {
6532       return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
6533     }
6534     bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
6535       if (LHS.I != RHS.I)
6536         return LHS.I < RHS.I;
6537       if (LHS.Ptr != RHS.Ptr)
6538         return LHS.Ptr < RHS.Ptr;
6539       if (LHS.Kind != RHS.Kind)
6540         return LHS.Kind < RHS.Kind;
6541       return false;
6542     }
6543   };
6544 
6545   /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
6546   /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
6547   using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
6548   AccessSet *AccessKind2Accesses[llvm::CTLog2<VALID_STATE>()];
6549 
6550   /// Categorize the pointer arguments of CB that might access memory in
6551   /// AccessedLoc and update the state and access map accordingly.
6552   void
6553   categorizeArgumentPointerLocations(Attributor &A, CallBase &CB,
6554                                      AAMemoryLocation::StateType &AccessedLocs,
6555                                      bool &Changed);
6556 
6557   /// Return the kind(s) of location that may be accessed by \p V.
6558   AAMemoryLocation::MemoryLocationsKind
6559   categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
6560 
6561   /// Return the access kind as determined by \p I.
6562   AccessKind getAccessKindFromInst(const Instruction *I) {
6563     AccessKind AK = READ_WRITE;
6564     if (I) {
6565       AK = I->mayReadFromMemory() ? READ : NONE;
6566       AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
6567     }
6568     return AK;
6569   }
6570 
6571   /// Update the state \p State and the AccessKind2Accesses given that \p I is
6572   /// an access of kind \p AK to a \p MLK memory location with the access
6573   /// pointer \p Ptr.
6574   void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
6575                                  MemoryLocationsKind MLK, const Instruction *I,
6576                                  const Value *Ptr, bool &Changed,
6577                                  AccessKind AK = READ_WRITE) {
6578 
6579     assert(isPowerOf2_32(MLK) && "Expected a single location set!");
6580     auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
6581     if (!Accesses)
6582       Accesses = new (Allocator) AccessSet();
6583     Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
6584     State.removeAssumedBits(MLK);
6585   }
6586 
6587   /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
6588   /// arguments, and update the state and access map accordingly.
6589   void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
6590                           AAMemoryLocation::StateType &State, bool &Changed);
6591 
6592   /// Used to allocate access sets.
6593   BumpPtrAllocator &Allocator;
6594 
6595   /// The set of IR attributes AAMemoryLocation deals with.
6596   static const Attribute::AttrKind AttrKinds[4];
6597 };
6598 
6599 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
6600     Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
6601     Attribute::InaccessibleMemOrArgMemOnly};
6602 
6603 void AAMemoryLocationImpl::categorizePtrValue(
6604     Attributor &A, const Instruction &I, const Value &Ptr,
6605     AAMemoryLocation::StateType &State, bool &Changed) {
6606   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
6607                     << Ptr << " ["
6608                     << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
6609 
6610   auto StripGEPCB = [](Value *V) -> Value * {
6611     auto *GEP = dyn_cast<GEPOperator>(V);
6612     while (GEP) {
6613       V = GEP->getPointerOperand();
6614       GEP = dyn_cast<GEPOperator>(V);
6615     }
6616     return V;
6617   };
6618 
6619   auto VisitValueCB = [&](Value &V, const Instruction *,
6620                           AAMemoryLocation::StateType &T,
6621                           bool Stripped) -> bool {
6622     // TODO: recognize the TBAA used for constant accesses.
6623     MemoryLocationsKind MLK = NO_LOCATIONS;
6624     assert(!isa<GEPOperator>(V) && "GEPs should have been stripped.");
6625     if (isa<UndefValue>(V))
6626       return true;
6627     if (auto *Arg = dyn_cast<Argument>(&V)) {
6628       if (Arg->hasByValAttr())
6629         MLK = NO_LOCAL_MEM;
6630       else
6631         MLK = NO_ARGUMENT_MEM;
6632     } else if (auto *GV = dyn_cast<GlobalValue>(&V)) {
6633       // Reading constant memory is not treated as a read "effect" by the
6634       // function attr pass so we won't neither. Constants defined by TBAA are
6635       // similar. (We know we do not write it because it is constant.)
6636       if (auto *GVar = dyn_cast<GlobalVariable>(GV))
6637         if (GVar->isConstant())
6638           return true;
6639 
6640       if (GV->hasLocalLinkage())
6641         MLK = NO_GLOBAL_INTERNAL_MEM;
6642       else
6643         MLK = NO_GLOBAL_EXTERNAL_MEM;
6644     } else if (isa<ConstantPointerNull>(V) &&
6645                !NullPointerIsDefined(getAssociatedFunction(),
6646                                      V.getType()->getPointerAddressSpace())) {
6647       return true;
6648     } else if (isa<AllocaInst>(V)) {
6649       MLK = NO_LOCAL_MEM;
6650     } else if (const auto *CB = dyn_cast<CallBase>(&V)) {
6651       const auto &NoAliasAA =
6652           A.getAAFor<AANoAlias>(*this, IRPosition::callsite_returned(*CB));
6653       if (NoAliasAA.isAssumedNoAlias())
6654         MLK = NO_MALLOCED_MEM;
6655       else
6656         MLK = NO_UNKOWN_MEM;
6657     } else {
6658       MLK = NO_UNKOWN_MEM;
6659     }
6660 
6661     assert(MLK != NO_LOCATIONS && "No location specified!");
6662     updateStateAndAccessesMap(T, MLK, &I, &V, Changed,
6663                               getAccessKindFromInst(&I));
6664     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value cannot be categorized: "
6665                       << V << " -> " << getMemoryLocationsAsStr(T.getAssumed())
6666                       << "\n");
6667     return true;
6668   };
6669 
6670   if (!genericValueTraversal<AAMemoryLocation, AAMemoryLocation::StateType>(
6671           A, IRPosition::value(Ptr), *this, State, VisitValueCB, getCtxI(),
6672           /* UseValueSimplify */ true,
6673           /* MaxValues */ 32, StripGEPCB)) {
6674     LLVM_DEBUG(
6675         dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
6676     updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
6677                               getAccessKindFromInst(&I));
6678   } else {
6679     LLVM_DEBUG(
6680         dbgs()
6681         << "[AAMemoryLocation] Accessed locations with pointer locations: "
6682         << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
6683   }
6684 }
6685 
6686 void AAMemoryLocationImpl::categorizeArgumentPointerLocations(
6687     Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs,
6688     bool &Changed) {
6689   for (unsigned ArgNo = 0, E = CB.getNumArgOperands(); ArgNo < E; ++ArgNo) {
6690 
6691     // Skip non-pointer arguments.
6692     const Value *ArgOp = CB.getArgOperand(ArgNo);
6693     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
6694       continue;
6695 
6696     // Skip readnone arguments.
6697     const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo);
6698     const auto &ArgOpMemLocationAA = A.getAAFor<AAMemoryBehavior>(
6699         *this, ArgOpIRP, /* TrackDependence */ true, DepClassTy::OPTIONAL);
6700 
6701     if (ArgOpMemLocationAA.isAssumedReadNone())
6702       continue;
6703 
6704     // Categorize potentially accessed pointer arguments as if there was an
6705     // access instruction with them as pointer.
6706     categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed);
6707   }
6708 }
6709 
6710 AAMemoryLocation::MemoryLocationsKind
6711 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
6712                                                   bool &Changed) {
6713   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
6714                     << I << "\n");
6715 
6716   AAMemoryLocation::StateType AccessedLocs;
6717   AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
6718 
6719   if (auto *CB = dyn_cast<CallBase>(&I)) {
6720 
6721     // First check if we assume any memory is access is visible.
6722     const auto &CBMemLocationAA =
6723         A.getAAFor<AAMemoryLocation>(*this, IRPosition::callsite_function(*CB));
6724     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
6725                       << " [" << CBMemLocationAA << "]\n");
6726 
6727     if (CBMemLocationAA.isAssumedReadNone())
6728       return NO_LOCATIONS;
6729 
6730     if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) {
6731       updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
6732                                 Changed, getAccessKindFromInst(&I));
6733       return AccessedLocs.getAssumed();
6734     }
6735 
6736     uint32_t CBAssumedNotAccessedLocs =
6737         CBMemLocationAA.getAssumedNotAccessedLocation();
6738 
6739     // Set the argmemonly and global bit as we handle them separately below.
6740     uint32_t CBAssumedNotAccessedLocsNoArgMem =
6741         CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
6742 
6743     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
6744       if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
6745         continue;
6746       updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
6747                                 getAccessKindFromInst(&I));
6748     }
6749 
6750     // Now handle global memory if it might be accessed. This is slightly tricky
6751     // as NO_GLOBAL_MEM has multiple bits set.
6752     bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
6753     if (HasGlobalAccesses) {
6754       auto AccessPred = [&](const Instruction *, const Value *Ptr,
6755                             AccessKind Kind, MemoryLocationsKind MLK) {
6756         updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
6757                                   getAccessKindFromInst(&I));
6758         return true;
6759       };
6760       if (!CBMemLocationAA.checkForAllAccessesToMemoryKind(
6761               AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
6762         return AccessedLocs.getWorstState();
6763     }
6764 
6765     LLVM_DEBUG(
6766         dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
6767                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
6768 
6769     // Now handle argument memory if it might be accessed.
6770     bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
6771     if (HasArgAccesses)
6772       categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed);
6773 
6774     LLVM_DEBUG(
6775         dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
6776                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
6777 
6778     return AccessedLocs.getAssumed();
6779   }
6780 
6781   if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
6782     LLVM_DEBUG(
6783         dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
6784                << I << " [" << *Ptr << "]\n");
6785     categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
6786     return AccessedLocs.getAssumed();
6787   }
6788 
6789   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
6790                     << I << "\n");
6791   updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
6792                             getAccessKindFromInst(&I));
6793   return AccessedLocs.getAssumed();
6794 }
6795 
6796 /// An AA to represent the memory behavior function attributes.
6797 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
6798   AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
6799       : AAMemoryLocationImpl(IRP, A) {}
6800 
6801   /// See AbstractAttribute::updateImpl(Attributor &A).
6802   virtual ChangeStatus updateImpl(Attributor &A) override {
6803 
6804     const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
6805         *this, getIRPosition(), /* TrackDependence */ false);
6806     if (MemBehaviorAA.isAssumedReadNone()) {
6807       if (MemBehaviorAA.isKnownReadNone())
6808         return indicateOptimisticFixpoint();
6809       assert(isAssumedReadNone() &&
6810              "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
6811       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
6812       return ChangeStatus::UNCHANGED;
6813     }
6814 
6815     // The current assumed state used to determine a change.
6816     auto AssumedState = getAssumed();
6817     bool Changed = false;
6818 
6819     auto CheckRWInst = [&](Instruction &I) {
6820       MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
6821       LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
6822                         << ": " << getMemoryLocationsAsStr(MLK) << "\n");
6823       removeAssumedBits(inverseLocation(MLK, false, false));
6824       // Stop once only the valid bit set in the *not assumed location*, thus
6825       // once we don't actually exclude any memory locations in the state.
6826       return getAssumedNotAccessedLocation() != VALID_STATE;
6827     };
6828 
6829     if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this))
6830       return indicatePessimisticFixpoint();
6831 
6832     Changed |= AssumedState != getAssumed();
6833     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
6834   }
6835 
6836   /// See AbstractAttribute::trackStatistics()
6837   void trackStatistics() const override {
6838     if (isAssumedReadNone())
6839       STATS_DECLTRACK_FN_ATTR(readnone)
6840     else if (isAssumedArgMemOnly())
6841       STATS_DECLTRACK_FN_ATTR(argmemonly)
6842     else if (isAssumedInaccessibleMemOnly())
6843       STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
6844     else if (isAssumedInaccessibleOrArgMemOnly())
6845       STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
6846   }
6847 };
6848 
6849 /// AAMemoryLocation attribute for call sites.
6850 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
6851   AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
6852       : AAMemoryLocationImpl(IRP, A) {}
6853 
6854   /// See AbstractAttribute::initialize(...).
6855   void initialize(Attributor &A) override {
6856     AAMemoryLocationImpl::initialize(A);
6857     Function *F = getAssociatedFunction();
6858     if (!F || F->isDeclaration())
6859       indicatePessimisticFixpoint();
6860   }
6861 
6862   /// See AbstractAttribute::updateImpl(...).
6863   ChangeStatus updateImpl(Attributor &A) override {
6864     // TODO: Once we have call site specific value information we can provide
6865     //       call site specific liveness liveness information and then it makes
6866     //       sense to specialize attributes for call sites arguments instead of
6867     //       redirecting requests to the callee argument.
6868     Function *F = getAssociatedFunction();
6869     const IRPosition &FnPos = IRPosition::function(*F);
6870     auto &FnAA = A.getAAFor<AAMemoryLocation>(*this, FnPos);
6871     bool Changed = false;
6872     auto AccessPred = [&](const Instruction *I, const Value *Ptr,
6873                           AccessKind Kind, MemoryLocationsKind MLK) {
6874       updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
6875                                 getAccessKindFromInst(I));
6876       return true;
6877     };
6878     if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
6879       return indicatePessimisticFixpoint();
6880     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
6881   }
6882 
6883   /// See AbstractAttribute::trackStatistics()
6884   void trackStatistics() const override {
6885     if (isAssumedReadNone())
6886       STATS_DECLTRACK_CS_ATTR(readnone)
6887   }
6888 };
6889 
6890 /// ------------------ Value Constant Range Attribute -------------------------
6891 
6892 struct AAValueConstantRangeImpl : AAValueConstantRange {
6893   using StateType = IntegerRangeState;
6894   AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
6895       : AAValueConstantRange(IRP, A) {}
6896 
6897   /// See AbstractAttribute::getAsStr().
6898   const std::string getAsStr() const override {
6899     std::string Str;
6900     llvm::raw_string_ostream OS(Str);
6901     OS << "range(" << getBitWidth() << ")<";
6902     getKnown().print(OS);
6903     OS << " / ";
6904     getAssumed().print(OS);
6905     OS << ">";
6906     return OS.str();
6907   }
6908 
6909   /// Helper function to get a SCEV expr for the associated value at program
6910   /// point \p I.
6911   const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
6912     if (!getAnchorScope())
6913       return nullptr;
6914 
6915     ScalarEvolution *SE =
6916         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
6917             *getAnchorScope());
6918 
6919     LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
6920         *getAnchorScope());
6921 
6922     if (!SE || !LI)
6923       return nullptr;
6924 
6925     const SCEV *S = SE->getSCEV(&getAssociatedValue());
6926     if (!I)
6927       return S;
6928 
6929     return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
6930   }
6931 
6932   /// Helper function to get a range from SCEV for the associated value at
6933   /// program point \p I.
6934   ConstantRange getConstantRangeFromSCEV(Attributor &A,
6935                                          const Instruction *I = nullptr) const {
6936     if (!getAnchorScope())
6937       return getWorstState(getBitWidth());
6938 
6939     ScalarEvolution *SE =
6940         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
6941             *getAnchorScope());
6942 
6943     const SCEV *S = getSCEV(A, I);
6944     if (!SE || !S)
6945       return getWorstState(getBitWidth());
6946 
6947     return SE->getUnsignedRange(S);
6948   }
6949 
6950   /// Helper function to get a range from LVI for the associated value at
6951   /// program point \p I.
6952   ConstantRange
6953   getConstantRangeFromLVI(Attributor &A,
6954                           const Instruction *CtxI = nullptr) const {
6955     if (!getAnchorScope())
6956       return getWorstState(getBitWidth());
6957 
6958     LazyValueInfo *LVI =
6959         A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
6960             *getAnchorScope());
6961 
6962     if (!LVI || !CtxI)
6963       return getWorstState(getBitWidth());
6964     return LVI->getConstantRange(&getAssociatedValue(),
6965                                  const_cast<Instruction *>(CtxI));
6966   }
6967 
6968   /// See AAValueConstantRange::getKnownConstantRange(..).
6969   ConstantRange
6970   getKnownConstantRange(Attributor &A,
6971                         const Instruction *CtxI = nullptr) const override {
6972     if (!CtxI || CtxI == getCtxI())
6973       return getKnown();
6974 
6975     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
6976     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
6977     return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
6978   }
6979 
6980   /// See AAValueConstantRange::getAssumedConstantRange(..).
6981   ConstantRange
6982   getAssumedConstantRange(Attributor &A,
6983                           const Instruction *CtxI = nullptr) const override {
6984     // TODO: Make SCEV use Attributor assumption.
6985     //       We may be able to bound a variable range via assumptions in
6986     //       Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
6987     //       evolve to x^2 + x, then we can say that y is in [2, 12].
6988 
6989     if (!CtxI || CtxI == getCtxI())
6990       return getAssumed();
6991 
6992     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
6993     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
6994     return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
6995   }
6996 
6997   /// See AbstractAttribute::initialize(..).
6998   void initialize(Attributor &A) override {
6999     // Intersect a range given by SCEV.
7000     intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
7001 
7002     // Intersect a range given by LVI.
7003     intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
7004   }
7005 
7006   /// Helper function to create MDNode for range metadata.
7007   static MDNode *
7008   getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
7009                             const ConstantRange &AssumedConstantRange) {
7010     Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
7011                                   Ty, AssumedConstantRange.getLower())),
7012                               ConstantAsMetadata::get(ConstantInt::get(
7013                                   Ty, AssumedConstantRange.getUpper()))};
7014     return MDNode::get(Ctx, LowAndHigh);
7015   }
7016 
7017   /// Return true if \p Assumed is included in \p KnownRanges.
7018   static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
7019 
7020     if (Assumed.isFullSet())
7021       return false;
7022 
7023     if (!KnownRanges)
7024       return true;
7025 
7026     // If multiple ranges are annotated in IR, we give up to annotate assumed
7027     // range for now.
7028 
7029     // TODO:  If there exists a known range which containts assumed range, we
7030     // can say assumed range is better.
7031     if (KnownRanges->getNumOperands() > 2)
7032       return false;
7033 
7034     ConstantInt *Lower =
7035         mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
7036     ConstantInt *Upper =
7037         mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
7038 
7039     ConstantRange Known(Lower->getValue(), Upper->getValue());
7040     return Known.contains(Assumed) && Known != Assumed;
7041   }
7042 
7043   /// Helper function to set range metadata.
7044   static bool
7045   setRangeMetadataIfisBetterRange(Instruction *I,
7046                                   const ConstantRange &AssumedConstantRange) {
7047     auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
7048     if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
7049       if (!AssumedConstantRange.isEmptySet()) {
7050         I->setMetadata(LLVMContext::MD_range,
7051                        getMDNodeForConstantRange(I->getType(), I->getContext(),
7052                                                  AssumedConstantRange));
7053         return true;
7054       }
7055     }
7056     return false;
7057   }
7058 
7059   /// See AbstractAttribute::manifest()
7060   ChangeStatus manifest(Attributor &A) override {
7061     ChangeStatus Changed = ChangeStatus::UNCHANGED;
7062     ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
7063     assert(!AssumedConstantRange.isFullSet() && "Invalid state");
7064 
7065     auto &V = getAssociatedValue();
7066     if (!AssumedConstantRange.isEmptySet() &&
7067         !AssumedConstantRange.isSingleElement()) {
7068       if (Instruction *I = dyn_cast<Instruction>(&V))
7069         if (isa<CallInst>(I) || isa<LoadInst>(I))
7070           if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
7071             Changed = ChangeStatus::CHANGED;
7072     }
7073 
7074     return Changed;
7075   }
7076 };
7077 
7078 struct AAValueConstantRangeArgument final
7079     : AAArgumentFromCallSiteArguments<
7080           AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState> {
7081   using Base = AAArgumentFromCallSiteArguments<
7082       AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState>;
7083   AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
7084       : Base(IRP, A) {}
7085 
7086   /// See AbstractAttribute::initialize(..).
7087   void initialize(Attributor &A) override {
7088     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
7089       indicatePessimisticFixpoint();
7090     } else {
7091       Base::initialize(A);
7092     }
7093   }
7094 
7095   /// See AbstractAttribute::trackStatistics()
7096   void trackStatistics() const override {
7097     STATS_DECLTRACK_ARG_ATTR(value_range)
7098   }
7099 };
7100 
7101 struct AAValueConstantRangeReturned
7102     : AAReturnedFromReturnedValues<AAValueConstantRange,
7103                                    AAValueConstantRangeImpl> {
7104   using Base = AAReturnedFromReturnedValues<AAValueConstantRange,
7105                                             AAValueConstantRangeImpl>;
7106   AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
7107       : Base(IRP, A) {}
7108 
7109   /// See AbstractAttribute::initialize(...).
7110   void initialize(Attributor &A) override {}
7111 
7112   /// See AbstractAttribute::trackStatistics()
7113   void trackStatistics() const override {
7114     STATS_DECLTRACK_FNRET_ATTR(value_range)
7115   }
7116 };
7117 
7118 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
7119   AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
7120       : AAValueConstantRangeImpl(IRP, A) {}
7121 
7122   /// See AbstractAttribute::initialize(...).
7123   void initialize(Attributor &A) override {
7124     AAValueConstantRangeImpl::initialize(A);
7125     Value &V = getAssociatedValue();
7126 
7127     if (auto *C = dyn_cast<ConstantInt>(&V)) {
7128       unionAssumed(ConstantRange(C->getValue()));
7129       indicateOptimisticFixpoint();
7130       return;
7131     }
7132 
7133     if (isa<UndefValue>(&V)) {
7134       // Collapse the undef state to 0.
7135       unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
7136       indicateOptimisticFixpoint();
7137       return;
7138     }
7139 
7140     if (isa<CallBase>(&V))
7141       return;
7142 
7143     if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
7144       return;
7145     // If it is a load instruction with range metadata, use it.
7146     if (LoadInst *LI = dyn_cast<LoadInst>(&V))
7147       if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
7148         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
7149         return;
7150       }
7151 
7152     // We can work with PHI and select instruction as we traverse their operands
7153     // during update.
7154     if (isa<SelectInst>(V) || isa<PHINode>(V))
7155       return;
7156 
7157     // Otherwise we give up.
7158     indicatePessimisticFixpoint();
7159 
7160     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
7161                       << getAssociatedValue() << "\n");
7162   }
7163 
7164   bool calculateBinaryOperator(
7165       Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
7166       const Instruction *CtxI,
7167       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
7168     Value *LHS = BinOp->getOperand(0);
7169     Value *RHS = BinOp->getOperand(1);
7170     // TODO: Allow non integers as well.
7171     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
7172       return false;
7173 
7174     auto &LHSAA =
7175         A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*LHS));
7176     QuerriedAAs.push_back(&LHSAA);
7177     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
7178 
7179     auto &RHSAA =
7180         A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*RHS));
7181     QuerriedAAs.push_back(&RHSAA);
7182     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
7183 
7184     auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
7185 
7186     T.unionAssumed(AssumedRange);
7187 
7188     // TODO: Track a known state too.
7189 
7190     return T.isValidState();
7191   }
7192 
7193   bool calculateCastInst(
7194       Attributor &A, CastInst *CastI, IntegerRangeState &T,
7195       const Instruction *CtxI,
7196       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
7197     assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
7198     // TODO: Allow non integers as well.
7199     Value &OpV = *CastI->getOperand(0);
7200     if (!OpV.getType()->isIntegerTy())
7201       return false;
7202 
7203     auto &OpAA =
7204         A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(OpV));
7205     QuerriedAAs.push_back(&OpAA);
7206     T.unionAssumed(
7207         OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
7208     return T.isValidState();
7209   }
7210 
7211   bool
7212   calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
7213                    const Instruction *CtxI,
7214                    SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
7215     Value *LHS = CmpI->getOperand(0);
7216     Value *RHS = CmpI->getOperand(1);
7217     // TODO: Allow non integers as well.
7218     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
7219       return false;
7220 
7221     auto &LHSAA =
7222         A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*LHS));
7223     QuerriedAAs.push_back(&LHSAA);
7224     auto &RHSAA =
7225         A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(*RHS));
7226     QuerriedAAs.push_back(&RHSAA);
7227 
7228     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
7229     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
7230 
7231     // If one of them is empty set, we can't decide.
7232     if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
7233       return true;
7234 
7235     bool MustTrue = false, MustFalse = false;
7236 
7237     auto AllowedRegion =
7238         ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
7239 
7240     auto SatisfyingRegion = ConstantRange::makeSatisfyingICmpRegion(
7241         CmpI->getPredicate(), RHSAARange);
7242 
7243     if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
7244       MustFalse = true;
7245 
7246     if (SatisfyingRegion.contains(LHSAARange))
7247       MustTrue = true;
7248 
7249     assert((!MustTrue || !MustFalse) &&
7250            "Either MustTrue or MustFalse should be false!");
7251 
7252     if (MustTrue)
7253       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
7254     else if (MustFalse)
7255       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
7256     else
7257       T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
7258 
7259     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
7260                       << " " << RHSAA << "\n");
7261 
7262     // TODO: Track a known state too.
7263     return T.isValidState();
7264   }
7265 
7266   /// See AbstractAttribute::updateImpl(...).
7267   ChangeStatus updateImpl(Attributor &A) override {
7268     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
7269                             IntegerRangeState &T, bool Stripped) -> bool {
7270       Instruction *I = dyn_cast<Instruction>(&V);
7271       if (!I || isa<CallBase>(I)) {
7272 
7273         // If the value is not instruction, we query AA to Attributor.
7274         const auto &AA =
7275             A.getAAFor<AAValueConstantRange>(*this, IRPosition::value(V));
7276 
7277         // Clamp operator is not used to utilize a program point CtxI.
7278         T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
7279 
7280         return T.isValidState();
7281       }
7282 
7283       SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
7284       if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
7285         if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
7286           return false;
7287       } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
7288         if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
7289           return false;
7290       } else if (auto *CastI = dyn_cast<CastInst>(I)) {
7291         if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
7292           return false;
7293       } else {
7294         // Give up with other instructions.
7295         // TODO: Add other instructions
7296 
7297         T.indicatePessimisticFixpoint();
7298         return false;
7299       }
7300 
7301       // Catch circular reasoning in a pessimistic way for now.
7302       // TODO: Check how the range evolves and if we stripped anything, see also
7303       //       AADereferenceable or AAAlign for similar situations.
7304       for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
7305         if (QueriedAA != this)
7306           continue;
7307         // If we are in a stady state we do not need to worry.
7308         if (T.getAssumed() == getState().getAssumed())
7309           continue;
7310         T.indicatePessimisticFixpoint();
7311       }
7312 
7313       return T.isValidState();
7314     };
7315 
7316     IntegerRangeState T(getBitWidth());
7317 
7318     if (!genericValueTraversal<AAValueConstantRange, IntegerRangeState>(
7319             A, getIRPosition(), *this, T, VisitValueCB, getCtxI(),
7320             /* UseValueSimplify */ false))
7321       return indicatePessimisticFixpoint();
7322 
7323     return clampStateAndIndicateChange(getState(), T);
7324   }
7325 
7326   /// See AbstractAttribute::trackStatistics()
7327   void trackStatistics() const override {
7328     STATS_DECLTRACK_FLOATING_ATTR(value_range)
7329   }
7330 };
7331 
7332 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
7333   AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
7334       : AAValueConstantRangeImpl(IRP, A) {}
7335 
7336   /// See AbstractAttribute::initialize(...).
7337   ChangeStatus updateImpl(Attributor &A) override {
7338     llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
7339                      "not be called");
7340   }
7341 
7342   /// See AbstractAttribute::trackStatistics()
7343   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
7344 };
7345 
7346 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
7347   AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
7348       : AAValueConstantRangeFunction(IRP, A) {}
7349 
7350   /// See AbstractAttribute::trackStatistics()
7351   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
7352 };
7353 
7354 struct AAValueConstantRangeCallSiteReturned
7355     : AACallSiteReturnedFromReturned<AAValueConstantRange,
7356                                      AAValueConstantRangeImpl> {
7357   AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
7358       : AACallSiteReturnedFromReturned<AAValueConstantRange,
7359                                        AAValueConstantRangeImpl>(IRP, A) {}
7360 
7361   /// See AbstractAttribute::initialize(...).
7362   void initialize(Attributor &A) override {
7363     // If it is a load instruction with range metadata, use the metadata.
7364     if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
7365       if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
7366         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
7367 
7368     AAValueConstantRangeImpl::initialize(A);
7369   }
7370 
7371   /// See AbstractAttribute::trackStatistics()
7372   void trackStatistics() const override {
7373     STATS_DECLTRACK_CSRET_ATTR(value_range)
7374   }
7375 };
7376 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
7377   AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
7378       : AAValueConstantRangeFloating(IRP, A) {}
7379 
7380   /// See AbstractAttribute::trackStatistics()
7381   void trackStatistics() const override {
7382     STATS_DECLTRACK_CSARG_ATTR(value_range)
7383   }
7384 };
7385 
7386 /// ------------------ Potential Values Attribute -------------------------
7387 
7388 struct AAPotentialValuesImpl : AAPotentialValues {
7389   using StateType = PotentialConstantIntValuesState;
7390 
7391   AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
7392       : AAPotentialValues(IRP, A) {}
7393 
7394   /// See AbstractAttribute::getAsStr().
7395   const std::string getAsStr() const override {
7396     std::string Str;
7397     llvm::raw_string_ostream OS(Str);
7398     OS << getState();
7399     return OS.str();
7400   }
7401 
7402   /// See AbstractAttribute::updateImpl(...).
7403   ChangeStatus updateImpl(Attributor &A) override {
7404     return indicatePessimisticFixpoint();
7405   }
7406 };
7407 
7408 struct AAPotentialValuesArgument final
7409     : AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
7410                                       PotentialConstantIntValuesState> {
7411   using Base =
7412       AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
7413                                       PotentialConstantIntValuesState>;
7414   AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
7415       : Base(IRP, A) {}
7416 
7417   /// See AbstractAttribute::initialize(..).
7418   void initialize(Attributor &A) override {
7419     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
7420       indicatePessimisticFixpoint();
7421     } else {
7422       Base::initialize(A);
7423     }
7424   }
7425 
7426   /// See AbstractAttribute::trackStatistics()
7427   void trackStatistics() const override {
7428     STATS_DECLTRACK_ARG_ATTR(potential_values)
7429   }
7430 };
7431 
7432 struct AAPotentialValuesReturned
7433     : AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> {
7434   using Base =
7435       AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>;
7436   AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
7437       : Base(IRP, A) {}
7438 
7439   /// See AbstractAttribute::trackStatistics()
7440   void trackStatistics() const override {
7441     STATS_DECLTRACK_FNRET_ATTR(potential_values)
7442   }
7443 };
7444 
7445 struct AAPotentialValuesFloating : AAPotentialValuesImpl {
7446   AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
7447       : AAPotentialValuesImpl(IRP, A) {}
7448 
7449   /// See AbstractAttribute::initialize(..).
7450   void initialize(Attributor &A) override {
7451     Value &V = getAssociatedValue();
7452 
7453     if (auto *C = dyn_cast<ConstantInt>(&V)) {
7454       unionAssumed(C->getValue());
7455       indicateOptimisticFixpoint();
7456       return;
7457     }
7458 
7459     if (isa<UndefValue>(&V)) {
7460       unionAssumedWithUndef();
7461       indicateOptimisticFixpoint();
7462       return;
7463     }
7464 
7465     if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
7466       return;
7467 
7468     if (isa<SelectInst>(V) || isa<PHINode>(V))
7469       return;
7470 
7471     indicatePessimisticFixpoint();
7472 
7473     LLVM_DEBUG(dbgs() << "[AAPotentialValues] We give up: "
7474                       << getAssociatedValue() << "\n");
7475   }
7476 
7477   static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
7478                                 const APInt &RHS) {
7479     ICmpInst::Predicate Pred = ICI->getPredicate();
7480     switch (Pred) {
7481     case ICmpInst::ICMP_UGT:
7482       return LHS.ugt(RHS);
7483     case ICmpInst::ICMP_SGT:
7484       return LHS.sgt(RHS);
7485     case ICmpInst::ICMP_EQ:
7486       return LHS.eq(RHS);
7487     case ICmpInst::ICMP_UGE:
7488       return LHS.uge(RHS);
7489     case ICmpInst::ICMP_SGE:
7490       return LHS.sge(RHS);
7491     case ICmpInst::ICMP_ULT:
7492       return LHS.ult(RHS);
7493     case ICmpInst::ICMP_SLT:
7494       return LHS.slt(RHS);
7495     case ICmpInst::ICMP_NE:
7496       return LHS.ne(RHS);
7497     case ICmpInst::ICMP_ULE:
7498       return LHS.ule(RHS);
7499     case ICmpInst::ICMP_SLE:
7500       return LHS.sle(RHS);
7501     default:
7502       llvm_unreachable("Invalid ICmp predicate!");
7503     }
7504   }
7505 
7506   static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
7507                                  uint32_t ResultBitWidth) {
7508     Instruction::CastOps CastOp = CI->getOpcode();
7509     switch (CastOp) {
7510     default:
7511       llvm_unreachable("unsupported or not integer cast");
7512     case Instruction::Trunc:
7513       return Src.trunc(ResultBitWidth);
7514     case Instruction::SExt:
7515       return Src.sext(ResultBitWidth);
7516     case Instruction::ZExt:
7517       return Src.zext(ResultBitWidth);
7518     case Instruction::BitCast:
7519       return Src;
7520     }
7521   }
7522 
7523   static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
7524                                        const APInt &LHS, const APInt &RHS,
7525                                        bool &SkipOperation, bool &Unsupported) {
7526     Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
7527     // Unsupported is set to true when the binary operator is not supported.
7528     // SkipOperation is set to true when UB occur with the given operand pair
7529     // (LHS, RHS).
7530     // TODO: we should look at nsw and nuw keywords to handle operations
7531     //       that create poison or undef value.
7532     switch (BinOpcode) {
7533     default:
7534       Unsupported = true;
7535       return LHS;
7536     case Instruction::Add:
7537       return LHS + RHS;
7538     case Instruction::Sub:
7539       return LHS - RHS;
7540     case Instruction::Mul:
7541       return LHS * RHS;
7542     case Instruction::UDiv:
7543       if (RHS.isNullValue()) {
7544         SkipOperation = true;
7545         return LHS;
7546       }
7547       return LHS.udiv(RHS);
7548     case Instruction::SDiv:
7549       if (RHS.isNullValue()) {
7550         SkipOperation = true;
7551         return LHS;
7552       }
7553       return LHS.sdiv(RHS);
7554     case Instruction::URem:
7555       if (RHS.isNullValue()) {
7556         SkipOperation = true;
7557         return LHS;
7558       }
7559       return LHS.urem(RHS);
7560     case Instruction::SRem:
7561       if (RHS.isNullValue()) {
7562         SkipOperation = true;
7563         return LHS;
7564       }
7565       return LHS.srem(RHS);
7566     case Instruction::Shl:
7567       return LHS.shl(RHS);
7568     case Instruction::LShr:
7569       return LHS.lshr(RHS);
7570     case Instruction::AShr:
7571       return LHS.ashr(RHS);
7572     case Instruction::And:
7573       return LHS & RHS;
7574     case Instruction::Or:
7575       return LHS | RHS;
7576     case Instruction::Xor:
7577       return LHS ^ RHS;
7578     }
7579   }
7580 
7581   bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp,
7582                                            const APInt &LHS, const APInt &RHS) {
7583     bool SkipOperation = false;
7584     bool Unsupported = false;
7585     APInt Result =
7586         calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported);
7587     if (Unsupported)
7588       return false;
7589     // If SkipOperation is true, we can ignore this operand pair (L, R).
7590     if (!SkipOperation)
7591       unionAssumed(Result);
7592     return isValidState();
7593   }
7594 
7595   ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
7596     auto AssumedBefore = getAssumed();
7597     Value *LHS = ICI->getOperand(0);
7598     Value *RHS = ICI->getOperand(1);
7599     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
7600       return indicatePessimisticFixpoint();
7601 
7602     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS));
7603     if (!LHSAA.isValidState())
7604       return indicatePessimisticFixpoint();
7605 
7606     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS));
7607     if (!RHSAA.isValidState())
7608       return indicatePessimisticFixpoint();
7609 
7610     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
7611     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
7612 
7613     // TODO: make use of undef flag to limit potential values aggressively.
7614     bool MaybeTrue = false, MaybeFalse = false;
7615     const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0);
7616     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
7617       // The result of any comparison between undefs can be soundly replaced
7618       // with undef.
7619       unionAssumedWithUndef();
7620     } else if (LHSAA.undefIsContained()) {
7621       bool MaybeTrue = false, MaybeFalse = false;
7622       for (const APInt &R : RHSAAPVS) {
7623         bool CmpResult = calculateICmpInst(ICI, Zero, R);
7624         MaybeTrue |= CmpResult;
7625         MaybeFalse |= !CmpResult;
7626         if (MaybeTrue & MaybeFalse)
7627           return indicatePessimisticFixpoint();
7628       }
7629     } else if (RHSAA.undefIsContained()) {
7630       for (const APInt &L : LHSAAPVS) {
7631         bool CmpResult = calculateICmpInst(ICI, L, Zero);
7632         MaybeTrue |= CmpResult;
7633         MaybeFalse |= !CmpResult;
7634         if (MaybeTrue & MaybeFalse)
7635           return indicatePessimisticFixpoint();
7636       }
7637     } else {
7638       for (const APInt &L : LHSAAPVS) {
7639         for (const APInt &R : RHSAAPVS) {
7640           bool CmpResult = calculateICmpInst(ICI, L, R);
7641           MaybeTrue |= CmpResult;
7642           MaybeFalse |= !CmpResult;
7643           if (MaybeTrue & MaybeFalse)
7644             return indicatePessimisticFixpoint();
7645         }
7646       }
7647     }
7648     if (MaybeTrue)
7649       unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
7650     if (MaybeFalse)
7651       unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
7652     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
7653                                          : ChangeStatus::CHANGED;
7654   }
7655 
7656   ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
7657     auto AssumedBefore = getAssumed();
7658     Value *LHS = SI->getTrueValue();
7659     Value *RHS = SI->getFalseValue();
7660     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
7661       return indicatePessimisticFixpoint();
7662 
7663     // TODO: Use assumed simplified condition value
7664     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS));
7665     if (!LHSAA.isValidState())
7666       return indicatePessimisticFixpoint();
7667 
7668     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS));
7669     if (!RHSAA.isValidState())
7670       return indicatePessimisticFixpoint();
7671 
7672     if (LHSAA.undefIsContained() && RHSAA.undefIsContained())
7673       // select i1 *, undef , undef => undef
7674       unionAssumedWithUndef();
7675     else {
7676       unionAssumed(LHSAA);
7677       unionAssumed(RHSAA);
7678     }
7679     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
7680                                          : ChangeStatus::CHANGED;
7681   }
7682 
7683   ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
7684     auto AssumedBefore = getAssumed();
7685     if (!CI->isIntegerCast())
7686       return indicatePessimisticFixpoint();
7687     assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
7688     uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
7689     Value *Src = CI->getOperand(0);
7690     auto &SrcAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*Src));
7691     if (!SrcAA.isValidState())
7692       return indicatePessimisticFixpoint();
7693     const DenseSet<APInt> &SrcAAPVS = SrcAA.getAssumedSet();
7694     if (SrcAA.undefIsContained())
7695       unionAssumedWithUndef();
7696     else {
7697       for (const APInt &S : SrcAAPVS) {
7698         APInt T = calculateCastInst(CI, S, ResultBitWidth);
7699         unionAssumed(T);
7700       }
7701     }
7702     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
7703                                          : ChangeStatus::CHANGED;
7704   }
7705 
7706   ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
7707     auto AssumedBefore = getAssumed();
7708     Value *LHS = BinOp->getOperand(0);
7709     Value *RHS = BinOp->getOperand(1);
7710     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
7711       return indicatePessimisticFixpoint();
7712 
7713     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS));
7714     if (!LHSAA.isValidState())
7715       return indicatePessimisticFixpoint();
7716 
7717     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS));
7718     if (!RHSAA.isValidState())
7719       return indicatePessimisticFixpoint();
7720 
7721     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
7722     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
7723     const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0);
7724 
7725     // TODO: make use of undef flag to limit potential values aggressively.
7726     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
7727       if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero))
7728         return indicatePessimisticFixpoint();
7729     } else if (LHSAA.undefIsContained()) {
7730       for (const APInt &R : RHSAAPVS) {
7731         if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R))
7732           return indicatePessimisticFixpoint();
7733       }
7734     } else if (RHSAA.undefIsContained()) {
7735       for (const APInt &L : LHSAAPVS) {
7736         if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero))
7737           return indicatePessimisticFixpoint();
7738       }
7739     } else {
7740       for (const APInt &L : LHSAAPVS) {
7741         for (const APInt &R : RHSAAPVS) {
7742           if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R))
7743             return indicatePessimisticFixpoint();
7744         }
7745       }
7746     }
7747     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
7748                                          : ChangeStatus::CHANGED;
7749   }
7750 
7751   ChangeStatus updateWithPHINode(Attributor &A, PHINode *PHI) {
7752     auto AssumedBefore = getAssumed();
7753     for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
7754       Value *IncomingValue = PHI->getIncomingValue(u);
7755       auto &PotentialValuesAA = A.getAAFor<AAPotentialValues>(
7756           *this, IRPosition::value(*IncomingValue));
7757       if (!PotentialValuesAA.isValidState())
7758         return indicatePessimisticFixpoint();
7759       if (PotentialValuesAA.undefIsContained())
7760         unionAssumedWithUndef();
7761       else
7762         unionAssumed(PotentialValuesAA.getAssumed());
7763     }
7764     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
7765                                          : ChangeStatus::CHANGED;
7766   }
7767 
7768   /// See AbstractAttribute::updateImpl(...).
7769   ChangeStatus updateImpl(Attributor &A) override {
7770     Value &V = getAssociatedValue();
7771     Instruction *I = dyn_cast<Instruction>(&V);
7772 
7773     if (auto *ICI = dyn_cast<ICmpInst>(I))
7774       return updateWithICmpInst(A, ICI);
7775 
7776     if (auto *SI = dyn_cast<SelectInst>(I))
7777       return updateWithSelectInst(A, SI);
7778 
7779     if (auto *CI = dyn_cast<CastInst>(I))
7780       return updateWithCastInst(A, CI);
7781 
7782     if (auto *BinOp = dyn_cast<BinaryOperator>(I))
7783       return updateWithBinaryOperator(A, BinOp);
7784 
7785     if (auto *PHI = dyn_cast<PHINode>(I))
7786       return updateWithPHINode(A, PHI);
7787 
7788     return indicatePessimisticFixpoint();
7789   }
7790 
7791   /// See AbstractAttribute::trackStatistics()
7792   void trackStatistics() const override {
7793     STATS_DECLTRACK_FLOATING_ATTR(potential_values)
7794   }
7795 };
7796 
7797 struct AAPotentialValuesFunction : AAPotentialValuesImpl {
7798   AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
7799       : AAPotentialValuesImpl(IRP, A) {}
7800 
7801   /// See AbstractAttribute::initialize(...).
7802   ChangeStatus updateImpl(Attributor &A) override {
7803     llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
7804                      "not be called");
7805   }
7806 
7807   /// See AbstractAttribute::trackStatistics()
7808   void trackStatistics() const override {
7809     STATS_DECLTRACK_FN_ATTR(potential_values)
7810   }
7811 };
7812 
7813 struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
7814   AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
7815       : AAPotentialValuesFunction(IRP, A) {}
7816 
7817   /// See AbstractAttribute::trackStatistics()
7818   void trackStatistics() const override {
7819     STATS_DECLTRACK_CS_ATTR(potential_values)
7820   }
7821 };
7822 
7823 struct AAPotentialValuesCallSiteReturned
7824     : AACallSiteReturnedFromReturned<AAPotentialValues, AAPotentialValuesImpl> {
7825   AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
7826       : AACallSiteReturnedFromReturned<AAPotentialValues,
7827                                        AAPotentialValuesImpl>(IRP, A) {}
7828 
7829   /// See AbstractAttribute::trackStatistics()
7830   void trackStatistics() const override {
7831     STATS_DECLTRACK_CSRET_ATTR(potential_values)
7832   }
7833 };
7834 
7835 struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
7836   AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
7837       : AAPotentialValuesFloating(IRP, A) {}
7838 
7839   /// See AbstractAttribute::initialize(..).
7840   void initialize(Attributor &A) override {
7841     Value &V = getAssociatedValue();
7842 
7843     if (auto *C = dyn_cast<ConstantInt>(&V)) {
7844       unionAssumed(C->getValue());
7845       indicateOptimisticFixpoint();
7846       return;
7847     }
7848 
7849     if (isa<UndefValue>(&V)) {
7850       unionAssumedWithUndef();
7851       indicateOptimisticFixpoint();
7852       return;
7853     }
7854   }
7855 
7856   /// See AbstractAttribute::updateImpl(...).
7857   ChangeStatus updateImpl(Attributor &A) override {
7858     Value &V = getAssociatedValue();
7859     auto AssumedBefore = getAssumed();
7860     auto &AA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(V));
7861     const auto &S = AA.getAssumed();
7862     unionAssumed(S);
7863     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
7864                                          : ChangeStatus::CHANGED;
7865   }
7866 
7867   /// See AbstractAttribute::trackStatistics()
7868   void trackStatistics() const override {
7869     STATS_DECLTRACK_CSARG_ATTR(potential_values)
7870   }
7871 };
7872 
7873 /// ------------------------ NoUndef Attribute ---------------------------------
7874 struct AANoUndefImpl : AANoUndef {
7875   AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
7876 
7877   /// See AbstractAttribute::initialize(...).
7878   void initialize(Attributor &A) override {
7879     if (getIRPosition().hasAttr({Attribute::NoUndef})) {
7880       indicateOptimisticFixpoint();
7881       return;
7882     }
7883     Value &V = getAssociatedValue();
7884     if (isa<UndefValue>(V))
7885       indicatePessimisticFixpoint();
7886     else if (isa<FreezeInst>(V))
7887       indicateOptimisticFixpoint();
7888     else if (getPositionKind() != IRPosition::IRP_RETURNED &&
7889              isGuaranteedNotToBeUndefOrPoison(&V))
7890       indicateOptimisticFixpoint();
7891     else
7892       AANoUndef::initialize(A);
7893   }
7894 
7895   /// See followUsesInMBEC
7896   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
7897                        AANoUndef::StateType &State) {
7898     const Value *UseV = U->get();
7899     const DominatorTree *DT = nullptr;
7900     AssumptionCache *AC = nullptr;
7901     InformationCache &InfoCache = A.getInfoCache();
7902     if (Function *F = getAnchorScope()) {
7903       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
7904       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
7905     }
7906     State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT));
7907     bool TrackUse = false;
7908     // Track use for instructions which must produce undef or poison bits when
7909     // at least one operand contains such bits.
7910     if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
7911       TrackUse = true;
7912     return TrackUse;
7913   }
7914 
7915   /// See AbstractAttribute::getAsStr().
7916   const std::string getAsStr() const override {
7917     return getAssumed() ? "noundef" : "may-undef-or-poison";
7918   }
7919 
7920   ChangeStatus manifest(Attributor &A) override {
7921     // We don't manifest noundef attribute for dead positions because the
7922     // associated values with dead positions would be replaced with undef
7923     // values.
7924     if (A.isAssumedDead(getIRPosition(), nullptr, nullptr))
7925       return ChangeStatus::UNCHANGED;
7926     // A position whose simplified value does not have any value is
7927     // considered to be dead. We don't manifest noundef in such positions for
7928     // the same reason above.
7929     auto &ValueSimplifyAA = A.getAAFor<AAValueSimplify>(
7930         *this, getIRPosition(), /* TrackDependence */ false);
7931     if (!ValueSimplifyAA.getAssumedSimplifiedValue(A).hasValue())
7932       return ChangeStatus::UNCHANGED;
7933     return AANoUndef::manifest(A);
7934   }
7935 };
7936 
7937 struct AANoUndefFloating : public AANoUndefImpl {
7938   AANoUndefFloating(const IRPosition &IRP, Attributor &A)
7939       : AANoUndefImpl(IRP, A) {}
7940 
7941   /// See AbstractAttribute::initialize(...).
7942   void initialize(Attributor &A) override {
7943     AANoUndefImpl::initialize(A);
7944     if (!getState().isAtFixpoint())
7945       if (Instruction *CtxI = getCtxI())
7946         followUsesInMBEC(*this, A, getState(), *CtxI);
7947   }
7948 
7949   /// See AbstractAttribute::updateImpl(...).
7950   ChangeStatus updateImpl(Attributor &A) override {
7951     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
7952                             AANoUndef::StateType &T, bool Stripped) -> bool {
7953       const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V));
7954       if (!Stripped && this == &AA) {
7955         T.indicatePessimisticFixpoint();
7956       } else {
7957         const AANoUndef::StateType &S =
7958             static_cast<const AANoUndef::StateType &>(AA.getState());
7959         T ^= S;
7960       }
7961       return T.isValidState();
7962     };
7963 
7964     StateType T;
7965     if (!genericValueTraversal<AANoUndef, StateType>(
7966             A, getIRPosition(), *this, T, VisitValueCB, getCtxI()))
7967       return indicatePessimisticFixpoint();
7968 
7969     return clampStateAndIndicateChange(getState(), T);
7970   }
7971 
7972   /// See AbstractAttribute::trackStatistics()
7973   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
7974 };
7975 
7976 struct AANoUndefReturned final
7977     : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> {
7978   AANoUndefReturned(const IRPosition &IRP, Attributor &A)
7979       : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {}
7980 
7981   /// See AbstractAttribute::trackStatistics()
7982   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
7983 };
7984 
7985 struct AANoUndefArgument final
7986     : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> {
7987   AANoUndefArgument(const IRPosition &IRP, Attributor &A)
7988       : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {}
7989 
7990   /// See AbstractAttribute::trackStatistics()
7991   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
7992 };
7993 
7994 struct AANoUndefCallSiteArgument final : AANoUndefFloating {
7995   AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
7996       : AANoUndefFloating(IRP, A) {}
7997 
7998   /// See AbstractAttribute::trackStatistics()
7999   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
8000 };
8001 
8002 struct AANoUndefCallSiteReturned final
8003     : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> {
8004   AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
8005       : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {}
8006 
8007   /// See AbstractAttribute::trackStatistics()
8008   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
8009 };
8010 } // namespace
8011 
8012 const char AAReturnedValues::ID = 0;
8013 const char AANoUnwind::ID = 0;
8014 const char AANoSync::ID = 0;
8015 const char AANoFree::ID = 0;
8016 const char AANonNull::ID = 0;
8017 const char AANoRecurse::ID = 0;
8018 const char AAWillReturn::ID = 0;
8019 const char AAUndefinedBehavior::ID = 0;
8020 const char AANoAlias::ID = 0;
8021 const char AAReachability::ID = 0;
8022 const char AANoReturn::ID = 0;
8023 const char AAIsDead::ID = 0;
8024 const char AADereferenceable::ID = 0;
8025 const char AAAlign::ID = 0;
8026 const char AANoCapture::ID = 0;
8027 const char AAValueSimplify::ID = 0;
8028 const char AAHeapToStack::ID = 0;
8029 const char AAPrivatizablePtr::ID = 0;
8030 const char AAMemoryBehavior::ID = 0;
8031 const char AAMemoryLocation::ID = 0;
8032 const char AAValueConstantRange::ID = 0;
8033 const char AAPotentialValues::ID = 0;
8034 const char AANoUndef::ID = 0;
8035 
8036 // Macro magic to create the static generator function for attributes that
8037 // follow the naming scheme.
8038 
8039 #define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \
8040   case IRPosition::PK:                                                         \
8041     llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
8042 
8043 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \
8044   case IRPosition::PK:                                                         \
8045     AA = new (A.Allocator) CLASS##SUFFIX(IRP, A);                              \
8046     ++NumAAs;                                                                  \
8047     break;
8048 
8049 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \
8050   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
8051     CLASS *AA = nullptr;                                                       \
8052     switch (IRP.getPositionKind()) {                                           \
8053       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
8054       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
8055       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
8056       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
8057       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
8058       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
8059       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
8060       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
8061     }                                                                          \
8062     return *AA;                                                                \
8063   }
8064 
8065 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \
8066   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
8067     CLASS *AA = nullptr;                                                       \
8068     switch (IRP.getPositionKind()) {                                           \
8069       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
8070       SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \
8071       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
8072       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
8073       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
8074       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
8075       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
8076       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
8077     }                                                                          \
8078     return *AA;                                                                \
8079   }
8080 
8081 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \
8082   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
8083     CLASS *AA = nullptr;                                                       \
8084     switch (IRP.getPositionKind()) {                                           \
8085       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
8086       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
8087       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
8088       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
8089       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
8090       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
8091       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
8092       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
8093     }                                                                          \
8094     return *AA;                                                                \
8095   }
8096 
8097 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \
8098   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
8099     CLASS *AA = nullptr;                                                       \
8100     switch (IRP.getPositionKind()) {                                           \
8101       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
8102       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
8103       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
8104       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
8105       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
8106       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
8107       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
8108       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
8109     }                                                                          \
8110     return *AA;                                                                \
8111   }
8112 
8113 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \
8114   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
8115     CLASS *AA = nullptr;                                                       \
8116     switch (IRP.getPositionKind()) {                                           \
8117       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
8118       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
8119       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
8120       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
8121       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
8122       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
8123       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
8124       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
8125     }                                                                          \
8126     return *AA;                                                                \
8127   }
8128 
8129 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
8130 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
8131 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
8132 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
8133 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
8134 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
8135 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
8136 
8137 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
8138 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
8139 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
8140 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
8141 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
8142 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
8143 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
8144 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
8145 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
8146 
8147 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
8148 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
8149 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
8150 
8151 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
8152 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
8153 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
8154 
8155 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
8156 
8157 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
8158 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
8159 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
8160 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
8161 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
8162 #undef SWITCH_PK_CREATE
8163 #undef SWITCH_PK_INV
8164