1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // See the Attributor.h file comment and the class descriptions in that file for
10 // more information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/Attributor.h"
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/SCCIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/CaptureTracking.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LazyValueInfo.h"
32 #include "llvm/Analysis/MemoryBuiltins.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ScalarEvolution.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/Argument.h"
38 #include "llvm/IR/Assumptions.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/NoFolder.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/IR/ValueHandle.h"
53 #include "llvm/Support/Alignment.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/GraphWriter.h"
58 #include "llvm/Support/MathExtras.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 #include "llvm/Transforms/Utils/ValueMapper.h"
62 #include <cassert>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "attributor"
67 
68 static cl::opt<bool> ManifestInternal(
69     "attributor-manifest-internal", cl::Hidden,
70     cl::desc("Manifest Attributor internal string attributes."),
71     cl::init(false));
72 
73 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
74                                        cl::Hidden);
75 
76 template <>
77 unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
78 
79 template <> unsigned llvm::PotentialLLVMValuesState::MaxPotentialValues = -1;
80 
81 static cl::opt<unsigned, true> MaxPotentialValues(
82     "attributor-max-potential-values", cl::Hidden,
83     cl::desc("Maximum number of potential values to be "
84              "tracked for each position."),
85     cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
86     cl::init(7));
87 
88 static cl::opt<int> MaxPotentialValuesIterations(
89     "attributor-max-potential-values-iterations", cl::Hidden,
90     cl::desc(
91         "Maximum number of iterations we keep dismantling potential values."),
92     cl::init(64));
93 
94 static cl::opt<unsigned> MaxInterferingAccesses(
95     "attributor-max-interfering-accesses", cl::Hidden,
96     cl::desc("Maximum number of interfering accesses to "
97              "check before assuming all might interfere."),
98     cl::init(6));
99 
100 STATISTIC(NumAAs, "Number of abstract attributes created");
101 
102 // Some helper macros to deal with statistics tracking.
103 //
104 // Usage:
105 // For simple IR attribute tracking overload trackStatistics in the abstract
106 // attribute and choose the right STATS_DECLTRACK_********* macro,
107 // e.g.,:
108 //  void trackStatistics() const override {
109 //    STATS_DECLTRACK_ARG_ATTR(returned)
110 //  }
111 // If there is a single "increment" side one can use the macro
112 // STATS_DECLTRACK with a custom message. If there are multiple increment
113 // sides, STATS_DECL and STATS_TRACK can also be used separately.
114 //
115 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \
116   ("Number of " #TYPE " marked '" #NAME "'")
117 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
118 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
119 #define STATS_DECL(NAME, TYPE, MSG)                                            \
120   STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
121 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
122 #define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \
123   {                                                                            \
124     STATS_DECL(NAME, TYPE, MSG)                                                \
125     STATS_TRACK(NAME, TYPE)                                                    \
126   }
127 #define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \
128   STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
129 #define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \
130   STATS_DECLTRACK(NAME, CSArguments,                                           \
131                   BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
132 #define STATS_DECLTRACK_FN_ATTR(NAME)                                          \
133   STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
134 #define STATS_DECLTRACK_CS_ATTR(NAME)                                          \
135   STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
136 #define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \
137   STATS_DECLTRACK(NAME, FunctionReturn,                                        \
138                   BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
139 #define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \
140   STATS_DECLTRACK(NAME, CSReturn,                                              \
141                   BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
142 #define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \
143   STATS_DECLTRACK(NAME, Floating,                                              \
144                   ("Number of floating values known to be '" #NAME "'"))
145 
146 // Specialization of the operator<< for abstract attributes subclasses. This
147 // disambiguates situations where multiple operators are applicable.
148 namespace llvm {
149 #define PIPE_OPERATOR(CLASS)                                                   \
150   raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) {                  \
151     return OS << static_cast<const AbstractAttribute &>(AA);                   \
152   }
153 
154 PIPE_OPERATOR(AAIsDead)
155 PIPE_OPERATOR(AANoUnwind)
156 PIPE_OPERATOR(AANoSync)
157 PIPE_OPERATOR(AANoRecurse)
158 PIPE_OPERATOR(AAWillReturn)
159 PIPE_OPERATOR(AANoReturn)
160 PIPE_OPERATOR(AAReturnedValues)
161 PIPE_OPERATOR(AANonNull)
162 PIPE_OPERATOR(AANoAlias)
163 PIPE_OPERATOR(AADereferenceable)
164 PIPE_OPERATOR(AAAlign)
165 PIPE_OPERATOR(AAInstanceInfo)
166 PIPE_OPERATOR(AANoCapture)
167 PIPE_OPERATOR(AAValueSimplify)
168 PIPE_OPERATOR(AANoFree)
169 PIPE_OPERATOR(AAHeapToStack)
170 PIPE_OPERATOR(AAReachability)
171 PIPE_OPERATOR(AAMemoryBehavior)
172 PIPE_OPERATOR(AAMemoryLocation)
173 PIPE_OPERATOR(AAValueConstantRange)
174 PIPE_OPERATOR(AAPrivatizablePtr)
175 PIPE_OPERATOR(AAUndefinedBehavior)
176 PIPE_OPERATOR(AAPotentialConstantValues)
177 PIPE_OPERATOR(AAPotentialValues)
178 PIPE_OPERATOR(AANoUndef)
179 PIPE_OPERATOR(AACallEdges)
180 PIPE_OPERATOR(AAFunctionReachability)
181 PIPE_OPERATOR(AAPointerInfo)
182 PIPE_OPERATOR(AAAssumptionInfo)
183 
184 #undef PIPE_OPERATOR
185 
186 template <>
187 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
188                                                      const DerefState &R) {
189   ChangeStatus CS0 =
190       clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
191   ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
192   return CS0 | CS1;
193 }
194 
195 } // namespace llvm
196 
197 /// Checks if a type could have padding bytes.
198 static bool isDenselyPacked(Type *Ty, const DataLayout &DL) {
199   // There is no size information, so be conservative.
200   if (!Ty->isSized())
201     return false;
202 
203   // If the alloc size is not equal to the storage size, then there are padding
204   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
205   if (DL.getTypeSizeInBits(Ty) != DL.getTypeAllocSizeInBits(Ty))
206     return false;
207 
208   // FIXME: This isn't the right way to check for padding in vectors with
209   // non-byte-size elements.
210   if (VectorType *SeqTy = dyn_cast<VectorType>(Ty))
211     return isDenselyPacked(SeqTy->getElementType(), DL);
212 
213   // For array types, check for padding within members.
214   if (ArrayType *SeqTy = dyn_cast<ArrayType>(Ty))
215     return isDenselyPacked(SeqTy->getElementType(), DL);
216 
217   if (!isa<StructType>(Ty))
218     return true;
219 
220   // Check for padding within and between elements of a struct.
221   StructType *StructTy = cast<StructType>(Ty);
222   const StructLayout *Layout = DL.getStructLayout(StructTy);
223   uint64_t StartPos = 0;
224   for (unsigned I = 0, E = StructTy->getNumElements(); I < E; ++I) {
225     Type *ElTy = StructTy->getElementType(I);
226     if (!isDenselyPacked(ElTy, DL))
227       return false;
228     if (StartPos != Layout->getElementOffsetInBits(I))
229       return false;
230     StartPos += DL.getTypeAllocSizeInBits(ElTy);
231   }
232 
233   return true;
234 }
235 
236 /// Get pointer operand of memory accessing instruction. If \p I is
237 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
238 /// is set to false and the instruction is volatile, return nullptr.
239 static const Value *getPointerOperand(const Instruction *I,
240                                       bool AllowVolatile) {
241   if (!AllowVolatile && I->isVolatile())
242     return nullptr;
243 
244   if (auto *LI = dyn_cast<LoadInst>(I)) {
245     return LI->getPointerOperand();
246   }
247 
248   if (auto *SI = dyn_cast<StoreInst>(I)) {
249     return SI->getPointerOperand();
250   }
251 
252   if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
253     return CXI->getPointerOperand();
254   }
255 
256   if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
257     return RMWI->getPointerOperand();
258   }
259 
260   return nullptr;
261 }
262 
263 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
264 /// advanced by \p Offset bytes. To aid later analysis the method tries to build
265 /// getelement pointer instructions that traverse the natural type of \p Ptr if
266 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence
267 /// through a cast to i8*.
268 ///
269 /// TODO: This could probably live somewhere more prominantly if it doesn't
270 ///       already exist.
271 static Value *constructPointer(Type *ResTy, Type *PtrElemTy, Value *Ptr,
272                                int64_t Offset, IRBuilder<NoFolder> &IRB,
273                                const DataLayout &DL) {
274   assert(Offset >= 0 && "Negative offset not supported yet!");
275   LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
276                     << "-bytes as " << *ResTy << "\n");
277 
278   if (Offset) {
279     Type *Ty = PtrElemTy;
280     APInt IntOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), Offset);
281     SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(Ty, IntOffset);
282 
283     SmallVector<Value *, 4> ValIndices;
284     std::string GEPName = Ptr->getName().str();
285     for (const APInt &Index : IntIndices) {
286       ValIndices.push_back(IRB.getInt(Index));
287       GEPName += "." + std::to_string(Index.getZExtValue());
288     }
289 
290     // Create a GEP for the indices collected above.
291     Ptr = IRB.CreateGEP(PtrElemTy, Ptr, ValIndices, GEPName);
292 
293     // If an offset is left we use byte-wise adjustment.
294     if (IntOffset != 0) {
295       Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
296       Ptr = IRB.CreateGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(IntOffset),
297                           GEPName + ".b" + Twine(IntOffset.getZExtValue()));
298     }
299   }
300 
301   // Ensure the result has the requested type.
302   Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, ResTy,
303                                                 Ptr->getName() + ".cast");
304 
305   LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
306   return Ptr;
307 }
308 
309 bool AA::getAssumedUnderlyingObjects(Attributor &A, const Value &Ptr,
310                                      SmallSetVector<Value *, 8> &Objects,
311                                      const AbstractAttribute &QueryingAA,
312                                      const Instruction *CtxI,
313                                      bool &UsedAssumedInformation,
314                                      AA::ValueScope S,
315                                      SmallPtrSetImpl<Value *> *SeenObjects) {
316   SmallPtrSet<Value *, 8> LocalSeenObjects;
317   if (!SeenObjects)
318     SeenObjects = &LocalSeenObjects;
319 
320   SmallVector<AA::ValueAndContext> Values;
321   if (!A.getAssumedSimplifiedValues(IRPosition::value(Ptr), &QueryingAA, Values,
322                                     S, UsedAssumedInformation)) {
323     Objects.insert(const_cast<Value *>(&Ptr));
324     return true;
325   }
326 
327   for (auto &VAC : Values) {
328     Value *UO = getUnderlyingObject(VAC.getValue());
329     if (UO && UO != VAC.getValue() && SeenObjects->insert(UO).second) {
330       if (!getAssumedUnderlyingObjects(A, *UO, Objects, QueryingAA,
331                                        VAC.getCtxI(), UsedAssumedInformation, S,
332                                        SeenObjects))
333         return false;
334       continue;
335     }
336     Objects.insert(VAC.getValue());
337   }
338   return true;
339 }
340 
341 static const Value *
342 stripAndAccumulateOffsets(Attributor &A, const AbstractAttribute &QueryingAA,
343                           const Value *Val, const DataLayout &DL, APInt &Offset,
344                           bool GetMinOffset, bool AllowNonInbounds,
345                           bool UseAssumed = false) {
346 
347   auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
348     const IRPosition &Pos = IRPosition::value(V);
349     // Only track dependence if we are going to use the assumed info.
350     const AAValueConstantRange &ValueConstantRangeAA =
351         A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
352                                          UseAssumed ? DepClassTy::OPTIONAL
353                                                     : DepClassTy::NONE);
354     ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed()
355                                      : ValueConstantRangeAA.getKnown();
356     if (Range.isFullSet())
357       return false;
358 
359     // We can only use the lower part of the range because the upper part can
360     // be higher than what the value can really be.
361     if (GetMinOffset)
362       ROffset = Range.getSignedMin();
363     else
364       ROffset = Range.getSignedMax();
365     return true;
366   };
367 
368   return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
369                                                 /* AllowInvariant */ true,
370                                                 AttributorAnalysis);
371 }
372 
373 static const Value *
374 getMinimalBaseOfPointer(Attributor &A, const AbstractAttribute &QueryingAA,
375                         const Value *Ptr, int64_t &BytesOffset,
376                         const DataLayout &DL, bool AllowNonInbounds = false) {
377   APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
378   const Value *Base =
379       stripAndAccumulateOffsets(A, QueryingAA, Ptr, DL, OffsetAPInt,
380                                 /* GetMinOffset */ true, AllowNonInbounds);
381 
382   BytesOffset = OffsetAPInt.getSExtValue();
383   return Base;
384 }
385 
386 /// Clamp the information known for all returned values of a function
387 /// (identified by \p QueryingAA) into \p S.
388 template <typename AAType, typename StateType = typename AAType::StateType>
389 static void clampReturnedValueStates(
390     Attributor &A, const AAType &QueryingAA, StateType &S,
391     const IRPosition::CallBaseContext *CBContext = nullptr) {
392   LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
393                     << QueryingAA << " into " << S << "\n");
394 
395   assert((QueryingAA.getIRPosition().getPositionKind() ==
396               IRPosition::IRP_RETURNED ||
397           QueryingAA.getIRPosition().getPositionKind() ==
398               IRPosition::IRP_CALL_SITE_RETURNED) &&
399          "Can only clamp returned value states for a function returned or call "
400          "site returned position!");
401 
402   // Use an optional state as there might not be any return values and we want
403   // to join (IntegerState::operator&) the state of all there are.
404   Optional<StateType> T;
405 
406   // Callback for each possibly returned value.
407   auto CheckReturnValue = [&](Value &RV) -> bool {
408     const IRPosition &RVPos = IRPosition::value(RV, CBContext);
409     const AAType &AA =
410         A.getAAFor<AAType>(QueryingAA, RVPos, DepClassTy::REQUIRED);
411     LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
412                       << " @ " << RVPos << "\n");
413     const StateType &AAS = AA.getState();
414     if (!T)
415       T = StateType::getBestState(AAS);
416     *T &= AAS;
417     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
418                       << "\n");
419     return T->isValidState();
420   };
421 
422   if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
423     S.indicatePessimisticFixpoint();
424   else if (T)
425     S ^= *T;
426 }
427 
428 namespace {
429 /// Helper class for generic deduction: return value -> returned position.
430 template <typename AAType, typename BaseType,
431           typename StateType = typename BaseType::StateType,
432           bool PropagateCallBaseContext = false>
433 struct AAReturnedFromReturnedValues : public BaseType {
434   AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
435       : BaseType(IRP, A) {}
436 
437   /// See AbstractAttribute::updateImpl(...).
438   ChangeStatus updateImpl(Attributor &A) override {
439     StateType S(StateType::getBestState(this->getState()));
440     clampReturnedValueStates<AAType, StateType>(
441         A, *this, S,
442         PropagateCallBaseContext ? this->getCallBaseContext() : nullptr);
443     // TODO: If we know we visited all returned values, thus no are assumed
444     // dead, we can take the known information from the state T.
445     return clampStateAndIndicateChange<StateType>(this->getState(), S);
446   }
447 };
448 
449 /// Clamp the information known at all call sites for a given argument
450 /// (identified by \p QueryingAA) into \p S.
451 template <typename AAType, typename StateType = typename AAType::StateType>
452 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
453                                         StateType &S) {
454   LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
455                     << QueryingAA << " into " << S << "\n");
456 
457   assert(QueryingAA.getIRPosition().getPositionKind() ==
458              IRPosition::IRP_ARGUMENT &&
459          "Can only clamp call site argument states for an argument position!");
460 
461   // Use an optional state as there might not be any return values and we want
462   // to join (IntegerState::operator&) the state of all there are.
463   Optional<StateType> T;
464 
465   // The argument number which is also the call site argument number.
466   unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo();
467 
468   auto CallSiteCheck = [&](AbstractCallSite ACS) {
469     const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
470     // Check if a coresponding argument was found or if it is on not associated
471     // (which can happen for callback calls).
472     if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
473       return false;
474 
475     const AAType &AA =
476         A.getAAFor<AAType>(QueryingAA, ACSArgPos, DepClassTy::REQUIRED);
477     LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
478                       << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
479     const StateType &AAS = AA.getState();
480     if (!T)
481       T = StateType::getBestState(AAS);
482     *T &= AAS;
483     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
484                       << "\n");
485     return T->isValidState();
486   };
487 
488   bool UsedAssumedInformation = false;
489   if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
490                               UsedAssumedInformation))
491     S.indicatePessimisticFixpoint();
492   else if (T)
493     S ^= *T;
494 }
495 
496 /// This function is the bridge between argument position and the call base
497 /// context.
498 template <typename AAType, typename BaseType,
499           typename StateType = typename AAType::StateType>
500 bool getArgumentStateFromCallBaseContext(Attributor &A,
501                                          BaseType &QueryingAttribute,
502                                          IRPosition &Pos, StateType &State) {
503   assert((Pos.getPositionKind() == IRPosition::IRP_ARGUMENT) &&
504          "Expected an 'argument' position !");
505   const CallBase *CBContext = Pos.getCallBaseContext();
506   if (!CBContext)
507     return false;
508 
509   int ArgNo = Pos.getCallSiteArgNo();
510   assert(ArgNo >= 0 && "Invalid Arg No!");
511 
512   const auto &AA = A.getAAFor<AAType>(
513       QueryingAttribute, IRPosition::callsite_argument(*CBContext, ArgNo),
514       DepClassTy::REQUIRED);
515   const StateType &CBArgumentState =
516       static_cast<const StateType &>(AA.getState());
517 
518   LLVM_DEBUG(dbgs() << "[Attributor] Briding Call site context to argument"
519                     << "Position:" << Pos << "CB Arg state:" << CBArgumentState
520                     << "\n");
521 
522   // NOTE: If we want to do call site grouping it should happen here.
523   State ^= CBArgumentState;
524   return true;
525 }
526 
527 /// Helper class for generic deduction: call site argument -> argument position.
528 template <typename AAType, typename BaseType,
529           typename StateType = typename AAType::StateType,
530           bool BridgeCallBaseContext = false>
531 struct AAArgumentFromCallSiteArguments : public BaseType {
532   AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
533       : BaseType(IRP, A) {}
534 
535   /// See AbstractAttribute::updateImpl(...).
536   ChangeStatus updateImpl(Attributor &A) override {
537     StateType S = StateType::getBestState(this->getState());
538 
539     if (BridgeCallBaseContext) {
540       bool Success =
541           getArgumentStateFromCallBaseContext<AAType, BaseType, StateType>(
542               A, *this, this->getIRPosition(), S);
543       if (Success)
544         return clampStateAndIndicateChange<StateType>(this->getState(), S);
545     }
546     clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
547 
548     // TODO: If we know we visited all incoming values, thus no are assumed
549     // dead, we can take the known information from the state T.
550     return clampStateAndIndicateChange<StateType>(this->getState(), S);
551   }
552 };
553 
554 /// Helper class for generic replication: function returned -> cs returned.
555 template <typename AAType, typename BaseType,
556           typename StateType = typename BaseType::StateType,
557           bool IntroduceCallBaseContext = false>
558 struct AACallSiteReturnedFromReturned : public BaseType {
559   AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A)
560       : BaseType(IRP, A) {}
561 
562   /// See AbstractAttribute::updateImpl(...).
563   ChangeStatus updateImpl(Attributor &A) override {
564     assert(this->getIRPosition().getPositionKind() ==
565                IRPosition::IRP_CALL_SITE_RETURNED &&
566            "Can only wrap function returned positions for call site returned "
567            "positions!");
568     auto &S = this->getState();
569 
570     const Function *AssociatedFunction =
571         this->getIRPosition().getAssociatedFunction();
572     if (!AssociatedFunction)
573       return S.indicatePessimisticFixpoint();
574 
575     CallBase &CBContext = cast<CallBase>(this->getAnchorValue());
576     if (IntroduceCallBaseContext)
577       LLVM_DEBUG(dbgs() << "[Attributor] Introducing call base context:"
578                         << CBContext << "\n");
579 
580     IRPosition FnPos = IRPosition::returned(
581         *AssociatedFunction, IntroduceCallBaseContext ? &CBContext : nullptr);
582     const AAType &AA = A.getAAFor<AAType>(*this, FnPos, DepClassTy::REQUIRED);
583     return clampStateAndIndicateChange(S, AA.getState());
584   }
585 };
586 
587 /// Helper function to accumulate uses.
588 template <class AAType, typename StateType = typename AAType::StateType>
589 static void followUsesInContext(AAType &AA, Attributor &A,
590                                 MustBeExecutedContextExplorer &Explorer,
591                                 const Instruction *CtxI,
592                                 SetVector<const Use *> &Uses,
593                                 StateType &State) {
594   auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
595   for (unsigned u = 0; u < Uses.size(); ++u) {
596     const Use *U = Uses[u];
597     if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
598       bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
599       if (Found && AA.followUseInMBEC(A, U, UserI, State))
600         for (const Use &Us : UserI->uses())
601           Uses.insert(&Us);
602     }
603   }
604 }
605 
606 /// Use the must-be-executed-context around \p I to add information into \p S.
607 /// The AAType class is required to have `followUseInMBEC` method with the
608 /// following signature and behaviour:
609 ///
610 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
611 /// U - Underlying use.
612 /// I - The user of the \p U.
613 /// Returns true if the value should be tracked transitively.
614 ///
615 template <class AAType, typename StateType = typename AAType::StateType>
616 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
617                              Instruction &CtxI) {
618 
619   // Container for (transitive) uses of the associated value.
620   SetVector<const Use *> Uses;
621   for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
622     Uses.insert(&U);
623 
624   MustBeExecutedContextExplorer &Explorer =
625       A.getInfoCache().getMustBeExecutedContextExplorer();
626 
627   followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S);
628 
629   if (S.isAtFixpoint())
630     return;
631 
632   SmallVector<const BranchInst *, 4> BrInsts;
633   auto Pred = [&](const Instruction *I) {
634     if (const BranchInst *Br = dyn_cast<BranchInst>(I))
635       if (Br->isConditional())
636         BrInsts.push_back(Br);
637     return true;
638   };
639 
640   // Here, accumulate conditional branch instructions in the context. We
641   // explore the child paths and collect the known states. The disjunction of
642   // those states can be merged to its own state. Let ParentState_i be a state
643   // to indicate the known information for an i-th branch instruction in the
644   // context. ChildStates are created for its successors respectively.
645   //
646   // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
647   // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
648   //      ...
649   // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
650   //
651   // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
652   //
653   // FIXME: Currently, recursive branches are not handled. For example, we
654   // can't deduce that ptr must be dereferenced in below function.
655   //
656   // void f(int a, int c, int *ptr) {
657   //    if(a)
658   //      if (b) {
659   //        *ptr = 0;
660   //      } else {
661   //        *ptr = 1;
662   //      }
663   //    else {
664   //      if (b) {
665   //        *ptr = 0;
666   //      } else {
667   //        *ptr = 1;
668   //      }
669   //    }
670   // }
671 
672   Explorer.checkForAllContext(&CtxI, Pred);
673   for (const BranchInst *Br : BrInsts) {
674     StateType ParentState;
675 
676     // The known state of the parent state is a conjunction of children's
677     // known states so it is initialized with a best state.
678     ParentState.indicateOptimisticFixpoint();
679 
680     for (const BasicBlock *BB : Br->successors()) {
681       StateType ChildState;
682 
683       size_t BeforeSize = Uses.size();
684       followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState);
685 
686       // Erase uses which only appear in the child.
687       for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
688         It = Uses.erase(It);
689 
690       ParentState &= ChildState;
691     }
692 
693     // Use only known state.
694     S += ParentState;
695   }
696 }
697 } // namespace
698 
699 /// ------------------------ PointerInfo ---------------------------------------
700 
701 namespace llvm {
702 namespace AA {
703 namespace PointerInfo {
704 
705 struct State;
706 
707 } // namespace PointerInfo
708 } // namespace AA
709 
710 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage.
711 template <>
712 struct DenseMapInfo<AAPointerInfo::Access> : DenseMapInfo<Instruction *> {
713   using Access = AAPointerInfo::Access;
714   static inline Access getEmptyKey();
715   static inline Access getTombstoneKey();
716   static unsigned getHashValue(const Access &A);
717   static bool isEqual(const Access &LHS, const Access &RHS);
718 };
719 
720 /// Helper that allows OffsetAndSize as a key in a DenseMap.
721 template <>
722 struct DenseMapInfo<AAPointerInfo ::OffsetAndSize>
723     : DenseMapInfo<std::pair<int64_t, int64_t>> {};
724 
725 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage ignoring everythign
726 /// but the instruction
727 struct AccessAsInstructionInfo : DenseMapInfo<Instruction *> {
728   using Base = DenseMapInfo<Instruction *>;
729   using Access = AAPointerInfo::Access;
730   static inline Access getEmptyKey();
731   static inline Access getTombstoneKey();
732   static unsigned getHashValue(const Access &A);
733   static bool isEqual(const Access &LHS, const Access &RHS);
734 };
735 
736 } // namespace llvm
737 
738 /// A type to track pointer/struct usage and accesses for AAPointerInfo.
739 struct AA::PointerInfo::State : public AbstractState {
740 
741   ~State() {
742     // We do not delete the Accesses objects but need to destroy them still.
743     for (auto &It : AccessBins)
744       It.second->~Accesses();
745   }
746 
747   /// Return the best possible representable state.
748   static State getBestState(const State &SIS) { return State(); }
749 
750   /// Return the worst possible representable state.
751   static State getWorstState(const State &SIS) {
752     State R;
753     R.indicatePessimisticFixpoint();
754     return R;
755   }
756 
757   State() = default;
758   State(State &&SIS) : AccessBins(std::move(SIS.AccessBins)) {
759     SIS.AccessBins.clear();
760   }
761 
762   const State &getAssumed() const { return *this; }
763 
764   /// See AbstractState::isValidState().
765   bool isValidState() const override { return BS.isValidState(); }
766 
767   /// See AbstractState::isAtFixpoint().
768   bool isAtFixpoint() const override { return BS.isAtFixpoint(); }
769 
770   /// See AbstractState::indicateOptimisticFixpoint().
771   ChangeStatus indicateOptimisticFixpoint() override {
772     BS.indicateOptimisticFixpoint();
773     return ChangeStatus::UNCHANGED;
774   }
775 
776   /// See AbstractState::indicatePessimisticFixpoint().
777   ChangeStatus indicatePessimisticFixpoint() override {
778     BS.indicatePessimisticFixpoint();
779     return ChangeStatus::CHANGED;
780   }
781 
782   State &operator=(const State &R) {
783     if (this == &R)
784       return *this;
785     BS = R.BS;
786     AccessBins = R.AccessBins;
787     return *this;
788   }
789 
790   State &operator=(State &&R) {
791     if (this == &R)
792       return *this;
793     std::swap(BS, R.BS);
794     std::swap(AccessBins, R.AccessBins);
795     return *this;
796   }
797 
798   bool operator==(const State &R) const {
799     if (BS != R.BS)
800       return false;
801     if (AccessBins.size() != R.AccessBins.size())
802       return false;
803     auto It = begin(), RIt = R.begin(), E = end();
804     while (It != E) {
805       if (It->getFirst() != RIt->getFirst())
806         return false;
807       auto &Accs = It->getSecond();
808       auto &RAccs = RIt->getSecond();
809       if (Accs->size() != RAccs->size())
810         return false;
811       for (const auto &ZipIt : llvm::zip(*Accs, *RAccs))
812         if (std::get<0>(ZipIt) != std::get<1>(ZipIt))
813           return false;
814       ++It;
815       ++RIt;
816     }
817     return true;
818   }
819   bool operator!=(const State &R) const { return !(*this == R); }
820 
821   /// We store accesses in a set with the instruction as key.
822   struct Accesses {
823     SmallVector<AAPointerInfo::Access, 4> Accesses;
824     DenseMap<const Instruction *, unsigned> Map;
825 
826     unsigned size() const { return Accesses.size(); }
827 
828     using vec_iterator = decltype(Accesses)::iterator;
829     vec_iterator begin() { return Accesses.begin(); }
830     vec_iterator end() { return Accesses.end(); }
831 
832     using iterator = decltype(Map)::const_iterator;
833     iterator find(AAPointerInfo::Access &Acc) {
834       return Map.find(Acc.getRemoteInst());
835     }
836     iterator find_end() { return Map.end(); }
837 
838     AAPointerInfo::Access &get(iterator &It) {
839       return Accesses[It->getSecond()];
840     }
841 
842     void insert(AAPointerInfo::Access &Acc) {
843       Map[Acc.getRemoteInst()] = Accesses.size();
844       Accesses.push_back(Acc);
845     }
846   };
847 
848   /// We store all accesses in bins denoted by their offset and size.
849   using AccessBinsTy = DenseMap<AAPointerInfo::OffsetAndSize, Accesses *>;
850 
851   AccessBinsTy::const_iterator begin() const { return AccessBins.begin(); }
852   AccessBinsTy::const_iterator end() const { return AccessBins.end(); }
853 
854 protected:
855   /// The bins with all the accesses for the associated pointer.
856   AccessBinsTy AccessBins;
857 
858   /// Add a new access to the state at offset \p Offset and with size \p Size.
859   /// The access is associated with \p I, writes \p Content (if anything), and
860   /// is of kind \p Kind.
861   /// \Returns CHANGED, if the state changed, UNCHANGED otherwise.
862   ChangeStatus addAccess(Attributor &A, int64_t Offset, int64_t Size,
863                          Instruction &I, Optional<Value *> Content,
864                          AAPointerInfo::AccessKind Kind, Type *Ty,
865                          Instruction *RemoteI = nullptr,
866                          Accesses *BinPtr = nullptr) {
867     AAPointerInfo::OffsetAndSize Key{Offset, Size};
868     Accesses *&Bin = BinPtr ? BinPtr : AccessBins[Key];
869     if (!Bin)
870       Bin = new (A.Allocator) Accesses;
871     AAPointerInfo::Access Acc(&I, RemoteI ? RemoteI : &I, Content, Kind, Ty);
872     // Check if we have an access for this instruction in this bin, if not,
873     // simply add it.
874     auto It = Bin->find(Acc);
875     if (It == Bin->find_end()) {
876       Bin->insert(Acc);
877       return ChangeStatus::CHANGED;
878     }
879     // If the existing access is the same as then new one, nothing changed.
880     AAPointerInfo::Access &Current = Bin->get(It);
881     AAPointerInfo::Access Before = Current;
882     // The new one will be combined with the existing one.
883     Current &= Acc;
884     return Current == Before ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED;
885   }
886 
887   /// See AAPointerInfo::forallInterferingAccesses.
888   bool forallInterferingAccesses(
889       AAPointerInfo::OffsetAndSize OAS,
890       function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
891     if (!isValidState())
892       return false;
893 
894     for (auto &It : AccessBins) {
895       AAPointerInfo::OffsetAndSize ItOAS = It.getFirst();
896       if (!OAS.mayOverlap(ItOAS))
897         continue;
898       bool IsExact = OAS == ItOAS && !OAS.offsetOrSizeAreUnknown();
899       for (auto &Access : *It.getSecond())
900         if (!CB(Access, IsExact))
901           return false;
902     }
903     return true;
904   }
905 
906   /// See AAPointerInfo::forallInterferingAccesses.
907   bool forallInterferingAccesses(
908       Instruction &I,
909       function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
910     if (!isValidState())
911       return false;
912 
913     // First find the offset and size of I.
914     AAPointerInfo::OffsetAndSize OAS(-1, -1);
915     for (auto &It : AccessBins) {
916       for (auto &Access : *It.getSecond()) {
917         if (Access.getRemoteInst() == &I) {
918           OAS = It.getFirst();
919           break;
920         }
921       }
922       if (OAS.getSize() != -1)
923         break;
924     }
925     // No access for I was found, we are done.
926     if (OAS.getSize() == -1)
927       return true;
928 
929     // Now that we have an offset and size, find all overlapping ones and use
930     // the callback on the accesses.
931     return forallInterferingAccesses(OAS, CB);
932   }
933 
934 private:
935   /// State to track fixpoint and validity.
936   BooleanState BS;
937 };
938 
939 namespace {
940 struct AAPointerInfoImpl
941     : public StateWrapper<AA::PointerInfo::State, AAPointerInfo> {
942   using BaseTy = StateWrapper<AA::PointerInfo::State, AAPointerInfo>;
943   AAPointerInfoImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
944 
945   /// See AbstractAttribute::getAsStr().
946   const std::string getAsStr() const override {
947     return std::string("PointerInfo ") +
948            (isValidState() ? (std::string("#") +
949                               std::to_string(AccessBins.size()) + " bins")
950                            : "<invalid>");
951   }
952 
953   /// See AbstractAttribute::manifest(...).
954   ChangeStatus manifest(Attributor &A) override {
955     return AAPointerInfo::manifest(A);
956   }
957 
958   bool forallInterferingAccesses(
959       OffsetAndSize OAS,
960       function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
961       const override {
962     return State::forallInterferingAccesses(OAS, CB);
963   }
964 
965   bool
966   forallInterferingAccesses(Attributor &A, const AbstractAttribute &QueryingAA,
967                             Instruction &I,
968                             function_ref<bool(const Access &, bool)> UserCB,
969                             bool &HasBeenWrittenTo) const override {
970     HasBeenWrittenTo = false;
971 
972     SmallPtrSet<const Access *, 8> DominatingWrites;
973     SmallVector<std::pair<const Access *, bool>, 8> InterferingAccesses;
974 
975     Function &Scope = *I.getFunction();
976     const auto &NoSyncAA = A.getAAFor<AANoSync>(
977         QueryingAA, IRPosition::function(Scope), DepClassTy::OPTIONAL);
978     const auto *ExecDomainAA = A.lookupAAFor<AAExecutionDomain>(
979         IRPosition::function(Scope), &QueryingAA, DepClassTy::OPTIONAL);
980     const bool NoSync = NoSyncAA.isAssumedNoSync();
981 
982     // Helper to determine if we need to consider threading, which we cannot
983     // right now. However, if the function is (assumed) nosync or the thread
984     // executing all instructions is the main thread only we can ignore
985     // threading.
986     auto CanIgnoreThreading = [&](const Instruction &I) -> bool {
987       if (NoSync)
988         return true;
989       if (ExecDomainAA && ExecDomainAA->isExecutedByInitialThreadOnly(I))
990         return true;
991       return false;
992     };
993 
994     // Helper to determine if the access is executed by the same thread as the
995     // load, for now it is sufficient to avoid any potential threading effects
996     // as we cannot deal with them anyway.
997     auto IsSameThreadAsLoad = [&](const Access &Acc) -> bool {
998       return CanIgnoreThreading(*Acc.getLocalInst());
999     };
1000 
1001     // TODO: Use inter-procedural reachability and dominance.
1002     const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
1003         QueryingAA, IRPosition::function(Scope), DepClassTy::OPTIONAL);
1004 
1005     const bool FindInterferingWrites = I.mayReadFromMemory();
1006     const bool FindInterferingReads = I.mayWriteToMemory();
1007     const bool UseDominanceReasoning =
1008         FindInterferingWrites && NoRecurseAA.isKnownNoRecurse();
1009     const bool CanUseCFGResoning = CanIgnoreThreading(I);
1010     InformationCache &InfoCache = A.getInfoCache();
1011     const DominatorTree *DT =
1012         InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(Scope);
1013 
1014     enum GPUAddressSpace : unsigned {
1015       Generic = 0,
1016       Global = 1,
1017       Shared = 3,
1018       Constant = 4,
1019       Local = 5,
1020     };
1021 
1022     // Helper to check if a value has "kernel lifetime", that is it will not
1023     // outlive a GPU kernel. This is true for shared, constant, and local
1024     // globals on AMD and NVIDIA GPUs.
1025     auto HasKernelLifetime = [&](Value *V, Module &M) {
1026       Triple T(M.getTargetTriple());
1027       if (!(T.isAMDGPU() || T.isNVPTX()))
1028         return false;
1029       switch (V->getType()->getPointerAddressSpace()) {
1030       case GPUAddressSpace::Shared:
1031       case GPUAddressSpace::Constant:
1032       case GPUAddressSpace::Local:
1033         return true;
1034       default:
1035         return false;
1036       };
1037     };
1038 
1039     // The IsLiveInCalleeCB will be used by the AA::isPotentiallyReachable query
1040     // to determine if we should look at reachability from the callee. For
1041     // certain pointers we know the lifetime and we do not have to step into the
1042     // callee to determine reachability as the pointer would be dead in the
1043     // callee. See the conditional initialization below.
1044     std::function<bool(const Function &)> IsLiveInCalleeCB;
1045 
1046     if (auto *AI = dyn_cast<AllocaInst>(&getAssociatedValue())) {
1047       // If the alloca containing function is not recursive the alloca
1048       // must be dead in the callee.
1049       const Function *AIFn = AI->getFunction();
1050       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
1051           *this, IRPosition::function(*AIFn), DepClassTy::OPTIONAL);
1052       if (NoRecurseAA.isAssumedNoRecurse()) {
1053         IsLiveInCalleeCB = [AIFn](const Function &Fn) { return AIFn != &Fn; };
1054       }
1055     } else if (auto *GV = dyn_cast<GlobalValue>(&getAssociatedValue())) {
1056       // If the global has kernel lifetime we can stop if we reach a kernel
1057       // as it is "dead" in the (unknown) callees.
1058       if (HasKernelLifetime(GV, *GV->getParent()))
1059         IsLiveInCalleeCB = [](const Function &Fn) {
1060           return !Fn.hasFnAttribute("kernel");
1061         };
1062     }
1063 
1064     auto AccessCB = [&](const Access &Acc, bool Exact) {
1065       if ((!FindInterferingWrites || !Acc.isWrite()) &&
1066           (!FindInterferingReads || !Acc.isRead()))
1067         return true;
1068 
1069       bool Dominates = DT && Exact && Acc.isMustAccess() &&
1070                        (Acc.getLocalInst()->getFunction() == &Scope) &&
1071                        DT->dominates(Acc.getRemoteInst(), &I);
1072       if (FindInterferingWrites && Dominates)
1073         HasBeenWrittenTo = true;
1074 
1075       // For now we only filter accesses based on CFG reasoning which does not
1076       // work yet if we have threading effects, or the access is complicated.
1077       if (CanUseCFGResoning && Dominates && UseDominanceReasoning &&
1078           IsSameThreadAsLoad(Acc))
1079         DominatingWrites.insert(&Acc);
1080 
1081       InterferingAccesses.push_back({&Acc, Exact});
1082       return true;
1083     };
1084     if (!State::forallInterferingAccesses(I, AccessCB))
1085       return false;
1086 
1087     if (HasBeenWrittenTo) {
1088       const Function *ScopePtr = &Scope;
1089       IsLiveInCalleeCB = [ScopePtr](const Function &Fn) {
1090         return ScopePtr != &Fn;
1091       };
1092     }
1093 
1094     // Helper to determine if we can skip a specific write access. This is in
1095     // the worst case quadratic as we are looking for another write that will
1096     // hide the effect of this one.
1097     auto CanSkipAccess = [&](const Access &Acc, bool Exact) {
1098       if ((!Acc.isWrite() ||
1099            !AA::isPotentiallyReachable(A, *Acc.getLocalInst(), I, QueryingAA,
1100                                        IsLiveInCalleeCB)) &&
1101           (!Acc.isRead() ||
1102            !AA::isPotentiallyReachable(A, I, *Acc.getLocalInst(), QueryingAA,
1103                                        IsLiveInCalleeCB)))
1104         return true;
1105 
1106       if (!DT || !UseDominanceReasoning)
1107         return false;
1108       if (!IsSameThreadAsLoad(Acc))
1109         return false;
1110       if (!DominatingWrites.count(&Acc))
1111         return false;
1112       for (const Access *DomAcc : DominatingWrites) {
1113         assert(Acc.getLocalInst()->getFunction() ==
1114                    DomAcc->getLocalInst()->getFunction() &&
1115                "Expected dominating writes to be in the same function!");
1116 
1117         if (DomAcc != &Acc &&
1118             DT->dominates(Acc.getLocalInst(), DomAcc->getLocalInst())) {
1119           return true;
1120         }
1121       }
1122       return false;
1123     };
1124 
1125     // Run the user callback on all accesses we cannot skip and return if that
1126     // succeeded for all or not.
1127     unsigned NumInterferingAccesses = InterferingAccesses.size();
1128     for (auto &It : InterferingAccesses) {
1129       if (NumInterferingAccesses > MaxInterferingAccesses ||
1130           !CanSkipAccess(*It.first, It.second)) {
1131         if (!UserCB(*It.first, It.second))
1132           return false;
1133       }
1134     }
1135     return true;
1136   }
1137 
1138   ChangeStatus translateAndAddState(Attributor &A, const AAPointerInfo &OtherAA,
1139                                     int64_t Offset, CallBase &CB,
1140                                     bool FromCallee = false) {
1141     using namespace AA::PointerInfo;
1142     if (!OtherAA.getState().isValidState() || !isValidState())
1143       return indicatePessimisticFixpoint();
1144 
1145     const auto &OtherAAImpl = static_cast<const AAPointerInfoImpl &>(OtherAA);
1146     bool IsByval =
1147         FromCallee && OtherAAImpl.getAssociatedArgument()->hasByValAttr();
1148 
1149     // Combine the accesses bin by bin.
1150     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1151     for (auto &It : OtherAAImpl.getState()) {
1152       OffsetAndSize OAS = OffsetAndSize::getUnknown();
1153       if (Offset != OffsetAndSize::Unknown)
1154         OAS = OffsetAndSize(It.first.getOffset() + Offset, It.first.getSize());
1155       Accesses *Bin = AccessBins.lookup(OAS);
1156       for (const AAPointerInfo::Access &RAcc : *It.second) {
1157         if (IsByval && !RAcc.isRead())
1158           continue;
1159         bool UsedAssumedInformation = false;
1160         AccessKind AK = RAcc.getKind();
1161         Optional<Value *> Content = RAcc.getContent();
1162         if (FromCallee) {
1163           Content = A.translateArgumentToCallSiteContent(
1164               RAcc.getContent(), CB, *this, UsedAssumedInformation);
1165           AK =
1166               AccessKind(AK & (IsByval ? AccessKind::AK_R : AccessKind::AK_RW));
1167           AK = AccessKind(AK | (RAcc.isMayAccess() ? AK_MAY : AK_MUST));
1168         }
1169         Changed =
1170             Changed | addAccess(A, OAS.getOffset(), OAS.getSize(), CB, Content,
1171                                 AK, RAcc.getType(), RAcc.getRemoteInst(), Bin);
1172       }
1173     }
1174     return Changed;
1175   }
1176 
1177   /// Statistic tracking for all AAPointerInfo implementations.
1178   /// See AbstractAttribute::trackStatistics().
1179   void trackPointerInfoStatistics(const IRPosition &IRP) const {}
1180 
1181   /// Dump the state into \p O.
1182   void dumpState(raw_ostream &O) {
1183     for (auto &It : AccessBins) {
1184       O << "[" << It.first.getOffset() << "-"
1185         << It.first.getOffset() + It.first.getSize()
1186         << "] : " << It.getSecond()->size() << "\n";
1187       for (auto &Acc : *It.getSecond()) {
1188         O << "     - " << Acc.getKind() << " - " << *Acc.getLocalInst() << "\n";
1189         if (Acc.getLocalInst() != Acc.getRemoteInst())
1190           O << "     -->                         " << *Acc.getRemoteInst()
1191             << "\n";
1192         if (!Acc.isWrittenValueYetUndetermined()) {
1193           if (Acc.getWrittenValue())
1194             O << "       - c: " << *Acc.getWrittenValue() << "\n";
1195           else
1196             O << "       - c: <unknown>\n";
1197         }
1198       }
1199     }
1200   }
1201 };
1202 
1203 struct AAPointerInfoFloating : public AAPointerInfoImpl {
1204   using AccessKind = AAPointerInfo::AccessKind;
1205   AAPointerInfoFloating(const IRPosition &IRP, Attributor &A)
1206       : AAPointerInfoImpl(IRP, A) {}
1207 
1208   /// Deal with an access and signal if it was handled successfully.
1209   bool handleAccess(Attributor &A, Instruction &I, Value &Ptr,
1210                     Optional<Value *> Content, AccessKind Kind, int64_t Offset,
1211                     ChangeStatus &Changed, Type *Ty,
1212                     int64_t Size = OffsetAndSize::Unknown) {
1213     using namespace AA::PointerInfo;
1214     // No need to find a size if one is given or the offset is unknown.
1215     if (Offset != OffsetAndSize::Unknown && Size == OffsetAndSize::Unknown &&
1216         Ty) {
1217       const DataLayout &DL = A.getDataLayout();
1218       TypeSize AccessSize = DL.getTypeStoreSize(Ty);
1219       if (!AccessSize.isScalable())
1220         Size = AccessSize.getFixedSize();
1221     }
1222     Changed = Changed | addAccess(A, Offset, Size, I, Content, Kind, Ty);
1223     return true;
1224   };
1225 
1226   /// Helper struct, will support ranges eventually.
1227   struct OffsetInfo {
1228     int64_t Offset = OffsetAndSize::Unknown;
1229 
1230     bool operator==(const OffsetInfo &OI) const { return Offset == OI.Offset; }
1231   };
1232 
1233   /// See AbstractAttribute::updateImpl(...).
1234   ChangeStatus updateImpl(Attributor &A) override {
1235     using namespace AA::PointerInfo;
1236     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1237     Value &AssociatedValue = getAssociatedValue();
1238 
1239     const DataLayout &DL = A.getDataLayout();
1240     DenseMap<Value *, OffsetInfo> OffsetInfoMap;
1241     OffsetInfoMap[&AssociatedValue] = OffsetInfo{0};
1242 
1243     auto HandlePassthroughUser = [&](Value *Usr, OffsetInfo PtrOI,
1244                                      bool &Follow) {
1245       OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1246       UsrOI = PtrOI;
1247       Follow = true;
1248       return true;
1249     };
1250 
1251     const auto *TLI = getAnchorScope()
1252                           ? A.getInfoCache().getTargetLibraryInfoForFunction(
1253                                 *getAnchorScope())
1254                           : nullptr;
1255     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
1256       Value *CurPtr = U.get();
1257       User *Usr = U.getUser();
1258       LLVM_DEBUG(dbgs() << "[AAPointerInfo] Analyze " << *CurPtr << " in "
1259                         << *Usr << "\n");
1260       assert(OffsetInfoMap.count(CurPtr) &&
1261              "The current pointer offset should have been seeded!");
1262 
1263       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
1264         if (CE->isCast())
1265           return HandlePassthroughUser(Usr, OffsetInfoMap[CurPtr], Follow);
1266         if (CE->isCompare())
1267           return true;
1268         if (!isa<GEPOperator>(CE)) {
1269           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled constant user " << *CE
1270                             << "\n");
1271           return false;
1272         }
1273       }
1274       if (auto *GEP = dyn_cast<GEPOperator>(Usr)) {
1275         // Note the order here, the Usr access might change the map, CurPtr is
1276         // already in it though.
1277         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1278         OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1279         UsrOI = PtrOI;
1280 
1281         // TODO: Use range information.
1282         if (PtrOI.Offset == OffsetAndSize::Unknown ||
1283             !GEP->hasAllConstantIndices()) {
1284           UsrOI.Offset = OffsetAndSize::Unknown;
1285           Follow = true;
1286           return true;
1287         }
1288 
1289         SmallVector<Value *, 8> Indices;
1290         for (Use &Idx : GEP->indices()) {
1291           if (auto *CIdx = dyn_cast<ConstantInt>(Idx)) {
1292             Indices.push_back(CIdx);
1293             continue;
1294           }
1295 
1296           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Non constant GEP index " << *GEP
1297                             << " : " << *Idx << "\n");
1298           return false;
1299         }
1300         UsrOI.Offset = PtrOI.Offset + DL.getIndexedOffsetInType(
1301                                           GEP->getSourceElementType(), Indices);
1302         Follow = true;
1303         return true;
1304       }
1305       if (isa<CastInst>(Usr) || isa<SelectInst>(Usr) || isa<ReturnInst>(Usr))
1306         return HandlePassthroughUser(Usr, OffsetInfoMap[CurPtr], Follow);
1307 
1308       // For PHIs we need to take care of the recurrence explicitly as the value
1309       // might change while we iterate through a loop. For now, we give up if
1310       // the PHI is not invariant.
1311       if (isa<PHINode>(Usr)) {
1312         // Note the order here, the Usr access might change the map, CurPtr is
1313         // already in it though.
1314         bool IsFirstPHIUser = !OffsetInfoMap.count(Usr);
1315         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1316         OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1317         // Check if the PHI is invariant (so far).
1318         if (UsrOI == PtrOI)
1319           return true;
1320 
1321         // Check if the PHI operand has already an unknown offset as we can't
1322         // improve on that anymore.
1323         if (PtrOI.Offset == OffsetAndSize::Unknown) {
1324           UsrOI = PtrOI;
1325           Follow = true;
1326           return true;
1327         }
1328 
1329         // Check if the PHI operand is not dependent on the PHI itself.
1330         APInt Offset(
1331             DL.getIndexSizeInBits(CurPtr->getType()->getPointerAddressSpace()),
1332             0);
1333         Value *CurPtrBase = CurPtr->stripAndAccumulateConstantOffsets(
1334             DL, Offset, /* AllowNonInbounds */ true);
1335         auto It = OffsetInfoMap.find(CurPtrBase);
1336         if (It != OffsetInfoMap.end()) {
1337           Offset += It->getSecond().Offset;
1338           if (IsFirstPHIUser || Offset == UsrOI.Offset)
1339             return HandlePassthroughUser(Usr, PtrOI, Follow);
1340           LLVM_DEBUG(dbgs()
1341                      << "[AAPointerInfo] PHI operand pointer offset mismatch "
1342                      << *CurPtr << " in " << *Usr << "\n");
1343         } else {
1344           LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI operand is too complex "
1345                             << *CurPtr << " in " << *Usr << "\n");
1346         }
1347 
1348         // TODO: Approximate in case we know the direction of the recurrence.
1349         UsrOI = PtrOI;
1350         UsrOI.Offset = OffsetAndSize::Unknown;
1351         Follow = true;
1352         return true;
1353       }
1354 
1355       if (auto *LoadI = dyn_cast<LoadInst>(Usr)) {
1356         // If the access is to a pointer that may or may not be the associated
1357         // value, e.g. due to a PHI, we cannot assume it will be read.
1358         AccessKind AK = AccessKind::AK_R;
1359         if (getUnderlyingObject(CurPtr) == &AssociatedValue)
1360           AK = AccessKind(AK | AccessKind::AK_MUST);
1361         else
1362           AK = AccessKind(AK | AccessKind::AK_MAY);
1363         return handleAccess(A, *LoadI, *CurPtr, /* Content */ nullptr, AK,
1364                             OffsetInfoMap[CurPtr].Offset, Changed,
1365                             LoadI->getType());
1366       }
1367 
1368       if (auto *StoreI = dyn_cast<StoreInst>(Usr)) {
1369         if (StoreI->getValueOperand() == CurPtr) {
1370           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Escaping use in store "
1371                             << *StoreI << "\n");
1372           return false;
1373         }
1374         // If the access is to a pointer that may or may not be the associated
1375         // value, e.g. due to a PHI, we cannot assume it will be written.
1376         AccessKind AK = AccessKind::AK_W;
1377         if (getUnderlyingObject(CurPtr) == &AssociatedValue)
1378           AK = AccessKind(AK | AccessKind::AK_MUST);
1379         else
1380           AK = AccessKind(AK | AccessKind::AK_MAY);
1381         bool UsedAssumedInformation = false;
1382         Optional<Value *> Content =
1383             A.getAssumedSimplified(*StoreI->getValueOperand(), *this,
1384                                    UsedAssumedInformation, AA::Interprocedural);
1385         return handleAccess(A, *StoreI, *CurPtr, Content, AK,
1386                             OffsetInfoMap[CurPtr].Offset, Changed,
1387                             StoreI->getValueOperand()->getType());
1388       }
1389       if (auto *CB = dyn_cast<CallBase>(Usr)) {
1390         if (CB->isLifetimeStartOrEnd())
1391           return true;
1392         if (getFreedOperand(CB, TLI) == U)
1393           return true;
1394         if (CB->isArgOperand(&U)) {
1395           unsigned ArgNo = CB->getArgOperandNo(&U);
1396           const auto &CSArgPI = A.getAAFor<AAPointerInfo>(
1397               *this, IRPosition::callsite_argument(*CB, ArgNo),
1398               DepClassTy::REQUIRED);
1399           Changed = translateAndAddState(A, CSArgPI,
1400                                          OffsetInfoMap[CurPtr].Offset, *CB) |
1401                     Changed;
1402           return isValidState();
1403         }
1404         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Call user not handled " << *CB
1405                           << "\n");
1406         // TODO: Allow some call uses
1407         return false;
1408       }
1409 
1410       LLVM_DEBUG(dbgs() << "[AAPointerInfo] User not handled " << *Usr << "\n");
1411       return false;
1412     };
1413     auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
1414       if (OffsetInfoMap.count(NewU)) {
1415         LLVM_DEBUG({
1416           if (!(OffsetInfoMap[NewU] == OffsetInfoMap[OldU])) {
1417             dbgs() << "[AAPointerInfo] Equivalent use callback failed: "
1418                    << OffsetInfoMap[NewU].Offset << " vs "
1419                    << OffsetInfoMap[OldU].Offset << "\n";
1420           }
1421         });
1422         return OffsetInfoMap[NewU] == OffsetInfoMap[OldU];
1423       }
1424       OffsetInfoMap[NewU] = OffsetInfoMap[OldU];
1425       return true;
1426     };
1427     if (!A.checkForAllUses(UsePred, *this, AssociatedValue,
1428                            /* CheckBBLivenessOnly */ true, DepClassTy::OPTIONAL,
1429                            /* IgnoreDroppableUses */ true, EquivalentUseCB)) {
1430       LLVM_DEBUG(
1431           dbgs() << "[AAPointerInfo] Check for all uses failed, abort!\n");
1432       return indicatePessimisticFixpoint();
1433     }
1434 
1435     LLVM_DEBUG({
1436       dbgs() << "Accesses by bin after update:\n";
1437       dumpState(dbgs());
1438     });
1439 
1440     return Changed;
1441   }
1442 
1443   /// See AbstractAttribute::trackStatistics()
1444   void trackStatistics() const override {
1445     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1446   }
1447 };
1448 
1449 struct AAPointerInfoReturned final : AAPointerInfoImpl {
1450   AAPointerInfoReturned(const IRPosition &IRP, Attributor &A)
1451       : AAPointerInfoImpl(IRP, A) {}
1452 
1453   /// See AbstractAttribute::updateImpl(...).
1454   ChangeStatus updateImpl(Attributor &A) override {
1455     return indicatePessimisticFixpoint();
1456   }
1457 
1458   /// See AbstractAttribute::trackStatistics()
1459   void trackStatistics() const override {
1460     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1461   }
1462 };
1463 
1464 struct AAPointerInfoArgument final : AAPointerInfoFloating {
1465   AAPointerInfoArgument(const IRPosition &IRP, Attributor &A)
1466       : AAPointerInfoFloating(IRP, A) {}
1467 
1468   /// See AbstractAttribute::initialize(...).
1469   void initialize(Attributor &A) override {
1470     AAPointerInfoFloating::initialize(A);
1471     if (getAnchorScope()->isDeclaration())
1472       indicatePessimisticFixpoint();
1473   }
1474 
1475   /// See AbstractAttribute::trackStatistics()
1476   void trackStatistics() const override {
1477     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1478   }
1479 };
1480 
1481 struct AAPointerInfoCallSiteArgument final : AAPointerInfoFloating {
1482   AAPointerInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
1483       : AAPointerInfoFloating(IRP, A) {}
1484 
1485   /// See AbstractAttribute::updateImpl(...).
1486   ChangeStatus updateImpl(Attributor &A) override {
1487     using namespace AA::PointerInfo;
1488     // We handle memory intrinsics explicitly, at least the first (=
1489     // destination) and second (=source) arguments as we know how they are
1490     // accessed.
1491     if (auto *MI = dyn_cast_or_null<MemIntrinsic>(getCtxI())) {
1492       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1493       int64_t LengthVal = OffsetAndSize::Unknown;
1494       if (Length)
1495         LengthVal = Length->getSExtValue();
1496       Value &Ptr = getAssociatedValue();
1497       unsigned ArgNo = getIRPosition().getCallSiteArgNo();
1498       ChangeStatus Changed = ChangeStatus::UNCHANGED;
1499       if (ArgNo == 0) {
1500         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_MUST_WRITE, 0,
1501                      Changed, nullptr, LengthVal);
1502       } else if (ArgNo == 1) {
1503         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_MUST_READ, 0, Changed,
1504                      nullptr, LengthVal);
1505       } else {
1506         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled memory intrinsic "
1507                           << *MI << "\n");
1508         return indicatePessimisticFixpoint();
1509       }
1510 
1511       LLVM_DEBUG({
1512         dbgs() << "Accesses by bin after update:\n";
1513         dumpState(dbgs());
1514       });
1515 
1516       return Changed;
1517     }
1518 
1519     // TODO: Once we have call site specific value information we can provide
1520     //       call site specific liveness information and then it makes
1521     //       sense to specialize attributes for call sites arguments instead of
1522     //       redirecting requests to the callee argument.
1523     Argument *Arg = getAssociatedArgument();
1524     if (!Arg)
1525       return indicatePessimisticFixpoint();
1526     const IRPosition &ArgPos = IRPosition::argument(*Arg);
1527     auto &ArgAA =
1528         A.getAAFor<AAPointerInfo>(*this, ArgPos, DepClassTy::REQUIRED);
1529     return translateAndAddState(A, ArgAA, 0, *cast<CallBase>(getCtxI()),
1530                                 /* FromCallee */ true);
1531   }
1532 
1533   /// See AbstractAttribute::trackStatistics()
1534   void trackStatistics() const override {
1535     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1536   }
1537 };
1538 
1539 struct AAPointerInfoCallSiteReturned final : AAPointerInfoFloating {
1540   AAPointerInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
1541       : AAPointerInfoFloating(IRP, A) {}
1542 
1543   /// See AbstractAttribute::trackStatistics()
1544   void trackStatistics() const override {
1545     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1546   }
1547 };
1548 } // namespace
1549 
1550 /// -----------------------NoUnwind Function Attribute--------------------------
1551 
1552 namespace {
1553 struct AANoUnwindImpl : AANoUnwind {
1554   AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
1555 
1556   const std::string getAsStr() const override {
1557     return getAssumed() ? "nounwind" : "may-unwind";
1558   }
1559 
1560   /// See AbstractAttribute::updateImpl(...).
1561   ChangeStatus updateImpl(Attributor &A) override {
1562     auto Opcodes = {
1563         (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
1564         (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
1565         (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
1566 
1567     auto CheckForNoUnwind = [&](Instruction &I) {
1568       if (!I.mayThrow())
1569         return true;
1570 
1571       if (const auto *CB = dyn_cast<CallBase>(&I)) {
1572         const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
1573             *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1574         return NoUnwindAA.isAssumedNoUnwind();
1575       }
1576       return false;
1577     };
1578 
1579     bool UsedAssumedInformation = false;
1580     if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes,
1581                                    UsedAssumedInformation))
1582       return indicatePessimisticFixpoint();
1583 
1584     return ChangeStatus::UNCHANGED;
1585   }
1586 };
1587 
1588 struct AANoUnwindFunction final : public AANoUnwindImpl {
1589   AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
1590       : AANoUnwindImpl(IRP, A) {}
1591 
1592   /// See AbstractAttribute::trackStatistics()
1593   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
1594 };
1595 
1596 /// NoUnwind attribute deduction for a call sites.
1597 struct AANoUnwindCallSite final : AANoUnwindImpl {
1598   AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
1599       : AANoUnwindImpl(IRP, A) {}
1600 
1601   /// See AbstractAttribute::initialize(...).
1602   void initialize(Attributor &A) override {
1603     AANoUnwindImpl::initialize(A);
1604     Function *F = getAssociatedFunction();
1605     if (!F || F->isDeclaration())
1606       indicatePessimisticFixpoint();
1607   }
1608 
1609   /// See AbstractAttribute::updateImpl(...).
1610   ChangeStatus updateImpl(Attributor &A) override {
1611     // TODO: Once we have call site specific value information we can provide
1612     //       call site specific liveness information and then it makes
1613     //       sense to specialize attributes for call sites arguments instead of
1614     //       redirecting requests to the callee argument.
1615     Function *F = getAssociatedFunction();
1616     const IRPosition &FnPos = IRPosition::function(*F);
1617     auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::REQUIRED);
1618     return clampStateAndIndicateChange(getState(), FnAA.getState());
1619   }
1620 
1621   /// See AbstractAttribute::trackStatistics()
1622   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
1623 };
1624 } // namespace
1625 
1626 /// --------------------- Function Return Values -------------------------------
1627 
1628 namespace {
1629 /// "Attribute" that collects all potential returned values and the return
1630 /// instructions that they arise from.
1631 ///
1632 /// If there is a unique returned value R, the manifest method will:
1633 ///   - mark R with the "returned" attribute, if R is an argument.
1634 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
1635 
1636   /// Mapping of values potentially returned by the associated function to the
1637   /// return instructions that might return them.
1638   MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
1639 
1640   /// State flags
1641   ///
1642   ///{
1643   bool IsFixed = false;
1644   bool IsValidState = true;
1645   ///}
1646 
1647 public:
1648   AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A)
1649       : AAReturnedValues(IRP, A) {}
1650 
1651   /// See AbstractAttribute::initialize(...).
1652   void initialize(Attributor &A) override {
1653     // Reset the state.
1654     IsFixed = false;
1655     IsValidState = true;
1656     ReturnedValues.clear();
1657 
1658     Function *F = getAssociatedFunction();
1659     if (!F || F->isDeclaration()) {
1660       indicatePessimisticFixpoint();
1661       return;
1662     }
1663     assert(!F->getReturnType()->isVoidTy() &&
1664            "Did not expect a void return type!");
1665 
1666     // The map from instruction opcodes to those instructions in the function.
1667     auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
1668 
1669     // Look through all arguments, if one is marked as returned we are done.
1670     for (Argument &Arg : F->args()) {
1671       if (Arg.hasReturnedAttr()) {
1672         auto &ReturnInstSet = ReturnedValues[&Arg];
1673         if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret))
1674           for (Instruction *RI : *Insts)
1675             ReturnInstSet.insert(cast<ReturnInst>(RI));
1676 
1677         indicateOptimisticFixpoint();
1678         return;
1679       }
1680     }
1681 
1682     if (!A.isFunctionIPOAmendable(*F))
1683       indicatePessimisticFixpoint();
1684   }
1685 
1686   /// See AbstractAttribute::manifest(...).
1687   ChangeStatus manifest(Attributor &A) override;
1688 
1689   /// See AbstractAttribute::getState(...).
1690   AbstractState &getState() override { return *this; }
1691 
1692   /// See AbstractAttribute::getState(...).
1693   const AbstractState &getState() const override { return *this; }
1694 
1695   /// See AbstractAttribute::updateImpl(Attributor &A).
1696   ChangeStatus updateImpl(Attributor &A) override;
1697 
1698   llvm::iterator_range<iterator> returned_values() override {
1699     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1700   }
1701 
1702   llvm::iterator_range<const_iterator> returned_values() const override {
1703     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1704   }
1705 
1706   /// Return the number of potential return values, -1 if unknown.
1707   size_t getNumReturnValues() const override {
1708     return isValidState() ? ReturnedValues.size() : -1;
1709   }
1710 
1711   /// Return an assumed unique return value if a single candidate is found. If
1712   /// there cannot be one, return a nullptr. If it is not clear yet, return the
1713   /// Optional::NoneType.
1714   Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
1715 
1716   /// See AbstractState::checkForAllReturnedValues(...).
1717   bool checkForAllReturnedValuesAndReturnInsts(
1718       function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1719       const override;
1720 
1721   /// Pretty print the attribute similar to the IR representation.
1722   const std::string getAsStr() const override;
1723 
1724   /// See AbstractState::isAtFixpoint().
1725   bool isAtFixpoint() const override { return IsFixed; }
1726 
1727   /// See AbstractState::isValidState().
1728   bool isValidState() const override { return IsValidState; }
1729 
1730   /// See AbstractState::indicateOptimisticFixpoint(...).
1731   ChangeStatus indicateOptimisticFixpoint() override {
1732     IsFixed = true;
1733     return ChangeStatus::UNCHANGED;
1734   }
1735 
1736   ChangeStatus indicatePessimisticFixpoint() override {
1737     IsFixed = true;
1738     IsValidState = false;
1739     return ChangeStatus::CHANGED;
1740   }
1741 };
1742 
1743 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
1744   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1745 
1746   // Bookkeeping.
1747   assert(isValidState());
1748   STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
1749                   "Number of function with known return values");
1750 
1751   // Check if we have an assumed unique return value that we could manifest.
1752   Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
1753 
1754   if (!UniqueRV || !UniqueRV.value())
1755     return Changed;
1756 
1757   // Bookkeeping.
1758   STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
1759                   "Number of function with unique return");
1760   // If the assumed unique return value is an argument, annotate it.
1761   if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.value())) {
1762     if (UniqueRVArg->getType()->canLosslesslyBitCastTo(
1763             getAssociatedFunction()->getReturnType())) {
1764       getIRPosition() = IRPosition::argument(*UniqueRVArg);
1765       Changed = IRAttribute::manifest(A);
1766     }
1767   }
1768   return Changed;
1769 }
1770 
1771 const std::string AAReturnedValuesImpl::getAsStr() const {
1772   return (isAtFixpoint() ? "returns(#" : "may-return(#") +
1773          (isValidState() ? std::to_string(getNumReturnValues()) : "?") + ")";
1774 }
1775 
1776 Optional<Value *>
1777 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
1778   // If checkForAllReturnedValues provides a unique value, ignoring potential
1779   // undef values that can also be present, it is assumed to be the actual
1780   // return value and forwarded to the caller of this method. If there are
1781   // multiple, a nullptr is returned indicating there cannot be a unique
1782   // returned value.
1783   Optional<Value *> UniqueRV;
1784   Type *Ty = getAssociatedFunction()->getReturnType();
1785 
1786   auto Pred = [&](Value &RV) -> bool {
1787     UniqueRV = AA::combineOptionalValuesInAAValueLatice(UniqueRV, &RV, Ty);
1788     return UniqueRV != Optional<Value *>(nullptr);
1789   };
1790 
1791   if (!A.checkForAllReturnedValues(Pred, *this))
1792     UniqueRV = nullptr;
1793 
1794   return UniqueRV;
1795 }
1796 
1797 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
1798     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1799     const {
1800   if (!isValidState())
1801     return false;
1802 
1803   // Check all returned values but ignore call sites as long as we have not
1804   // encountered an overdefined one during an update.
1805   for (auto &It : ReturnedValues) {
1806     Value *RV = It.first;
1807     if (!Pred(*RV, It.second))
1808       return false;
1809   }
1810 
1811   return true;
1812 }
1813 
1814 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
1815   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1816 
1817   SmallVector<AA::ValueAndContext> Values;
1818   bool UsedAssumedInformation = false;
1819   auto ReturnInstCB = [&](Instruction &I) {
1820     ReturnInst &Ret = cast<ReturnInst>(I);
1821     Values.clear();
1822     if (!A.getAssumedSimplifiedValues(IRPosition::value(*Ret.getReturnValue()),
1823                                       *this, Values, AA::Intraprocedural,
1824                                       UsedAssumedInformation))
1825       Values.push_back({*Ret.getReturnValue(), Ret});
1826 
1827     for (auto &VAC : Values) {
1828       assert(AA::isValidInScope(*VAC.getValue(), Ret.getFunction()) &&
1829              "Assumed returned value should be valid in function scope!");
1830       if (ReturnedValues[VAC.getValue()].insert(&Ret))
1831         Changed = ChangeStatus::CHANGED;
1832     }
1833     return true;
1834   };
1835 
1836   // Discover returned values from all live returned instructions in the
1837   // associated function.
1838   if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
1839                                  UsedAssumedInformation))
1840     return indicatePessimisticFixpoint();
1841   return Changed;
1842 }
1843 
1844 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
1845   AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A)
1846       : AAReturnedValuesImpl(IRP, A) {}
1847 
1848   /// See AbstractAttribute::trackStatistics()
1849   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
1850 };
1851 
1852 /// Returned values information for a call sites.
1853 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
1854   AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A)
1855       : AAReturnedValuesImpl(IRP, A) {}
1856 
1857   /// See AbstractAttribute::initialize(...).
1858   void initialize(Attributor &A) override {
1859     // TODO: Once we have call site specific value information we can provide
1860     //       call site specific liveness information and then it makes
1861     //       sense to specialize attributes for call sites instead of
1862     //       redirecting requests to the callee.
1863     llvm_unreachable("Abstract attributes for returned values are not "
1864                      "supported for call sites yet!");
1865   }
1866 
1867   /// See AbstractAttribute::updateImpl(...).
1868   ChangeStatus updateImpl(Attributor &A) override {
1869     return indicatePessimisticFixpoint();
1870   }
1871 
1872   /// See AbstractAttribute::trackStatistics()
1873   void trackStatistics() const override {}
1874 };
1875 } // namespace
1876 
1877 /// ------------------------ NoSync Function Attribute -------------------------
1878 
1879 bool AANoSync::isNonRelaxedAtomic(const Instruction *I) {
1880   if (!I->isAtomic())
1881     return false;
1882 
1883   if (auto *FI = dyn_cast<FenceInst>(I))
1884     // All legal orderings for fence are stronger than monotonic.
1885     return FI->getSyncScopeID() != SyncScope::SingleThread;
1886   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) {
1887     // Unordered is not a legal ordering for cmpxchg.
1888     return (AI->getSuccessOrdering() != AtomicOrdering::Monotonic ||
1889             AI->getFailureOrdering() != AtomicOrdering::Monotonic);
1890   }
1891 
1892   AtomicOrdering Ordering;
1893   switch (I->getOpcode()) {
1894   case Instruction::AtomicRMW:
1895     Ordering = cast<AtomicRMWInst>(I)->getOrdering();
1896     break;
1897   case Instruction::Store:
1898     Ordering = cast<StoreInst>(I)->getOrdering();
1899     break;
1900   case Instruction::Load:
1901     Ordering = cast<LoadInst>(I)->getOrdering();
1902     break;
1903   default:
1904     llvm_unreachable(
1905         "New atomic operations need to be known in the attributor.");
1906   }
1907 
1908   return (Ordering != AtomicOrdering::Unordered &&
1909           Ordering != AtomicOrdering::Monotonic);
1910 }
1911 
1912 /// Return true if this intrinsic is nosync.  This is only used for intrinsics
1913 /// which would be nosync except that they have a volatile flag.  All other
1914 /// intrinsics are simply annotated with the nosync attribute in Intrinsics.td.
1915 bool AANoSync::isNoSyncIntrinsic(const Instruction *I) {
1916   if (auto *MI = dyn_cast<MemIntrinsic>(I))
1917     return !MI->isVolatile();
1918   return false;
1919 }
1920 
1921 namespace {
1922 struct AANoSyncImpl : AANoSync {
1923   AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
1924 
1925   const std::string getAsStr() const override {
1926     return getAssumed() ? "nosync" : "may-sync";
1927   }
1928 
1929   /// See AbstractAttribute::updateImpl(...).
1930   ChangeStatus updateImpl(Attributor &A) override;
1931 };
1932 
1933 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
1934 
1935   auto CheckRWInstForNoSync = [&](Instruction &I) {
1936     return AA::isNoSyncInst(A, I, *this);
1937   };
1938 
1939   auto CheckForNoSync = [&](Instruction &I) {
1940     // At this point we handled all read/write effects and they are all
1941     // nosync, so they can be skipped.
1942     if (I.mayReadOrWriteMemory())
1943       return true;
1944 
1945     // non-convergent and readnone imply nosync.
1946     return !cast<CallBase>(I).isConvergent();
1947   };
1948 
1949   bool UsedAssumedInformation = false;
1950   if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this,
1951                                           UsedAssumedInformation) ||
1952       !A.checkForAllCallLikeInstructions(CheckForNoSync, *this,
1953                                          UsedAssumedInformation))
1954     return indicatePessimisticFixpoint();
1955 
1956   return ChangeStatus::UNCHANGED;
1957 }
1958 
1959 struct AANoSyncFunction final : public AANoSyncImpl {
1960   AANoSyncFunction(const IRPosition &IRP, Attributor &A)
1961       : AANoSyncImpl(IRP, A) {}
1962 
1963   /// See AbstractAttribute::trackStatistics()
1964   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
1965 };
1966 
1967 /// NoSync attribute deduction for a call sites.
1968 struct AANoSyncCallSite final : AANoSyncImpl {
1969   AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
1970       : AANoSyncImpl(IRP, A) {}
1971 
1972   /// See AbstractAttribute::initialize(...).
1973   void initialize(Attributor &A) override {
1974     AANoSyncImpl::initialize(A);
1975     Function *F = getAssociatedFunction();
1976     if (!F || F->isDeclaration())
1977       indicatePessimisticFixpoint();
1978   }
1979 
1980   /// See AbstractAttribute::updateImpl(...).
1981   ChangeStatus updateImpl(Attributor &A) override {
1982     // TODO: Once we have call site specific value information we can provide
1983     //       call site specific liveness information and then it makes
1984     //       sense to specialize attributes for call sites arguments instead of
1985     //       redirecting requests to the callee argument.
1986     Function *F = getAssociatedFunction();
1987     const IRPosition &FnPos = IRPosition::function(*F);
1988     auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos, DepClassTy::REQUIRED);
1989     return clampStateAndIndicateChange(getState(), FnAA.getState());
1990   }
1991 
1992   /// See AbstractAttribute::trackStatistics()
1993   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
1994 };
1995 } // namespace
1996 
1997 /// ------------------------ No-Free Attributes ----------------------------
1998 
1999 namespace {
2000 struct AANoFreeImpl : public AANoFree {
2001   AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
2002 
2003   /// See AbstractAttribute::updateImpl(...).
2004   ChangeStatus updateImpl(Attributor &A) override {
2005     auto CheckForNoFree = [&](Instruction &I) {
2006       const auto &CB = cast<CallBase>(I);
2007       if (CB.hasFnAttr(Attribute::NoFree))
2008         return true;
2009 
2010       const auto &NoFreeAA = A.getAAFor<AANoFree>(
2011           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
2012       return NoFreeAA.isAssumedNoFree();
2013     };
2014 
2015     bool UsedAssumedInformation = false;
2016     if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this,
2017                                            UsedAssumedInformation))
2018       return indicatePessimisticFixpoint();
2019     return ChangeStatus::UNCHANGED;
2020   }
2021 
2022   /// See AbstractAttribute::getAsStr().
2023   const std::string getAsStr() const override {
2024     return getAssumed() ? "nofree" : "may-free";
2025   }
2026 };
2027 
2028 struct AANoFreeFunction final : public AANoFreeImpl {
2029   AANoFreeFunction(const IRPosition &IRP, Attributor &A)
2030       : AANoFreeImpl(IRP, A) {}
2031 
2032   /// See AbstractAttribute::trackStatistics()
2033   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
2034 };
2035 
2036 /// NoFree attribute deduction for a call sites.
2037 struct AANoFreeCallSite final : AANoFreeImpl {
2038   AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
2039       : AANoFreeImpl(IRP, A) {}
2040 
2041   /// See AbstractAttribute::initialize(...).
2042   void initialize(Attributor &A) override {
2043     AANoFreeImpl::initialize(A);
2044     Function *F = getAssociatedFunction();
2045     if (!F || F->isDeclaration())
2046       indicatePessimisticFixpoint();
2047   }
2048 
2049   /// See AbstractAttribute::updateImpl(...).
2050   ChangeStatus updateImpl(Attributor &A) override {
2051     // TODO: Once we have call site specific value information we can provide
2052     //       call site specific liveness information and then it makes
2053     //       sense to specialize attributes for call sites arguments instead of
2054     //       redirecting requests to the callee argument.
2055     Function *F = getAssociatedFunction();
2056     const IRPosition &FnPos = IRPosition::function(*F);
2057     auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos, DepClassTy::REQUIRED);
2058     return clampStateAndIndicateChange(getState(), FnAA.getState());
2059   }
2060 
2061   /// See AbstractAttribute::trackStatistics()
2062   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
2063 };
2064 
2065 /// NoFree attribute for floating values.
2066 struct AANoFreeFloating : AANoFreeImpl {
2067   AANoFreeFloating(const IRPosition &IRP, Attributor &A)
2068       : AANoFreeImpl(IRP, A) {}
2069 
2070   /// See AbstractAttribute::trackStatistics()
2071   void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
2072 
2073   /// See Abstract Attribute::updateImpl(...).
2074   ChangeStatus updateImpl(Attributor &A) override {
2075     const IRPosition &IRP = getIRPosition();
2076 
2077     const auto &NoFreeAA = A.getAAFor<AANoFree>(
2078         *this, IRPosition::function_scope(IRP), DepClassTy::OPTIONAL);
2079     if (NoFreeAA.isAssumedNoFree())
2080       return ChangeStatus::UNCHANGED;
2081 
2082     Value &AssociatedValue = getIRPosition().getAssociatedValue();
2083     auto Pred = [&](const Use &U, bool &Follow) -> bool {
2084       Instruction *UserI = cast<Instruction>(U.getUser());
2085       if (auto *CB = dyn_cast<CallBase>(UserI)) {
2086         if (CB->isBundleOperand(&U))
2087           return false;
2088         if (!CB->isArgOperand(&U))
2089           return true;
2090         unsigned ArgNo = CB->getArgOperandNo(&U);
2091 
2092         const auto &NoFreeArg = A.getAAFor<AANoFree>(
2093             *this, IRPosition::callsite_argument(*CB, ArgNo),
2094             DepClassTy::REQUIRED);
2095         return NoFreeArg.isAssumedNoFree();
2096       }
2097 
2098       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
2099           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
2100         Follow = true;
2101         return true;
2102       }
2103       if (isa<StoreInst>(UserI) || isa<LoadInst>(UserI) ||
2104           isa<ReturnInst>(UserI))
2105         return true;
2106 
2107       // Unknown user.
2108       return false;
2109     };
2110     if (!A.checkForAllUses(Pred, *this, AssociatedValue))
2111       return indicatePessimisticFixpoint();
2112 
2113     return ChangeStatus::UNCHANGED;
2114   }
2115 };
2116 
2117 /// NoFree attribute for a call site argument.
2118 struct AANoFreeArgument final : AANoFreeFloating {
2119   AANoFreeArgument(const IRPosition &IRP, Attributor &A)
2120       : AANoFreeFloating(IRP, A) {}
2121 
2122   /// See AbstractAttribute::trackStatistics()
2123   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
2124 };
2125 
2126 /// NoFree attribute for call site arguments.
2127 struct AANoFreeCallSiteArgument final : AANoFreeFloating {
2128   AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
2129       : AANoFreeFloating(IRP, A) {}
2130 
2131   /// See AbstractAttribute::updateImpl(...).
2132   ChangeStatus updateImpl(Attributor &A) override {
2133     // TODO: Once we have call site specific value information we can provide
2134     //       call site specific liveness information and then it makes
2135     //       sense to specialize attributes for call sites arguments instead of
2136     //       redirecting requests to the callee argument.
2137     Argument *Arg = getAssociatedArgument();
2138     if (!Arg)
2139       return indicatePessimisticFixpoint();
2140     const IRPosition &ArgPos = IRPosition::argument(*Arg);
2141     auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos, DepClassTy::REQUIRED);
2142     return clampStateAndIndicateChange(getState(), ArgAA.getState());
2143   }
2144 
2145   /// See AbstractAttribute::trackStatistics()
2146   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
2147 };
2148 
2149 /// NoFree attribute for function return value.
2150 struct AANoFreeReturned final : AANoFreeFloating {
2151   AANoFreeReturned(const IRPosition &IRP, Attributor &A)
2152       : AANoFreeFloating(IRP, A) {
2153     llvm_unreachable("NoFree is not applicable to function returns!");
2154   }
2155 
2156   /// See AbstractAttribute::initialize(...).
2157   void initialize(Attributor &A) override {
2158     llvm_unreachable("NoFree is not applicable to function returns!");
2159   }
2160 
2161   /// See AbstractAttribute::updateImpl(...).
2162   ChangeStatus updateImpl(Attributor &A) override {
2163     llvm_unreachable("NoFree is not applicable to function returns!");
2164   }
2165 
2166   /// See AbstractAttribute::trackStatistics()
2167   void trackStatistics() const override {}
2168 };
2169 
2170 /// NoFree attribute deduction for a call site return value.
2171 struct AANoFreeCallSiteReturned final : AANoFreeFloating {
2172   AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
2173       : AANoFreeFloating(IRP, A) {}
2174 
2175   ChangeStatus manifest(Attributor &A) override {
2176     return ChangeStatus::UNCHANGED;
2177   }
2178   /// See AbstractAttribute::trackStatistics()
2179   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
2180 };
2181 } // namespace
2182 
2183 /// ------------------------ NonNull Argument Attribute ------------------------
2184 namespace {
2185 static int64_t getKnownNonNullAndDerefBytesForUse(
2186     Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
2187     const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
2188   TrackUse = false;
2189 
2190   const Value *UseV = U->get();
2191   if (!UseV->getType()->isPointerTy())
2192     return 0;
2193 
2194   // We need to follow common pointer manipulation uses to the accesses they
2195   // feed into. We can try to be smart to avoid looking through things we do not
2196   // like for now, e.g., non-inbounds GEPs.
2197   if (isa<CastInst>(I)) {
2198     TrackUse = true;
2199     return 0;
2200   }
2201 
2202   if (isa<GetElementPtrInst>(I)) {
2203     TrackUse = true;
2204     return 0;
2205   }
2206 
2207   Type *PtrTy = UseV->getType();
2208   const Function *F = I->getFunction();
2209   bool NullPointerIsDefined =
2210       F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
2211   const DataLayout &DL = A.getInfoCache().getDL();
2212   if (const auto *CB = dyn_cast<CallBase>(I)) {
2213     if (CB->isBundleOperand(U)) {
2214       if (RetainedKnowledge RK = getKnowledgeFromUse(
2215               U, {Attribute::NonNull, Attribute::Dereferenceable})) {
2216         IsNonNull |=
2217             (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
2218         return RK.ArgValue;
2219       }
2220       return 0;
2221     }
2222 
2223     if (CB->isCallee(U)) {
2224       IsNonNull |= !NullPointerIsDefined;
2225       return 0;
2226     }
2227 
2228     unsigned ArgNo = CB->getArgOperandNo(U);
2229     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
2230     // As long as we only use known information there is no need to track
2231     // dependences here.
2232     auto &DerefAA =
2233         A.getAAFor<AADereferenceable>(QueryingAA, IRP, DepClassTy::NONE);
2234     IsNonNull |= DerefAA.isKnownNonNull();
2235     return DerefAA.getKnownDereferenceableBytes();
2236   }
2237 
2238   Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
2239   if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
2240     return 0;
2241 
2242   int64_t Offset;
2243   const Value *Base =
2244       getMinimalBaseOfPointer(A, QueryingAA, Loc->Ptr, Offset, DL);
2245   if (Base && Base == &AssociatedValue) {
2246     int64_t DerefBytes = Loc->Size.getValue() + Offset;
2247     IsNonNull |= !NullPointerIsDefined;
2248     return std::max(int64_t(0), DerefBytes);
2249   }
2250 
2251   /// Corner case when an offset is 0.
2252   Base = GetPointerBaseWithConstantOffset(Loc->Ptr, Offset, DL,
2253                                           /*AllowNonInbounds*/ true);
2254   if (Base && Base == &AssociatedValue && Offset == 0) {
2255     int64_t DerefBytes = Loc->Size.getValue();
2256     IsNonNull |= !NullPointerIsDefined;
2257     return std::max(int64_t(0), DerefBytes);
2258   }
2259 
2260   return 0;
2261 }
2262 
2263 struct AANonNullImpl : AANonNull {
2264   AANonNullImpl(const IRPosition &IRP, Attributor &A)
2265       : AANonNull(IRP, A),
2266         NullIsDefined(NullPointerIsDefined(
2267             getAnchorScope(),
2268             getAssociatedValue().getType()->getPointerAddressSpace())) {}
2269 
2270   /// See AbstractAttribute::initialize(...).
2271   void initialize(Attributor &A) override {
2272     Value &V = *getAssociatedValue().stripPointerCasts();
2273     if (!NullIsDefined &&
2274         hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
2275                 /* IgnoreSubsumingPositions */ false, &A)) {
2276       indicateOptimisticFixpoint();
2277       return;
2278     }
2279 
2280     if (isa<ConstantPointerNull>(V)) {
2281       indicatePessimisticFixpoint();
2282       return;
2283     }
2284 
2285     AANonNull::initialize(A);
2286 
2287     bool CanBeNull, CanBeFreed;
2288     if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull,
2289                                          CanBeFreed)) {
2290       if (!CanBeNull) {
2291         indicateOptimisticFixpoint();
2292         return;
2293       }
2294     }
2295 
2296     if (isa<GlobalValue>(V)) {
2297       indicatePessimisticFixpoint();
2298       return;
2299     }
2300 
2301     if (Instruction *CtxI = getCtxI())
2302       followUsesInMBEC(*this, A, getState(), *CtxI);
2303   }
2304 
2305   /// See followUsesInMBEC
2306   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
2307                        AANonNull::StateType &State) {
2308     bool IsNonNull = false;
2309     bool TrackUse = false;
2310     getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
2311                                        IsNonNull, TrackUse);
2312     State.setKnown(IsNonNull);
2313     return TrackUse;
2314   }
2315 
2316   /// See AbstractAttribute::getAsStr().
2317   const std::string getAsStr() const override {
2318     return getAssumed() ? "nonnull" : "may-null";
2319   }
2320 
2321   /// Flag to determine if the underlying value can be null and still allow
2322   /// valid accesses.
2323   const bool NullIsDefined;
2324 };
2325 
2326 /// NonNull attribute for a floating value.
2327 struct AANonNullFloating : public AANonNullImpl {
2328   AANonNullFloating(const IRPosition &IRP, Attributor &A)
2329       : AANonNullImpl(IRP, A) {}
2330 
2331   /// See AbstractAttribute::updateImpl(...).
2332   ChangeStatus updateImpl(Attributor &A) override {
2333     const DataLayout &DL = A.getDataLayout();
2334 
2335     bool Stripped;
2336     bool UsedAssumedInformation = false;
2337     SmallVector<AA::ValueAndContext> Values;
2338     if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
2339                                       AA::AnyScope, UsedAssumedInformation)) {
2340       Values.push_back({getAssociatedValue(), getCtxI()});
2341       Stripped = false;
2342     } else {
2343       Stripped = Values.size() != 1 ||
2344                  Values.front().getValue() != &getAssociatedValue();
2345     }
2346 
2347     DominatorTree *DT = nullptr;
2348     AssumptionCache *AC = nullptr;
2349     InformationCache &InfoCache = A.getInfoCache();
2350     if (const Function *Fn = getAnchorScope()) {
2351       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
2352       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
2353     }
2354 
2355     AANonNull::StateType T;
2356     auto VisitValueCB = [&](Value &V, const Instruction *CtxI) -> bool {
2357       const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V),
2358                                              DepClassTy::REQUIRED);
2359       if (!Stripped && this == &AA) {
2360         if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
2361           T.indicatePessimisticFixpoint();
2362       } else {
2363         // Use abstract attribute information.
2364         const AANonNull::StateType &NS = AA.getState();
2365         T ^= NS;
2366       }
2367       return T.isValidState();
2368     };
2369 
2370     for (const auto &VAC : Values)
2371       if (!VisitValueCB(*VAC.getValue(), VAC.getCtxI()))
2372         return indicatePessimisticFixpoint();
2373 
2374     return clampStateAndIndicateChange(getState(), T);
2375   }
2376 
2377   /// See AbstractAttribute::trackStatistics()
2378   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2379 };
2380 
2381 /// NonNull attribute for function return value.
2382 struct AANonNullReturned final
2383     : AAReturnedFromReturnedValues<AANonNull, AANonNull> {
2384   AANonNullReturned(const IRPosition &IRP, Attributor &A)
2385       : AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {}
2386 
2387   /// See AbstractAttribute::getAsStr().
2388   const std::string getAsStr() const override {
2389     return getAssumed() ? "nonnull" : "may-null";
2390   }
2391 
2392   /// See AbstractAttribute::trackStatistics()
2393   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2394 };
2395 
2396 /// NonNull attribute for function argument.
2397 struct AANonNullArgument final
2398     : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
2399   AANonNullArgument(const IRPosition &IRP, Attributor &A)
2400       : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
2401 
2402   /// See AbstractAttribute::trackStatistics()
2403   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
2404 };
2405 
2406 struct AANonNullCallSiteArgument final : AANonNullFloating {
2407   AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
2408       : AANonNullFloating(IRP, A) {}
2409 
2410   /// See AbstractAttribute::trackStatistics()
2411   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
2412 };
2413 
2414 /// NonNull attribute for a call site return position.
2415 struct AANonNullCallSiteReturned final
2416     : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
2417   AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
2418       : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {}
2419 
2420   /// See AbstractAttribute::trackStatistics()
2421   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
2422 };
2423 } // namespace
2424 
2425 /// ------------------------ No-Recurse Attributes ----------------------------
2426 
2427 namespace {
2428 struct AANoRecurseImpl : public AANoRecurse {
2429   AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
2430 
2431   /// See AbstractAttribute::getAsStr()
2432   const std::string getAsStr() const override {
2433     return getAssumed() ? "norecurse" : "may-recurse";
2434   }
2435 };
2436 
2437 struct AANoRecurseFunction final : AANoRecurseImpl {
2438   AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
2439       : AANoRecurseImpl(IRP, A) {}
2440 
2441   /// See AbstractAttribute::updateImpl(...).
2442   ChangeStatus updateImpl(Attributor &A) override {
2443 
2444     // If all live call sites are known to be no-recurse, we are as well.
2445     auto CallSitePred = [&](AbstractCallSite ACS) {
2446       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2447           *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2448           DepClassTy::NONE);
2449       return NoRecurseAA.isKnownNoRecurse();
2450     };
2451     bool UsedAssumedInformation = false;
2452     if (A.checkForAllCallSites(CallSitePred, *this, true,
2453                                UsedAssumedInformation)) {
2454       // If we know all call sites and all are known no-recurse, we are done.
2455       // If all known call sites, which might not be all that exist, are known
2456       // to be no-recurse, we are not done but we can continue to assume
2457       // no-recurse. If one of the call sites we have not visited will become
2458       // live, another update is triggered.
2459       if (!UsedAssumedInformation)
2460         indicateOptimisticFixpoint();
2461       return ChangeStatus::UNCHANGED;
2462     }
2463 
2464     const AAFunctionReachability &EdgeReachability =
2465         A.getAAFor<AAFunctionReachability>(*this, getIRPosition(),
2466                                            DepClassTy::REQUIRED);
2467     if (EdgeReachability.canReach(A, *getAnchorScope()))
2468       return indicatePessimisticFixpoint();
2469     return ChangeStatus::UNCHANGED;
2470   }
2471 
2472   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
2473 };
2474 
2475 /// NoRecurse attribute deduction for a call sites.
2476 struct AANoRecurseCallSite final : AANoRecurseImpl {
2477   AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
2478       : AANoRecurseImpl(IRP, A) {}
2479 
2480   /// See AbstractAttribute::initialize(...).
2481   void initialize(Attributor &A) override {
2482     AANoRecurseImpl::initialize(A);
2483     Function *F = getAssociatedFunction();
2484     if (!F || F->isDeclaration())
2485       indicatePessimisticFixpoint();
2486   }
2487 
2488   /// See AbstractAttribute::updateImpl(...).
2489   ChangeStatus updateImpl(Attributor &A) override {
2490     // TODO: Once we have call site specific value information we can provide
2491     //       call site specific liveness information and then it makes
2492     //       sense to specialize attributes for call sites arguments instead of
2493     //       redirecting requests to the callee argument.
2494     Function *F = getAssociatedFunction();
2495     const IRPosition &FnPos = IRPosition::function(*F);
2496     auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos, DepClassTy::REQUIRED);
2497     return clampStateAndIndicateChange(getState(), FnAA.getState());
2498   }
2499 
2500   /// See AbstractAttribute::trackStatistics()
2501   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
2502 };
2503 } // namespace
2504 
2505 /// -------------------- Undefined-Behavior Attributes ------------------------
2506 
2507 namespace {
2508 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
2509   AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
2510       : AAUndefinedBehavior(IRP, A) {}
2511 
2512   /// See AbstractAttribute::updateImpl(...).
2513   // through a pointer (i.e. also branches etc.)
2514   ChangeStatus updateImpl(Attributor &A) override {
2515     const size_t UBPrevSize = KnownUBInsts.size();
2516     const size_t NoUBPrevSize = AssumedNoUBInsts.size();
2517 
2518     auto InspectMemAccessInstForUB = [&](Instruction &I) {
2519       // Lang ref now states volatile store is not UB, let's skip them.
2520       if (I.isVolatile() && I.mayWriteToMemory())
2521         return true;
2522 
2523       // Skip instructions that are already saved.
2524       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2525         return true;
2526 
2527       // If we reach here, we know we have an instruction
2528       // that accesses memory through a pointer operand,
2529       // for which getPointerOperand() should give it to us.
2530       Value *PtrOp =
2531           const_cast<Value *>(getPointerOperand(&I, /* AllowVolatile */ true));
2532       assert(PtrOp &&
2533              "Expected pointer operand of memory accessing instruction");
2534 
2535       // Either we stopped and the appropriate action was taken,
2536       // or we got back a simplified value to continue.
2537       Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I);
2538       if (!SimplifiedPtrOp || !SimplifiedPtrOp.value())
2539         return true;
2540       const Value *PtrOpVal = SimplifiedPtrOp.value();
2541 
2542       // A memory access through a pointer is considered UB
2543       // only if the pointer has constant null value.
2544       // TODO: Expand it to not only check constant values.
2545       if (!isa<ConstantPointerNull>(PtrOpVal)) {
2546         AssumedNoUBInsts.insert(&I);
2547         return true;
2548       }
2549       const Type *PtrTy = PtrOpVal->getType();
2550 
2551       // Because we only consider instructions inside functions,
2552       // assume that a parent function exists.
2553       const Function *F = I.getFunction();
2554 
2555       // A memory access using constant null pointer is only considered UB
2556       // if null pointer is _not_ defined for the target platform.
2557       if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
2558         AssumedNoUBInsts.insert(&I);
2559       else
2560         KnownUBInsts.insert(&I);
2561       return true;
2562     };
2563 
2564     auto InspectBrInstForUB = [&](Instruction &I) {
2565       // A conditional branch instruction is considered UB if it has `undef`
2566       // condition.
2567 
2568       // Skip instructions that are already saved.
2569       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2570         return true;
2571 
2572       // We know we have a branch instruction.
2573       auto *BrInst = cast<BranchInst>(&I);
2574 
2575       // Unconditional branches are never considered UB.
2576       if (BrInst->isUnconditional())
2577         return true;
2578 
2579       // Either we stopped and the appropriate action was taken,
2580       // or we got back a simplified value to continue.
2581       Optional<Value *> SimplifiedCond =
2582           stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
2583       if (!SimplifiedCond || !*SimplifiedCond)
2584         return true;
2585       AssumedNoUBInsts.insert(&I);
2586       return true;
2587     };
2588 
2589     auto InspectCallSiteForUB = [&](Instruction &I) {
2590       // Check whether a callsite always cause UB or not
2591 
2592       // Skip instructions that are already saved.
2593       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2594         return true;
2595 
2596       // Check nonnull and noundef argument attribute violation for each
2597       // callsite.
2598       CallBase &CB = cast<CallBase>(I);
2599       Function *Callee = CB.getCalledFunction();
2600       if (!Callee)
2601         return true;
2602       for (unsigned idx = 0; idx < CB.arg_size(); idx++) {
2603         // If current argument is known to be simplified to null pointer and the
2604         // corresponding argument position is known to have nonnull attribute,
2605         // the argument is poison. Furthermore, if the argument is poison and
2606         // the position is known to have noundef attriubte, this callsite is
2607         // considered UB.
2608         if (idx >= Callee->arg_size())
2609           break;
2610         Value *ArgVal = CB.getArgOperand(idx);
2611         if (!ArgVal)
2612           continue;
2613         // Here, we handle three cases.
2614         //   (1) Not having a value means it is dead. (we can replace the value
2615         //       with undef)
2616         //   (2) Simplified to undef. The argument violate noundef attriubte.
2617         //   (3) Simplified to null pointer where known to be nonnull.
2618         //       The argument is a poison value and violate noundef attribute.
2619         IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
2620         auto &NoUndefAA =
2621             A.getAAFor<AANoUndef>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2622         if (!NoUndefAA.isKnownNoUndef())
2623           continue;
2624         bool UsedAssumedInformation = false;
2625         Optional<Value *> SimplifiedVal =
2626             A.getAssumedSimplified(IRPosition::value(*ArgVal), *this,
2627                                    UsedAssumedInformation, AA::Interprocedural);
2628         if (UsedAssumedInformation)
2629           continue;
2630         if (SimplifiedVal && !SimplifiedVal.value())
2631           return true;
2632         if (!SimplifiedVal || isa<UndefValue>(*SimplifiedVal.value())) {
2633           KnownUBInsts.insert(&I);
2634           continue;
2635         }
2636         if (!ArgVal->getType()->isPointerTy() ||
2637             !isa<ConstantPointerNull>(*SimplifiedVal.value()))
2638           continue;
2639         auto &NonNullAA =
2640             A.getAAFor<AANonNull>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2641         if (NonNullAA.isKnownNonNull())
2642           KnownUBInsts.insert(&I);
2643       }
2644       return true;
2645     };
2646 
2647     auto InspectReturnInstForUB = [&](Instruction &I) {
2648       auto &RI = cast<ReturnInst>(I);
2649       // Either we stopped and the appropriate action was taken,
2650       // or we got back a simplified return value to continue.
2651       Optional<Value *> SimplifiedRetValue =
2652           stopOnUndefOrAssumed(A, RI.getReturnValue(), &I);
2653       if (!SimplifiedRetValue || !*SimplifiedRetValue)
2654         return true;
2655 
2656       // Check if a return instruction always cause UB or not
2657       // Note: It is guaranteed that the returned position of the anchor
2658       //       scope has noundef attribute when this is called.
2659       //       We also ensure the return position is not "assumed dead"
2660       //       because the returned value was then potentially simplified to
2661       //       `undef` in AAReturnedValues without removing the `noundef`
2662       //       attribute yet.
2663 
2664       // When the returned position has noundef attriubte, UB occurs in the
2665       // following cases.
2666       //   (1) Returned value is known to be undef.
2667       //   (2) The value is known to be a null pointer and the returned
2668       //       position has nonnull attribute (because the returned value is
2669       //       poison).
2670       if (isa<ConstantPointerNull>(*SimplifiedRetValue)) {
2671         auto &NonNullAA = A.getAAFor<AANonNull>(
2672             *this, IRPosition::returned(*getAnchorScope()), DepClassTy::NONE);
2673         if (NonNullAA.isKnownNonNull())
2674           KnownUBInsts.insert(&I);
2675       }
2676 
2677       return true;
2678     };
2679 
2680     bool UsedAssumedInformation = false;
2681     A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
2682                               {Instruction::Load, Instruction::Store,
2683                                Instruction::AtomicCmpXchg,
2684                                Instruction::AtomicRMW},
2685                               UsedAssumedInformation,
2686                               /* CheckBBLivenessOnly */ true);
2687     A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
2688                               UsedAssumedInformation,
2689                               /* CheckBBLivenessOnly */ true);
2690     A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this,
2691                                       UsedAssumedInformation);
2692 
2693     // If the returned position of the anchor scope has noundef attriubte, check
2694     // all returned instructions.
2695     if (!getAnchorScope()->getReturnType()->isVoidTy()) {
2696       const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope());
2697       if (!A.isAssumedDead(ReturnIRP, this, nullptr, UsedAssumedInformation)) {
2698         auto &RetPosNoUndefAA =
2699             A.getAAFor<AANoUndef>(*this, ReturnIRP, DepClassTy::NONE);
2700         if (RetPosNoUndefAA.isKnownNoUndef())
2701           A.checkForAllInstructions(InspectReturnInstForUB, *this,
2702                                     {Instruction::Ret}, UsedAssumedInformation,
2703                                     /* CheckBBLivenessOnly */ true);
2704       }
2705     }
2706 
2707     if (NoUBPrevSize != AssumedNoUBInsts.size() ||
2708         UBPrevSize != KnownUBInsts.size())
2709       return ChangeStatus::CHANGED;
2710     return ChangeStatus::UNCHANGED;
2711   }
2712 
2713   bool isKnownToCauseUB(Instruction *I) const override {
2714     return KnownUBInsts.count(I);
2715   }
2716 
2717   bool isAssumedToCauseUB(Instruction *I) const override {
2718     // In simple words, if an instruction is not in the assumed to _not_
2719     // cause UB, then it is assumed UB (that includes those
2720     // in the KnownUBInsts set). The rest is boilerplate
2721     // is to ensure that it is one of the instructions we test
2722     // for UB.
2723 
2724     switch (I->getOpcode()) {
2725     case Instruction::Load:
2726     case Instruction::Store:
2727     case Instruction::AtomicCmpXchg:
2728     case Instruction::AtomicRMW:
2729       return !AssumedNoUBInsts.count(I);
2730     case Instruction::Br: {
2731       auto *BrInst = cast<BranchInst>(I);
2732       if (BrInst->isUnconditional())
2733         return false;
2734       return !AssumedNoUBInsts.count(I);
2735     } break;
2736     default:
2737       return false;
2738     }
2739     return false;
2740   }
2741 
2742   ChangeStatus manifest(Attributor &A) override {
2743     if (KnownUBInsts.empty())
2744       return ChangeStatus::UNCHANGED;
2745     for (Instruction *I : KnownUBInsts)
2746       A.changeToUnreachableAfterManifest(I);
2747     return ChangeStatus::CHANGED;
2748   }
2749 
2750   /// See AbstractAttribute::getAsStr()
2751   const std::string getAsStr() const override {
2752     return getAssumed() ? "undefined-behavior" : "no-ub";
2753   }
2754 
2755   /// Note: The correctness of this analysis depends on the fact that the
2756   /// following 2 sets will stop changing after some point.
2757   /// "Change" here means that their size changes.
2758   /// The size of each set is monotonically increasing
2759   /// (we only add items to them) and it is upper bounded by the number of
2760   /// instructions in the processed function (we can never save more
2761   /// elements in either set than this number). Hence, at some point,
2762   /// they will stop increasing.
2763   /// Consequently, at some point, both sets will have stopped
2764   /// changing, effectively making the analysis reach a fixpoint.
2765 
2766   /// Note: These 2 sets are disjoint and an instruction can be considered
2767   /// one of 3 things:
2768   /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
2769   ///    the KnownUBInsts set.
2770   /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
2771   ///    has a reason to assume it).
2772   /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
2773   ///    could not find a reason to assume or prove that it can cause UB,
2774   ///    hence it assumes it doesn't. We have a set for these instructions
2775   ///    so that we don't reprocess them in every update.
2776   ///    Note however that instructions in this set may cause UB.
2777 
2778 protected:
2779   /// A set of all live instructions _known_ to cause UB.
2780   SmallPtrSet<Instruction *, 8> KnownUBInsts;
2781 
2782 private:
2783   /// A set of all the (live) instructions that are assumed to _not_ cause UB.
2784   SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
2785 
2786   // Should be called on updates in which if we're processing an instruction
2787   // \p I that depends on a value \p V, one of the following has to happen:
2788   // - If the value is assumed, then stop.
2789   // - If the value is known but undef, then consider it UB.
2790   // - Otherwise, do specific processing with the simplified value.
2791   // We return None in the first 2 cases to signify that an appropriate
2792   // action was taken and the caller should stop.
2793   // Otherwise, we return the simplified value that the caller should
2794   // use for specific processing.
2795   Optional<Value *> stopOnUndefOrAssumed(Attributor &A, Value *V,
2796                                          Instruction *I) {
2797     bool UsedAssumedInformation = false;
2798     Optional<Value *> SimplifiedV =
2799         A.getAssumedSimplified(IRPosition::value(*V), *this,
2800                                UsedAssumedInformation, AA::Interprocedural);
2801     if (!UsedAssumedInformation) {
2802       // Don't depend on assumed values.
2803       if (!SimplifiedV) {
2804         // If it is known (which we tested above) but it doesn't have a value,
2805         // then we can assume `undef` and hence the instruction is UB.
2806         KnownUBInsts.insert(I);
2807         return llvm::None;
2808       }
2809       if (!*SimplifiedV)
2810         return nullptr;
2811       V = *SimplifiedV;
2812     }
2813     if (isa<UndefValue>(V)) {
2814       KnownUBInsts.insert(I);
2815       return llvm::None;
2816     }
2817     return V;
2818   }
2819 };
2820 
2821 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
2822   AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
2823       : AAUndefinedBehaviorImpl(IRP, A) {}
2824 
2825   /// See AbstractAttribute::trackStatistics()
2826   void trackStatistics() const override {
2827     STATS_DECL(UndefinedBehaviorInstruction, Instruction,
2828                "Number of instructions known to have UB");
2829     BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
2830         KnownUBInsts.size();
2831   }
2832 };
2833 } // namespace
2834 
2835 /// ------------------------ Will-Return Attributes ----------------------------
2836 
2837 namespace {
2838 // Helper function that checks whether a function has any cycle which we don't
2839 // know if it is bounded or not.
2840 // Loops with maximum trip count are considered bounded, any other cycle not.
2841 static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
2842   ScalarEvolution *SE =
2843       A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
2844   LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
2845   // If either SCEV or LoopInfo is not available for the function then we assume
2846   // any cycle to be unbounded cycle.
2847   // We use scc_iterator which uses Tarjan algorithm to find all the maximal
2848   // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
2849   if (!SE || !LI) {
2850     for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
2851       if (SCCI.hasCycle())
2852         return true;
2853     return false;
2854   }
2855 
2856   // If there's irreducible control, the function may contain non-loop cycles.
2857   if (mayContainIrreducibleControl(F, LI))
2858     return true;
2859 
2860   // Any loop that does not have a max trip count is considered unbounded cycle.
2861   for (auto *L : LI->getLoopsInPreorder()) {
2862     if (!SE->getSmallConstantMaxTripCount(L))
2863       return true;
2864   }
2865   return false;
2866 }
2867 
2868 struct AAWillReturnImpl : public AAWillReturn {
2869   AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
2870       : AAWillReturn(IRP, A) {}
2871 
2872   /// See AbstractAttribute::initialize(...).
2873   void initialize(Attributor &A) override {
2874     AAWillReturn::initialize(A);
2875 
2876     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ true)) {
2877       indicateOptimisticFixpoint();
2878       return;
2879     }
2880   }
2881 
2882   /// Check for `mustprogress` and `readonly` as they imply `willreturn`.
2883   bool isImpliedByMustprogressAndReadonly(Attributor &A, bool KnownOnly) {
2884     // Check for `mustprogress` in the scope and the associated function which
2885     // might be different if this is a call site.
2886     if ((!getAnchorScope() || !getAnchorScope()->mustProgress()) &&
2887         (!getAssociatedFunction() || !getAssociatedFunction()->mustProgress()))
2888       return false;
2889 
2890     bool IsKnown;
2891     if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
2892       return IsKnown || !KnownOnly;
2893     return false;
2894   }
2895 
2896   /// See AbstractAttribute::updateImpl(...).
2897   ChangeStatus updateImpl(Attributor &A) override {
2898     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2899       return ChangeStatus::UNCHANGED;
2900 
2901     auto CheckForWillReturn = [&](Instruction &I) {
2902       IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
2903       const auto &WillReturnAA =
2904           A.getAAFor<AAWillReturn>(*this, IPos, DepClassTy::REQUIRED);
2905       if (WillReturnAA.isKnownWillReturn())
2906         return true;
2907       if (!WillReturnAA.isAssumedWillReturn())
2908         return false;
2909       const auto &NoRecurseAA =
2910           A.getAAFor<AANoRecurse>(*this, IPos, DepClassTy::REQUIRED);
2911       return NoRecurseAA.isAssumedNoRecurse();
2912     };
2913 
2914     bool UsedAssumedInformation = false;
2915     if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this,
2916                                            UsedAssumedInformation))
2917       return indicatePessimisticFixpoint();
2918 
2919     return ChangeStatus::UNCHANGED;
2920   }
2921 
2922   /// See AbstractAttribute::getAsStr()
2923   const std::string getAsStr() const override {
2924     return getAssumed() ? "willreturn" : "may-noreturn";
2925   }
2926 };
2927 
2928 struct AAWillReturnFunction final : AAWillReturnImpl {
2929   AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
2930       : AAWillReturnImpl(IRP, A) {}
2931 
2932   /// See AbstractAttribute::initialize(...).
2933   void initialize(Attributor &A) override {
2934     AAWillReturnImpl::initialize(A);
2935 
2936     Function *F = getAnchorScope();
2937     if (!F || F->isDeclaration() || mayContainUnboundedCycle(*F, A))
2938       indicatePessimisticFixpoint();
2939   }
2940 
2941   /// See AbstractAttribute::trackStatistics()
2942   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
2943 };
2944 
2945 /// WillReturn attribute deduction for a call sites.
2946 struct AAWillReturnCallSite final : AAWillReturnImpl {
2947   AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
2948       : AAWillReturnImpl(IRP, A) {}
2949 
2950   /// See AbstractAttribute::initialize(...).
2951   void initialize(Attributor &A) override {
2952     AAWillReturnImpl::initialize(A);
2953     Function *F = getAssociatedFunction();
2954     if (!F || !A.isFunctionIPOAmendable(*F))
2955       indicatePessimisticFixpoint();
2956   }
2957 
2958   /// See AbstractAttribute::updateImpl(...).
2959   ChangeStatus updateImpl(Attributor &A) override {
2960     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2961       return ChangeStatus::UNCHANGED;
2962 
2963     // TODO: Once we have call site specific value information we can provide
2964     //       call site specific liveness information and then it makes
2965     //       sense to specialize attributes for call sites arguments instead of
2966     //       redirecting requests to the callee argument.
2967     Function *F = getAssociatedFunction();
2968     const IRPosition &FnPos = IRPosition::function(*F);
2969     auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos, DepClassTy::REQUIRED);
2970     return clampStateAndIndicateChange(getState(), FnAA.getState());
2971   }
2972 
2973   /// See AbstractAttribute::trackStatistics()
2974   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
2975 };
2976 } // namespace
2977 
2978 /// -------------------AAReachability Attribute--------------------------
2979 
2980 namespace {
2981 struct AAReachabilityImpl : AAReachability {
2982   AAReachabilityImpl(const IRPosition &IRP, Attributor &A)
2983       : AAReachability(IRP, A) {}
2984 
2985   const std::string getAsStr() const override {
2986     // TODO: Return the number of reachable queries.
2987     return "reachable";
2988   }
2989 
2990   /// See AbstractAttribute::updateImpl(...).
2991   ChangeStatus updateImpl(Attributor &A) override {
2992     return ChangeStatus::UNCHANGED;
2993   }
2994 };
2995 
2996 struct AAReachabilityFunction final : public AAReachabilityImpl {
2997   AAReachabilityFunction(const IRPosition &IRP, Attributor &A)
2998       : AAReachabilityImpl(IRP, A) {}
2999 
3000   /// See AbstractAttribute::trackStatistics()
3001   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
3002 };
3003 } // namespace
3004 
3005 /// ------------------------ NoAlias Argument Attribute ------------------------
3006 
3007 namespace {
3008 struct AANoAliasImpl : AANoAlias {
3009   AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
3010     assert(getAssociatedType()->isPointerTy() &&
3011            "Noalias is a pointer attribute");
3012   }
3013 
3014   const std::string getAsStr() const override {
3015     return getAssumed() ? "noalias" : "may-alias";
3016   }
3017 };
3018 
3019 /// NoAlias attribute for a floating value.
3020 struct AANoAliasFloating final : AANoAliasImpl {
3021   AANoAliasFloating(const IRPosition &IRP, Attributor &A)
3022       : AANoAliasImpl(IRP, A) {}
3023 
3024   /// See AbstractAttribute::initialize(...).
3025   void initialize(Attributor &A) override {
3026     AANoAliasImpl::initialize(A);
3027     Value *Val = &getAssociatedValue();
3028     do {
3029       CastInst *CI = dyn_cast<CastInst>(Val);
3030       if (!CI)
3031         break;
3032       Value *Base = CI->getOperand(0);
3033       if (!Base->hasOneUse())
3034         break;
3035       Val = Base;
3036     } while (true);
3037 
3038     if (!Val->getType()->isPointerTy()) {
3039       indicatePessimisticFixpoint();
3040       return;
3041     }
3042 
3043     if (isa<AllocaInst>(Val))
3044       indicateOptimisticFixpoint();
3045     else if (isa<ConstantPointerNull>(Val) &&
3046              !NullPointerIsDefined(getAnchorScope(),
3047                                    Val->getType()->getPointerAddressSpace()))
3048       indicateOptimisticFixpoint();
3049     else if (Val != &getAssociatedValue()) {
3050       const auto &ValNoAliasAA = A.getAAFor<AANoAlias>(
3051           *this, IRPosition::value(*Val), DepClassTy::OPTIONAL);
3052       if (ValNoAliasAA.isKnownNoAlias())
3053         indicateOptimisticFixpoint();
3054     }
3055   }
3056 
3057   /// See AbstractAttribute::updateImpl(...).
3058   ChangeStatus updateImpl(Attributor &A) override {
3059     // TODO: Implement this.
3060     return indicatePessimisticFixpoint();
3061   }
3062 
3063   /// See AbstractAttribute::trackStatistics()
3064   void trackStatistics() const override {
3065     STATS_DECLTRACK_FLOATING_ATTR(noalias)
3066   }
3067 };
3068 
3069 /// NoAlias attribute for an argument.
3070 struct AANoAliasArgument final
3071     : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
3072   using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
3073   AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
3074 
3075   /// See AbstractAttribute::initialize(...).
3076   void initialize(Attributor &A) override {
3077     Base::initialize(A);
3078     // See callsite argument attribute and callee argument attribute.
3079     if (hasAttr({Attribute::ByVal}))
3080       indicateOptimisticFixpoint();
3081   }
3082 
3083   /// See AbstractAttribute::update(...).
3084   ChangeStatus updateImpl(Attributor &A) override {
3085     // We have to make sure no-alias on the argument does not break
3086     // synchronization when this is a callback argument, see also [1] below.
3087     // If synchronization cannot be affected, we delegate to the base updateImpl
3088     // function, otherwise we give up for now.
3089 
3090     // If the function is no-sync, no-alias cannot break synchronization.
3091     const auto &NoSyncAA =
3092         A.getAAFor<AANoSync>(*this, IRPosition::function_scope(getIRPosition()),
3093                              DepClassTy::OPTIONAL);
3094     if (NoSyncAA.isAssumedNoSync())
3095       return Base::updateImpl(A);
3096 
3097     // If the argument is read-only, no-alias cannot break synchronization.
3098     bool IsKnown;
3099     if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
3100       return Base::updateImpl(A);
3101 
3102     // If the argument is never passed through callbacks, no-alias cannot break
3103     // synchronization.
3104     bool UsedAssumedInformation = false;
3105     if (A.checkForAllCallSites(
3106             [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
3107             true, UsedAssumedInformation))
3108       return Base::updateImpl(A);
3109 
3110     // TODO: add no-alias but make sure it doesn't break synchronization by
3111     // introducing fake uses. See:
3112     // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
3113     //     International Workshop on OpenMP 2018,
3114     //     http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
3115 
3116     return indicatePessimisticFixpoint();
3117   }
3118 
3119   /// See AbstractAttribute::trackStatistics()
3120   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
3121 };
3122 
3123 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
3124   AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
3125       : AANoAliasImpl(IRP, A) {}
3126 
3127   /// See AbstractAttribute::initialize(...).
3128   void initialize(Attributor &A) override {
3129     // See callsite argument attribute and callee argument attribute.
3130     const auto &CB = cast<CallBase>(getAnchorValue());
3131     if (CB.paramHasAttr(getCallSiteArgNo(), Attribute::NoAlias))
3132       indicateOptimisticFixpoint();
3133     Value &Val = getAssociatedValue();
3134     if (isa<ConstantPointerNull>(Val) &&
3135         !NullPointerIsDefined(getAnchorScope(),
3136                               Val.getType()->getPointerAddressSpace()))
3137       indicateOptimisticFixpoint();
3138   }
3139 
3140   /// Determine if the underlying value may alias with the call site argument
3141   /// \p OtherArgNo of \p ICS (= the underlying call site).
3142   bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
3143                             const AAMemoryBehavior &MemBehaviorAA,
3144                             const CallBase &CB, unsigned OtherArgNo) {
3145     // We do not need to worry about aliasing with the underlying IRP.
3146     if (this->getCalleeArgNo() == (int)OtherArgNo)
3147       return false;
3148 
3149     // If it is not a pointer or pointer vector we do not alias.
3150     const Value *ArgOp = CB.getArgOperand(OtherArgNo);
3151     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
3152       return false;
3153 
3154     auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
3155         *this, IRPosition::callsite_argument(CB, OtherArgNo), DepClassTy::NONE);
3156 
3157     // If the argument is readnone, there is no read-write aliasing.
3158     if (CBArgMemBehaviorAA.isAssumedReadNone()) {
3159       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3160       return false;
3161     }
3162 
3163     // If the argument is readonly and the underlying value is readonly, there
3164     // is no read-write aliasing.
3165     bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
3166     if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
3167       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3168       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3169       return false;
3170     }
3171 
3172     // We have to utilize actual alias analysis queries so we need the object.
3173     if (!AAR)
3174       AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
3175 
3176     // Try to rule it out at the call site.
3177     bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
3178     LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
3179                          "callsite arguments: "
3180                       << getAssociatedValue() << " " << *ArgOp << " => "
3181                       << (IsAliasing ? "" : "no-") << "alias \n");
3182 
3183     return IsAliasing;
3184   }
3185 
3186   bool
3187   isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
3188                                          const AAMemoryBehavior &MemBehaviorAA,
3189                                          const AANoAlias &NoAliasAA) {
3190     // We can deduce "noalias" if the following conditions hold.
3191     // (i)   Associated value is assumed to be noalias in the definition.
3192     // (ii)  Associated value is assumed to be no-capture in all the uses
3193     //       possibly executed before this callsite.
3194     // (iii) There is no other pointer argument which could alias with the
3195     //       value.
3196 
3197     bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
3198     if (!AssociatedValueIsNoAliasAtDef) {
3199       LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
3200                         << " is not no-alias at the definition\n");
3201       return false;
3202     }
3203 
3204     auto IsDereferenceableOrNull = [&](Value *O, const DataLayout &DL) {
3205       const auto &DerefAA = A.getAAFor<AADereferenceable>(
3206           *this, IRPosition::value(*O), DepClassTy::OPTIONAL);
3207       return DerefAA.getAssumedDereferenceableBytes();
3208     };
3209 
3210     A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
3211 
3212     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3213     const Function *ScopeFn = VIRP.getAnchorScope();
3214     auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, VIRP, DepClassTy::NONE);
3215     // Check whether the value is captured in the scope using AANoCapture.
3216     // Look at CFG and check only uses possibly executed before this
3217     // callsite.
3218     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
3219       Instruction *UserI = cast<Instruction>(U.getUser());
3220 
3221       // If UserI is the curr instruction and there is a single potential use of
3222       // the value in UserI we allow the use.
3223       // TODO: We should inspect the operands and allow those that cannot alias
3224       //       with the value.
3225       if (UserI == getCtxI() && UserI->getNumOperands() == 1)
3226         return true;
3227 
3228       if (ScopeFn) {
3229         if (auto *CB = dyn_cast<CallBase>(UserI)) {
3230           if (CB->isArgOperand(&U)) {
3231 
3232             unsigned ArgNo = CB->getArgOperandNo(&U);
3233 
3234             const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
3235                 *this, IRPosition::callsite_argument(*CB, ArgNo),
3236                 DepClassTy::OPTIONAL);
3237 
3238             if (NoCaptureAA.isAssumedNoCapture())
3239               return true;
3240           }
3241         }
3242 
3243         if (!AA::isPotentiallyReachable(
3244                 A, *UserI, *getCtxI(), *this,
3245                 [ScopeFn](const Function &Fn) { return &Fn != ScopeFn; }))
3246           return true;
3247       }
3248 
3249       // TODO: We should track the capturing uses in AANoCapture but the problem
3250       //       is CGSCC runs. For those we would need to "allow" AANoCapture for
3251       //       a value in the module slice.
3252       switch (DetermineUseCaptureKind(U, IsDereferenceableOrNull)) {
3253       case UseCaptureKind::NO_CAPTURE:
3254         return true;
3255       case UseCaptureKind::MAY_CAPTURE:
3256         LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *UserI
3257                           << "\n");
3258         return false;
3259       case UseCaptureKind::PASSTHROUGH:
3260         Follow = true;
3261         return true;
3262       }
3263       llvm_unreachable("unknown UseCaptureKind");
3264     };
3265 
3266     if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
3267       if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
3268         LLVM_DEBUG(
3269             dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
3270                    << " cannot be noalias as it is potentially captured\n");
3271         return false;
3272       }
3273     }
3274     A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
3275 
3276     // Check there is no other pointer argument which could alias with the
3277     // value passed at this call site.
3278     // TODO: AbstractCallSite
3279     const auto &CB = cast<CallBase>(getAnchorValue());
3280     for (unsigned OtherArgNo = 0; OtherArgNo < CB.arg_size(); OtherArgNo++)
3281       if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
3282         return false;
3283 
3284     return true;
3285   }
3286 
3287   /// See AbstractAttribute::updateImpl(...).
3288   ChangeStatus updateImpl(Attributor &A) override {
3289     // If the argument is readnone we are done as there are no accesses via the
3290     // argument.
3291     auto &MemBehaviorAA =
3292         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
3293     if (MemBehaviorAA.isAssumedReadNone()) {
3294       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3295       return ChangeStatus::UNCHANGED;
3296     }
3297 
3298     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3299     const auto &NoAliasAA =
3300         A.getAAFor<AANoAlias>(*this, VIRP, DepClassTy::NONE);
3301 
3302     AAResults *AAR = nullptr;
3303     if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
3304                                                NoAliasAA)) {
3305       LLVM_DEBUG(
3306           dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
3307       return ChangeStatus::UNCHANGED;
3308     }
3309 
3310     return indicatePessimisticFixpoint();
3311   }
3312 
3313   /// See AbstractAttribute::trackStatistics()
3314   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
3315 };
3316 
3317 /// NoAlias attribute for function return value.
3318 struct AANoAliasReturned final : AANoAliasImpl {
3319   AANoAliasReturned(const IRPosition &IRP, Attributor &A)
3320       : AANoAliasImpl(IRP, A) {}
3321 
3322   /// See AbstractAttribute::initialize(...).
3323   void initialize(Attributor &A) override {
3324     AANoAliasImpl::initialize(A);
3325     Function *F = getAssociatedFunction();
3326     if (!F || F->isDeclaration())
3327       indicatePessimisticFixpoint();
3328   }
3329 
3330   /// See AbstractAttribute::updateImpl(...).
3331   ChangeStatus updateImpl(Attributor &A) override {
3332 
3333     auto CheckReturnValue = [&](Value &RV) -> bool {
3334       if (Constant *C = dyn_cast<Constant>(&RV))
3335         if (C->isNullValue() || isa<UndefValue>(C))
3336           return true;
3337 
3338       /// For now, we can only deduce noalias if we have call sites.
3339       /// FIXME: add more support.
3340       if (!isa<CallBase>(&RV))
3341         return false;
3342 
3343       const IRPosition &RVPos = IRPosition::value(RV);
3344       const auto &NoAliasAA =
3345           A.getAAFor<AANoAlias>(*this, RVPos, DepClassTy::REQUIRED);
3346       if (!NoAliasAA.isAssumedNoAlias())
3347         return false;
3348 
3349       const auto &NoCaptureAA =
3350           A.getAAFor<AANoCapture>(*this, RVPos, DepClassTy::REQUIRED);
3351       return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
3352     };
3353 
3354     if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
3355       return indicatePessimisticFixpoint();
3356 
3357     return ChangeStatus::UNCHANGED;
3358   }
3359 
3360   /// See AbstractAttribute::trackStatistics()
3361   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
3362 };
3363 
3364 /// NoAlias attribute deduction for a call site return value.
3365 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
3366   AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
3367       : AANoAliasImpl(IRP, A) {}
3368 
3369   /// See AbstractAttribute::initialize(...).
3370   void initialize(Attributor &A) override {
3371     AANoAliasImpl::initialize(A);
3372     Function *F = getAssociatedFunction();
3373     if (!F || F->isDeclaration())
3374       indicatePessimisticFixpoint();
3375   }
3376 
3377   /// See AbstractAttribute::updateImpl(...).
3378   ChangeStatus updateImpl(Attributor &A) override {
3379     // TODO: Once we have call site specific value information we can provide
3380     //       call site specific liveness information and then it makes
3381     //       sense to specialize attributes for call sites arguments instead of
3382     //       redirecting requests to the callee argument.
3383     Function *F = getAssociatedFunction();
3384     const IRPosition &FnPos = IRPosition::returned(*F);
3385     auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos, DepClassTy::REQUIRED);
3386     return clampStateAndIndicateChange(getState(), FnAA.getState());
3387   }
3388 
3389   /// See AbstractAttribute::trackStatistics()
3390   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
3391 };
3392 } // namespace
3393 
3394 /// -------------------AAIsDead Function Attribute-----------------------
3395 
3396 namespace {
3397 struct AAIsDeadValueImpl : public AAIsDead {
3398   AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3399 
3400   /// See AbstractAttribute::initialize(...).
3401   void initialize(Attributor &A) override {
3402     if (auto *Scope = getAnchorScope())
3403       if (!A.isRunOn(*Scope))
3404         indicatePessimisticFixpoint();
3405   }
3406 
3407   /// See AAIsDead::isAssumedDead().
3408   bool isAssumedDead() const override { return isAssumed(IS_DEAD); }
3409 
3410   /// See AAIsDead::isKnownDead().
3411   bool isKnownDead() const override { return isKnown(IS_DEAD); }
3412 
3413   /// See AAIsDead::isAssumedDead(BasicBlock *).
3414   bool isAssumedDead(const BasicBlock *BB) const override { return false; }
3415 
3416   /// See AAIsDead::isKnownDead(BasicBlock *).
3417   bool isKnownDead(const BasicBlock *BB) const override { return false; }
3418 
3419   /// See AAIsDead::isAssumedDead(Instruction *I).
3420   bool isAssumedDead(const Instruction *I) const override {
3421     return I == getCtxI() && isAssumedDead();
3422   }
3423 
3424   /// See AAIsDead::isKnownDead(Instruction *I).
3425   bool isKnownDead(const Instruction *I) const override {
3426     return isAssumedDead(I) && isKnownDead();
3427   }
3428 
3429   /// See AbstractAttribute::getAsStr().
3430   const std::string getAsStr() const override {
3431     return isAssumedDead() ? "assumed-dead" : "assumed-live";
3432   }
3433 
3434   /// Check if all uses are assumed dead.
3435   bool areAllUsesAssumedDead(Attributor &A, Value &V) {
3436     // Callers might not check the type, void has no uses.
3437     if (V.getType()->isVoidTy() || V.use_empty())
3438       return true;
3439 
3440     // If we replace a value with a constant there are no uses left afterwards.
3441     if (!isa<Constant>(V)) {
3442       if (auto *I = dyn_cast<Instruction>(&V))
3443         if (!A.isRunOn(*I->getFunction()))
3444           return false;
3445       bool UsedAssumedInformation = false;
3446       Optional<Constant *> C =
3447           A.getAssumedConstant(V, *this, UsedAssumedInformation);
3448       if (!C || *C)
3449         return true;
3450     }
3451 
3452     auto UsePred = [&](const Use &U, bool &Follow) { return false; };
3453     // Explicitly set the dependence class to required because we want a long
3454     // chain of N dependent instructions to be considered live as soon as one is
3455     // without going through N update cycles. This is not required for
3456     // correctness.
3457     return A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ false,
3458                              DepClassTy::REQUIRED,
3459                              /* IgnoreDroppableUses */ false);
3460   }
3461 
3462   /// Determine if \p I is assumed to be side-effect free.
3463   bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
3464     if (!I || wouldInstructionBeTriviallyDead(I))
3465       return true;
3466 
3467     auto *CB = dyn_cast<CallBase>(I);
3468     if (!CB || isa<IntrinsicInst>(CB))
3469       return false;
3470 
3471     const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
3472     const auto &NoUnwindAA =
3473         A.getAndUpdateAAFor<AANoUnwind>(*this, CallIRP, DepClassTy::NONE);
3474     if (!NoUnwindAA.isAssumedNoUnwind())
3475       return false;
3476     if (!NoUnwindAA.isKnownNoUnwind())
3477       A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL);
3478 
3479     bool IsKnown;
3480     return AA::isAssumedReadOnly(A, CallIRP, *this, IsKnown);
3481   }
3482 };
3483 
3484 struct AAIsDeadFloating : public AAIsDeadValueImpl {
3485   AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
3486       : AAIsDeadValueImpl(IRP, A) {}
3487 
3488   /// See AbstractAttribute::initialize(...).
3489   void initialize(Attributor &A) override {
3490     AAIsDeadValueImpl::initialize(A);
3491 
3492     if (isa<UndefValue>(getAssociatedValue())) {
3493       indicatePessimisticFixpoint();
3494       return;
3495     }
3496 
3497     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3498     if (!isAssumedSideEffectFree(A, I)) {
3499       if (!isa_and_nonnull<StoreInst>(I))
3500         indicatePessimisticFixpoint();
3501       else
3502         removeAssumedBits(HAS_NO_EFFECT);
3503     }
3504   }
3505 
3506   bool isDeadStore(Attributor &A, StoreInst &SI) {
3507     // Lang ref now states volatile store is not UB/dead, let's skip them.
3508     if (SI.isVolatile())
3509       return false;
3510 
3511     bool UsedAssumedInformation = false;
3512     SmallSetVector<Value *, 4> PotentialCopies;
3513     if (!AA::getPotentialCopiesOfStoredValue(A, SI, PotentialCopies, *this,
3514                                              UsedAssumedInformation))
3515       return false;
3516     return llvm::all_of(PotentialCopies, [&](Value *V) {
3517       return A.isAssumedDead(IRPosition::value(*V), this, nullptr,
3518                              UsedAssumedInformation);
3519     });
3520   }
3521 
3522   /// See AbstractAttribute::getAsStr().
3523   const std::string getAsStr() const override {
3524     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3525     if (isa_and_nonnull<StoreInst>(I))
3526       if (isValidState())
3527         return "assumed-dead-store";
3528     return AAIsDeadValueImpl::getAsStr();
3529   }
3530 
3531   /// See AbstractAttribute::updateImpl(...).
3532   ChangeStatus updateImpl(Attributor &A) override {
3533     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3534     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
3535       if (!isDeadStore(A, *SI))
3536         return indicatePessimisticFixpoint();
3537     } else {
3538       if (!isAssumedSideEffectFree(A, I))
3539         return indicatePessimisticFixpoint();
3540       if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3541         return indicatePessimisticFixpoint();
3542     }
3543     return ChangeStatus::UNCHANGED;
3544   }
3545 
3546   bool isRemovableStore() const override {
3547     return isAssumed(IS_REMOVABLE) && isa<StoreInst>(&getAssociatedValue());
3548   }
3549 
3550   /// See AbstractAttribute::manifest(...).
3551   ChangeStatus manifest(Attributor &A) override {
3552     Value &V = getAssociatedValue();
3553     if (auto *I = dyn_cast<Instruction>(&V)) {
3554       // If we get here we basically know the users are all dead. We check if
3555       // isAssumedSideEffectFree returns true here again because it might not be
3556       // the case and only the users are dead but the instruction (=call) is
3557       // still needed.
3558       if (isa<StoreInst>(I) ||
3559           (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I))) {
3560         A.deleteAfterManifest(*I);
3561         return ChangeStatus::CHANGED;
3562       }
3563     }
3564     return ChangeStatus::UNCHANGED;
3565   }
3566 
3567   /// See AbstractAttribute::trackStatistics()
3568   void trackStatistics() const override {
3569     STATS_DECLTRACK_FLOATING_ATTR(IsDead)
3570   }
3571 };
3572 
3573 struct AAIsDeadArgument : public AAIsDeadFloating {
3574   AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
3575       : AAIsDeadFloating(IRP, A) {}
3576 
3577   /// See AbstractAttribute::initialize(...).
3578   void initialize(Attributor &A) override {
3579     AAIsDeadFloating::initialize(A);
3580     if (!A.isFunctionIPOAmendable(*getAnchorScope()))
3581       indicatePessimisticFixpoint();
3582   }
3583 
3584   /// See AbstractAttribute::manifest(...).
3585   ChangeStatus manifest(Attributor &A) override {
3586     Argument &Arg = *getAssociatedArgument();
3587     if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
3588       if (A.registerFunctionSignatureRewrite(
3589               Arg, /* ReplacementTypes */ {},
3590               Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
3591               Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
3592         return ChangeStatus::CHANGED;
3593       }
3594     return ChangeStatus::UNCHANGED;
3595   }
3596 
3597   /// See AbstractAttribute::trackStatistics()
3598   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
3599 };
3600 
3601 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
3602   AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
3603       : AAIsDeadValueImpl(IRP, A) {}
3604 
3605   /// See AbstractAttribute::initialize(...).
3606   void initialize(Attributor &A) override {
3607     AAIsDeadValueImpl::initialize(A);
3608     if (isa<UndefValue>(getAssociatedValue()))
3609       indicatePessimisticFixpoint();
3610   }
3611 
3612   /// See AbstractAttribute::updateImpl(...).
3613   ChangeStatus updateImpl(Attributor &A) override {
3614     // TODO: Once we have call site specific value information we can provide
3615     //       call site specific liveness information and then it makes
3616     //       sense to specialize attributes for call sites arguments instead of
3617     //       redirecting requests to the callee argument.
3618     Argument *Arg = getAssociatedArgument();
3619     if (!Arg)
3620       return indicatePessimisticFixpoint();
3621     const IRPosition &ArgPos = IRPosition::argument(*Arg);
3622     auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos, DepClassTy::REQUIRED);
3623     return clampStateAndIndicateChange(getState(), ArgAA.getState());
3624   }
3625 
3626   /// See AbstractAttribute::manifest(...).
3627   ChangeStatus manifest(Attributor &A) override {
3628     CallBase &CB = cast<CallBase>(getAnchorValue());
3629     Use &U = CB.getArgOperandUse(getCallSiteArgNo());
3630     assert(!isa<UndefValue>(U.get()) &&
3631            "Expected undef values to be filtered out!");
3632     UndefValue &UV = *UndefValue::get(U->getType());
3633     if (A.changeUseAfterManifest(U, UV))
3634       return ChangeStatus::CHANGED;
3635     return ChangeStatus::UNCHANGED;
3636   }
3637 
3638   /// See AbstractAttribute::trackStatistics()
3639   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
3640 };
3641 
3642 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
3643   AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
3644       : AAIsDeadFloating(IRP, A) {}
3645 
3646   /// See AAIsDead::isAssumedDead().
3647   bool isAssumedDead() const override {
3648     return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
3649   }
3650 
3651   /// See AbstractAttribute::initialize(...).
3652   void initialize(Attributor &A) override {
3653     AAIsDeadFloating::initialize(A);
3654     if (isa<UndefValue>(getAssociatedValue())) {
3655       indicatePessimisticFixpoint();
3656       return;
3657     }
3658 
3659     // We track this separately as a secondary state.
3660     IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
3661   }
3662 
3663   /// See AbstractAttribute::updateImpl(...).
3664   ChangeStatus updateImpl(Attributor &A) override {
3665     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3666     if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
3667       IsAssumedSideEffectFree = false;
3668       Changed = ChangeStatus::CHANGED;
3669     }
3670     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3671       return indicatePessimisticFixpoint();
3672     return Changed;
3673   }
3674 
3675   /// See AbstractAttribute::trackStatistics()
3676   void trackStatistics() const override {
3677     if (IsAssumedSideEffectFree)
3678       STATS_DECLTRACK_CSRET_ATTR(IsDead)
3679     else
3680       STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
3681   }
3682 
3683   /// See AbstractAttribute::getAsStr().
3684   const std::string getAsStr() const override {
3685     return isAssumedDead()
3686                ? "assumed-dead"
3687                : (getAssumed() ? "assumed-dead-users" : "assumed-live");
3688   }
3689 
3690 private:
3691   bool IsAssumedSideEffectFree = true;
3692 };
3693 
3694 struct AAIsDeadReturned : public AAIsDeadValueImpl {
3695   AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
3696       : AAIsDeadValueImpl(IRP, A) {}
3697 
3698   /// See AbstractAttribute::updateImpl(...).
3699   ChangeStatus updateImpl(Attributor &A) override {
3700 
3701     bool UsedAssumedInformation = false;
3702     A.checkForAllInstructions([](Instruction &) { return true; }, *this,
3703                               {Instruction::Ret}, UsedAssumedInformation);
3704 
3705     auto PredForCallSite = [&](AbstractCallSite ACS) {
3706       if (ACS.isCallbackCall() || !ACS.getInstruction())
3707         return false;
3708       return areAllUsesAssumedDead(A, *ACS.getInstruction());
3709     };
3710 
3711     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
3712                                 UsedAssumedInformation))
3713       return indicatePessimisticFixpoint();
3714 
3715     return ChangeStatus::UNCHANGED;
3716   }
3717 
3718   /// See AbstractAttribute::manifest(...).
3719   ChangeStatus manifest(Attributor &A) override {
3720     // TODO: Rewrite the signature to return void?
3721     bool AnyChange = false;
3722     UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
3723     auto RetInstPred = [&](Instruction &I) {
3724       ReturnInst &RI = cast<ReturnInst>(I);
3725       if (!isa<UndefValue>(RI.getReturnValue()))
3726         AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
3727       return true;
3728     };
3729     bool UsedAssumedInformation = false;
3730     A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
3731                               UsedAssumedInformation);
3732     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3733   }
3734 
3735   /// See AbstractAttribute::trackStatistics()
3736   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
3737 };
3738 
3739 struct AAIsDeadFunction : public AAIsDead {
3740   AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3741 
3742   /// See AbstractAttribute::initialize(...).
3743   void initialize(Attributor &A) override {
3744     Function *F = getAnchorScope();
3745     if (!F || F->isDeclaration() || !A.isRunOn(*F)) {
3746       indicatePessimisticFixpoint();
3747       return;
3748     }
3749     ToBeExploredFrom.insert(&F->getEntryBlock().front());
3750     assumeLive(A, F->getEntryBlock());
3751   }
3752 
3753   /// See AbstractAttribute::getAsStr().
3754   const std::string getAsStr() const override {
3755     return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
3756            std::to_string(getAnchorScope()->size()) + "][#TBEP " +
3757            std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
3758            std::to_string(KnownDeadEnds.size()) + "]";
3759   }
3760 
3761   /// See AbstractAttribute::manifest(...).
3762   ChangeStatus manifest(Attributor &A) override {
3763     assert(getState().isValidState() &&
3764            "Attempted to manifest an invalid state!");
3765 
3766     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
3767     Function &F = *getAnchorScope();
3768 
3769     if (AssumedLiveBlocks.empty()) {
3770       A.deleteAfterManifest(F);
3771       return ChangeStatus::CHANGED;
3772     }
3773 
3774     // Flag to determine if we can change an invoke to a call assuming the
3775     // callee is nounwind. This is not possible if the personality of the
3776     // function allows to catch asynchronous exceptions.
3777     bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
3778 
3779     KnownDeadEnds.set_union(ToBeExploredFrom);
3780     for (const Instruction *DeadEndI : KnownDeadEnds) {
3781       auto *CB = dyn_cast<CallBase>(DeadEndI);
3782       if (!CB)
3783         continue;
3784       const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3785           *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
3786       bool MayReturn = !NoReturnAA.isAssumedNoReturn();
3787       if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
3788         continue;
3789 
3790       if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
3791         A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
3792       else
3793         A.changeToUnreachableAfterManifest(
3794             const_cast<Instruction *>(DeadEndI->getNextNode()));
3795       HasChanged = ChangeStatus::CHANGED;
3796     }
3797 
3798     STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
3799     for (BasicBlock &BB : F)
3800       if (!AssumedLiveBlocks.count(&BB)) {
3801         A.deleteAfterManifest(BB);
3802         ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
3803         HasChanged = ChangeStatus::CHANGED;
3804       }
3805 
3806     return HasChanged;
3807   }
3808 
3809   /// See AbstractAttribute::updateImpl(...).
3810   ChangeStatus updateImpl(Attributor &A) override;
3811 
3812   bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override {
3813     assert(From->getParent() == getAnchorScope() &&
3814            To->getParent() == getAnchorScope() &&
3815            "Used AAIsDead of the wrong function");
3816     return isValidState() && !AssumedLiveEdges.count(std::make_pair(From, To));
3817   }
3818 
3819   /// See AbstractAttribute::trackStatistics()
3820   void trackStatistics() const override {}
3821 
3822   /// Returns true if the function is assumed dead.
3823   bool isAssumedDead() const override { return false; }
3824 
3825   /// See AAIsDead::isKnownDead().
3826   bool isKnownDead() const override { return false; }
3827 
3828   /// See AAIsDead::isAssumedDead(BasicBlock *).
3829   bool isAssumedDead(const BasicBlock *BB) const override {
3830     assert(BB->getParent() == getAnchorScope() &&
3831            "BB must be in the same anchor scope function.");
3832 
3833     if (!getAssumed())
3834       return false;
3835     return !AssumedLiveBlocks.count(BB);
3836   }
3837 
3838   /// See AAIsDead::isKnownDead(BasicBlock *).
3839   bool isKnownDead(const BasicBlock *BB) const override {
3840     return getKnown() && isAssumedDead(BB);
3841   }
3842 
3843   /// See AAIsDead::isAssumed(Instruction *I).
3844   bool isAssumedDead(const Instruction *I) const override {
3845     assert(I->getParent()->getParent() == getAnchorScope() &&
3846            "Instruction must be in the same anchor scope function.");
3847 
3848     if (!getAssumed())
3849       return false;
3850 
3851     // If it is not in AssumedLiveBlocks then it for sure dead.
3852     // Otherwise, it can still be after noreturn call in a live block.
3853     if (!AssumedLiveBlocks.count(I->getParent()))
3854       return true;
3855 
3856     // If it is not after a liveness barrier it is live.
3857     const Instruction *PrevI = I->getPrevNode();
3858     while (PrevI) {
3859       if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
3860         return true;
3861       PrevI = PrevI->getPrevNode();
3862     }
3863     return false;
3864   }
3865 
3866   /// See AAIsDead::isKnownDead(Instruction *I).
3867   bool isKnownDead(const Instruction *I) const override {
3868     return getKnown() && isAssumedDead(I);
3869   }
3870 
3871   /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
3872   /// that internal function called from \p BB should now be looked at.
3873   bool assumeLive(Attributor &A, const BasicBlock &BB) {
3874     if (!AssumedLiveBlocks.insert(&BB).second)
3875       return false;
3876 
3877     // We assume that all of BB is (probably) live now and if there are calls to
3878     // internal functions we will assume that those are now live as well. This
3879     // is a performance optimization for blocks with calls to a lot of internal
3880     // functions. It can however cause dead functions to be treated as live.
3881     for (const Instruction &I : BB)
3882       if (const auto *CB = dyn_cast<CallBase>(&I))
3883         if (const Function *F = CB->getCalledFunction())
3884           if (F->hasLocalLinkage())
3885             A.markLiveInternalFunction(*F);
3886     return true;
3887   }
3888 
3889   /// Collection of instructions that need to be explored again, e.g., we
3890   /// did assume they do not transfer control to (one of their) successors.
3891   SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
3892 
3893   /// Collection of instructions that are known to not transfer control.
3894   SmallSetVector<const Instruction *, 8> KnownDeadEnds;
3895 
3896   /// Collection of all assumed live edges
3897   DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges;
3898 
3899   /// Collection of all assumed live BasicBlocks.
3900   DenseSet<const BasicBlock *> AssumedLiveBlocks;
3901 };
3902 
3903 static bool
3904 identifyAliveSuccessors(Attributor &A, const CallBase &CB,
3905                         AbstractAttribute &AA,
3906                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3907   const IRPosition &IPos = IRPosition::callsite_function(CB);
3908 
3909   const auto &NoReturnAA =
3910       A.getAndUpdateAAFor<AANoReturn>(AA, IPos, DepClassTy::OPTIONAL);
3911   if (NoReturnAA.isAssumedNoReturn())
3912     return !NoReturnAA.isKnownNoReturn();
3913   if (CB.isTerminator())
3914     AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
3915   else
3916     AliveSuccessors.push_back(CB.getNextNode());
3917   return false;
3918 }
3919 
3920 static bool
3921 identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
3922                         AbstractAttribute &AA,
3923                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3924   bool UsedAssumedInformation =
3925       identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
3926 
3927   // First, determine if we can change an invoke to a call assuming the
3928   // callee is nounwind. This is not possible if the personality of the
3929   // function allows to catch asynchronous exceptions.
3930   if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
3931     AliveSuccessors.push_back(&II.getUnwindDest()->front());
3932   } else {
3933     const IRPosition &IPos = IRPosition::callsite_function(II);
3934     const auto &AANoUnw =
3935         A.getAndUpdateAAFor<AANoUnwind>(AA, IPos, DepClassTy::OPTIONAL);
3936     if (AANoUnw.isAssumedNoUnwind()) {
3937       UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
3938     } else {
3939       AliveSuccessors.push_back(&II.getUnwindDest()->front());
3940     }
3941   }
3942   return UsedAssumedInformation;
3943 }
3944 
3945 static bool
3946 identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
3947                         AbstractAttribute &AA,
3948                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3949   bool UsedAssumedInformation = false;
3950   if (BI.getNumSuccessors() == 1) {
3951     AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3952   } else {
3953     Optional<Constant *> C =
3954         A.getAssumedConstant(*BI.getCondition(), AA, UsedAssumedInformation);
3955     if (!C || isa_and_nonnull<UndefValue>(*C)) {
3956       // No value yet, assume both edges are dead.
3957     } else if (isa_and_nonnull<ConstantInt>(*C)) {
3958       const BasicBlock *SuccBB =
3959           BI.getSuccessor(1 - cast<ConstantInt>(*C)->getValue().getZExtValue());
3960       AliveSuccessors.push_back(&SuccBB->front());
3961     } else {
3962       AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3963       AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
3964       UsedAssumedInformation = false;
3965     }
3966   }
3967   return UsedAssumedInformation;
3968 }
3969 
3970 static bool
3971 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
3972                         AbstractAttribute &AA,
3973                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3974   bool UsedAssumedInformation = false;
3975   Optional<Constant *> C =
3976       A.getAssumedConstant(*SI.getCondition(), AA, UsedAssumedInformation);
3977   if (!C || isa_and_nonnull<UndefValue>(C.value())) {
3978     // No value yet, assume all edges are dead.
3979   } else if (isa_and_nonnull<ConstantInt>(C.value())) {
3980     for (auto &CaseIt : SI.cases()) {
3981       if (CaseIt.getCaseValue() == C.value()) {
3982         AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
3983         return UsedAssumedInformation;
3984       }
3985     }
3986     AliveSuccessors.push_back(&SI.getDefaultDest()->front());
3987     return UsedAssumedInformation;
3988   } else {
3989     for (const BasicBlock *SuccBB : successors(SI.getParent()))
3990       AliveSuccessors.push_back(&SuccBB->front());
3991   }
3992   return UsedAssumedInformation;
3993 }
3994 
3995 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
3996   ChangeStatus Change = ChangeStatus::UNCHANGED;
3997 
3998   LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
3999                     << getAnchorScope()->size() << "] BBs and "
4000                     << ToBeExploredFrom.size() << " exploration points and "
4001                     << KnownDeadEnds.size() << " known dead ends\n");
4002 
4003   // Copy and clear the list of instructions we need to explore from. It is
4004   // refilled with instructions the next update has to look at.
4005   SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
4006                                                ToBeExploredFrom.end());
4007   decltype(ToBeExploredFrom) NewToBeExploredFrom;
4008 
4009   SmallVector<const Instruction *, 8> AliveSuccessors;
4010   while (!Worklist.empty()) {
4011     const Instruction *I = Worklist.pop_back_val();
4012     LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
4013 
4014     // Fast forward for uninteresting instructions. We could look for UB here
4015     // though.
4016     while (!I->isTerminator() && !isa<CallBase>(I))
4017       I = I->getNextNode();
4018 
4019     AliveSuccessors.clear();
4020 
4021     bool UsedAssumedInformation = false;
4022     switch (I->getOpcode()) {
4023     // TODO: look for (assumed) UB to backwards propagate "deadness".
4024     default:
4025       assert(I->isTerminator() &&
4026              "Expected non-terminators to be handled already!");
4027       for (const BasicBlock *SuccBB : successors(I->getParent()))
4028         AliveSuccessors.push_back(&SuccBB->front());
4029       break;
4030     case Instruction::Call:
4031       UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
4032                                                        *this, AliveSuccessors);
4033       break;
4034     case Instruction::Invoke:
4035       UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
4036                                                        *this, AliveSuccessors);
4037       break;
4038     case Instruction::Br:
4039       UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
4040                                                        *this, AliveSuccessors);
4041       break;
4042     case Instruction::Switch:
4043       UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
4044                                                        *this, AliveSuccessors);
4045       break;
4046     }
4047 
4048     if (UsedAssumedInformation) {
4049       NewToBeExploredFrom.insert(I);
4050     } else if (AliveSuccessors.empty() ||
4051                (I->isTerminator() &&
4052                 AliveSuccessors.size() < I->getNumSuccessors())) {
4053       if (KnownDeadEnds.insert(I))
4054         Change = ChangeStatus::CHANGED;
4055     }
4056 
4057     LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
4058                       << AliveSuccessors.size() << " UsedAssumedInformation: "
4059                       << UsedAssumedInformation << "\n");
4060 
4061     for (const Instruction *AliveSuccessor : AliveSuccessors) {
4062       if (!I->isTerminator()) {
4063         assert(AliveSuccessors.size() == 1 &&
4064                "Non-terminator expected to have a single successor!");
4065         Worklist.push_back(AliveSuccessor);
4066       } else {
4067         // record the assumed live edge
4068         auto Edge = std::make_pair(I->getParent(), AliveSuccessor->getParent());
4069         if (AssumedLiveEdges.insert(Edge).second)
4070           Change = ChangeStatus::CHANGED;
4071         if (assumeLive(A, *AliveSuccessor->getParent()))
4072           Worklist.push_back(AliveSuccessor);
4073       }
4074     }
4075   }
4076 
4077   // Check if the content of ToBeExploredFrom changed, ignore the order.
4078   if (NewToBeExploredFrom.size() != ToBeExploredFrom.size() ||
4079       llvm::any_of(NewToBeExploredFrom, [&](const Instruction *I) {
4080         return !ToBeExploredFrom.count(I);
4081       })) {
4082     Change = ChangeStatus::CHANGED;
4083     ToBeExploredFrom = std::move(NewToBeExploredFrom);
4084   }
4085 
4086   // If we know everything is live there is no need to query for liveness.
4087   // Instead, indicating a pessimistic fixpoint will cause the state to be
4088   // "invalid" and all queries to be answered conservatively without lookups.
4089   // To be in this state we have to (1) finished the exploration and (3) not
4090   // discovered any non-trivial dead end and (2) not ruled unreachable code
4091   // dead.
4092   if (ToBeExploredFrom.empty() &&
4093       getAnchorScope()->size() == AssumedLiveBlocks.size() &&
4094       llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
4095         return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
4096       }))
4097     return indicatePessimisticFixpoint();
4098   return Change;
4099 }
4100 
4101 /// Liveness information for a call sites.
4102 struct AAIsDeadCallSite final : AAIsDeadFunction {
4103   AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
4104       : AAIsDeadFunction(IRP, A) {}
4105 
4106   /// See AbstractAttribute::initialize(...).
4107   void initialize(Attributor &A) override {
4108     // TODO: Once we have call site specific value information we can provide
4109     //       call site specific liveness information and then it makes
4110     //       sense to specialize attributes for call sites instead of
4111     //       redirecting requests to the callee.
4112     llvm_unreachable("Abstract attributes for liveness are not "
4113                      "supported for call sites yet!");
4114   }
4115 
4116   /// See AbstractAttribute::updateImpl(...).
4117   ChangeStatus updateImpl(Attributor &A) override {
4118     return indicatePessimisticFixpoint();
4119   }
4120 
4121   /// See AbstractAttribute::trackStatistics()
4122   void trackStatistics() const override {}
4123 };
4124 } // namespace
4125 
4126 /// -------------------- Dereferenceable Argument Attribute --------------------
4127 
4128 namespace {
4129 struct AADereferenceableImpl : AADereferenceable {
4130   AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
4131       : AADereferenceable(IRP, A) {}
4132   using StateType = DerefState;
4133 
4134   /// See AbstractAttribute::initialize(...).
4135   void initialize(Attributor &A) override {
4136     Value &V = *getAssociatedValue().stripPointerCasts();
4137     SmallVector<Attribute, 4> Attrs;
4138     getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
4139              Attrs, /* IgnoreSubsumingPositions */ false, &A);
4140     for (const Attribute &Attr : Attrs)
4141       takeKnownDerefBytesMaximum(Attr.getValueAsInt());
4142 
4143     const IRPosition &IRP = this->getIRPosition();
4144     NonNullAA = &A.getAAFor<AANonNull>(*this, IRP, DepClassTy::NONE);
4145 
4146     bool CanBeNull, CanBeFreed;
4147     takeKnownDerefBytesMaximum(V.getPointerDereferenceableBytes(
4148         A.getDataLayout(), CanBeNull, CanBeFreed));
4149 
4150     bool IsFnInterface = IRP.isFnInterfaceKind();
4151     Function *FnScope = IRP.getAnchorScope();
4152     if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) {
4153       indicatePessimisticFixpoint();
4154       return;
4155     }
4156 
4157     if (Instruction *CtxI = getCtxI())
4158       followUsesInMBEC(*this, A, getState(), *CtxI);
4159   }
4160 
4161   /// See AbstractAttribute::getState()
4162   /// {
4163   StateType &getState() override { return *this; }
4164   const StateType &getState() const override { return *this; }
4165   /// }
4166 
4167   /// Helper function for collecting accessed bytes in must-be-executed-context
4168   void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
4169                               DerefState &State) {
4170     const Value *UseV = U->get();
4171     if (!UseV->getType()->isPointerTy())
4172       return;
4173 
4174     Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
4175     if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
4176       return;
4177 
4178     int64_t Offset;
4179     const Value *Base = GetPointerBaseWithConstantOffset(
4180         Loc->Ptr, Offset, A.getDataLayout(), /*AllowNonInbounds*/ true);
4181     if (Base && Base == &getAssociatedValue())
4182       State.addAccessedBytes(Offset, Loc->Size.getValue());
4183   }
4184 
4185   /// See followUsesInMBEC
4186   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4187                        AADereferenceable::StateType &State) {
4188     bool IsNonNull = false;
4189     bool TrackUse = false;
4190     int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
4191         A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
4192     LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
4193                       << " for instruction " << *I << "\n");
4194 
4195     addAccessedBytesForUse(A, U, I, State);
4196     State.takeKnownDerefBytesMaximum(DerefBytes);
4197     return TrackUse;
4198   }
4199 
4200   /// See AbstractAttribute::manifest(...).
4201   ChangeStatus manifest(Attributor &A) override {
4202     ChangeStatus Change = AADereferenceable::manifest(A);
4203     if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
4204       removeAttrs({Attribute::DereferenceableOrNull});
4205       return ChangeStatus::CHANGED;
4206     }
4207     return Change;
4208   }
4209 
4210   void getDeducedAttributes(LLVMContext &Ctx,
4211                             SmallVectorImpl<Attribute> &Attrs) const override {
4212     // TODO: Add *_globally support
4213     if (isAssumedNonNull())
4214       Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
4215           Ctx, getAssumedDereferenceableBytes()));
4216     else
4217       Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
4218           Ctx, getAssumedDereferenceableBytes()));
4219   }
4220 
4221   /// See AbstractAttribute::getAsStr().
4222   const std::string getAsStr() const override {
4223     if (!getAssumedDereferenceableBytes())
4224       return "unknown-dereferenceable";
4225     return std::string("dereferenceable") +
4226            (isAssumedNonNull() ? "" : "_or_null") +
4227            (isAssumedGlobal() ? "_globally" : "") + "<" +
4228            std::to_string(getKnownDereferenceableBytes()) + "-" +
4229            std::to_string(getAssumedDereferenceableBytes()) + ">";
4230   }
4231 };
4232 
4233 /// Dereferenceable attribute for a floating value.
4234 struct AADereferenceableFloating : AADereferenceableImpl {
4235   AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
4236       : AADereferenceableImpl(IRP, A) {}
4237 
4238   /// See AbstractAttribute::updateImpl(...).
4239   ChangeStatus updateImpl(Attributor &A) override {
4240 
4241     bool Stripped;
4242     bool UsedAssumedInformation = false;
4243     SmallVector<AA::ValueAndContext> Values;
4244     if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
4245                                       AA::AnyScope, UsedAssumedInformation)) {
4246       Values.push_back({getAssociatedValue(), getCtxI()});
4247       Stripped = false;
4248     } else {
4249       Stripped = Values.size() != 1 ||
4250                  Values.front().getValue() != &getAssociatedValue();
4251     }
4252 
4253     const DataLayout &DL = A.getDataLayout();
4254     DerefState T;
4255 
4256     auto VisitValueCB = [&](const Value &V) -> bool {
4257       unsigned IdxWidth =
4258           DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
4259       APInt Offset(IdxWidth, 0);
4260       const Value *Base = stripAndAccumulateOffsets(
4261           A, *this, &V, DL, Offset, /* GetMinOffset */ false,
4262           /* AllowNonInbounds */ true);
4263 
4264       const auto &AA = A.getAAFor<AADereferenceable>(
4265           *this, IRPosition::value(*Base), DepClassTy::REQUIRED);
4266       int64_t DerefBytes = 0;
4267       if (!Stripped && this == &AA) {
4268         // Use IR information if we did not strip anything.
4269         // TODO: track globally.
4270         bool CanBeNull, CanBeFreed;
4271         DerefBytes =
4272             Base->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
4273         T.GlobalState.indicatePessimisticFixpoint();
4274       } else {
4275         const DerefState &DS = AA.getState();
4276         DerefBytes = DS.DerefBytesState.getAssumed();
4277         T.GlobalState &= DS.GlobalState;
4278       }
4279 
4280       // For now we do not try to "increase" dereferenceability due to negative
4281       // indices as we first have to come up with code to deal with loops and
4282       // for overflows of the dereferenceable bytes.
4283       int64_t OffsetSExt = Offset.getSExtValue();
4284       if (OffsetSExt < 0)
4285         OffsetSExt = 0;
4286 
4287       T.takeAssumedDerefBytesMinimum(
4288           std::max(int64_t(0), DerefBytes - OffsetSExt));
4289 
4290       if (this == &AA) {
4291         if (!Stripped) {
4292           // If nothing was stripped IR information is all we got.
4293           T.takeKnownDerefBytesMaximum(
4294               std::max(int64_t(0), DerefBytes - OffsetSExt));
4295           T.indicatePessimisticFixpoint();
4296         } else if (OffsetSExt > 0) {
4297           // If something was stripped but there is circular reasoning we look
4298           // for the offset. If it is positive we basically decrease the
4299           // dereferenceable bytes in a circluar loop now, which will simply
4300           // drive them down to the known value in a very slow way which we
4301           // can accelerate.
4302           T.indicatePessimisticFixpoint();
4303         }
4304       }
4305 
4306       return T.isValidState();
4307     };
4308 
4309     for (const auto &VAC : Values)
4310       if (!VisitValueCB(*VAC.getValue()))
4311         return indicatePessimisticFixpoint();
4312 
4313     return clampStateAndIndicateChange(getState(), T);
4314   }
4315 
4316   /// See AbstractAttribute::trackStatistics()
4317   void trackStatistics() const override {
4318     STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
4319   }
4320 };
4321 
4322 /// Dereferenceable attribute for a return value.
4323 struct AADereferenceableReturned final
4324     : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
4325   AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
4326       : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
4327             IRP, A) {}
4328 
4329   /// See AbstractAttribute::trackStatistics()
4330   void trackStatistics() const override {
4331     STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
4332   }
4333 };
4334 
4335 /// Dereferenceable attribute for an argument
4336 struct AADereferenceableArgument final
4337     : AAArgumentFromCallSiteArguments<AADereferenceable,
4338                                       AADereferenceableImpl> {
4339   using Base =
4340       AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
4341   AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
4342       : Base(IRP, A) {}
4343 
4344   /// See AbstractAttribute::trackStatistics()
4345   void trackStatistics() const override {
4346     STATS_DECLTRACK_ARG_ATTR(dereferenceable)
4347   }
4348 };
4349 
4350 /// Dereferenceable attribute for a call site argument.
4351 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
4352   AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
4353       : AADereferenceableFloating(IRP, A) {}
4354 
4355   /// See AbstractAttribute::trackStatistics()
4356   void trackStatistics() const override {
4357     STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
4358   }
4359 };
4360 
4361 /// Dereferenceable attribute deduction for a call site return value.
4362 struct AADereferenceableCallSiteReturned final
4363     : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> {
4364   using Base =
4365       AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>;
4366   AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
4367       : Base(IRP, A) {}
4368 
4369   /// See AbstractAttribute::trackStatistics()
4370   void trackStatistics() const override {
4371     STATS_DECLTRACK_CS_ATTR(dereferenceable);
4372   }
4373 };
4374 } // namespace
4375 
4376 // ------------------------ Align Argument Attribute ------------------------
4377 
4378 namespace {
4379 static unsigned getKnownAlignForUse(Attributor &A, AAAlign &QueryingAA,
4380                                     Value &AssociatedValue, const Use *U,
4381                                     const Instruction *I, bool &TrackUse) {
4382   // We need to follow common pointer manipulation uses to the accesses they
4383   // feed into.
4384   if (isa<CastInst>(I)) {
4385     // Follow all but ptr2int casts.
4386     TrackUse = !isa<PtrToIntInst>(I);
4387     return 0;
4388   }
4389   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4390     if (GEP->hasAllConstantIndices())
4391       TrackUse = true;
4392     return 0;
4393   }
4394 
4395   MaybeAlign MA;
4396   if (const auto *CB = dyn_cast<CallBase>(I)) {
4397     if (CB->isBundleOperand(U) || CB->isCallee(U))
4398       return 0;
4399 
4400     unsigned ArgNo = CB->getArgOperandNo(U);
4401     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
4402     // As long as we only use known information there is no need to track
4403     // dependences here.
4404     auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, DepClassTy::NONE);
4405     MA = MaybeAlign(AlignAA.getKnownAlign());
4406   }
4407 
4408   const DataLayout &DL = A.getDataLayout();
4409   const Value *UseV = U->get();
4410   if (auto *SI = dyn_cast<StoreInst>(I)) {
4411     if (SI->getPointerOperand() == UseV)
4412       MA = SI->getAlign();
4413   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
4414     if (LI->getPointerOperand() == UseV)
4415       MA = LI->getAlign();
4416   }
4417 
4418   if (!MA || *MA <= QueryingAA.getKnownAlign())
4419     return 0;
4420 
4421   unsigned Alignment = MA->value();
4422   int64_t Offset;
4423 
4424   if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
4425     if (Base == &AssociatedValue) {
4426       // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4427       // So we can say that the maximum power of two which is a divisor of
4428       // gcd(Offset, Alignment) is an alignment.
4429 
4430       uint32_t gcd =
4431           greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
4432       Alignment = llvm::PowerOf2Floor(gcd);
4433     }
4434   }
4435 
4436   return Alignment;
4437 }
4438 
4439 struct AAAlignImpl : AAAlign {
4440   AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
4441 
4442   /// See AbstractAttribute::initialize(...).
4443   void initialize(Attributor &A) override {
4444     SmallVector<Attribute, 4> Attrs;
4445     getAttrs({Attribute::Alignment}, Attrs);
4446     for (const Attribute &Attr : Attrs)
4447       takeKnownMaximum(Attr.getValueAsInt());
4448 
4449     Value &V = *getAssociatedValue().stripPointerCasts();
4450     takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
4451 
4452     if (getIRPosition().isFnInterfaceKind() &&
4453         (!getAnchorScope() ||
4454          !A.isFunctionIPOAmendable(*getAssociatedFunction()))) {
4455       indicatePessimisticFixpoint();
4456       return;
4457     }
4458 
4459     if (Instruction *CtxI = getCtxI())
4460       followUsesInMBEC(*this, A, getState(), *CtxI);
4461   }
4462 
4463   /// See AbstractAttribute::manifest(...).
4464   ChangeStatus manifest(Attributor &A) override {
4465     ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
4466 
4467     // Check for users that allow alignment annotations.
4468     Value &AssociatedValue = getAssociatedValue();
4469     for (const Use &U : AssociatedValue.uses()) {
4470       if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
4471         if (SI->getPointerOperand() == &AssociatedValue)
4472           if (SI->getAlign() < getAssumedAlign()) {
4473             STATS_DECLTRACK(AAAlign, Store,
4474                             "Number of times alignment added to a store");
4475             SI->setAlignment(getAssumedAlign());
4476             LoadStoreChanged = ChangeStatus::CHANGED;
4477           }
4478       } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
4479         if (LI->getPointerOperand() == &AssociatedValue)
4480           if (LI->getAlign() < getAssumedAlign()) {
4481             LI->setAlignment(getAssumedAlign());
4482             STATS_DECLTRACK(AAAlign, Load,
4483                             "Number of times alignment added to a load");
4484             LoadStoreChanged = ChangeStatus::CHANGED;
4485           }
4486       }
4487     }
4488 
4489     ChangeStatus Changed = AAAlign::manifest(A);
4490 
4491     Align InheritAlign =
4492         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4493     if (InheritAlign >= getAssumedAlign())
4494       return LoadStoreChanged;
4495     return Changed | LoadStoreChanged;
4496   }
4497 
4498   // TODO: Provide a helper to determine the implied ABI alignment and check in
4499   //       the existing manifest method and a new one for AAAlignImpl that value
4500   //       to avoid making the alignment explicit if it did not improve.
4501 
4502   /// See AbstractAttribute::getDeducedAttributes
4503   virtual void
4504   getDeducedAttributes(LLVMContext &Ctx,
4505                        SmallVectorImpl<Attribute> &Attrs) const override {
4506     if (getAssumedAlign() > 1)
4507       Attrs.emplace_back(
4508           Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
4509   }
4510 
4511   /// See followUsesInMBEC
4512   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4513                        AAAlign::StateType &State) {
4514     bool TrackUse = false;
4515 
4516     unsigned int KnownAlign =
4517         getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
4518     State.takeKnownMaximum(KnownAlign);
4519 
4520     return TrackUse;
4521   }
4522 
4523   /// See AbstractAttribute::getAsStr().
4524   const std::string getAsStr() const override {
4525     return "align<" + std::to_string(getKnownAlign().value()) + "-" +
4526            std::to_string(getAssumedAlign().value()) + ">";
4527   }
4528 };
4529 
4530 /// Align attribute for a floating value.
4531 struct AAAlignFloating : AAAlignImpl {
4532   AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
4533 
4534   /// See AbstractAttribute::updateImpl(...).
4535   ChangeStatus updateImpl(Attributor &A) override {
4536     const DataLayout &DL = A.getDataLayout();
4537 
4538     bool Stripped;
4539     bool UsedAssumedInformation = false;
4540     SmallVector<AA::ValueAndContext> Values;
4541     if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
4542                                       AA::AnyScope, UsedAssumedInformation)) {
4543       Values.push_back({getAssociatedValue(), getCtxI()});
4544       Stripped = false;
4545     } else {
4546       Stripped = Values.size() != 1 ||
4547                  Values.front().getValue() != &getAssociatedValue();
4548     }
4549 
4550     StateType T;
4551     auto VisitValueCB = [&](Value &V) -> bool {
4552       if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
4553         return true;
4554       const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V),
4555                                            DepClassTy::REQUIRED);
4556       if (!Stripped && this == &AA) {
4557         int64_t Offset;
4558         unsigned Alignment = 1;
4559         if (const Value *Base =
4560                 GetPointerBaseWithConstantOffset(&V, Offset, DL)) {
4561           // TODO: Use AAAlign for the base too.
4562           Align PA = Base->getPointerAlignment(DL);
4563           // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4564           // So we can say that the maximum power of two which is a divisor of
4565           // gcd(Offset, Alignment) is an alignment.
4566 
4567           uint32_t gcd = greatestCommonDivisor(uint32_t(abs((int32_t)Offset)),
4568                                                uint32_t(PA.value()));
4569           Alignment = llvm::PowerOf2Floor(gcd);
4570         } else {
4571           Alignment = V.getPointerAlignment(DL).value();
4572         }
4573         // Use only IR information if we did not strip anything.
4574         T.takeKnownMaximum(Alignment);
4575         T.indicatePessimisticFixpoint();
4576       } else {
4577         // Use abstract attribute information.
4578         const AAAlign::StateType &DS = AA.getState();
4579         T ^= DS;
4580       }
4581       return T.isValidState();
4582     };
4583 
4584     for (const auto &VAC : Values) {
4585       if (!VisitValueCB(*VAC.getValue()))
4586         return indicatePessimisticFixpoint();
4587     }
4588 
4589     //  TODO: If we know we visited all incoming values, thus no are assumed
4590     //  dead, we can take the known information from the state T.
4591     return clampStateAndIndicateChange(getState(), T);
4592   }
4593 
4594   /// See AbstractAttribute::trackStatistics()
4595   void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
4596 };
4597 
4598 /// Align attribute for function return value.
4599 struct AAAlignReturned final
4600     : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
4601   using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>;
4602   AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4603 
4604   /// See AbstractAttribute::initialize(...).
4605   void initialize(Attributor &A) override {
4606     Base::initialize(A);
4607     Function *F = getAssociatedFunction();
4608     if (!F || F->isDeclaration())
4609       indicatePessimisticFixpoint();
4610   }
4611 
4612   /// See AbstractAttribute::trackStatistics()
4613   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
4614 };
4615 
4616 /// Align attribute for function argument.
4617 struct AAAlignArgument final
4618     : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
4619   using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
4620   AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4621 
4622   /// See AbstractAttribute::manifest(...).
4623   ChangeStatus manifest(Attributor &A) override {
4624     // If the associated argument is involved in a must-tail call we give up
4625     // because we would need to keep the argument alignments of caller and
4626     // callee in-sync. Just does not seem worth the trouble right now.
4627     if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
4628       return ChangeStatus::UNCHANGED;
4629     return Base::manifest(A);
4630   }
4631 
4632   /// See AbstractAttribute::trackStatistics()
4633   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
4634 };
4635 
4636 struct AAAlignCallSiteArgument final : AAAlignFloating {
4637   AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
4638       : AAAlignFloating(IRP, A) {}
4639 
4640   /// See AbstractAttribute::manifest(...).
4641   ChangeStatus manifest(Attributor &A) override {
4642     // If the associated argument is involved in a must-tail call we give up
4643     // because we would need to keep the argument alignments of caller and
4644     // callee in-sync. Just does not seem worth the trouble right now.
4645     if (Argument *Arg = getAssociatedArgument())
4646       if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
4647         return ChangeStatus::UNCHANGED;
4648     ChangeStatus Changed = AAAlignImpl::manifest(A);
4649     Align InheritAlign =
4650         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4651     if (InheritAlign >= getAssumedAlign())
4652       Changed = ChangeStatus::UNCHANGED;
4653     return Changed;
4654   }
4655 
4656   /// See AbstractAttribute::updateImpl(Attributor &A).
4657   ChangeStatus updateImpl(Attributor &A) override {
4658     ChangeStatus Changed = AAAlignFloating::updateImpl(A);
4659     if (Argument *Arg = getAssociatedArgument()) {
4660       // We only take known information from the argument
4661       // so we do not need to track a dependence.
4662       const auto &ArgAlignAA = A.getAAFor<AAAlign>(
4663           *this, IRPosition::argument(*Arg), DepClassTy::NONE);
4664       takeKnownMaximum(ArgAlignAA.getKnownAlign().value());
4665     }
4666     return Changed;
4667   }
4668 
4669   /// See AbstractAttribute::trackStatistics()
4670   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
4671 };
4672 
4673 /// Align attribute deduction for a call site return value.
4674 struct AAAlignCallSiteReturned final
4675     : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> {
4676   using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>;
4677   AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
4678       : Base(IRP, A) {}
4679 
4680   /// See AbstractAttribute::initialize(...).
4681   void initialize(Attributor &A) override {
4682     Base::initialize(A);
4683     Function *F = getAssociatedFunction();
4684     if (!F || F->isDeclaration())
4685       indicatePessimisticFixpoint();
4686   }
4687 
4688   /// See AbstractAttribute::trackStatistics()
4689   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
4690 };
4691 } // namespace
4692 
4693 /// ------------------ Function No-Return Attribute ----------------------------
4694 namespace {
4695 struct AANoReturnImpl : public AANoReturn {
4696   AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
4697 
4698   /// See AbstractAttribute::initialize(...).
4699   void initialize(Attributor &A) override {
4700     AANoReturn::initialize(A);
4701     Function *F = getAssociatedFunction();
4702     if (!F || F->isDeclaration())
4703       indicatePessimisticFixpoint();
4704   }
4705 
4706   /// See AbstractAttribute::getAsStr().
4707   const std::string getAsStr() const override {
4708     return getAssumed() ? "noreturn" : "may-return";
4709   }
4710 
4711   /// See AbstractAttribute::updateImpl(Attributor &A).
4712   ChangeStatus updateImpl(Attributor &A) override {
4713     auto CheckForNoReturn = [](Instruction &) { return false; };
4714     bool UsedAssumedInformation = false;
4715     if (!A.checkForAllInstructions(CheckForNoReturn, *this,
4716                                    {(unsigned)Instruction::Ret},
4717                                    UsedAssumedInformation))
4718       return indicatePessimisticFixpoint();
4719     return ChangeStatus::UNCHANGED;
4720   }
4721 };
4722 
4723 struct AANoReturnFunction final : AANoReturnImpl {
4724   AANoReturnFunction(const IRPosition &IRP, Attributor &A)
4725       : AANoReturnImpl(IRP, A) {}
4726 
4727   /// See AbstractAttribute::trackStatistics()
4728   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
4729 };
4730 
4731 /// NoReturn attribute deduction for a call sites.
4732 struct AANoReturnCallSite final : AANoReturnImpl {
4733   AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
4734       : AANoReturnImpl(IRP, A) {}
4735 
4736   /// See AbstractAttribute::initialize(...).
4737   void initialize(Attributor &A) override {
4738     AANoReturnImpl::initialize(A);
4739     if (Function *F = getAssociatedFunction()) {
4740       const IRPosition &FnPos = IRPosition::function(*F);
4741       auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4742       if (!FnAA.isAssumedNoReturn())
4743         indicatePessimisticFixpoint();
4744     }
4745   }
4746 
4747   /// See AbstractAttribute::updateImpl(...).
4748   ChangeStatus updateImpl(Attributor &A) override {
4749     // TODO: Once we have call site specific value information we can provide
4750     //       call site specific liveness information and then it makes
4751     //       sense to specialize attributes for call sites arguments instead of
4752     //       redirecting requests to the callee argument.
4753     Function *F = getAssociatedFunction();
4754     const IRPosition &FnPos = IRPosition::function(*F);
4755     auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4756     return clampStateAndIndicateChange(getState(), FnAA.getState());
4757   }
4758 
4759   /// See AbstractAttribute::trackStatistics()
4760   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
4761 };
4762 } // namespace
4763 
4764 /// ----------------------- Instance Info ---------------------------------
4765 
4766 namespace {
4767 /// A class to hold the state of for no-capture attributes.
4768 struct AAInstanceInfoImpl : public AAInstanceInfo {
4769   AAInstanceInfoImpl(const IRPosition &IRP, Attributor &A)
4770       : AAInstanceInfo(IRP, A) {}
4771 
4772   /// See AbstractAttribute::initialize(...).
4773   void initialize(Attributor &A) override {
4774     Value &V = getAssociatedValue();
4775     if (auto *C = dyn_cast<Constant>(&V)) {
4776       if (C->isThreadDependent())
4777         indicatePessimisticFixpoint();
4778       else
4779         indicateOptimisticFixpoint();
4780       return;
4781     }
4782     if (auto *CB = dyn_cast<CallBase>(&V))
4783       if (CB->arg_size() == 0 && !CB->mayHaveSideEffects() &&
4784           !CB->mayReadFromMemory()) {
4785         indicateOptimisticFixpoint();
4786         return;
4787       }
4788   }
4789 
4790   /// See AbstractAttribute::updateImpl(...).
4791   ChangeStatus updateImpl(Attributor &A) override {
4792     ChangeStatus Changed = ChangeStatus::UNCHANGED;
4793 
4794     Value &V = getAssociatedValue();
4795     const Function *Scope = nullptr;
4796     if (auto *I = dyn_cast<Instruction>(&V))
4797       Scope = I->getFunction();
4798     if (auto *A = dyn_cast<Argument>(&V)) {
4799       Scope = A->getParent();
4800       if (!Scope->hasLocalLinkage())
4801         return Changed;
4802     }
4803     if (!Scope)
4804       return indicateOptimisticFixpoint();
4805 
4806     auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
4807         *this, IRPosition::function(*Scope), DepClassTy::OPTIONAL);
4808     if (NoRecurseAA.isAssumedNoRecurse())
4809       return Changed;
4810 
4811     auto UsePred = [&](const Use &U, bool &Follow) {
4812       const Instruction *UserI = dyn_cast<Instruction>(U.getUser());
4813       if (!UserI || isa<GetElementPtrInst>(UserI) || isa<CastInst>(UserI) ||
4814           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
4815         Follow = true;
4816         return true;
4817       }
4818       if (isa<LoadInst>(UserI) || isa<CmpInst>(UserI) ||
4819           (isa<StoreInst>(UserI) &&
4820            cast<StoreInst>(UserI)->getValueOperand() != U.get()))
4821         return true;
4822       if (auto *CB = dyn_cast<CallBase>(UserI)) {
4823         // This check is not guaranteeing uniqueness but for now that we cannot
4824         // end up with two versions of \p U thinking it was one.
4825         if (!CB->getCalledFunction() ||
4826             !CB->getCalledFunction()->hasLocalLinkage())
4827           return true;
4828         if (!CB->isArgOperand(&U))
4829           return false;
4830         const auto &ArgInstanceInfoAA = A.getAAFor<AAInstanceInfo>(
4831             *this, IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U)),
4832             DepClassTy::OPTIONAL);
4833         if (!ArgInstanceInfoAA.isAssumedUniqueForAnalysis())
4834           return false;
4835         // If this call base might reach the scope again we might forward the
4836         // argument back here. This is very conservative.
4837         if (AA::isPotentiallyReachable(
4838                 A, *CB, *Scope, *this,
4839                 [Scope](const Function &Fn) { return &Fn != Scope; }))
4840           return false;
4841         return true;
4842       }
4843       return false;
4844     };
4845 
4846     auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
4847       if (auto *SI = dyn_cast<StoreInst>(OldU.getUser())) {
4848         auto *Ptr = SI->getPointerOperand()->stripPointerCasts();
4849         if (isa<AllocaInst>(Ptr) && AA::isDynamicallyUnique(A, *this, *Ptr))
4850           return true;
4851         auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(
4852             *SI->getFunction());
4853         if (isAllocationFn(Ptr, TLI) && AA::isDynamicallyUnique(A, *this, *Ptr))
4854           return true;
4855       }
4856       return false;
4857     };
4858 
4859     if (!A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ true,
4860                            DepClassTy::OPTIONAL,
4861                            /* IgnoreDroppableUses */ true, EquivalentUseCB))
4862       return indicatePessimisticFixpoint();
4863 
4864     return Changed;
4865   }
4866 
4867   /// See AbstractState::getAsStr().
4868   const std::string getAsStr() const override {
4869     return isAssumedUniqueForAnalysis() ? "<unique [fAa]>" : "<unknown>";
4870   }
4871 
4872   /// See AbstractAttribute::trackStatistics()
4873   void trackStatistics() const override {}
4874 };
4875 
4876 /// InstanceInfo attribute for floating values.
4877 struct AAInstanceInfoFloating : AAInstanceInfoImpl {
4878   AAInstanceInfoFloating(const IRPosition &IRP, Attributor &A)
4879       : AAInstanceInfoImpl(IRP, A) {}
4880 };
4881 
4882 /// NoCapture attribute for function arguments.
4883 struct AAInstanceInfoArgument final : AAInstanceInfoFloating {
4884   AAInstanceInfoArgument(const IRPosition &IRP, Attributor &A)
4885       : AAInstanceInfoFloating(IRP, A) {}
4886 };
4887 
4888 /// InstanceInfo attribute for call site arguments.
4889 struct AAInstanceInfoCallSiteArgument final : AAInstanceInfoImpl {
4890   AAInstanceInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
4891       : AAInstanceInfoImpl(IRP, A) {}
4892 
4893   /// See AbstractAttribute::updateImpl(...).
4894   ChangeStatus updateImpl(Attributor &A) override {
4895     // TODO: Once we have call site specific value information we can provide
4896     //       call site specific liveness information and then it makes
4897     //       sense to specialize attributes for call sites arguments instead of
4898     //       redirecting requests to the callee argument.
4899     Argument *Arg = getAssociatedArgument();
4900     if (!Arg)
4901       return indicatePessimisticFixpoint();
4902     const IRPosition &ArgPos = IRPosition::argument(*Arg);
4903     auto &ArgAA =
4904         A.getAAFor<AAInstanceInfo>(*this, ArgPos, DepClassTy::REQUIRED);
4905     return clampStateAndIndicateChange(getState(), ArgAA.getState());
4906   }
4907 };
4908 
4909 /// InstanceInfo attribute for function return value.
4910 struct AAInstanceInfoReturned final : AAInstanceInfoImpl {
4911   AAInstanceInfoReturned(const IRPosition &IRP, Attributor &A)
4912       : AAInstanceInfoImpl(IRP, A) {
4913     llvm_unreachable("InstanceInfo is not applicable to function returns!");
4914   }
4915 
4916   /// See AbstractAttribute::initialize(...).
4917   void initialize(Attributor &A) override {
4918     llvm_unreachable("InstanceInfo is not applicable to function returns!");
4919   }
4920 
4921   /// See AbstractAttribute::updateImpl(...).
4922   ChangeStatus updateImpl(Attributor &A) override {
4923     llvm_unreachable("InstanceInfo is not applicable to function returns!");
4924   }
4925 };
4926 
4927 /// InstanceInfo attribute deduction for a call site return value.
4928 struct AAInstanceInfoCallSiteReturned final : AAInstanceInfoFloating {
4929   AAInstanceInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
4930       : AAInstanceInfoFloating(IRP, A) {}
4931 };
4932 } // namespace
4933 
4934 /// ----------------------- Variable Capturing ---------------------------------
4935 
4936 namespace {
4937 /// A class to hold the state of for no-capture attributes.
4938 struct AANoCaptureImpl : public AANoCapture {
4939   AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
4940 
4941   /// See AbstractAttribute::initialize(...).
4942   void initialize(Attributor &A) override {
4943     if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
4944       indicateOptimisticFixpoint();
4945       return;
4946     }
4947     Function *AnchorScope = getAnchorScope();
4948     if (isFnInterfaceKind() &&
4949         (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
4950       indicatePessimisticFixpoint();
4951       return;
4952     }
4953 
4954     // You cannot "capture" null in the default address space.
4955     if (isa<ConstantPointerNull>(getAssociatedValue()) &&
4956         getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
4957       indicateOptimisticFixpoint();
4958       return;
4959     }
4960 
4961     const Function *F =
4962         isArgumentPosition() ? getAssociatedFunction() : AnchorScope;
4963 
4964     // Check what state the associated function can actually capture.
4965     if (F)
4966       determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
4967     else
4968       indicatePessimisticFixpoint();
4969   }
4970 
4971   /// See AbstractAttribute::updateImpl(...).
4972   ChangeStatus updateImpl(Attributor &A) override;
4973 
4974   /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
4975   virtual void
4976   getDeducedAttributes(LLVMContext &Ctx,
4977                        SmallVectorImpl<Attribute> &Attrs) const override {
4978     if (!isAssumedNoCaptureMaybeReturned())
4979       return;
4980 
4981     if (isArgumentPosition()) {
4982       if (isAssumedNoCapture())
4983         Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
4984       else if (ManifestInternal)
4985         Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
4986     }
4987   }
4988 
4989   /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
4990   /// depending on the ability of the function associated with \p IRP to capture
4991   /// state in memory and through "returning/throwing", respectively.
4992   static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
4993                                                    const Function &F,
4994                                                    BitIntegerState &State) {
4995     // TODO: Once we have memory behavior attributes we should use them here.
4996 
4997     // If we know we cannot communicate or write to memory, we do not care about
4998     // ptr2int anymore.
4999     if (F.onlyReadsMemory() && F.doesNotThrow() &&
5000         F.getReturnType()->isVoidTy()) {
5001       State.addKnownBits(NO_CAPTURE);
5002       return;
5003     }
5004 
5005     // A function cannot capture state in memory if it only reads memory, it can
5006     // however return/throw state and the state might be influenced by the
5007     // pointer value, e.g., loading from a returned pointer might reveal a bit.
5008     if (F.onlyReadsMemory())
5009       State.addKnownBits(NOT_CAPTURED_IN_MEM);
5010 
5011     // A function cannot communicate state back if it does not through
5012     // exceptions and doesn not return values.
5013     if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
5014       State.addKnownBits(NOT_CAPTURED_IN_RET);
5015 
5016     // Check existing "returned" attributes.
5017     int ArgNo = IRP.getCalleeArgNo();
5018     if (F.doesNotThrow() && ArgNo >= 0) {
5019       for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
5020         if (F.hasParamAttribute(u, Attribute::Returned)) {
5021           if (u == unsigned(ArgNo))
5022             State.removeAssumedBits(NOT_CAPTURED_IN_RET);
5023           else if (F.onlyReadsMemory())
5024             State.addKnownBits(NO_CAPTURE);
5025           else
5026             State.addKnownBits(NOT_CAPTURED_IN_RET);
5027           break;
5028         }
5029     }
5030   }
5031 
5032   /// See AbstractState::getAsStr().
5033   const std::string getAsStr() const override {
5034     if (isKnownNoCapture())
5035       return "known not-captured";
5036     if (isAssumedNoCapture())
5037       return "assumed not-captured";
5038     if (isKnownNoCaptureMaybeReturned())
5039       return "known not-captured-maybe-returned";
5040     if (isAssumedNoCaptureMaybeReturned())
5041       return "assumed not-captured-maybe-returned";
5042     return "assumed-captured";
5043   }
5044 
5045   /// Check the use \p U and update \p State accordingly. Return true if we
5046   /// should continue to update the state.
5047   bool checkUse(Attributor &A, AANoCapture::StateType &State, const Use &U,
5048                 bool &Follow) {
5049     Instruction *UInst = cast<Instruction>(U.getUser());
5050     LLVM_DEBUG(dbgs() << "[AANoCapture] Check use: " << *U.get() << " in "
5051                       << *UInst << "\n");
5052 
5053     // Deal with ptr2int by following uses.
5054     if (isa<PtrToIntInst>(UInst)) {
5055       LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
5056       return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
5057                           /* Return */ true);
5058     }
5059 
5060     // For stores we already checked if we can follow them, if they make it
5061     // here we give up.
5062     if (isa<StoreInst>(UInst))
5063       return isCapturedIn(State, /* Memory */ true, /* Integer */ false,
5064                           /* Return */ false);
5065 
5066     // Explicitly catch return instructions.
5067     if (isa<ReturnInst>(UInst)) {
5068       if (UInst->getFunction() == getAnchorScope())
5069         return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
5070                             /* Return */ true);
5071       return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
5072                           /* Return */ true);
5073     }
5074 
5075     // For now we only use special logic for call sites. However, the tracker
5076     // itself knows about a lot of other non-capturing cases already.
5077     auto *CB = dyn_cast<CallBase>(UInst);
5078     if (!CB || !CB->isArgOperand(&U))
5079       return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
5080                           /* Return */ true);
5081 
5082     unsigned ArgNo = CB->getArgOperandNo(&U);
5083     const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
5084     // If we have a abstract no-capture attribute for the argument we can use
5085     // it to justify a non-capture attribute here. This allows recursion!
5086     auto &ArgNoCaptureAA =
5087         A.getAAFor<AANoCapture>(*this, CSArgPos, DepClassTy::REQUIRED);
5088     if (ArgNoCaptureAA.isAssumedNoCapture())
5089       return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
5090                           /* Return */ false);
5091     if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
5092       Follow = true;
5093       return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
5094                           /* Return */ false);
5095     }
5096 
5097     // Lastly, we could not find a reason no-capture can be assumed so we don't.
5098     return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
5099                         /* Return */ true);
5100   }
5101 
5102   /// Update \p State according to \p CapturedInMem, \p CapturedInInt, and
5103   /// \p CapturedInRet, then return true if we should continue updating the
5104   /// state.
5105   static bool isCapturedIn(AANoCapture::StateType &State, bool CapturedInMem,
5106                            bool CapturedInInt, bool CapturedInRet) {
5107     LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
5108                       << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
5109     if (CapturedInMem)
5110       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
5111     if (CapturedInInt)
5112       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
5113     if (CapturedInRet)
5114       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
5115     return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
5116   }
5117 };
5118 
5119 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
5120   const IRPosition &IRP = getIRPosition();
5121   Value *V = isArgumentPosition() ? IRP.getAssociatedArgument()
5122                                   : &IRP.getAssociatedValue();
5123   if (!V)
5124     return indicatePessimisticFixpoint();
5125 
5126   const Function *F =
5127       isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
5128   assert(F && "Expected a function!");
5129   const IRPosition &FnPos = IRPosition::function(*F);
5130 
5131   AANoCapture::StateType T;
5132 
5133   // Readonly means we cannot capture through memory.
5134   bool IsKnown;
5135   if (AA::isAssumedReadOnly(A, FnPos, *this, IsKnown)) {
5136     T.addKnownBits(NOT_CAPTURED_IN_MEM);
5137     if (IsKnown)
5138       addKnownBits(NOT_CAPTURED_IN_MEM);
5139   }
5140 
5141   // Make sure all returned values are different than the underlying value.
5142   // TODO: we could do this in a more sophisticated way inside
5143   //       AAReturnedValues, e.g., track all values that escape through returns
5144   //       directly somehow.
5145   auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
5146     if (!RVAA.getState().isValidState())
5147       return false;
5148     bool SeenConstant = false;
5149     for (auto &It : RVAA.returned_values()) {
5150       if (isa<Constant>(It.first)) {
5151         if (SeenConstant)
5152           return false;
5153         SeenConstant = true;
5154       } else if (!isa<Argument>(It.first) ||
5155                  It.first == getAssociatedArgument())
5156         return false;
5157     }
5158     return true;
5159   };
5160 
5161   const auto &NoUnwindAA =
5162       A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::OPTIONAL);
5163   if (NoUnwindAA.isAssumedNoUnwind()) {
5164     bool IsVoidTy = F->getReturnType()->isVoidTy();
5165     const AAReturnedValues *RVAA =
5166         IsVoidTy ? nullptr
5167                  : &A.getAAFor<AAReturnedValues>(*this, FnPos,
5168 
5169                                                  DepClassTy::OPTIONAL);
5170     if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
5171       T.addKnownBits(NOT_CAPTURED_IN_RET);
5172       if (T.isKnown(NOT_CAPTURED_IN_MEM))
5173         return ChangeStatus::UNCHANGED;
5174       if (NoUnwindAA.isKnownNoUnwind() &&
5175           (IsVoidTy || RVAA->getState().isAtFixpoint())) {
5176         addKnownBits(NOT_CAPTURED_IN_RET);
5177         if (isKnown(NOT_CAPTURED_IN_MEM))
5178           return indicateOptimisticFixpoint();
5179       }
5180     }
5181   }
5182 
5183   auto IsDereferenceableOrNull = [&](Value *O, const DataLayout &DL) {
5184     const auto &DerefAA = A.getAAFor<AADereferenceable>(
5185         *this, IRPosition::value(*O), DepClassTy::OPTIONAL);
5186     return DerefAA.getAssumedDereferenceableBytes();
5187   };
5188 
5189   auto UseCheck = [&](const Use &U, bool &Follow) -> bool {
5190     switch (DetermineUseCaptureKind(U, IsDereferenceableOrNull)) {
5191     case UseCaptureKind::NO_CAPTURE:
5192       return true;
5193     case UseCaptureKind::MAY_CAPTURE:
5194       return checkUse(A, T, U, Follow);
5195     case UseCaptureKind::PASSTHROUGH:
5196       Follow = true;
5197       return true;
5198     }
5199     llvm_unreachable("Unexpected use capture kind!");
5200   };
5201 
5202   if (!A.checkForAllUses(UseCheck, *this, *V))
5203     return indicatePessimisticFixpoint();
5204 
5205   AANoCapture::StateType &S = getState();
5206   auto Assumed = S.getAssumed();
5207   S.intersectAssumedBits(T.getAssumed());
5208   if (!isAssumedNoCaptureMaybeReturned())
5209     return indicatePessimisticFixpoint();
5210   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
5211                                    : ChangeStatus::CHANGED;
5212 }
5213 
5214 /// NoCapture attribute for function arguments.
5215 struct AANoCaptureArgument final : AANoCaptureImpl {
5216   AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
5217       : AANoCaptureImpl(IRP, A) {}
5218 
5219   /// See AbstractAttribute::trackStatistics()
5220   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
5221 };
5222 
5223 /// NoCapture attribute for call site arguments.
5224 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
5225   AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
5226       : AANoCaptureImpl(IRP, A) {}
5227 
5228   /// See AbstractAttribute::initialize(...).
5229   void initialize(Attributor &A) override {
5230     if (Argument *Arg = getAssociatedArgument())
5231       if (Arg->hasByValAttr())
5232         indicateOptimisticFixpoint();
5233     AANoCaptureImpl::initialize(A);
5234   }
5235 
5236   /// See AbstractAttribute::updateImpl(...).
5237   ChangeStatus updateImpl(Attributor &A) override {
5238     // TODO: Once we have call site specific value information we can provide
5239     //       call site specific liveness information and then it makes
5240     //       sense to specialize attributes for call sites arguments instead of
5241     //       redirecting requests to the callee argument.
5242     Argument *Arg = getAssociatedArgument();
5243     if (!Arg)
5244       return indicatePessimisticFixpoint();
5245     const IRPosition &ArgPos = IRPosition::argument(*Arg);
5246     auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos, DepClassTy::REQUIRED);
5247     return clampStateAndIndicateChange(getState(), ArgAA.getState());
5248   }
5249 
5250   /// See AbstractAttribute::trackStatistics()
5251   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
5252 };
5253 
5254 /// NoCapture attribute for floating values.
5255 struct AANoCaptureFloating final : AANoCaptureImpl {
5256   AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
5257       : AANoCaptureImpl(IRP, A) {}
5258 
5259   /// See AbstractAttribute::trackStatistics()
5260   void trackStatistics() const override {
5261     STATS_DECLTRACK_FLOATING_ATTR(nocapture)
5262   }
5263 };
5264 
5265 /// NoCapture attribute for function return value.
5266 struct AANoCaptureReturned final : AANoCaptureImpl {
5267   AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
5268       : AANoCaptureImpl(IRP, A) {
5269     llvm_unreachable("NoCapture is not applicable to function returns!");
5270   }
5271 
5272   /// See AbstractAttribute::initialize(...).
5273   void initialize(Attributor &A) override {
5274     llvm_unreachable("NoCapture is not applicable to function returns!");
5275   }
5276 
5277   /// See AbstractAttribute::updateImpl(...).
5278   ChangeStatus updateImpl(Attributor &A) override {
5279     llvm_unreachable("NoCapture is not applicable to function returns!");
5280   }
5281 
5282   /// See AbstractAttribute::trackStatistics()
5283   void trackStatistics() const override {}
5284 };
5285 
5286 /// NoCapture attribute deduction for a call site return value.
5287 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
5288   AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
5289       : AANoCaptureImpl(IRP, A) {}
5290 
5291   /// See AbstractAttribute::initialize(...).
5292   void initialize(Attributor &A) override {
5293     const Function *F = getAnchorScope();
5294     // Check what state the associated function can actually capture.
5295     determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
5296   }
5297 
5298   /// See AbstractAttribute::trackStatistics()
5299   void trackStatistics() const override {
5300     STATS_DECLTRACK_CSRET_ATTR(nocapture)
5301   }
5302 };
5303 } // namespace
5304 
5305 /// ------------------ Value Simplify Attribute ----------------------------
5306 
5307 bool ValueSimplifyStateType::unionAssumed(Optional<Value *> Other) {
5308   // FIXME: Add a typecast support.
5309   SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5310       SimplifiedAssociatedValue, Other, Ty);
5311   if (SimplifiedAssociatedValue == Optional<Value *>(nullptr))
5312     return false;
5313 
5314   LLVM_DEBUG({
5315     if (SimplifiedAssociatedValue)
5316       dbgs() << "[ValueSimplify] is assumed to be "
5317              << **SimplifiedAssociatedValue << "\n";
5318     else
5319       dbgs() << "[ValueSimplify] is assumed to be <none>\n";
5320   });
5321   return true;
5322 }
5323 
5324 namespace {
5325 struct AAValueSimplifyImpl : AAValueSimplify {
5326   AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
5327       : AAValueSimplify(IRP, A) {}
5328 
5329   /// See AbstractAttribute::initialize(...).
5330   void initialize(Attributor &A) override {
5331     if (getAssociatedValue().getType()->isVoidTy())
5332       indicatePessimisticFixpoint();
5333     if (A.hasSimplificationCallback(getIRPosition()))
5334       indicatePessimisticFixpoint();
5335   }
5336 
5337   /// See AbstractAttribute::getAsStr().
5338   const std::string getAsStr() const override {
5339     LLVM_DEBUG({
5340       dbgs() << "SAV: " << (bool)SimplifiedAssociatedValue << " ";
5341       if (SimplifiedAssociatedValue && *SimplifiedAssociatedValue)
5342         dbgs() << "SAV: " << **SimplifiedAssociatedValue << " ";
5343     });
5344     return isValidState() ? (isAtFixpoint() ? "simplified" : "maybe-simple")
5345                           : "not-simple";
5346   }
5347 
5348   /// See AbstractAttribute::trackStatistics()
5349   void trackStatistics() const override {}
5350 
5351   /// See AAValueSimplify::getAssumedSimplifiedValue()
5352   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5353     return SimplifiedAssociatedValue;
5354   }
5355 
5356   /// Ensure the return value is \p V with type \p Ty, if not possible return
5357   /// nullptr. If \p Check is true we will only verify such an operation would
5358   /// suceed and return a non-nullptr value if that is the case. No IR is
5359   /// generated or modified.
5360   static Value *ensureType(Attributor &A, Value &V, Type &Ty, Instruction *CtxI,
5361                            bool Check) {
5362     if (auto *TypedV = AA::getWithType(V, Ty))
5363       return TypedV;
5364     if (CtxI && V.getType()->canLosslesslyBitCastTo(&Ty))
5365       return Check ? &V
5366                    : BitCastInst::CreatePointerBitCastOrAddrSpaceCast(&V, &Ty,
5367                                                                       "", CtxI);
5368     return nullptr;
5369   }
5370 
5371   /// Reproduce \p I with type \p Ty or return nullptr if that is not posisble.
5372   /// If \p Check is true we will only verify such an operation would suceed and
5373   /// return a non-nullptr value if that is the case. No IR is generated or
5374   /// modified.
5375   static Value *reproduceInst(Attributor &A,
5376                               const AbstractAttribute &QueryingAA,
5377                               Instruction &I, Type &Ty, Instruction *CtxI,
5378                               bool Check, ValueToValueMapTy &VMap) {
5379     assert(CtxI && "Cannot reproduce an instruction without context!");
5380     if (Check && (I.mayReadFromMemory() ||
5381                   !isSafeToSpeculativelyExecute(&I, CtxI, /* DT */ nullptr,
5382                                                 /* TLI */ nullptr)))
5383       return nullptr;
5384     for (Value *Op : I.operands()) {
5385       Value *NewOp = reproduceValue(A, QueryingAA, *Op, Ty, CtxI, Check, VMap);
5386       if (!NewOp) {
5387         assert(Check && "Manifest of new value unexpectedly failed!");
5388         return nullptr;
5389       }
5390       if (!Check)
5391         VMap[Op] = NewOp;
5392     }
5393     if (Check)
5394       return &I;
5395 
5396     Instruction *CloneI = I.clone();
5397     // TODO: Try to salvage debug information here.
5398     CloneI->setDebugLoc(DebugLoc());
5399     VMap[&I] = CloneI;
5400     CloneI->insertBefore(CtxI);
5401     RemapInstruction(CloneI, VMap);
5402     return CloneI;
5403   }
5404 
5405   /// Reproduce \p V with type \p Ty or return nullptr if that is not posisble.
5406   /// If \p Check is true we will only verify such an operation would suceed and
5407   /// return a non-nullptr value if that is the case. No IR is generated or
5408   /// modified.
5409   static Value *reproduceValue(Attributor &A,
5410                                const AbstractAttribute &QueryingAA, Value &V,
5411                                Type &Ty, Instruction *CtxI, bool Check,
5412                                ValueToValueMapTy &VMap) {
5413     if (const auto &NewV = VMap.lookup(&V))
5414       return NewV;
5415     bool UsedAssumedInformation = false;
5416     Optional<Value *> SimpleV = A.getAssumedSimplified(
5417         V, QueryingAA, UsedAssumedInformation, AA::Interprocedural);
5418     if (!SimpleV.has_value())
5419       return PoisonValue::get(&Ty);
5420     Value *EffectiveV = &V;
5421     if (SimpleV.value())
5422       EffectiveV = SimpleV.value();
5423     if (auto *C = dyn_cast<Constant>(EffectiveV))
5424       return C;
5425     if (CtxI && AA::isValidAtPosition(AA::ValueAndContext(*EffectiveV, *CtxI),
5426                                       A.getInfoCache()))
5427       return ensureType(A, *EffectiveV, Ty, CtxI, Check);
5428     if (auto *I = dyn_cast<Instruction>(EffectiveV))
5429       if (Value *NewV = reproduceInst(A, QueryingAA, *I, Ty, CtxI, Check, VMap))
5430         return ensureType(A, *NewV, Ty, CtxI, Check);
5431     return nullptr;
5432   }
5433 
5434   /// Return a value we can use as replacement for the associated one, or
5435   /// nullptr if we don't have one that makes sense.
5436   Value *manifestReplacementValue(Attributor &A, Instruction *CtxI) const {
5437     Value *NewV = SimplifiedAssociatedValue
5438                       ? SimplifiedAssociatedValue.value()
5439                       : UndefValue::get(getAssociatedType());
5440     if (NewV && NewV != &getAssociatedValue()) {
5441       ValueToValueMapTy VMap;
5442       // First verify we can reprduce the value with the required type at the
5443       // context location before we actually start modifying the IR.
5444       if (reproduceValue(A, *this, *NewV, *getAssociatedType(), CtxI,
5445                          /* CheckOnly */ true, VMap))
5446         return reproduceValue(A, *this, *NewV, *getAssociatedType(), CtxI,
5447                               /* CheckOnly */ false, VMap);
5448     }
5449     return nullptr;
5450   }
5451 
5452   /// Helper function for querying AAValueSimplify and updating candicate.
5453   /// \param IRP The value position we are trying to unify with SimplifiedValue
5454   bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
5455                       const IRPosition &IRP, bool Simplify = true) {
5456     bool UsedAssumedInformation = false;
5457     Optional<Value *> QueryingValueSimplified = &IRP.getAssociatedValue();
5458     if (Simplify)
5459       QueryingValueSimplified = A.getAssumedSimplified(
5460           IRP, QueryingAA, UsedAssumedInformation, AA::Interprocedural);
5461     return unionAssumed(QueryingValueSimplified);
5462   }
5463 
5464   /// Returns a candidate is found or not
5465   template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
5466     if (!getAssociatedValue().getType()->isIntegerTy())
5467       return false;
5468 
5469     // This will also pass the call base context.
5470     const auto &AA =
5471         A.getAAFor<AAType>(*this, getIRPosition(), DepClassTy::NONE);
5472 
5473     Optional<Constant *> COpt = AA.getAssumedConstant(A);
5474 
5475     if (!COpt) {
5476       SimplifiedAssociatedValue = llvm::None;
5477       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5478       return true;
5479     }
5480     if (auto *C = *COpt) {
5481       SimplifiedAssociatedValue = C;
5482       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5483       return true;
5484     }
5485     return false;
5486   }
5487 
5488   bool askSimplifiedValueForOtherAAs(Attributor &A) {
5489     if (askSimplifiedValueFor<AAValueConstantRange>(A))
5490       return true;
5491     if (askSimplifiedValueFor<AAPotentialConstantValues>(A))
5492       return true;
5493     return false;
5494   }
5495 
5496   /// See AbstractAttribute::manifest(...).
5497   ChangeStatus manifest(Attributor &A) override {
5498     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5499     for (auto &U : getAssociatedValue().uses()) {
5500       // Check if we need to adjust the insertion point to make sure the IR is
5501       // valid.
5502       Instruction *IP = dyn_cast<Instruction>(U.getUser());
5503       if (auto *PHI = dyn_cast_or_null<PHINode>(IP))
5504         IP = PHI->getIncomingBlock(U)->getTerminator();
5505       if (auto *NewV = manifestReplacementValue(A, IP)) {
5506         LLVM_DEBUG(dbgs() << "[ValueSimplify] " << getAssociatedValue()
5507                           << " -> " << *NewV << " :: " << *this << "\n");
5508         if (A.changeUseAfterManifest(U, *NewV))
5509           Changed = ChangeStatus::CHANGED;
5510       }
5511     }
5512 
5513     return Changed | AAValueSimplify::manifest(A);
5514   }
5515 
5516   /// See AbstractState::indicatePessimisticFixpoint(...).
5517   ChangeStatus indicatePessimisticFixpoint() override {
5518     SimplifiedAssociatedValue = &getAssociatedValue();
5519     return AAValueSimplify::indicatePessimisticFixpoint();
5520   }
5521 };
5522 
5523 struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
5524   AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
5525       : AAValueSimplifyImpl(IRP, A) {}
5526 
5527   void initialize(Attributor &A) override {
5528     AAValueSimplifyImpl::initialize(A);
5529     if (!getAnchorScope() || getAnchorScope()->isDeclaration())
5530       indicatePessimisticFixpoint();
5531     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated,
5532                  Attribute::StructRet, Attribute::Nest, Attribute::ByVal},
5533                 /* IgnoreSubsumingPositions */ true))
5534       indicatePessimisticFixpoint();
5535   }
5536 
5537   /// See AbstractAttribute::updateImpl(...).
5538   ChangeStatus updateImpl(Attributor &A) override {
5539     // Byval is only replacable if it is readonly otherwise we would write into
5540     // the replaced value and not the copy that byval creates implicitly.
5541     Argument *Arg = getAssociatedArgument();
5542     if (Arg->hasByValAttr()) {
5543       // TODO: We probably need to verify synchronization is not an issue, e.g.,
5544       //       there is no race by not copying a constant byval.
5545       bool IsKnown;
5546       if (!AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
5547         return indicatePessimisticFixpoint();
5548     }
5549 
5550     auto Before = SimplifiedAssociatedValue;
5551 
5552     auto PredForCallSite = [&](AbstractCallSite ACS) {
5553       const IRPosition &ACSArgPos =
5554           IRPosition::callsite_argument(ACS, getCallSiteArgNo());
5555       // Check if a coresponding argument was found or if it is on not
5556       // associated (which can happen for callback calls).
5557       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
5558         return false;
5559 
5560       // Simplify the argument operand explicitly and check if the result is
5561       // valid in the current scope. This avoids refering to simplified values
5562       // in other functions, e.g., we don't want to say a an argument in a
5563       // static function is actually an argument in a different function.
5564       bool UsedAssumedInformation = false;
5565       Optional<Constant *> SimpleArgOp =
5566           A.getAssumedConstant(ACSArgPos, *this, UsedAssumedInformation);
5567       if (!SimpleArgOp)
5568         return true;
5569       if (!SimpleArgOp.value())
5570         return false;
5571       if (!AA::isDynamicallyUnique(A, *this, **SimpleArgOp))
5572         return false;
5573       return unionAssumed(*SimpleArgOp);
5574     };
5575 
5576     // Generate a answer specific to a call site context.
5577     bool Success;
5578     bool UsedAssumedInformation = false;
5579     if (hasCallBaseContext() &&
5580         getCallBaseContext()->getCalledFunction() == Arg->getParent())
5581       Success = PredForCallSite(
5582           AbstractCallSite(&getCallBaseContext()->getCalledOperandUse()));
5583     else
5584       Success = A.checkForAllCallSites(PredForCallSite, *this, true,
5585                                        UsedAssumedInformation);
5586 
5587     if (!Success)
5588       if (!askSimplifiedValueForOtherAAs(A))
5589         return indicatePessimisticFixpoint();
5590 
5591     // If a candicate was found in this update, return CHANGED.
5592     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5593                                                : ChangeStatus ::CHANGED;
5594   }
5595 
5596   /// See AbstractAttribute::trackStatistics()
5597   void trackStatistics() const override {
5598     STATS_DECLTRACK_ARG_ATTR(value_simplify)
5599   }
5600 };
5601 
5602 struct AAValueSimplifyReturned : AAValueSimplifyImpl {
5603   AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
5604       : AAValueSimplifyImpl(IRP, A) {}
5605 
5606   /// See AAValueSimplify::getAssumedSimplifiedValue()
5607   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5608     if (!isValidState())
5609       return nullptr;
5610     return SimplifiedAssociatedValue;
5611   }
5612 
5613   /// See AbstractAttribute::updateImpl(...).
5614   ChangeStatus updateImpl(Attributor &A) override {
5615     auto Before = SimplifiedAssociatedValue;
5616 
5617     auto ReturnInstCB = [&](Instruction &I) {
5618       auto &RI = cast<ReturnInst>(I);
5619       return checkAndUpdate(
5620           A, *this,
5621           IRPosition::value(*RI.getReturnValue(), getCallBaseContext()));
5622     };
5623 
5624     bool UsedAssumedInformation = false;
5625     if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
5626                                    UsedAssumedInformation))
5627       if (!askSimplifiedValueForOtherAAs(A))
5628         return indicatePessimisticFixpoint();
5629 
5630     // If a candicate was found in this update, return CHANGED.
5631     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5632                                                : ChangeStatus ::CHANGED;
5633   }
5634 
5635   ChangeStatus manifest(Attributor &A) override {
5636     // We queried AAValueSimplify for the returned values so they will be
5637     // replaced if a simplified form was found. Nothing to do here.
5638     return ChangeStatus::UNCHANGED;
5639   }
5640 
5641   /// See AbstractAttribute::trackStatistics()
5642   void trackStatistics() const override {
5643     STATS_DECLTRACK_FNRET_ATTR(value_simplify)
5644   }
5645 };
5646 
5647 struct AAValueSimplifyFloating : AAValueSimplifyImpl {
5648   AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
5649       : AAValueSimplifyImpl(IRP, A) {}
5650 
5651   /// See AbstractAttribute::initialize(...).
5652   void initialize(Attributor &A) override {
5653     AAValueSimplifyImpl::initialize(A);
5654     Value &V = getAnchorValue();
5655 
5656     // TODO: add other stuffs
5657     if (isa<Constant>(V))
5658       indicatePessimisticFixpoint();
5659   }
5660 
5661   /// See AbstractAttribute::updateImpl(...).
5662   ChangeStatus updateImpl(Attributor &A) override {
5663     auto Before = SimplifiedAssociatedValue;
5664     if (!askSimplifiedValueForOtherAAs(A))
5665       return indicatePessimisticFixpoint();
5666 
5667     // If a candicate was found in this update, return CHANGED.
5668     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5669                                                : ChangeStatus ::CHANGED;
5670   }
5671 
5672   /// See AbstractAttribute::trackStatistics()
5673   void trackStatistics() const override {
5674     STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
5675   }
5676 };
5677 
5678 struct AAValueSimplifyFunction : AAValueSimplifyImpl {
5679   AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
5680       : AAValueSimplifyImpl(IRP, A) {}
5681 
5682   /// See AbstractAttribute::initialize(...).
5683   void initialize(Attributor &A) override {
5684     SimplifiedAssociatedValue = nullptr;
5685     indicateOptimisticFixpoint();
5686   }
5687   /// See AbstractAttribute::initialize(...).
5688   ChangeStatus updateImpl(Attributor &A) override {
5689     llvm_unreachable(
5690         "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
5691   }
5692   /// See AbstractAttribute::trackStatistics()
5693   void trackStatistics() const override {
5694     STATS_DECLTRACK_FN_ATTR(value_simplify)
5695   }
5696 };
5697 
5698 struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
5699   AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
5700       : AAValueSimplifyFunction(IRP, A) {}
5701   /// See AbstractAttribute::trackStatistics()
5702   void trackStatistics() const override {
5703     STATS_DECLTRACK_CS_ATTR(value_simplify)
5704   }
5705 };
5706 
5707 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyImpl {
5708   AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
5709       : AAValueSimplifyImpl(IRP, A) {}
5710 
5711   void initialize(Attributor &A) override {
5712     AAValueSimplifyImpl::initialize(A);
5713     Function *Fn = getAssociatedFunction();
5714     if (!Fn) {
5715       indicatePessimisticFixpoint();
5716       return;
5717     }
5718     for (Argument &Arg : Fn->args()) {
5719       if (Arg.hasReturnedAttr()) {
5720         auto IRP = IRPosition::callsite_argument(*cast<CallBase>(getCtxI()),
5721                                                  Arg.getArgNo());
5722         if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE_ARGUMENT &&
5723             checkAndUpdate(A, *this, IRP))
5724           indicateOptimisticFixpoint();
5725         else
5726           indicatePessimisticFixpoint();
5727         return;
5728       }
5729     }
5730   }
5731 
5732   /// See AbstractAttribute::updateImpl(...).
5733   ChangeStatus updateImpl(Attributor &A) override {
5734     auto Before = SimplifiedAssociatedValue;
5735     auto &RetAA = A.getAAFor<AAReturnedValues>(
5736         *this, IRPosition::function(*getAssociatedFunction()),
5737         DepClassTy::REQUIRED);
5738     auto PredForReturned =
5739         [&](Value &RetVal, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5740           bool UsedAssumedInformation = false;
5741           Optional<Value *> CSRetVal = A.translateArgumentToCallSiteContent(
5742               &RetVal, *cast<CallBase>(getCtxI()), *this,
5743               UsedAssumedInformation);
5744           SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5745               SimplifiedAssociatedValue, CSRetVal, getAssociatedType());
5746           return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5747         };
5748     if (!RetAA.checkForAllReturnedValuesAndReturnInsts(PredForReturned))
5749       if (!askSimplifiedValueForOtherAAs(A))
5750         return indicatePessimisticFixpoint();
5751     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5752                                                : ChangeStatus ::CHANGED;
5753   }
5754 
5755   void trackStatistics() const override {
5756     STATS_DECLTRACK_CSRET_ATTR(value_simplify)
5757   }
5758 };
5759 
5760 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
5761   AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
5762       : AAValueSimplifyFloating(IRP, A) {}
5763 
5764   /// See AbstractAttribute::manifest(...).
5765   ChangeStatus manifest(Attributor &A) override {
5766     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5767     // TODO: We should avoid simplification duplication to begin with.
5768     auto *FloatAA = A.lookupAAFor<AAValueSimplify>(
5769         IRPosition::value(getAssociatedValue()), this, DepClassTy::NONE);
5770     if (FloatAA && FloatAA->getState().isValidState())
5771       return Changed;
5772 
5773     if (auto *NewV = manifestReplacementValue(A, getCtxI())) {
5774       Use &U = cast<CallBase>(&getAnchorValue())
5775                    ->getArgOperandUse(getCallSiteArgNo());
5776       if (A.changeUseAfterManifest(U, *NewV))
5777         Changed = ChangeStatus::CHANGED;
5778     }
5779 
5780     return Changed | AAValueSimplify::manifest(A);
5781   }
5782 
5783   void trackStatistics() const override {
5784     STATS_DECLTRACK_CSARG_ATTR(value_simplify)
5785   }
5786 };
5787 } // namespace
5788 
5789 /// ----------------------- Heap-To-Stack Conversion ---------------------------
5790 namespace {
5791 struct AAHeapToStackFunction final : public AAHeapToStack {
5792 
5793   struct AllocationInfo {
5794     /// The call that allocates the memory.
5795     CallBase *const CB;
5796 
5797     /// The library function id for the allocation.
5798     LibFunc LibraryFunctionId = NotLibFunc;
5799 
5800     /// The status wrt. a rewrite.
5801     enum {
5802       STACK_DUE_TO_USE,
5803       STACK_DUE_TO_FREE,
5804       INVALID,
5805     } Status = STACK_DUE_TO_USE;
5806 
5807     /// Flag to indicate if we encountered a use that might free this allocation
5808     /// but which is not in the deallocation infos.
5809     bool HasPotentiallyFreeingUnknownUses = false;
5810 
5811     /// Flag to indicate that we should place the new alloca in the function
5812     /// entry block rather than where the call site (CB) is.
5813     bool MoveAllocaIntoEntry = true;
5814 
5815     /// The set of free calls that use this allocation.
5816     SmallSetVector<CallBase *, 1> PotentialFreeCalls{};
5817   };
5818 
5819   struct DeallocationInfo {
5820     /// The call that deallocates the memory.
5821     CallBase *const CB;
5822     /// The value freed by the call.
5823     Value *FreedOp;
5824 
5825     /// Flag to indicate if we don't know all objects this deallocation might
5826     /// free.
5827     bool MightFreeUnknownObjects = false;
5828 
5829     /// The set of allocation calls that are potentially freed.
5830     SmallSetVector<CallBase *, 1> PotentialAllocationCalls{};
5831   };
5832 
5833   AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
5834       : AAHeapToStack(IRP, A) {}
5835 
5836   ~AAHeapToStackFunction() {
5837     // Ensure we call the destructor so we release any memory allocated in the
5838     // sets.
5839     for (auto &It : AllocationInfos)
5840       It.second->~AllocationInfo();
5841     for (auto &It : DeallocationInfos)
5842       It.second->~DeallocationInfo();
5843   }
5844 
5845   void initialize(Attributor &A) override {
5846     AAHeapToStack::initialize(A);
5847 
5848     const Function *F = getAnchorScope();
5849     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5850 
5851     auto AllocationIdentifierCB = [&](Instruction &I) {
5852       CallBase *CB = dyn_cast<CallBase>(&I);
5853       if (!CB)
5854         return true;
5855       if (Value *FreedOp = getFreedOperand(CB, TLI)) {
5856         DeallocationInfos[CB] = new (A.Allocator) DeallocationInfo{CB, FreedOp};
5857         return true;
5858       }
5859       // To do heap to stack, we need to know that the allocation itself is
5860       // removable once uses are rewritten, and that we can initialize the
5861       // alloca to the same pattern as the original allocation result.
5862       if (isRemovableAlloc(CB, TLI)) {
5863         auto *I8Ty = Type::getInt8Ty(CB->getParent()->getContext());
5864         if (nullptr != getInitialValueOfAllocation(CB, TLI, I8Ty)) {
5865           AllocationInfo *AI = new (A.Allocator) AllocationInfo{CB};
5866           AllocationInfos[CB] = AI;
5867           if (TLI)
5868             TLI->getLibFunc(*CB, AI->LibraryFunctionId);
5869         }
5870       }
5871       return true;
5872     };
5873 
5874     bool UsedAssumedInformation = false;
5875     bool Success = A.checkForAllCallLikeInstructions(
5876         AllocationIdentifierCB, *this, UsedAssumedInformation,
5877         /* CheckBBLivenessOnly */ false,
5878         /* CheckPotentiallyDead */ true);
5879     (void)Success;
5880     assert(Success && "Did not expect the call base visit callback to fail!");
5881 
5882     Attributor::SimplifictionCallbackTy SCB =
5883         [](const IRPosition &, const AbstractAttribute *,
5884            bool &) -> Optional<Value *> { return nullptr; };
5885     for (const auto &It : AllocationInfos)
5886       A.registerSimplificationCallback(IRPosition::callsite_returned(*It.first),
5887                                        SCB);
5888     for (const auto &It : DeallocationInfos)
5889       A.registerSimplificationCallback(IRPosition::callsite_returned(*It.first),
5890                                        SCB);
5891   }
5892 
5893   const std::string getAsStr() const override {
5894     unsigned NumH2SMallocs = 0, NumInvalidMallocs = 0;
5895     for (const auto &It : AllocationInfos) {
5896       if (It.second->Status == AllocationInfo::INVALID)
5897         ++NumInvalidMallocs;
5898       else
5899         ++NumH2SMallocs;
5900     }
5901     return "[H2S] Mallocs Good/Bad: " + std::to_string(NumH2SMallocs) + "/" +
5902            std::to_string(NumInvalidMallocs);
5903   }
5904 
5905   /// See AbstractAttribute::trackStatistics().
5906   void trackStatistics() const override {
5907     STATS_DECL(
5908         MallocCalls, Function,
5909         "Number of malloc/calloc/aligned_alloc calls converted to allocas");
5910     for (auto &It : AllocationInfos)
5911       if (It.second->Status != AllocationInfo::INVALID)
5912         ++BUILD_STAT_NAME(MallocCalls, Function);
5913   }
5914 
5915   bool isAssumedHeapToStack(const CallBase &CB) const override {
5916     if (isValidState())
5917       if (AllocationInfo *AI =
5918               AllocationInfos.lookup(const_cast<CallBase *>(&CB)))
5919         return AI->Status != AllocationInfo::INVALID;
5920     return false;
5921   }
5922 
5923   bool isAssumedHeapToStackRemovedFree(CallBase &CB) const override {
5924     if (!isValidState())
5925       return false;
5926 
5927     for (auto &It : AllocationInfos) {
5928       AllocationInfo &AI = *It.second;
5929       if (AI.Status == AllocationInfo::INVALID)
5930         continue;
5931 
5932       if (AI.PotentialFreeCalls.count(&CB))
5933         return true;
5934     }
5935 
5936     return false;
5937   }
5938 
5939   ChangeStatus manifest(Attributor &A) override {
5940     assert(getState().isValidState() &&
5941            "Attempted to manifest an invalid state!");
5942 
5943     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
5944     Function *F = getAnchorScope();
5945     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5946 
5947     for (auto &It : AllocationInfos) {
5948       AllocationInfo &AI = *It.second;
5949       if (AI.Status == AllocationInfo::INVALID)
5950         continue;
5951 
5952       for (CallBase *FreeCall : AI.PotentialFreeCalls) {
5953         LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
5954         A.deleteAfterManifest(*FreeCall);
5955         HasChanged = ChangeStatus::CHANGED;
5956       }
5957 
5958       LLVM_DEBUG(dbgs() << "H2S: Removing malloc-like call: " << *AI.CB
5959                         << "\n");
5960 
5961       auto Remark = [&](OptimizationRemark OR) {
5962         LibFunc IsAllocShared;
5963         if (TLI->getLibFunc(*AI.CB, IsAllocShared))
5964           if (IsAllocShared == LibFunc___kmpc_alloc_shared)
5965             return OR << "Moving globalized variable to the stack.";
5966         return OR << "Moving memory allocation from the heap to the stack.";
5967       };
5968       if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
5969         A.emitRemark<OptimizationRemark>(AI.CB, "OMP110", Remark);
5970       else
5971         A.emitRemark<OptimizationRemark>(AI.CB, "HeapToStack", Remark);
5972 
5973       const DataLayout &DL = A.getInfoCache().getDL();
5974       Value *Size;
5975       Optional<APInt> SizeAPI = getSize(A, *this, AI);
5976       if (SizeAPI) {
5977         Size = ConstantInt::get(AI.CB->getContext(), *SizeAPI);
5978       } else {
5979         LLVMContext &Ctx = AI.CB->getContext();
5980         ObjectSizeOpts Opts;
5981         ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, Opts);
5982         SizeOffsetEvalType SizeOffsetPair = Eval.compute(AI.CB);
5983         assert(SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown() &&
5984                cast<ConstantInt>(SizeOffsetPair.second)->isZero());
5985         Size = SizeOffsetPair.first;
5986       }
5987 
5988       Instruction *IP =
5989           AI.MoveAllocaIntoEntry ? &F->getEntryBlock().front() : AI.CB;
5990 
5991       Align Alignment(1);
5992       if (MaybeAlign RetAlign = AI.CB->getRetAlign())
5993         Alignment = std::max(Alignment, *RetAlign);
5994       if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
5995         Optional<APInt> AlignmentAPI = getAPInt(A, *this, *Align);
5996         assert(AlignmentAPI && AlignmentAPI.value().getZExtValue() > 0 &&
5997                "Expected an alignment during manifest!");
5998         Alignment = std::max(
5999             Alignment, assumeAligned(AlignmentAPI.value().getZExtValue()));
6000       }
6001 
6002       // TODO: Hoist the alloca towards the function entry.
6003       unsigned AS = DL.getAllocaAddrSpace();
6004       Instruction *Alloca =
6005           new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment,
6006                          AI.CB->getName() + ".h2s", IP);
6007 
6008       if (Alloca->getType() != AI.CB->getType())
6009         Alloca = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
6010             Alloca, AI.CB->getType(), "malloc_cast", AI.CB);
6011 
6012       auto *I8Ty = Type::getInt8Ty(F->getContext());
6013       auto *InitVal = getInitialValueOfAllocation(AI.CB, TLI, I8Ty);
6014       assert(InitVal &&
6015              "Must be able to materialize initial memory state of allocation");
6016 
6017       A.changeAfterManifest(IRPosition::inst(*AI.CB), *Alloca);
6018 
6019       if (auto *II = dyn_cast<InvokeInst>(AI.CB)) {
6020         auto *NBB = II->getNormalDest();
6021         BranchInst::Create(NBB, AI.CB->getParent());
6022         A.deleteAfterManifest(*AI.CB);
6023       } else {
6024         A.deleteAfterManifest(*AI.CB);
6025       }
6026 
6027       // Initialize the alloca with the same value as used by the allocation
6028       // function.  We can skip undef as the initial value of an alloc is
6029       // undef, and the memset would simply end up being DSEd.
6030       if (!isa<UndefValue>(InitVal)) {
6031         IRBuilder<> Builder(Alloca->getNextNode());
6032         // TODO: Use alignment above if align!=1
6033         Builder.CreateMemSet(Alloca, InitVal, Size, None);
6034       }
6035       HasChanged = ChangeStatus::CHANGED;
6036     }
6037 
6038     return HasChanged;
6039   }
6040 
6041   Optional<APInt> getAPInt(Attributor &A, const AbstractAttribute &AA,
6042                            Value &V) {
6043     bool UsedAssumedInformation = false;
6044     Optional<Constant *> SimpleV =
6045         A.getAssumedConstant(V, AA, UsedAssumedInformation);
6046     if (!SimpleV)
6047       return APInt(64, 0);
6048     if (auto *CI = dyn_cast_or_null<ConstantInt>(SimpleV.value()))
6049       return CI->getValue();
6050     return llvm::None;
6051   }
6052 
6053   Optional<APInt> getSize(Attributor &A, const AbstractAttribute &AA,
6054                           AllocationInfo &AI) {
6055     auto Mapper = [&](const Value *V) -> const Value * {
6056       bool UsedAssumedInformation = false;
6057       if (Optional<Constant *> SimpleV =
6058               A.getAssumedConstant(*V, AA, UsedAssumedInformation))
6059         if (*SimpleV)
6060           return *SimpleV;
6061       return V;
6062     };
6063 
6064     const Function *F = getAnchorScope();
6065     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6066     return getAllocSize(AI.CB, TLI, Mapper);
6067   }
6068 
6069   /// Collection of all malloc-like calls in a function with associated
6070   /// information.
6071   MapVector<CallBase *, AllocationInfo *> AllocationInfos;
6072 
6073   /// Collection of all free-like calls in a function with associated
6074   /// information.
6075   MapVector<CallBase *, DeallocationInfo *> DeallocationInfos;
6076 
6077   ChangeStatus updateImpl(Attributor &A) override;
6078 };
6079 
6080 ChangeStatus AAHeapToStackFunction::updateImpl(Attributor &A) {
6081   ChangeStatus Changed = ChangeStatus::UNCHANGED;
6082   const Function *F = getAnchorScope();
6083   const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
6084 
6085   const auto &LivenessAA =
6086       A.getAAFor<AAIsDead>(*this, IRPosition::function(*F), DepClassTy::NONE);
6087 
6088   MustBeExecutedContextExplorer &Explorer =
6089       A.getInfoCache().getMustBeExecutedContextExplorer();
6090 
6091   bool StackIsAccessibleByOtherThreads =
6092       A.getInfoCache().stackIsAccessibleByOtherThreads();
6093 
6094   LoopInfo *LI =
6095       A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(*F);
6096   Optional<bool> MayContainIrreducibleControl;
6097   auto IsInLoop = [&](BasicBlock &BB) {
6098     if (&F->getEntryBlock() == &BB)
6099       return false;
6100     if (!MayContainIrreducibleControl.has_value())
6101       MayContainIrreducibleControl = mayContainIrreducibleControl(*F, LI);
6102     if (MayContainIrreducibleControl.value())
6103       return true;
6104     if (!LI)
6105       return true;
6106     return LI->getLoopFor(&BB) != nullptr;
6107   };
6108 
6109   // Flag to ensure we update our deallocation information at most once per
6110   // updateImpl call and only if we use the free check reasoning.
6111   bool HasUpdatedFrees = false;
6112 
6113   auto UpdateFrees = [&]() {
6114     HasUpdatedFrees = true;
6115 
6116     for (auto &It : DeallocationInfos) {
6117       DeallocationInfo &DI = *It.second;
6118       // For now we cannot use deallocations that have unknown inputs, skip
6119       // them.
6120       if (DI.MightFreeUnknownObjects)
6121         continue;
6122 
6123       // No need to analyze dead calls, ignore them instead.
6124       bool UsedAssumedInformation = false;
6125       if (A.isAssumedDead(*DI.CB, this, &LivenessAA, UsedAssumedInformation,
6126                           /* CheckBBLivenessOnly */ true))
6127         continue;
6128 
6129       // Use the non-optimistic version to get the freed object.
6130       Value *Obj = getUnderlyingObject(DI.FreedOp);
6131       if (!Obj) {
6132         LLVM_DEBUG(dbgs() << "[H2S] Unknown underlying object for free!\n");
6133         DI.MightFreeUnknownObjects = true;
6134         continue;
6135       }
6136 
6137       // Free of null and undef can be ignored as no-ops (or UB in the latter
6138       // case).
6139       if (isa<ConstantPointerNull>(Obj) || isa<UndefValue>(Obj))
6140         continue;
6141 
6142       CallBase *ObjCB = dyn_cast<CallBase>(Obj);
6143       if (!ObjCB) {
6144         LLVM_DEBUG(dbgs() << "[H2S] Free of a non-call object: " << *Obj
6145                           << "\n");
6146         DI.MightFreeUnknownObjects = true;
6147         continue;
6148       }
6149 
6150       AllocationInfo *AI = AllocationInfos.lookup(ObjCB);
6151       if (!AI) {
6152         LLVM_DEBUG(dbgs() << "[H2S] Free of a non-allocation object: " << *Obj
6153                           << "\n");
6154         DI.MightFreeUnknownObjects = true;
6155         continue;
6156       }
6157 
6158       DI.PotentialAllocationCalls.insert(ObjCB);
6159     }
6160   };
6161 
6162   auto FreeCheck = [&](AllocationInfo &AI) {
6163     // If the stack is not accessible by other threads, the "must-free" logic
6164     // doesn't apply as the pointer could be shared and needs to be places in
6165     // "shareable" memory.
6166     if (!StackIsAccessibleByOtherThreads) {
6167       auto &NoSyncAA =
6168           A.getAAFor<AANoSync>(*this, getIRPosition(), DepClassTy::OPTIONAL);
6169       if (!NoSyncAA.isAssumedNoSync()) {
6170         LLVM_DEBUG(
6171             dbgs() << "[H2S] found an escaping use, stack is not accessible by "
6172                       "other threads and function is not nosync:\n");
6173         return false;
6174       }
6175     }
6176     if (!HasUpdatedFrees)
6177       UpdateFrees();
6178 
6179     // TODO: Allow multi exit functions that have different free calls.
6180     if (AI.PotentialFreeCalls.size() != 1) {
6181       LLVM_DEBUG(dbgs() << "[H2S] did not find one free call but "
6182                         << AI.PotentialFreeCalls.size() << "\n");
6183       return false;
6184     }
6185     CallBase *UniqueFree = *AI.PotentialFreeCalls.begin();
6186     DeallocationInfo *DI = DeallocationInfos.lookup(UniqueFree);
6187     if (!DI) {
6188       LLVM_DEBUG(
6189           dbgs() << "[H2S] unique free call was not known as deallocation call "
6190                  << *UniqueFree << "\n");
6191       return false;
6192     }
6193     if (DI->MightFreeUnknownObjects) {
6194       LLVM_DEBUG(
6195           dbgs() << "[H2S] unique free call might free unknown allocations\n");
6196       return false;
6197     }
6198     if (DI->PotentialAllocationCalls.empty())
6199       return true;
6200     if (DI->PotentialAllocationCalls.size() > 1) {
6201       LLVM_DEBUG(dbgs() << "[H2S] unique free call might free "
6202                         << DI->PotentialAllocationCalls.size()
6203                         << " different allocations\n");
6204       return false;
6205     }
6206     if (*DI->PotentialAllocationCalls.begin() != AI.CB) {
6207       LLVM_DEBUG(
6208           dbgs()
6209           << "[H2S] unique free call not known to free this allocation but "
6210           << **DI->PotentialAllocationCalls.begin() << "\n");
6211       return false;
6212     }
6213     Instruction *CtxI = isa<InvokeInst>(AI.CB) ? AI.CB : AI.CB->getNextNode();
6214     if (!Explorer.findInContextOf(UniqueFree, CtxI)) {
6215       LLVM_DEBUG(
6216           dbgs()
6217           << "[H2S] unique free call might not be executed with the allocation "
6218           << *UniqueFree << "\n");
6219       return false;
6220     }
6221     return true;
6222   };
6223 
6224   auto UsesCheck = [&](AllocationInfo &AI) {
6225     bool ValidUsesOnly = true;
6226 
6227     auto Pred = [&](const Use &U, bool &Follow) -> bool {
6228       Instruction *UserI = cast<Instruction>(U.getUser());
6229       if (isa<LoadInst>(UserI))
6230         return true;
6231       if (auto *SI = dyn_cast<StoreInst>(UserI)) {
6232         if (SI->getValueOperand() == U.get()) {
6233           LLVM_DEBUG(dbgs()
6234                      << "[H2S] escaping store to memory: " << *UserI << "\n");
6235           ValidUsesOnly = false;
6236         } else {
6237           // A store into the malloc'ed memory is fine.
6238         }
6239         return true;
6240       }
6241       if (auto *CB = dyn_cast<CallBase>(UserI)) {
6242         if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
6243           return true;
6244         if (DeallocationInfos.count(CB)) {
6245           AI.PotentialFreeCalls.insert(CB);
6246           return true;
6247         }
6248 
6249         unsigned ArgNo = CB->getArgOperandNo(&U);
6250 
6251         const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
6252             *this, IRPosition::callsite_argument(*CB, ArgNo),
6253             DepClassTy::OPTIONAL);
6254 
6255         // If a call site argument use is nofree, we are fine.
6256         const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
6257             *this, IRPosition::callsite_argument(*CB, ArgNo),
6258             DepClassTy::OPTIONAL);
6259 
6260         bool MaybeCaptured = !NoCaptureAA.isAssumedNoCapture();
6261         bool MaybeFreed = !ArgNoFreeAA.isAssumedNoFree();
6262         if (MaybeCaptured ||
6263             (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared &&
6264              MaybeFreed)) {
6265           AI.HasPotentiallyFreeingUnknownUses |= MaybeFreed;
6266 
6267           // Emit a missed remark if this is missed OpenMP globalization.
6268           auto Remark = [&](OptimizationRemarkMissed ORM) {
6269             return ORM
6270                    << "Could not move globalized variable to the stack. "
6271                       "Variable is potentially captured in call. Mark "
6272                       "parameter as `__attribute__((noescape))` to override.";
6273           };
6274 
6275           if (ValidUsesOnly &&
6276               AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
6277             A.emitRemark<OptimizationRemarkMissed>(CB, "OMP113", Remark);
6278 
6279           LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
6280           ValidUsesOnly = false;
6281         }
6282         return true;
6283       }
6284 
6285       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
6286           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
6287         Follow = true;
6288         return true;
6289       }
6290       // Unknown user for which we can not track uses further (in a way that
6291       // makes sense).
6292       LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
6293       ValidUsesOnly = false;
6294       return true;
6295     };
6296     if (!A.checkForAllUses(Pred, *this, *AI.CB))
6297       return false;
6298     return ValidUsesOnly;
6299   };
6300 
6301   // The actual update starts here. We look at all allocations and depending on
6302   // their status perform the appropriate check(s).
6303   for (auto &It : AllocationInfos) {
6304     AllocationInfo &AI = *It.second;
6305     if (AI.Status == AllocationInfo::INVALID)
6306       continue;
6307 
6308     if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
6309       Optional<APInt> APAlign = getAPInt(A, *this, *Align);
6310       if (!APAlign) {
6311         // Can't generate an alloca which respects the required alignment
6312         // on the allocation.
6313         LLVM_DEBUG(dbgs() << "[H2S] Unknown allocation alignment: " << *AI.CB
6314                           << "\n");
6315         AI.Status = AllocationInfo::INVALID;
6316         Changed = ChangeStatus::CHANGED;
6317         continue;
6318       }
6319       if (APAlign->ugt(llvm::Value::MaximumAlignment) ||
6320           !APAlign->isPowerOf2()) {
6321         LLVM_DEBUG(dbgs() << "[H2S] Invalid allocation alignment: " << APAlign
6322                           << "\n");
6323         AI.Status = AllocationInfo::INVALID;
6324         Changed = ChangeStatus::CHANGED;
6325         continue;
6326       }
6327     }
6328 
6329     Optional<APInt> Size = getSize(A, *this, AI);
6330     if (MaxHeapToStackSize != -1) {
6331       if (!Size || Size.value().ugt(MaxHeapToStackSize)) {
6332         LLVM_DEBUG({
6333           if (!Size)
6334             dbgs() << "[H2S] Unknown allocation size: " << *AI.CB << "\n";
6335           else
6336             dbgs() << "[H2S] Allocation size too large: " << *AI.CB << " vs. "
6337                    << MaxHeapToStackSize << "\n";
6338         });
6339 
6340         AI.Status = AllocationInfo::INVALID;
6341         Changed = ChangeStatus::CHANGED;
6342         continue;
6343       }
6344     }
6345 
6346     switch (AI.Status) {
6347     case AllocationInfo::STACK_DUE_TO_USE:
6348       if (UsesCheck(AI))
6349         break;
6350       AI.Status = AllocationInfo::STACK_DUE_TO_FREE;
6351       LLVM_FALLTHROUGH;
6352     case AllocationInfo::STACK_DUE_TO_FREE:
6353       if (FreeCheck(AI))
6354         break;
6355       AI.Status = AllocationInfo::INVALID;
6356       Changed = ChangeStatus::CHANGED;
6357       break;
6358     case AllocationInfo::INVALID:
6359       llvm_unreachable("Invalid allocations should never reach this point!");
6360     };
6361 
6362     // Check if we still think we can move it into the entry block.
6363     if (AI.MoveAllocaIntoEntry &&
6364         (!Size.has_value() || IsInLoop(*AI.CB->getParent())))
6365       AI.MoveAllocaIntoEntry = false;
6366   }
6367 
6368   return Changed;
6369 }
6370 } // namespace
6371 
6372 /// ----------------------- Privatizable Pointers ------------------------------
6373 namespace {
6374 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
6375   AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
6376       : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {}
6377 
6378   ChangeStatus indicatePessimisticFixpoint() override {
6379     AAPrivatizablePtr::indicatePessimisticFixpoint();
6380     PrivatizableType = nullptr;
6381     return ChangeStatus::CHANGED;
6382   }
6383 
6384   /// Identify the type we can chose for a private copy of the underlying
6385   /// argument. None means it is not clear yet, nullptr means there is none.
6386   virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
6387 
6388   /// Return a privatizable type that encloses both T0 and T1.
6389   /// TODO: This is merely a stub for now as we should manage a mapping as well.
6390   Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
6391     if (!T0)
6392       return T1;
6393     if (!T1)
6394       return T0;
6395     if (T0 == T1)
6396       return T0;
6397     return nullptr;
6398   }
6399 
6400   Optional<Type *> getPrivatizableType() const override {
6401     return PrivatizableType;
6402   }
6403 
6404   const std::string getAsStr() const override {
6405     return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
6406   }
6407 
6408 protected:
6409   Optional<Type *> PrivatizableType;
6410 };
6411 
6412 // TODO: Do this for call site arguments (probably also other values) as well.
6413 
6414 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
6415   AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
6416       : AAPrivatizablePtrImpl(IRP, A) {}
6417 
6418   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6419   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6420     // If this is a byval argument and we know all the call sites (so we can
6421     // rewrite them), there is no need to check them explicitly.
6422     bool UsedAssumedInformation = false;
6423     SmallVector<Attribute, 1> Attrs;
6424     getAttrs({Attribute::ByVal}, Attrs, /* IgnoreSubsumingPositions */ true);
6425     if (!Attrs.empty() &&
6426         A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
6427                                true, UsedAssumedInformation))
6428       return Attrs[0].getValueAsType();
6429 
6430     Optional<Type *> Ty;
6431     unsigned ArgNo = getIRPosition().getCallSiteArgNo();
6432 
6433     // Make sure the associated call site argument has the same type at all call
6434     // sites and it is an allocation we know is safe to privatize, for now that
6435     // means we only allow alloca instructions.
6436     // TODO: We can additionally analyze the accesses in the callee to  create
6437     //       the type from that information instead. That is a little more
6438     //       involved and will be done in a follow up patch.
6439     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6440       IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
6441       // Check if a coresponding argument was found or if it is one not
6442       // associated (which can happen for callback calls).
6443       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
6444         return false;
6445 
6446       // Check that all call sites agree on a type.
6447       auto &PrivCSArgAA =
6448           A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos, DepClassTy::REQUIRED);
6449       Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
6450 
6451       LLVM_DEBUG({
6452         dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
6453         if (CSTy && CSTy.value())
6454           CSTy.value()->print(dbgs());
6455         else if (CSTy)
6456           dbgs() << "<nullptr>";
6457         else
6458           dbgs() << "<none>";
6459       });
6460 
6461       Ty = combineTypes(Ty, CSTy);
6462 
6463       LLVM_DEBUG({
6464         dbgs() << " : New Type: ";
6465         if (Ty && Ty.value())
6466           Ty.value()->print(dbgs());
6467         else if (Ty)
6468           dbgs() << "<nullptr>";
6469         else
6470           dbgs() << "<none>";
6471         dbgs() << "\n";
6472       });
6473 
6474       return !Ty || Ty.value();
6475     };
6476 
6477     if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
6478                                 UsedAssumedInformation))
6479       return nullptr;
6480     return Ty;
6481   }
6482 
6483   /// See AbstractAttribute::updateImpl(...).
6484   ChangeStatus updateImpl(Attributor &A) override {
6485     PrivatizableType = identifyPrivatizableType(A);
6486     if (!PrivatizableType)
6487       return ChangeStatus::UNCHANGED;
6488     if (!PrivatizableType.value())
6489       return indicatePessimisticFixpoint();
6490 
6491     // The dependence is optional so we don't give up once we give up on the
6492     // alignment.
6493     A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
6494                         DepClassTy::OPTIONAL);
6495 
6496     // Avoid arguments with padding for now.
6497     if (!getIRPosition().hasAttr(Attribute::ByVal) &&
6498         !isDenselyPacked(*PrivatizableType, A.getInfoCache().getDL())) {
6499       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
6500       return indicatePessimisticFixpoint();
6501     }
6502 
6503     // Collect the types that will replace the privatizable type in the function
6504     // signature.
6505     SmallVector<Type *, 16> ReplacementTypes;
6506     identifyReplacementTypes(*PrivatizableType, ReplacementTypes);
6507 
6508     // Verify callee and caller agree on how the promoted argument would be
6509     // passed.
6510     Function &Fn = *getIRPosition().getAnchorScope();
6511     const auto *TTI =
6512         A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
6513     if (!TTI) {
6514       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Missing TTI for function "
6515                         << Fn.getName() << "\n");
6516       return indicatePessimisticFixpoint();
6517     }
6518 
6519     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6520       CallBase *CB = ACS.getInstruction();
6521       return TTI->areTypesABICompatible(
6522           CB->getCaller(), CB->getCalledFunction(), ReplacementTypes);
6523     };
6524     bool UsedAssumedInformation = false;
6525     if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
6526                                 UsedAssumedInformation)) {
6527       LLVM_DEBUG(
6528           dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
6529                  << Fn.getName() << "\n");
6530       return indicatePessimisticFixpoint();
6531     }
6532 
6533     // Register a rewrite of the argument.
6534     Argument *Arg = getAssociatedArgument();
6535     if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
6536       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
6537       return indicatePessimisticFixpoint();
6538     }
6539 
6540     unsigned ArgNo = Arg->getArgNo();
6541 
6542     // Helper to check if for the given call site the associated argument is
6543     // passed to a callback where the privatization would be different.
6544     auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
6545       SmallVector<const Use *, 4> CallbackUses;
6546       AbstractCallSite::getCallbackUses(CB, CallbackUses);
6547       for (const Use *U : CallbackUses) {
6548         AbstractCallSite CBACS(U);
6549         assert(CBACS && CBACS.isCallbackCall());
6550         for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
6551           int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
6552 
6553           LLVM_DEBUG({
6554             dbgs()
6555                 << "[AAPrivatizablePtr] Argument " << *Arg
6556                 << "check if can be privatized in the context of its parent ("
6557                 << Arg->getParent()->getName()
6558                 << ")\n[AAPrivatizablePtr] because it is an argument in a "
6559                    "callback ("
6560                 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6561                 << ")\n[AAPrivatizablePtr] " << CBArg << " : "
6562                 << CBACS.getCallArgOperand(CBArg) << " vs "
6563                 << CB.getArgOperand(ArgNo) << "\n"
6564                 << "[AAPrivatizablePtr] " << CBArg << " : "
6565                 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
6566           });
6567 
6568           if (CBArgNo != int(ArgNo))
6569             continue;
6570           const auto &CBArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6571               *this, IRPosition::argument(CBArg), DepClassTy::REQUIRED);
6572           if (CBArgPrivAA.isValidState()) {
6573             auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
6574             if (!CBArgPrivTy)
6575               continue;
6576             if (CBArgPrivTy.value() == PrivatizableType)
6577               continue;
6578           }
6579 
6580           LLVM_DEBUG({
6581             dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6582                    << " cannot be privatized in the context of its parent ("
6583                    << Arg->getParent()->getName()
6584                    << ")\n[AAPrivatizablePtr] because it is an argument in a "
6585                       "callback ("
6586                    << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6587                    << ").\n[AAPrivatizablePtr] for which the argument "
6588                       "privatization is not compatible.\n";
6589           });
6590           return false;
6591         }
6592       }
6593       return true;
6594     };
6595 
6596     // Helper to check if for the given call site the associated argument is
6597     // passed to a direct call where the privatization would be different.
6598     auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
6599       CallBase *DC = cast<CallBase>(ACS.getInstruction());
6600       int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
6601       assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->arg_size() &&
6602              "Expected a direct call operand for callback call operand");
6603 
6604       LLVM_DEBUG({
6605         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6606                << " check if be privatized in the context of its parent ("
6607                << Arg->getParent()->getName()
6608                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6609                   "direct call of ("
6610                << DCArgNo << "@" << DC->getCalledFunction()->getName()
6611                << ").\n";
6612       });
6613 
6614       Function *DCCallee = DC->getCalledFunction();
6615       if (unsigned(DCArgNo) < DCCallee->arg_size()) {
6616         const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6617             *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)),
6618             DepClassTy::REQUIRED);
6619         if (DCArgPrivAA.isValidState()) {
6620           auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
6621           if (!DCArgPrivTy)
6622             return true;
6623           if (DCArgPrivTy.value() == PrivatizableType)
6624             return true;
6625         }
6626       }
6627 
6628       LLVM_DEBUG({
6629         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6630                << " cannot be privatized in the context of its parent ("
6631                << Arg->getParent()->getName()
6632                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6633                   "direct call of ("
6634                << ACS.getInstruction()->getCalledFunction()->getName()
6635                << ").\n[AAPrivatizablePtr] for which the argument "
6636                   "privatization is not compatible.\n";
6637       });
6638       return false;
6639     };
6640 
6641     // Helper to check if the associated argument is used at the given abstract
6642     // call site in a way that is incompatible with the privatization assumed
6643     // here.
6644     auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
6645       if (ACS.isDirectCall())
6646         return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
6647       if (ACS.isCallbackCall())
6648         return IsCompatiblePrivArgOfDirectCS(ACS);
6649       return false;
6650     };
6651 
6652     if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
6653                                 UsedAssumedInformation))
6654       return indicatePessimisticFixpoint();
6655 
6656     return ChangeStatus::UNCHANGED;
6657   }
6658 
6659   /// Given a type to private \p PrivType, collect the constituates (which are
6660   /// used) in \p ReplacementTypes.
6661   static void
6662   identifyReplacementTypes(Type *PrivType,
6663                            SmallVectorImpl<Type *> &ReplacementTypes) {
6664     // TODO: For now we expand the privatization type to the fullest which can
6665     //       lead to dead arguments that need to be removed later.
6666     assert(PrivType && "Expected privatizable type!");
6667 
6668     // Traverse the type, extract constituate types on the outermost level.
6669     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6670       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
6671         ReplacementTypes.push_back(PrivStructType->getElementType(u));
6672     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6673       ReplacementTypes.append(PrivArrayType->getNumElements(),
6674                               PrivArrayType->getElementType());
6675     } else {
6676       ReplacementTypes.push_back(PrivType);
6677     }
6678   }
6679 
6680   /// Initialize \p Base according to the type \p PrivType at position \p IP.
6681   /// The values needed are taken from the arguments of \p F starting at
6682   /// position \p ArgNo.
6683   static void createInitialization(Type *PrivType, Value &Base, Function &F,
6684                                    unsigned ArgNo, Instruction &IP) {
6685     assert(PrivType && "Expected privatizable type!");
6686 
6687     IRBuilder<NoFolder> IRB(&IP);
6688     const DataLayout &DL = F.getParent()->getDataLayout();
6689 
6690     // Traverse the type, build GEPs and stores.
6691     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6692       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6693       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6694         Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
6695         Value *Ptr =
6696             constructPointer(PointeeTy, PrivType, &Base,
6697                              PrivStructLayout->getElementOffset(u), IRB, DL);
6698         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6699       }
6700     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6701       Type *PointeeTy = PrivArrayType->getElementType();
6702       Type *PointeePtrTy = PointeeTy->getPointerTo();
6703       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6704       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6705         Value *Ptr = constructPointer(PointeePtrTy, PrivType, &Base,
6706                                       u * PointeeTySize, IRB, DL);
6707         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6708       }
6709     } else {
6710       new StoreInst(F.getArg(ArgNo), &Base, &IP);
6711     }
6712   }
6713 
6714   /// Extract values from \p Base according to the type \p PrivType at the
6715   /// call position \p ACS. The values are appended to \p ReplacementValues.
6716   void createReplacementValues(Align Alignment, Type *PrivType,
6717                                AbstractCallSite ACS, Value *Base,
6718                                SmallVectorImpl<Value *> &ReplacementValues) {
6719     assert(Base && "Expected base value!");
6720     assert(PrivType && "Expected privatizable type!");
6721     Instruction *IP = ACS.getInstruction();
6722 
6723     IRBuilder<NoFolder> IRB(IP);
6724     const DataLayout &DL = IP->getModule()->getDataLayout();
6725 
6726     Type *PrivPtrType = PrivType->getPointerTo();
6727     if (Base->getType() != PrivPtrType)
6728       Base = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
6729           Base, PrivPtrType, "", ACS.getInstruction());
6730 
6731     // Traverse the type, build GEPs and loads.
6732     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6733       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6734       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6735         Type *PointeeTy = PrivStructType->getElementType(u);
6736         Value *Ptr =
6737             constructPointer(PointeeTy->getPointerTo(), PrivType, Base,
6738                              PrivStructLayout->getElementOffset(u), IRB, DL);
6739         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6740         L->setAlignment(Alignment);
6741         ReplacementValues.push_back(L);
6742       }
6743     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6744       Type *PointeeTy = PrivArrayType->getElementType();
6745       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6746       Type *PointeePtrTy = PointeeTy->getPointerTo();
6747       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6748         Value *Ptr = constructPointer(PointeePtrTy, PrivType, Base,
6749                                       u * PointeeTySize, IRB, DL);
6750         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6751         L->setAlignment(Alignment);
6752         ReplacementValues.push_back(L);
6753       }
6754     } else {
6755       LoadInst *L = new LoadInst(PrivType, Base, "", IP);
6756       L->setAlignment(Alignment);
6757       ReplacementValues.push_back(L);
6758     }
6759   }
6760 
6761   /// See AbstractAttribute::manifest(...)
6762   ChangeStatus manifest(Attributor &A) override {
6763     if (!PrivatizableType)
6764       return ChangeStatus::UNCHANGED;
6765     assert(PrivatizableType.value() && "Expected privatizable type!");
6766 
6767     // Collect all tail calls in the function as we cannot allow new allocas to
6768     // escape into tail recursion.
6769     // TODO: Be smarter about new allocas escaping into tail calls.
6770     SmallVector<CallInst *, 16> TailCalls;
6771     bool UsedAssumedInformation = false;
6772     if (!A.checkForAllInstructions(
6773             [&](Instruction &I) {
6774               CallInst &CI = cast<CallInst>(I);
6775               if (CI.isTailCall())
6776                 TailCalls.push_back(&CI);
6777               return true;
6778             },
6779             *this, {Instruction::Call}, UsedAssumedInformation))
6780       return ChangeStatus::UNCHANGED;
6781 
6782     Argument *Arg = getAssociatedArgument();
6783     // Query AAAlign attribute for alignment of associated argument to
6784     // determine the best alignment of loads.
6785     const auto &AlignAA =
6786         A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg), DepClassTy::NONE);
6787 
6788     // Callback to repair the associated function. A new alloca is placed at the
6789     // beginning and initialized with the values passed through arguments. The
6790     // new alloca replaces the use of the old pointer argument.
6791     Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
6792         [=](const Attributor::ArgumentReplacementInfo &ARI,
6793             Function &ReplacementFn, Function::arg_iterator ArgIt) {
6794           BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
6795           Instruction *IP = &*EntryBB.getFirstInsertionPt();
6796           const DataLayout &DL = IP->getModule()->getDataLayout();
6797           unsigned AS = DL.getAllocaAddrSpace();
6798           Instruction *AI = new AllocaInst(PrivatizableType.value(), AS,
6799                                            Arg->getName() + ".priv", IP);
6800           createInitialization(PrivatizableType.value(), *AI, ReplacementFn,
6801                                ArgIt->getArgNo(), *IP);
6802 
6803           if (AI->getType() != Arg->getType())
6804             AI = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
6805                 AI, Arg->getType(), "", IP);
6806           Arg->replaceAllUsesWith(AI);
6807 
6808           for (CallInst *CI : TailCalls)
6809             CI->setTailCall(false);
6810         };
6811 
6812     // Callback to repair a call site of the associated function. The elements
6813     // of the privatizable type are loaded prior to the call and passed to the
6814     // new function version.
6815     Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
6816         [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI,
6817                       AbstractCallSite ACS,
6818                       SmallVectorImpl<Value *> &NewArgOperands) {
6819           // When no alignment is specified for the load instruction,
6820           // natural alignment is assumed.
6821           createReplacementValues(
6822               AlignAA.getAssumedAlign(), *PrivatizableType, ACS,
6823               ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
6824               NewArgOperands);
6825         };
6826 
6827     // Collect the types that will replace the privatizable type in the function
6828     // signature.
6829     SmallVector<Type *, 16> ReplacementTypes;
6830     identifyReplacementTypes(*PrivatizableType, ReplacementTypes);
6831 
6832     // Register a rewrite of the argument.
6833     if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
6834                                            std::move(FnRepairCB),
6835                                            std::move(ACSRepairCB)))
6836       return ChangeStatus::CHANGED;
6837     return ChangeStatus::UNCHANGED;
6838   }
6839 
6840   /// See AbstractAttribute::trackStatistics()
6841   void trackStatistics() const override {
6842     STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
6843   }
6844 };
6845 
6846 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
6847   AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
6848       : AAPrivatizablePtrImpl(IRP, A) {}
6849 
6850   /// See AbstractAttribute::initialize(...).
6851   void initialize(Attributor &A) override {
6852     // TODO: We can privatize more than arguments.
6853     indicatePessimisticFixpoint();
6854   }
6855 
6856   ChangeStatus updateImpl(Attributor &A) override {
6857     llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
6858                      "updateImpl will not be called");
6859   }
6860 
6861   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6862   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6863     Value *Obj = getUnderlyingObject(&getAssociatedValue());
6864     if (!Obj) {
6865       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
6866       return nullptr;
6867     }
6868 
6869     if (auto *AI = dyn_cast<AllocaInst>(Obj))
6870       if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
6871         if (CI->isOne())
6872           return AI->getAllocatedType();
6873     if (auto *Arg = dyn_cast<Argument>(Obj)) {
6874       auto &PrivArgAA = A.getAAFor<AAPrivatizablePtr>(
6875           *this, IRPosition::argument(*Arg), DepClassTy::REQUIRED);
6876       if (PrivArgAA.isAssumedPrivatizablePtr())
6877         return PrivArgAA.getPrivatizableType();
6878     }
6879 
6880     LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
6881                          "alloca nor privatizable argument: "
6882                       << *Obj << "!\n");
6883     return nullptr;
6884   }
6885 
6886   /// See AbstractAttribute::trackStatistics()
6887   void trackStatistics() const override {
6888     STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
6889   }
6890 };
6891 
6892 struct AAPrivatizablePtrCallSiteArgument final
6893     : public AAPrivatizablePtrFloating {
6894   AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
6895       : AAPrivatizablePtrFloating(IRP, A) {}
6896 
6897   /// See AbstractAttribute::initialize(...).
6898   void initialize(Attributor &A) override {
6899     if (getIRPosition().hasAttr(Attribute::ByVal))
6900       indicateOptimisticFixpoint();
6901   }
6902 
6903   /// See AbstractAttribute::updateImpl(...).
6904   ChangeStatus updateImpl(Attributor &A) override {
6905     PrivatizableType = identifyPrivatizableType(A);
6906     if (!PrivatizableType)
6907       return ChangeStatus::UNCHANGED;
6908     if (!PrivatizableType.value())
6909       return indicatePessimisticFixpoint();
6910 
6911     const IRPosition &IRP = getIRPosition();
6912     auto &NoCaptureAA =
6913         A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::REQUIRED);
6914     if (!NoCaptureAA.isAssumedNoCapture()) {
6915       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
6916       return indicatePessimisticFixpoint();
6917     }
6918 
6919     auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP, DepClassTy::REQUIRED);
6920     if (!NoAliasAA.isAssumedNoAlias()) {
6921       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
6922       return indicatePessimisticFixpoint();
6923     }
6924 
6925     bool IsKnown;
6926     if (!AA::isAssumedReadOnly(A, IRP, *this, IsKnown)) {
6927       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
6928       return indicatePessimisticFixpoint();
6929     }
6930 
6931     return ChangeStatus::UNCHANGED;
6932   }
6933 
6934   /// See AbstractAttribute::trackStatistics()
6935   void trackStatistics() const override {
6936     STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
6937   }
6938 };
6939 
6940 struct AAPrivatizablePtrCallSiteReturned final
6941     : public AAPrivatizablePtrFloating {
6942   AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
6943       : AAPrivatizablePtrFloating(IRP, A) {}
6944 
6945   /// See AbstractAttribute::initialize(...).
6946   void initialize(Attributor &A) override {
6947     // TODO: We can privatize more than arguments.
6948     indicatePessimisticFixpoint();
6949   }
6950 
6951   /// See AbstractAttribute::trackStatistics()
6952   void trackStatistics() const override {
6953     STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
6954   }
6955 };
6956 
6957 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
6958   AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
6959       : AAPrivatizablePtrFloating(IRP, A) {}
6960 
6961   /// See AbstractAttribute::initialize(...).
6962   void initialize(Attributor &A) override {
6963     // TODO: We can privatize more than arguments.
6964     indicatePessimisticFixpoint();
6965   }
6966 
6967   /// See AbstractAttribute::trackStatistics()
6968   void trackStatistics() const override {
6969     STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
6970   }
6971 };
6972 } // namespace
6973 
6974 /// -------------------- Memory Behavior Attributes ----------------------------
6975 /// Includes read-none, read-only, and write-only.
6976 /// ----------------------------------------------------------------------------
6977 namespace {
6978 struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
6979   AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
6980       : AAMemoryBehavior(IRP, A) {}
6981 
6982   /// See AbstractAttribute::initialize(...).
6983   void initialize(Attributor &A) override {
6984     intersectAssumedBits(BEST_STATE);
6985     getKnownStateFromValue(getIRPosition(), getState());
6986     AAMemoryBehavior::initialize(A);
6987   }
6988 
6989   /// Return the memory behavior information encoded in the IR for \p IRP.
6990   static void getKnownStateFromValue(const IRPosition &IRP,
6991                                      BitIntegerState &State,
6992                                      bool IgnoreSubsumingPositions = false) {
6993     SmallVector<Attribute, 2> Attrs;
6994     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
6995     for (const Attribute &Attr : Attrs) {
6996       switch (Attr.getKindAsEnum()) {
6997       case Attribute::ReadNone:
6998         State.addKnownBits(NO_ACCESSES);
6999         break;
7000       case Attribute::ReadOnly:
7001         State.addKnownBits(NO_WRITES);
7002         break;
7003       case Attribute::WriteOnly:
7004         State.addKnownBits(NO_READS);
7005         break;
7006       default:
7007         llvm_unreachable("Unexpected attribute!");
7008       }
7009     }
7010 
7011     if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
7012       if (!I->mayReadFromMemory())
7013         State.addKnownBits(NO_READS);
7014       if (!I->mayWriteToMemory())
7015         State.addKnownBits(NO_WRITES);
7016     }
7017   }
7018 
7019   /// See AbstractAttribute::getDeducedAttributes(...).
7020   void getDeducedAttributes(LLVMContext &Ctx,
7021                             SmallVectorImpl<Attribute> &Attrs) const override {
7022     assert(Attrs.size() == 0);
7023     if (isAssumedReadNone())
7024       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7025     else if (isAssumedReadOnly())
7026       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
7027     else if (isAssumedWriteOnly())
7028       Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
7029     assert(Attrs.size() <= 1);
7030   }
7031 
7032   /// See AbstractAttribute::manifest(...).
7033   ChangeStatus manifest(Attributor &A) override {
7034     if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
7035       return ChangeStatus::UNCHANGED;
7036 
7037     const IRPosition &IRP = getIRPosition();
7038 
7039     // Check if we would improve the existing attributes first.
7040     SmallVector<Attribute, 4> DeducedAttrs;
7041     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7042     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7043           return IRP.hasAttr(Attr.getKindAsEnum(),
7044                              /* IgnoreSubsumingPositions */ true);
7045         }))
7046       return ChangeStatus::UNCHANGED;
7047 
7048     // Clear existing attributes.
7049     IRP.removeAttrs(AttrKinds);
7050 
7051     // Use the generic manifest method.
7052     return IRAttribute::manifest(A);
7053   }
7054 
7055   /// See AbstractState::getAsStr().
7056   const std::string getAsStr() const override {
7057     if (isAssumedReadNone())
7058       return "readnone";
7059     if (isAssumedReadOnly())
7060       return "readonly";
7061     if (isAssumedWriteOnly())
7062       return "writeonly";
7063     return "may-read/write";
7064   }
7065 
7066   /// The set of IR attributes AAMemoryBehavior deals with.
7067   static const Attribute::AttrKind AttrKinds[3];
7068 };
7069 
7070 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
7071     Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
7072 
7073 /// Memory behavior attribute for a floating value.
7074 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
7075   AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
7076       : AAMemoryBehaviorImpl(IRP, A) {}
7077 
7078   /// See AbstractAttribute::updateImpl(...).
7079   ChangeStatus updateImpl(Attributor &A) override;
7080 
7081   /// See AbstractAttribute::trackStatistics()
7082   void trackStatistics() const override {
7083     if (isAssumedReadNone())
7084       STATS_DECLTRACK_FLOATING_ATTR(readnone)
7085     else if (isAssumedReadOnly())
7086       STATS_DECLTRACK_FLOATING_ATTR(readonly)
7087     else if (isAssumedWriteOnly())
7088       STATS_DECLTRACK_FLOATING_ATTR(writeonly)
7089   }
7090 
7091 private:
7092   /// Return true if users of \p UserI might access the underlying
7093   /// variable/location described by \p U and should therefore be analyzed.
7094   bool followUsersOfUseIn(Attributor &A, const Use &U,
7095                           const Instruction *UserI);
7096 
7097   /// Update the state according to the effect of use \p U in \p UserI.
7098   void analyzeUseIn(Attributor &A, const Use &U, const Instruction *UserI);
7099 };
7100 
7101 /// Memory behavior attribute for function argument.
7102 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
7103   AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
7104       : AAMemoryBehaviorFloating(IRP, A) {}
7105 
7106   /// See AbstractAttribute::initialize(...).
7107   void initialize(Attributor &A) override {
7108     intersectAssumedBits(BEST_STATE);
7109     const IRPosition &IRP = getIRPosition();
7110     // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
7111     // can query it when we use has/getAttr. That would allow us to reuse the
7112     // initialize of the base class here.
7113     bool HasByVal =
7114         IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
7115     getKnownStateFromValue(IRP, getState(),
7116                            /* IgnoreSubsumingPositions */ HasByVal);
7117 
7118     // Initialize the use vector with all direct uses of the associated value.
7119     Argument *Arg = getAssociatedArgument();
7120     if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent())))
7121       indicatePessimisticFixpoint();
7122   }
7123 
7124   ChangeStatus manifest(Attributor &A) override {
7125     // TODO: Pointer arguments are not supported on vectors of pointers yet.
7126     if (!getAssociatedValue().getType()->isPointerTy())
7127       return ChangeStatus::UNCHANGED;
7128 
7129     // TODO: From readattrs.ll: "inalloca parameters are always
7130     //                           considered written"
7131     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) {
7132       removeKnownBits(NO_WRITES);
7133       removeAssumedBits(NO_WRITES);
7134     }
7135     return AAMemoryBehaviorFloating::manifest(A);
7136   }
7137 
7138   /// See AbstractAttribute::trackStatistics()
7139   void trackStatistics() const override {
7140     if (isAssumedReadNone())
7141       STATS_DECLTRACK_ARG_ATTR(readnone)
7142     else if (isAssumedReadOnly())
7143       STATS_DECLTRACK_ARG_ATTR(readonly)
7144     else if (isAssumedWriteOnly())
7145       STATS_DECLTRACK_ARG_ATTR(writeonly)
7146   }
7147 };
7148 
7149 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
7150   AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
7151       : AAMemoryBehaviorArgument(IRP, A) {}
7152 
7153   /// See AbstractAttribute::initialize(...).
7154   void initialize(Attributor &A) override {
7155     // If we don't have an associated attribute this is either a variadic call
7156     // or an indirect call, either way, nothing to do here.
7157     Argument *Arg = getAssociatedArgument();
7158     if (!Arg) {
7159       indicatePessimisticFixpoint();
7160       return;
7161     }
7162     if (Arg->hasByValAttr()) {
7163       addKnownBits(NO_WRITES);
7164       removeKnownBits(NO_READS);
7165       removeAssumedBits(NO_READS);
7166     }
7167     AAMemoryBehaviorArgument::initialize(A);
7168     if (getAssociatedFunction()->isDeclaration())
7169       indicatePessimisticFixpoint();
7170   }
7171 
7172   /// See AbstractAttribute::updateImpl(...).
7173   ChangeStatus updateImpl(Attributor &A) override {
7174     // TODO: Once we have call site specific value information we can provide
7175     //       call site specific liveness liveness information and then it makes
7176     //       sense to specialize attributes for call sites arguments instead of
7177     //       redirecting requests to the callee argument.
7178     Argument *Arg = getAssociatedArgument();
7179     const IRPosition &ArgPos = IRPosition::argument(*Arg);
7180     auto &ArgAA =
7181         A.getAAFor<AAMemoryBehavior>(*this, ArgPos, DepClassTy::REQUIRED);
7182     return clampStateAndIndicateChange(getState(), ArgAA.getState());
7183   }
7184 
7185   /// See AbstractAttribute::trackStatistics()
7186   void trackStatistics() const override {
7187     if (isAssumedReadNone())
7188       STATS_DECLTRACK_CSARG_ATTR(readnone)
7189     else if (isAssumedReadOnly())
7190       STATS_DECLTRACK_CSARG_ATTR(readonly)
7191     else if (isAssumedWriteOnly())
7192       STATS_DECLTRACK_CSARG_ATTR(writeonly)
7193   }
7194 };
7195 
7196 /// Memory behavior attribute for a call site return position.
7197 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
7198   AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
7199       : AAMemoryBehaviorFloating(IRP, A) {}
7200 
7201   /// See AbstractAttribute::initialize(...).
7202   void initialize(Attributor &A) override {
7203     AAMemoryBehaviorImpl::initialize(A);
7204     Function *F = getAssociatedFunction();
7205     if (!F || F->isDeclaration())
7206       indicatePessimisticFixpoint();
7207   }
7208 
7209   /// See AbstractAttribute::manifest(...).
7210   ChangeStatus manifest(Attributor &A) override {
7211     // We do not annotate returned values.
7212     return ChangeStatus::UNCHANGED;
7213   }
7214 
7215   /// See AbstractAttribute::trackStatistics()
7216   void trackStatistics() const override {}
7217 };
7218 
7219 /// An AA to represent the memory behavior function attributes.
7220 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
7221   AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
7222       : AAMemoryBehaviorImpl(IRP, A) {}
7223 
7224   /// See AbstractAttribute::updateImpl(Attributor &A).
7225   ChangeStatus updateImpl(Attributor &A) override;
7226 
7227   /// See AbstractAttribute::manifest(...).
7228   ChangeStatus manifest(Attributor &A) override {
7229     Function &F = cast<Function>(getAnchorValue());
7230     if (isAssumedReadNone()) {
7231       F.removeFnAttr(Attribute::ArgMemOnly);
7232       F.removeFnAttr(Attribute::InaccessibleMemOnly);
7233       F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
7234     }
7235     return AAMemoryBehaviorImpl::manifest(A);
7236   }
7237 
7238   /// See AbstractAttribute::trackStatistics()
7239   void trackStatistics() const override {
7240     if (isAssumedReadNone())
7241       STATS_DECLTRACK_FN_ATTR(readnone)
7242     else if (isAssumedReadOnly())
7243       STATS_DECLTRACK_FN_ATTR(readonly)
7244     else if (isAssumedWriteOnly())
7245       STATS_DECLTRACK_FN_ATTR(writeonly)
7246   }
7247 };
7248 
7249 /// AAMemoryBehavior attribute for call sites.
7250 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
7251   AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
7252       : AAMemoryBehaviorImpl(IRP, A) {}
7253 
7254   /// See AbstractAttribute::initialize(...).
7255   void initialize(Attributor &A) override {
7256     AAMemoryBehaviorImpl::initialize(A);
7257     Function *F = getAssociatedFunction();
7258     if (!F || F->isDeclaration())
7259       indicatePessimisticFixpoint();
7260   }
7261 
7262   /// See AbstractAttribute::updateImpl(...).
7263   ChangeStatus updateImpl(Attributor &A) override {
7264     // TODO: Once we have call site specific value information we can provide
7265     //       call site specific liveness liveness information and then it makes
7266     //       sense to specialize attributes for call sites arguments instead of
7267     //       redirecting requests to the callee argument.
7268     Function *F = getAssociatedFunction();
7269     const IRPosition &FnPos = IRPosition::function(*F);
7270     auto &FnAA =
7271         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::REQUIRED);
7272     return clampStateAndIndicateChange(getState(), FnAA.getState());
7273   }
7274 
7275   /// See AbstractAttribute::trackStatistics()
7276   void trackStatistics() const override {
7277     if (isAssumedReadNone())
7278       STATS_DECLTRACK_CS_ATTR(readnone)
7279     else if (isAssumedReadOnly())
7280       STATS_DECLTRACK_CS_ATTR(readonly)
7281     else if (isAssumedWriteOnly())
7282       STATS_DECLTRACK_CS_ATTR(writeonly)
7283   }
7284 };
7285 
7286 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
7287 
7288   // The current assumed state used to determine a change.
7289   auto AssumedState = getAssumed();
7290 
7291   auto CheckRWInst = [&](Instruction &I) {
7292     // If the instruction has an own memory behavior state, use it to restrict
7293     // the local state. No further analysis is required as the other memory
7294     // state is as optimistic as it gets.
7295     if (const auto *CB = dyn_cast<CallBase>(&I)) {
7296       const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
7297           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
7298       intersectAssumedBits(MemBehaviorAA.getAssumed());
7299       return !isAtFixpoint();
7300     }
7301 
7302     // Remove access kind modifiers if necessary.
7303     if (I.mayReadFromMemory())
7304       removeAssumedBits(NO_READS);
7305     if (I.mayWriteToMemory())
7306       removeAssumedBits(NO_WRITES);
7307     return !isAtFixpoint();
7308   };
7309 
7310   bool UsedAssumedInformation = false;
7311   if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7312                                           UsedAssumedInformation))
7313     return indicatePessimisticFixpoint();
7314 
7315   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7316                                         : ChangeStatus::UNCHANGED;
7317 }
7318 
7319 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
7320 
7321   const IRPosition &IRP = getIRPosition();
7322   const IRPosition &FnPos = IRPosition::function_scope(IRP);
7323   AAMemoryBehavior::StateType &S = getState();
7324 
7325   // First, check the function scope. We take the known information and we avoid
7326   // work if the assumed information implies the current assumed information for
7327   // this attribute. This is a valid for all but byval arguments.
7328   Argument *Arg = IRP.getAssociatedArgument();
7329   AAMemoryBehavior::base_t FnMemAssumedState =
7330       AAMemoryBehavior::StateType::getWorstState();
7331   if (!Arg || !Arg->hasByValAttr()) {
7332     const auto &FnMemAA =
7333         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::OPTIONAL);
7334     FnMemAssumedState = FnMemAA.getAssumed();
7335     S.addKnownBits(FnMemAA.getKnown());
7336     if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
7337       return ChangeStatus::UNCHANGED;
7338   }
7339 
7340   // The current assumed state used to determine a change.
7341   auto AssumedState = S.getAssumed();
7342 
7343   // Make sure the value is not captured (except through "return"), if
7344   // it is, any information derived would be irrelevant anyway as we cannot
7345   // check the potential aliases introduced by the capture. However, no need
7346   // to fall back to anythign less optimistic than the function state.
7347   const auto &ArgNoCaptureAA =
7348       A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::OPTIONAL);
7349   if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
7350     S.intersectAssumedBits(FnMemAssumedState);
7351     return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7352                                           : ChangeStatus::UNCHANGED;
7353   }
7354 
7355   // Visit and expand uses until all are analyzed or a fixpoint is reached.
7356   auto UsePred = [&](const Use &U, bool &Follow) -> bool {
7357     Instruction *UserI = cast<Instruction>(U.getUser());
7358     LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << *U << " in " << *UserI
7359                       << " \n");
7360 
7361     // Droppable users, e.g., llvm::assume does not actually perform any action.
7362     if (UserI->isDroppable())
7363       return true;
7364 
7365     // Check if the users of UserI should also be visited.
7366     Follow = followUsersOfUseIn(A, U, UserI);
7367 
7368     // If UserI might touch memory we analyze the use in detail.
7369     if (UserI->mayReadOrWriteMemory())
7370       analyzeUseIn(A, U, UserI);
7371 
7372     return !isAtFixpoint();
7373   };
7374 
7375   if (!A.checkForAllUses(UsePred, *this, getAssociatedValue()))
7376     return indicatePessimisticFixpoint();
7377 
7378   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7379                                         : ChangeStatus::UNCHANGED;
7380 }
7381 
7382 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use &U,
7383                                                   const Instruction *UserI) {
7384   // The loaded value is unrelated to the pointer argument, no need to
7385   // follow the users of the load.
7386   if (isa<LoadInst>(UserI) || isa<ReturnInst>(UserI))
7387     return false;
7388 
7389   // By default we follow all uses assuming UserI might leak information on U,
7390   // we have special handling for call sites operands though.
7391   const auto *CB = dyn_cast<CallBase>(UserI);
7392   if (!CB || !CB->isArgOperand(&U))
7393     return true;
7394 
7395   // If the use is a call argument known not to be captured, the users of
7396   // the call do not need to be visited because they have to be unrelated to
7397   // the input. Note that this check is not trivial even though we disallow
7398   // general capturing of the underlying argument. The reason is that the
7399   // call might the argument "through return", which we allow and for which we
7400   // need to check call users.
7401   if (U.get()->getType()->isPointerTy()) {
7402     unsigned ArgNo = CB->getArgOperandNo(&U);
7403     const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
7404         *this, IRPosition::callsite_argument(*CB, ArgNo), DepClassTy::OPTIONAL);
7405     return !ArgNoCaptureAA.isAssumedNoCapture();
7406   }
7407 
7408   return true;
7409 }
7410 
7411 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use &U,
7412                                             const Instruction *UserI) {
7413   assert(UserI->mayReadOrWriteMemory());
7414 
7415   switch (UserI->getOpcode()) {
7416   default:
7417     // TODO: Handle all atomics and other side-effect operations we know of.
7418     break;
7419   case Instruction::Load:
7420     // Loads cause the NO_READS property to disappear.
7421     removeAssumedBits(NO_READS);
7422     return;
7423 
7424   case Instruction::Store:
7425     // Stores cause the NO_WRITES property to disappear if the use is the
7426     // pointer operand. Note that while capturing was taken care of somewhere
7427     // else we need to deal with stores of the value that is not looked through.
7428     if (cast<StoreInst>(UserI)->getPointerOperand() == U.get())
7429       removeAssumedBits(NO_WRITES);
7430     else
7431       indicatePessimisticFixpoint();
7432     return;
7433 
7434   case Instruction::Call:
7435   case Instruction::CallBr:
7436   case Instruction::Invoke: {
7437     // For call sites we look at the argument memory behavior attribute (this
7438     // could be recursive!) in order to restrict our own state.
7439     const auto *CB = cast<CallBase>(UserI);
7440 
7441     // Give up on operand bundles.
7442     if (CB->isBundleOperand(&U)) {
7443       indicatePessimisticFixpoint();
7444       return;
7445     }
7446 
7447     // Calling a function does read the function pointer, maybe write it if the
7448     // function is self-modifying.
7449     if (CB->isCallee(&U)) {
7450       removeAssumedBits(NO_READS);
7451       break;
7452     }
7453 
7454     // Adjust the possible access behavior based on the information on the
7455     // argument.
7456     IRPosition Pos;
7457     if (U.get()->getType()->isPointerTy())
7458       Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
7459     else
7460       Pos = IRPosition::callsite_function(*CB);
7461     const auto &MemBehaviorAA =
7462         A.getAAFor<AAMemoryBehavior>(*this, Pos, DepClassTy::OPTIONAL);
7463     // "assumed" has at most the same bits as the MemBehaviorAA assumed
7464     // and at least "known".
7465     intersectAssumedBits(MemBehaviorAA.getAssumed());
7466     return;
7467   }
7468   };
7469 
7470   // Generally, look at the "may-properties" and adjust the assumed state if we
7471   // did not trigger special handling before.
7472   if (UserI->mayReadFromMemory())
7473     removeAssumedBits(NO_READS);
7474   if (UserI->mayWriteToMemory())
7475     removeAssumedBits(NO_WRITES);
7476 }
7477 } // namespace
7478 
7479 /// -------------------- Memory Locations Attributes ---------------------------
7480 /// Includes read-none, argmemonly, inaccessiblememonly,
7481 /// inaccessiblememorargmemonly
7482 /// ----------------------------------------------------------------------------
7483 
7484 std::string AAMemoryLocation::getMemoryLocationsAsStr(
7485     AAMemoryLocation::MemoryLocationsKind MLK) {
7486   if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
7487     return "all memory";
7488   if (MLK == AAMemoryLocation::NO_LOCATIONS)
7489     return "no memory";
7490   std::string S = "memory:";
7491   if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
7492     S += "stack,";
7493   if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
7494     S += "constant,";
7495   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
7496     S += "internal global,";
7497   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
7498     S += "external global,";
7499   if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
7500     S += "argument,";
7501   if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
7502     S += "inaccessible,";
7503   if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
7504     S += "malloced,";
7505   if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
7506     S += "unknown,";
7507   S.pop_back();
7508   return S;
7509 }
7510 
7511 namespace {
7512 struct AAMemoryLocationImpl : public AAMemoryLocation {
7513 
7514   AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
7515       : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
7516     AccessKind2Accesses.fill(nullptr);
7517   }
7518 
7519   ~AAMemoryLocationImpl() {
7520     // The AccessSets are allocated via a BumpPtrAllocator, we call
7521     // the destructor manually.
7522     for (AccessSet *AS : AccessKind2Accesses)
7523       if (AS)
7524         AS->~AccessSet();
7525   }
7526 
7527   /// See AbstractAttribute::initialize(...).
7528   void initialize(Attributor &A) override {
7529     intersectAssumedBits(BEST_STATE);
7530     getKnownStateFromValue(A, getIRPosition(), getState());
7531     AAMemoryLocation::initialize(A);
7532   }
7533 
7534   /// Return the memory behavior information encoded in the IR for \p IRP.
7535   static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
7536                                      BitIntegerState &State,
7537                                      bool IgnoreSubsumingPositions = false) {
7538     // For internal functions we ignore `argmemonly` and
7539     // `inaccessiblememorargmemonly` as we might break it via interprocedural
7540     // constant propagation. It is unclear if this is the best way but it is
7541     // unlikely this will cause real performance problems. If we are deriving
7542     // attributes for the anchor function we even remove the attribute in
7543     // addition to ignoring it.
7544     bool UseArgMemOnly = true;
7545     Function *AnchorFn = IRP.getAnchorScope();
7546     if (AnchorFn && A.isRunOn(*AnchorFn))
7547       UseArgMemOnly = !AnchorFn->hasLocalLinkage();
7548 
7549     SmallVector<Attribute, 2> Attrs;
7550     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
7551     for (const Attribute &Attr : Attrs) {
7552       switch (Attr.getKindAsEnum()) {
7553       case Attribute::ReadNone:
7554         State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
7555         break;
7556       case Attribute::InaccessibleMemOnly:
7557         State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
7558         break;
7559       case Attribute::ArgMemOnly:
7560         if (UseArgMemOnly)
7561           State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
7562         else
7563           IRP.removeAttrs({Attribute::ArgMemOnly});
7564         break;
7565       case Attribute::InaccessibleMemOrArgMemOnly:
7566         if (UseArgMemOnly)
7567           State.addKnownBits(inverseLocation(
7568               NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
7569         else
7570           IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly});
7571         break;
7572       default:
7573         llvm_unreachable("Unexpected attribute!");
7574       }
7575     }
7576   }
7577 
7578   /// See AbstractAttribute::getDeducedAttributes(...).
7579   void getDeducedAttributes(LLVMContext &Ctx,
7580                             SmallVectorImpl<Attribute> &Attrs) const override {
7581     assert(Attrs.size() == 0);
7582     if (isAssumedReadNone()) {
7583       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7584     } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
7585       if (isAssumedInaccessibleMemOnly())
7586         Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
7587       else if (isAssumedArgMemOnly())
7588         Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
7589       else if (isAssumedInaccessibleOrArgMemOnly())
7590         Attrs.push_back(
7591             Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
7592     }
7593     assert(Attrs.size() <= 1);
7594   }
7595 
7596   /// See AbstractAttribute::manifest(...).
7597   ChangeStatus manifest(Attributor &A) override {
7598     const IRPosition &IRP = getIRPosition();
7599 
7600     // Check if we would improve the existing attributes first.
7601     SmallVector<Attribute, 4> DeducedAttrs;
7602     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7603     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7604           return IRP.hasAttr(Attr.getKindAsEnum(),
7605                              /* IgnoreSubsumingPositions */ true);
7606         }))
7607       return ChangeStatus::UNCHANGED;
7608 
7609     // Clear existing attributes.
7610     IRP.removeAttrs(AttrKinds);
7611     if (isAssumedReadNone())
7612       IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
7613 
7614     // Use the generic manifest method.
7615     return IRAttribute::manifest(A);
7616   }
7617 
7618   /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
7619   bool checkForAllAccessesToMemoryKind(
7620       function_ref<bool(const Instruction *, const Value *, AccessKind,
7621                         MemoryLocationsKind)>
7622           Pred,
7623       MemoryLocationsKind RequestedMLK) const override {
7624     if (!isValidState())
7625       return false;
7626 
7627     MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
7628     if (AssumedMLK == NO_LOCATIONS)
7629       return true;
7630 
7631     unsigned Idx = 0;
7632     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
7633          CurMLK *= 2, ++Idx) {
7634       if (CurMLK & RequestedMLK)
7635         continue;
7636 
7637       if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
7638         for (const AccessInfo &AI : *Accesses)
7639           if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
7640             return false;
7641     }
7642 
7643     return true;
7644   }
7645 
7646   ChangeStatus indicatePessimisticFixpoint() override {
7647     // If we give up and indicate a pessimistic fixpoint this instruction will
7648     // become an access for all potential access kinds:
7649     // TODO: Add pointers for argmemonly and globals to improve the results of
7650     //       checkForAllAccessesToMemoryKind.
7651     bool Changed = false;
7652     MemoryLocationsKind KnownMLK = getKnown();
7653     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
7654     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
7655       if (!(CurMLK & KnownMLK))
7656         updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
7657                                   getAccessKindFromInst(I));
7658     return AAMemoryLocation::indicatePessimisticFixpoint();
7659   }
7660 
7661 protected:
7662   /// Helper struct to tie together an instruction that has a read or write
7663   /// effect with the pointer it accesses (if any).
7664   struct AccessInfo {
7665 
7666     /// The instruction that caused the access.
7667     const Instruction *I;
7668 
7669     /// The base pointer that is accessed, or null if unknown.
7670     const Value *Ptr;
7671 
7672     /// The kind of access (read/write/read+write).
7673     AccessKind Kind;
7674 
7675     bool operator==(const AccessInfo &RHS) const {
7676       return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
7677     }
7678     bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
7679       if (LHS.I != RHS.I)
7680         return LHS.I < RHS.I;
7681       if (LHS.Ptr != RHS.Ptr)
7682         return LHS.Ptr < RHS.Ptr;
7683       if (LHS.Kind != RHS.Kind)
7684         return LHS.Kind < RHS.Kind;
7685       return false;
7686     }
7687   };
7688 
7689   /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
7690   /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
7691   using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
7692   std::array<AccessSet *, llvm::CTLog2<VALID_STATE>()> AccessKind2Accesses;
7693 
7694   /// Categorize the pointer arguments of CB that might access memory in
7695   /// AccessedLoc and update the state and access map accordingly.
7696   void
7697   categorizeArgumentPointerLocations(Attributor &A, CallBase &CB,
7698                                      AAMemoryLocation::StateType &AccessedLocs,
7699                                      bool &Changed);
7700 
7701   /// Return the kind(s) of location that may be accessed by \p V.
7702   AAMemoryLocation::MemoryLocationsKind
7703   categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
7704 
7705   /// Return the access kind as determined by \p I.
7706   AccessKind getAccessKindFromInst(const Instruction *I) {
7707     AccessKind AK = READ_WRITE;
7708     if (I) {
7709       AK = I->mayReadFromMemory() ? READ : NONE;
7710       AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
7711     }
7712     return AK;
7713   }
7714 
7715   /// Update the state \p State and the AccessKind2Accesses given that \p I is
7716   /// an access of kind \p AK to a \p MLK memory location with the access
7717   /// pointer \p Ptr.
7718   void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
7719                                  MemoryLocationsKind MLK, const Instruction *I,
7720                                  const Value *Ptr, bool &Changed,
7721                                  AccessKind AK = READ_WRITE) {
7722 
7723     assert(isPowerOf2_32(MLK) && "Expected a single location set!");
7724     auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
7725     if (!Accesses)
7726       Accesses = new (Allocator) AccessSet();
7727     Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
7728     State.removeAssumedBits(MLK);
7729   }
7730 
7731   /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
7732   /// arguments, and update the state and access map accordingly.
7733   void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
7734                           AAMemoryLocation::StateType &State, bool &Changed);
7735 
7736   /// Used to allocate access sets.
7737   BumpPtrAllocator &Allocator;
7738 
7739   /// The set of IR attributes AAMemoryLocation deals with.
7740   static const Attribute::AttrKind AttrKinds[4];
7741 };
7742 
7743 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
7744     Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
7745     Attribute::InaccessibleMemOrArgMemOnly};
7746 
7747 void AAMemoryLocationImpl::categorizePtrValue(
7748     Attributor &A, const Instruction &I, const Value &Ptr,
7749     AAMemoryLocation::StateType &State, bool &Changed) {
7750   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
7751                     << Ptr << " ["
7752                     << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
7753 
7754   SmallSetVector<Value *, 8> Objects;
7755   bool UsedAssumedInformation = false;
7756   if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, *this, &I,
7757                                        UsedAssumedInformation,
7758                                        AA::Intraprocedural)) {
7759     LLVM_DEBUG(
7760         dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
7761     updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
7762                               getAccessKindFromInst(&I));
7763     return;
7764   }
7765 
7766   for (Value *Obj : Objects) {
7767     // TODO: recognize the TBAA used for constant accesses.
7768     MemoryLocationsKind MLK = NO_LOCATIONS;
7769     if (isa<UndefValue>(Obj))
7770       continue;
7771     if (isa<Argument>(Obj)) {
7772       // TODO: For now we do not treat byval arguments as local copies performed
7773       // on the call edge, though, we should. To make that happen we need to
7774       // teach various passes, e.g., DSE, about the copy effect of a byval. That
7775       // would also allow us to mark functions only accessing byval arguments as
7776       // readnone again, atguably their acceses have no effect outside of the
7777       // function, like accesses to allocas.
7778       MLK = NO_ARGUMENT_MEM;
7779     } else if (auto *GV = dyn_cast<GlobalValue>(Obj)) {
7780       // Reading constant memory is not treated as a read "effect" by the
7781       // function attr pass so we won't neither. Constants defined by TBAA are
7782       // similar. (We know we do not write it because it is constant.)
7783       if (auto *GVar = dyn_cast<GlobalVariable>(GV))
7784         if (GVar->isConstant())
7785           continue;
7786 
7787       if (GV->hasLocalLinkage())
7788         MLK = NO_GLOBAL_INTERNAL_MEM;
7789       else
7790         MLK = NO_GLOBAL_EXTERNAL_MEM;
7791     } else if (isa<ConstantPointerNull>(Obj) &&
7792                !NullPointerIsDefined(getAssociatedFunction(),
7793                                      Ptr.getType()->getPointerAddressSpace())) {
7794       continue;
7795     } else if (isa<AllocaInst>(Obj)) {
7796       MLK = NO_LOCAL_MEM;
7797     } else if (const auto *CB = dyn_cast<CallBase>(Obj)) {
7798       const auto &NoAliasAA = A.getAAFor<AANoAlias>(
7799           *this, IRPosition::callsite_returned(*CB), DepClassTy::OPTIONAL);
7800       if (NoAliasAA.isAssumedNoAlias())
7801         MLK = NO_MALLOCED_MEM;
7802       else
7803         MLK = NO_UNKOWN_MEM;
7804     } else {
7805       MLK = NO_UNKOWN_MEM;
7806     }
7807 
7808     assert(MLK != NO_LOCATIONS && "No location specified!");
7809     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value can be categorized: "
7810                       << *Obj << " -> " << getMemoryLocationsAsStr(MLK)
7811                       << "\n");
7812     updateStateAndAccessesMap(getState(), MLK, &I, Obj, Changed,
7813                               getAccessKindFromInst(&I));
7814   }
7815 
7816   LLVM_DEBUG(
7817       dbgs() << "[AAMemoryLocation] Accessed locations with pointer locations: "
7818              << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
7819 }
7820 
7821 void AAMemoryLocationImpl::categorizeArgumentPointerLocations(
7822     Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs,
7823     bool &Changed) {
7824   for (unsigned ArgNo = 0, E = CB.arg_size(); ArgNo < E; ++ArgNo) {
7825 
7826     // Skip non-pointer arguments.
7827     const Value *ArgOp = CB.getArgOperand(ArgNo);
7828     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
7829       continue;
7830 
7831     // Skip readnone arguments.
7832     const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo);
7833     const auto &ArgOpMemLocationAA =
7834         A.getAAFor<AAMemoryBehavior>(*this, ArgOpIRP, DepClassTy::OPTIONAL);
7835 
7836     if (ArgOpMemLocationAA.isAssumedReadNone())
7837       continue;
7838 
7839     // Categorize potentially accessed pointer arguments as if there was an
7840     // access instruction with them as pointer.
7841     categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed);
7842   }
7843 }
7844 
7845 AAMemoryLocation::MemoryLocationsKind
7846 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
7847                                                   bool &Changed) {
7848   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
7849                     << I << "\n");
7850 
7851   AAMemoryLocation::StateType AccessedLocs;
7852   AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
7853 
7854   if (auto *CB = dyn_cast<CallBase>(&I)) {
7855 
7856     // First check if we assume any memory is access is visible.
7857     const auto &CBMemLocationAA = A.getAAFor<AAMemoryLocation>(
7858         *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
7859     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
7860                       << " [" << CBMemLocationAA << "]\n");
7861 
7862     if (CBMemLocationAA.isAssumedReadNone())
7863       return NO_LOCATIONS;
7864 
7865     if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) {
7866       updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
7867                                 Changed, getAccessKindFromInst(&I));
7868       return AccessedLocs.getAssumed();
7869     }
7870 
7871     uint32_t CBAssumedNotAccessedLocs =
7872         CBMemLocationAA.getAssumedNotAccessedLocation();
7873 
7874     // Set the argmemonly and global bit as we handle them separately below.
7875     uint32_t CBAssumedNotAccessedLocsNoArgMem =
7876         CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
7877 
7878     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
7879       if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
7880         continue;
7881       updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
7882                                 getAccessKindFromInst(&I));
7883     }
7884 
7885     // Now handle global memory if it might be accessed. This is slightly tricky
7886     // as NO_GLOBAL_MEM has multiple bits set.
7887     bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
7888     if (HasGlobalAccesses) {
7889       auto AccessPred = [&](const Instruction *, const Value *Ptr,
7890                             AccessKind Kind, MemoryLocationsKind MLK) {
7891         updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
7892                                   getAccessKindFromInst(&I));
7893         return true;
7894       };
7895       if (!CBMemLocationAA.checkForAllAccessesToMemoryKind(
7896               AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
7897         return AccessedLocs.getWorstState();
7898     }
7899 
7900     LLVM_DEBUG(
7901         dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
7902                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7903 
7904     // Now handle argument memory if it might be accessed.
7905     bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
7906     if (HasArgAccesses)
7907       categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed);
7908 
7909     LLVM_DEBUG(
7910         dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
7911                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7912 
7913     return AccessedLocs.getAssumed();
7914   }
7915 
7916   if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
7917     LLVM_DEBUG(
7918         dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
7919                << I << " [" << *Ptr << "]\n");
7920     categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
7921     return AccessedLocs.getAssumed();
7922   }
7923 
7924   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
7925                     << I << "\n");
7926   updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
7927                             getAccessKindFromInst(&I));
7928   return AccessedLocs.getAssumed();
7929 }
7930 
7931 /// An AA to represent the memory behavior function attributes.
7932 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
7933   AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
7934       : AAMemoryLocationImpl(IRP, A) {}
7935 
7936   /// See AbstractAttribute::updateImpl(Attributor &A).
7937   ChangeStatus updateImpl(Attributor &A) override {
7938 
7939     const auto &MemBehaviorAA =
7940         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
7941     if (MemBehaviorAA.isAssumedReadNone()) {
7942       if (MemBehaviorAA.isKnownReadNone())
7943         return indicateOptimisticFixpoint();
7944       assert(isAssumedReadNone() &&
7945              "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
7946       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
7947       return ChangeStatus::UNCHANGED;
7948     }
7949 
7950     // The current assumed state used to determine a change.
7951     auto AssumedState = getAssumed();
7952     bool Changed = false;
7953 
7954     auto CheckRWInst = [&](Instruction &I) {
7955       MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
7956       LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
7957                         << ": " << getMemoryLocationsAsStr(MLK) << "\n");
7958       removeAssumedBits(inverseLocation(MLK, false, false));
7959       // Stop once only the valid bit set in the *not assumed location*, thus
7960       // once we don't actually exclude any memory locations in the state.
7961       return getAssumedNotAccessedLocation() != VALID_STATE;
7962     };
7963 
7964     bool UsedAssumedInformation = false;
7965     if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7966                                             UsedAssumedInformation))
7967       return indicatePessimisticFixpoint();
7968 
7969     Changed |= AssumedState != getAssumed();
7970     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
7971   }
7972 
7973   /// See AbstractAttribute::trackStatistics()
7974   void trackStatistics() const override {
7975     if (isAssumedReadNone())
7976       STATS_DECLTRACK_FN_ATTR(readnone)
7977     else if (isAssumedArgMemOnly())
7978       STATS_DECLTRACK_FN_ATTR(argmemonly)
7979     else if (isAssumedInaccessibleMemOnly())
7980       STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
7981     else if (isAssumedInaccessibleOrArgMemOnly())
7982       STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
7983   }
7984 };
7985 
7986 /// AAMemoryLocation attribute for call sites.
7987 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
7988   AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
7989       : AAMemoryLocationImpl(IRP, A) {}
7990 
7991   /// See AbstractAttribute::initialize(...).
7992   void initialize(Attributor &A) override {
7993     AAMemoryLocationImpl::initialize(A);
7994     Function *F = getAssociatedFunction();
7995     if (!F || F->isDeclaration())
7996       indicatePessimisticFixpoint();
7997   }
7998 
7999   /// See AbstractAttribute::updateImpl(...).
8000   ChangeStatus updateImpl(Attributor &A) override {
8001     // TODO: Once we have call site specific value information we can provide
8002     //       call site specific liveness liveness information and then it makes
8003     //       sense to specialize attributes for call sites arguments instead of
8004     //       redirecting requests to the callee argument.
8005     Function *F = getAssociatedFunction();
8006     const IRPosition &FnPos = IRPosition::function(*F);
8007     auto &FnAA =
8008         A.getAAFor<AAMemoryLocation>(*this, FnPos, DepClassTy::REQUIRED);
8009     bool Changed = false;
8010     auto AccessPred = [&](const Instruction *I, const Value *Ptr,
8011                           AccessKind Kind, MemoryLocationsKind MLK) {
8012       updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
8013                                 getAccessKindFromInst(I));
8014       return true;
8015     };
8016     if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
8017       return indicatePessimisticFixpoint();
8018     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
8019   }
8020 
8021   /// See AbstractAttribute::trackStatistics()
8022   void trackStatistics() const override {
8023     if (isAssumedReadNone())
8024       STATS_DECLTRACK_CS_ATTR(readnone)
8025   }
8026 };
8027 } // namespace
8028 
8029 /// ------------------ Value Constant Range Attribute -------------------------
8030 
8031 namespace {
8032 struct AAValueConstantRangeImpl : AAValueConstantRange {
8033   using StateType = IntegerRangeState;
8034   AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
8035       : AAValueConstantRange(IRP, A) {}
8036 
8037   /// See AbstractAttribute::initialize(..).
8038   void initialize(Attributor &A) override {
8039     if (A.hasSimplificationCallback(getIRPosition())) {
8040       indicatePessimisticFixpoint();
8041       return;
8042     }
8043 
8044     // Intersect a range given by SCEV.
8045     intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
8046 
8047     // Intersect a range given by LVI.
8048     intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
8049   }
8050 
8051   /// See AbstractAttribute::getAsStr().
8052   const std::string getAsStr() const override {
8053     std::string Str;
8054     llvm::raw_string_ostream OS(Str);
8055     OS << "range(" << getBitWidth() << ")<";
8056     getKnown().print(OS);
8057     OS << " / ";
8058     getAssumed().print(OS);
8059     OS << ">";
8060     return OS.str();
8061   }
8062 
8063   /// Helper function to get a SCEV expr for the associated value at program
8064   /// point \p I.
8065   const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
8066     if (!getAnchorScope())
8067       return nullptr;
8068 
8069     ScalarEvolution *SE =
8070         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
8071             *getAnchorScope());
8072 
8073     LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
8074         *getAnchorScope());
8075 
8076     if (!SE || !LI)
8077       return nullptr;
8078 
8079     const SCEV *S = SE->getSCEV(&getAssociatedValue());
8080     if (!I)
8081       return S;
8082 
8083     return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
8084   }
8085 
8086   /// Helper function to get a range from SCEV for the associated value at
8087   /// program point \p I.
8088   ConstantRange getConstantRangeFromSCEV(Attributor &A,
8089                                          const Instruction *I = nullptr) const {
8090     if (!getAnchorScope())
8091       return getWorstState(getBitWidth());
8092 
8093     ScalarEvolution *SE =
8094         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
8095             *getAnchorScope());
8096 
8097     const SCEV *S = getSCEV(A, I);
8098     if (!SE || !S)
8099       return getWorstState(getBitWidth());
8100 
8101     return SE->getUnsignedRange(S);
8102   }
8103 
8104   /// Helper function to get a range from LVI for the associated value at
8105   /// program point \p I.
8106   ConstantRange
8107   getConstantRangeFromLVI(Attributor &A,
8108                           const Instruction *CtxI = nullptr) const {
8109     if (!getAnchorScope())
8110       return getWorstState(getBitWidth());
8111 
8112     LazyValueInfo *LVI =
8113         A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
8114             *getAnchorScope());
8115 
8116     if (!LVI || !CtxI)
8117       return getWorstState(getBitWidth());
8118     return LVI->getConstantRange(&getAssociatedValue(),
8119                                  const_cast<Instruction *>(CtxI));
8120   }
8121 
8122   /// Return true if \p CtxI is valid for querying outside analyses.
8123   /// This basically makes sure we do not ask intra-procedural analysis
8124   /// about a context in the wrong function or a context that violates
8125   /// dominance assumptions they might have. The \p AllowAACtxI flag indicates
8126   /// if the original context of this AA is OK or should be considered invalid.
8127   bool isValidCtxInstructionForOutsideAnalysis(Attributor &A,
8128                                                const Instruction *CtxI,
8129                                                bool AllowAACtxI) const {
8130     if (!CtxI || (!AllowAACtxI && CtxI == getCtxI()))
8131       return false;
8132 
8133     // Our context might be in a different function, neither intra-procedural
8134     // analysis (ScalarEvolution nor LazyValueInfo) can handle that.
8135     if (!AA::isValidInScope(getAssociatedValue(), CtxI->getFunction()))
8136       return false;
8137 
8138     // If the context is not dominated by the value there are paths to the
8139     // context that do not define the value. This cannot be handled by
8140     // LazyValueInfo so we need to bail.
8141     if (auto *I = dyn_cast<Instruction>(&getAssociatedValue())) {
8142       InformationCache &InfoCache = A.getInfoCache();
8143       const DominatorTree *DT =
8144           InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
8145               *I->getFunction());
8146       return DT && DT->dominates(I, CtxI);
8147     }
8148 
8149     return true;
8150   }
8151 
8152   /// See AAValueConstantRange::getKnownConstantRange(..).
8153   ConstantRange
8154   getKnownConstantRange(Attributor &A,
8155                         const Instruction *CtxI = nullptr) const override {
8156     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8157                                                  /* AllowAACtxI */ false))
8158       return getKnown();
8159 
8160     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8161     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8162     return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
8163   }
8164 
8165   /// See AAValueConstantRange::getAssumedConstantRange(..).
8166   ConstantRange
8167   getAssumedConstantRange(Attributor &A,
8168                           const Instruction *CtxI = nullptr) const override {
8169     // TODO: Make SCEV use Attributor assumption.
8170     //       We may be able to bound a variable range via assumptions in
8171     //       Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
8172     //       evolve to x^2 + x, then we can say that y is in [2, 12].
8173     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
8174                                                  /* AllowAACtxI */ false))
8175       return getAssumed();
8176 
8177     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
8178     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
8179     return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
8180   }
8181 
8182   /// Helper function to create MDNode for range metadata.
8183   static MDNode *
8184   getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
8185                             const ConstantRange &AssumedConstantRange) {
8186     Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
8187                                   Ty, AssumedConstantRange.getLower())),
8188                               ConstantAsMetadata::get(ConstantInt::get(
8189                                   Ty, AssumedConstantRange.getUpper()))};
8190     return MDNode::get(Ctx, LowAndHigh);
8191   }
8192 
8193   /// Return true if \p Assumed is included in \p KnownRanges.
8194   static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
8195 
8196     if (Assumed.isFullSet())
8197       return false;
8198 
8199     if (!KnownRanges)
8200       return true;
8201 
8202     // If multiple ranges are annotated in IR, we give up to annotate assumed
8203     // range for now.
8204 
8205     // TODO:  If there exists a known range which containts assumed range, we
8206     // can say assumed range is better.
8207     if (KnownRanges->getNumOperands() > 2)
8208       return false;
8209 
8210     ConstantInt *Lower =
8211         mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
8212     ConstantInt *Upper =
8213         mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
8214 
8215     ConstantRange Known(Lower->getValue(), Upper->getValue());
8216     return Known.contains(Assumed) && Known != Assumed;
8217   }
8218 
8219   /// Helper function to set range metadata.
8220   static bool
8221   setRangeMetadataIfisBetterRange(Instruction *I,
8222                                   const ConstantRange &AssumedConstantRange) {
8223     auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
8224     if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
8225       if (!AssumedConstantRange.isEmptySet()) {
8226         I->setMetadata(LLVMContext::MD_range,
8227                        getMDNodeForConstantRange(I->getType(), I->getContext(),
8228                                                  AssumedConstantRange));
8229         return true;
8230       }
8231     }
8232     return false;
8233   }
8234 
8235   /// See AbstractAttribute::manifest()
8236   ChangeStatus manifest(Attributor &A) override {
8237     ChangeStatus Changed = ChangeStatus::UNCHANGED;
8238     ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
8239     assert(!AssumedConstantRange.isFullSet() && "Invalid state");
8240 
8241     auto &V = getAssociatedValue();
8242     if (!AssumedConstantRange.isEmptySet() &&
8243         !AssumedConstantRange.isSingleElement()) {
8244       if (Instruction *I = dyn_cast<Instruction>(&V)) {
8245         assert(I == getCtxI() && "Should not annotate an instruction which is "
8246                                  "not the context instruction");
8247         if (isa<CallInst>(I) || isa<LoadInst>(I))
8248           if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
8249             Changed = ChangeStatus::CHANGED;
8250       }
8251     }
8252 
8253     return Changed;
8254   }
8255 };
8256 
8257 struct AAValueConstantRangeArgument final
8258     : AAArgumentFromCallSiteArguments<
8259           AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8260           true /* BridgeCallBaseContext */> {
8261   using Base = AAArgumentFromCallSiteArguments<
8262       AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
8263       true /* BridgeCallBaseContext */>;
8264   AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
8265       : Base(IRP, A) {}
8266 
8267   /// See AbstractAttribute::initialize(..).
8268   void initialize(Attributor &A) override {
8269     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8270       indicatePessimisticFixpoint();
8271     } else {
8272       Base::initialize(A);
8273     }
8274   }
8275 
8276   /// See AbstractAttribute::trackStatistics()
8277   void trackStatistics() const override {
8278     STATS_DECLTRACK_ARG_ATTR(value_range)
8279   }
8280 };
8281 
8282 struct AAValueConstantRangeReturned
8283     : AAReturnedFromReturnedValues<AAValueConstantRange,
8284                                    AAValueConstantRangeImpl,
8285                                    AAValueConstantRangeImpl::StateType,
8286                                    /* PropogateCallBaseContext */ true> {
8287   using Base =
8288       AAReturnedFromReturnedValues<AAValueConstantRange,
8289                                    AAValueConstantRangeImpl,
8290                                    AAValueConstantRangeImpl::StateType,
8291                                    /* PropogateCallBaseContext */ true>;
8292   AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
8293       : Base(IRP, A) {}
8294 
8295   /// See AbstractAttribute::initialize(...).
8296   void initialize(Attributor &A) override {}
8297 
8298   /// See AbstractAttribute::trackStatistics()
8299   void trackStatistics() const override {
8300     STATS_DECLTRACK_FNRET_ATTR(value_range)
8301   }
8302 };
8303 
8304 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
8305   AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
8306       : AAValueConstantRangeImpl(IRP, A) {}
8307 
8308   /// See AbstractAttribute::initialize(...).
8309   void initialize(Attributor &A) override {
8310     AAValueConstantRangeImpl::initialize(A);
8311     if (isAtFixpoint())
8312       return;
8313 
8314     Value &V = getAssociatedValue();
8315 
8316     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8317       unionAssumed(ConstantRange(C->getValue()));
8318       indicateOptimisticFixpoint();
8319       return;
8320     }
8321 
8322     if (isa<UndefValue>(&V)) {
8323       // Collapse the undef state to 0.
8324       unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
8325       indicateOptimisticFixpoint();
8326       return;
8327     }
8328 
8329     if (isa<CallBase>(&V))
8330       return;
8331 
8332     if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
8333       return;
8334 
8335     // If it is a load instruction with range metadata, use it.
8336     if (LoadInst *LI = dyn_cast<LoadInst>(&V))
8337       if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
8338         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8339         return;
8340       }
8341 
8342     // We can work with PHI and select instruction as we traverse their operands
8343     // during update.
8344     if (isa<SelectInst>(V) || isa<PHINode>(V))
8345       return;
8346 
8347     // Otherwise we give up.
8348     indicatePessimisticFixpoint();
8349 
8350     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
8351                       << getAssociatedValue() << "\n");
8352   }
8353 
8354   bool calculateBinaryOperator(
8355       Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
8356       const Instruction *CtxI,
8357       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8358     Value *LHS = BinOp->getOperand(0);
8359     Value *RHS = BinOp->getOperand(1);
8360 
8361     // Simplify the operands first.
8362     bool UsedAssumedInformation = false;
8363     const auto &SimplifiedLHS = A.getAssumedSimplified(
8364         IRPosition::value(*LHS, getCallBaseContext()), *this,
8365         UsedAssumedInformation, AA::Interprocedural);
8366     if (!SimplifiedLHS.has_value())
8367       return true;
8368     if (!SimplifiedLHS.value())
8369       return false;
8370     LHS = *SimplifiedLHS;
8371 
8372     const auto &SimplifiedRHS = A.getAssumedSimplified(
8373         IRPosition::value(*RHS, getCallBaseContext()), *this,
8374         UsedAssumedInformation, AA::Interprocedural);
8375     if (!SimplifiedRHS.has_value())
8376       return true;
8377     if (!SimplifiedRHS.value())
8378       return false;
8379     RHS = *SimplifiedRHS;
8380 
8381     // TODO: Allow non integers as well.
8382     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8383       return false;
8384 
8385     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8386         *this, IRPosition::value(*LHS, getCallBaseContext()),
8387         DepClassTy::REQUIRED);
8388     QuerriedAAs.push_back(&LHSAA);
8389     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8390 
8391     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8392         *this, IRPosition::value(*RHS, getCallBaseContext()),
8393         DepClassTy::REQUIRED);
8394     QuerriedAAs.push_back(&RHSAA);
8395     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8396 
8397     auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
8398 
8399     T.unionAssumed(AssumedRange);
8400 
8401     // TODO: Track a known state too.
8402 
8403     return T.isValidState();
8404   }
8405 
8406   bool calculateCastInst(
8407       Attributor &A, CastInst *CastI, IntegerRangeState &T,
8408       const Instruction *CtxI,
8409       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8410     assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
8411     // TODO: Allow non integers as well.
8412     Value *OpV = CastI->getOperand(0);
8413 
8414     // Simplify the operand first.
8415     bool UsedAssumedInformation = false;
8416     const auto &SimplifiedOpV = A.getAssumedSimplified(
8417         IRPosition::value(*OpV, getCallBaseContext()), *this,
8418         UsedAssumedInformation, AA::Interprocedural);
8419     if (!SimplifiedOpV.has_value())
8420       return true;
8421     if (!SimplifiedOpV.value())
8422       return false;
8423     OpV = *SimplifiedOpV;
8424 
8425     if (!OpV->getType()->isIntegerTy())
8426       return false;
8427 
8428     auto &OpAA = A.getAAFor<AAValueConstantRange>(
8429         *this, IRPosition::value(*OpV, getCallBaseContext()),
8430         DepClassTy::REQUIRED);
8431     QuerriedAAs.push_back(&OpAA);
8432     T.unionAssumed(
8433         OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
8434     return T.isValidState();
8435   }
8436 
8437   bool
8438   calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
8439                    const Instruction *CtxI,
8440                    SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8441     Value *LHS = CmpI->getOperand(0);
8442     Value *RHS = CmpI->getOperand(1);
8443 
8444     // Simplify the operands first.
8445     bool UsedAssumedInformation = false;
8446     const auto &SimplifiedLHS = A.getAssumedSimplified(
8447         IRPosition::value(*LHS, getCallBaseContext()), *this,
8448         UsedAssumedInformation, AA::Interprocedural);
8449     if (!SimplifiedLHS.has_value())
8450       return true;
8451     if (!SimplifiedLHS.value())
8452       return false;
8453     LHS = *SimplifiedLHS;
8454 
8455     const auto &SimplifiedRHS = A.getAssumedSimplified(
8456         IRPosition::value(*RHS, getCallBaseContext()), *this,
8457         UsedAssumedInformation, AA::Interprocedural);
8458     if (!SimplifiedRHS.has_value())
8459       return true;
8460     if (!SimplifiedRHS.value())
8461       return false;
8462     RHS = *SimplifiedRHS;
8463 
8464     // TODO: Allow non integers as well.
8465     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8466       return false;
8467 
8468     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8469         *this, IRPosition::value(*LHS, getCallBaseContext()),
8470         DepClassTy::REQUIRED);
8471     QuerriedAAs.push_back(&LHSAA);
8472     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8473         *this, IRPosition::value(*RHS, getCallBaseContext()),
8474         DepClassTy::REQUIRED);
8475     QuerriedAAs.push_back(&RHSAA);
8476     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8477     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8478 
8479     // If one of them is empty set, we can't decide.
8480     if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
8481       return true;
8482 
8483     bool MustTrue = false, MustFalse = false;
8484 
8485     auto AllowedRegion =
8486         ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
8487 
8488     if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
8489       MustFalse = true;
8490 
8491     if (LHSAARange.icmp(CmpI->getPredicate(), RHSAARange))
8492       MustTrue = true;
8493 
8494     assert((!MustTrue || !MustFalse) &&
8495            "Either MustTrue or MustFalse should be false!");
8496 
8497     if (MustTrue)
8498       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
8499     else if (MustFalse)
8500       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
8501     else
8502       T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
8503 
8504     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
8505                       << " " << RHSAA << "\n");
8506 
8507     // TODO: Track a known state too.
8508     return T.isValidState();
8509   }
8510 
8511   /// See AbstractAttribute::updateImpl(...).
8512   ChangeStatus updateImpl(Attributor &A) override {
8513 
8514     IntegerRangeState T(getBitWidth());
8515     auto VisitValueCB = [&](Value &V, const Instruction *CtxI) -> bool {
8516       Instruction *I = dyn_cast<Instruction>(&V);
8517       if (!I || isa<CallBase>(I)) {
8518 
8519         // Simplify the operand first.
8520         bool UsedAssumedInformation = false;
8521         const auto &SimplifiedOpV = A.getAssumedSimplified(
8522             IRPosition::value(V, getCallBaseContext()), *this,
8523             UsedAssumedInformation, AA::Interprocedural);
8524         if (!SimplifiedOpV.has_value())
8525           return true;
8526         if (!SimplifiedOpV.value())
8527           return false;
8528         Value *VPtr = *SimplifiedOpV;
8529 
8530         // If the value is not instruction, we query AA to Attributor.
8531         const auto &AA = A.getAAFor<AAValueConstantRange>(
8532             *this, IRPosition::value(*VPtr, getCallBaseContext()),
8533             DepClassTy::REQUIRED);
8534 
8535         // Clamp operator is not used to utilize a program point CtxI.
8536         T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
8537 
8538         return T.isValidState();
8539       }
8540 
8541       SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
8542       if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
8543         if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
8544           return false;
8545       } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
8546         if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
8547           return false;
8548       } else if (auto *CastI = dyn_cast<CastInst>(I)) {
8549         if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
8550           return false;
8551       } else {
8552         // Give up with other instructions.
8553         // TODO: Add other instructions
8554 
8555         T.indicatePessimisticFixpoint();
8556         return false;
8557       }
8558 
8559       // Catch circular reasoning in a pessimistic way for now.
8560       // TODO: Check how the range evolves and if we stripped anything, see also
8561       //       AADereferenceable or AAAlign for similar situations.
8562       for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
8563         if (QueriedAA != this)
8564           continue;
8565         // If we are in a stady state we do not need to worry.
8566         if (T.getAssumed() == getState().getAssumed())
8567           continue;
8568         T.indicatePessimisticFixpoint();
8569       }
8570 
8571       return T.isValidState();
8572     };
8573 
8574     if (!VisitValueCB(getAssociatedValue(), getCtxI()))
8575       return indicatePessimisticFixpoint();
8576 
8577     // Ensure that long def-use chains can't cause circular reasoning either by
8578     // introducing a cutoff below.
8579     if (clampStateAndIndicateChange(getState(), T) == ChangeStatus::UNCHANGED)
8580       return ChangeStatus::UNCHANGED;
8581     if (++NumChanges > MaxNumChanges) {
8582       LLVM_DEBUG(dbgs() << "[AAValueConstantRange] performed " << NumChanges
8583                         << " but only " << MaxNumChanges
8584                         << " are allowed to avoid cyclic reasoning.");
8585       return indicatePessimisticFixpoint();
8586     }
8587     return ChangeStatus::CHANGED;
8588   }
8589 
8590   /// See AbstractAttribute::trackStatistics()
8591   void trackStatistics() const override {
8592     STATS_DECLTRACK_FLOATING_ATTR(value_range)
8593   }
8594 
8595   /// Tracker to bail after too many widening steps of the constant range.
8596   int NumChanges = 0;
8597 
8598   /// Upper bound for the number of allowed changes (=widening steps) for the
8599   /// constant range before we give up.
8600   static constexpr int MaxNumChanges = 5;
8601 };
8602 
8603 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
8604   AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
8605       : AAValueConstantRangeImpl(IRP, A) {}
8606 
8607   /// See AbstractAttribute::initialize(...).
8608   ChangeStatus updateImpl(Attributor &A) override {
8609     llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
8610                      "not be called");
8611   }
8612 
8613   /// See AbstractAttribute::trackStatistics()
8614   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
8615 };
8616 
8617 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
8618   AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
8619       : AAValueConstantRangeFunction(IRP, A) {}
8620 
8621   /// See AbstractAttribute::trackStatistics()
8622   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
8623 };
8624 
8625 struct AAValueConstantRangeCallSiteReturned
8626     : AACallSiteReturnedFromReturned<AAValueConstantRange,
8627                                      AAValueConstantRangeImpl,
8628                                      AAValueConstantRangeImpl::StateType,
8629                                      /* IntroduceCallBaseContext */ true> {
8630   AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
8631       : AACallSiteReturnedFromReturned<AAValueConstantRange,
8632                                        AAValueConstantRangeImpl,
8633                                        AAValueConstantRangeImpl::StateType,
8634                                        /* IntroduceCallBaseContext */ true>(IRP,
8635                                                                             A) {
8636   }
8637 
8638   /// See AbstractAttribute::initialize(...).
8639   void initialize(Attributor &A) override {
8640     // If it is a load instruction with range metadata, use the metadata.
8641     if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
8642       if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
8643         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8644 
8645     AAValueConstantRangeImpl::initialize(A);
8646   }
8647 
8648   /// See AbstractAttribute::trackStatistics()
8649   void trackStatistics() const override {
8650     STATS_DECLTRACK_CSRET_ATTR(value_range)
8651   }
8652 };
8653 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
8654   AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
8655       : AAValueConstantRangeFloating(IRP, A) {}
8656 
8657   /// See AbstractAttribute::manifest()
8658   ChangeStatus manifest(Attributor &A) override {
8659     return ChangeStatus::UNCHANGED;
8660   }
8661 
8662   /// See AbstractAttribute::trackStatistics()
8663   void trackStatistics() const override {
8664     STATS_DECLTRACK_CSARG_ATTR(value_range)
8665   }
8666 };
8667 } // namespace
8668 
8669 /// ------------------ Potential Values Attribute -------------------------
8670 
8671 namespace {
8672 struct AAPotentialConstantValuesImpl : AAPotentialConstantValues {
8673   using StateType = PotentialConstantIntValuesState;
8674 
8675   AAPotentialConstantValuesImpl(const IRPosition &IRP, Attributor &A)
8676       : AAPotentialConstantValues(IRP, A) {}
8677 
8678   /// See AbstractAttribute::initialize(..).
8679   void initialize(Attributor &A) override {
8680     if (A.hasSimplificationCallback(getIRPosition()))
8681       indicatePessimisticFixpoint();
8682     else
8683       AAPotentialConstantValues::initialize(A);
8684   }
8685 
8686   bool fillSetWithConstantValues(Attributor &A, const IRPosition &IRP, SetTy &S,
8687                                  bool &ContainsUndef) {
8688     SmallVector<AA::ValueAndContext> Values;
8689     bool UsedAssumedInformation = false;
8690     if (!A.getAssumedSimplifiedValues(IRP, *this, Values, AA::Interprocedural,
8691                                       UsedAssumedInformation)) {
8692       if (!IRP.getAssociatedType()->isIntegerTy())
8693         return false;
8694       auto &PotentialValuesAA = A.getAAFor<AAPotentialConstantValues>(
8695           *this, IRP, DepClassTy::REQUIRED);
8696       if (!PotentialValuesAA.getState().isValidState())
8697         return false;
8698       ContainsUndef = PotentialValuesAA.getState().undefIsContained();
8699       S = PotentialValuesAA.getState().getAssumedSet();
8700       return true;
8701     }
8702 
8703     for (auto &It : Values) {
8704       if (isa<UndefValue>(It.getValue()))
8705         continue;
8706       auto *CI = dyn_cast<ConstantInt>(It.getValue());
8707       if (!CI)
8708         return false;
8709       S.insert(CI->getValue());
8710     }
8711     ContainsUndef = S.empty();
8712 
8713     return true;
8714   }
8715 
8716   /// See AbstractAttribute::getAsStr().
8717   const std::string getAsStr() const override {
8718     std::string Str;
8719     llvm::raw_string_ostream OS(Str);
8720     OS << getState();
8721     return OS.str();
8722   }
8723 
8724   /// See AbstractAttribute::updateImpl(...).
8725   ChangeStatus updateImpl(Attributor &A) override {
8726     return indicatePessimisticFixpoint();
8727   }
8728 };
8729 
8730 struct AAPotentialConstantValuesArgument final
8731     : AAArgumentFromCallSiteArguments<AAPotentialConstantValues,
8732                                       AAPotentialConstantValuesImpl,
8733                                       PotentialConstantIntValuesState> {
8734   using Base = AAArgumentFromCallSiteArguments<AAPotentialConstantValues,
8735                                                AAPotentialConstantValuesImpl,
8736                                                PotentialConstantIntValuesState>;
8737   AAPotentialConstantValuesArgument(const IRPosition &IRP, Attributor &A)
8738       : Base(IRP, A) {}
8739 
8740   /// See AbstractAttribute::initialize(..).
8741   void initialize(Attributor &A) override {
8742     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8743       indicatePessimisticFixpoint();
8744     } else {
8745       Base::initialize(A);
8746     }
8747   }
8748 
8749   /// See AbstractAttribute::trackStatistics()
8750   void trackStatistics() const override {
8751     STATS_DECLTRACK_ARG_ATTR(potential_values)
8752   }
8753 };
8754 
8755 struct AAPotentialConstantValuesReturned
8756     : AAReturnedFromReturnedValues<AAPotentialConstantValues,
8757                                    AAPotentialConstantValuesImpl> {
8758   using Base = AAReturnedFromReturnedValues<AAPotentialConstantValues,
8759                                             AAPotentialConstantValuesImpl>;
8760   AAPotentialConstantValuesReturned(const IRPosition &IRP, Attributor &A)
8761       : Base(IRP, A) {}
8762 
8763   /// See AbstractAttribute::trackStatistics()
8764   void trackStatistics() const override {
8765     STATS_DECLTRACK_FNRET_ATTR(potential_values)
8766   }
8767 };
8768 
8769 struct AAPotentialConstantValuesFloating : AAPotentialConstantValuesImpl {
8770   AAPotentialConstantValuesFloating(const IRPosition &IRP, Attributor &A)
8771       : AAPotentialConstantValuesImpl(IRP, A) {}
8772 
8773   /// See AbstractAttribute::initialize(..).
8774   void initialize(Attributor &A) override {
8775     AAPotentialConstantValuesImpl::initialize(A);
8776     if (isAtFixpoint())
8777       return;
8778 
8779     Value &V = getAssociatedValue();
8780 
8781     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8782       unionAssumed(C->getValue());
8783       indicateOptimisticFixpoint();
8784       return;
8785     }
8786 
8787     if (isa<UndefValue>(&V)) {
8788       unionAssumedWithUndef();
8789       indicateOptimisticFixpoint();
8790       return;
8791     }
8792 
8793     if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
8794       return;
8795 
8796     if (isa<SelectInst>(V) || isa<PHINode>(V) || isa<LoadInst>(V))
8797       return;
8798 
8799     indicatePessimisticFixpoint();
8800 
8801     LLVM_DEBUG(dbgs() << "[AAPotentialConstantValues] We give up: "
8802                       << getAssociatedValue() << "\n");
8803   }
8804 
8805   static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
8806                                 const APInt &RHS) {
8807     return ICmpInst::compare(LHS, RHS, ICI->getPredicate());
8808   }
8809 
8810   static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
8811                                  uint32_t ResultBitWidth) {
8812     Instruction::CastOps CastOp = CI->getOpcode();
8813     switch (CastOp) {
8814     default:
8815       llvm_unreachable("unsupported or not integer cast");
8816     case Instruction::Trunc:
8817       return Src.trunc(ResultBitWidth);
8818     case Instruction::SExt:
8819       return Src.sext(ResultBitWidth);
8820     case Instruction::ZExt:
8821       return Src.zext(ResultBitWidth);
8822     case Instruction::BitCast:
8823       return Src;
8824     }
8825   }
8826 
8827   static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
8828                                        const APInt &LHS, const APInt &RHS,
8829                                        bool &SkipOperation, bool &Unsupported) {
8830     Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
8831     // Unsupported is set to true when the binary operator is not supported.
8832     // SkipOperation is set to true when UB occur with the given operand pair
8833     // (LHS, RHS).
8834     // TODO: we should look at nsw and nuw keywords to handle operations
8835     //       that create poison or undef value.
8836     switch (BinOpcode) {
8837     default:
8838       Unsupported = true;
8839       return LHS;
8840     case Instruction::Add:
8841       return LHS + RHS;
8842     case Instruction::Sub:
8843       return LHS - RHS;
8844     case Instruction::Mul:
8845       return LHS * RHS;
8846     case Instruction::UDiv:
8847       if (RHS.isZero()) {
8848         SkipOperation = true;
8849         return LHS;
8850       }
8851       return LHS.udiv(RHS);
8852     case Instruction::SDiv:
8853       if (RHS.isZero()) {
8854         SkipOperation = true;
8855         return LHS;
8856       }
8857       return LHS.sdiv(RHS);
8858     case Instruction::URem:
8859       if (RHS.isZero()) {
8860         SkipOperation = true;
8861         return LHS;
8862       }
8863       return LHS.urem(RHS);
8864     case Instruction::SRem:
8865       if (RHS.isZero()) {
8866         SkipOperation = true;
8867         return LHS;
8868       }
8869       return LHS.srem(RHS);
8870     case Instruction::Shl:
8871       return LHS.shl(RHS);
8872     case Instruction::LShr:
8873       return LHS.lshr(RHS);
8874     case Instruction::AShr:
8875       return LHS.ashr(RHS);
8876     case Instruction::And:
8877       return LHS & RHS;
8878     case Instruction::Or:
8879       return LHS | RHS;
8880     case Instruction::Xor:
8881       return LHS ^ RHS;
8882     }
8883   }
8884 
8885   bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp,
8886                                            const APInt &LHS, const APInt &RHS) {
8887     bool SkipOperation = false;
8888     bool Unsupported = false;
8889     APInt Result =
8890         calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported);
8891     if (Unsupported)
8892       return false;
8893     // If SkipOperation is true, we can ignore this operand pair (L, R).
8894     if (!SkipOperation)
8895       unionAssumed(Result);
8896     return isValidState();
8897   }
8898 
8899   ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
8900     auto AssumedBefore = getAssumed();
8901     Value *LHS = ICI->getOperand(0);
8902     Value *RHS = ICI->getOperand(1);
8903 
8904     bool LHSContainsUndef = false, RHSContainsUndef = false;
8905     SetTy LHSAAPVS, RHSAAPVS;
8906     if (!fillSetWithConstantValues(A, IRPosition::value(*LHS), LHSAAPVS,
8907                                    LHSContainsUndef) ||
8908         !fillSetWithConstantValues(A, IRPosition::value(*RHS), RHSAAPVS,
8909                                    RHSContainsUndef))
8910       return indicatePessimisticFixpoint();
8911 
8912     // TODO: make use of undef flag to limit potential values aggressively.
8913     bool MaybeTrue = false, MaybeFalse = false;
8914     const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0);
8915     if (LHSContainsUndef && RHSContainsUndef) {
8916       // The result of any comparison between undefs can be soundly replaced
8917       // with undef.
8918       unionAssumedWithUndef();
8919     } else if (LHSContainsUndef) {
8920       for (const APInt &R : RHSAAPVS) {
8921         bool CmpResult = calculateICmpInst(ICI, Zero, R);
8922         MaybeTrue |= CmpResult;
8923         MaybeFalse |= !CmpResult;
8924         if (MaybeTrue & MaybeFalse)
8925           return indicatePessimisticFixpoint();
8926       }
8927     } else if (RHSContainsUndef) {
8928       for (const APInt &L : LHSAAPVS) {
8929         bool CmpResult = calculateICmpInst(ICI, L, Zero);
8930         MaybeTrue |= CmpResult;
8931         MaybeFalse |= !CmpResult;
8932         if (MaybeTrue & MaybeFalse)
8933           return indicatePessimisticFixpoint();
8934       }
8935     } else {
8936       for (const APInt &L : LHSAAPVS) {
8937         for (const APInt &R : RHSAAPVS) {
8938           bool CmpResult = calculateICmpInst(ICI, L, R);
8939           MaybeTrue |= CmpResult;
8940           MaybeFalse |= !CmpResult;
8941           if (MaybeTrue & MaybeFalse)
8942             return indicatePessimisticFixpoint();
8943         }
8944       }
8945     }
8946     if (MaybeTrue)
8947       unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
8948     if (MaybeFalse)
8949       unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
8950     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8951                                          : ChangeStatus::CHANGED;
8952   }
8953 
8954   ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
8955     auto AssumedBefore = getAssumed();
8956     Value *LHS = SI->getTrueValue();
8957     Value *RHS = SI->getFalseValue();
8958 
8959     bool UsedAssumedInformation = false;
8960     Optional<Constant *> C = A.getAssumedConstant(*SI->getCondition(), *this,
8961                                                   UsedAssumedInformation);
8962 
8963     // Check if we only need one operand.
8964     bool OnlyLeft = false, OnlyRight = false;
8965     if (C && *C && (*C)->isOneValue())
8966       OnlyLeft = true;
8967     else if (C && *C && (*C)->isZeroValue())
8968       OnlyRight = true;
8969 
8970     bool LHSContainsUndef = false, RHSContainsUndef = false;
8971     SetTy LHSAAPVS, RHSAAPVS;
8972     if (!OnlyRight && !fillSetWithConstantValues(A, IRPosition::value(*LHS),
8973                                                  LHSAAPVS, LHSContainsUndef))
8974       return indicatePessimisticFixpoint();
8975 
8976     if (!OnlyLeft && !fillSetWithConstantValues(A, IRPosition::value(*RHS),
8977                                                 RHSAAPVS, RHSContainsUndef))
8978       return indicatePessimisticFixpoint();
8979 
8980     if (OnlyLeft || OnlyRight) {
8981       // select (true/false), lhs, rhs
8982       auto *OpAA = OnlyLeft ? &LHSAAPVS : &RHSAAPVS;
8983       auto Undef = OnlyLeft ? LHSContainsUndef : RHSContainsUndef;
8984 
8985       if (Undef)
8986         unionAssumedWithUndef();
8987       else {
8988         for (auto &It : *OpAA)
8989           unionAssumed(It);
8990       }
8991 
8992     } else if (LHSContainsUndef && RHSContainsUndef) {
8993       // select i1 *, undef , undef => undef
8994       unionAssumedWithUndef();
8995     } else {
8996       for (auto &It : LHSAAPVS)
8997         unionAssumed(It);
8998       for (auto &It : RHSAAPVS)
8999         unionAssumed(It);
9000     }
9001     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9002                                          : ChangeStatus::CHANGED;
9003   }
9004 
9005   ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
9006     auto AssumedBefore = getAssumed();
9007     if (!CI->isIntegerCast())
9008       return indicatePessimisticFixpoint();
9009     assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
9010     uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
9011     Value *Src = CI->getOperand(0);
9012 
9013     bool SrcContainsUndef = false;
9014     SetTy SrcPVS;
9015     if (!fillSetWithConstantValues(A, IRPosition::value(*Src), SrcPVS,
9016                                    SrcContainsUndef))
9017       return indicatePessimisticFixpoint();
9018 
9019     if (SrcContainsUndef)
9020       unionAssumedWithUndef();
9021     else {
9022       for (const APInt &S : SrcPVS) {
9023         APInt T = calculateCastInst(CI, S, ResultBitWidth);
9024         unionAssumed(T);
9025       }
9026     }
9027     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9028                                          : ChangeStatus::CHANGED;
9029   }
9030 
9031   ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
9032     auto AssumedBefore = getAssumed();
9033     Value *LHS = BinOp->getOperand(0);
9034     Value *RHS = BinOp->getOperand(1);
9035 
9036     bool LHSContainsUndef = false, RHSContainsUndef = false;
9037     SetTy LHSAAPVS, RHSAAPVS;
9038     if (!fillSetWithConstantValues(A, IRPosition::value(*LHS), LHSAAPVS,
9039                                    LHSContainsUndef) ||
9040         !fillSetWithConstantValues(A, IRPosition::value(*RHS), RHSAAPVS,
9041                                    RHSContainsUndef))
9042       return indicatePessimisticFixpoint();
9043 
9044     const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0);
9045 
9046     // TODO: make use of undef flag to limit potential values aggressively.
9047     if (LHSContainsUndef && RHSContainsUndef) {
9048       if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero))
9049         return indicatePessimisticFixpoint();
9050     } else if (LHSContainsUndef) {
9051       for (const APInt &R : RHSAAPVS) {
9052         if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R))
9053           return indicatePessimisticFixpoint();
9054       }
9055     } else if (RHSContainsUndef) {
9056       for (const APInt &L : LHSAAPVS) {
9057         if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero))
9058           return indicatePessimisticFixpoint();
9059       }
9060     } else {
9061       for (const APInt &L : LHSAAPVS) {
9062         for (const APInt &R : RHSAAPVS) {
9063           if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R))
9064             return indicatePessimisticFixpoint();
9065         }
9066       }
9067     }
9068     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9069                                          : ChangeStatus::CHANGED;
9070   }
9071 
9072   /// See AbstractAttribute::updateImpl(...).
9073   ChangeStatus updateImpl(Attributor &A) override {
9074     Value &V = getAssociatedValue();
9075     Instruction *I = dyn_cast<Instruction>(&V);
9076 
9077     if (auto *ICI = dyn_cast<ICmpInst>(I))
9078       return updateWithICmpInst(A, ICI);
9079 
9080     if (auto *SI = dyn_cast<SelectInst>(I))
9081       return updateWithSelectInst(A, SI);
9082 
9083     if (auto *CI = dyn_cast<CastInst>(I))
9084       return updateWithCastInst(A, CI);
9085 
9086     if (auto *BinOp = dyn_cast<BinaryOperator>(I))
9087       return updateWithBinaryOperator(A, BinOp);
9088 
9089     return indicatePessimisticFixpoint();
9090   }
9091 
9092   /// See AbstractAttribute::trackStatistics()
9093   void trackStatistics() const override {
9094     STATS_DECLTRACK_FLOATING_ATTR(potential_values)
9095   }
9096 };
9097 
9098 struct AAPotentialConstantValuesFunction : AAPotentialConstantValuesImpl {
9099   AAPotentialConstantValuesFunction(const IRPosition &IRP, Attributor &A)
9100       : AAPotentialConstantValuesImpl(IRP, A) {}
9101 
9102   /// See AbstractAttribute::initialize(...).
9103   ChangeStatus updateImpl(Attributor &A) override {
9104     llvm_unreachable(
9105         "AAPotentialConstantValues(Function|CallSite)::updateImpl will "
9106         "not be called");
9107   }
9108 
9109   /// See AbstractAttribute::trackStatistics()
9110   void trackStatistics() const override {
9111     STATS_DECLTRACK_FN_ATTR(potential_values)
9112   }
9113 };
9114 
9115 struct AAPotentialConstantValuesCallSite : AAPotentialConstantValuesFunction {
9116   AAPotentialConstantValuesCallSite(const IRPosition &IRP, Attributor &A)
9117       : AAPotentialConstantValuesFunction(IRP, A) {}
9118 
9119   /// See AbstractAttribute::trackStatistics()
9120   void trackStatistics() const override {
9121     STATS_DECLTRACK_CS_ATTR(potential_values)
9122   }
9123 };
9124 
9125 struct AAPotentialConstantValuesCallSiteReturned
9126     : AACallSiteReturnedFromReturned<AAPotentialConstantValues,
9127                                      AAPotentialConstantValuesImpl> {
9128   AAPotentialConstantValuesCallSiteReturned(const IRPosition &IRP,
9129                                             Attributor &A)
9130       : AACallSiteReturnedFromReturned<AAPotentialConstantValues,
9131                                        AAPotentialConstantValuesImpl>(IRP, A) {}
9132 
9133   /// See AbstractAttribute::trackStatistics()
9134   void trackStatistics() const override {
9135     STATS_DECLTRACK_CSRET_ATTR(potential_values)
9136   }
9137 };
9138 
9139 struct AAPotentialConstantValuesCallSiteArgument
9140     : AAPotentialConstantValuesFloating {
9141   AAPotentialConstantValuesCallSiteArgument(const IRPosition &IRP,
9142                                             Attributor &A)
9143       : AAPotentialConstantValuesFloating(IRP, A) {}
9144 
9145   /// See AbstractAttribute::initialize(..).
9146   void initialize(Attributor &A) override {
9147     AAPotentialConstantValuesImpl::initialize(A);
9148     if (isAtFixpoint())
9149       return;
9150 
9151     Value &V = getAssociatedValue();
9152 
9153     if (auto *C = dyn_cast<ConstantInt>(&V)) {
9154       unionAssumed(C->getValue());
9155       indicateOptimisticFixpoint();
9156       return;
9157     }
9158 
9159     if (isa<UndefValue>(&V)) {
9160       unionAssumedWithUndef();
9161       indicateOptimisticFixpoint();
9162       return;
9163     }
9164   }
9165 
9166   /// See AbstractAttribute::updateImpl(...).
9167   ChangeStatus updateImpl(Attributor &A) override {
9168     Value &V = getAssociatedValue();
9169     auto AssumedBefore = getAssumed();
9170     auto &AA = A.getAAFor<AAPotentialConstantValues>(
9171         *this, IRPosition::value(V), DepClassTy::REQUIRED);
9172     const auto &S = AA.getAssumed();
9173     unionAssumed(S);
9174     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
9175                                          : ChangeStatus::CHANGED;
9176   }
9177 
9178   /// See AbstractAttribute::trackStatistics()
9179   void trackStatistics() const override {
9180     STATS_DECLTRACK_CSARG_ATTR(potential_values)
9181   }
9182 };
9183 
9184 /// ------------------------ NoUndef Attribute ---------------------------------
9185 struct AANoUndefImpl : AANoUndef {
9186   AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
9187 
9188   /// See AbstractAttribute::initialize(...).
9189   void initialize(Attributor &A) override {
9190     if (getIRPosition().hasAttr({Attribute::NoUndef})) {
9191       indicateOptimisticFixpoint();
9192       return;
9193     }
9194     Value &V = getAssociatedValue();
9195     if (isa<UndefValue>(V))
9196       indicatePessimisticFixpoint();
9197     else if (isa<FreezeInst>(V))
9198       indicateOptimisticFixpoint();
9199     else if (getPositionKind() != IRPosition::IRP_RETURNED &&
9200              isGuaranteedNotToBeUndefOrPoison(&V))
9201       indicateOptimisticFixpoint();
9202     else
9203       AANoUndef::initialize(A);
9204   }
9205 
9206   /// See followUsesInMBEC
9207   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
9208                        AANoUndef::StateType &State) {
9209     const Value *UseV = U->get();
9210     const DominatorTree *DT = nullptr;
9211     AssumptionCache *AC = nullptr;
9212     InformationCache &InfoCache = A.getInfoCache();
9213     if (Function *F = getAnchorScope()) {
9214       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
9215       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
9216     }
9217     State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT));
9218     bool TrackUse = false;
9219     // Track use for instructions which must produce undef or poison bits when
9220     // at least one operand contains such bits.
9221     if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
9222       TrackUse = true;
9223     return TrackUse;
9224   }
9225 
9226   /// See AbstractAttribute::getAsStr().
9227   const std::string getAsStr() const override {
9228     return getAssumed() ? "noundef" : "may-undef-or-poison";
9229   }
9230 
9231   ChangeStatus manifest(Attributor &A) override {
9232     // We don't manifest noundef attribute for dead positions because the
9233     // associated values with dead positions would be replaced with undef
9234     // values.
9235     bool UsedAssumedInformation = false;
9236     if (A.isAssumedDead(getIRPosition(), nullptr, nullptr,
9237                         UsedAssumedInformation))
9238       return ChangeStatus::UNCHANGED;
9239     // A position whose simplified value does not have any value is
9240     // considered to be dead. We don't manifest noundef in such positions for
9241     // the same reason above.
9242     if (!A.getAssumedSimplified(getIRPosition(), *this, UsedAssumedInformation,
9243                                 AA::Interprocedural)
9244              .has_value())
9245       return ChangeStatus::UNCHANGED;
9246     return AANoUndef::manifest(A);
9247   }
9248 };
9249 
9250 struct AANoUndefFloating : public AANoUndefImpl {
9251   AANoUndefFloating(const IRPosition &IRP, Attributor &A)
9252       : AANoUndefImpl(IRP, A) {}
9253 
9254   /// See AbstractAttribute::initialize(...).
9255   void initialize(Attributor &A) override {
9256     AANoUndefImpl::initialize(A);
9257     if (!getState().isAtFixpoint())
9258       if (Instruction *CtxI = getCtxI())
9259         followUsesInMBEC(*this, A, getState(), *CtxI);
9260   }
9261 
9262   /// See AbstractAttribute::updateImpl(...).
9263   ChangeStatus updateImpl(Attributor &A) override {
9264 
9265     SmallVector<AA::ValueAndContext> Values;
9266     bool UsedAssumedInformation = false;
9267     if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
9268                                       AA::AnyScope, UsedAssumedInformation)) {
9269       Values.push_back({getAssociatedValue(), getCtxI()});
9270     }
9271 
9272     StateType T;
9273     auto VisitValueCB = [&](Value &V, const Instruction *CtxI) -> bool {
9274       const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V),
9275                                              DepClassTy::REQUIRED);
9276       if (this == &AA) {
9277         T.indicatePessimisticFixpoint();
9278       } else {
9279         const AANoUndef::StateType &S =
9280             static_cast<const AANoUndef::StateType &>(AA.getState());
9281         T ^= S;
9282       }
9283       return T.isValidState();
9284     };
9285 
9286     for (const auto &VAC : Values)
9287       if (!VisitValueCB(*VAC.getValue(), VAC.getCtxI()))
9288         return indicatePessimisticFixpoint();
9289 
9290     return clampStateAndIndicateChange(getState(), T);
9291   }
9292 
9293   /// See AbstractAttribute::trackStatistics()
9294   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9295 };
9296 
9297 struct AANoUndefReturned final
9298     : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> {
9299   AANoUndefReturned(const IRPosition &IRP, Attributor &A)
9300       : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {}
9301 
9302   /// See AbstractAttribute::trackStatistics()
9303   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9304 };
9305 
9306 struct AANoUndefArgument final
9307     : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> {
9308   AANoUndefArgument(const IRPosition &IRP, Attributor &A)
9309       : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {}
9310 
9311   /// See AbstractAttribute::trackStatistics()
9312   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
9313 };
9314 
9315 struct AANoUndefCallSiteArgument final : AANoUndefFloating {
9316   AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
9317       : AANoUndefFloating(IRP, A) {}
9318 
9319   /// See AbstractAttribute::trackStatistics()
9320   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
9321 };
9322 
9323 struct AANoUndefCallSiteReturned final
9324     : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> {
9325   AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
9326       : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {}
9327 
9328   /// See AbstractAttribute::trackStatistics()
9329   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
9330 };
9331 
9332 struct AACallEdgesImpl : public AACallEdges {
9333   AACallEdgesImpl(const IRPosition &IRP, Attributor &A) : AACallEdges(IRP, A) {}
9334 
9335   const SetVector<Function *> &getOptimisticEdges() const override {
9336     return CalledFunctions;
9337   }
9338 
9339   bool hasUnknownCallee() const override { return HasUnknownCallee; }
9340 
9341   bool hasNonAsmUnknownCallee() const override {
9342     return HasUnknownCalleeNonAsm;
9343   }
9344 
9345   const std::string getAsStr() const override {
9346     return "CallEdges[" + std::to_string(HasUnknownCallee) + "," +
9347            std::to_string(CalledFunctions.size()) + "]";
9348   }
9349 
9350   void trackStatistics() const override {}
9351 
9352 protected:
9353   void addCalledFunction(Function *Fn, ChangeStatus &Change) {
9354     if (CalledFunctions.insert(Fn)) {
9355       Change = ChangeStatus::CHANGED;
9356       LLVM_DEBUG(dbgs() << "[AACallEdges] New call edge: " << Fn->getName()
9357                         << "\n");
9358     }
9359   }
9360 
9361   void setHasUnknownCallee(bool NonAsm, ChangeStatus &Change) {
9362     if (!HasUnknownCallee)
9363       Change = ChangeStatus::CHANGED;
9364     if (NonAsm && !HasUnknownCalleeNonAsm)
9365       Change = ChangeStatus::CHANGED;
9366     HasUnknownCalleeNonAsm |= NonAsm;
9367     HasUnknownCallee = true;
9368   }
9369 
9370 private:
9371   /// Optimistic set of functions that might be called by this position.
9372   SetVector<Function *> CalledFunctions;
9373 
9374   /// Is there any call with a unknown callee.
9375   bool HasUnknownCallee = false;
9376 
9377   /// Is there any call with a unknown callee, excluding any inline asm.
9378   bool HasUnknownCalleeNonAsm = false;
9379 };
9380 
9381 struct AACallEdgesCallSite : public AACallEdgesImpl {
9382   AACallEdgesCallSite(const IRPosition &IRP, Attributor &A)
9383       : AACallEdgesImpl(IRP, A) {}
9384   /// See AbstractAttribute::updateImpl(...).
9385   ChangeStatus updateImpl(Attributor &A) override {
9386     ChangeStatus Change = ChangeStatus::UNCHANGED;
9387 
9388     auto VisitValue = [&](Value &V, const Instruction *CtxI) -> bool {
9389       if (Function *Fn = dyn_cast<Function>(&V)) {
9390         addCalledFunction(Fn, Change);
9391       } else {
9392         LLVM_DEBUG(dbgs() << "[AACallEdges] Unrecognized value: " << V << "\n");
9393         setHasUnknownCallee(true, Change);
9394       }
9395 
9396       // Explore all values.
9397       return true;
9398     };
9399 
9400     SmallVector<AA::ValueAndContext> Values;
9401     // Process any value that we might call.
9402     auto ProcessCalledOperand = [&](Value *V, Instruction *CtxI) {
9403       bool UsedAssumedInformation = false;
9404       Values.clear();
9405       if (!A.getAssumedSimplifiedValues(IRPosition::value(*V), *this, Values,
9406                                         AA::AnyScope, UsedAssumedInformation)) {
9407         Values.push_back({*V, CtxI});
9408       }
9409       for (auto &VAC : Values)
9410         VisitValue(*VAC.getValue(), VAC.getCtxI());
9411     };
9412 
9413     CallBase *CB = cast<CallBase>(getCtxI());
9414 
9415     if (CB->isInlineAsm()) {
9416       if (!hasAssumption(*CB->getCaller(), "ompx_no_call_asm") &&
9417           !hasAssumption(*CB, "ompx_no_call_asm"))
9418         setHasUnknownCallee(false, Change);
9419       return Change;
9420     }
9421 
9422     // Process callee metadata if available.
9423     if (auto *MD = getCtxI()->getMetadata(LLVMContext::MD_callees)) {
9424       for (auto &Op : MD->operands()) {
9425         Function *Callee = mdconst::dyn_extract_or_null<Function>(Op);
9426         if (Callee)
9427           addCalledFunction(Callee, Change);
9428       }
9429       return Change;
9430     }
9431 
9432     // The most simple case.
9433     ProcessCalledOperand(CB->getCalledOperand(), CB);
9434 
9435     // Process callback functions.
9436     SmallVector<const Use *, 4u> CallbackUses;
9437     AbstractCallSite::getCallbackUses(*CB, CallbackUses);
9438     for (const Use *U : CallbackUses)
9439       ProcessCalledOperand(U->get(), CB);
9440 
9441     return Change;
9442   }
9443 };
9444 
9445 struct AACallEdgesFunction : public AACallEdgesImpl {
9446   AACallEdgesFunction(const IRPosition &IRP, Attributor &A)
9447       : AACallEdgesImpl(IRP, A) {}
9448 
9449   /// See AbstractAttribute::updateImpl(...).
9450   ChangeStatus updateImpl(Attributor &A) override {
9451     ChangeStatus Change = ChangeStatus::UNCHANGED;
9452 
9453     auto ProcessCallInst = [&](Instruction &Inst) {
9454       CallBase &CB = cast<CallBase>(Inst);
9455 
9456       auto &CBEdges = A.getAAFor<AACallEdges>(
9457           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9458       if (CBEdges.hasNonAsmUnknownCallee())
9459         setHasUnknownCallee(true, Change);
9460       if (CBEdges.hasUnknownCallee())
9461         setHasUnknownCallee(false, Change);
9462 
9463       for (Function *F : CBEdges.getOptimisticEdges())
9464         addCalledFunction(F, Change);
9465 
9466       return true;
9467     };
9468 
9469     // Visit all callable instructions.
9470     bool UsedAssumedInformation = false;
9471     if (!A.checkForAllCallLikeInstructions(ProcessCallInst, *this,
9472                                            UsedAssumedInformation,
9473                                            /* CheckBBLivenessOnly */ true)) {
9474       // If we haven't looked at all call like instructions, assume that there
9475       // are unknown callees.
9476       setHasUnknownCallee(true, Change);
9477     }
9478 
9479     return Change;
9480   }
9481 };
9482 
9483 struct AAFunctionReachabilityFunction : public AAFunctionReachability {
9484 private:
9485   struct QuerySet {
9486     void markReachable(const Function &Fn) {
9487       Reachable.insert(&Fn);
9488       Unreachable.erase(&Fn);
9489     }
9490 
9491     /// If there is no information about the function None is returned.
9492     Optional<bool> isCachedReachable(const Function &Fn) {
9493       // Assume that we can reach the function.
9494       // TODO: Be more specific with the unknown callee.
9495       if (CanReachUnknownCallee)
9496         return true;
9497 
9498       if (Reachable.count(&Fn))
9499         return true;
9500 
9501       if (Unreachable.count(&Fn))
9502         return false;
9503 
9504       return llvm::None;
9505     }
9506 
9507     /// Set of functions that we know for sure is reachable.
9508     DenseSet<const Function *> Reachable;
9509 
9510     /// Set of functions that are unreachable, but might become reachable.
9511     DenseSet<const Function *> Unreachable;
9512 
9513     /// If we can reach a function with a call to a unknown function we assume
9514     /// that we can reach any function.
9515     bool CanReachUnknownCallee = false;
9516   };
9517 
9518   struct QueryResolver : public QuerySet {
9519     ChangeStatus update(Attributor &A, const AAFunctionReachability &AA,
9520                         ArrayRef<const AACallEdges *> AAEdgesList) {
9521       ChangeStatus Change = ChangeStatus::UNCHANGED;
9522 
9523       for (auto *AAEdges : AAEdgesList) {
9524         if (AAEdges->hasUnknownCallee()) {
9525           if (!CanReachUnknownCallee) {
9526             LLVM_DEBUG(dbgs()
9527                        << "[QueryResolver] Edges include unknown callee!\n");
9528             Change = ChangeStatus::CHANGED;
9529           }
9530           CanReachUnknownCallee = true;
9531           return Change;
9532         }
9533       }
9534 
9535       for (const Function *Fn : make_early_inc_range(Unreachable)) {
9536         if (checkIfReachable(A, AA, AAEdgesList, *Fn)) {
9537           Change = ChangeStatus::CHANGED;
9538           markReachable(*Fn);
9539         }
9540       }
9541       return Change;
9542     }
9543 
9544     bool isReachable(Attributor &A, AAFunctionReachability &AA,
9545                      ArrayRef<const AACallEdges *> AAEdgesList,
9546                      const Function &Fn) {
9547       Optional<bool> Cached = isCachedReachable(Fn);
9548       if (Cached)
9549         return Cached.value();
9550 
9551       // The query was not cached, thus it is new. We need to request an update
9552       // explicitly to make sure this the information is properly run to a
9553       // fixpoint.
9554       A.registerForUpdate(AA);
9555 
9556       // We need to assume that this function can't reach Fn to prevent
9557       // an infinite loop if this function is recursive.
9558       Unreachable.insert(&Fn);
9559 
9560       bool Result = checkIfReachable(A, AA, AAEdgesList, Fn);
9561       if (Result)
9562         markReachable(Fn);
9563       return Result;
9564     }
9565 
9566     bool checkIfReachable(Attributor &A, const AAFunctionReachability &AA,
9567                           ArrayRef<const AACallEdges *> AAEdgesList,
9568                           const Function &Fn) const {
9569 
9570       // Handle the most trivial case first.
9571       for (auto *AAEdges : AAEdgesList) {
9572         const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9573 
9574         if (Edges.count(const_cast<Function *>(&Fn)))
9575           return true;
9576       }
9577 
9578       SmallVector<const AAFunctionReachability *, 8> Deps;
9579       for (auto &AAEdges : AAEdgesList) {
9580         const SetVector<Function *> &Edges = AAEdges->getOptimisticEdges();
9581 
9582         for (Function *Edge : Edges) {
9583           // Functions that do not call back into the module can be ignored.
9584           if (Edge->hasFnAttribute(Attribute::NoCallback))
9585             continue;
9586 
9587           // We don't need a dependency if the result is reachable.
9588           const AAFunctionReachability &EdgeReachability =
9589               A.getAAFor<AAFunctionReachability>(
9590                   AA, IRPosition::function(*Edge), DepClassTy::NONE);
9591           Deps.push_back(&EdgeReachability);
9592 
9593           if (EdgeReachability.canReach(A, Fn))
9594             return true;
9595         }
9596       }
9597 
9598       // The result is false for now, set dependencies and leave.
9599       for (auto *Dep : Deps)
9600         A.recordDependence(*Dep, AA, DepClassTy::REQUIRED);
9601 
9602       return false;
9603     }
9604   };
9605 
9606   /// Get call edges that can be reached by this instruction.
9607   bool getReachableCallEdges(Attributor &A, const AAReachability &Reachability,
9608                              const Instruction &Inst,
9609                              SmallVector<const AACallEdges *> &Result) const {
9610     // Determine call like instructions that we can reach from the inst.
9611     auto CheckCallBase = [&](Instruction &CBInst) {
9612       if (!Reachability.isAssumedReachable(A, Inst, CBInst))
9613         return true;
9614 
9615       auto &CB = cast<CallBase>(CBInst);
9616       const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9617           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9618 
9619       Result.push_back(&AAEdges);
9620       return true;
9621     };
9622 
9623     bool UsedAssumedInformation = false;
9624     return A.checkForAllCallLikeInstructions(CheckCallBase, *this,
9625                                              UsedAssumedInformation,
9626                                              /* CheckBBLivenessOnly */ true);
9627   }
9628 
9629 public:
9630   AAFunctionReachabilityFunction(const IRPosition &IRP, Attributor &A)
9631       : AAFunctionReachability(IRP, A) {}
9632 
9633   bool canReach(Attributor &A, const Function &Fn) const override {
9634     if (!isValidState())
9635       return true;
9636 
9637     const AACallEdges &AAEdges =
9638         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9639 
9640     // Attributor returns attributes as const, so this function has to be
9641     // const for users of this attribute to use it without having to do
9642     // a const_cast.
9643     // This is a hack for us to be able to cache queries.
9644     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9645     bool Result = NonConstThis->WholeFunction.isReachable(A, *NonConstThis,
9646                                                           {&AAEdges}, Fn);
9647 
9648     return Result;
9649   }
9650 
9651   /// Can \p CB reach \p Fn
9652   bool canReach(Attributor &A, CallBase &CB,
9653                 const Function &Fn) const override {
9654     if (!isValidState())
9655       return true;
9656 
9657     const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9658         *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
9659 
9660     // Attributor returns attributes as const, so this function has to be
9661     // const for users of this attribute to use it without having to do
9662     // a const_cast.
9663     // This is a hack for us to be able to cache queries.
9664     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9665     QueryResolver &CBQuery = NonConstThis->CBQueries[&CB];
9666 
9667     bool Result = CBQuery.isReachable(A, *NonConstThis, {&AAEdges}, Fn);
9668 
9669     return Result;
9670   }
9671 
9672   bool instructionCanReach(Attributor &A, const Instruction &Inst,
9673                            const Function &Fn) const override {
9674     if (!isValidState())
9675       return true;
9676 
9677     const auto &Reachability = A.getAAFor<AAReachability>(
9678         *this, IRPosition::function(*getAssociatedFunction()),
9679         DepClassTy::REQUIRED);
9680 
9681     SmallVector<const AACallEdges *> CallEdges;
9682     bool AllKnown = getReachableCallEdges(A, Reachability, Inst, CallEdges);
9683     // Attributor returns attributes as const, so this function has to be
9684     // const for users of this attribute to use it without having to do
9685     // a const_cast.
9686     // This is a hack for us to be able to cache queries.
9687     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9688     QueryResolver &InstQSet = NonConstThis->InstQueries[&Inst];
9689     if (!AllKnown) {
9690       LLVM_DEBUG(dbgs() << "[AAReachability] Not all reachable edges known, "
9691                            "may reach unknown callee!\n");
9692       InstQSet.CanReachUnknownCallee = true;
9693     }
9694 
9695     return InstQSet.isReachable(A, *NonConstThis, CallEdges, Fn);
9696   }
9697 
9698   /// See AbstractAttribute::updateImpl(...).
9699   ChangeStatus updateImpl(Attributor &A) override {
9700     const AACallEdges &AAEdges =
9701         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9702     ChangeStatus Change = ChangeStatus::UNCHANGED;
9703 
9704     Change |= WholeFunction.update(A, *this, {&AAEdges});
9705 
9706     for (auto &CBPair : CBQueries) {
9707       const AACallEdges &AAEdges = A.getAAFor<AACallEdges>(
9708           *this, IRPosition::callsite_function(*CBPair.first),
9709           DepClassTy::REQUIRED);
9710 
9711       Change |= CBPair.second.update(A, *this, {&AAEdges});
9712     }
9713 
9714     // Update the Instruction queries.
9715     if (!InstQueries.empty()) {
9716       const AAReachability *Reachability = &A.getAAFor<AAReachability>(
9717           *this, IRPosition::function(*getAssociatedFunction()),
9718           DepClassTy::REQUIRED);
9719 
9720       // Check for local callbases first.
9721       for (auto &InstPair : InstQueries) {
9722         SmallVector<const AACallEdges *> CallEdges;
9723         bool AllKnown =
9724             getReachableCallEdges(A, *Reachability, *InstPair.first, CallEdges);
9725         // Update will return change if we this effects any queries.
9726         if (!AllKnown) {
9727           LLVM_DEBUG(dbgs() << "[AAReachability] Not all reachable edges "
9728                                "known, may reach unknown callee!\n");
9729           InstPair.second.CanReachUnknownCallee = true;
9730         }
9731         Change |= InstPair.second.update(A, *this, CallEdges);
9732       }
9733     }
9734 
9735     return Change;
9736   }
9737 
9738   const std::string getAsStr() const override {
9739     size_t QueryCount =
9740         WholeFunction.Reachable.size() + WholeFunction.Unreachable.size();
9741 
9742     return "FunctionReachability [" +
9743            (canReachUnknownCallee()
9744                 ? "unknown"
9745                 : (std::to_string(WholeFunction.Reachable.size()) + "," +
9746                    std::to_string(QueryCount))) +
9747            "]";
9748   }
9749 
9750   void trackStatistics() const override {}
9751 
9752 private:
9753   bool canReachUnknownCallee() const override {
9754     return WholeFunction.CanReachUnknownCallee;
9755   }
9756 
9757   /// Used to answer if a the whole function can reacha a specific function.
9758   QueryResolver WholeFunction;
9759 
9760   /// Used to answer if a call base inside this function can reach a specific
9761   /// function.
9762   MapVector<const CallBase *, QueryResolver> CBQueries;
9763 
9764   /// This is for instruction queries than scan "forward".
9765   MapVector<const Instruction *, QueryResolver> InstQueries;
9766 };
9767 } // namespace
9768 
9769 template <typename AAType>
9770 static Optional<Constant *>
9771 askForAssumedConstant(Attributor &A, const AbstractAttribute &QueryingAA,
9772                       const IRPosition &IRP, Type &Ty) {
9773   if (!Ty.isIntegerTy())
9774     return nullptr;
9775 
9776   // This will also pass the call base context.
9777   const auto &AA = A.getAAFor<AAType>(QueryingAA, IRP, DepClassTy::NONE);
9778 
9779   Optional<Constant *> COpt = AA.getAssumedConstant(A);
9780 
9781   if (!COpt.has_value()) {
9782     A.recordDependence(AA, QueryingAA, DepClassTy::OPTIONAL);
9783     return llvm::None;
9784   }
9785   if (auto *C = COpt.value()) {
9786     A.recordDependence(AA, QueryingAA, DepClassTy::OPTIONAL);
9787     return C;
9788   }
9789   return nullptr;
9790 }
9791 
9792 Value *AAPotentialValues::getSingleValue(
9793     Attributor &A, const AbstractAttribute &AA, const IRPosition &IRP,
9794     SmallVectorImpl<AA::ValueAndContext> &Values) {
9795   Type &Ty = *IRP.getAssociatedType();
9796   Optional<Value *> V;
9797   for (auto &It : Values) {
9798     V = AA::combineOptionalValuesInAAValueLatice(V, It.getValue(), &Ty);
9799     if (V.has_value() && !V.value())
9800       break;
9801   }
9802   if (!V.has_value())
9803     return UndefValue::get(&Ty);
9804   return V.value();
9805 }
9806 
9807 namespace {
9808 struct AAPotentialValuesImpl : AAPotentialValues {
9809   using StateType = PotentialLLVMValuesState;
9810 
9811   AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
9812       : AAPotentialValues(IRP, A) {}
9813 
9814   /// See AbstractAttribute::initialize(..).
9815   void initialize(Attributor &A) override {
9816     if (A.hasSimplificationCallback(getIRPosition())) {
9817       indicatePessimisticFixpoint();
9818       return;
9819     }
9820     Value *Stripped = getAssociatedValue().stripPointerCasts();
9821     if (isa<Constant>(Stripped)) {
9822       addValue(A, getState(), *Stripped, getCtxI(), AA::AnyScope,
9823                getAnchorScope());
9824       indicateOptimisticFixpoint();
9825       return;
9826     }
9827     AAPotentialValues::initialize(A);
9828   }
9829 
9830   /// See AbstractAttribute::getAsStr().
9831   const std::string getAsStr() const override {
9832     std::string Str;
9833     llvm::raw_string_ostream OS(Str);
9834     OS << getState();
9835     return OS.str();
9836   }
9837 
9838   template <typename AAType>
9839   static Optional<Value *> askOtherAA(Attributor &A,
9840                                       const AbstractAttribute &AA,
9841                                       const IRPosition &IRP, Type &Ty) {
9842     if (isa<Constant>(IRP.getAssociatedValue()))
9843       return &IRP.getAssociatedValue();
9844     Optional<Constant *> C = askForAssumedConstant<AAType>(A, AA, IRP, Ty);
9845     if (!C)
9846       return llvm::None;
9847     if (C.value())
9848       if (auto *CC = AA::getWithType(**C, Ty))
9849         return CC;
9850     return nullptr;
9851   }
9852 
9853   void addValue(Attributor &A, StateType &State, Value &V,
9854                 const Instruction *CtxI, AA::ValueScope S,
9855                 Function *AnchorScope) const {
9856 
9857     IRPosition ValIRP = IRPosition::value(V);
9858     if (auto *CB = dyn_cast_or_null<CallBase>(CtxI)) {
9859       for (auto &U : CB->args()) {
9860         if (U.get() != &V)
9861           continue;
9862         ValIRP = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
9863         break;
9864       }
9865     }
9866 
9867     Value *VPtr = &V;
9868     if (ValIRP.getAssociatedType()->isIntegerTy()) {
9869       Type &Ty = *getAssociatedType();
9870       Optional<Value *> SimpleV =
9871           askOtherAA<AAValueConstantRange>(A, *this, ValIRP, Ty);
9872       if (SimpleV.has_value() && !SimpleV.value()) {
9873         auto &PotentialConstantsAA = A.getAAFor<AAPotentialConstantValues>(
9874             *this, ValIRP, DepClassTy::OPTIONAL);
9875         if (PotentialConstantsAA.isValidState()) {
9876           for (auto &It : PotentialConstantsAA.getAssumedSet()) {
9877             State.unionAssumed({{*ConstantInt::get(&Ty, It), nullptr}, S});
9878           }
9879           assert(!PotentialConstantsAA.undefIsContained() &&
9880                  "Undef should be an explicit value!");
9881           return;
9882         }
9883       }
9884       if (!SimpleV.has_value())
9885         return;
9886 
9887       if (SimpleV.value())
9888         VPtr = SimpleV.value();
9889     }
9890 
9891     if (isa<ConstantInt>(VPtr))
9892       CtxI = nullptr;
9893     if (!AA::isValidInScope(*VPtr, AnchorScope))
9894       S = AA::ValueScope(S | AA::Interprocedural);
9895 
9896     State.unionAssumed({{*VPtr, CtxI}, S});
9897   }
9898 
9899   /// Helper struct to tie a value+context pair together with the scope for
9900   /// which this is the simplified version.
9901   struct ItemInfo {
9902     AA::ValueAndContext I;
9903     AA::ValueScope S;
9904   };
9905 
9906   bool recurseForValue(Attributor &A, const IRPosition &IRP, AA::ValueScope S) {
9907     SmallMapVector<AA::ValueAndContext, int, 8> ValueScopeMap;
9908     for (auto CS : {AA::Intraprocedural, AA::Interprocedural}) {
9909       if (!(CS & S))
9910         continue;
9911 
9912       bool UsedAssumedInformation = false;
9913       SmallVector<AA::ValueAndContext> Values;
9914       if (!A.getAssumedSimplifiedValues(IRP, this, Values, CS,
9915                                         UsedAssumedInformation))
9916         return false;
9917 
9918       for (auto &It : Values)
9919         ValueScopeMap[It] += CS;
9920     }
9921     for (auto &It : ValueScopeMap)
9922       addValue(A, getState(), *It.first.getValue(), It.first.getCtxI(),
9923                AA::ValueScope(It.second), getAnchorScope());
9924 
9925     return true;
9926   }
9927 
9928   void giveUpOnIntraprocedural(Attributor &A) {
9929     auto NewS = StateType::getBestState(getState());
9930     for (auto &It : getAssumedSet()) {
9931       if (It.second == AA::Intraprocedural)
9932         continue;
9933       addValue(A, NewS, *It.first.getValue(), It.first.getCtxI(),
9934                AA::Interprocedural, getAnchorScope());
9935     }
9936     assert(!undefIsContained() && "Undef should be an explicit value!");
9937     addValue(A, NewS, getAssociatedValue(), getCtxI(), AA::Intraprocedural,
9938              getAnchorScope());
9939     getState() = NewS;
9940   }
9941 
9942   /// See AbstractState::indicatePessimisticFixpoint(...).
9943   ChangeStatus indicatePessimisticFixpoint() override {
9944     getState() = StateType::getBestState(getState());
9945     getState().unionAssumed({{getAssociatedValue(), getCtxI()}, AA::AnyScope});
9946     AAPotentialValues::indicateOptimisticFixpoint();
9947     return ChangeStatus::CHANGED;
9948   }
9949 
9950   /// See AbstractAttribute::updateImpl(...).
9951   ChangeStatus updateImpl(Attributor &A) override {
9952     return indicatePessimisticFixpoint();
9953   }
9954 
9955   /// See AbstractAttribute::manifest(...).
9956   ChangeStatus manifest(Attributor &A) override {
9957     SmallVector<AA::ValueAndContext> Values;
9958     for (AA::ValueScope S : {AA::Interprocedural, AA::Intraprocedural}) {
9959       Values.clear();
9960       if (!getAssumedSimplifiedValues(A, Values, S))
9961         continue;
9962       Value &OldV = getAssociatedValue();
9963       if (isa<UndefValue>(OldV))
9964         continue;
9965       Value *NewV = getSingleValue(A, *this, getIRPosition(), Values);
9966       if (!NewV || NewV == &OldV)
9967         continue;
9968       if (getCtxI() &&
9969           !AA::isValidAtPosition({*NewV, *getCtxI()}, A.getInfoCache()))
9970         continue;
9971       if (A.changeAfterManifest(getIRPosition(), *NewV))
9972         return ChangeStatus::CHANGED;
9973     }
9974     return ChangeStatus::UNCHANGED;
9975   }
9976 
9977   bool getAssumedSimplifiedValues(Attributor &A,
9978                                   SmallVectorImpl<AA::ValueAndContext> &Values,
9979                                   AA::ValueScope S) const override {
9980     if (!isValidState())
9981       return false;
9982     for (auto &It : getAssumedSet())
9983       if (It.second & S)
9984         Values.push_back(It.first);
9985     assert(!undefIsContained() && "Undef should be an explicit value!");
9986     return true;
9987   }
9988 };
9989 
9990 struct AAPotentialValuesFloating : AAPotentialValuesImpl {
9991   AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
9992       : AAPotentialValuesImpl(IRP, A) {}
9993 
9994   /// See AbstractAttribute::updateImpl(...).
9995   ChangeStatus updateImpl(Attributor &A) override {
9996     auto AssumedBefore = getAssumed();
9997 
9998     genericValueTraversal(A);
9999 
10000     return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
10001                                            : ChangeStatus::CHANGED;
10002   }
10003 
10004   /// Helper struct to remember which AAIsDead instances we actually used.
10005   struct LivenessInfo {
10006     const AAIsDead *LivenessAA = nullptr;
10007     bool AnyDead = false;
10008   };
10009 
10010   /// Check if \p Cmp is a comparison we can simplify.
10011   ///
10012   /// We handle multiple cases, one in which at least one operand is an
10013   /// (assumed) nullptr. If so, try to simplify it using AANonNull on the other
10014   /// operand. Return true if successful, in that case Worklist will be updated.
10015   bool handleCmp(Attributor &A, CmpInst &Cmp, ItemInfo II,
10016                  SmallVectorImpl<ItemInfo> &Worklist) {
10017     Value *LHS = Cmp.getOperand(0);
10018     Value *RHS = Cmp.getOperand(1);
10019 
10020     // Simplify the operands first.
10021     bool UsedAssumedInformation = false;
10022     const auto &SimplifiedLHS = A.getAssumedSimplified(
10023         IRPosition::value(*LHS, getCallBaseContext()), *this,
10024         UsedAssumedInformation, AA::Intraprocedural);
10025     if (!SimplifiedLHS.has_value())
10026       return true;
10027     if (!SimplifiedLHS.value())
10028       return false;
10029     LHS = *SimplifiedLHS;
10030 
10031     const auto &SimplifiedRHS = A.getAssumedSimplified(
10032         IRPosition::value(*RHS, getCallBaseContext()), *this,
10033         UsedAssumedInformation, AA::Intraprocedural);
10034     if (!SimplifiedRHS.has_value())
10035       return true;
10036     if (!SimplifiedRHS.value())
10037       return false;
10038     RHS = *SimplifiedRHS;
10039 
10040     LLVMContext &Ctx = Cmp.getContext();
10041     // Handle the trivial case first in which we don't even need to think about
10042     // null or non-null.
10043     if (LHS == RHS && (Cmp.isTrueWhenEqual() || Cmp.isFalseWhenEqual())) {
10044       Constant *NewV =
10045           ConstantInt::get(Type::getInt1Ty(Ctx), Cmp.isTrueWhenEqual());
10046       addValue(A, getState(), *NewV, /* CtxI */ nullptr, II.S,
10047                getAnchorScope());
10048       return true;
10049     }
10050 
10051     // From now on we only handle equalities (==, !=).
10052     ICmpInst *ICmp = dyn_cast<ICmpInst>(&Cmp);
10053     if (!ICmp || !ICmp->isEquality())
10054       return false;
10055 
10056     bool LHSIsNull = isa<ConstantPointerNull>(LHS);
10057     bool RHSIsNull = isa<ConstantPointerNull>(RHS);
10058     if (!LHSIsNull && !RHSIsNull)
10059       return false;
10060 
10061     // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the
10062     // non-nullptr operand and if we assume it's non-null we can conclude the
10063     // result of the comparison.
10064     assert((LHSIsNull || RHSIsNull) &&
10065            "Expected nullptr versus non-nullptr comparison at this point");
10066 
10067     // The index is the operand that we assume is not null.
10068     unsigned PtrIdx = LHSIsNull;
10069     auto &PtrNonNullAA = A.getAAFor<AANonNull>(
10070         *this, IRPosition::value(*ICmp->getOperand(PtrIdx)),
10071         DepClassTy::REQUIRED);
10072     if (!PtrNonNullAA.isAssumedNonNull())
10073       return false;
10074 
10075     // The new value depends on the predicate, true for != and false for ==.
10076     Constant *NewV = ConstantInt::get(Type::getInt1Ty(Ctx),
10077                                       ICmp->getPredicate() == CmpInst::ICMP_NE);
10078     addValue(A, getState(), *NewV, /* CtxI */ nullptr, II.S, getAnchorScope());
10079     return true;
10080   }
10081 
10082   bool handleSelectInst(Attributor &A, SelectInst &SI, ItemInfo II,
10083                         SmallVectorImpl<ItemInfo> &Worklist) {
10084     const Instruction *CtxI = II.I.getCtxI();
10085     bool UsedAssumedInformation = false;
10086 
10087     Optional<Constant *> C =
10088         A.getAssumedConstant(*SI.getCondition(), *this, UsedAssumedInformation);
10089     bool NoValueYet = !C.has_value();
10090     if (NoValueYet || isa_and_nonnull<UndefValue>(*C))
10091       return true;
10092     if (auto *CI = dyn_cast_or_null<ConstantInt>(*C)) {
10093       if (CI->isZero())
10094         Worklist.push_back({{*SI.getFalseValue(), CtxI}, II.S});
10095       else
10096         Worklist.push_back({{*SI.getTrueValue(), CtxI}, II.S});
10097     } else {
10098       // We could not simplify the condition, assume both values.
10099       Worklist.push_back({{*SI.getTrueValue(), CtxI}, II.S});
10100       Worklist.push_back({{*SI.getFalseValue(), CtxI}, II.S});
10101     }
10102     return true;
10103   }
10104 
10105   bool handleLoadInst(Attributor &A, LoadInst &LI, ItemInfo II,
10106                       SmallVectorImpl<ItemInfo> &Worklist) {
10107     SmallSetVector<Value *, 4> PotentialCopies;
10108     SmallSetVector<Instruction *, 4> PotentialValueOrigins;
10109     bool UsedAssumedInformation = false;
10110     if (!AA::getPotentiallyLoadedValues(A, LI, PotentialCopies,
10111                                         PotentialValueOrigins, *this,
10112                                         UsedAssumedInformation,
10113                                         /* OnlyExact */ true)) {
10114       LLVM_DEBUG(dbgs() << "[AAPotentialValues] Failed to get potentially "
10115                            "loaded values for load instruction "
10116                         << LI << "\n");
10117       return false;
10118     }
10119 
10120     // Do not simplify loads that are only used in llvm.assume if we cannot also
10121     // remove all stores that may feed into the load. The reason is that the
10122     // assume is probably worth something as long as the stores are around.
10123     InformationCache &InfoCache = A.getInfoCache();
10124     if (InfoCache.isOnlyUsedByAssume(LI)) {
10125       if (!llvm::all_of(PotentialValueOrigins, [&](Instruction *I) {
10126             if (!I)
10127               return true;
10128             if (auto *SI = dyn_cast<StoreInst>(I))
10129               return A.isAssumedDead(SI->getOperandUse(0), this,
10130                                      /* LivenessAA */ nullptr,
10131                                      UsedAssumedInformation,
10132                                      /* CheckBBLivenessOnly */ false);
10133             return A.isAssumedDead(*I, this, /* LivenessAA */ nullptr,
10134                                    UsedAssumedInformation,
10135                                    /* CheckBBLivenessOnly */ false);
10136           })) {
10137         LLVM_DEBUG(dbgs() << "[AAPotentialValues] Load is onl used by assumes "
10138                              "and we cannot delete all the stores: "
10139                           << LI << "\n");
10140         return false;
10141       }
10142     }
10143 
10144     // Values have to be dynamically unique or we loose the fact that a
10145     // single llvm::Value might represent two runtime values (e.g.,
10146     // stack locations in different recursive calls).
10147     const Instruction *CtxI = II.I.getCtxI();
10148     bool ScopeIsLocal = (II.S & AA::Intraprocedural);
10149     bool AllLocal = ScopeIsLocal;
10150     bool DynamicallyUnique = llvm::all_of(PotentialCopies, [&](Value *PC) {
10151       AllLocal &= AA::isValidInScope(*PC, getAnchorScope());
10152       return AA::isDynamicallyUnique(A, *this, *PC);
10153     });
10154     if (!DynamicallyUnique) {
10155       LLVM_DEBUG(dbgs() << "[AAPotentialValues] Not all potentially loaded "
10156                            "values are dynamically unique: "
10157                         << LI << "\n");
10158       return false;
10159     }
10160 
10161     for (auto *PotentialCopy : PotentialCopies) {
10162       if (AllLocal) {
10163         Worklist.push_back({{*PotentialCopy, CtxI}, II.S});
10164       } else {
10165         Worklist.push_back({{*PotentialCopy, CtxI}, AA::Interprocedural});
10166       }
10167     }
10168     if (!AllLocal && ScopeIsLocal)
10169       addValue(A, getState(), LI, CtxI, AA::Intraprocedural, getAnchorScope());
10170     return true;
10171   }
10172 
10173   bool handlePHINode(
10174       Attributor &A, PHINode &PHI, ItemInfo II,
10175       SmallVectorImpl<ItemInfo> &Worklist,
10176       SmallMapVector<const Function *, LivenessInfo, 4> &LivenessAAs) {
10177     auto GetLivenessInfo = [&](const Function &F) -> LivenessInfo & {
10178       LivenessInfo &LI = LivenessAAs[&F];
10179       if (!LI.LivenessAA)
10180         LI.LivenessAA = &A.getAAFor<AAIsDead>(*this, IRPosition::function(F),
10181                                               DepClassTy::NONE);
10182       return LI;
10183     };
10184 
10185     LivenessInfo &LI = GetLivenessInfo(*PHI.getFunction());
10186     for (unsigned u = 0, e = PHI.getNumIncomingValues(); u < e; u++) {
10187       BasicBlock *IncomingBB = PHI.getIncomingBlock(u);
10188       if (LI.LivenessAA->isEdgeDead(IncomingBB, PHI.getParent())) {
10189         LI.AnyDead = true;
10190         continue;
10191       }
10192       Worklist.push_back(
10193           {{*PHI.getIncomingValue(u), IncomingBB->getTerminator()}, II.S});
10194     }
10195     return true;
10196   }
10197 
10198   /// Use the generic, non-optimistic InstSimplfy functionality if we managed to
10199   /// simplify any operand of the instruction \p I. Return true if successful,
10200   /// in that case Worklist will be updated.
10201   bool handleGenericInst(Attributor &A, Instruction &I, ItemInfo II,
10202                          SmallVectorImpl<ItemInfo> &Worklist) {
10203     bool SomeSimplified = false;
10204     bool UsedAssumedInformation = false;
10205 
10206     SmallVector<Value *, 8> NewOps(I.getNumOperands());
10207     int Idx = 0;
10208     for (Value *Op : I.operands()) {
10209       const auto &SimplifiedOp = A.getAssumedSimplified(
10210           IRPosition::value(*Op, getCallBaseContext()), *this,
10211           UsedAssumedInformation, AA::Intraprocedural);
10212       // If we are not sure about any operand we are not sure about the entire
10213       // instruction, we'll wait.
10214       if (!SimplifiedOp.has_value())
10215         return true;
10216 
10217       if (SimplifiedOp.value())
10218         NewOps[Idx] = SimplifiedOp.value();
10219       else
10220         NewOps[Idx] = Op;
10221 
10222       SomeSimplified |= (NewOps[Idx] != Op);
10223       ++Idx;
10224     }
10225 
10226     // We won't bother with the InstSimplify interface if we didn't simplify any
10227     // operand ourselves.
10228     if (!SomeSimplified)
10229       return false;
10230 
10231     InformationCache &InfoCache = A.getInfoCache();
10232     Function *F = I.getFunction();
10233     const auto *DT =
10234         InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
10235     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
10236     auto *AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
10237     OptimizationRemarkEmitter *ORE = nullptr;
10238 
10239     const DataLayout &DL = I.getModule()->getDataLayout();
10240     SimplifyQuery Q(DL, TLI, DT, AC, &I);
10241     Value *NewV = simplifyInstructionWithOperands(&I, NewOps, Q, ORE);
10242     if (!NewV || NewV == &I)
10243       return false;
10244 
10245     LLVM_DEBUG(dbgs() << "Generic inst " << I << " assumed simplified to "
10246                       << *NewV << "\n");
10247     Worklist.push_back({{*NewV, II.I.getCtxI()}, II.S});
10248     return true;
10249   }
10250 
10251   bool simplifyInstruction(
10252       Attributor &A, Instruction &I, ItemInfo II,
10253       SmallVectorImpl<ItemInfo> &Worklist,
10254       SmallMapVector<const Function *, LivenessInfo, 4> &LivenessAAs) {
10255     if (auto *CI = dyn_cast<CmpInst>(&I))
10256       if (handleCmp(A, *CI, II, Worklist))
10257         return true;
10258 
10259     switch (I.getOpcode()) {
10260     case Instruction::Select:
10261       return handleSelectInst(A, cast<SelectInst>(I), II, Worklist);
10262     case Instruction::PHI:
10263       return handlePHINode(A, cast<PHINode>(I), II, Worklist, LivenessAAs);
10264     case Instruction::Load:
10265       return handleLoadInst(A, cast<LoadInst>(I), II, Worklist);
10266     default:
10267       return handleGenericInst(A, I, II, Worklist);
10268     };
10269     return false;
10270   }
10271 
10272   void genericValueTraversal(Attributor &A) {
10273     SmallMapVector<const Function *, LivenessInfo, 4> LivenessAAs;
10274 
10275     Value *InitialV = &getAssociatedValue();
10276     SmallSet<AA::ValueAndContext, 16> Visited;
10277     SmallVector<ItemInfo, 16> Worklist;
10278     Worklist.push_back({{*InitialV, getCtxI()}, AA::AnyScope});
10279 
10280     int Iteration = 0;
10281     do {
10282       ItemInfo II = Worklist.pop_back_val();
10283       Value *V = II.I.getValue();
10284       assert(V);
10285       const Instruction *CtxI = II.I.getCtxI();
10286       AA::ValueScope S = II.S;
10287 
10288       // Check if we should process the current value. To prevent endless
10289       // recursion keep a record of the values we followed!
10290       if (!Visited.insert(II.I).second)
10291         continue;
10292 
10293       // Make sure we limit the compile time for complex expressions.
10294       if (Iteration++ >= MaxPotentialValuesIterations) {
10295         LLVM_DEBUG(dbgs() << "Generic value traversal reached iteration limit: "
10296                           << Iteration << "!\n");
10297         addValue(A, getState(), *V, CtxI, S, getAnchorScope());
10298         continue;
10299       }
10300 
10301       // Explicitly look through calls with a "returned" attribute if we do
10302       // not have a pointer as stripPointerCasts only works on them.
10303       Value *NewV = nullptr;
10304       if (V->getType()->isPointerTy()) {
10305         NewV = AA::getWithType(*V->stripPointerCasts(), *V->getType());
10306       } else {
10307         auto *CB = dyn_cast<CallBase>(V);
10308         if (CB && CB->getCalledFunction()) {
10309           for (Argument &Arg : CB->getCalledFunction()->args())
10310             if (Arg.hasReturnedAttr()) {
10311               NewV = CB->getArgOperand(Arg.getArgNo());
10312               break;
10313             }
10314         }
10315       }
10316       if (NewV && NewV != V) {
10317         Worklist.push_back({{*NewV, CtxI}, S});
10318         continue;
10319       }
10320 
10321       if (auto *I = dyn_cast<Instruction>(V)) {
10322         if (simplifyInstruction(A, *I, II, Worklist, LivenessAAs))
10323           continue;
10324       }
10325 
10326       if (V != InitialV || isa<Argument>(V))
10327         if (recurseForValue(A, IRPosition::value(*V), II.S))
10328           continue;
10329 
10330       // If we haven't stripped anything we give up.
10331       if (V == InitialV && CtxI == getCtxI()) {
10332         indicatePessimisticFixpoint();
10333         return;
10334       }
10335 
10336       addValue(A, getState(), *V, CtxI, S, getAnchorScope());
10337     } while (!Worklist.empty());
10338 
10339     // If we actually used liveness information so we have to record a
10340     // dependence.
10341     for (auto &It : LivenessAAs)
10342       if (It.second.AnyDead)
10343         A.recordDependence(*It.second.LivenessAA, *this, DepClassTy::OPTIONAL);
10344   }
10345 
10346   /// See AbstractAttribute::trackStatistics()
10347   void trackStatistics() const override {
10348     STATS_DECLTRACK_FLOATING_ATTR(potential_values)
10349   }
10350 };
10351 
10352 struct AAPotentialValuesArgument final : AAPotentialValuesImpl {
10353   using Base = AAPotentialValuesImpl;
10354   AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
10355       : Base(IRP, A) {}
10356 
10357   /// See AbstractAttribute::initialize(..).
10358   void initialize(Attributor &A) override {
10359     auto &Arg = cast<Argument>(getAssociatedValue());
10360     if (Arg.hasPointeeInMemoryValueAttr())
10361       indicatePessimisticFixpoint();
10362   }
10363 
10364   /// See AbstractAttribute::updateImpl(...).
10365   ChangeStatus updateImpl(Attributor &A) override {
10366     auto AssumedBefore = getAssumed();
10367 
10368     unsigned CSArgNo = getCallSiteArgNo();
10369 
10370     bool UsedAssumedInformation = false;
10371     SmallVector<AA::ValueAndContext> Values;
10372     auto CallSitePred = [&](AbstractCallSite ACS) {
10373       const auto CSArgIRP = IRPosition::callsite_argument(ACS, CSArgNo);
10374       if (CSArgIRP.getPositionKind() == IRP_INVALID)
10375         return false;
10376 
10377       if (!A.getAssumedSimplifiedValues(CSArgIRP, this, Values,
10378                                         AA::Interprocedural,
10379                                         UsedAssumedInformation))
10380         return false;
10381 
10382       return isValidState();
10383     };
10384 
10385     if (!A.checkForAllCallSites(CallSitePred, *this,
10386                                 /* RequireAllCallSites */ true,
10387                                 UsedAssumedInformation))
10388       return indicatePessimisticFixpoint();
10389 
10390     Function *Fn = getAssociatedFunction();
10391     bool AnyNonLocal = false;
10392     for (auto &It : Values) {
10393       if (isa<Constant>(It.getValue())) {
10394         addValue(A, getState(), *It.getValue(), It.getCtxI(), AA::AnyScope,
10395                  getAnchorScope());
10396         continue;
10397       }
10398       if (!AA::isDynamicallyUnique(A, *this, *It.getValue()))
10399         return indicatePessimisticFixpoint();
10400 
10401       if (auto *Arg = dyn_cast<Argument>(It.getValue()))
10402         if (Arg->getParent() == Fn) {
10403           addValue(A, getState(), *It.getValue(), It.getCtxI(), AA::AnyScope,
10404                    getAnchorScope());
10405           continue;
10406         }
10407       addValue(A, getState(), *It.getValue(), It.getCtxI(), AA::Interprocedural,
10408                getAnchorScope());
10409       AnyNonLocal = true;
10410     }
10411     if (undefIsContained())
10412       unionAssumedWithUndef();
10413     if (AnyNonLocal)
10414       giveUpOnIntraprocedural(A);
10415 
10416     return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
10417                                            : ChangeStatus::CHANGED;
10418   }
10419 
10420   /// See AbstractAttribute::trackStatistics()
10421   void trackStatistics() const override {
10422     STATS_DECLTRACK_ARG_ATTR(potential_values)
10423   }
10424 };
10425 
10426 struct AAPotentialValuesReturned
10427     : AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> {
10428   using Base =
10429       AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>;
10430   AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
10431       : Base(IRP, A) {}
10432 
10433   /// See AbstractAttribute::initialize(..).
10434   void initialize(Attributor &A) override {
10435     if (A.hasSimplificationCallback(getIRPosition()))
10436       indicatePessimisticFixpoint();
10437     else
10438       AAPotentialValues::initialize(A);
10439   }
10440 
10441   ChangeStatus manifest(Attributor &A) override {
10442     // We queried AAValueSimplify for the returned values so they will be
10443     // replaced if a simplified form was found. Nothing to do here.
10444     return ChangeStatus::UNCHANGED;
10445   }
10446 
10447   ChangeStatus indicatePessimisticFixpoint() override {
10448     return AAPotentialValues::indicatePessimisticFixpoint();
10449   }
10450 
10451   /// See AbstractAttribute::trackStatistics()
10452   void trackStatistics() const override {
10453     STATS_DECLTRACK_FNRET_ATTR(potential_values)
10454   }
10455 };
10456 
10457 struct AAPotentialValuesFunction : AAPotentialValuesImpl {
10458   AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
10459       : AAPotentialValuesImpl(IRP, A) {}
10460 
10461   /// See AbstractAttribute::updateImpl(...).
10462   ChangeStatus updateImpl(Attributor &A) override {
10463     llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
10464                      "not be called");
10465   }
10466 
10467   /// See AbstractAttribute::trackStatistics()
10468   void trackStatistics() const override {
10469     STATS_DECLTRACK_FN_ATTR(potential_values)
10470   }
10471 };
10472 
10473 struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
10474   AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
10475       : AAPotentialValuesFunction(IRP, A) {}
10476 
10477   /// See AbstractAttribute::trackStatistics()
10478   void trackStatistics() const override {
10479     STATS_DECLTRACK_CS_ATTR(potential_values)
10480   }
10481 };
10482 
10483 struct AAPotentialValuesCallSiteReturned : AAPotentialValuesImpl {
10484   AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
10485       : AAPotentialValuesImpl(IRP, A) {}
10486 
10487   /// See AbstractAttribute::updateImpl(...).
10488   ChangeStatus updateImpl(Attributor &A) override {
10489     auto AssumedBefore = getAssumed();
10490 
10491     Function *Callee = getAssociatedFunction();
10492     if (!Callee)
10493       return indicatePessimisticFixpoint();
10494 
10495     bool UsedAssumedInformation = false;
10496     auto *CB = cast<CallBase>(getCtxI());
10497     if (CB->isMustTailCall() &&
10498         !A.isAssumedDead(IRPosition::inst(*CB), this, nullptr,
10499                          UsedAssumedInformation))
10500       return indicatePessimisticFixpoint();
10501 
10502     SmallVector<AA::ValueAndContext> Values;
10503     if (!A.getAssumedSimplifiedValues(IRPosition::returned(*Callee), this,
10504                                       Values, AA::Intraprocedural,
10505                                       UsedAssumedInformation))
10506       return indicatePessimisticFixpoint();
10507 
10508     Function *Caller = CB->getCaller();
10509 
10510     bool AnyNonLocal = false;
10511     for (auto &It : Values) {
10512       Value *V = It.getValue();
10513       Optional<Value *> CallerV = A.translateArgumentToCallSiteContent(
10514           V, *CB, *this, UsedAssumedInformation);
10515       if (!CallerV.has_value()) {
10516         // Nothing to do as long as no value was determined.
10517         continue;
10518       }
10519       V = CallerV.value() ? CallerV.value() : V;
10520       if (AA::isDynamicallyUnique(A, *this, *V) &&
10521           AA::isValidInScope(*V, Caller)) {
10522         if (CallerV.value()) {
10523           SmallVector<AA::ValueAndContext> ArgValues;
10524           IRPosition IRP = IRPosition::value(*V);
10525           if (auto *Arg = dyn_cast<Argument>(V))
10526             if (Arg->getParent() == CB->getCalledFunction())
10527               IRP = IRPosition::callsite_argument(*CB, Arg->getArgNo());
10528           if (recurseForValue(A, IRP, AA::AnyScope))
10529             continue;
10530         }
10531         addValue(A, getState(), *V, CB, AA::AnyScope, getAnchorScope());
10532       } else {
10533         AnyNonLocal = true;
10534         break;
10535       }
10536     }
10537     if (AnyNonLocal) {
10538       Values.clear();
10539       if (!A.getAssumedSimplifiedValues(IRPosition::returned(*Callee), this,
10540                                         Values, AA::Interprocedural,
10541                                         UsedAssumedInformation))
10542         return indicatePessimisticFixpoint();
10543       AnyNonLocal = false;
10544       getState() = PotentialLLVMValuesState::getBestState();
10545       for (auto &It : Values) {
10546         Value *V = It.getValue();
10547         if (!AA::isDynamicallyUnique(A, *this, *V))
10548           return indicatePessimisticFixpoint();
10549         if (AA::isValidInScope(*V, Caller)) {
10550           addValue(A, getState(), *V, CB, AA::AnyScope, getAnchorScope());
10551         } else {
10552           AnyNonLocal = true;
10553           addValue(A, getState(), *V, CB, AA::Interprocedural,
10554                    getAnchorScope());
10555         }
10556       }
10557       if (AnyNonLocal)
10558         giveUpOnIntraprocedural(A);
10559     }
10560     return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
10561                                            : ChangeStatus::CHANGED;
10562   }
10563 
10564   ChangeStatus indicatePessimisticFixpoint() override {
10565     return AAPotentialValues::indicatePessimisticFixpoint();
10566   }
10567 
10568   /// See AbstractAttribute::trackStatistics()
10569   void trackStatistics() const override {
10570     STATS_DECLTRACK_CSRET_ATTR(potential_values)
10571   }
10572 };
10573 
10574 struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
10575   AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
10576       : AAPotentialValuesFloating(IRP, A) {}
10577 
10578   /// See AbstractAttribute::trackStatistics()
10579   void trackStatistics() const override {
10580     STATS_DECLTRACK_CSARG_ATTR(potential_values)
10581   }
10582 };
10583 } // namespace
10584 
10585 /// ---------------------- Assumption Propagation ------------------------------
10586 namespace {
10587 struct AAAssumptionInfoImpl : public AAAssumptionInfo {
10588   AAAssumptionInfoImpl(const IRPosition &IRP, Attributor &A,
10589                        const DenseSet<StringRef> &Known)
10590       : AAAssumptionInfo(IRP, A, Known) {}
10591 
10592   bool hasAssumption(const StringRef Assumption) const override {
10593     return isValidState() && setContains(Assumption);
10594   }
10595 
10596   /// See AbstractAttribute::getAsStr()
10597   const std::string getAsStr() const override {
10598     const SetContents &Known = getKnown();
10599     const SetContents &Assumed = getAssumed();
10600 
10601     const std::string KnownStr =
10602         llvm::join(Known.getSet().begin(), Known.getSet().end(), ",");
10603     const std::string AssumedStr =
10604         (Assumed.isUniversal())
10605             ? "Universal"
10606             : llvm::join(Assumed.getSet().begin(), Assumed.getSet().end(), ",");
10607 
10608     return "Known [" + KnownStr + "]," + " Assumed [" + AssumedStr + "]";
10609   }
10610 };
10611 
10612 /// Propagates assumption information from parent functions to all of their
10613 /// successors. An assumption can be propagated if the containing function
10614 /// dominates the called function.
10615 ///
10616 /// We start with a "known" set of assumptions already valid for the associated
10617 /// function and an "assumed" set that initially contains all possible
10618 /// assumptions. The assumed set is inter-procedurally updated by narrowing its
10619 /// contents as concrete values are known. The concrete values are seeded by the
10620 /// first nodes that are either entries into the call graph, or contains no
10621 /// assumptions. Each node is updated as the intersection of the assumed state
10622 /// with all of its predecessors.
10623 struct AAAssumptionInfoFunction final : AAAssumptionInfoImpl {
10624   AAAssumptionInfoFunction(const IRPosition &IRP, Attributor &A)
10625       : AAAssumptionInfoImpl(IRP, A,
10626                              getAssumptions(*IRP.getAssociatedFunction())) {}
10627 
10628   /// See AbstractAttribute::manifest(...).
10629   ChangeStatus manifest(Attributor &A) override {
10630     const auto &Assumptions = getKnown();
10631 
10632     // Don't manifest a universal set if it somehow made it here.
10633     if (Assumptions.isUniversal())
10634       return ChangeStatus::UNCHANGED;
10635 
10636     Function *AssociatedFunction = getAssociatedFunction();
10637 
10638     bool Changed = addAssumptions(*AssociatedFunction, Assumptions.getSet());
10639 
10640     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10641   }
10642 
10643   /// See AbstractAttribute::updateImpl(...).
10644   ChangeStatus updateImpl(Attributor &A) override {
10645     bool Changed = false;
10646 
10647     auto CallSitePred = [&](AbstractCallSite ACS) {
10648       const auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>(
10649           *this, IRPosition::callsite_function(*ACS.getInstruction()),
10650           DepClassTy::REQUIRED);
10651       // Get the set of assumptions shared by all of this function's callers.
10652       Changed |= getIntersection(AssumptionAA.getAssumed());
10653       return !getAssumed().empty() || !getKnown().empty();
10654     };
10655 
10656     bool UsedAssumedInformation = false;
10657     // Get the intersection of all assumptions held by this node's predecessors.
10658     // If we don't know all the call sites then this is either an entry into the
10659     // call graph or an empty node. This node is known to only contain its own
10660     // assumptions and can be propagated to its successors.
10661     if (!A.checkForAllCallSites(CallSitePred, *this, true,
10662                                 UsedAssumedInformation))
10663       return indicatePessimisticFixpoint();
10664 
10665     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10666   }
10667 
10668   void trackStatistics() const override {}
10669 };
10670 
10671 /// Assumption Info defined for call sites.
10672 struct AAAssumptionInfoCallSite final : AAAssumptionInfoImpl {
10673 
10674   AAAssumptionInfoCallSite(const IRPosition &IRP, Attributor &A)
10675       : AAAssumptionInfoImpl(IRP, A, getInitialAssumptions(IRP)) {}
10676 
10677   /// See AbstractAttribute::initialize(...).
10678   void initialize(Attributor &A) override {
10679     const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
10680     A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
10681   }
10682 
10683   /// See AbstractAttribute::manifest(...).
10684   ChangeStatus manifest(Attributor &A) override {
10685     // Don't manifest a universal set if it somehow made it here.
10686     if (getKnown().isUniversal())
10687       return ChangeStatus::UNCHANGED;
10688 
10689     CallBase &AssociatedCall = cast<CallBase>(getAssociatedValue());
10690     bool Changed = addAssumptions(AssociatedCall, getAssumed().getSet());
10691 
10692     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10693   }
10694 
10695   /// See AbstractAttribute::updateImpl(...).
10696   ChangeStatus updateImpl(Attributor &A) override {
10697     const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
10698     auto &AssumptionAA =
10699         A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
10700     bool Changed = getIntersection(AssumptionAA.getAssumed());
10701     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
10702   }
10703 
10704   /// See AbstractAttribute::trackStatistics()
10705   void trackStatistics() const override {}
10706 
10707 private:
10708   /// Helper to initialized the known set as all the assumptions this call and
10709   /// the callee contain.
10710   DenseSet<StringRef> getInitialAssumptions(const IRPosition &IRP) {
10711     const CallBase &CB = cast<CallBase>(IRP.getAssociatedValue());
10712     auto Assumptions = getAssumptions(CB);
10713     if (Function *F = IRP.getAssociatedFunction())
10714       set_union(Assumptions, getAssumptions(*F));
10715     if (Function *F = IRP.getAssociatedFunction())
10716       set_union(Assumptions, getAssumptions(*F));
10717     return Assumptions;
10718   }
10719 };
10720 } // namespace
10721 
10722 AACallGraphNode *AACallEdgeIterator::operator*() const {
10723   return static_cast<AACallGraphNode *>(const_cast<AACallEdges *>(
10724       &A.getOrCreateAAFor<AACallEdges>(IRPosition::function(**I))));
10725 }
10726 
10727 void AttributorCallGraph::print() { llvm::WriteGraph(outs(), this); }
10728 
10729 const char AAReturnedValues::ID = 0;
10730 const char AANoUnwind::ID = 0;
10731 const char AANoSync::ID = 0;
10732 const char AANoFree::ID = 0;
10733 const char AANonNull::ID = 0;
10734 const char AANoRecurse::ID = 0;
10735 const char AAWillReturn::ID = 0;
10736 const char AAUndefinedBehavior::ID = 0;
10737 const char AANoAlias::ID = 0;
10738 const char AAReachability::ID = 0;
10739 const char AANoReturn::ID = 0;
10740 const char AAIsDead::ID = 0;
10741 const char AADereferenceable::ID = 0;
10742 const char AAAlign::ID = 0;
10743 const char AAInstanceInfo::ID = 0;
10744 const char AANoCapture::ID = 0;
10745 const char AAValueSimplify::ID = 0;
10746 const char AAHeapToStack::ID = 0;
10747 const char AAPrivatizablePtr::ID = 0;
10748 const char AAMemoryBehavior::ID = 0;
10749 const char AAMemoryLocation::ID = 0;
10750 const char AAValueConstantRange::ID = 0;
10751 const char AAPotentialConstantValues::ID = 0;
10752 const char AAPotentialValues::ID = 0;
10753 const char AANoUndef::ID = 0;
10754 const char AACallEdges::ID = 0;
10755 const char AAFunctionReachability::ID = 0;
10756 const char AAPointerInfo::ID = 0;
10757 const char AAAssumptionInfo::ID = 0;
10758 
10759 // Macro magic to create the static generator function for attributes that
10760 // follow the naming scheme.
10761 
10762 #define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \
10763   case IRPosition::PK:                                                         \
10764     llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
10765 
10766 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \
10767   case IRPosition::PK:                                                         \
10768     AA = new (A.Allocator) CLASS##SUFFIX(IRP, A);                              \
10769     ++NumAAs;                                                                  \
10770     break;
10771 
10772 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \
10773   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10774     CLASS *AA = nullptr;                                                       \
10775     switch (IRP.getPositionKind()) {                                           \
10776       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10777       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
10778       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
10779       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
10780       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
10781       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
10782       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10783       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
10784     }                                                                          \
10785     return *AA;                                                                \
10786   }
10787 
10788 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \
10789   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10790     CLASS *AA = nullptr;                                                       \
10791     switch (IRP.getPositionKind()) {                                           \
10792       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10793       SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \
10794       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
10795       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
10796       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
10797       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
10798       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
10799       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
10800     }                                                                          \
10801     return *AA;                                                                \
10802   }
10803 
10804 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \
10805   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10806     CLASS *AA = nullptr;                                                       \
10807     switch (IRP.getPositionKind()) {                                           \
10808       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10809       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10810       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
10811       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
10812       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
10813       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
10814       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
10815       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
10816     }                                                                          \
10817     return *AA;                                                                \
10818   }
10819 
10820 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \
10821   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10822     CLASS *AA = nullptr;                                                       \
10823     switch (IRP.getPositionKind()) {                                           \
10824       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10825       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
10826       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
10827       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
10828       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
10829       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
10830       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
10831       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10832     }                                                                          \
10833     return *AA;                                                                \
10834   }
10835 
10836 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \
10837   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
10838     CLASS *AA = nullptr;                                                       \
10839     switch (IRP.getPositionKind()) {                                           \
10840       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
10841       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
10842       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
10843       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
10844       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
10845       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
10846       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
10847       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
10848     }                                                                          \
10849     return *AA;                                                                \
10850   }
10851 
10852 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
10853 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
10854 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
10855 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
10856 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
10857 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
10858 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
10859 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AACallEdges)
10860 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAssumptionInfo)
10861 
10862 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
10863 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
10864 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
10865 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
10866 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
10867 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAInstanceInfo)
10868 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
10869 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
10870 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialConstantValues)
10871 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
10872 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
10873 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPointerInfo)
10874 
10875 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
10876 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
10877 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
10878 
10879 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
10880 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
10881 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
10882 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAFunctionReachability)
10883 
10884 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
10885 
10886 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
10887 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
10888 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
10889 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
10890 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
10891 #undef SWITCH_PK_CREATE
10892 #undef SWITCH_PK_INV
10893