1 //===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // See the Attributor.h file comment and the class descriptions in that file for
10 // more information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/IPO/Attributor.h"
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumeBundleQueries.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/LazyValueInfo.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/NoFolder.h"
35 #include "llvm/Support/Alignment.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/FileSystem.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include <cassert>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "attributor"
48 
49 static cl::opt<bool> ManifestInternal(
50     "attributor-manifest-internal", cl::Hidden,
51     cl::desc("Manifest Attributor internal string attributes."),
52     cl::init(false));
53 
54 static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
55                                        cl::Hidden);
56 
57 template <>
58 unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
59 
60 static cl::opt<unsigned, true> MaxPotentialValues(
61     "attributor-max-potential-values", cl::Hidden,
62     cl::desc("Maximum number of potential values to be "
63              "tracked for each position."),
64     cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
65     cl::init(7));
66 
67 STATISTIC(NumAAs, "Number of abstract attributes created");
68 
69 // Some helper macros to deal with statistics tracking.
70 //
71 // Usage:
72 // For simple IR attribute tracking overload trackStatistics in the abstract
73 // attribute and choose the right STATS_DECLTRACK_********* macro,
74 // e.g.,:
75 //  void trackStatistics() const override {
76 //    STATS_DECLTRACK_ARG_ATTR(returned)
77 //  }
78 // If there is a single "increment" side one can use the macro
79 // STATS_DECLTRACK with a custom message. If there are multiple increment
80 // sides, STATS_DECL and STATS_TRACK can also be used separately.
81 //
82 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME)                                     \
83   ("Number of " #TYPE " marked '" #NAME "'")
84 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
85 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
86 #define STATS_DECL(NAME, TYPE, MSG)                                            \
87   STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
88 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
89 #define STATS_DECLTRACK(NAME, TYPE, MSG)                                       \
90   {                                                                            \
91     STATS_DECL(NAME, TYPE, MSG)                                                \
92     STATS_TRACK(NAME, TYPE)                                                    \
93   }
94 #define STATS_DECLTRACK_ARG_ATTR(NAME)                                         \
95   STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
96 #define STATS_DECLTRACK_CSARG_ATTR(NAME)                                       \
97   STATS_DECLTRACK(NAME, CSArguments,                                           \
98                   BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
99 #define STATS_DECLTRACK_FN_ATTR(NAME)                                          \
100   STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
101 #define STATS_DECLTRACK_CS_ATTR(NAME)                                          \
102   STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
103 #define STATS_DECLTRACK_FNRET_ATTR(NAME)                                       \
104   STATS_DECLTRACK(NAME, FunctionReturn,                                        \
105                   BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
106 #define STATS_DECLTRACK_CSRET_ATTR(NAME)                                       \
107   STATS_DECLTRACK(NAME, CSReturn,                                              \
108                   BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
109 #define STATS_DECLTRACK_FLOATING_ATTR(NAME)                                    \
110   STATS_DECLTRACK(NAME, Floating,                                              \
111                   ("Number of floating values known to be '" #NAME "'"))
112 
113 // Specialization of the operator<< for abstract attributes subclasses. This
114 // disambiguates situations where multiple operators are applicable.
115 namespace llvm {
116 #define PIPE_OPERATOR(CLASS)                                                   \
117   raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) {                  \
118     return OS << static_cast<const AbstractAttribute &>(AA);                   \
119   }
120 
121 PIPE_OPERATOR(AAIsDead)
122 PIPE_OPERATOR(AANoUnwind)
123 PIPE_OPERATOR(AANoSync)
124 PIPE_OPERATOR(AANoRecurse)
125 PIPE_OPERATOR(AAWillReturn)
126 PIPE_OPERATOR(AANoReturn)
127 PIPE_OPERATOR(AAReturnedValues)
128 PIPE_OPERATOR(AANonNull)
129 PIPE_OPERATOR(AANoAlias)
130 PIPE_OPERATOR(AADereferenceable)
131 PIPE_OPERATOR(AAAlign)
132 PIPE_OPERATOR(AANoCapture)
133 PIPE_OPERATOR(AAValueSimplify)
134 PIPE_OPERATOR(AANoFree)
135 PIPE_OPERATOR(AAHeapToStack)
136 PIPE_OPERATOR(AAReachability)
137 PIPE_OPERATOR(AAMemoryBehavior)
138 PIPE_OPERATOR(AAMemoryLocation)
139 PIPE_OPERATOR(AAValueConstantRange)
140 PIPE_OPERATOR(AAPrivatizablePtr)
141 PIPE_OPERATOR(AAUndefinedBehavior)
142 PIPE_OPERATOR(AAPotentialValues)
143 PIPE_OPERATOR(AANoUndef)
144 PIPE_OPERATOR(AACallEdges)
145 PIPE_OPERATOR(AAFunctionReachability)
146 PIPE_OPERATOR(AAPointerInfo)
147 
148 #undef PIPE_OPERATOR
149 } // namespace llvm
150 
151 /// Get pointer operand of memory accessing instruction. If \p I is
152 /// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
153 /// is set to false and the instruction is volatile, return nullptr.
154 static const Value *getPointerOperand(const Instruction *I,
155                                       bool AllowVolatile) {
156   if (!AllowVolatile && I->isVolatile())
157     return nullptr;
158 
159   if (auto *LI = dyn_cast<LoadInst>(I)) {
160     return LI->getPointerOperand();
161   }
162 
163   if (auto *SI = dyn_cast<StoreInst>(I)) {
164     return SI->getPointerOperand();
165   }
166 
167   if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
168     return CXI->getPointerOperand();
169   }
170 
171   if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
172     return RMWI->getPointerOperand();
173   }
174 
175   return nullptr;
176 }
177 
178 /// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
179 /// advanced by \p Offset bytes. To aid later analysis the method tries to build
180 /// getelement pointer instructions that traverse the natural type of \p Ptr if
181 /// possible. If that fails, the remaining offset is adjusted byte-wise, hence
182 /// through a cast to i8*.
183 ///
184 /// TODO: This could probably live somewhere more prominantly if it doesn't
185 ///       already exist.
186 static Value *constructPointer(Type *ResTy, Type *PtrElemTy, Value *Ptr,
187                                int64_t Offset, IRBuilder<NoFolder> &IRB,
188                                const DataLayout &DL) {
189   assert(Offset >= 0 && "Negative offset not supported yet!");
190   LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
191                     << "-bytes as " << *ResTy << "\n");
192 
193   if (Offset) {
194     SmallVector<Value *, 4> Indices;
195     std::string GEPName = Ptr->getName().str() + ".0";
196 
197     // Add 0 index to look through the pointer.
198     assert((uint64_t)Offset < DL.getTypeAllocSize(PtrElemTy) &&
199            "Offset out of bounds");
200     Indices.push_back(Constant::getNullValue(IRB.getInt32Ty()));
201 
202     Type *Ty = PtrElemTy;
203     do {
204       auto *STy = dyn_cast<StructType>(Ty);
205       if (!STy)
206         // Non-aggregate type, we cast and make byte-wise progress now.
207         break;
208 
209       const StructLayout *SL = DL.getStructLayout(STy);
210       if (int64_t(SL->getSizeInBytes()) < Offset)
211         break;
212 
213       uint64_t Idx = SL->getElementContainingOffset(Offset);
214       assert(Idx < STy->getNumElements() && "Offset calculation error!");
215       uint64_t Rem = Offset - SL->getElementOffset(Idx);
216       Ty = STy->getElementType(Idx);
217 
218       LLVM_DEBUG(errs() << "Ty: " << *Ty << " Offset: " << Offset
219                         << " Idx: " << Idx << " Rem: " << Rem << "\n");
220 
221       GEPName += "." + std::to_string(Idx);
222       Indices.push_back(ConstantInt::get(IRB.getInt32Ty(), Idx));
223       Offset = Rem;
224     } while (Offset);
225 
226     // Create a GEP for the indices collected above.
227     Ptr = IRB.CreateGEP(PtrElemTy, Ptr, Indices, GEPName);
228 
229     // If an offset is left we use byte-wise adjustment.
230     if (Offset) {
231       Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
232       Ptr = IRB.CreateGEP(IRB.getInt8Ty(), Ptr, IRB.getInt32(Offset),
233                           GEPName + ".b" + Twine(Offset));
234     }
235   }
236 
237   // Ensure the result has the requested type.
238   Ptr = IRB.CreateBitOrPointerCast(Ptr, ResTy, Ptr->getName() + ".cast");
239 
240   LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
241   return Ptr;
242 }
243 
244 /// Recursively visit all values that might become \p IRP at some point. This
245 /// will be done by looking through cast instructions, selects, phis, and calls
246 /// with the "returned" attribute. Once we cannot look through the value any
247 /// further, the callback \p VisitValueCB is invoked and passed the current
248 /// value, the \p State, and a flag to indicate if we stripped anything.
249 /// Stripped means that we unpacked the value associated with \p IRP at least
250 /// once. Note that the value used for the callback may still be the value
251 /// associated with \p IRP (due to PHIs). To limit how much effort is invested,
252 /// we will never visit more values than specified by \p MaxValues.
253 template <typename StateTy>
254 static bool genericValueTraversal(
255     Attributor &A, IRPosition IRP, const AbstractAttribute &QueryingAA,
256     StateTy &State,
257     function_ref<bool(Value &, const Instruction *, StateTy &, bool)>
258         VisitValueCB,
259     const Instruction *CtxI, bool UseValueSimplify = true, int MaxValues = 16,
260     function_ref<Value *(Value *)> StripCB = nullptr) {
261 
262   const AAIsDead *LivenessAA = nullptr;
263   if (IRP.getAnchorScope())
264     LivenessAA = &A.getAAFor<AAIsDead>(
265         QueryingAA,
266         IRPosition::function(*IRP.getAnchorScope(), IRP.getCallBaseContext()),
267         DepClassTy::NONE);
268   bool AnyDead = false;
269 
270   Value *InitialV = &IRP.getAssociatedValue();
271   using Item = std::pair<Value *, const Instruction *>;
272   SmallSet<Item, 16> Visited;
273   SmallVector<Item, 16> Worklist;
274   Worklist.push_back({InitialV, CtxI});
275 
276   int Iteration = 0;
277   do {
278     Item I = Worklist.pop_back_val();
279     Value *V = I.first;
280     CtxI = I.second;
281     if (StripCB)
282       V = StripCB(V);
283 
284     // Check if we should process the current value. To prevent endless
285     // recursion keep a record of the values we followed!
286     if (!Visited.insert(I).second)
287       continue;
288 
289     // Make sure we limit the compile time for complex expressions.
290     if (Iteration++ >= MaxValues)
291       return false;
292 
293     // Explicitly look through calls with a "returned" attribute if we do
294     // not have a pointer as stripPointerCasts only works on them.
295     Value *NewV = nullptr;
296     if (V->getType()->isPointerTy()) {
297       NewV = V->stripPointerCasts();
298     } else {
299       auto *CB = dyn_cast<CallBase>(V);
300       if (CB && CB->getCalledFunction()) {
301         for (Argument &Arg : CB->getCalledFunction()->args())
302           if (Arg.hasReturnedAttr()) {
303             NewV = CB->getArgOperand(Arg.getArgNo());
304             break;
305           }
306       }
307     }
308     if (NewV && NewV != V) {
309       Worklist.push_back({NewV, CtxI});
310       continue;
311     }
312 
313     // Look through select instructions, visit assumed potential values.
314     if (auto *SI = dyn_cast<SelectInst>(V)) {
315       bool UsedAssumedInformation = false;
316       Optional<Constant *> C = A.getAssumedConstant(
317           *SI->getCondition(), QueryingAA, UsedAssumedInformation);
318       bool NoValueYet = !C.hasValue();
319       if (NoValueYet || isa_and_nonnull<UndefValue>(*C))
320         continue;
321       if (auto *CI = dyn_cast_or_null<ConstantInt>(*C)) {
322         if (CI->isZero())
323           Worklist.push_back({SI->getFalseValue(), CtxI});
324         else
325           Worklist.push_back({SI->getTrueValue(), CtxI});
326         continue;
327       }
328       // We could not simplify the condition, assume both values.(
329       Worklist.push_back({SI->getTrueValue(), CtxI});
330       Worklist.push_back({SI->getFalseValue(), CtxI});
331       continue;
332     }
333 
334     // Look through phi nodes, visit all live operands.
335     if (auto *PHI = dyn_cast<PHINode>(V)) {
336       assert(LivenessAA &&
337              "Expected liveness in the presence of instructions!");
338       for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
339         BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
340         bool UsedAssumedInformation = false;
341         if (A.isAssumedDead(*IncomingBB->getTerminator(), &QueryingAA,
342                             LivenessAA, UsedAssumedInformation,
343                             /* CheckBBLivenessOnly */ true)) {
344           AnyDead = true;
345           continue;
346         }
347         Worklist.push_back(
348             {PHI->getIncomingValue(u), IncomingBB->getTerminator()});
349       }
350       continue;
351     }
352 
353     if (UseValueSimplify && !isa<Constant>(V)) {
354       bool UsedAssumedInformation = false;
355       Optional<Value *> SimpleV =
356           A.getAssumedSimplified(*V, QueryingAA, UsedAssumedInformation);
357       if (!SimpleV.hasValue())
358         continue;
359       if (Value *NewV = SimpleV.getValue()) {
360         if (NewV != V) {
361           Worklist.push_back({NewV, CtxI});
362           continue;
363         }
364       }
365     }
366 
367     // Once a leaf is reached we inform the user through the callback.
368     if (!VisitValueCB(*V, CtxI, State, Iteration > 1))
369       return false;
370   } while (!Worklist.empty());
371 
372   // If we actually used liveness information so we have to record a dependence.
373   if (AnyDead)
374     A.recordDependence(*LivenessAA, QueryingAA, DepClassTy::OPTIONAL);
375 
376   // All values have been visited.
377   return true;
378 }
379 
380 bool AA::getAssumedUnderlyingObjects(Attributor &A, const Value &Ptr,
381                                      SmallVectorImpl<Value *> &Objects,
382                                      const AbstractAttribute &QueryingAA,
383                                      const Instruction *CtxI) {
384   auto StripCB = [&](Value *V) { return getUnderlyingObject(V); };
385   SmallPtrSet<Value *, 8> SeenObjects;
386   auto VisitValueCB = [&SeenObjects](Value &Val, const Instruction *,
387                                      SmallVectorImpl<Value *> &Objects,
388                                      bool) -> bool {
389     if (SeenObjects.insert(&Val).second)
390       Objects.push_back(&Val);
391     return true;
392   };
393   if (!genericValueTraversal<decltype(Objects)>(
394           A, IRPosition::value(Ptr), QueryingAA, Objects, VisitValueCB, CtxI,
395           true, 32, StripCB))
396     return false;
397   return true;
398 }
399 
400 const Value *stripAndAccumulateMinimalOffsets(
401     Attributor &A, const AbstractAttribute &QueryingAA, const Value *Val,
402     const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
403     bool UseAssumed = false) {
404 
405   auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
406     const IRPosition &Pos = IRPosition::value(V);
407     // Only track dependence if we are going to use the assumed info.
408     const AAValueConstantRange &ValueConstantRangeAA =
409         A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
410                                          UseAssumed ? DepClassTy::OPTIONAL
411                                                     : DepClassTy::NONE);
412     ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed()
413                                      : ValueConstantRangeAA.getKnown();
414     // We can only use the lower part of the range because the upper part can
415     // be higher than what the value can really be.
416     ROffset = Range.getSignedMin();
417     return true;
418   };
419 
420   return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
421                                                 AttributorAnalysis);
422 }
423 
424 static const Value *getMinimalBaseOfAccsesPointerOperand(
425     Attributor &A, const AbstractAttribute &QueryingAA, const Instruction *I,
426     int64_t &BytesOffset, const DataLayout &DL, bool AllowNonInbounds = false) {
427   const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
428   if (!Ptr)
429     return nullptr;
430   APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
431   const Value *Base = stripAndAccumulateMinimalOffsets(
432       A, QueryingAA, Ptr, DL, OffsetAPInt, AllowNonInbounds);
433 
434   BytesOffset = OffsetAPInt.getSExtValue();
435   return Base;
436 }
437 
438 static const Value *
439 getBasePointerOfAccessPointerOperand(const Instruction *I, int64_t &BytesOffset,
440                                      const DataLayout &DL,
441                                      bool AllowNonInbounds = false) {
442   const Value *Ptr = getPointerOperand(I, /* AllowVolatile */ false);
443   if (!Ptr)
444     return nullptr;
445 
446   return GetPointerBaseWithConstantOffset(Ptr, BytesOffset, DL,
447                                           AllowNonInbounds);
448 }
449 
450 /// Helper function to clamp a state \p S of type \p StateType with the
451 /// information in \p R and indicate/return if \p S did change (as-in update is
452 /// required to be run again).
453 template <typename StateType>
454 ChangeStatus clampStateAndIndicateChange(StateType &S, const StateType &R) {
455   auto Assumed = S.getAssumed();
456   S ^= R;
457   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
458                                    : ChangeStatus::CHANGED;
459 }
460 
461 /// Clamp the information known for all returned values of a function
462 /// (identified by \p QueryingAA) into \p S.
463 template <typename AAType, typename StateType = typename AAType::StateType>
464 static void clampReturnedValueStates(
465     Attributor &A, const AAType &QueryingAA, StateType &S,
466     const IRPosition::CallBaseContext *CBContext = nullptr) {
467   LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
468                     << QueryingAA << " into " << S << "\n");
469 
470   assert((QueryingAA.getIRPosition().getPositionKind() ==
471               IRPosition::IRP_RETURNED ||
472           QueryingAA.getIRPosition().getPositionKind() ==
473               IRPosition::IRP_CALL_SITE_RETURNED) &&
474          "Can only clamp returned value states for a function returned or call "
475          "site returned position!");
476 
477   // Use an optional state as there might not be any return values and we want
478   // to join (IntegerState::operator&) the state of all there are.
479   Optional<StateType> T;
480 
481   // Callback for each possibly returned value.
482   auto CheckReturnValue = [&](Value &RV) -> bool {
483     const IRPosition &RVPos = IRPosition::value(RV, CBContext);
484     const AAType &AA =
485         A.getAAFor<AAType>(QueryingAA, RVPos, DepClassTy::REQUIRED);
486     LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
487                       << " @ " << RVPos << "\n");
488     const StateType &AAS = AA.getState();
489     if (T.hasValue())
490       *T &= AAS;
491     else
492       T = AAS;
493     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
494                       << "\n");
495     return T->isValidState();
496   };
497 
498   if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
499     S.indicatePessimisticFixpoint();
500   else if (T.hasValue())
501     S ^= *T;
502 }
503 
504 /// Helper class for generic deduction: return value -> returned position.
505 template <typename AAType, typename BaseType,
506           typename StateType = typename BaseType::StateType,
507           bool PropagateCallBaseContext = false>
508 struct AAReturnedFromReturnedValues : public BaseType {
509   AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
510       : BaseType(IRP, A) {}
511 
512   /// See AbstractAttribute::updateImpl(...).
513   ChangeStatus updateImpl(Attributor &A) override {
514     StateType S(StateType::getBestState(this->getState()));
515     clampReturnedValueStates<AAType, StateType>(
516         A, *this, S,
517         PropagateCallBaseContext ? this->getCallBaseContext() : nullptr);
518     // TODO: If we know we visited all returned values, thus no are assumed
519     // dead, we can take the known information from the state T.
520     return clampStateAndIndicateChange<StateType>(this->getState(), S);
521   }
522 };
523 
524 /// Clamp the information known at all call sites for a given argument
525 /// (identified by \p QueryingAA) into \p S.
526 template <typename AAType, typename StateType = typename AAType::StateType>
527 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
528                                         StateType &S) {
529   LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
530                     << QueryingAA << " into " << S << "\n");
531 
532   assert(QueryingAA.getIRPosition().getPositionKind() ==
533              IRPosition::IRP_ARGUMENT &&
534          "Can only clamp call site argument states for an argument position!");
535 
536   // Use an optional state as there might not be any return values and we want
537   // to join (IntegerState::operator&) the state of all there are.
538   Optional<StateType> T;
539 
540   // The argument number which is also the call site argument number.
541   unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo();
542 
543   auto CallSiteCheck = [&](AbstractCallSite ACS) {
544     const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
545     // Check if a coresponding argument was found or if it is on not associated
546     // (which can happen for callback calls).
547     if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
548       return false;
549 
550     const AAType &AA =
551         A.getAAFor<AAType>(QueryingAA, ACSArgPos, DepClassTy::REQUIRED);
552     LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
553                       << " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
554     const StateType &AAS = AA.getState();
555     if (T.hasValue())
556       *T &= AAS;
557     else
558       T = AAS;
559     LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
560                       << "\n");
561     return T->isValidState();
562   };
563 
564   bool AllCallSitesKnown;
565   if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
566                               AllCallSitesKnown))
567     S.indicatePessimisticFixpoint();
568   else if (T.hasValue())
569     S ^= *T;
570 }
571 
572 /// This function is the bridge between argument position and the call base
573 /// context.
574 template <typename AAType, typename BaseType,
575           typename StateType = typename AAType::StateType>
576 bool getArgumentStateFromCallBaseContext(Attributor &A,
577                                          BaseType &QueryingAttribute,
578                                          IRPosition &Pos, StateType &State) {
579   assert((Pos.getPositionKind() == IRPosition::IRP_ARGUMENT) &&
580          "Expected an 'argument' position !");
581   const CallBase *CBContext = Pos.getCallBaseContext();
582   if (!CBContext)
583     return false;
584 
585   int ArgNo = Pos.getCallSiteArgNo();
586   assert(ArgNo >= 0 && "Invalid Arg No!");
587 
588   const auto &AA = A.getAAFor<AAType>(
589       QueryingAttribute, IRPosition::callsite_argument(*CBContext, ArgNo),
590       DepClassTy::REQUIRED);
591   const StateType &CBArgumentState =
592       static_cast<const StateType &>(AA.getState());
593 
594   LLVM_DEBUG(dbgs() << "[Attributor] Briding Call site context to argument"
595                     << "Position:" << Pos << "CB Arg state:" << CBArgumentState
596                     << "\n");
597 
598   // NOTE: If we want to do call site grouping it should happen here.
599   State ^= CBArgumentState;
600   return true;
601 }
602 
603 /// Helper class for generic deduction: call site argument -> argument position.
604 template <typename AAType, typename BaseType,
605           typename StateType = typename AAType::StateType,
606           bool BridgeCallBaseContext = false>
607 struct AAArgumentFromCallSiteArguments : public BaseType {
608   AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
609       : BaseType(IRP, A) {}
610 
611   /// See AbstractAttribute::updateImpl(...).
612   ChangeStatus updateImpl(Attributor &A) override {
613     StateType S = StateType::getBestState(this->getState());
614 
615     if (BridgeCallBaseContext) {
616       bool Success =
617           getArgumentStateFromCallBaseContext<AAType, BaseType, StateType>(
618               A, *this, this->getIRPosition(), S);
619       if (Success)
620         return clampStateAndIndicateChange<StateType>(this->getState(), S);
621     }
622     clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
623 
624     // TODO: If we know we visited all incoming values, thus no are assumed
625     // dead, we can take the known information from the state T.
626     return clampStateAndIndicateChange<StateType>(this->getState(), S);
627   }
628 };
629 
630 /// Helper class for generic replication: function returned -> cs returned.
631 template <typename AAType, typename BaseType,
632           typename StateType = typename BaseType::StateType,
633           bool IntroduceCallBaseContext = false>
634 struct AACallSiteReturnedFromReturned : public BaseType {
635   AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A)
636       : BaseType(IRP, A) {}
637 
638   /// See AbstractAttribute::updateImpl(...).
639   ChangeStatus updateImpl(Attributor &A) override {
640     assert(this->getIRPosition().getPositionKind() ==
641                IRPosition::IRP_CALL_SITE_RETURNED &&
642            "Can only wrap function returned positions for call site returned "
643            "positions!");
644     auto &S = this->getState();
645 
646     const Function *AssociatedFunction =
647         this->getIRPosition().getAssociatedFunction();
648     if (!AssociatedFunction)
649       return S.indicatePessimisticFixpoint();
650 
651     CallBase &CBContext = static_cast<CallBase &>(this->getAnchorValue());
652     if (IntroduceCallBaseContext)
653       LLVM_DEBUG(dbgs() << "[Attributor] Introducing call base context:"
654                         << CBContext << "\n");
655 
656     IRPosition FnPos = IRPosition::returned(
657         *AssociatedFunction, IntroduceCallBaseContext ? &CBContext : nullptr);
658     const AAType &AA = A.getAAFor<AAType>(*this, FnPos, DepClassTy::REQUIRED);
659     return clampStateAndIndicateChange(S, AA.getState());
660   }
661 };
662 
663 /// Helper function to accumulate uses.
664 template <class AAType, typename StateType = typename AAType::StateType>
665 static void followUsesInContext(AAType &AA, Attributor &A,
666                                 MustBeExecutedContextExplorer &Explorer,
667                                 const Instruction *CtxI,
668                                 SetVector<const Use *> &Uses,
669                                 StateType &State) {
670   auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
671   for (unsigned u = 0; u < Uses.size(); ++u) {
672     const Use *U = Uses[u];
673     if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
674       bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
675       if (Found && AA.followUseInMBEC(A, U, UserI, State))
676         for (const Use &Us : UserI->uses())
677           Uses.insert(&Us);
678     }
679   }
680 }
681 
682 /// Use the must-be-executed-context around \p I to add information into \p S.
683 /// The AAType class is required to have `followUseInMBEC` method with the
684 /// following signature and behaviour:
685 ///
686 /// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
687 /// U - Underlying use.
688 /// I - The user of the \p U.
689 /// Returns true if the value should be tracked transitively.
690 ///
691 template <class AAType, typename StateType = typename AAType::StateType>
692 static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
693                              Instruction &CtxI) {
694 
695   // Container for (transitive) uses of the associated value.
696   SetVector<const Use *> Uses;
697   for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
698     Uses.insert(&U);
699 
700   MustBeExecutedContextExplorer &Explorer =
701       A.getInfoCache().getMustBeExecutedContextExplorer();
702 
703   followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S);
704 
705   if (S.isAtFixpoint())
706     return;
707 
708   SmallVector<const BranchInst *, 4> BrInsts;
709   auto Pred = [&](const Instruction *I) {
710     if (const BranchInst *Br = dyn_cast<BranchInst>(I))
711       if (Br->isConditional())
712         BrInsts.push_back(Br);
713     return true;
714   };
715 
716   // Here, accumulate conditional branch instructions in the context. We
717   // explore the child paths and collect the known states. The disjunction of
718   // those states can be merged to its own state. Let ParentState_i be a state
719   // to indicate the known information for an i-th branch instruction in the
720   // context. ChildStates are created for its successors respectively.
721   //
722   // ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
723   // ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
724   //      ...
725   // ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
726   //
727   // Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
728   //
729   // FIXME: Currently, recursive branches are not handled. For example, we
730   // can't deduce that ptr must be dereferenced in below function.
731   //
732   // void f(int a, int c, int *ptr) {
733   //    if(a)
734   //      if (b) {
735   //        *ptr = 0;
736   //      } else {
737   //        *ptr = 1;
738   //      }
739   //    else {
740   //      if (b) {
741   //        *ptr = 0;
742   //      } else {
743   //        *ptr = 1;
744   //      }
745   //    }
746   // }
747 
748   Explorer.checkForAllContext(&CtxI, Pred);
749   for (const BranchInst *Br : BrInsts) {
750     StateType ParentState;
751 
752     // The known state of the parent state is a conjunction of children's
753     // known states so it is initialized with a best state.
754     ParentState.indicateOptimisticFixpoint();
755 
756     for (const BasicBlock *BB : Br->successors()) {
757       StateType ChildState;
758 
759       size_t BeforeSize = Uses.size();
760       followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState);
761 
762       // Erase uses which only appear in the child.
763       for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
764         It = Uses.erase(It);
765 
766       ParentState &= ChildState;
767     }
768 
769     // Use only known state.
770     S += ParentState;
771   }
772 }
773 
774 /// ------------------------ PointerInfo ---------------------------------------
775 
776 namespace llvm {
777 namespace AA {
778 namespace PointerInfo {
779 
780 /// An access kind description as used by AAPointerInfo.
781 struct OffsetAndSize;
782 
783 struct State;
784 
785 } // namespace PointerInfo
786 } // namespace AA
787 
788 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage.
789 template <>
790 struct DenseMapInfo<AAPointerInfo::Access> : DenseMapInfo<Instruction *> {
791   using Access = AAPointerInfo::Access;
792   static inline Access getEmptyKey();
793   static inline Access getTombstoneKey();
794   static unsigned getHashValue(const Access &A);
795   static bool isEqual(const Access &LHS, const Access &RHS);
796 };
797 
798 /// Helper that allows OffsetAndSize as a key in a DenseMap.
799 template <>
800 struct DenseMapInfo<AA::PointerInfo ::OffsetAndSize>
801     : DenseMapInfo<std::pair<int64_t, int64_t>> {};
802 
803 /// Helper for AA::PointerInfo::Acccess DenseMap/Set usage ignoring everythign
804 /// but the instruction
805 struct AccessAsInstructionInfo : DenseMapInfo<Instruction *> {
806   using Base = DenseMapInfo<Instruction *>;
807   using Access = AAPointerInfo::Access;
808   static inline Access getEmptyKey();
809   static inline Access getTombstoneKey();
810   static unsigned getHashValue(const Access &A);
811   static bool isEqual(const Access &LHS, const Access &RHS);
812 };
813 
814 } // namespace llvm
815 
816 /// Helper to represent an access offset and size, with logic to deal with
817 /// uncertainty and check for overlapping accesses.
818 struct AA::PointerInfo::OffsetAndSize : public std::pair<int64_t, int64_t> {
819   using BaseTy = std::pair<int64_t, int64_t>;
820   OffsetAndSize(int64_t Offset, int64_t Size) : BaseTy(Offset, Size) {}
821   OffsetAndSize(const BaseTy &P) : BaseTy(P) {}
822   int64_t getOffset() const { return first; }
823   int64_t getSize() const { return second; }
824   static OffsetAndSize getUnknown() { return OffsetAndSize(Unknown, Unknown); }
825 
826   /// Return true if this offset and size pair might describe an address that
827   /// overlaps with \p OAS.
828   bool mayOverlap(const OffsetAndSize &OAS) const {
829     // Any unknown value and we are giving up -> overlap.
830     if (OAS.getOffset() == OffsetAndSize::Unknown ||
831         OAS.getSize() == OffsetAndSize::Unknown ||
832         getOffset() == OffsetAndSize::Unknown ||
833         getSize() == OffsetAndSize::Unknown)
834       return true;
835 
836     // Check if one offset point is in the other interval [offset, offset+size].
837     return OAS.getOffset() + OAS.getSize() > getOffset() &&
838            OAS.getOffset() < getOffset() + getSize();
839   }
840 
841   /// Constant used to represent unknown offset or sizes.
842   static constexpr int64_t Unknown = 1 << 31;
843 };
844 
845 /// Implementation of the DenseMapInfo.
846 ///
847 ///{
848 inline llvm::AccessAsInstructionInfo::Access
849 llvm::AccessAsInstructionInfo::getEmptyKey() {
850   return Access(Base::getEmptyKey(), nullptr, AAPointerInfo::AK_READ, nullptr);
851 }
852 inline llvm::AccessAsInstructionInfo::Access
853 llvm::AccessAsInstructionInfo::getTombstoneKey() {
854   return Access(Base::getTombstoneKey(), nullptr, AAPointerInfo::AK_READ,
855                 nullptr);
856 }
857 unsigned llvm::AccessAsInstructionInfo::getHashValue(
858     const llvm::AccessAsInstructionInfo::Access &A) {
859   return Base::getHashValue(A.getRemoteInst());
860 }
861 bool llvm::AccessAsInstructionInfo::isEqual(
862     const llvm::AccessAsInstructionInfo::Access &LHS,
863     const llvm::AccessAsInstructionInfo::Access &RHS) {
864   return LHS.getRemoteInst() == RHS.getRemoteInst();
865 }
866 inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access
867 llvm::DenseMapInfo<AAPointerInfo::Access>::getEmptyKey() {
868   return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_READ,
869                                nullptr);
870 }
871 inline llvm::DenseMapInfo<AAPointerInfo::Access>::Access
872 llvm::DenseMapInfo<AAPointerInfo::Access>::getTombstoneKey() {
873   return AAPointerInfo::Access(nullptr, nullptr, AAPointerInfo::AK_WRITE,
874                                nullptr);
875 }
876 
877 unsigned llvm::DenseMapInfo<AAPointerInfo::Access>::getHashValue(
878     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &A) {
879   return detail::combineHashValue(
880              DenseMapInfo<Instruction *>::getHashValue(A.getRemoteInst()),
881              (A.isWrittenValueYetUndetermined()
882                   ? ~0
883                   : DenseMapInfo<Value *>::getHashValue(A.getWrittenValue()))) +
884          A.getKind();
885 }
886 
887 bool llvm::DenseMapInfo<AAPointerInfo::Access>::isEqual(
888     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &LHS,
889     const llvm::DenseMapInfo<AAPointerInfo::Access>::Access &RHS) {
890   return LHS == RHS;
891 }
892 ///}
893 
894 /// A type to track pointer/struct usage and accesses for AAPointerInfo.
895 struct AA::PointerInfo::State : public AbstractState {
896 
897   /// Return the best possible representable state.
898   static State getBestState(const State &SIS) { return State(); }
899 
900   /// Return the worst possible representable state.
901   static State getWorstState(const State &SIS) {
902     State R;
903     R.indicatePessimisticFixpoint();
904     return R;
905   }
906 
907   State() {}
908   State(const State &SIS) : AccessBins(SIS.AccessBins) {}
909   State(State &&SIS) : AccessBins(std::move(SIS.AccessBins)) {}
910 
911   const State &getAssumed() const { return *this; }
912 
913   /// See AbstractState::isValidState().
914   bool isValidState() const override { return BS.isValidState(); }
915 
916   /// See AbstractState::isAtFixpoint().
917   bool isAtFixpoint() const override { return BS.isAtFixpoint(); }
918 
919   /// See AbstractState::indicateOptimisticFixpoint().
920   ChangeStatus indicateOptimisticFixpoint() override {
921     BS.indicateOptimisticFixpoint();
922     return ChangeStatus::UNCHANGED;
923   }
924 
925   /// See AbstractState::indicatePessimisticFixpoint().
926   ChangeStatus indicatePessimisticFixpoint() override {
927     BS.indicatePessimisticFixpoint();
928     return ChangeStatus::CHANGED;
929   }
930 
931   State &operator=(const State &R) {
932     if (this == &R)
933       return *this;
934     BS = R.BS;
935     AccessBins = R.AccessBins;
936     return *this;
937   }
938 
939   State &operator=(State &&R) {
940     if (this == &R)
941       return *this;
942     std::swap(BS, R.BS);
943     std::swap(AccessBins, R.AccessBins);
944     return *this;
945   }
946 
947   bool operator==(const State &R) const {
948     if (BS != R.BS)
949       return false;
950     if (AccessBins.size() != R.AccessBins.size())
951       return false;
952     auto It = begin(), RIt = R.begin(), E = end();
953     while (It != E) {
954       if (It->getFirst() != RIt->getFirst())
955         return false;
956       auto &Accs = It->getSecond();
957       auto &RAccs = RIt->getSecond();
958       if (Accs.size() != RAccs.size())
959         return false;
960       auto AccIt = Accs.begin(), RAccIt = RAccs.begin(), AccE = Accs.end();
961       while (AccIt != AccE) {
962         if (*AccIt != *RAccIt)
963           return false;
964         ++AccIt;
965         ++RAccIt;
966       }
967       ++It;
968       ++RIt;
969     }
970     return true;
971   }
972   bool operator!=(const State &R) const { return !(*this == R); }
973 
974   /// We store accesses in a set with the instruction as key.
975   using Accesses = DenseSet<AAPointerInfo::Access, AccessAsInstructionInfo>;
976 
977   /// We store all accesses in bins denoted by their offset and size.
978   using AccessBinsTy = DenseMap<OffsetAndSize, Accesses>;
979 
980   AccessBinsTy::const_iterator begin() const { return AccessBins.begin(); }
981   AccessBinsTy::const_iterator end() const { return AccessBins.end(); }
982 
983 protected:
984   /// The bins with all the accesses for the associated pointer.
985   DenseMap<OffsetAndSize, Accesses> AccessBins;
986 
987   /// Add a new access to the state at offset \p Offset and with size \p Size.
988   /// The access is associated with \p I, writes \p Content (if anything), and
989   /// is of kind \p Kind.
990   /// \Returns CHANGED, if the state changed, UNCHANGED otherwise.
991   ChangeStatus addAccess(int64_t Offset, int64_t Size, Instruction &I,
992                          Optional<Value *> Content,
993                          AAPointerInfo::AccessKind Kind, Type *Ty,
994                          Instruction *RemoteI = nullptr,
995                          Accesses *BinPtr = nullptr) {
996     OffsetAndSize Key{Offset, Size};
997     Accesses &Bin = BinPtr ? *BinPtr : AccessBins[Key];
998     AAPointerInfo::Access Acc(&I, RemoteI ? RemoteI : &I, Content, Kind, Ty);
999     // Check if we have an access for this instruction in this bin, if not,
1000     // simply add it.
1001     auto It = Bin.find(Acc);
1002     if (It == Bin.end()) {
1003       Bin.insert(Acc);
1004       return ChangeStatus::CHANGED;
1005     }
1006     // If the existing access is the same as then new one, nothing changed.
1007     AAPointerInfo::Access Before = *It;
1008     // The new one will be combined with the existing one.
1009     *It &= Acc;
1010     return *It == Before ? ChangeStatus::UNCHANGED : ChangeStatus::CHANGED;
1011   }
1012 
1013   /// See AAPointerInfo::forallInterferingAccesses.
1014   bool forallInterferingAccesses(
1015       Instruction &I,
1016       function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
1017     if (!isValidState())
1018       return false;
1019     // First find the offset and size of I.
1020     OffsetAndSize OAS(-1, -1);
1021     for (auto &It : AccessBins) {
1022       for (auto &Access : It.getSecond()) {
1023         if (Access.getRemoteInst() == &I) {
1024           OAS = It.getFirst();
1025           break;
1026         }
1027       }
1028       if (OAS.getSize() != -1)
1029         break;
1030     }
1031     if (OAS.getSize() == -1)
1032       return true;
1033 
1034     // Now that we have an offset and size, find all overlapping ones and use
1035     // the callback on the accesses.
1036     for (auto &It : AccessBins) {
1037       OffsetAndSize ItOAS = It.getFirst();
1038       if (!OAS.mayOverlap(ItOAS))
1039         continue;
1040       for (auto &Access : It.getSecond())
1041         if (!CB(Access, OAS == ItOAS))
1042           return false;
1043     }
1044     return true;
1045   }
1046 
1047 private:
1048   /// State to track fixpoint and validity.
1049   BooleanState BS;
1050 };
1051 
1052 struct AAPointerInfoImpl
1053     : public StateWrapper<AA::PointerInfo::State, AAPointerInfo> {
1054   using BaseTy = StateWrapper<AA::PointerInfo::State, AAPointerInfo>;
1055   AAPointerInfoImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
1056 
1057   /// See AbstractAttribute::initialize(...).
1058   void initialize(Attributor &A) override { AAPointerInfo::initialize(A); }
1059 
1060   /// See AbstractAttribute::getAsStr().
1061   const std::string getAsStr() const override {
1062     return std::string("PointerInfo ") +
1063            (isValidState() ? (std::string("#") +
1064                               std::to_string(AccessBins.size()) + " bins")
1065                            : "<invalid>");
1066   }
1067 
1068   /// See AbstractAttribute::manifest(...).
1069   ChangeStatus manifest(Attributor &A) override {
1070     return AAPointerInfo::manifest(A);
1071   }
1072 
1073   bool forallInterferingAccesses(
1074       LoadInst &LI, function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1075       const override {
1076     return State::forallInterferingAccesses(LI, CB);
1077   }
1078   bool forallInterferingAccesses(
1079       StoreInst &SI, function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
1080       const override {
1081     return State::forallInterferingAccesses(SI, CB);
1082   }
1083 
1084   ChangeStatus translateAndAddCalleeState(Attributor &A,
1085                                           const AAPointerInfo &CalleeAA,
1086                                           int64_t CallArgOffset, CallBase &CB) {
1087     using namespace AA::PointerInfo;
1088     if (!CalleeAA.getState().isValidState() || !isValidState())
1089       return indicatePessimisticFixpoint();
1090 
1091     const auto &CalleeImplAA = static_cast<const AAPointerInfoImpl &>(CalleeAA);
1092     bool IsByval = CalleeImplAA.getAssociatedArgument()->hasByValAttr();
1093 
1094     // Combine the accesses bin by bin.
1095     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1096     for (auto &It : CalleeImplAA.getState()) {
1097       OffsetAndSize OAS = OffsetAndSize::getUnknown();
1098       if (CallArgOffset != OffsetAndSize::Unknown)
1099         OAS = OffsetAndSize(It.first.getOffset() + CallArgOffset,
1100                             It.first.getSize());
1101       Accesses &Bin = AccessBins[OAS];
1102       for (const AAPointerInfo::Access &RAcc : It.second) {
1103         if (IsByval && !RAcc.isRead())
1104           continue;
1105         bool UsedAssumedInformation = false;
1106         Optional<Value *> Content = A.translateArgumentToCallSiteContent(
1107             RAcc.getContent(), CB, *this, UsedAssumedInformation);
1108         AccessKind AK =
1109             AccessKind(RAcc.getKind() & (IsByval ? AccessKind::AK_READ
1110                                                  : AccessKind::AK_READ_WRITE));
1111         Changed =
1112             Changed | addAccess(OAS.getOffset(), OAS.getSize(), CB, Content, AK,
1113                                 RAcc.getType(), RAcc.getRemoteInst(), &Bin);
1114       }
1115     }
1116     return Changed;
1117   }
1118 
1119   /// Statistic tracking for all AAPointerInfo implementations.
1120   /// See AbstractAttribute::trackStatistics().
1121   void trackPointerInfoStatistics(const IRPosition &IRP) const {}
1122 };
1123 
1124 struct AAPointerInfoFloating : public AAPointerInfoImpl {
1125   using AccessKind = AAPointerInfo::AccessKind;
1126   AAPointerInfoFloating(const IRPosition &IRP, Attributor &A)
1127       : AAPointerInfoImpl(IRP, A) {}
1128 
1129   /// See AbstractAttribute::initialize(...).
1130   void initialize(Attributor &A) override { AAPointerInfoImpl::initialize(A); }
1131 
1132   /// Deal with an access and signal if it was handled successfully.
1133   bool handleAccess(Attributor &A, Instruction &I, Value &Ptr,
1134                     Optional<Value *> Content, AccessKind Kind, int64_t Offset,
1135                     ChangeStatus &Changed, Type *Ty,
1136                     int64_t Size = AA::PointerInfo::OffsetAndSize::Unknown) {
1137     using namespace AA::PointerInfo;
1138     // No need to find a size if one is given or the offset is unknown.
1139     if (Offset != OffsetAndSize::Unknown && Size == OffsetAndSize::Unknown &&
1140         Ty) {
1141       const DataLayout &DL = A.getDataLayout();
1142       TypeSize AccessSize = DL.getTypeStoreSize(Ty);
1143       if (!AccessSize.isScalable())
1144         Size = AccessSize.getFixedSize();
1145     }
1146     Changed = Changed | addAccess(Offset, Size, I, Content, Kind, Ty);
1147     return true;
1148   };
1149 
1150   /// See AbstractAttribute::updateImpl(...).
1151   ChangeStatus updateImpl(Attributor &A) override {
1152     using namespace AA::PointerInfo;
1153     State S = getState();
1154     ChangeStatus Changed = ChangeStatus::UNCHANGED;
1155     Value &AssociatedValue = getAssociatedValue();
1156     struct OffsetInfo {
1157       int64_t Offset = 0;
1158     };
1159 
1160     const DataLayout &DL = A.getDataLayout();
1161     DenseMap<Value *, OffsetInfo> OffsetInfoMap;
1162     OffsetInfoMap[&AssociatedValue] = {};
1163 
1164     auto HandlePassthroughUser = [&](Value *Usr, OffsetInfo &PtrOI,
1165                                      bool &Follow) {
1166       OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1167       UsrOI = PtrOI;
1168       Follow = true;
1169       return true;
1170     };
1171 
1172     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
1173       Value *CurPtr = U.get();
1174       User *Usr = U.getUser();
1175       LLVM_DEBUG(dbgs() << "[AAPointerInfo] Analyze " << *CurPtr << " in "
1176                         << *Usr << "\n");
1177 
1178       OffsetInfo &PtrOI = OffsetInfoMap[CurPtr];
1179 
1180       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
1181         if (CE->isCast())
1182           return HandlePassthroughUser(Usr, PtrOI, Follow);
1183         if (CE->isCompare())
1184           return true;
1185         if (!CE->isGEPWithNoNotionalOverIndexing()) {
1186           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled constant user " << *CE
1187                             << "\n");
1188           return false;
1189         }
1190       }
1191       if (auto *GEP = dyn_cast<GEPOperator>(Usr)) {
1192         OffsetInfo &UsrOI = OffsetInfoMap[Usr];
1193         UsrOI = PtrOI;
1194 
1195         // TODO: Use range information.
1196         if (PtrOI.Offset == OffsetAndSize::Unknown ||
1197             !GEP->hasAllConstantIndices()) {
1198           UsrOI.Offset = OffsetAndSize::Unknown;
1199           Follow = true;
1200           return true;
1201         }
1202 
1203         SmallVector<Value *, 8> Indices;
1204         for (Use &Idx : llvm::make_range(GEP->idx_begin(), GEP->idx_end())) {
1205           if (auto *CIdx = dyn_cast<ConstantInt>(Idx)) {
1206             Indices.push_back(CIdx);
1207             continue;
1208           }
1209 
1210           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Non constant GEP index " << *GEP
1211                             << " : " << *Idx << "\n");
1212           return false;
1213         }
1214         UsrOI.Offset = PtrOI.Offset +
1215                        DL.getIndexedOffsetInType(
1216                            CurPtr->getType()->getPointerElementType(), Indices);
1217         Follow = true;
1218         return true;
1219       }
1220       if (isa<CastInst>(Usr) || isa<PHINode>(Usr) || isa<SelectInst>(Usr))
1221         return HandlePassthroughUser(Usr, PtrOI, Follow);
1222       if (auto *LoadI = dyn_cast<LoadInst>(Usr))
1223         return handleAccess(A, *LoadI, *CurPtr, /* Content */ nullptr,
1224                             AccessKind::AK_READ, PtrOI.Offset, Changed,
1225                             LoadI->getType());
1226       if (auto *StoreI = dyn_cast<StoreInst>(Usr)) {
1227         if (StoreI->getValueOperand() == CurPtr) {
1228           LLVM_DEBUG(dbgs() << "[AAPointerInfo] Escaping use in store "
1229                             << *StoreI << "\n");
1230           return false;
1231         }
1232         bool UsedAssumedInformation = false;
1233         Optional<Value *> Content = A.getAssumedSimplified(
1234             *StoreI->getValueOperand(), *this, UsedAssumedInformation);
1235         return handleAccess(A, *StoreI, *CurPtr, Content, AccessKind::AK_WRITE,
1236                             PtrOI.Offset, Changed,
1237                             StoreI->getValueOperand()->getType());
1238       }
1239       if (auto *CB = dyn_cast<CallBase>(Usr)) {
1240         if (CB->isLifetimeStartOrEnd())
1241           return true;
1242         if (CB->isArgOperand(&U)) {
1243           unsigned ArgNo = CB->getArgOperandNo(&U);
1244           const auto &CSArgPI = A.getAAFor<AAPointerInfo>(
1245               *this, IRPosition::callsite_argument(*CB, ArgNo),
1246               DepClassTy::REQUIRED);
1247           Changed = translateAndAddCalleeState(A, CSArgPI, PtrOI.Offset, *CB) |
1248                     Changed;
1249           return true;
1250         }
1251         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Call user not handled " << *CB
1252                           << "\n");
1253         // TODO: Allow some call uses
1254         return false;
1255       }
1256 
1257       LLVM_DEBUG(dbgs() << "[AAPointerInfo] User not handled " << *Usr << "\n");
1258       return false;
1259     };
1260     if (!A.checkForAllUses(UsePred, *this, AssociatedValue,
1261                            /* CheckBBLivenessOnly */ true))
1262       return indicatePessimisticFixpoint();
1263 
1264     LLVM_DEBUG({
1265       dbgs() << "Accesses by bin after update:\n";
1266       for (auto &It : AccessBins) {
1267         dbgs() << "[" << It.first.getOffset() << "-"
1268                << It.first.getOffset() + It.first.getSize()
1269                << "] : " << It.getSecond().size() << "\n";
1270         for (auto &Acc : It.getSecond()) {
1271           dbgs() << "     - " << Acc.getKind() << " - " << *Acc.getLocalInst()
1272                  << "\n";
1273           if (Acc.getLocalInst() != Acc.getRemoteInst())
1274             dbgs() << "     -->                         "
1275                    << *Acc.getRemoteInst() << "\n";
1276           if (!Acc.isWrittenValueYetUndetermined())
1277             dbgs() << "     - " << Acc.getWrittenValue() << "\n";
1278         }
1279       }
1280     });
1281 
1282     return Changed;
1283   }
1284 
1285   /// See AbstractAttribute::trackStatistics()
1286   void trackStatistics() const override {
1287     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1288   }
1289 };
1290 
1291 struct AAPointerInfoReturned final : AAPointerInfoImpl {
1292   AAPointerInfoReturned(const IRPosition &IRP, Attributor &A)
1293       : AAPointerInfoImpl(IRP, A) {}
1294 
1295   /// See AbstractAttribute::updateImpl(...).
1296   ChangeStatus updateImpl(Attributor &A) override {
1297     return indicatePessimisticFixpoint();
1298   }
1299 
1300   /// See AbstractAttribute::trackStatistics()
1301   void trackStatistics() const override {
1302     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1303   }
1304 };
1305 
1306 struct AAPointerInfoArgument final : AAPointerInfoFloating {
1307   AAPointerInfoArgument(const IRPosition &IRP, Attributor &A)
1308       : AAPointerInfoFloating(IRP, A) {}
1309 
1310   /// See AbstractAttribute::initialize(...).
1311   void initialize(Attributor &A) override {
1312     AAPointerInfoFloating::initialize(A);
1313     if (getAnchorScope()->isDeclaration())
1314       indicatePessimisticFixpoint();
1315   }
1316 
1317   /// See AbstractAttribute::trackStatistics()
1318   void trackStatistics() const override {
1319     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1320   }
1321 };
1322 
1323 struct AAPointerInfoCallSiteArgument final : AAPointerInfoFloating {
1324   AAPointerInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
1325       : AAPointerInfoFloating(IRP, A) {}
1326 
1327   /// See AbstractAttribute::updateImpl(...).
1328   ChangeStatus updateImpl(Attributor &A) override {
1329     using namespace AA::PointerInfo;
1330     // We handle memory intrinsics explicitly, at least the first (=
1331     // destination) and second (=source) arguments as we know how they are
1332     // accessed.
1333     if (auto *MI = dyn_cast_or_null<MemIntrinsic>(getCtxI())) {
1334       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1335       int64_t LengthVal = OffsetAndSize::Unknown;
1336       if (Length)
1337         LengthVal = Length->getSExtValue();
1338       Value &Ptr = getAssociatedValue();
1339       unsigned ArgNo = getIRPosition().getCallSiteArgNo();
1340       ChangeStatus Changed;
1341       if (ArgNo == 0) {
1342         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_WRITE, 0, Changed,
1343                      nullptr, LengthVal);
1344       } else if (ArgNo == 1) {
1345         handleAccess(A, *MI, Ptr, nullptr, AccessKind::AK_READ, 0, Changed,
1346                      nullptr, LengthVal);
1347       } else {
1348         LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled memory intrinsic "
1349                           << *MI << "\n");
1350         return indicatePessimisticFixpoint();
1351       }
1352       return Changed;
1353     }
1354 
1355     // TODO: Once we have call site specific value information we can provide
1356     //       call site specific liveness information and then it makes
1357     //       sense to specialize attributes for call sites arguments instead of
1358     //       redirecting requests to the callee argument.
1359     Argument *Arg = getAssociatedArgument();
1360     if (!Arg)
1361       return indicatePessimisticFixpoint();
1362     const IRPosition &ArgPos = IRPosition::argument(*Arg);
1363     auto &ArgAA =
1364         A.getAAFor<AAPointerInfo>(*this, ArgPos, DepClassTy::REQUIRED);
1365     return translateAndAddCalleeState(A, ArgAA, 0, *cast<CallBase>(getCtxI()));
1366   }
1367 
1368   /// See AbstractAttribute::trackStatistics()
1369   void trackStatistics() const override {
1370     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1371   }
1372 };
1373 
1374 struct AAPointerInfoCallSiteReturned final : AAPointerInfoFloating {
1375   AAPointerInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
1376       : AAPointerInfoFloating(IRP, A) {}
1377 
1378   /// See AbstractAttribute::trackStatistics()
1379   void trackStatistics() const override {
1380     AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
1381   }
1382 };
1383 
1384 /// -----------------------NoUnwind Function Attribute--------------------------
1385 
1386 struct AANoUnwindImpl : AANoUnwind {
1387   AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
1388 
1389   const std::string getAsStr() const override {
1390     return getAssumed() ? "nounwind" : "may-unwind";
1391   }
1392 
1393   /// See AbstractAttribute::updateImpl(...).
1394   ChangeStatus updateImpl(Attributor &A) override {
1395     auto Opcodes = {
1396         (unsigned)Instruction::Invoke,      (unsigned)Instruction::CallBr,
1397         (unsigned)Instruction::Call,        (unsigned)Instruction::CleanupRet,
1398         (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
1399 
1400     auto CheckForNoUnwind = [&](Instruction &I) {
1401       if (!I.mayThrow())
1402         return true;
1403 
1404       if (const auto *CB = dyn_cast<CallBase>(&I)) {
1405         const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
1406             *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1407         return NoUnwindAA.isAssumedNoUnwind();
1408       }
1409       return false;
1410     };
1411 
1412     bool UsedAssumedInformation = false;
1413     if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes,
1414                                    UsedAssumedInformation))
1415       return indicatePessimisticFixpoint();
1416 
1417     return ChangeStatus::UNCHANGED;
1418   }
1419 };
1420 
1421 struct AANoUnwindFunction final : public AANoUnwindImpl {
1422   AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
1423       : AANoUnwindImpl(IRP, A) {}
1424 
1425   /// See AbstractAttribute::trackStatistics()
1426   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
1427 };
1428 
1429 /// NoUnwind attribute deduction for a call sites.
1430 struct AANoUnwindCallSite final : AANoUnwindImpl {
1431   AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
1432       : AANoUnwindImpl(IRP, A) {}
1433 
1434   /// See AbstractAttribute::initialize(...).
1435   void initialize(Attributor &A) override {
1436     AANoUnwindImpl::initialize(A);
1437     Function *F = getAssociatedFunction();
1438     if (!F || F->isDeclaration())
1439       indicatePessimisticFixpoint();
1440   }
1441 
1442   /// See AbstractAttribute::updateImpl(...).
1443   ChangeStatus updateImpl(Attributor &A) override {
1444     // TODO: Once we have call site specific value information we can provide
1445     //       call site specific liveness information and then it makes
1446     //       sense to specialize attributes for call sites arguments instead of
1447     //       redirecting requests to the callee argument.
1448     Function *F = getAssociatedFunction();
1449     const IRPosition &FnPos = IRPosition::function(*F);
1450     auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::REQUIRED);
1451     return clampStateAndIndicateChange(getState(), FnAA.getState());
1452   }
1453 
1454   /// See AbstractAttribute::trackStatistics()
1455   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
1456 };
1457 
1458 /// --------------------- Function Return Values -------------------------------
1459 
1460 /// "Attribute" that collects all potential returned values and the return
1461 /// instructions that they arise from.
1462 ///
1463 /// If there is a unique returned value R, the manifest method will:
1464 ///   - mark R with the "returned" attribute, if R is an argument.
1465 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
1466 
1467   /// Mapping of values potentially returned by the associated function to the
1468   /// return instructions that might return them.
1469   MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
1470 
1471   /// State flags
1472   ///
1473   ///{
1474   bool IsFixed = false;
1475   bool IsValidState = true;
1476   ///}
1477 
1478 public:
1479   AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A)
1480       : AAReturnedValues(IRP, A) {}
1481 
1482   /// See AbstractAttribute::initialize(...).
1483   void initialize(Attributor &A) override {
1484     // Reset the state.
1485     IsFixed = false;
1486     IsValidState = true;
1487     ReturnedValues.clear();
1488 
1489     Function *F = getAssociatedFunction();
1490     if (!F || F->isDeclaration()) {
1491       indicatePessimisticFixpoint();
1492       return;
1493     }
1494     assert(!F->getReturnType()->isVoidTy() &&
1495            "Did not expect a void return type!");
1496 
1497     // The map from instruction opcodes to those instructions in the function.
1498     auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
1499 
1500     // Look through all arguments, if one is marked as returned we are done.
1501     for (Argument &Arg : F->args()) {
1502       if (Arg.hasReturnedAttr()) {
1503         auto &ReturnInstSet = ReturnedValues[&Arg];
1504         if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret))
1505           for (Instruction *RI : *Insts)
1506             ReturnInstSet.insert(cast<ReturnInst>(RI));
1507 
1508         indicateOptimisticFixpoint();
1509         return;
1510       }
1511     }
1512 
1513     if (!A.isFunctionIPOAmendable(*F))
1514       indicatePessimisticFixpoint();
1515   }
1516 
1517   /// See AbstractAttribute::manifest(...).
1518   ChangeStatus manifest(Attributor &A) override;
1519 
1520   /// See AbstractAttribute::getState(...).
1521   AbstractState &getState() override { return *this; }
1522 
1523   /// See AbstractAttribute::getState(...).
1524   const AbstractState &getState() const override { return *this; }
1525 
1526   /// See AbstractAttribute::updateImpl(Attributor &A).
1527   ChangeStatus updateImpl(Attributor &A) override;
1528 
1529   llvm::iterator_range<iterator> returned_values() override {
1530     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1531   }
1532 
1533   llvm::iterator_range<const_iterator> returned_values() const override {
1534     return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
1535   }
1536 
1537   /// Return the number of potential return values, -1 if unknown.
1538   size_t getNumReturnValues() const override {
1539     return isValidState() ? ReturnedValues.size() : -1;
1540   }
1541 
1542   /// Return an assumed unique return value if a single candidate is found. If
1543   /// there cannot be one, return a nullptr. If it is not clear yet, return the
1544   /// Optional::NoneType.
1545   Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
1546 
1547   /// See AbstractState::checkForAllReturnedValues(...).
1548   bool checkForAllReturnedValuesAndReturnInsts(
1549       function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1550       const override;
1551 
1552   /// Pretty print the attribute similar to the IR representation.
1553   const std::string getAsStr() const override;
1554 
1555   /// See AbstractState::isAtFixpoint().
1556   bool isAtFixpoint() const override { return IsFixed; }
1557 
1558   /// See AbstractState::isValidState().
1559   bool isValidState() const override { return IsValidState; }
1560 
1561   /// See AbstractState::indicateOptimisticFixpoint(...).
1562   ChangeStatus indicateOptimisticFixpoint() override {
1563     IsFixed = true;
1564     return ChangeStatus::UNCHANGED;
1565   }
1566 
1567   ChangeStatus indicatePessimisticFixpoint() override {
1568     IsFixed = true;
1569     IsValidState = false;
1570     return ChangeStatus::CHANGED;
1571   }
1572 };
1573 
1574 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
1575   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1576 
1577   // Bookkeeping.
1578   assert(isValidState());
1579   STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
1580                   "Number of function with known return values");
1581 
1582   // Check if we have an assumed unique return value that we could manifest.
1583   Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
1584 
1585   if (!UniqueRV.hasValue() || !UniqueRV.getValue())
1586     return Changed;
1587 
1588   // Bookkeeping.
1589   STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
1590                   "Number of function with unique return");
1591   // If the assumed unique return value is an argument, annotate it.
1592   if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
1593     if (UniqueRVArg->getType()->canLosslesslyBitCastTo(
1594             getAssociatedFunction()->getReturnType())) {
1595       getIRPosition() = IRPosition::argument(*UniqueRVArg);
1596       Changed = IRAttribute::manifest(A);
1597     }
1598   }
1599   return Changed;
1600 }
1601 
1602 const std::string AAReturnedValuesImpl::getAsStr() const {
1603   return (isAtFixpoint() ? "returns(#" : "may-return(#") +
1604          (isValidState() ? std::to_string(getNumReturnValues()) : "?") + ")";
1605 }
1606 
1607 Optional<Value *>
1608 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
1609   // If checkForAllReturnedValues provides a unique value, ignoring potential
1610   // undef values that can also be present, it is assumed to be the actual
1611   // return value and forwarded to the caller of this method. If there are
1612   // multiple, a nullptr is returned indicating there cannot be a unique
1613   // returned value.
1614   Optional<Value *> UniqueRV;
1615   Type *Ty = getAssociatedFunction()->getReturnType();
1616 
1617   auto Pred = [&](Value &RV) -> bool {
1618     UniqueRV = AA::combineOptionalValuesInAAValueLatice(UniqueRV, &RV, Ty);
1619     return UniqueRV != Optional<Value *>(nullptr);
1620   };
1621 
1622   if (!A.checkForAllReturnedValues(Pred, *this))
1623     UniqueRV = nullptr;
1624 
1625   return UniqueRV;
1626 }
1627 
1628 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
1629     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
1630     const {
1631   if (!isValidState())
1632     return false;
1633 
1634   // Check all returned values but ignore call sites as long as we have not
1635   // encountered an overdefined one during an update.
1636   for (auto &It : ReturnedValues) {
1637     Value *RV = It.first;
1638     if (!Pred(*RV, It.second))
1639       return false;
1640   }
1641 
1642   return true;
1643 }
1644 
1645 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
1646   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1647 
1648   auto ReturnValueCB = [&](Value &V, const Instruction *CtxI, ReturnInst &Ret,
1649                            bool) -> bool {
1650     bool UsedAssumedInformation = false;
1651     Optional<Value *> SimpleRetVal =
1652         A.getAssumedSimplified(V, *this, UsedAssumedInformation);
1653     if (!SimpleRetVal.hasValue())
1654       return true;
1655     Value *RetVal = *SimpleRetVal ? *SimpleRetVal : &V;
1656     assert(AA::isValidInScope(*RetVal, Ret.getFunction()) &&
1657            "Assumed returned value should be valid in function scope!");
1658     if (ReturnedValues[RetVal].insert(&Ret))
1659       Changed = ChangeStatus::CHANGED;
1660     return true;
1661   };
1662 
1663   auto ReturnInstCB = [&](Instruction &I) {
1664     ReturnInst &Ret = cast<ReturnInst>(I);
1665     return genericValueTraversal<ReturnInst>(
1666         A, IRPosition::value(*Ret.getReturnValue()), *this, Ret, ReturnValueCB,
1667         &I);
1668   };
1669 
1670   // Discover returned values from all live returned instructions in the
1671   // associated function.
1672   bool UsedAssumedInformation = false;
1673   if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
1674                                  UsedAssumedInformation))
1675     return indicatePessimisticFixpoint();
1676   return Changed;
1677 }
1678 
1679 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
1680   AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A)
1681       : AAReturnedValuesImpl(IRP, A) {}
1682 
1683   /// See AbstractAttribute::trackStatistics()
1684   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
1685 };
1686 
1687 /// Returned values information for a call sites.
1688 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
1689   AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A)
1690       : AAReturnedValuesImpl(IRP, A) {}
1691 
1692   /// See AbstractAttribute::initialize(...).
1693   void initialize(Attributor &A) override {
1694     // TODO: Once we have call site specific value information we can provide
1695     //       call site specific liveness information and then it makes
1696     //       sense to specialize attributes for call sites instead of
1697     //       redirecting requests to the callee.
1698     llvm_unreachable("Abstract attributes for returned values are not "
1699                      "supported for call sites yet!");
1700   }
1701 
1702   /// See AbstractAttribute::updateImpl(...).
1703   ChangeStatus updateImpl(Attributor &A) override {
1704     return indicatePessimisticFixpoint();
1705   }
1706 
1707   /// See AbstractAttribute::trackStatistics()
1708   void trackStatistics() const override {}
1709 };
1710 
1711 /// ------------------------ NoSync Function Attribute -------------------------
1712 
1713 struct AANoSyncImpl : AANoSync {
1714   AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
1715 
1716   const std::string getAsStr() const override {
1717     return getAssumed() ? "nosync" : "may-sync";
1718   }
1719 
1720   /// See AbstractAttribute::updateImpl(...).
1721   ChangeStatus updateImpl(Attributor &A) override;
1722 
1723   /// Helper function used to determine whether an instruction is non-relaxed
1724   /// atomic. In other words, if an atomic instruction does not have unordered
1725   /// or monotonic ordering
1726   static bool isNonRelaxedAtomic(Instruction *I);
1727 
1728   /// Helper function specific for intrinsics which are potentially volatile
1729   static bool isNoSyncIntrinsic(Instruction *I);
1730 };
1731 
1732 bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) {
1733   if (!I->isAtomic())
1734     return false;
1735 
1736   if (auto *FI = dyn_cast<FenceInst>(I))
1737     // All legal orderings for fence are stronger than monotonic.
1738     return FI->getSyncScopeID() != SyncScope::SingleThread;
1739   else if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) {
1740     // Unordered is not a legal ordering for cmpxchg.
1741     return (AI->getSuccessOrdering() != AtomicOrdering::Monotonic ||
1742             AI->getFailureOrdering() != AtomicOrdering::Monotonic);
1743   }
1744 
1745   AtomicOrdering Ordering;
1746   switch (I->getOpcode()) {
1747   case Instruction::AtomicRMW:
1748     Ordering = cast<AtomicRMWInst>(I)->getOrdering();
1749     break;
1750   case Instruction::Store:
1751     Ordering = cast<StoreInst>(I)->getOrdering();
1752     break;
1753   case Instruction::Load:
1754     Ordering = cast<LoadInst>(I)->getOrdering();
1755     break;
1756   default:
1757     llvm_unreachable(
1758         "New atomic operations need to be known in the attributor.");
1759   }
1760 
1761   return (Ordering != AtomicOrdering::Unordered &&
1762           Ordering != AtomicOrdering::Monotonic);
1763 }
1764 
1765 /// Return true if this intrinsic is nosync.  This is only used for intrinsics
1766 /// which would be nosync except that they have a volatile flag.  All other
1767 /// intrinsics are simply annotated with the nosync attribute in Intrinsics.td.
1768 bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) {
1769   if (auto *MI = dyn_cast<MemIntrinsic>(I))
1770     return !MI->isVolatile();
1771   return false;
1772 }
1773 
1774 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
1775 
1776   auto CheckRWInstForNoSync = [&](Instruction &I) {
1777     /// We are looking for volatile instructions or Non-Relaxed atomics.
1778 
1779     if (const auto *CB = dyn_cast<CallBase>(&I)) {
1780       if (CB->hasFnAttr(Attribute::NoSync))
1781         return true;
1782 
1783       if (isNoSyncIntrinsic(&I))
1784         return true;
1785 
1786       const auto &NoSyncAA = A.getAAFor<AANoSync>(
1787           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
1788       return NoSyncAA.isAssumedNoSync();
1789     }
1790 
1791     if (!I.isVolatile() && !isNonRelaxedAtomic(&I))
1792       return true;
1793 
1794     return false;
1795   };
1796 
1797   auto CheckForNoSync = [&](Instruction &I) {
1798     // At this point we handled all read/write effects and they are all
1799     // nosync, so they can be skipped.
1800     if (I.mayReadOrWriteMemory())
1801       return true;
1802 
1803     // non-convergent and readnone imply nosync.
1804     return !cast<CallBase>(I).isConvergent();
1805   };
1806 
1807   bool UsedAssumedInformation = false;
1808   if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this,
1809                                           UsedAssumedInformation) ||
1810       !A.checkForAllCallLikeInstructions(CheckForNoSync, *this,
1811                                          UsedAssumedInformation))
1812     return indicatePessimisticFixpoint();
1813 
1814   return ChangeStatus::UNCHANGED;
1815 }
1816 
1817 struct AANoSyncFunction final : public AANoSyncImpl {
1818   AANoSyncFunction(const IRPosition &IRP, Attributor &A)
1819       : AANoSyncImpl(IRP, A) {}
1820 
1821   /// See AbstractAttribute::trackStatistics()
1822   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
1823 };
1824 
1825 /// NoSync attribute deduction for a call sites.
1826 struct AANoSyncCallSite final : AANoSyncImpl {
1827   AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
1828       : AANoSyncImpl(IRP, A) {}
1829 
1830   /// See AbstractAttribute::initialize(...).
1831   void initialize(Attributor &A) override {
1832     AANoSyncImpl::initialize(A);
1833     Function *F = getAssociatedFunction();
1834     if (!F || F->isDeclaration())
1835       indicatePessimisticFixpoint();
1836   }
1837 
1838   /// See AbstractAttribute::updateImpl(...).
1839   ChangeStatus updateImpl(Attributor &A) override {
1840     // TODO: Once we have call site specific value information we can provide
1841     //       call site specific liveness information and then it makes
1842     //       sense to specialize attributes for call sites arguments instead of
1843     //       redirecting requests to the callee argument.
1844     Function *F = getAssociatedFunction();
1845     const IRPosition &FnPos = IRPosition::function(*F);
1846     auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos, DepClassTy::REQUIRED);
1847     return clampStateAndIndicateChange(getState(), FnAA.getState());
1848   }
1849 
1850   /// See AbstractAttribute::trackStatistics()
1851   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
1852 };
1853 
1854 /// ------------------------ No-Free Attributes ----------------------------
1855 
1856 struct AANoFreeImpl : public AANoFree {
1857   AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
1858 
1859   /// See AbstractAttribute::updateImpl(...).
1860   ChangeStatus updateImpl(Attributor &A) override {
1861     auto CheckForNoFree = [&](Instruction &I) {
1862       const auto &CB = cast<CallBase>(I);
1863       if (CB.hasFnAttr(Attribute::NoFree))
1864         return true;
1865 
1866       const auto &NoFreeAA = A.getAAFor<AANoFree>(
1867           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
1868       return NoFreeAA.isAssumedNoFree();
1869     };
1870 
1871     bool UsedAssumedInformation = false;
1872     if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this,
1873                                            UsedAssumedInformation))
1874       return indicatePessimisticFixpoint();
1875     return ChangeStatus::UNCHANGED;
1876   }
1877 
1878   /// See AbstractAttribute::getAsStr().
1879   const std::string getAsStr() const override {
1880     return getAssumed() ? "nofree" : "may-free";
1881   }
1882 };
1883 
1884 struct AANoFreeFunction final : public AANoFreeImpl {
1885   AANoFreeFunction(const IRPosition &IRP, Attributor &A)
1886       : AANoFreeImpl(IRP, A) {}
1887 
1888   /// See AbstractAttribute::trackStatistics()
1889   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
1890 };
1891 
1892 /// NoFree attribute deduction for a call sites.
1893 struct AANoFreeCallSite final : AANoFreeImpl {
1894   AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
1895       : AANoFreeImpl(IRP, A) {}
1896 
1897   /// See AbstractAttribute::initialize(...).
1898   void initialize(Attributor &A) override {
1899     AANoFreeImpl::initialize(A);
1900     Function *F = getAssociatedFunction();
1901     if (!F || F->isDeclaration())
1902       indicatePessimisticFixpoint();
1903   }
1904 
1905   /// See AbstractAttribute::updateImpl(...).
1906   ChangeStatus updateImpl(Attributor &A) override {
1907     // TODO: Once we have call site specific value information we can provide
1908     //       call site specific liveness information and then it makes
1909     //       sense to specialize attributes for call sites arguments instead of
1910     //       redirecting requests to the callee argument.
1911     Function *F = getAssociatedFunction();
1912     const IRPosition &FnPos = IRPosition::function(*F);
1913     auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos, DepClassTy::REQUIRED);
1914     return clampStateAndIndicateChange(getState(), FnAA.getState());
1915   }
1916 
1917   /// See AbstractAttribute::trackStatistics()
1918   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
1919 };
1920 
1921 /// NoFree attribute for floating values.
1922 struct AANoFreeFloating : AANoFreeImpl {
1923   AANoFreeFloating(const IRPosition &IRP, Attributor &A)
1924       : AANoFreeImpl(IRP, A) {}
1925 
1926   /// See AbstractAttribute::trackStatistics()
1927   void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
1928 
1929   /// See Abstract Attribute::updateImpl(...).
1930   ChangeStatus updateImpl(Attributor &A) override {
1931     const IRPosition &IRP = getIRPosition();
1932 
1933     const auto &NoFreeAA = A.getAAFor<AANoFree>(
1934         *this, IRPosition::function_scope(IRP), DepClassTy::OPTIONAL);
1935     if (NoFreeAA.isAssumedNoFree())
1936       return ChangeStatus::UNCHANGED;
1937 
1938     Value &AssociatedValue = getIRPosition().getAssociatedValue();
1939     auto Pred = [&](const Use &U, bool &Follow) -> bool {
1940       Instruction *UserI = cast<Instruction>(U.getUser());
1941       if (auto *CB = dyn_cast<CallBase>(UserI)) {
1942         if (CB->isBundleOperand(&U))
1943           return false;
1944         if (!CB->isArgOperand(&U))
1945           return true;
1946         unsigned ArgNo = CB->getArgOperandNo(&U);
1947 
1948         const auto &NoFreeArg = A.getAAFor<AANoFree>(
1949             *this, IRPosition::callsite_argument(*CB, ArgNo),
1950             DepClassTy::REQUIRED);
1951         return NoFreeArg.isAssumedNoFree();
1952       }
1953 
1954       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
1955           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
1956         Follow = true;
1957         return true;
1958       }
1959       if (isa<StoreInst>(UserI) || isa<LoadInst>(UserI) ||
1960           isa<ReturnInst>(UserI))
1961         return true;
1962 
1963       // Unknown user.
1964       return false;
1965     };
1966     if (!A.checkForAllUses(Pred, *this, AssociatedValue))
1967       return indicatePessimisticFixpoint();
1968 
1969     return ChangeStatus::UNCHANGED;
1970   }
1971 };
1972 
1973 /// NoFree attribute for a call site argument.
1974 struct AANoFreeArgument final : AANoFreeFloating {
1975   AANoFreeArgument(const IRPosition &IRP, Attributor &A)
1976       : AANoFreeFloating(IRP, A) {}
1977 
1978   /// See AbstractAttribute::trackStatistics()
1979   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
1980 };
1981 
1982 /// NoFree attribute for call site arguments.
1983 struct AANoFreeCallSiteArgument final : AANoFreeFloating {
1984   AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
1985       : AANoFreeFloating(IRP, A) {}
1986 
1987   /// See AbstractAttribute::updateImpl(...).
1988   ChangeStatus updateImpl(Attributor &A) override {
1989     // TODO: Once we have call site specific value information we can provide
1990     //       call site specific liveness information and then it makes
1991     //       sense to specialize attributes for call sites arguments instead of
1992     //       redirecting requests to the callee argument.
1993     Argument *Arg = getAssociatedArgument();
1994     if (!Arg)
1995       return indicatePessimisticFixpoint();
1996     const IRPosition &ArgPos = IRPosition::argument(*Arg);
1997     auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos, DepClassTy::REQUIRED);
1998     return clampStateAndIndicateChange(getState(), ArgAA.getState());
1999   }
2000 
2001   /// See AbstractAttribute::trackStatistics()
2002   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
2003 };
2004 
2005 /// NoFree attribute for function return value.
2006 struct AANoFreeReturned final : AANoFreeFloating {
2007   AANoFreeReturned(const IRPosition &IRP, Attributor &A)
2008       : AANoFreeFloating(IRP, A) {
2009     llvm_unreachable("NoFree is not applicable to function returns!");
2010   }
2011 
2012   /// See AbstractAttribute::initialize(...).
2013   void initialize(Attributor &A) override {
2014     llvm_unreachable("NoFree is not applicable to function returns!");
2015   }
2016 
2017   /// See AbstractAttribute::updateImpl(...).
2018   ChangeStatus updateImpl(Attributor &A) override {
2019     llvm_unreachable("NoFree is not applicable to function returns!");
2020   }
2021 
2022   /// See AbstractAttribute::trackStatistics()
2023   void trackStatistics() const override {}
2024 };
2025 
2026 /// NoFree attribute deduction for a call site return value.
2027 struct AANoFreeCallSiteReturned final : AANoFreeFloating {
2028   AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
2029       : AANoFreeFloating(IRP, A) {}
2030 
2031   ChangeStatus manifest(Attributor &A) override {
2032     return ChangeStatus::UNCHANGED;
2033   }
2034   /// See AbstractAttribute::trackStatistics()
2035   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
2036 };
2037 
2038 /// ------------------------ NonNull Argument Attribute ------------------------
2039 static int64_t getKnownNonNullAndDerefBytesForUse(
2040     Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
2041     const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
2042   TrackUse = false;
2043 
2044   const Value *UseV = U->get();
2045   if (!UseV->getType()->isPointerTy())
2046     return 0;
2047 
2048   // We need to follow common pointer manipulation uses to the accesses they
2049   // feed into. We can try to be smart to avoid looking through things we do not
2050   // like for now, e.g., non-inbounds GEPs.
2051   if (isa<CastInst>(I)) {
2052     TrackUse = true;
2053     return 0;
2054   }
2055 
2056   if (isa<GetElementPtrInst>(I)) {
2057     TrackUse = true;
2058     return 0;
2059   }
2060 
2061   Type *PtrTy = UseV->getType();
2062   const Function *F = I->getFunction();
2063   bool NullPointerIsDefined =
2064       F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
2065   const DataLayout &DL = A.getInfoCache().getDL();
2066   if (const auto *CB = dyn_cast<CallBase>(I)) {
2067     if (CB->isBundleOperand(U)) {
2068       if (RetainedKnowledge RK = getKnowledgeFromUse(
2069               U, {Attribute::NonNull, Attribute::Dereferenceable})) {
2070         IsNonNull |=
2071             (RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
2072         return RK.ArgValue;
2073       }
2074       return 0;
2075     }
2076 
2077     if (CB->isCallee(U)) {
2078       IsNonNull |= !NullPointerIsDefined;
2079       return 0;
2080     }
2081 
2082     unsigned ArgNo = CB->getArgOperandNo(U);
2083     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
2084     // As long as we only use known information there is no need to track
2085     // dependences here.
2086     auto &DerefAA =
2087         A.getAAFor<AADereferenceable>(QueryingAA, IRP, DepClassTy::NONE);
2088     IsNonNull |= DerefAA.isKnownNonNull();
2089     return DerefAA.getKnownDereferenceableBytes();
2090   }
2091 
2092   int64_t Offset;
2093   const Value *Base =
2094       getMinimalBaseOfAccsesPointerOperand(A, QueryingAA, I, Offset, DL);
2095   if (Base) {
2096     if (Base == &AssociatedValue &&
2097         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
2098       int64_t DerefBytes =
2099           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType()) + Offset;
2100 
2101       IsNonNull |= !NullPointerIsDefined;
2102       return std::max(int64_t(0), DerefBytes);
2103     }
2104   }
2105 
2106   /// Corner case when an offset is 0.
2107   Base = getBasePointerOfAccessPointerOperand(I, Offset, DL,
2108                                               /*AllowNonInbounds*/ true);
2109   if (Base) {
2110     if (Offset == 0 && Base == &AssociatedValue &&
2111         getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
2112       int64_t DerefBytes =
2113           (int64_t)DL.getTypeStoreSize(PtrTy->getPointerElementType());
2114       IsNonNull |= !NullPointerIsDefined;
2115       return std::max(int64_t(0), DerefBytes);
2116     }
2117   }
2118 
2119   return 0;
2120 }
2121 
2122 struct AANonNullImpl : AANonNull {
2123   AANonNullImpl(const IRPosition &IRP, Attributor &A)
2124       : AANonNull(IRP, A),
2125         NullIsDefined(NullPointerIsDefined(
2126             getAnchorScope(),
2127             getAssociatedValue().getType()->getPointerAddressSpace())) {}
2128 
2129   /// See AbstractAttribute::initialize(...).
2130   void initialize(Attributor &A) override {
2131     Value &V = getAssociatedValue();
2132     if (!NullIsDefined &&
2133         hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
2134                 /* IgnoreSubsumingPositions */ false, &A)) {
2135       indicateOptimisticFixpoint();
2136       return;
2137     }
2138 
2139     if (isa<ConstantPointerNull>(V)) {
2140       indicatePessimisticFixpoint();
2141       return;
2142     }
2143 
2144     AANonNull::initialize(A);
2145 
2146     bool CanBeNull, CanBeFreed;
2147     if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull,
2148                                          CanBeFreed)) {
2149       if (!CanBeNull) {
2150         indicateOptimisticFixpoint();
2151         return;
2152       }
2153     }
2154 
2155     if (isa<GlobalValue>(&getAssociatedValue())) {
2156       indicatePessimisticFixpoint();
2157       return;
2158     }
2159 
2160     if (Instruction *CtxI = getCtxI())
2161       followUsesInMBEC(*this, A, getState(), *CtxI);
2162   }
2163 
2164   /// See followUsesInMBEC
2165   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
2166                        AANonNull::StateType &State) {
2167     bool IsNonNull = false;
2168     bool TrackUse = false;
2169     getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
2170                                        IsNonNull, TrackUse);
2171     State.setKnown(IsNonNull);
2172     return TrackUse;
2173   }
2174 
2175   /// See AbstractAttribute::getAsStr().
2176   const std::string getAsStr() const override {
2177     return getAssumed() ? "nonnull" : "may-null";
2178   }
2179 
2180   /// Flag to determine if the underlying value can be null and still allow
2181   /// valid accesses.
2182   const bool NullIsDefined;
2183 };
2184 
2185 /// NonNull attribute for a floating value.
2186 struct AANonNullFloating : public AANonNullImpl {
2187   AANonNullFloating(const IRPosition &IRP, Attributor &A)
2188       : AANonNullImpl(IRP, A) {}
2189 
2190   /// See AbstractAttribute::updateImpl(...).
2191   ChangeStatus updateImpl(Attributor &A) override {
2192     const DataLayout &DL = A.getDataLayout();
2193 
2194     DominatorTree *DT = nullptr;
2195     AssumptionCache *AC = nullptr;
2196     InformationCache &InfoCache = A.getInfoCache();
2197     if (const Function *Fn = getAnchorScope()) {
2198       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
2199       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
2200     }
2201 
2202     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
2203                             AANonNull::StateType &T, bool Stripped) -> bool {
2204       const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V),
2205                                              DepClassTy::REQUIRED);
2206       if (!Stripped && this == &AA) {
2207         if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
2208           T.indicatePessimisticFixpoint();
2209       } else {
2210         // Use abstract attribute information.
2211         const AANonNull::StateType &NS = AA.getState();
2212         T ^= NS;
2213       }
2214       return T.isValidState();
2215     };
2216 
2217     StateType T;
2218     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
2219                                           VisitValueCB, getCtxI()))
2220       return indicatePessimisticFixpoint();
2221 
2222     return clampStateAndIndicateChange(getState(), T);
2223   }
2224 
2225   /// See AbstractAttribute::trackStatistics()
2226   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2227 };
2228 
2229 /// NonNull attribute for function return value.
2230 struct AANonNullReturned final
2231     : AAReturnedFromReturnedValues<AANonNull, AANonNull> {
2232   AANonNullReturned(const IRPosition &IRP, Attributor &A)
2233       : AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {}
2234 
2235   /// See AbstractAttribute::getAsStr().
2236   const std::string getAsStr() const override {
2237     return getAssumed() ? "nonnull" : "may-null";
2238   }
2239 
2240   /// See AbstractAttribute::trackStatistics()
2241   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
2242 };
2243 
2244 /// NonNull attribute for function argument.
2245 struct AANonNullArgument final
2246     : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
2247   AANonNullArgument(const IRPosition &IRP, Attributor &A)
2248       : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
2249 
2250   /// See AbstractAttribute::trackStatistics()
2251   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
2252 };
2253 
2254 struct AANonNullCallSiteArgument final : AANonNullFloating {
2255   AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
2256       : AANonNullFloating(IRP, A) {}
2257 
2258   /// See AbstractAttribute::trackStatistics()
2259   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
2260 };
2261 
2262 /// NonNull attribute for a call site return position.
2263 struct AANonNullCallSiteReturned final
2264     : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
2265   AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
2266       : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {}
2267 
2268   /// See AbstractAttribute::trackStatistics()
2269   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
2270 };
2271 
2272 /// ------------------------ No-Recurse Attributes ----------------------------
2273 
2274 struct AANoRecurseImpl : public AANoRecurse {
2275   AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
2276 
2277   /// See AbstractAttribute::getAsStr()
2278   const std::string getAsStr() const override {
2279     return getAssumed() ? "norecurse" : "may-recurse";
2280   }
2281 };
2282 
2283 struct AANoRecurseFunction final : AANoRecurseImpl {
2284   AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
2285       : AANoRecurseImpl(IRP, A) {}
2286 
2287   /// See AbstractAttribute::initialize(...).
2288   void initialize(Attributor &A) override {
2289     AANoRecurseImpl::initialize(A);
2290     if (const Function *F = getAnchorScope())
2291       if (A.getInfoCache().getSccSize(*F) != 1)
2292         indicatePessimisticFixpoint();
2293   }
2294 
2295   /// See AbstractAttribute::updateImpl(...).
2296   ChangeStatus updateImpl(Attributor &A) override {
2297 
2298     // If all live call sites are known to be no-recurse, we are as well.
2299     auto CallSitePred = [&](AbstractCallSite ACS) {
2300       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2301           *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2302           DepClassTy::NONE);
2303       return NoRecurseAA.isKnownNoRecurse();
2304     };
2305     bool AllCallSitesKnown;
2306     if (A.checkForAllCallSites(CallSitePred, *this, true, AllCallSitesKnown)) {
2307       // If we know all call sites and all are known no-recurse, we are done.
2308       // If all known call sites, which might not be all that exist, are known
2309       // to be no-recurse, we are not done but we can continue to assume
2310       // no-recurse. If one of the call sites we have not visited will become
2311       // live, another update is triggered.
2312       if (AllCallSitesKnown)
2313         indicateOptimisticFixpoint();
2314       return ChangeStatus::UNCHANGED;
2315     }
2316 
2317     // If the above check does not hold anymore we look at the calls.
2318     auto CheckForNoRecurse = [&](Instruction &I) {
2319       const auto &CB = cast<CallBase>(I);
2320       if (CB.hasFnAttr(Attribute::NoRecurse))
2321         return true;
2322 
2323       const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
2324           *this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
2325       if (!NoRecurseAA.isAssumedNoRecurse())
2326         return false;
2327 
2328       // Recursion to the same function
2329       if (CB.getCalledFunction() == getAnchorScope())
2330         return false;
2331 
2332       return true;
2333     };
2334 
2335     bool UsedAssumedInformation = false;
2336     if (!A.checkForAllCallLikeInstructions(CheckForNoRecurse, *this,
2337                                            UsedAssumedInformation))
2338       return indicatePessimisticFixpoint();
2339     return ChangeStatus::UNCHANGED;
2340   }
2341 
2342   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
2343 };
2344 
2345 /// NoRecurse attribute deduction for a call sites.
2346 struct AANoRecurseCallSite final : AANoRecurseImpl {
2347   AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
2348       : AANoRecurseImpl(IRP, A) {}
2349 
2350   /// See AbstractAttribute::initialize(...).
2351   void initialize(Attributor &A) override {
2352     AANoRecurseImpl::initialize(A);
2353     Function *F = getAssociatedFunction();
2354     if (!F || F->isDeclaration())
2355       indicatePessimisticFixpoint();
2356   }
2357 
2358   /// See AbstractAttribute::updateImpl(...).
2359   ChangeStatus updateImpl(Attributor &A) override {
2360     // TODO: Once we have call site specific value information we can provide
2361     //       call site specific liveness information and then it makes
2362     //       sense to specialize attributes for call sites arguments instead of
2363     //       redirecting requests to the callee argument.
2364     Function *F = getAssociatedFunction();
2365     const IRPosition &FnPos = IRPosition::function(*F);
2366     auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos, DepClassTy::REQUIRED);
2367     return clampStateAndIndicateChange(getState(), FnAA.getState());
2368   }
2369 
2370   /// See AbstractAttribute::trackStatistics()
2371   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
2372 };
2373 
2374 /// -------------------- Undefined-Behavior Attributes ------------------------
2375 
2376 struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
2377   AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
2378       : AAUndefinedBehavior(IRP, A) {}
2379 
2380   /// See AbstractAttribute::updateImpl(...).
2381   // through a pointer (i.e. also branches etc.)
2382   ChangeStatus updateImpl(Attributor &A) override {
2383     const size_t UBPrevSize = KnownUBInsts.size();
2384     const size_t NoUBPrevSize = AssumedNoUBInsts.size();
2385 
2386     auto InspectMemAccessInstForUB = [&](Instruction &I) {
2387       // Skip instructions that are already saved.
2388       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2389         return true;
2390 
2391       // If we reach here, we know we have an instruction
2392       // that accesses memory through a pointer operand,
2393       // for which getPointerOperand() should give it to us.
2394       Value *PtrOp =
2395           const_cast<Value *>(getPointerOperand(&I, /* AllowVolatile */ true));
2396       assert(PtrOp &&
2397              "Expected pointer operand of memory accessing instruction");
2398 
2399       // Either we stopped and the appropriate action was taken,
2400       // or we got back a simplified value to continue.
2401       Optional<Value *> SimplifiedPtrOp = stopOnUndefOrAssumed(A, PtrOp, &I);
2402       if (!SimplifiedPtrOp.hasValue())
2403         return true;
2404       const Value *PtrOpVal = SimplifiedPtrOp.getValue();
2405 
2406       // A memory access through a pointer is considered UB
2407       // only if the pointer has constant null value.
2408       // TODO: Expand it to not only check constant values.
2409       if (!isa<ConstantPointerNull>(PtrOpVal)) {
2410         AssumedNoUBInsts.insert(&I);
2411         return true;
2412       }
2413       const Type *PtrTy = PtrOpVal->getType();
2414 
2415       // Because we only consider instructions inside functions,
2416       // assume that a parent function exists.
2417       const Function *F = I.getFunction();
2418 
2419       // A memory access using constant null pointer is only considered UB
2420       // if null pointer is _not_ defined for the target platform.
2421       if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
2422         AssumedNoUBInsts.insert(&I);
2423       else
2424         KnownUBInsts.insert(&I);
2425       return true;
2426     };
2427 
2428     auto InspectBrInstForUB = [&](Instruction &I) {
2429       // A conditional branch instruction is considered UB if it has `undef`
2430       // condition.
2431 
2432       // Skip instructions that are already saved.
2433       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2434         return true;
2435 
2436       // We know we have a branch instruction.
2437       auto *BrInst = cast<BranchInst>(&I);
2438 
2439       // Unconditional branches are never considered UB.
2440       if (BrInst->isUnconditional())
2441         return true;
2442 
2443       // Either we stopped and the appropriate action was taken,
2444       // or we got back a simplified value to continue.
2445       Optional<Value *> SimplifiedCond =
2446           stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
2447       if (!SimplifiedCond.hasValue())
2448         return true;
2449       AssumedNoUBInsts.insert(&I);
2450       return true;
2451     };
2452 
2453     auto InspectCallSiteForUB = [&](Instruction &I) {
2454       // Check whether a callsite always cause UB or not
2455 
2456       // Skip instructions that are already saved.
2457       if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
2458         return true;
2459 
2460       // Check nonnull and noundef argument attribute violation for each
2461       // callsite.
2462       CallBase &CB = cast<CallBase>(I);
2463       Function *Callee = CB.getCalledFunction();
2464       if (!Callee)
2465         return true;
2466       for (unsigned idx = 0; idx < CB.getNumArgOperands(); idx++) {
2467         // If current argument is known to be simplified to null pointer and the
2468         // corresponding argument position is known to have nonnull attribute,
2469         // the argument is poison. Furthermore, if the argument is poison and
2470         // the position is known to have noundef attriubte, this callsite is
2471         // considered UB.
2472         if (idx >= Callee->arg_size())
2473           break;
2474         Value *ArgVal = CB.getArgOperand(idx);
2475         if (!ArgVal)
2476           continue;
2477         // Here, we handle three cases.
2478         //   (1) Not having a value means it is dead. (we can replace the value
2479         //       with undef)
2480         //   (2) Simplified to undef. The argument violate noundef attriubte.
2481         //   (3) Simplified to null pointer where known to be nonnull.
2482         //       The argument is a poison value and violate noundef attribute.
2483         IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
2484         auto &NoUndefAA =
2485             A.getAAFor<AANoUndef>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2486         if (!NoUndefAA.isKnownNoUndef())
2487           continue;
2488         bool UsedAssumedInformation = false;
2489         Optional<Value *> SimplifiedVal = A.getAssumedSimplified(
2490             IRPosition::value(*ArgVal), *this, UsedAssumedInformation);
2491         if (UsedAssumedInformation)
2492           continue;
2493         if (!SimplifiedVal.hasValue() ||
2494             isa<UndefValue>(*SimplifiedVal.getValue())) {
2495           KnownUBInsts.insert(&I);
2496           continue;
2497         }
2498         if (!ArgVal->getType()->isPointerTy() ||
2499             !isa<ConstantPointerNull>(*SimplifiedVal.getValue()))
2500           continue;
2501         auto &NonNullAA =
2502             A.getAAFor<AANonNull>(*this, CalleeArgumentIRP, DepClassTy::NONE);
2503         if (NonNullAA.isKnownNonNull())
2504           KnownUBInsts.insert(&I);
2505       }
2506       return true;
2507     };
2508 
2509     auto InspectReturnInstForUB =
2510         [&](Value &V, const SmallSetVector<ReturnInst *, 4> RetInsts) {
2511           // Check if a return instruction always cause UB or not
2512           // Note: It is guaranteed that the returned position of the anchor
2513           //       scope has noundef attribute when this is called.
2514           //       We also ensure the return position is not "assumed dead"
2515           //       because the returned value was then potentially simplified to
2516           //       `undef` in AAReturnedValues without removing the `noundef`
2517           //       attribute yet.
2518 
2519           // When the returned position has noundef attriubte, UB occur in the
2520           // following cases.
2521           //   (1) Returned value is known to be undef.
2522           //   (2) The value is known to be a null pointer and the returned
2523           //       position has nonnull attribute (because the returned value is
2524           //       poison).
2525           bool FoundUB = false;
2526           if (isa<UndefValue>(V)) {
2527             FoundUB = true;
2528           } else {
2529             if (isa<ConstantPointerNull>(V)) {
2530               auto &NonNullAA = A.getAAFor<AANonNull>(
2531                   *this, IRPosition::returned(*getAnchorScope()),
2532                   DepClassTy::NONE);
2533               if (NonNullAA.isKnownNonNull())
2534                 FoundUB = true;
2535             }
2536           }
2537 
2538           if (FoundUB)
2539             for (ReturnInst *RI : RetInsts)
2540               KnownUBInsts.insert(RI);
2541           return true;
2542         };
2543 
2544     bool UsedAssumedInformation = false;
2545     A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
2546                               {Instruction::Load, Instruction::Store,
2547                                Instruction::AtomicCmpXchg,
2548                                Instruction::AtomicRMW},
2549                               UsedAssumedInformation,
2550                               /* CheckBBLivenessOnly */ true);
2551     A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
2552                               UsedAssumedInformation,
2553                               /* CheckBBLivenessOnly */ true);
2554     A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this,
2555                                       UsedAssumedInformation);
2556 
2557     // If the returned position of the anchor scope has noundef attriubte, check
2558     // all returned instructions.
2559     if (!getAnchorScope()->getReturnType()->isVoidTy()) {
2560       const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope());
2561       if (!A.isAssumedDead(ReturnIRP, this, nullptr, UsedAssumedInformation)) {
2562         auto &RetPosNoUndefAA =
2563             A.getAAFor<AANoUndef>(*this, ReturnIRP, DepClassTy::NONE);
2564         if (RetPosNoUndefAA.isKnownNoUndef())
2565           A.checkForAllReturnedValuesAndReturnInsts(InspectReturnInstForUB,
2566                                                     *this);
2567       }
2568     }
2569 
2570     if (NoUBPrevSize != AssumedNoUBInsts.size() ||
2571         UBPrevSize != KnownUBInsts.size())
2572       return ChangeStatus::CHANGED;
2573     return ChangeStatus::UNCHANGED;
2574   }
2575 
2576   bool isKnownToCauseUB(Instruction *I) const override {
2577     return KnownUBInsts.count(I);
2578   }
2579 
2580   bool isAssumedToCauseUB(Instruction *I) const override {
2581     // In simple words, if an instruction is not in the assumed to _not_
2582     // cause UB, then it is assumed UB (that includes those
2583     // in the KnownUBInsts set). The rest is boilerplate
2584     // is to ensure that it is one of the instructions we test
2585     // for UB.
2586 
2587     switch (I->getOpcode()) {
2588     case Instruction::Load:
2589     case Instruction::Store:
2590     case Instruction::AtomicCmpXchg:
2591     case Instruction::AtomicRMW:
2592       return !AssumedNoUBInsts.count(I);
2593     case Instruction::Br: {
2594       auto BrInst = cast<BranchInst>(I);
2595       if (BrInst->isUnconditional())
2596         return false;
2597       return !AssumedNoUBInsts.count(I);
2598     } break;
2599     default:
2600       return false;
2601     }
2602     return false;
2603   }
2604 
2605   ChangeStatus manifest(Attributor &A) override {
2606     if (KnownUBInsts.empty())
2607       return ChangeStatus::UNCHANGED;
2608     for (Instruction *I : KnownUBInsts)
2609       A.changeToUnreachableAfterManifest(I);
2610     return ChangeStatus::CHANGED;
2611   }
2612 
2613   /// See AbstractAttribute::getAsStr()
2614   const std::string getAsStr() const override {
2615     return getAssumed() ? "undefined-behavior" : "no-ub";
2616   }
2617 
2618   /// Note: The correctness of this analysis depends on the fact that the
2619   /// following 2 sets will stop changing after some point.
2620   /// "Change" here means that their size changes.
2621   /// The size of each set is monotonically increasing
2622   /// (we only add items to them) and it is upper bounded by the number of
2623   /// instructions in the processed function (we can never save more
2624   /// elements in either set than this number). Hence, at some point,
2625   /// they will stop increasing.
2626   /// Consequently, at some point, both sets will have stopped
2627   /// changing, effectively making the analysis reach a fixpoint.
2628 
2629   /// Note: These 2 sets are disjoint and an instruction can be considered
2630   /// one of 3 things:
2631   /// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
2632   ///    the KnownUBInsts set.
2633   /// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
2634   ///    has a reason to assume it).
2635   /// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
2636   ///    could not find a reason to assume or prove that it can cause UB,
2637   ///    hence it assumes it doesn't. We have a set for these instructions
2638   ///    so that we don't reprocess them in every update.
2639   ///    Note however that instructions in this set may cause UB.
2640 
2641 protected:
2642   /// A set of all live instructions _known_ to cause UB.
2643   SmallPtrSet<Instruction *, 8> KnownUBInsts;
2644 
2645 private:
2646   /// A set of all the (live) instructions that are assumed to _not_ cause UB.
2647   SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
2648 
2649   // Should be called on updates in which if we're processing an instruction
2650   // \p I that depends on a value \p V, one of the following has to happen:
2651   // - If the value is assumed, then stop.
2652   // - If the value is known but undef, then consider it UB.
2653   // - Otherwise, do specific processing with the simplified value.
2654   // We return None in the first 2 cases to signify that an appropriate
2655   // action was taken and the caller should stop.
2656   // Otherwise, we return the simplified value that the caller should
2657   // use for specific processing.
2658   Optional<Value *> stopOnUndefOrAssumed(Attributor &A, Value *V,
2659                                          Instruction *I) {
2660     bool UsedAssumedInformation = false;
2661     Optional<Value *> SimplifiedV = A.getAssumedSimplified(
2662         IRPosition::value(*V), *this, UsedAssumedInformation);
2663     if (!UsedAssumedInformation) {
2664       // Don't depend on assumed values.
2665       if (!SimplifiedV.hasValue()) {
2666         // If it is known (which we tested above) but it doesn't have a value,
2667         // then we can assume `undef` and hence the instruction is UB.
2668         KnownUBInsts.insert(I);
2669         return llvm::None;
2670       }
2671       if (*SimplifiedV != nullptr)
2672         V = *SimplifiedV;
2673     }
2674     if (isa<UndefValue>(V)) {
2675       KnownUBInsts.insert(I);
2676       return llvm::None;
2677     }
2678     return V;
2679   }
2680 };
2681 
2682 struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
2683   AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
2684       : AAUndefinedBehaviorImpl(IRP, A) {}
2685 
2686   /// See AbstractAttribute::trackStatistics()
2687   void trackStatistics() const override {
2688     STATS_DECL(UndefinedBehaviorInstruction, Instruction,
2689                "Number of instructions known to have UB");
2690     BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
2691         KnownUBInsts.size();
2692   }
2693 };
2694 
2695 /// ------------------------ Will-Return Attributes ----------------------------
2696 
2697 // Helper function that checks whether a function has any cycle which we don't
2698 // know if it is bounded or not.
2699 // Loops with maximum trip count are considered bounded, any other cycle not.
2700 static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
2701   ScalarEvolution *SE =
2702       A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
2703   LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
2704   // If either SCEV or LoopInfo is not available for the function then we assume
2705   // any cycle to be unbounded cycle.
2706   // We use scc_iterator which uses Tarjan algorithm to find all the maximal
2707   // SCCs.To detect if there's a cycle, we only need to find the maximal ones.
2708   if (!SE || !LI) {
2709     for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
2710       if (SCCI.hasCycle())
2711         return true;
2712     return false;
2713   }
2714 
2715   // If there's irreducible control, the function may contain non-loop cycles.
2716   if (mayContainIrreducibleControl(F, LI))
2717     return true;
2718 
2719   // Any loop that does not have a max trip count is considered unbounded cycle.
2720   for (auto *L : LI->getLoopsInPreorder()) {
2721     if (!SE->getSmallConstantMaxTripCount(L))
2722       return true;
2723   }
2724   return false;
2725 }
2726 
2727 struct AAWillReturnImpl : public AAWillReturn {
2728   AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
2729       : AAWillReturn(IRP, A) {}
2730 
2731   /// See AbstractAttribute::initialize(...).
2732   void initialize(Attributor &A) override {
2733     AAWillReturn::initialize(A);
2734 
2735     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ true)) {
2736       indicateOptimisticFixpoint();
2737       return;
2738     }
2739   }
2740 
2741   /// Check for `mustprogress` and `readonly` as they imply `willreturn`.
2742   bool isImpliedByMustprogressAndReadonly(Attributor &A, bool KnownOnly) {
2743     // Check for `mustprogress` in the scope and the associated function which
2744     // might be different if this is a call site.
2745     if ((!getAnchorScope() || !getAnchorScope()->mustProgress()) &&
2746         (!getAssociatedFunction() || !getAssociatedFunction()->mustProgress()))
2747       return false;
2748 
2749     const auto &MemAA =
2750         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
2751     if (!MemAA.isAssumedReadOnly())
2752       return false;
2753     if (KnownOnly && !MemAA.isKnownReadOnly())
2754       return false;
2755     if (!MemAA.isKnownReadOnly())
2756       A.recordDependence(MemAA, *this, DepClassTy::OPTIONAL);
2757 
2758     return true;
2759   }
2760 
2761   /// See AbstractAttribute::updateImpl(...).
2762   ChangeStatus updateImpl(Attributor &A) override {
2763     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2764       return ChangeStatus::UNCHANGED;
2765 
2766     auto CheckForWillReturn = [&](Instruction &I) {
2767       IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
2768       const auto &WillReturnAA =
2769           A.getAAFor<AAWillReturn>(*this, IPos, DepClassTy::REQUIRED);
2770       if (WillReturnAA.isKnownWillReturn())
2771         return true;
2772       if (!WillReturnAA.isAssumedWillReturn())
2773         return false;
2774       const auto &NoRecurseAA =
2775           A.getAAFor<AANoRecurse>(*this, IPos, DepClassTy::REQUIRED);
2776       return NoRecurseAA.isAssumedNoRecurse();
2777     };
2778 
2779     bool UsedAssumedInformation = false;
2780     if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this,
2781                                            UsedAssumedInformation))
2782       return indicatePessimisticFixpoint();
2783 
2784     return ChangeStatus::UNCHANGED;
2785   }
2786 
2787   /// See AbstractAttribute::getAsStr()
2788   const std::string getAsStr() const override {
2789     return getAssumed() ? "willreturn" : "may-noreturn";
2790   }
2791 };
2792 
2793 struct AAWillReturnFunction final : AAWillReturnImpl {
2794   AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
2795       : AAWillReturnImpl(IRP, A) {}
2796 
2797   /// See AbstractAttribute::initialize(...).
2798   void initialize(Attributor &A) override {
2799     AAWillReturnImpl::initialize(A);
2800 
2801     Function *F = getAnchorScope();
2802     if (!F || F->isDeclaration() || mayContainUnboundedCycle(*F, A))
2803       indicatePessimisticFixpoint();
2804   }
2805 
2806   /// See AbstractAttribute::trackStatistics()
2807   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
2808 };
2809 
2810 /// WillReturn attribute deduction for a call sites.
2811 struct AAWillReturnCallSite final : AAWillReturnImpl {
2812   AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
2813       : AAWillReturnImpl(IRP, A) {}
2814 
2815   /// See AbstractAttribute::initialize(...).
2816   void initialize(Attributor &A) override {
2817     AAWillReturnImpl::initialize(A);
2818     Function *F = getAssociatedFunction();
2819     if (!F || !A.isFunctionIPOAmendable(*F))
2820       indicatePessimisticFixpoint();
2821   }
2822 
2823   /// See AbstractAttribute::updateImpl(...).
2824   ChangeStatus updateImpl(Attributor &A) override {
2825     if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
2826       return ChangeStatus::UNCHANGED;
2827 
2828     // TODO: Once we have call site specific value information we can provide
2829     //       call site specific liveness information and then it makes
2830     //       sense to specialize attributes for call sites arguments instead of
2831     //       redirecting requests to the callee argument.
2832     Function *F = getAssociatedFunction();
2833     const IRPosition &FnPos = IRPosition::function(*F);
2834     auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos, DepClassTy::REQUIRED);
2835     return clampStateAndIndicateChange(getState(), FnAA.getState());
2836   }
2837 
2838   /// See AbstractAttribute::trackStatistics()
2839   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
2840 };
2841 
2842 /// -------------------AAReachability Attribute--------------------------
2843 
2844 struct AAReachabilityImpl : AAReachability {
2845   AAReachabilityImpl(const IRPosition &IRP, Attributor &A)
2846       : AAReachability(IRP, A) {}
2847 
2848   const std::string getAsStr() const override {
2849     // TODO: Return the number of reachable queries.
2850     return "reachable";
2851   }
2852 
2853   /// See AbstractAttribute::updateImpl(...).
2854   ChangeStatus updateImpl(Attributor &A) override {
2855     return ChangeStatus::UNCHANGED;
2856   }
2857 };
2858 
2859 struct AAReachabilityFunction final : public AAReachabilityImpl {
2860   AAReachabilityFunction(const IRPosition &IRP, Attributor &A)
2861       : AAReachabilityImpl(IRP, A) {}
2862 
2863   /// See AbstractAttribute::trackStatistics()
2864   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(reachable); }
2865 };
2866 
2867 /// ------------------------ NoAlias Argument Attribute ------------------------
2868 
2869 struct AANoAliasImpl : AANoAlias {
2870   AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
2871     assert(getAssociatedType()->isPointerTy() &&
2872            "Noalias is a pointer attribute");
2873   }
2874 
2875   const std::string getAsStr() const override {
2876     return getAssumed() ? "noalias" : "may-alias";
2877   }
2878 };
2879 
2880 /// NoAlias attribute for a floating value.
2881 struct AANoAliasFloating final : AANoAliasImpl {
2882   AANoAliasFloating(const IRPosition &IRP, Attributor &A)
2883       : AANoAliasImpl(IRP, A) {}
2884 
2885   /// See AbstractAttribute::initialize(...).
2886   void initialize(Attributor &A) override {
2887     AANoAliasImpl::initialize(A);
2888     Value *Val = &getAssociatedValue();
2889     do {
2890       CastInst *CI = dyn_cast<CastInst>(Val);
2891       if (!CI)
2892         break;
2893       Value *Base = CI->getOperand(0);
2894       if (!Base->hasOneUse())
2895         break;
2896       Val = Base;
2897     } while (true);
2898 
2899     if (!Val->getType()->isPointerTy()) {
2900       indicatePessimisticFixpoint();
2901       return;
2902     }
2903 
2904     if (isa<AllocaInst>(Val))
2905       indicateOptimisticFixpoint();
2906     else if (isa<ConstantPointerNull>(Val) &&
2907              !NullPointerIsDefined(getAnchorScope(),
2908                                    Val->getType()->getPointerAddressSpace()))
2909       indicateOptimisticFixpoint();
2910     else if (Val != &getAssociatedValue()) {
2911       const auto &ValNoAliasAA = A.getAAFor<AANoAlias>(
2912           *this, IRPosition::value(*Val), DepClassTy::OPTIONAL);
2913       if (ValNoAliasAA.isKnownNoAlias())
2914         indicateOptimisticFixpoint();
2915     }
2916   }
2917 
2918   /// See AbstractAttribute::updateImpl(...).
2919   ChangeStatus updateImpl(Attributor &A) override {
2920     // TODO: Implement this.
2921     return indicatePessimisticFixpoint();
2922   }
2923 
2924   /// See AbstractAttribute::trackStatistics()
2925   void trackStatistics() const override {
2926     STATS_DECLTRACK_FLOATING_ATTR(noalias)
2927   }
2928 };
2929 
2930 /// NoAlias attribute for an argument.
2931 struct AANoAliasArgument final
2932     : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
2933   using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
2934   AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
2935 
2936   /// See AbstractAttribute::initialize(...).
2937   void initialize(Attributor &A) override {
2938     Base::initialize(A);
2939     // See callsite argument attribute and callee argument attribute.
2940     if (hasAttr({Attribute::ByVal}))
2941       indicateOptimisticFixpoint();
2942   }
2943 
2944   /// See AbstractAttribute::update(...).
2945   ChangeStatus updateImpl(Attributor &A) override {
2946     // We have to make sure no-alias on the argument does not break
2947     // synchronization when this is a callback argument, see also [1] below.
2948     // If synchronization cannot be affected, we delegate to the base updateImpl
2949     // function, otherwise we give up for now.
2950 
2951     // If the function is no-sync, no-alias cannot break synchronization.
2952     const auto &NoSyncAA =
2953         A.getAAFor<AANoSync>(*this, IRPosition::function_scope(getIRPosition()),
2954                              DepClassTy::OPTIONAL);
2955     if (NoSyncAA.isAssumedNoSync())
2956       return Base::updateImpl(A);
2957 
2958     // If the argument is read-only, no-alias cannot break synchronization.
2959     const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
2960         *this, getIRPosition(), DepClassTy::OPTIONAL);
2961     if (MemBehaviorAA.isAssumedReadOnly())
2962       return Base::updateImpl(A);
2963 
2964     // If the argument is never passed through callbacks, no-alias cannot break
2965     // synchronization.
2966     bool AllCallSitesKnown;
2967     if (A.checkForAllCallSites(
2968             [](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
2969             true, AllCallSitesKnown))
2970       return Base::updateImpl(A);
2971 
2972     // TODO: add no-alias but make sure it doesn't break synchronization by
2973     // introducing fake uses. See:
2974     // [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
2975     //     International Workshop on OpenMP 2018,
2976     //     http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
2977 
2978     return indicatePessimisticFixpoint();
2979   }
2980 
2981   /// See AbstractAttribute::trackStatistics()
2982   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
2983 };
2984 
2985 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
2986   AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
2987       : AANoAliasImpl(IRP, A) {}
2988 
2989   /// See AbstractAttribute::initialize(...).
2990   void initialize(Attributor &A) override {
2991     // See callsite argument attribute and callee argument attribute.
2992     const auto &CB = cast<CallBase>(getAnchorValue());
2993     if (CB.paramHasAttr(getCallSiteArgNo(), Attribute::NoAlias))
2994       indicateOptimisticFixpoint();
2995     Value &Val = getAssociatedValue();
2996     if (isa<ConstantPointerNull>(Val) &&
2997         !NullPointerIsDefined(getAnchorScope(),
2998                               Val.getType()->getPointerAddressSpace()))
2999       indicateOptimisticFixpoint();
3000   }
3001 
3002   /// Determine if the underlying value may alias with the call site argument
3003   /// \p OtherArgNo of \p ICS (= the underlying call site).
3004   bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
3005                             const AAMemoryBehavior &MemBehaviorAA,
3006                             const CallBase &CB, unsigned OtherArgNo) {
3007     // We do not need to worry about aliasing with the underlying IRP.
3008     if (this->getCalleeArgNo() == (int)OtherArgNo)
3009       return false;
3010 
3011     // If it is not a pointer or pointer vector we do not alias.
3012     const Value *ArgOp = CB.getArgOperand(OtherArgNo);
3013     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
3014       return false;
3015 
3016     auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
3017         *this, IRPosition::callsite_argument(CB, OtherArgNo), DepClassTy::NONE);
3018 
3019     // If the argument is readnone, there is no read-write aliasing.
3020     if (CBArgMemBehaviorAA.isAssumedReadNone()) {
3021       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3022       return false;
3023     }
3024 
3025     // If the argument is readonly and the underlying value is readonly, there
3026     // is no read-write aliasing.
3027     bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
3028     if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
3029       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3030       A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
3031       return false;
3032     }
3033 
3034     // We have to utilize actual alias analysis queries so we need the object.
3035     if (!AAR)
3036       AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
3037 
3038     // Try to rule it out at the call site.
3039     bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
3040     LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
3041                          "callsite arguments: "
3042                       << getAssociatedValue() << " " << *ArgOp << " => "
3043                       << (IsAliasing ? "" : "no-") << "alias \n");
3044 
3045     return IsAliasing;
3046   }
3047 
3048   bool
3049   isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
3050                                          const AAMemoryBehavior &MemBehaviorAA,
3051                                          const AANoAlias &NoAliasAA) {
3052     // We can deduce "noalias" if the following conditions hold.
3053     // (i)   Associated value is assumed to be noalias in the definition.
3054     // (ii)  Associated value is assumed to be no-capture in all the uses
3055     //       possibly executed before this callsite.
3056     // (iii) There is no other pointer argument which could alias with the
3057     //       value.
3058 
3059     bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
3060     if (!AssociatedValueIsNoAliasAtDef) {
3061       LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
3062                         << " is not no-alias at the definition\n");
3063       return false;
3064     }
3065 
3066     A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
3067 
3068     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3069     const Function *ScopeFn = VIRP.getAnchorScope();
3070     auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, VIRP, DepClassTy::NONE);
3071     // Check whether the value is captured in the scope using AANoCapture.
3072     //      Look at CFG and check only uses possibly executed before this
3073     //      callsite.
3074     auto UsePred = [&](const Use &U, bool &Follow) -> bool {
3075       Instruction *UserI = cast<Instruction>(U.getUser());
3076 
3077       // If UserI is the curr instruction and there is a single potential use of
3078       // the value in UserI we allow the use.
3079       // TODO: We should inspect the operands and allow those that cannot alias
3080       //       with the value.
3081       if (UserI == getCtxI() && UserI->getNumOperands() == 1)
3082         return true;
3083 
3084       if (ScopeFn) {
3085         const auto &ReachabilityAA = A.getAAFor<AAReachability>(
3086             *this, IRPosition::function(*ScopeFn), DepClassTy::OPTIONAL);
3087 
3088         if (!ReachabilityAA.isAssumedReachable(A, *UserI, *getCtxI()))
3089           return true;
3090 
3091         if (auto *CB = dyn_cast<CallBase>(UserI)) {
3092           if (CB->isArgOperand(&U)) {
3093 
3094             unsigned ArgNo = CB->getArgOperandNo(&U);
3095 
3096             const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
3097                 *this, IRPosition::callsite_argument(*CB, ArgNo),
3098                 DepClassTy::OPTIONAL);
3099 
3100             if (NoCaptureAA.isAssumedNoCapture())
3101               return true;
3102           }
3103         }
3104       }
3105 
3106       // For cases which can potentially have more users
3107       if (isa<GetElementPtrInst>(U) || isa<BitCastInst>(U) || isa<PHINode>(U) ||
3108           isa<SelectInst>(U)) {
3109         Follow = true;
3110         return true;
3111       }
3112 
3113       LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *U << "\n");
3114       return false;
3115     };
3116 
3117     if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
3118       if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
3119         LLVM_DEBUG(
3120             dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
3121                    << " cannot be noalias as it is potentially captured\n");
3122         return false;
3123       }
3124     }
3125     A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
3126 
3127     // Check there is no other pointer argument which could alias with the
3128     // value passed at this call site.
3129     // TODO: AbstractCallSite
3130     const auto &CB = cast<CallBase>(getAnchorValue());
3131     for (unsigned OtherArgNo = 0; OtherArgNo < CB.getNumArgOperands();
3132          OtherArgNo++)
3133       if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
3134         return false;
3135 
3136     return true;
3137   }
3138 
3139   /// See AbstractAttribute::updateImpl(...).
3140   ChangeStatus updateImpl(Attributor &A) override {
3141     // If the argument is readnone we are done as there are no accesses via the
3142     // argument.
3143     auto &MemBehaviorAA =
3144         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
3145     if (MemBehaviorAA.isAssumedReadNone()) {
3146       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3147       return ChangeStatus::UNCHANGED;
3148     }
3149 
3150     const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
3151     const auto &NoAliasAA =
3152         A.getAAFor<AANoAlias>(*this, VIRP, DepClassTy::NONE);
3153 
3154     AAResults *AAR = nullptr;
3155     if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
3156                                                NoAliasAA)) {
3157       LLVM_DEBUG(
3158           dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
3159       return ChangeStatus::UNCHANGED;
3160     }
3161 
3162     return indicatePessimisticFixpoint();
3163   }
3164 
3165   /// See AbstractAttribute::trackStatistics()
3166   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
3167 };
3168 
3169 /// NoAlias attribute for function return value.
3170 struct AANoAliasReturned final : AANoAliasImpl {
3171   AANoAliasReturned(const IRPosition &IRP, Attributor &A)
3172       : AANoAliasImpl(IRP, A) {}
3173 
3174   /// See AbstractAttribute::initialize(...).
3175   void initialize(Attributor &A) override {
3176     AANoAliasImpl::initialize(A);
3177     Function *F = getAssociatedFunction();
3178     if (!F || F->isDeclaration())
3179       indicatePessimisticFixpoint();
3180   }
3181 
3182   /// See AbstractAttribute::updateImpl(...).
3183   virtual ChangeStatus updateImpl(Attributor &A) override {
3184 
3185     auto CheckReturnValue = [&](Value &RV) -> bool {
3186       if (Constant *C = dyn_cast<Constant>(&RV))
3187         if (C->isNullValue() || isa<UndefValue>(C))
3188           return true;
3189 
3190       /// For now, we can only deduce noalias if we have call sites.
3191       /// FIXME: add more support.
3192       if (!isa<CallBase>(&RV))
3193         return false;
3194 
3195       const IRPosition &RVPos = IRPosition::value(RV);
3196       const auto &NoAliasAA =
3197           A.getAAFor<AANoAlias>(*this, RVPos, DepClassTy::REQUIRED);
3198       if (!NoAliasAA.isAssumedNoAlias())
3199         return false;
3200 
3201       const auto &NoCaptureAA =
3202           A.getAAFor<AANoCapture>(*this, RVPos, DepClassTy::REQUIRED);
3203       return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
3204     };
3205 
3206     if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
3207       return indicatePessimisticFixpoint();
3208 
3209     return ChangeStatus::UNCHANGED;
3210   }
3211 
3212   /// See AbstractAttribute::trackStatistics()
3213   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
3214 };
3215 
3216 /// NoAlias attribute deduction for a call site return value.
3217 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
3218   AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
3219       : AANoAliasImpl(IRP, A) {}
3220 
3221   /// See AbstractAttribute::initialize(...).
3222   void initialize(Attributor &A) override {
3223     AANoAliasImpl::initialize(A);
3224     Function *F = getAssociatedFunction();
3225     if (!F || F->isDeclaration())
3226       indicatePessimisticFixpoint();
3227   }
3228 
3229   /// See AbstractAttribute::updateImpl(...).
3230   ChangeStatus updateImpl(Attributor &A) override {
3231     // TODO: Once we have call site specific value information we can provide
3232     //       call site specific liveness information and then it makes
3233     //       sense to specialize attributes for call sites arguments instead of
3234     //       redirecting requests to the callee argument.
3235     Function *F = getAssociatedFunction();
3236     const IRPosition &FnPos = IRPosition::returned(*F);
3237     auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos, DepClassTy::REQUIRED);
3238     return clampStateAndIndicateChange(getState(), FnAA.getState());
3239   }
3240 
3241   /// See AbstractAttribute::trackStatistics()
3242   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
3243 };
3244 
3245 /// -------------------AAIsDead Function Attribute-----------------------
3246 
3247 struct AAIsDeadValueImpl : public AAIsDead {
3248   AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3249 
3250   /// See AAIsDead::isAssumedDead().
3251   bool isAssumedDead() const override { return getAssumed(); }
3252 
3253   /// See AAIsDead::isKnownDead().
3254   bool isKnownDead() const override { return getKnown(); }
3255 
3256   /// See AAIsDead::isAssumedDead(BasicBlock *).
3257   bool isAssumedDead(const BasicBlock *BB) const override { return false; }
3258 
3259   /// See AAIsDead::isKnownDead(BasicBlock *).
3260   bool isKnownDead(const BasicBlock *BB) const override { return false; }
3261 
3262   /// See AAIsDead::isAssumedDead(Instruction *I).
3263   bool isAssumedDead(const Instruction *I) const override {
3264     return I == getCtxI() && isAssumedDead();
3265   }
3266 
3267   /// See AAIsDead::isKnownDead(Instruction *I).
3268   bool isKnownDead(const Instruction *I) const override {
3269     return isAssumedDead(I) && getKnown();
3270   }
3271 
3272   /// See AbstractAttribute::getAsStr().
3273   const std::string getAsStr() const override {
3274     return isAssumedDead() ? "assumed-dead" : "assumed-live";
3275   }
3276 
3277   /// Check if all uses are assumed dead.
3278   bool areAllUsesAssumedDead(Attributor &A, Value &V) {
3279     // Callers might not check the type, void has no uses.
3280     if (V.getType()->isVoidTy())
3281       return true;
3282 
3283     // If we replace a value with a constant there are no uses left afterwards.
3284     if (!isa<Constant>(V)) {
3285       bool UsedAssumedInformation = false;
3286       Optional<Constant *> C =
3287           A.getAssumedConstant(V, *this, UsedAssumedInformation);
3288       if (!C.hasValue() || *C)
3289         return true;
3290     }
3291 
3292     auto UsePred = [&](const Use &U, bool &Follow) { return false; };
3293     // Explicitly set the dependence class to required because we want a long
3294     // chain of N dependent instructions to be considered live as soon as one is
3295     // without going through N update cycles. This is not required for
3296     // correctness.
3297     return A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ false,
3298                              DepClassTy::REQUIRED);
3299   }
3300 
3301   /// Determine if \p I is assumed to be side-effect free.
3302   bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
3303     if (!I || wouldInstructionBeTriviallyDead(I))
3304       return true;
3305 
3306     auto *CB = dyn_cast<CallBase>(I);
3307     if (!CB || isa<IntrinsicInst>(CB))
3308       return false;
3309 
3310     const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
3311     const auto &NoUnwindAA =
3312         A.getAndUpdateAAFor<AANoUnwind>(*this, CallIRP, DepClassTy::NONE);
3313     if (!NoUnwindAA.isAssumedNoUnwind())
3314       return false;
3315     if (!NoUnwindAA.isKnownNoUnwind())
3316       A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL);
3317 
3318     const auto &MemBehaviorAA =
3319         A.getAndUpdateAAFor<AAMemoryBehavior>(*this, CallIRP, DepClassTy::NONE);
3320     if (MemBehaviorAA.isAssumedReadOnly()) {
3321       if (!MemBehaviorAA.isKnownReadOnly())
3322         A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
3323       return true;
3324     }
3325     return false;
3326   }
3327 };
3328 
3329 struct AAIsDeadFloating : public AAIsDeadValueImpl {
3330   AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
3331       : AAIsDeadValueImpl(IRP, A) {}
3332 
3333   /// See AbstractAttribute::initialize(...).
3334   void initialize(Attributor &A) override {
3335     if (isa<UndefValue>(getAssociatedValue())) {
3336       indicatePessimisticFixpoint();
3337       return;
3338     }
3339 
3340     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3341     if (!isAssumedSideEffectFree(A, I))
3342       indicatePessimisticFixpoint();
3343   }
3344 
3345   /// See AbstractAttribute::updateImpl(...).
3346   ChangeStatus updateImpl(Attributor &A) override {
3347     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
3348     if (!isAssumedSideEffectFree(A, I))
3349       return indicatePessimisticFixpoint();
3350     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3351       return indicatePessimisticFixpoint();
3352     return ChangeStatus::UNCHANGED;
3353   }
3354 
3355   /// See AbstractAttribute::manifest(...).
3356   ChangeStatus manifest(Attributor &A) override {
3357     Value &V = getAssociatedValue();
3358     if (auto *I = dyn_cast<Instruction>(&V)) {
3359       // If we get here we basically know the users are all dead. We check if
3360       // isAssumedSideEffectFree returns true here again because it might not be
3361       // the case and only the users are dead but the instruction (=call) is
3362       // still needed.
3363       if (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I)) {
3364         A.deleteAfterManifest(*I);
3365         return ChangeStatus::CHANGED;
3366       }
3367     }
3368     if (V.use_empty())
3369       return ChangeStatus::UNCHANGED;
3370 
3371     bool UsedAssumedInformation = false;
3372     Optional<Constant *> C =
3373         A.getAssumedConstant(V, *this, UsedAssumedInformation);
3374     if (C.hasValue() && C.getValue())
3375       return ChangeStatus::UNCHANGED;
3376 
3377     // Replace the value with undef as it is dead but keep droppable uses around
3378     // as they provide information we don't want to give up on just yet.
3379     UndefValue &UV = *UndefValue::get(V.getType());
3380     bool AnyChange =
3381         A.changeValueAfterManifest(V, UV, /* ChangeDropppable */ false);
3382     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3383   }
3384 
3385   /// See AbstractAttribute::trackStatistics()
3386   void trackStatistics() const override {
3387     STATS_DECLTRACK_FLOATING_ATTR(IsDead)
3388   }
3389 };
3390 
3391 struct AAIsDeadArgument : public AAIsDeadFloating {
3392   AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
3393       : AAIsDeadFloating(IRP, A) {}
3394 
3395   /// See AbstractAttribute::initialize(...).
3396   void initialize(Attributor &A) override {
3397     if (!A.isFunctionIPOAmendable(*getAnchorScope()))
3398       indicatePessimisticFixpoint();
3399   }
3400 
3401   /// See AbstractAttribute::manifest(...).
3402   ChangeStatus manifest(Attributor &A) override {
3403     ChangeStatus Changed = AAIsDeadFloating::manifest(A);
3404     Argument &Arg = *getAssociatedArgument();
3405     if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
3406       if (A.registerFunctionSignatureRewrite(
3407               Arg, /* ReplacementTypes */ {},
3408               Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
3409               Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
3410         Arg.dropDroppableUses();
3411         return ChangeStatus::CHANGED;
3412       }
3413     return Changed;
3414   }
3415 
3416   /// See AbstractAttribute::trackStatistics()
3417   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
3418 };
3419 
3420 struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
3421   AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
3422       : AAIsDeadValueImpl(IRP, A) {}
3423 
3424   /// See AbstractAttribute::initialize(...).
3425   void initialize(Attributor &A) override {
3426     if (isa<UndefValue>(getAssociatedValue()))
3427       indicatePessimisticFixpoint();
3428   }
3429 
3430   /// See AbstractAttribute::updateImpl(...).
3431   ChangeStatus updateImpl(Attributor &A) override {
3432     // TODO: Once we have call site specific value information we can provide
3433     //       call site specific liveness information and then it makes
3434     //       sense to specialize attributes for call sites arguments instead of
3435     //       redirecting requests to the callee argument.
3436     Argument *Arg = getAssociatedArgument();
3437     if (!Arg)
3438       return indicatePessimisticFixpoint();
3439     const IRPosition &ArgPos = IRPosition::argument(*Arg);
3440     auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos, DepClassTy::REQUIRED);
3441     return clampStateAndIndicateChange(getState(), ArgAA.getState());
3442   }
3443 
3444   /// See AbstractAttribute::manifest(...).
3445   ChangeStatus manifest(Attributor &A) override {
3446     CallBase &CB = cast<CallBase>(getAnchorValue());
3447     Use &U = CB.getArgOperandUse(getCallSiteArgNo());
3448     assert(!isa<UndefValue>(U.get()) &&
3449            "Expected undef values to be filtered out!");
3450     UndefValue &UV = *UndefValue::get(U->getType());
3451     if (A.changeUseAfterManifest(U, UV))
3452       return ChangeStatus::CHANGED;
3453     return ChangeStatus::UNCHANGED;
3454   }
3455 
3456   /// See AbstractAttribute::trackStatistics()
3457   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
3458 };
3459 
3460 struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
3461   AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
3462       : AAIsDeadFloating(IRP, A), IsAssumedSideEffectFree(true) {}
3463 
3464   /// See AAIsDead::isAssumedDead().
3465   bool isAssumedDead() const override {
3466     return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
3467   }
3468 
3469   /// See AbstractAttribute::initialize(...).
3470   void initialize(Attributor &A) override {
3471     if (isa<UndefValue>(getAssociatedValue())) {
3472       indicatePessimisticFixpoint();
3473       return;
3474     }
3475 
3476     // We track this separately as a secondary state.
3477     IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
3478   }
3479 
3480   /// See AbstractAttribute::updateImpl(...).
3481   ChangeStatus updateImpl(Attributor &A) override {
3482     ChangeStatus Changed = ChangeStatus::UNCHANGED;
3483     if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
3484       IsAssumedSideEffectFree = false;
3485       Changed = ChangeStatus::CHANGED;
3486     }
3487     if (!areAllUsesAssumedDead(A, getAssociatedValue()))
3488       return indicatePessimisticFixpoint();
3489     return Changed;
3490   }
3491 
3492   /// See AbstractAttribute::trackStatistics()
3493   void trackStatistics() const override {
3494     if (IsAssumedSideEffectFree)
3495       STATS_DECLTRACK_CSRET_ATTR(IsDead)
3496     else
3497       STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
3498   }
3499 
3500   /// See AbstractAttribute::getAsStr().
3501   const std::string getAsStr() const override {
3502     return isAssumedDead()
3503                ? "assumed-dead"
3504                : (getAssumed() ? "assumed-dead-users" : "assumed-live");
3505   }
3506 
3507 private:
3508   bool IsAssumedSideEffectFree;
3509 };
3510 
3511 struct AAIsDeadReturned : public AAIsDeadValueImpl {
3512   AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
3513       : AAIsDeadValueImpl(IRP, A) {}
3514 
3515   /// See AbstractAttribute::updateImpl(...).
3516   ChangeStatus updateImpl(Attributor &A) override {
3517 
3518     bool UsedAssumedInformation = false;
3519     A.checkForAllInstructions([](Instruction &) { return true; }, *this,
3520                               {Instruction::Ret}, UsedAssumedInformation);
3521 
3522     auto PredForCallSite = [&](AbstractCallSite ACS) {
3523       if (ACS.isCallbackCall() || !ACS.getInstruction())
3524         return false;
3525       return areAllUsesAssumedDead(A, *ACS.getInstruction());
3526     };
3527 
3528     bool AllCallSitesKnown;
3529     if (!A.checkForAllCallSites(PredForCallSite, *this, true,
3530                                 AllCallSitesKnown))
3531       return indicatePessimisticFixpoint();
3532 
3533     return ChangeStatus::UNCHANGED;
3534   }
3535 
3536   /// See AbstractAttribute::manifest(...).
3537   ChangeStatus manifest(Attributor &A) override {
3538     // TODO: Rewrite the signature to return void?
3539     bool AnyChange = false;
3540     UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
3541     auto RetInstPred = [&](Instruction &I) {
3542       ReturnInst &RI = cast<ReturnInst>(I);
3543       if (!isa<UndefValue>(RI.getReturnValue()))
3544         AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
3545       return true;
3546     };
3547     bool UsedAssumedInformation = false;
3548     A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
3549                               UsedAssumedInformation);
3550     return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3551   }
3552 
3553   /// See AbstractAttribute::trackStatistics()
3554   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
3555 };
3556 
3557 struct AAIsDeadFunction : public AAIsDead {
3558   AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
3559 
3560   /// See AbstractAttribute::initialize(...).
3561   void initialize(Attributor &A) override {
3562     const Function *F = getAnchorScope();
3563     if (F && !F->isDeclaration()) {
3564       // We only want to compute liveness once. If the function is not part of
3565       // the SCC, skip it.
3566       if (A.isRunOn(*const_cast<Function *>(F))) {
3567         ToBeExploredFrom.insert(&F->getEntryBlock().front());
3568         assumeLive(A, F->getEntryBlock());
3569       } else {
3570         indicatePessimisticFixpoint();
3571       }
3572     }
3573   }
3574 
3575   /// See AbstractAttribute::getAsStr().
3576   const std::string getAsStr() const override {
3577     return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
3578            std::to_string(getAnchorScope()->size()) + "][#TBEP " +
3579            std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
3580            std::to_string(KnownDeadEnds.size()) + "]";
3581   }
3582 
3583   /// See AbstractAttribute::manifest(...).
3584   ChangeStatus manifest(Attributor &A) override {
3585     assert(getState().isValidState() &&
3586            "Attempted to manifest an invalid state!");
3587 
3588     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
3589     Function &F = *getAnchorScope();
3590 
3591     if (AssumedLiveBlocks.empty()) {
3592       A.deleteAfterManifest(F);
3593       return ChangeStatus::CHANGED;
3594     }
3595 
3596     // Flag to determine if we can change an invoke to a call assuming the
3597     // callee is nounwind. This is not possible if the personality of the
3598     // function allows to catch asynchronous exceptions.
3599     bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
3600 
3601     KnownDeadEnds.set_union(ToBeExploredFrom);
3602     for (const Instruction *DeadEndI : KnownDeadEnds) {
3603       auto *CB = dyn_cast<CallBase>(DeadEndI);
3604       if (!CB)
3605         continue;
3606       const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
3607           *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
3608       bool MayReturn = !NoReturnAA.isAssumedNoReturn();
3609       if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
3610         continue;
3611 
3612       if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
3613         A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
3614       else
3615         A.changeToUnreachableAfterManifest(
3616             const_cast<Instruction *>(DeadEndI->getNextNode()));
3617       HasChanged = ChangeStatus::CHANGED;
3618     }
3619 
3620     STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
3621     for (BasicBlock &BB : F)
3622       if (!AssumedLiveBlocks.count(&BB)) {
3623         A.deleteAfterManifest(BB);
3624         ++BUILD_STAT_NAME(AAIsDead, BasicBlock);
3625       }
3626 
3627     return HasChanged;
3628   }
3629 
3630   /// See AbstractAttribute::updateImpl(...).
3631   ChangeStatus updateImpl(Attributor &A) override;
3632 
3633   bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override {
3634     return !AssumedLiveEdges.count(std::make_pair(From, To));
3635   }
3636 
3637   /// See AbstractAttribute::trackStatistics()
3638   void trackStatistics() const override {}
3639 
3640   /// Returns true if the function is assumed dead.
3641   bool isAssumedDead() const override { return false; }
3642 
3643   /// See AAIsDead::isKnownDead().
3644   bool isKnownDead() const override { return false; }
3645 
3646   /// See AAIsDead::isAssumedDead(BasicBlock *).
3647   bool isAssumedDead(const BasicBlock *BB) const override {
3648     assert(BB->getParent() == getAnchorScope() &&
3649            "BB must be in the same anchor scope function.");
3650 
3651     if (!getAssumed())
3652       return false;
3653     return !AssumedLiveBlocks.count(BB);
3654   }
3655 
3656   /// See AAIsDead::isKnownDead(BasicBlock *).
3657   bool isKnownDead(const BasicBlock *BB) const override {
3658     return getKnown() && isAssumedDead(BB);
3659   }
3660 
3661   /// See AAIsDead::isAssumed(Instruction *I).
3662   bool isAssumedDead(const Instruction *I) const override {
3663     assert(I->getParent()->getParent() == getAnchorScope() &&
3664            "Instruction must be in the same anchor scope function.");
3665 
3666     if (!getAssumed())
3667       return false;
3668 
3669     // If it is not in AssumedLiveBlocks then it for sure dead.
3670     // Otherwise, it can still be after noreturn call in a live block.
3671     if (!AssumedLiveBlocks.count(I->getParent()))
3672       return true;
3673 
3674     // If it is not after a liveness barrier it is live.
3675     const Instruction *PrevI = I->getPrevNode();
3676     while (PrevI) {
3677       if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
3678         return true;
3679       PrevI = PrevI->getPrevNode();
3680     }
3681     return false;
3682   }
3683 
3684   /// See AAIsDead::isKnownDead(Instruction *I).
3685   bool isKnownDead(const Instruction *I) const override {
3686     return getKnown() && isAssumedDead(I);
3687   }
3688 
3689   /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
3690   /// that internal function called from \p BB should now be looked at.
3691   bool assumeLive(Attributor &A, const BasicBlock &BB) {
3692     if (!AssumedLiveBlocks.insert(&BB).second)
3693       return false;
3694 
3695     // We assume that all of BB is (probably) live now and if there are calls to
3696     // internal functions we will assume that those are now live as well. This
3697     // is a performance optimization for blocks with calls to a lot of internal
3698     // functions. It can however cause dead functions to be treated as live.
3699     for (const Instruction &I : BB)
3700       if (const auto *CB = dyn_cast<CallBase>(&I))
3701         if (const Function *F = CB->getCalledFunction())
3702           if (F->hasLocalLinkage())
3703             A.markLiveInternalFunction(*F);
3704     return true;
3705   }
3706 
3707   /// Collection of instructions that need to be explored again, e.g., we
3708   /// did assume they do not transfer control to (one of their) successors.
3709   SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
3710 
3711   /// Collection of instructions that are known to not transfer control.
3712   SmallSetVector<const Instruction *, 8> KnownDeadEnds;
3713 
3714   /// Collection of all assumed live edges
3715   DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges;
3716 
3717   /// Collection of all assumed live BasicBlocks.
3718   DenseSet<const BasicBlock *> AssumedLiveBlocks;
3719 };
3720 
3721 static bool
3722 identifyAliveSuccessors(Attributor &A, const CallBase &CB,
3723                         AbstractAttribute &AA,
3724                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3725   const IRPosition &IPos = IRPosition::callsite_function(CB);
3726 
3727   const auto &NoReturnAA =
3728       A.getAndUpdateAAFor<AANoReturn>(AA, IPos, DepClassTy::OPTIONAL);
3729   if (NoReturnAA.isAssumedNoReturn())
3730     return !NoReturnAA.isKnownNoReturn();
3731   if (CB.isTerminator())
3732     AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
3733   else
3734     AliveSuccessors.push_back(CB.getNextNode());
3735   return false;
3736 }
3737 
3738 static bool
3739 identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
3740                         AbstractAttribute &AA,
3741                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3742   bool UsedAssumedInformation =
3743       identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
3744 
3745   // First, determine if we can change an invoke to a call assuming the
3746   // callee is nounwind. This is not possible if the personality of the
3747   // function allows to catch asynchronous exceptions.
3748   if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
3749     AliveSuccessors.push_back(&II.getUnwindDest()->front());
3750   } else {
3751     const IRPosition &IPos = IRPosition::callsite_function(II);
3752     const auto &AANoUnw =
3753         A.getAndUpdateAAFor<AANoUnwind>(AA, IPos, DepClassTy::OPTIONAL);
3754     if (AANoUnw.isAssumedNoUnwind()) {
3755       UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
3756     } else {
3757       AliveSuccessors.push_back(&II.getUnwindDest()->front());
3758     }
3759   }
3760   return UsedAssumedInformation;
3761 }
3762 
3763 static bool
3764 identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
3765                         AbstractAttribute &AA,
3766                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3767   bool UsedAssumedInformation = false;
3768   if (BI.getNumSuccessors() == 1) {
3769     AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3770   } else {
3771     Optional<Constant *> C =
3772         A.getAssumedConstant(*BI.getCondition(), AA, UsedAssumedInformation);
3773     if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
3774       // No value yet, assume both edges are dead.
3775     } else if (isa_and_nonnull<ConstantInt>(*C)) {
3776       const BasicBlock *SuccBB =
3777           BI.getSuccessor(1 - cast<ConstantInt>(*C)->getValue().getZExtValue());
3778       AliveSuccessors.push_back(&SuccBB->front());
3779     } else {
3780       AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
3781       AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
3782       UsedAssumedInformation = false;
3783     }
3784   }
3785   return UsedAssumedInformation;
3786 }
3787 
3788 static bool
3789 identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
3790                         AbstractAttribute &AA,
3791                         SmallVectorImpl<const Instruction *> &AliveSuccessors) {
3792   bool UsedAssumedInformation = false;
3793   Optional<Constant *> C =
3794       A.getAssumedConstant(*SI.getCondition(), AA, UsedAssumedInformation);
3795   if (!C.hasValue() || isa_and_nonnull<UndefValue>(C.getValue())) {
3796     // No value yet, assume all edges are dead.
3797   } else if (isa_and_nonnull<ConstantInt>(C.getValue())) {
3798     for (auto &CaseIt : SI.cases()) {
3799       if (CaseIt.getCaseValue() == C.getValue()) {
3800         AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
3801         return UsedAssumedInformation;
3802       }
3803     }
3804     AliveSuccessors.push_back(&SI.getDefaultDest()->front());
3805     return UsedAssumedInformation;
3806   } else {
3807     for (const BasicBlock *SuccBB : successors(SI.getParent()))
3808       AliveSuccessors.push_back(&SuccBB->front());
3809   }
3810   return UsedAssumedInformation;
3811 }
3812 
3813 ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
3814   ChangeStatus Change = ChangeStatus::UNCHANGED;
3815 
3816   LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
3817                     << getAnchorScope()->size() << "] BBs and "
3818                     << ToBeExploredFrom.size() << " exploration points and "
3819                     << KnownDeadEnds.size() << " known dead ends\n");
3820 
3821   // Copy and clear the list of instructions we need to explore from. It is
3822   // refilled with instructions the next update has to look at.
3823   SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
3824                                                ToBeExploredFrom.end());
3825   decltype(ToBeExploredFrom) NewToBeExploredFrom;
3826 
3827   SmallVector<const Instruction *, 8> AliveSuccessors;
3828   while (!Worklist.empty()) {
3829     const Instruction *I = Worklist.pop_back_val();
3830     LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
3831 
3832     // Fast forward for uninteresting instructions. We could look for UB here
3833     // though.
3834     while (!I->isTerminator() && !isa<CallBase>(I)) {
3835       Change = ChangeStatus::CHANGED;
3836       I = I->getNextNode();
3837     }
3838 
3839     AliveSuccessors.clear();
3840 
3841     bool UsedAssumedInformation = false;
3842     switch (I->getOpcode()) {
3843     // TODO: look for (assumed) UB to backwards propagate "deadness".
3844     default:
3845       assert(I->isTerminator() &&
3846              "Expected non-terminators to be handled already!");
3847       for (const BasicBlock *SuccBB : successors(I->getParent()))
3848         AliveSuccessors.push_back(&SuccBB->front());
3849       break;
3850     case Instruction::Call:
3851       UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
3852                                                        *this, AliveSuccessors);
3853       break;
3854     case Instruction::Invoke:
3855       UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
3856                                                        *this, AliveSuccessors);
3857       break;
3858     case Instruction::Br:
3859       UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
3860                                                        *this, AliveSuccessors);
3861       break;
3862     case Instruction::Switch:
3863       UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
3864                                                        *this, AliveSuccessors);
3865       break;
3866     }
3867 
3868     if (UsedAssumedInformation) {
3869       NewToBeExploredFrom.insert(I);
3870     } else {
3871       Change = ChangeStatus::CHANGED;
3872       if (AliveSuccessors.empty() ||
3873           (I->isTerminator() && AliveSuccessors.size() < I->getNumSuccessors()))
3874         KnownDeadEnds.insert(I);
3875     }
3876 
3877     LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
3878                       << AliveSuccessors.size() << " UsedAssumedInformation: "
3879                       << UsedAssumedInformation << "\n");
3880 
3881     for (const Instruction *AliveSuccessor : AliveSuccessors) {
3882       if (!I->isTerminator()) {
3883         assert(AliveSuccessors.size() == 1 &&
3884                "Non-terminator expected to have a single successor!");
3885         Worklist.push_back(AliveSuccessor);
3886       } else {
3887         // record the assumed live edge
3888         AssumedLiveEdges.insert(
3889             std::make_pair(I->getParent(), AliveSuccessor->getParent()));
3890         if (assumeLive(A, *AliveSuccessor->getParent()))
3891           Worklist.push_back(AliveSuccessor);
3892       }
3893     }
3894   }
3895 
3896   ToBeExploredFrom = std::move(NewToBeExploredFrom);
3897 
3898   // If we know everything is live there is no need to query for liveness.
3899   // Instead, indicating a pessimistic fixpoint will cause the state to be
3900   // "invalid" and all queries to be answered conservatively without lookups.
3901   // To be in this state we have to (1) finished the exploration and (3) not
3902   // discovered any non-trivial dead end and (2) not ruled unreachable code
3903   // dead.
3904   if (ToBeExploredFrom.empty() &&
3905       getAnchorScope()->size() == AssumedLiveBlocks.size() &&
3906       llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
3907         return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
3908       }))
3909     return indicatePessimisticFixpoint();
3910   return Change;
3911 }
3912 
3913 /// Liveness information for a call sites.
3914 struct AAIsDeadCallSite final : AAIsDeadFunction {
3915   AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
3916       : AAIsDeadFunction(IRP, A) {}
3917 
3918   /// See AbstractAttribute::initialize(...).
3919   void initialize(Attributor &A) override {
3920     // TODO: Once we have call site specific value information we can provide
3921     //       call site specific liveness information and then it makes
3922     //       sense to specialize attributes for call sites instead of
3923     //       redirecting requests to the callee.
3924     llvm_unreachable("Abstract attributes for liveness are not "
3925                      "supported for call sites yet!");
3926   }
3927 
3928   /// See AbstractAttribute::updateImpl(...).
3929   ChangeStatus updateImpl(Attributor &A) override {
3930     return indicatePessimisticFixpoint();
3931   }
3932 
3933   /// See AbstractAttribute::trackStatistics()
3934   void trackStatistics() const override {}
3935 };
3936 
3937 /// -------------------- Dereferenceable Argument Attribute --------------------
3938 
3939 template <>
3940 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
3941                                                      const DerefState &R) {
3942   ChangeStatus CS0 =
3943       clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
3944   ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
3945   return CS0 | CS1;
3946 }
3947 
3948 struct AADereferenceableImpl : AADereferenceable {
3949   AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
3950       : AADereferenceable(IRP, A) {}
3951   using StateType = DerefState;
3952 
3953   /// See AbstractAttribute::initialize(...).
3954   void initialize(Attributor &A) override {
3955     SmallVector<Attribute, 4> Attrs;
3956     getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
3957              Attrs, /* IgnoreSubsumingPositions */ false, &A);
3958     for (const Attribute &Attr : Attrs)
3959       takeKnownDerefBytesMaximum(Attr.getValueAsInt());
3960 
3961     const IRPosition &IRP = this->getIRPosition();
3962     NonNullAA = &A.getAAFor<AANonNull>(*this, IRP, DepClassTy::NONE);
3963 
3964     bool CanBeNull, CanBeFreed;
3965     takeKnownDerefBytesMaximum(
3966         IRP.getAssociatedValue().getPointerDereferenceableBytes(
3967             A.getDataLayout(), CanBeNull, CanBeFreed));
3968 
3969     bool IsFnInterface = IRP.isFnInterfaceKind();
3970     Function *FnScope = IRP.getAnchorScope();
3971     if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) {
3972       indicatePessimisticFixpoint();
3973       return;
3974     }
3975 
3976     if (Instruction *CtxI = getCtxI())
3977       followUsesInMBEC(*this, A, getState(), *CtxI);
3978   }
3979 
3980   /// See AbstractAttribute::getState()
3981   /// {
3982   StateType &getState() override { return *this; }
3983   const StateType &getState() const override { return *this; }
3984   /// }
3985 
3986   /// Helper function for collecting accessed bytes in must-be-executed-context
3987   void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
3988                               DerefState &State) {
3989     const Value *UseV = U->get();
3990     if (!UseV->getType()->isPointerTy())
3991       return;
3992 
3993     Type *PtrTy = UseV->getType();
3994     const DataLayout &DL = A.getDataLayout();
3995     int64_t Offset;
3996     if (const Value *Base = getBasePointerOfAccessPointerOperand(
3997             I, Offset, DL, /*AllowNonInbounds*/ true)) {
3998       if (Base == &getAssociatedValue() &&
3999           getPointerOperand(I, /* AllowVolatile */ false) == UseV) {
4000         uint64_t Size = DL.getTypeStoreSize(PtrTy->getPointerElementType());
4001         State.addAccessedBytes(Offset, Size);
4002       }
4003     }
4004   }
4005 
4006   /// See followUsesInMBEC
4007   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4008                        AADereferenceable::StateType &State) {
4009     bool IsNonNull = false;
4010     bool TrackUse = false;
4011     int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
4012         A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
4013     LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
4014                       << " for instruction " << *I << "\n");
4015 
4016     addAccessedBytesForUse(A, U, I, State);
4017     State.takeKnownDerefBytesMaximum(DerefBytes);
4018     return TrackUse;
4019   }
4020 
4021   /// See AbstractAttribute::manifest(...).
4022   ChangeStatus manifest(Attributor &A) override {
4023     ChangeStatus Change = AADereferenceable::manifest(A);
4024     if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
4025       removeAttrs({Attribute::DereferenceableOrNull});
4026       return ChangeStatus::CHANGED;
4027     }
4028     return Change;
4029   }
4030 
4031   void getDeducedAttributes(LLVMContext &Ctx,
4032                             SmallVectorImpl<Attribute> &Attrs) const override {
4033     // TODO: Add *_globally support
4034     if (isAssumedNonNull())
4035       Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
4036           Ctx, getAssumedDereferenceableBytes()));
4037     else
4038       Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
4039           Ctx, getAssumedDereferenceableBytes()));
4040   }
4041 
4042   /// See AbstractAttribute::getAsStr().
4043   const std::string getAsStr() const override {
4044     if (!getAssumedDereferenceableBytes())
4045       return "unknown-dereferenceable";
4046     return std::string("dereferenceable") +
4047            (isAssumedNonNull() ? "" : "_or_null") +
4048            (isAssumedGlobal() ? "_globally" : "") + "<" +
4049            std::to_string(getKnownDereferenceableBytes()) + "-" +
4050            std::to_string(getAssumedDereferenceableBytes()) + ">";
4051   }
4052 };
4053 
4054 /// Dereferenceable attribute for a floating value.
4055 struct AADereferenceableFloating : AADereferenceableImpl {
4056   AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
4057       : AADereferenceableImpl(IRP, A) {}
4058 
4059   /// See AbstractAttribute::updateImpl(...).
4060   ChangeStatus updateImpl(Attributor &A) override {
4061     const DataLayout &DL = A.getDataLayout();
4062 
4063     auto VisitValueCB = [&](const Value &V, const Instruction *, DerefState &T,
4064                             bool Stripped) -> bool {
4065       unsigned IdxWidth =
4066           DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
4067       APInt Offset(IdxWidth, 0);
4068       const Value *Base =
4069           stripAndAccumulateMinimalOffsets(A, *this, &V, DL, Offset, false);
4070 
4071       const auto &AA = A.getAAFor<AADereferenceable>(
4072           *this, IRPosition::value(*Base), DepClassTy::REQUIRED);
4073       int64_t DerefBytes = 0;
4074       if (!Stripped && this == &AA) {
4075         // Use IR information if we did not strip anything.
4076         // TODO: track globally.
4077         bool CanBeNull, CanBeFreed;
4078         DerefBytes =
4079             Base->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
4080         T.GlobalState.indicatePessimisticFixpoint();
4081       } else {
4082         const DerefState &DS = AA.getState();
4083         DerefBytes = DS.DerefBytesState.getAssumed();
4084         T.GlobalState &= DS.GlobalState;
4085       }
4086 
4087       // For now we do not try to "increase" dereferenceability due to negative
4088       // indices as we first have to come up with code to deal with loops and
4089       // for overflows of the dereferenceable bytes.
4090       int64_t OffsetSExt = Offset.getSExtValue();
4091       if (OffsetSExt < 0)
4092         OffsetSExt = 0;
4093 
4094       T.takeAssumedDerefBytesMinimum(
4095           std::max(int64_t(0), DerefBytes - OffsetSExt));
4096 
4097       if (this == &AA) {
4098         if (!Stripped) {
4099           // If nothing was stripped IR information is all we got.
4100           T.takeKnownDerefBytesMaximum(
4101               std::max(int64_t(0), DerefBytes - OffsetSExt));
4102           T.indicatePessimisticFixpoint();
4103         } else if (OffsetSExt > 0) {
4104           // If something was stripped but there is circular reasoning we look
4105           // for the offset. If it is positive we basically decrease the
4106           // dereferenceable bytes in a circluar loop now, which will simply
4107           // drive them down to the known value in a very slow way which we
4108           // can accelerate.
4109           T.indicatePessimisticFixpoint();
4110         }
4111       }
4112 
4113       return T.isValidState();
4114     };
4115 
4116     DerefState T;
4117     if (!genericValueTraversal<DerefState>(A, getIRPosition(), *this, T,
4118                                            VisitValueCB, getCtxI()))
4119       return indicatePessimisticFixpoint();
4120 
4121     return clampStateAndIndicateChange(getState(), T);
4122   }
4123 
4124   /// See AbstractAttribute::trackStatistics()
4125   void trackStatistics() const override {
4126     STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
4127   }
4128 };
4129 
4130 /// Dereferenceable attribute for a return value.
4131 struct AADereferenceableReturned final
4132     : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
4133   AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
4134       : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
4135             IRP, A) {}
4136 
4137   /// See AbstractAttribute::trackStatistics()
4138   void trackStatistics() const override {
4139     STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
4140   }
4141 };
4142 
4143 /// Dereferenceable attribute for an argument
4144 struct AADereferenceableArgument final
4145     : AAArgumentFromCallSiteArguments<AADereferenceable,
4146                                       AADereferenceableImpl> {
4147   using Base =
4148       AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
4149   AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
4150       : Base(IRP, A) {}
4151 
4152   /// See AbstractAttribute::trackStatistics()
4153   void trackStatistics() const override {
4154     STATS_DECLTRACK_ARG_ATTR(dereferenceable)
4155   }
4156 };
4157 
4158 /// Dereferenceable attribute for a call site argument.
4159 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
4160   AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
4161       : AADereferenceableFloating(IRP, A) {}
4162 
4163   /// See AbstractAttribute::trackStatistics()
4164   void trackStatistics() const override {
4165     STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
4166   }
4167 };
4168 
4169 /// Dereferenceable attribute deduction for a call site return value.
4170 struct AADereferenceableCallSiteReturned final
4171     : AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> {
4172   using Base =
4173       AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>;
4174   AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
4175       : Base(IRP, A) {}
4176 
4177   /// See AbstractAttribute::trackStatistics()
4178   void trackStatistics() const override {
4179     STATS_DECLTRACK_CS_ATTR(dereferenceable);
4180   }
4181 };
4182 
4183 // ------------------------ Align Argument Attribute ------------------------
4184 
4185 static unsigned getKnownAlignForUse(Attributor &A, AAAlign &QueryingAA,
4186                                     Value &AssociatedValue, const Use *U,
4187                                     const Instruction *I, bool &TrackUse) {
4188   // We need to follow common pointer manipulation uses to the accesses they
4189   // feed into.
4190   if (isa<CastInst>(I)) {
4191     // Follow all but ptr2int casts.
4192     TrackUse = !isa<PtrToIntInst>(I);
4193     return 0;
4194   }
4195   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
4196     if (GEP->hasAllConstantIndices())
4197       TrackUse = true;
4198     return 0;
4199   }
4200 
4201   MaybeAlign MA;
4202   if (const auto *CB = dyn_cast<CallBase>(I)) {
4203     if (CB->isBundleOperand(U) || CB->isCallee(U))
4204       return 0;
4205 
4206     unsigned ArgNo = CB->getArgOperandNo(U);
4207     IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
4208     // As long as we only use known information there is no need to track
4209     // dependences here.
4210     auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, DepClassTy::NONE);
4211     MA = MaybeAlign(AlignAA.getKnownAlign());
4212   }
4213 
4214   const DataLayout &DL = A.getDataLayout();
4215   const Value *UseV = U->get();
4216   if (auto *SI = dyn_cast<StoreInst>(I)) {
4217     if (SI->getPointerOperand() == UseV)
4218       MA = SI->getAlign();
4219   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
4220     if (LI->getPointerOperand() == UseV)
4221       MA = LI->getAlign();
4222   }
4223 
4224   if (!MA || *MA <= QueryingAA.getKnownAlign())
4225     return 0;
4226 
4227   unsigned Alignment = MA->value();
4228   int64_t Offset;
4229 
4230   if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
4231     if (Base == &AssociatedValue) {
4232       // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4233       // So we can say that the maximum power of two which is a divisor of
4234       // gcd(Offset, Alignment) is an alignment.
4235 
4236       uint32_t gcd =
4237           greatestCommonDivisor(uint32_t(abs((int32_t)Offset)), Alignment);
4238       Alignment = llvm::PowerOf2Floor(gcd);
4239     }
4240   }
4241 
4242   return Alignment;
4243 }
4244 
4245 struct AAAlignImpl : AAAlign {
4246   AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
4247 
4248   /// See AbstractAttribute::initialize(...).
4249   void initialize(Attributor &A) override {
4250     SmallVector<Attribute, 4> Attrs;
4251     getAttrs({Attribute::Alignment}, Attrs);
4252     for (const Attribute &Attr : Attrs)
4253       takeKnownMaximum(Attr.getValueAsInt());
4254 
4255     Value &V = getAssociatedValue();
4256     // TODO: This is a HACK to avoid getPointerAlignment to introduce a ptr2int
4257     //       use of the function pointer. This was caused by D73131. We want to
4258     //       avoid this for function pointers especially because we iterate
4259     //       their uses and int2ptr is not handled. It is not a correctness
4260     //       problem though!
4261     if (!V.getType()->getPointerElementType()->isFunctionTy())
4262       takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
4263 
4264     if (getIRPosition().isFnInterfaceKind() &&
4265         (!getAnchorScope() ||
4266          !A.isFunctionIPOAmendable(*getAssociatedFunction()))) {
4267       indicatePessimisticFixpoint();
4268       return;
4269     }
4270 
4271     if (Instruction *CtxI = getCtxI())
4272       followUsesInMBEC(*this, A, getState(), *CtxI);
4273   }
4274 
4275   /// See AbstractAttribute::manifest(...).
4276   ChangeStatus manifest(Attributor &A) override {
4277     ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
4278 
4279     // Check for users that allow alignment annotations.
4280     Value &AssociatedValue = getAssociatedValue();
4281     for (const Use &U : AssociatedValue.uses()) {
4282       if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
4283         if (SI->getPointerOperand() == &AssociatedValue)
4284           if (SI->getAlignment() < getAssumedAlign()) {
4285             STATS_DECLTRACK(AAAlign, Store,
4286                             "Number of times alignment added to a store");
4287             SI->setAlignment(Align(getAssumedAlign()));
4288             LoadStoreChanged = ChangeStatus::CHANGED;
4289           }
4290       } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
4291         if (LI->getPointerOperand() == &AssociatedValue)
4292           if (LI->getAlignment() < getAssumedAlign()) {
4293             LI->setAlignment(Align(getAssumedAlign()));
4294             STATS_DECLTRACK(AAAlign, Load,
4295                             "Number of times alignment added to a load");
4296             LoadStoreChanged = ChangeStatus::CHANGED;
4297           }
4298       }
4299     }
4300 
4301     ChangeStatus Changed = AAAlign::manifest(A);
4302 
4303     Align InheritAlign =
4304         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4305     if (InheritAlign >= getAssumedAlign())
4306       return LoadStoreChanged;
4307     return Changed | LoadStoreChanged;
4308   }
4309 
4310   // TODO: Provide a helper to determine the implied ABI alignment and check in
4311   //       the existing manifest method and a new one for AAAlignImpl that value
4312   //       to avoid making the alignment explicit if it did not improve.
4313 
4314   /// See AbstractAttribute::getDeducedAttributes
4315   virtual void
4316   getDeducedAttributes(LLVMContext &Ctx,
4317                        SmallVectorImpl<Attribute> &Attrs) const override {
4318     if (getAssumedAlign() > 1)
4319       Attrs.emplace_back(
4320           Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
4321   }
4322 
4323   /// See followUsesInMBEC
4324   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
4325                        AAAlign::StateType &State) {
4326     bool TrackUse = false;
4327 
4328     unsigned int KnownAlign =
4329         getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
4330     State.takeKnownMaximum(KnownAlign);
4331 
4332     return TrackUse;
4333   }
4334 
4335   /// See AbstractAttribute::getAsStr().
4336   const std::string getAsStr() const override {
4337     return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
4338                                 "-" + std::to_string(getAssumedAlign()) + ">")
4339                              : "unknown-align";
4340   }
4341 };
4342 
4343 /// Align attribute for a floating value.
4344 struct AAAlignFloating : AAAlignImpl {
4345   AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
4346 
4347   /// See AbstractAttribute::updateImpl(...).
4348   ChangeStatus updateImpl(Attributor &A) override {
4349     const DataLayout &DL = A.getDataLayout();
4350 
4351     auto VisitValueCB = [&](Value &V, const Instruction *,
4352                             AAAlign::StateType &T, bool Stripped) -> bool {
4353       const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V),
4354                                            DepClassTy::REQUIRED);
4355       if (!Stripped && this == &AA) {
4356         int64_t Offset;
4357         unsigned Alignment = 1;
4358         if (const Value *Base =
4359                 GetPointerBaseWithConstantOffset(&V, Offset, DL)) {
4360           Align PA = Base->getPointerAlignment(DL);
4361           // BasePointerAddr + Offset = Alignment * Q for some integer Q.
4362           // So we can say that the maximum power of two which is a divisor of
4363           // gcd(Offset, Alignment) is an alignment.
4364 
4365           uint32_t gcd = greatestCommonDivisor(uint32_t(abs((int32_t)Offset)),
4366                                                uint32_t(PA.value()));
4367           Alignment = llvm::PowerOf2Floor(gcd);
4368         } else {
4369           Alignment = V.getPointerAlignment(DL).value();
4370         }
4371         // Use only IR information if we did not strip anything.
4372         T.takeKnownMaximum(Alignment);
4373         T.indicatePessimisticFixpoint();
4374       } else {
4375         // Use abstract attribute information.
4376         const AAAlign::StateType &DS = AA.getState();
4377         T ^= DS;
4378       }
4379       return T.isValidState();
4380     };
4381 
4382     StateType T;
4383     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
4384                                           VisitValueCB, getCtxI()))
4385       return indicatePessimisticFixpoint();
4386 
4387     // TODO: If we know we visited all incoming values, thus no are assumed
4388     // dead, we can take the known information from the state T.
4389     return clampStateAndIndicateChange(getState(), T);
4390   }
4391 
4392   /// See AbstractAttribute::trackStatistics()
4393   void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
4394 };
4395 
4396 /// Align attribute for function return value.
4397 struct AAAlignReturned final
4398     : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
4399   using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>;
4400   AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4401 
4402   /// See AbstractAttribute::initialize(...).
4403   void initialize(Attributor &A) override {
4404     Base::initialize(A);
4405     Function *F = getAssociatedFunction();
4406     if (!F || F->isDeclaration())
4407       indicatePessimisticFixpoint();
4408   }
4409 
4410   /// See AbstractAttribute::trackStatistics()
4411   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
4412 };
4413 
4414 /// Align attribute for function argument.
4415 struct AAAlignArgument final
4416     : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
4417   using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
4418   AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
4419 
4420   /// See AbstractAttribute::manifest(...).
4421   ChangeStatus manifest(Attributor &A) override {
4422     // If the associated argument is involved in a must-tail call we give up
4423     // because we would need to keep the argument alignments of caller and
4424     // callee in-sync. Just does not seem worth the trouble right now.
4425     if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
4426       return ChangeStatus::UNCHANGED;
4427     return Base::manifest(A);
4428   }
4429 
4430   /// See AbstractAttribute::trackStatistics()
4431   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
4432 };
4433 
4434 struct AAAlignCallSiteArgument final : AAAlignFloating {
4435   AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
4436       : AAAlignFloating(IRP, A) {}
4437 
4438   /// See AbstractAttribute::manifest(...).
4439   ChangeStatus manifest(Attributor &A) override {
4440     // If the associated argument is involved in a must-tail call we give up
4441     // because we would need to keep the argument alignments of caller and
4442     // callee in-sync. Just does not seem worth the trouble right now.
4443     if (Argument *Arg = getAssociatedArgument())
4444       if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
4445         return ChangeStatus::UNCHANGED;
4446     ChangeStatus Changed = AAAlignImpl::manifest(A);
4447     Align InheritAlign =
4448         getAssociatedValue().getPointerAlignment(A.getDataLayout());
4449     if (InheritAlign >= getAssumedAlign())
4450       Changed = ChangeStatus::UNCHANGED;
4451     return Changed;
4452   }
4453 
4454   /// See AbstractAttribute::updateImpl(Attributor &A).
4455   ChangeStatus updateImpl(Attributor &A) override {
4456     ChangeStatus Changed = AAAlignFloating::updateImpl(A);
4457     if (Argument *Arg = getAssociatedArgument()) {
4458       // We only take known information from the argument
4459       // so we do not need to track a dependence.
4460       const auto &ArgAlignAA = A.getAAFor<AAAlign>(
4461           *this, IRPosition::argument(*Arg), DepClassTy::NONE);
4462       takeKnownMaximum(ArgAlignAA.getKnownAlign());
4463     }
4464     return Changed;
4465   }
4466 
4467   /// See AbstractAttribute::trackStatistics()
4468   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
4469 };
4470 
4471 /// Align attribute deduction for a call site return value.
4472 struct AAAlignCallSiteReturned final
4473     : AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> {
4474   using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>;
4475   AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
4476       : Base(IRP, A) {}
4477 
4478   /// See AbstractAttribute::initialize(...).
4479   void initialize(Attributor &A) override {
4480     Base::initialize(A);
4481     Function *F = getAssociatedFunction();
4482     if (!F || F->isDeclaration())
4483       indicatePessimisticFixpoint();
4484   }
4485 
4486   /// See AbstractAttribute::trackStatistics()
4487   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
4488 };
4489 
4490 /// ------------------ Function No-Return Attribute ----------------------------
4491 struct AANoReturnImpl : public AANoReturn {
4492   AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
4493 
4494   /// See AbstractAttribute::initialize(...).
4495   void initialize(Attributor &A) override {
4496     AANoReturn::initialize(A);
4497     Function *F = getAssociatedFunction();
4498     if (!F || F->isDeclaration())
4499       indicatePessimisticFixpoint();
4500   }
4501 
4502   /// See AbstractAttribute::getAsStr().
4503   const std::string getAsStr() const override {
4504     return getAssumed() ? "noreturn" : "may-return";
4505   }
4506 
4507   /// See AbstractAttribute::updateImpl(Attributor &A).
4508   virtual ChangeStatus updateImpl(Attributor &A) override {
4509     auto CheckForNoReturn = [](Instruction &) { return false; };
4510     bool UsedAssumedInformation = false;
4511     if (!A.checkForAllInstructions(CheckForNoReturn, *this,
4512                                    {(unsigned)Instruction::Ret},
4513                                    UsedAssumedInformation))
4514       return indicatePessimisticFixpoint();
4515     return ChangeStatus::UNCHANGED;
4516   }
4517 };
4518 
4519 struct AANoReturnFunction final : AANoReturnImpl {
4520   AANoReturnFunction(const IRPosition &IRP, Attributor &A)
4521       : AANoReturnImpl(IRP, A) {}
4522 
4523   /// See AbstractAttribute::trackStatistics()
4524   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
4525 };
4526 
4527 /// NoReturn attribute deduction for a call sites.
4528 struct AANoReturnCallSite final : AANoReturnImpl {
4529   AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
4530       : AANoReturnImpl(IRP, A) {}
4531 
4532   /// See AbstractAttribute::initialize(...).
4533   void initialize(Attributor &A) override {
4534     AANoReturnImpl::initialize(A);
4535     if (Function *F = getAssociatedFunction()) {
4536       const IRPosition &FnPos = IRPosition::function(*F);
4537       auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4538       if (!FnAA.isAssumedNoReturn())
4539         indicatePessimisticFixpoint();
4540     }
4541   }
4542 
4543   /// See AbstractAttribute::updateImpl(...).
4544   ChangeStatus updateImpl(Attributor &A) override {
4545     // TODO: Once we have call site specific value information we can provide
4546     //       call site specific liveness information and then it makes
4547     //       sense to specialize attributes for call sites arguments instead of
4548     //       redirecting requests to the callee argument.
4549     Function *F = getAssociatedFunction();
4550     const IRPosition &FnPos = IRPosition::function(*F);
4551     auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
4552     return clampStateAndIndicateChange(getState(), FnAA.getState());
4553   }
4554 
4555   /// See AbstractAttribute::trackStatistics()
4556   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
4557 };
4558 
4559 /// ----------------------- Variable Capturing ---------------------------------
4560 
4561 /// A class to hold the state of for no-capture attributes.
4562 struct AANoCaptureImpl : public AANoCapture {
4563   AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
4564 
4565   /// See AbstractAttribute::initialize(...).
4566   void initialize(Attributor &A) override {
4567     if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
4568       indicateOptimisticFixpoint();
4569       return;
4570     }
4571     Function *AnchorScope = getAnchorScope();
4572     if (isFnInterfaceKind() &&
4573         (!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
4574       indicatePessimisticFixpoint();
4575       return;
4576     }
4577 
4578     // You cannot "capture" null in the default address space.
4579     if (isa<ConstantPointerNull>(getAssociatedValue()) &&
4580         getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
4581       indicateOptimisticFixpoint();
4582       return;
4583     }
4584 
4585     const Function *F =
4586         isArgumentPosition() ? getAssociatedFunction() : AnchorScope;
4587 
4588     // Check what state the associated function can actually capture.
4589     if (F)
4590       determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
4591     else
4592       indicatePessimisticFixpoint();
4593   }
4594 
4595   /// See AbstractAttribute::updateImpl(...).
4596   ChangeStatus updateImpl(Attributor &A) override;
4597 
4598   /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
4599   virtual void
4600   getDeducedAttributes(LLVMContext &Ctx,
4601                        SmallVectorImpl<Attribute> &Attrs) const override {
4602     if (!isAssumedNoCaptureMaybeReturned())
4603       return;
4604 
4605     if (isArgumentPosition()) {
4606       if (isAssumedNoCapture())
4607         Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
4608       else if (ManifestInternal)
4609         Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
4610     }
4611   }
4612 
4613   /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
4614   /// depending on the ability of the function associated with \p IRP to capture
4615   /// state in memory and through "returning/throwing", respectively.
4616   static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
4617                                                    const Function &F,
4618                                                    BitIntegerState &State) {
4619     // TODO: Once we have memory behavior attributes we should use them here.
4620 
4621     // If we know we cannot communicate or write to memory, we do not care about
4622     // ptr2int anymore.
4623     if (F.onlyReadsMemory() && F.doesNotThrow() &&
4624         F.getReturnType()->isVoidTy()) {
4625       State.addKnownBits(NO_CAPTURE);
4626       return;
4627     }
4628 
4629     // A function cannot capture state in memory if it only reads memory, it can
4630     // however return/throw state and the state might be influenced by the
4631     // pointer value, e.g., loading from a returned pointer might reveal a bit.
4632     if (F.onlyReadsMemory())
4633       State.addKnownBits(NOT_CAPTURED_IN_MEM);
4634 
4635     // A function cannot communicate state back if it does not through
4636     // exceptions and doesn not return values.
4637     if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
4638       State.addKnownBits(NOT_CAPTURED_IN_RET);
4639 
4640     // Check existing "returned" attributes.
4641     int ArgNo = IRP.getCalleeArgNo();
4642     if (F.doesNotThrow() && ArgNo >= 0) {
4643       for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
4644         if (F.hasParamAttribute(u, Attribute::Returned)) {
4645           if (u == unsigned(ArgNo))
4646             State.removeAssumedBits(NOT_CAPTURED_IN_RET);
4647           else if (F.onlyReadsMemory())
4648             State.addKnownBits(NO_CAPTURE);
4649           else
4650             State.addKnownBits(NOT_CAPTURED_IN_RET);
4651           break;
4652         }
4653     }
4654   }
4655 
4656   /// See AbstractState::getAsStr().
4657   const std::string getAsStr() const override {
4658     if (isKnownNoCapture())
4659       return "known not-captured";
4660     if (isAssumedNoCapture())
4661       return "assumed not-captured";
4662     if (isKnownNoCaptureMaybeReturned())
4663       return "known not-captured-maybe-returned";
4664     if (isAssumedNoCaptureMaybeReturned())
4665       return "assumed not-captured-maybe-returned";
4666     return "assumed-captured";
4667   }
4668 };
4669 
4670 /// Attributor-aware capture tracker.
4671 struct AACaptureUseTracker final : public CaptureTracker {
4672 
4673   /// Create a capture tracker that can lookup in-flight abstract attributes
4674   /// through the Attributor \p A.
4675   ///
4676   /// If a use leads to a potential capture, \p CapturedInMemory is set and the
4677   /// search is stopped. If a use leads to a return instruction,
4678   /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed.
4679   /// If a use leads to a ptr2int which may capture the value,
4680   /// \p CapturedInInteger is set. If a use is found that is currently assumed
4681   /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies
4682   /// set. All values in \p PotentialCopies are later tracked as well. For every
4683   /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0,
4684   /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger
4685   /// conservatively set to true.
4686   AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA,
4687                       const AAIsDead &IsDeadAA, AANoCapture::StateType &State,
4688                       SmallSetVector<Value *, 4> &PotentialCopies,
4689                       unsigned &RemainingUsesToExplore)
4690       : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State),
4691         PotentialCopies(PotentialCopies),
4692         RemainingUsesToExplore(RemainingUsesToExplore) {}
4693 
4694   /// Determine if \p V maybe captured. *Also updates the state!*
4695   bool valueMayBeCaptured(const Value *V) {
4696     if (V->getType()->isPointerTy()) {
4697       PointerMayBeCaptured(V, this);
4698     } else {
4699       State.indicatePessimisticFixpoint();
4700     }
4701     return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4702   }
4703 
4704   /// See CaptureTracker::tooManyUses().
4705   void tooManyUses() override {
4706     State.removeAssumedBits(AANoCapture::NO_CAPTURE);
4707   }
4708 
4709   bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override {
4710     if (CaptureTracker::isDereferenceableOrNull(O, DL))
4711       return true;
4712     const auto &DerefAA = A.getAAFor<AADereferenceable>(
4713         NoCaptureAA, IRPosition::value(*O), DepClassTy::OPTIONAL);
4714     return DerefAA.getAssumedDereferenceableBytes();
4715   }
4716 
4717   /// See CaptureTracker::captured(...).
4718   bool captured(const Use *U) override {
4719     Instruction *UInst = cast<Instruction>(U->getUser());
4720     LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst
4721                       << "\n");
4722 
4723     // Because we may reuse the tracker multiple times we keep track of the
4724     // number of explored uses ourselves as well.
4725     if (RemainingUsesToExplore-- == 0) {
4726       LLVM_DEBUG(dbgs() << " - too many uses to explore!\n");
4727       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4728                           /* Return */ true);
4729     }
4730 
4731     // Deal with ptr2int by following uses.
4732     if (isa<PtrToIntInst>(UInst)) {
4733       LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
4734       return valueMayBeCaptured(UInst);
4735     }
4736 
4737     // Explicitly catch return instructions.
4738     if (isa<ReturnInst>(UInst))
4739       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4740                           /* Return */ true);
4741 
4742     // For now we only use special logic for call sites. However, the tracker
4743     // itself knows about a lot of other non-capturing cases already.
4744     auto *CB = dyn_cast<CallBase>(UInst);
4745     if (!CB || !CB->isArgOperand(U))
4746       return isCapturedIn(/* Memory */ true, /* Integer */ true,
4747                           /* Return */ true);
4748 
4749     unsigned ArgNo = CB->getArgOperandNo(U);
4750     const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
4751     // If we have a abstract no-capture attribute for the argument we can use
4752     // it to justify a non-capture attribute here. This allows recursion!
4753     auto &ArgNoCaptureAA =
4754         A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos, DepClassTy::REQUIRED);
4755     if (ArgNoCaptureAA.isAssumedNoCapture())
4756       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4757                           /* Return */ false);
4758     if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
4759       addPotentialCopy(*CB);
4760       return isCapturedIn(/* Memory */ false, /* Integer */ false,
4761                           /* Return */ false);
4762     }
4763 
4764     // Lastly, we could not find a reason no-capture can be assumed so we don't.
4765     return isCapturedIn(/* Memory */ true, /* Integer */ true,
4766                         /* Return */ true);
4767   }
4768 
4769   /// Register \p CS as potential copy of the value we are checking.
4770   void addPotentialCopy(CallBase &CB) { PotentialCopies.insert(&CB); }
4771 
4772   /// See CaptureTracker::shouldExplore(...).
4773   bool shouldExplore(const Use *U) override {
4774     // Check liveness and ignore droppable users.
4775     bool UsedAssumedInformation = false;
4776     return !U->getUser()->isDroppable() &&
4777            !A.isAssumedDead(*U, &NoCaptureAA, &IsDeadAA,
4778                             UsedAssumedInformation);
4779   }
4780 
4781   /// Update the state according to \p CapturedInMem, \p CapturedInInt, and
4782   /// \p CapturedInRet, then return the appropriate value for use in the
4783   /// CaptureTracker::captured() interface.
4784   bool isCapturedIn(bool CapturedInMem, bool CapturedInInt,
4785                     bool CapturedInRet) {
4786     LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
4787                       << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
4788     if (CapturedInMem)
4789       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
4790     if (CapturedInInt)
4791       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
4792     if (CapturedInRet)
4793       State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
4794     return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
4795   }
4796 
4797 private:
4798   /// The attributor providing in-flight abstract attributes.
4799   Attributor &A;
4800 
4801   /// The abstract attribute currently updated.
4802   AANoCapture &NoCaptureAA;
4803 
4804   /// The abstract liveness state.
4805   const AAIsDead &IsDeadAA;
4806 
4807   /// The state currently updated.
4808   AANoCapture::StateType &State;
4809 
4810   /// Set of potential copies of the tracked value.
4811   SmallSetVector<Value *, 4> &PotentialCopies;
4812 
4813   /// Global counter to limit the number of explored uses.
4814   unsigned &RemainingUsesToExplore;
4815 };
4816 
4817 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
4818   const IRPosition &IRP = getIRPosition();
4819   Value *V = isArgumentPosition() ? IRP.getAssociatedArgument()
4820                                   : &IRP.getAssociatedValue();
4821   if (!V)
4822     return indicatePessimisticFixpoint();
4823 
4824   const Function *F =
4825       isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
4826   assert(F && "Expected a function!");
4827   const IRPosition &FnPos = IRPosition::function(*F);
4828   const auto &IsDeadAA = A.getAAFor<AAIsDead>(*this, FnPos, DepClassTy::NONE);
4829 
4830   AANoCapture::StateType T;
4831 
4832   // Readonly means we cannot capture through memory.
4833   const auto &FnMemAA =
4834       A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::NONE);
4835   if (FnMemAA.isAssumedReadOnly()) {
4836     T.addKnownBits(NOT_CAPTURED_IN_MEM);
4837     if (FnMemAA.isKnownReadOnly())
4838       addKnownBits(NOT_CAPTURED_IN_MEM);
4839     else
4840       A.recordDependence(FnMemAA, *this, DepClassTy::OPTIONAL);
4841   }
4842 
4843   // Make sure all returned values are different than the underlying value.
4844   // TODO: we could do this in a more sophisticated way inside
4845   //       AAReturnedValues, e.g., track all values that escape through returns
4846   //       directly somehow.
4847   auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
4848     bool SeenConstant = false;
4849     for (auto &It : RVAA.returned_values()) {
4850       if (isa<Constant>(It.first)) {
4851         if (SeenConstant)
4852           return false;
4853         SeenConstant = true;
4854       } else if (!isa<Argument>(It.first) ||
4855                  It.first == getAssociatedArgument())
4856         return false;
4857     }
4858     return true;
4859   };
4860 
4861   const auto &NoUnwindAA =
4862       A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::OPTIONAL);
4863   if (NoUnwindAA.isAssumedNoUnwind()) {
4864     bool IsVoidTy = F->getReturnType()->isVoidTy();
4865     const AAReturnedValues *RVAA =
4866         IsVoidTy ? nullptr
4867                  : &A.getAAFor<AAReturnedValues>(*this, FnPos,
4868 
4869                                                  DepClassTy::OPTIONAL);
4870     if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
4871       T.addKnownBits(NOT_CAPTURED_IN_RET);
4872       if (T.isKnown(NOT_CAPTURED_IN_MEM))
4873         return ChangeStatus::UNCHANGED;
4874       if (NoUnwindAA.isKnownNoUnwind() &&
4875           (IsVoidTy || RVAA->getState().isAtFixpoint())) {
4876         addKnownBits(NOT_CAPTURED_IN_RET);
4877         if (isKnown(NOT_CAPTURED_IN_MEM))
4878           return indicateOptimisticFixpoint();
4879       }
4880     }
4881   }
4882 
4883   // Use the CaptureTracker interface and logic with the specialized tracker,
4884   // defined in AACaptureUseTracker, that can look at in-flight abstract
4885   // attributes and directly updates the assumed state.
4886   SmallSetVector<Value *, 4> PotentialCopies;
4887   unsigned RemainingUsesToExplore =
4888       getDefaultMaxUsesToExploreForCaptureTracking();
4889   AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies,
4890                               RemainingUsesToExplore);
4891 
4892   // Check all potential copies of the associated value until we can assume
4893   // none will be captured or we have to assume at least one might be.
4894   unsigned Idx = 0;
4895   PotentialCopies.insert(V);
4896   while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size())
4897     Tracker.valueMayBeCaptured(PotentialCopies[Idx++]);
4898 
4899   AANoCapture::StateType &S = getState();
4900   auto Assumed = S.getAssumed();
4901   S.intersectAssumedBits(T.getAssumed());
4902   if (!isAssumedNoCaptureMaybeReturned())
4903     return indicatePessimisticFixpoint();
4904   return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
4905                                    : ChangeStatus::CHANGED;
4906 }
4907 
4908 /// NoCapture attribute for function arguments.
4909 struct AANoCaptureArgument final : AANoCaptureImpl {
4910   AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
4911       : AANoCaptureImpl(IRP, A) {}
4912 
4913   /// See AbstractAttribute::trackStatistics()
4914   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
4915 };
4916 
4917 /// NoCapture attribute for call site arguments.
4918 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
4919   AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
4920       : AANoCaptureImpl(IRP, A) {}
4921 
4922   /// See AbstractAttribute::initialize(...).
4923   void initialize(Attributor &A) override {
4924     if (Argument *Arg = getAssociatedArgument())
4925       if (Arg->hasByValAttr())
4926         indicateOptimisticFixpoint();
4927     AANoCaptureImpl::initialize(A);
4928   }
4929 
4930   /// See AbstractAttribute::updateImpl(...).
4931   ChangeStatus updateImpl(Attributor &A) override {
4932     // TODO: Once we have call site specific value information we can provide
4933     //       call site specific liveness information and then it makes
4934     //       sense to specialize attributes for call sites arguments instead of
4935     //       redirecting requests to the callee argument.
4936     Argument *Arg = getAssociatedArgument();
4937     if (!Arg)
4938       return indicatePessimisticFixpoint();
4939     const IRPosition &ArgPos = IRPosition::argument(*Arg);
4940     auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos, DepClassTy::REQUIRED);
4941     return clampStateAndIndicateChange(getState(), ArgAA.getState());
4942   }
4943 
4944   /// See AbstractAttribute::trackStatistics()
4945   void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
4946 };
4947 
4948 /// NoCapture attribute for floating values.
4949 struct AANoCaptureFloating final : AANoCaptureImpl {
4950   AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
4951       : AANoCaptureImpl(IRP, A) {}
4952 
4953   /// See AbstractAttribute::trackStatistics()
4954   void trackStatistics() const override {
4955     STATS_DECLTRACK_FLOATING_ATTR(nocapture)
4956   }
4957 };
4958 
4959 /// NoCapture attribute for function return value.
4960 struct AANoCaptureReturned final : AANoCaptureImpl {
4961   AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
4962       : AANoCaptureImpl(IRP, A) {
4963     llvm_unreachable("NoCapture is not applicable to function returns!");
4964   }
4965 
4966   /// See AbstractAttribute::initialize(...).
4967   void initialize(Attributor &A) override {
4968     llvm_unreachable("NoCapture is not applicable to function returns!");
4969   }
4970 
4971   /// See AbstractAttribute::updateImpl(...).
4972   ChangeStatus updateImpl(Attributor &A) override {
4973     llvm_unreachable("NoCapture is not applicable to function returns!");
4974   }
4975 
4976   /// See AbstractAttribute::trackStatistics()
4977   void trackStatistics() const override {}
4978 };
4979 
4980 /// NoCapture attribute deduction for a call site return value.
4981 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
4982   AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
4983       : AANoCaptureImpl(IRP, A) {}
4984 
4985   /// See AbstractAttribute::initialize(...).
4986   void initialize(Attributor &A) override {
4987     const Function *F = getAnchorScope();
4988     // Check what state the associated function can actually capture.
4989     determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
4990   }
4991 
4992   /// See AbstractAttribute::trackStatistics()
4993   void trackStatistics() const override {
4994     STATS_DECLTRACK_CSRET_ATTR(nocapture)
4995   }
4996 };
4997 
4998 /// ------------------ Value Simplify Attribute ----------------------------
4999 
5000 bool ValueSimplifyStateType::unionAssumed(Optional<Value *> Other) {
5001   // FIXME: Add a typecast support.
5002   SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5003       SimplifiedAssociatedValue, Other, Ty);
5004   if (SimplifiedAssociatedValue == Optional<Value *>(nullptr))
5005     return false;
5006 
5007   LLVM_DEBUG({
5008     if (SimplifiedAssociatedValue.hasValue())
5009       dbgs() << "[ValueSimplify] is assumed to be "
5010              << **SimplifiedAssociatedValue << "\n";
5011     else
5012       dbgs() << "[ValueSimplify] is assumed to be <none>\n";
5013   });
5014   return true;
5015 }
5016 
5017 struct AAValueSimplifyImpl : AAValueSimplify {
5018   AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
5019       : AAValueSimplify(IRP, A) {}
5020 
5021   /// See AbstractAttribute::initialize(...).
5022   void initialize(Attributor &A) override {
5023     if (getAssociatedValue().getType()->isVoidTy())
5024       indicatePessimisticFixpoint();
5025   }
5026 
5027   /// See AbstractAttribute::getAsStr().
5028   const std::string getAsStr() const override {
5029     LLVM_DEBUG({
5030       errs() << "SAV: " << SimplifiedAssociatedValue << " ";
5031       if (SimplifiedAssociatedValue && *SimplifiedAssociatedValue)
5032         errs() << "SAV: " << **SimplifiedAssociatedValue << " ";
5033     });
5034     return isValidState() ? (isAtFixpoint() ? "simplified" : "maybe-simple")
5035                           : "not-simple";
5036   }
5037 
5038   /// See AbstractAttribute::trackStatistics()
5039   void trackStatistics() const override {}
5040 
5041   /// See AAValueSimplify::getAssumedSimplifiedValue()
5042   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5043     return SimplifiedAssociatedValue;
5044   }
5045 
5046   /// Return a value we can use as replacement for the associated one, or
5047   /// nullptr if we don't have one that makes sense.
5048   Value *getReplacementValue(Attributor &A) const {
5049     Value *NewV;
5050     NewV = SimplifiedAssociatedValue.hasValue()
5051                ? SimplifiedAssociatedValue.getValue()
5052                : UndefValue::get(getAssociatedType());
5053     if (!NewV)
5054       return nullptr;
5055     NewV = AA::getWithType(*NewV, *getAssociatedType());
5056     if (!NewV || NewV == &getAssociatedValue())
5057       return nullptr;
5058     const Instruction *CtxI = getCtxI();
5059     if (CtxI && !AA::isValidAtPosition(*NewV, *CtxI, A.getInfoCache()))
5060       return nullptr;
5061     if (!CtxI && !AA::isValidInScope(*NewV, getAnchorScope()))
5062       return nullptr;
5063     return NewV;
5064   }
5065 
5066   /// Helper function for querying AAValueSimplify and updating candicate.
5067   /// \param IRP The value position we are trying to unify with SimplifiedValue
5068   bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
5069                       const IRPosition &IRP, bool Simplify = true) {
5070     bool UsedAssumedInformation = false;
5071     Optional<Value *> QueryingValueSimplified = &IRP.getAssociatedValue();
5072     if (Simplify)
5073       QueryingValueSimplified =
5074           A.getAssumedSimplified(IRP, QueryingAA, UsedAssumedInformation);
5075     return unionAssumed(QueryingValueSimplified);
5076   }
5077 
5078   /// Returns a candidate is found or not
5079   template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
5080     if (!getAssociatedValue().getType()->isIntegerTy())
5081       return false;
5082 
5083     // This will also pass the call base context.
5084     const auto &AA =
5085         A.getAAFor<AAType>(*this, getIRPosition(), DepClassTy::NONE);
5086 
5087     Optional<ConstantInt *> COpt = AA.getAssumedConstantInt(A);
5088 
5089     if (!COpt.hasValue()) {
5090       SimplifiedAssociatedValue = llvm::None;
5091       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5092       return true;
5093     }
5094     if (auto *C = COpt.getValue()) {
5095       SimplifiedAssociatedValue = C;
5096       A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
5097       return true;
5098     }
5099     return false;
5100   }
5101 
5102   bool askSimplifiedValueForOtherAAs(Attributor &A) {
5103     if (askSimplifiedValueFor<AAValueConstantRange>(A))
5104       return true;
5105     if (askSimplifiedValueFor<AAPotentialValues>(A))
5106       return true;
5107     return false;
5108   }
5109 
5110   /// See AbstractAttribute::manifest(...).
5111   ChangeStatus manifest(Attributor &A) override {
5112     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5113     if (getAssociatedValue().user_empty())
5114       return Changed;
5115 
5116     if (auto *NewV = getReplacementValue(A)) {
5117       LLVM_DEBUG(dbgs() << "[ValueSimplify] " << getAssociatedValue() << " -> "
5118                         << *NewV << " :: " << *this << "\n");
5119       if (A.changeValueAfterManifest(getAssociatedValue(), *NewV))
5120         Changed = ChangeStatus::CHANGED;
5121     }
5122 
5123     return Changed | AAValueSimplify::manifest(A);
5124   }
5125 
5126   /// See AbstractState::indicatePessimisticFixpoint(...).
5127   ChangeStatus indicatePessimisticFixpoint() override {
5128     SimplifiedAssociatedValue = &getAssociatedValue();
5129     return AAValueSimplify::indicatePessimisticFixpoint();
5130   }
5131 
5132   static bool handleLoad(Attributor &A, const AbstractAttribute &AA,
5133                          LoadInst &L, function_ref<bool(Value &)> Union) {
5134 
5135     Value &Ptr = *L.getPointerOperand();
5136     SmallVector<Value *, 8> Objects;
5137     if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, AA, &L))
5138       return false;
5139 
5140     for (Value *Obj : Objects) {
5141       LLVM_DEBUG(dbgs() << "Visit underlying object " << *Obj << "\n");
5142       if (isa<UndefValue>(Obj))
5143         continue;
5144       if (isa<ConstantPointerNull>(Obj)) {
5145         // A null pointer access can be undefined but any offset from null may
5146         // be OK. We do not try to optimize the latter.
5147         bool UsedAssumedInformation = false;
5148         if (!NullPointerIsDefined(L.getFunction(),
5149                                   Ptr.getType()->getPointerAddressSpace()) &&
5150             A.getAssumedSimplified(Ptr, AA, UsedAssumedInformation) == Obj)
5151           continue;
5152         return false;
5153       }
5154       if (!isa<AllocaInst>(Obj) && !isa<GlobalVariable>(Obj))
5155         return false;
5156       Constant *InitialVal = AA::getInitialValueForObj(*Obj, *L.getType());
5157       if (!InitialVal || !Union(*InitialVal))
5158         return false;
5159 
5160       LLVM_DEBUG(dbgs() << "Underlying object amenable to load-store "
5161                            "propagation, checking accesses next.\n");
5162 
5163       auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) {
5164         LLVM_DEBUG(dbgs() << " - visit access " << Acc << "\n");
5165         if (!Acc.isWrite())
5166           return true;
5167         if (Acc.isWrittenValueYetUndetermined())
5168           return true;
5169         Value *Content = Acc.getWrittenValue();
5170         if (!Content)
5171           return false;
5172         Value *CastedContent =
5173             AA::getWithType(*Content, *AA.getAssociatedType());
5174         if (!CastedContent)
5175           return false;
5176         if (IsExact)
5177           return Union(*CastedContent);
5178         if (auto *C = dyn_cast<Constant>(CastedContent))
5179           if (C->isNullValue() || C->isAllOnesValue() || isa<UndefValue>(C))
5180             return Union(*CastedContent);
5181         return false;
5182       };
5183 
5184       auto &PI = A.getAAFor<AAPointerInfo>(AA, IRPosition::value(*Obj),
5185                                            DepClassTy::REQUIRED);
5186       if (!PI.forallInterferingAccesses(L, CheckAccess))
5187         return false;
5188     }
5189     return true;
5190   }
5191 };
5192 
5193 struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
5194   AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
5195       : AAValueSimplifyImpl(IRP, A) {}
5196 
5197   void initialize(Attributor &A) override {
5198     AAValueSimplifyImpl::initialize(A);
5199     if (!getAnchorScope() || getAnchorScope()->isDeclaration())
5200       indicatePessimisticFixpoint();
5201     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated,
5202                  Attribute::StructRet, Attribute::Nest, Attribute::ByVal},
5203                 /* IgnoreSubsumingPositions */ true))
5204       indicatePessimisticFixpoint();
5205 
5206     // FIXME: This is a hack to prevent us from propagating function poiner in
5207     // the new pass manager CGSCC pass as it creates call edges the
5208     // CallGraphUpdater cannot handle yet.
5209     Value &V = getAssociatedValue();
5210     if (V.getType()->isPointerTy() &&
5211         V.getType()->getPointerElementType()->isFunctionTy() &&
5212         !A.isModulePass())
5213       indicatePessimisticFixpoint();
5214   }
5215 
5216   /// See AbstractAttribute::updateImpl(...).
5217   ChangeStatus updateImpl(Attributor &A) override {
5218     // Byval is only replacable if it is readonly otherwise we would write into
5219     // the replaced value and not the copy that byval creates implicitly.
5220     Argument *Arg = getAssociatedArgument();
5221     if (Arg->hasByValAttr()) {
5222       // TODO: We probably need to verify synchronization is not an issue, e.g.,
5223       //       there is no race by not copying a constant byval.
5224       const auto &MemAA = A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(),
5225                                                        DepClassTy::REQUIRED);
5226       if (!MemAA.isAssumedReadOnly())
5227         return indicatePessimisticFixpoint();
5228     }
5229 
5230     auto Before = SimplifiedAssociatedValue;
5231 
5232     auto PredForCallSite = [&](AbstractCallSite ACS) {
5233       const IRPosition &ACSArgPos =
5234           IRPosition::callsite_argument(ACS, getCallSiteArgNo());
5235       // Check if a coresponding argument was found or if it is on not
5236       // associated (which can happen for callback calls).
5237       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
5238         return false;
5239 
5240       // Simplify the argument operand explicitly and check if the result is
5241       // valid in the current scope. This avoids refering to simplified values
5242       // in other functions, e.g., we don't want to say a an argument in a
5243       // static function is actually an argument in a different function.
5244       Value &ArgOp = ACSArgPos.getAssociatedValue();
5245       bool UsedAssumedInformation = false;
5246       Optional<Value *> SimpleArgOp =
5247           A.getAssumedSimplified(ACSArgPos, *this, UsedAssumedInformation);
5248       if (!SimpleArgOp.hasValue())
5249         return true;
5250       Value *SimpleArgOpVal = *SimpleArgOp ? *SimpleArgOp : &ArgOp;
5251       if (!AA::isValidInScope(*SimpleArgOpVal, getAnchorScope()))
5252         return false;
5253 
5254       // We can only propagate thread independent values through callbacks.
5255       // This is different to direct/indirect call sites because for them we
5256       // know the thread executing the caller and callee is the same. For
5257       // callbacks this is not guaranteed, thus a thread dependent value could
5258       // be different for the caller and callee, making it invalid to propagate.
5259       if (ACS.isCallbackCall())
5260         if (auto *C = dyn_cast<Constant>(SimpleArgOpVal))
5261           if (C->isThreadDependent())
5262             return false;
5263       return checkAndUpdate(A, *this, ACSArgPos);
5264     };
5265 
5266     // Generate a answer specific to a call site context.
5267     bool Success;
5268     bool AllCallSitesKnown;
5269     if (hasCallBaseContext())
5270       Success = PredForCallSite(
5271           AbstractCallSite(&getCallBaseContext()->getCalledOperandUse()));
5272     else
5273       Success = A.checkForAllCallSites(PredForCallSite, *this, true,
5274                                        AllCallSitesKnown);
5275 
5276     if (!Success)
5277       if (!askSimplifiedValueForOtherAAs(A))
5278         return indicatePessimisticFixpoint();
5279 
5280     // If a candicate was found in this update, return CHANGED.
5281     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5282                                                : ChangeStatus ::CHANGED;
5283   }
5284 
5285   /// See AbstractAttribute::trackStatistics()
5286   void trackStatistics() const override {
5287     STATS_DECLTRACK_ARG_ATTR(value_simplify)
5288   }
5289 };
5290 
5291 struct AAValueSimplifyReturned : AAValueSimplifyImpl {
5292   AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
5293       : AAValueSimplifyImpl(IRP, A) {}
5294 
5295   /// See AAValueSimplify::getAssumedSimplifiedValue()
5296   Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
5297     if (!isValidState())
5298       return nullptr;
5299     return SimplifiedAssociatedValue;
5300   }
5301 
5302   /// See AbstractAttribute::updateImpl(...).
5303   ChangeStatus updateImpl(Attributor &A) override {
5304     auto Before = SimplifiedAssociatedValue;
5305 
5306     auto PredForReturned = [&](Value &V) {
5307       return checkAndUpdate(A, *this,
5308                             IRPosition::value(V, getCallBaseContext()));
5309     };
5310 
5311     if (!A.checkForAllReturnedValues(PredForReturned, *this))
5312       if (!askSimplifiedValueForOtherAAs(A))
5313         return indicatePessimisticFixpoint();
5314 
5315     // If a candicate was found in this update, return CHANGED.
5316     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5317                                                : ChangeStatus ::CHANGED;
5318   }
5319 
5320   ChangeStatus manifest(Attributor &A) override {
5321     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5322 
5323     if (auto *NewV = getReplacementValue(A)) {
5324       auto PredForReturned =
5325           [&](Value &, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5326             for (ReturnInst *RI : RetInsts) {
5327               Value *ReturnedVal = RI->getReturnValue();
5328               if (ReturnedVal == NewV || isa<UndefValue>(ReturnedVal))
5329                 return true;
5330               assert(RI->getFunction() == getAnchorScope() &&
5331                      "ReturnInst in wrong function!");
5332               LLVM_DEBUG(dbgs()
5333                          << "[ValueSimplify] " << *ReturnedVal << " -> "
5334                          << *NewV << " in " << *RI << " :: " << *this << "\n");
5335               if (A.changeUseAfterManifest(RI->getOperandUse(0), *NewV))
5336                 Changed = ChangeStatus::CHANGED;
5337             }
5338             return true;
5339           };
5340       A.checkForAllReturnedValuesAndReturnInsts(PredForReturned, *this);
5341     }
5342 
5343     return Changed | AAValueSimplify::manifest(A);
5344   }
5345 
5346   /// See AbstractAttribute::trackStatistics()
5347   void trackStatistics() const override {
5348     STATS_DECLTRACK_FNRET_ATTR(value_simplify)
5349   }
5350 };
5351 
5352 struct AAValueSimplifyFloating : AAValueSimplifyImpl {
5353   AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
5354       : AAValueSimplifyImpl(IRP, A) {}
5355 
5356   /// See AbstractAttribute::initialize(...).
5357   void initialize(Attributor &A) override {
5358     // FIXME: This might have exposed a SCC iterator update bug in the old PM.
5359     //        Needs investigation.
5360     // AAValueSimplifyImpl::initialize(A);
5361     Value &V = getAnchorValue();
5362 
5363     // TODO: add other stuffs
5364     if (isa<Constant>(V))
5365       indicatePessimisticFixpoint();
5366   }
5367 
5368   /// Check if \p Cmp is a comparison we can simplify.
5369   ///
5370   /// We handle multiple cases, one in which at least one operand is an
5371   /// (assumed) nullptr. If so, try to simplify it using AANonNull on the other
5372   /// operand. Return true if successful, in that case SimplifiedAssociatedValue
5373   /// will be updated.
5374   bool handleCmp(Attributor &A, CmpInst &Cmp) {
5375     auto Union = [&](Value &V) {
5376       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5377           SimplifiedAssociatedValue, &V, V.getType());
5378       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5379     };
5380 
5381     Value *LHS = Cmp.getOperand(0);
5382     Value *RHS = Cmp.getOperand(1);
5383 
5384     // Simplify the operands first.
5385     bool UsedAssumedInformation = false;
5386     const auto &SimplifiedLHS =
5387         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
5388                                *this, UsedAssumedInformation);
5389     if (!SimplifiedLHS.hasValue())
5390       return true;
5391     if (SimplifiedLHS.getValue())
5392       LHS = *SimplifiedLHS;
5393 
5394     const auto &SimplifiedRHS =
5395         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
5396                                *this, UsedAssumedInformation);
5397     if (!SimplifiedRHS.hasValue())
5398       return true;
5399     if (SimplifiedRHS.getValue())
5400       RHS = *SimplifiedRHS;
5401 
5402     LLVMContext &Ctx = Cmp.getContext();
5403     // Handle the trivial case first in which we don't even need to think about
5404     // null or non-null.
5405     if (LHS == RHS && (Cmp.isTrueWhenEqual() || Cmp.isFalseWhenEqual())) {
5406       Constant *NewVal =
5407           ConstantInt::get(Type::getInt1Ty(Ctx), Cmp.isTrueWhenEqual());
5408       if (!Union(*NewVal))
5409         return false;
5410       if (!UsedAssumedInformation)
5411         indicateOptimisticFixpoint();
5412       return true;
5413     }
5414 
5415     // From now on we only handle equalities (==, !=).
5416     ICmpInst *ICmp = dyn_cast<ICmpInst>(&Cmp);
5417     if (!ICmp || !ICmp->isEquality())
5418       return false;
5419 
5420     bool LHSIsNull = isa<ConstantPointerNull>(LHS);
5421     bool RHSIsNull = isa<ConstantPointerNull>(RHS);
5422     if (!LHSIsNull && !RHSIsNull)
5423       return false;
5424 
5425     // Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the
5426     // non-nullptr operand and if we assume it's non-null we can conclude the
5427     // result of the comparison.
5428     assert((LHSIsNull || RHSIsNull) &&
5429            "Expected nullptr versus non-nullptr comparison at this point");
5430 
5431     // The index is the operand that we assume is not null.
5432     unsigned PtrIdx = LHSIsNull;
5433     auto &PtrNonNullAA = A.getAAFor<AANonNull>(
5434         *this, IRPosition::value(*ICmp->getOperand(PtrIdx)),
5435         DepClassTy::REQUIRED);
5436     if (!PtrNonNullAA.isAssumedNonNull())
5437       return false;
5438     UsedAssumedInformation |= !PtrNonNullAA.isKnownNonNull();
5439 
5440     // The new value depends on the predicate, true for != and false for ==.
5441     Constant *NewVal = ConstantInt::get(
5442         Type::getInt1Ty(Ctx), ICmp->getPredicate() == CmpInst::ICMP_NE);
5443     if (!Union(*NewVal))
5444       return false;
5445 
5446     if (!UsedAssumedInformation)
5447       indicateOptimisticFixpoint();
5448 
5449     return true;
5450   }
5451 
5452   bool updateWithLoad(Attributor &A, LoadInst &L) {
5453     auto Union = [&](Value &V) {
5454       SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5455           SimplifiedAssociatedValue, &V, L.getType());
5456       return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5457     };
5458     return handleLoad(A, *this, L, Union);
5459   }
5460 
5461   /// See AbstractAttribute::updateImpl(...).
5462   ChangeStatus updateImpl(Attributor &A) override {
5463     auto Before = SimplifiedAssociatedValue;
5464 
5465     auto VisitValueCB = [&](Value &V, const Instruction *CtxI, bool &,
5466                             bool Stripped) -> bool {
5467       auto &AA = A.getAAFor<AAValueSimplify>(
5468           *this, IRPosition::value(V, getCallBaseContext()),
5469           DepClassTy::REQUIRED);
5470       if (!Stripped && this == &AA) {
5471         if (auto *LI = dyn_cast<LoadInst>(&V))
5472           return updateWithLoad(A, *LI);
5473         if (auto *Cmp = dyn_cast<CmpInst>(&V))
5474           return handleCmp(A, *Cmp);
5475         // TODO: Look the instruction and check recursively.
5476 
5477         LLVM_DEBUG(dbgs() << "[ValueSimplify] Can't be stripped more : " << V
5478                           << "\n");
5479         return false;
5480       }
5481       return checkAndUpdate(A, *this,
5482                             IRPosition::value(V, getCallBaseContext()));
5483     };
5484 
5485     bool Dummy = false;
5486     if (!genericValueTraversal<bool>(A, getIRPosition(), *this, Dummy,
5487                                      VisitValueCB, getCtxI(),
5488                                      /* UseValueSimplify */ false))
5489       if (!askSimplifiedValueForOtherAAs(A))
5490         return indicatePessimisticFixpoint();
5491 
5492     // If a candicate was found in this update, return CHANGED.
5493     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5494                                                : ChangeStatus ::CHANGED;
5495   }
5496 
5497   /// See AbstractAttribute::trackStatistics()
5498   void trackStatistics() const override {
5499     STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
5500   }
5501 };
5502 
5503 struct AAValueSimplifyFunction : AAValueSimplifyImpl {
5504   AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
5505       : AAValueSimplifyImpl(IRP, A) {}
5506 
5507   /// See AbstractAttribute::initialize(...).
5508   void initialize(Attributor &A) override {
5509     SimplifiedAssociatedValue = nullptr;
5510     indicateOptimisticFixpoint();
5511   }
5512   /// See AbstractAttribute::initialize(...).
5513   ChangeStatus updateImpl(Attributor &A) override {
5514     llvm_unreachable(
5515         "AAValueSimplify(Function|CallSite)::updateImpl will not be called");
5516   }
5517   /// See AbstractAttribute::trackStatistics()
5518   void trackStatistics() const override {
5519     STATS_DECLTRACK_FN_ATTR(value_simplify)
5520   }
5521 };
5522 
5523 struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
5524   AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
5525       : AAValueSimplifyFunction(IRP, A) {}
5526   /// See AbstractAttribute::trackStatistics()
5527   void trackStatistics() const override {
5528     STATS_DECLTRACK_CS_ATTR(value_simplify)
5529   }
5530 };
5531 
5532 struct AAValueSimplifyCallSiteReturned : AAValueSimplifyImpl {
5533   AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
5534       : AAValueSimplifyImpl(IRP, A) {}
5535 
5536   void initialize(Attributor &A) override {
5537     if (!getAssociatedFunction())
5538       indicatePessimisticFixpoint();
5539   }
5540 
5541   /// See AbstractAttribute::updateImpl(...).
5542   ChangeStatus updateImpl(Attributor &A) override {
5543     auto Before = SimplifiedAssociatedValue;
5544     auto &RetAA = A.getAAFor<AAReturnedValues>(
5545         *this, IRPosition::function(*getAssociatedFunction()),
5546         DepClassTy::REQUIRED);
5547     auto PredForReturned =
5548         [&](Value &RetVal, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
5549           bool UsedAssumedInformation = false;
5550           Optional<Value *> CSRetVal = A.translateArgumentToCallSiteContent(
5551               &RetVal, *cast<CallBase>(getCtxI()), *this,
5552               UsedAssumedInformation);
5553           SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
5554               SimplifiedAssociatedValue, CSRetVal, getAssociatedType());
5555           return SimplifiedAssociatedValue != Optional<Value *>(nullptr);
5556         };
5557     if (!RetAA.checkForAllReturnedValuesAndReturnInsts(PredForReturned))
5558       if (!askSimplifiedValueForOtherAAs(A))
5559         return indicatePessimisticFixpoint();
5560     return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
5561                                                : ChangeStatus ::CHANGED;
5562   }
5563 
5564   void trackStatistics() const override {
5565     STATS_DECLTRACK_CSRET_ATTR(value_simplify)
5566   }
5567 };
5568 
5569 struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
5570   AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
5571       : AAValueSimplifyFloating(IRP, A) {}
5572 
5573   /// See AbstractAttribute::manifest(...).
5574   ChangeStatus manifest(Attributor &A) override {
5575     ChangeStatus Changed = ChangeStatus::UNCHANGED;
5576 
5577     if (auto *NewV = getReplacementValue(A)) {
5578       Use &U = cast<CallBase>(&getAnchorValue())
5579                    ->getArgOperandUse(getCallSiteArgNo());
5580       if (A.changeUseAfterManifest(U, *NewV))
5581         Changed = ChangeStatus::CHANGED;
5582     }
5583 
5584     return Changed | AAValueSimplify::manifest(A);
5585   }
5586 
5587   void trackStatistics() const override {
5588     STATS_DECLTRACK_CSARG_ATTR(value_simplify)
5589   }
5590 };
5591 
5592 /// ----------------------- Heap-To-Stack Conversion ---------------------------
5593 struct AAHeapToStackFunction final : public AAHeapToStack {
5594 
5595   struct AllocationInfo {
5596     /// The call that allocates the memory.
5597     CallBase *const CB;
5598 
5599     /// The kind of allocation.
5600     const enum class AllocationKind {
5601       MALLOC,
5602       CALLOC,
5603       ALIGNED_ALLOC,
5604     } Kind;
5605 
5606     /// The library function id for the allocation.
5607     LibFunc LibraryFunctionId = NotLibFunc;
5608 
5609     /// The status wrt. a rewrite.
5610     enum {
5611       STACK_DUE_TO_USE,
5612       STACK_DUE_TO_FREE,
5613       INVALID,
5614     } Status = STACK_DUE_TO_USE;
5615 
5616     /// Flag to indicate if we encountered a use that might free this allocation
5617     /// but which is not in the deallocation infos.
5618     bool HasPotentiallyFreeingUnknownUses = false;
5619 
5620     /// The set of free calls that use this allocation.
5621     SmallPtrSet<CallBase *, 1> PotentialFreeCalls{};
5622   };
5623 
5624   struct DeallocationInfo {
5625     /// The call that deallocates the memory.
5626     CallBase *const CB;
5627 
5628     /// Flag to indicate if we don't know all objects this deallocation might
5629     /// free.
5630     bool MightFreeUnknownObjects = false;
5631 
5632     /// The set of allocation calls that are potentially freed.
5633     SmallPtrSet<CallBase *, 1> PotentialAllocationCalls{};
5634   };
5635 
5636   AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
5637       : AAHeapToStack(IRP, A) {}
5638 
5639   ~AAHeapToStackFunction() {
5640     // Ensure we call the destructor so we release any memory allocated in the
5641     // sets.
5642     for (auto &It : AllocationInfos)
5643       It.getSecond()->~AllocationInfo();
5644     for (auto &It : DeallocationInfos)
5645       It.getSecond()->~DeallocationInfo();
5646   }
5647 
5648   void initialize(Attributor &A) override {
5649     AAHeapToStack::initialize(A);
5650 
5651     const Function *F = getAnchorScope();
5652     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5653 
5654     auto AllocationIdentifierCB = [&](Instruction &I) {
5655       CallBase *CB = dyn_cast<CallBase>(&I);
5656       if (!CB)
5657         return true;
5658       if (isFreeCall(CB, TLI)) {
5659         DeallocationInfos[CB] = new (A.Allocator) DeallocationInfo{CB};
5660         return true;
5661       }
5662       bool IsMalloc = isMallocLikeFn(CB, TLI);
5663       bool IsAlignedAllocLike = !IsMalloc && isAlignedAllocLikeFn(CB, TLI);
5664       bool IsCalloc =
5665           !IsMalloc && !IsAlignedAllocLike && isCallocLikeFn(CB, TLI);
5666       if (!IsMalloc && !IsAlignedAllocLike && !IsCalloc)
5667         return true;
5668       auto Kind =
5669           IsMalloc ? AllocationInfo::AllocationKind::MALLOC
5670                    : (IsCalloc ? AllocationInfo::AllocationKind::CALLOC
5671                                : AllocationInfo::AllocationKind::ALIGNED_ALLOC);
5672 
5673       AllocationInfo *AI = new (A.Allocator) AllocationInfo{CB, Kind};
5674       AllocationInfos[CB] = AI;
5675       TLI->getLibFunc(*CB, AI->LibraryFunctionId);
5676       return true;
5677     };
5678 
5679     bool UsedAssumedInformation = false;
5680     bool Success = A.checkForAllCallLikeInstructions(
5681         AllocationIdentifierCB, *this, UsedAssumedInformation,
5682         /* CheckBBLivenessOnly */ false,
5683         /* CheckPotentiallyDead */ true);
5684     (void)Success;
5685     assert(Success && "Did not expect the call base visit callback to fail!");
5686   }
5687 
5688   const std::string getAsStr() const override {
5689     unsigned NumH2SMallocs = 0, NumInvalidMallocs = 0;
5690     for (const auto &It : AllocationInfos) {
5691       if (It.second->Status == AllocationInfo::INVALID)
5692         ++NumInvalidMallocs;
5693       else
5694         ++NumH2SMallocs;
5695     }
5696     return "[H2S] Mallocs Good/Bad: " + std::to_string(NumH2SMallocs) + "/" +
5697            std::to_string(NumInvalidMallocs);
5698   }
5699 
5700   /// See AbstractAttribute::trackStatistics().
5701   void trackStatistics() const override {
5702     STATS_DECL(
5703         MallocCalls, Function,
5704         "Number of malloc/calloc/aligned_alloc calls converted to allocas");
5705     for (auto &It : AllocationInfos)
5706       if (It.second->Status != AllocationInfo::INVALID)
5707         ++BUILD_STAT_NAME(MallocCalls, Function);
5708   }
5709 
5710   bool isAssumedHeapToStack(const CallBase &CB) const override {
5711     if (isValidState())
5712       if (AllocationInfo *AI = AllocationInfos.lookup(&CB))
5713         return AI->Status != AllocationInfo::INVALID;
5714     return false;
5715   }
5716 
5717   ChangeStatus manifest(Attributor &A) override {
5718     assert(getState().isValidState() &&
5719            "Attempted to manifest an invalid state!");
5720 
5721     ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
5722     Function *F = getAnchorScope();
5723     const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
5724 
5725     for (auto &It : AllocationInfos) {
5726       AllocationInfo &AI = *It.second;
5727       if (AI.Status == AllocationInfo::INVALID)
5728         continue;
5729 
5730       for (CallBase *FreeCall : AI.PotentialFreeCalls) {
5731         LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
5732         A.deleteAfterManifest(*FreeCall);
5733         HasChanged = ChangeStatus::CHANGED;
5734       }
5735 
5736       LLVM_DEBUG(dbgs() << "H2S: Removing malloc-like call: " << *AI.CB
5737                         << "\n");
5738 
5739       auto Remark = [&](OptimizationRemark OR) {
5740         LibFunc IsAllocShared;
5741         if (TLI->getLibFunc(*AI.CB, IsAllocShared))
5742           if (IsAllocShared == LibFunc___kmpc_alloc_shared)
5743             return OR << "Moving globalized variable to the stack.";
5744         return OR << "Moving memory allocation from the heap to the stack.";
5745       };
5746       if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
5747         A.emitRemark<OptimizationRemark>(AI.CB, "OMP110", Remark);
5748       else
5749         A.emitRemark<OptimizationRemark>(AI.CB, "HeapToStack", Remark);
5750 
5751       Value *Size;
5752       Optional<APInt> SizeAPI = getSize(A, *this, AI);
5753       if (SizeAPI.hasValue()) {
5754         Size = ConstantInt::get(AI.CB->getContext(), *SizeAPI);
5755       } else if (AI.Kind == AllocationInfo::AllocationKind::CALLOC) {
5756         auto *Num = AI.CB->getOperand(0);
5757         auto *SizeT = AI.CB->getOperand(1);
5758         IRBuilder<> B(AI.CB);
5759         Size = B.CreateMul(Num, SizeT, "h2s.calloc.size");
5760       } else if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC) {
5761         Size = AI.CB->getOperand(1);
5762       } else {
5763         Size = AI.CB->getOperand(0);
5764       }
5765 
5766       Align Alignment(1);
5767       if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC) {
5768         Optional<APInt> AlignmentAPI =
5769             getAPInt(A, *this, *AI.CB->getArgOperand(0));
5770         assert(AlignmentAPI.hasValue() &&
5771                "Expected an alignment during manifest!");
5772         Alignment =
5773             max(Alignment, MaybeAlign(AlignmentAPI.getValue().getZExtValue()));
5774       }
5775 
5776       unsigned AS = cast<PointerType>(AI.CB->getType())->getAddressSpace();
5777       Instruction *Alloca =
5778           new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment,
5779                          "", AI.CB->getNextNode());
5780 
5781       if (Alloca->getType() != AI.CB->getType())
5782         Alloca = new BitCastInst(Alloca, AI.CB->getType(), "malloc_bc",
5783                                  Alloca->getNextNode());
5784 
5785       A.changeValueAfterManifest(*AI.CB, *Alloca);
5786 
5787       if (auto *II = dyn_cast<InvokeInst>(AI.CB)) {
5788         auto *NBB = II->getNormalDest();
5789         BranchInst::Create(NBB, AI.CB->getParent());
5790         A.deleteAfterManifest(*AI.CB);
5791       } else {
5792         A.deleteAfterManifest(*AI.CB);
5793       }
5794 
5795       // Zero out the allocated memory if it was a calloc.
5796       if (AI.Kind == AllocationInfo::AllocationKind::CALLOC) {
5797         auto *BI = new BitCastInst(Alloca, AI.CB->getType(), "calloc_bc",
5798                                    Alloca->getNextNode());
5799         Value *Ops[] = {
5800             BI, ConstantInt::get(F->getContext(), APInt(8, 0, false)), Size,
5801             ConstantInt::get(Type::getInt1Ty(F->getContext()), false)};
5802 
5803         Type *Tys[] = {BI->getType(), AI.CB->getOperand(0)->getType()};
5804         Module *M = F->getParent();
5805         Function *Fn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys);
5806         CallInst::Create(Fn, Ops, "", BI->getNextNode());
5807       }
5808       HasChanged = ChangeStatus::CHANGED;
5809     }
5810 
5811     return HasChanged;
5812   }
5813 
5814   Optional<APInt> getAPInt(Attributor &A, const AbstractAttribute &AA,
5815                            Value &V) {
5816     bool UsedAssumedInformation = false;
5817     Optional<Constant *> SimpleV =
5818         A.getAssumedConstant(V, AA, UsedAssumedInformation);
5819     if (!SimpleV.hasValue())
5820       return APInt(64, 0);
5821     if (auto *CI = dyn_cast_or_null<ConstantInt>(SimpleV.getValue()))
5822       return CI->getValue();
5823     return llvm::None;
5824   }
5825 
5826   Optional<APInt> getSize(Attributor &A, const AbstractAttribute &AA,
5827                           AllocationInfo &AI) {
5828 
5829     if (AI.Kind == AllocationInfo::AllocationKind::MALLOC)
5830       return getAPInt(A, AA, *AI.CB->getArgOperand(0));
5831 
5832     if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC)
5833       // Only if the alignment is also constant we return a size.
5834       return getAPInt(A, AA, *AI.CB->getArgOperand(0)).hasValue()
5835                  ? getAPInt(A, AA, *AI.CB->getArgOperand(1))
5836                  : llvm::None;
5837 
5838     assert(AI.Kind == AllocationInfo::AllocationKind::CALLOC &&
5839            "Expected only callocs are left");
5840     Optional<APInt> Num = getAPInt(A, AA, *AI.CB->getArgOperand(0));
5841     Optional<APInt> Size = getAPInt(A, AA, *AI.CB->getArgOperand(1));
5842     if (!Num.hasValue() || !Size.hasValue())
5843       return llvm::None;
5844     bool Overflow = false;
5845     Size = Size.getValue().umul_ov(Num.getValue(), Overflow);
5846     return Overflow ? llvm::None : Size;
5847   }
5848 
5849   /// Collection of all malloc-like calls in a function with associated
5850   /// information.
5851   DenseMap<CallBase *, AllocationInfo *> AllocationInfos;
5852 
5853   /// Collection of all free-like calls in a function with associated
5854   /// information.
5855   DenseMap<CallBase *, DeallocationInfo *> DeallocationInfos;
5856 
5857   ChangeStatus updateImpl(Attributor &A) override;
5858 };
5859 
5860 ChangeStatus AAHeapToStackFunction::updateImpl(Attributor &A) {
5861   ChangeStatus Changed = ChangeStatus::UNCHANGED;
5862   const Function *F = getAnchorScope();
5863 
5864   const auto &LivenessAA =
5865       A.getAAFor<AAIsDead>(*this, IRPosition::function(*F), DepClassTy::NONE);
5866 
5867   MustBeExecutedContextExplorer &Explorer =
5868       A.getInfoCache().getMustBeExecutedContextExplorer();
5869 
5870   bool StackIsAccessibleByOtherThreads =
5871       A.getInfoCache().stackIsAccessibleByOtherThreads();
5872 
5873   // Flag to ensure we update our deallocation information at most once per
5874   // updateImpl call and only if we use the free check reasoning.
5875   bool HasUpdatedFrees = false;
5876 
5877   auto UpdateFrees = [&]() {
5878     HasUpdatedFrees = true;
5879 
5880     for (auto &It : DeallocationInfos) {
5881       DeallocationInfo &DI = *It.second;
5882       // For now we cannot use deallocations that have unknown inputs, skip
5883       // them.
5884       if (DI.MightFreeUnknownObjects)
5885         continue;
5886 
5887       // No need to analyze dead calls, ignore them instead.
5888       bool UsedAssumedInformation = false;
5889       if (A.isAssumedDead(*DI.CB, this, &LivenessAA, UsedAssumedInformation,
5890                           /* CheckBBLivenessOnly */ true))
5891         continue;
5892 
5893       // Use the optimistic version to get the freed objects, ignoring dead
5894       // branches etc.
5895       SmallVector<Value *, 8> Objects;
5896       if (!AA::getAssumedUnderlyingObjects(A, *DI.CB->getArgOperand(0), Objects,
5897                                            *this, DI.CB)) {
5898         LLVM_DEBUG(
5899             dbgs()
5900             << "[H2S] Unexpected failure in getAssumedUnderlyingObjects!\n");
5901         DI.MightFreeUnknownObjects = true;
5902         continue;
5903       }
5904 
5905       // Check each object explicitly.
5906       for (auto *Obj : Objects) {
5907         // Free of null and undef can be ignored as no-ops (or UB in the latter
5908         // case).
5909         if (isa<ConstantPointerNull>(Obj) || isa<UndefValue>(Obj))
5910           continue;
5911 
5912         CallBase *ObjCB = dyn_cast<CallBase>(Obj);
5913         if (!ObjCB) {
5914           LLVM_DEBUG(dbgs()
5915                      << "[H2S] Free of a non-call object: " << *Obj << "\n");
5916           DI.MightFreeUnknownObjects = true;
5917           continue;
5918         }
5919 
5920         AllocationInfo *AI = AllocationInfos.lookup(ObjCB);
5921         if (!AI) {
5922           LLVM_DEBUG(dbgs() << "[H2S] Free of a non-allocation object: " << *Obj
5923                             << "\n");
5924           DI.MightFreeUnknownObjects = true;
5925           continue;
5926         }
5927 
5928         DI.PotentialAllocationCalls.insert(ObjCB);
5929       }
5930     }
5931   };
5932 
5933   auto FreeCheck = [&](AllocationInfo &AI) {
5934     // If the stack is not accessible by other threads, the "must-free" logic
5935     // doesn't apply as the pointer could be shared and needs to be places in
5936     // "shareable" memory.
5937     if (!StackIsAccessibleByOtherThreads) {
5938       auto &NoSyncAA =
5939           A.getAAFor<AANoSync>(*this, getIRPosition(), DepClassTy::OPTIONAL);
5940       if (!NoSyncAA.isAssumedNoSync()) {
5941         LLVM_DEBUG(
5942             dbgs() << "[H2S] found an escaping use, stack is not accessible by "
5943                       "other threads and function is not nosync:\n");
5944         return false;
5945       }
5946     }
5947     if (!HasUpdatedFrees)
5948       UpdateFrees();
5949 
5950     // TODO: Allow multi exit functions that have different free calls.
5951     if (AI.PotentialFreeCalls.size() != 1) {
5952       LLVM_DEBUG(dbgs() << "[H2S] did not find one free call but "
5953                         << AI.PotentialFreeCalls.size() << "\n");
5954       return false;
5955     }
5956     CallBase *UniqueFree = *AI.PotentialFreeCalls.begin();
5957     DeallocationInfo *DI = DeallocationInfos.lookup(UniqueFree);
5958     if (!DI) {
5959       LLVM_DEBUG(
5960           dbgs() << "[H2S] unique free call was not known as deallocation call "
5961                  << *UniqueFree << "\n");
5962       return false;
5963     }
5964     if (DI->MightFreeUnknownObjects) {
5965       LLVM_DEBUG(
5966           dbgs() << "[H2S] unique free call might free unknown allocations\n");
5967       return false;
5968     }
5969     if (DI->PotentialAllocationCalls.size() > 1) {
5970       LLVM_DEBUG(dbgs() << "[H2S] unique free call might free "
5971                         << DI->PotentialAllocationCalls.size()
5972                         << " different allocations\n");
5973       return false;
5974     }
5975     if (*DI->PotentialAllocationCalls.begin() != AI.CB) {
5976       LLVM_DEBUG(
5977           dbgs()
5978           << "[H2S] unique free call not known to free this allocation but "
5979           << **DI->PotentialAllocationCalls.begin() << "\n");
5980       return false;
5981     }
5982     Instruction *CtxI = isa<InvokeInst>(AI.CB) ? AI.CB : AI.CB->getNextNode();
5983     if (!Explorer.findInContextOf(UniqueFree, CtxI)) {
5984       LLVM_DEBUG(
5985           dbgs()
5986           << "[H2S] unique free call might not be executed with the allocation "
5987           << *UniqueFree << "\n");
5988       return false;
5989     }
5990     return true;
5991   };
5992 
5993   auto UsesCheck = [&](AllocationInfo &AI) {
5994     bool ValidUsesOnly = true;
5995 
5996     auto Pred = [&](const Use &U, bool &Follow) -> bool {
5997       Instruction *UserI = cast<Instruction>(U.getUser());
5998       if (isa<LoadInst>(UserI))
5999         return true;
6000       if (auto *SI = dyn_cast<StoreInst>(UserI)) {
6001         if (SI->getValueOperand() == U.get()) {
6002           LLVM_DEBUG(dbgs()
6003                      << "[H2S] escaping store to memory: " << *UserI << "\n");
6004           ValidUsesOnly = false;
6005         } else {
6006           // A store into the malloc'ed memory is fine.
6007         }
6008         return true;
6009       }
6010       if (auto *CB = dyn_cast<CallBase>(UserI)) {
6011         if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
6012           return true;
6013         if (DeallocationInfos.count(CB)) {
6014           AI.PotentialFreeCalls.insert(CB);
6015           return true;
6016         }
6017 
6018         unsigned ArgNo = CB->getArgOperandNo(&U);
6019 
6020         const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
6021             *this, IRPosition::callsite_argument(*CB, ArgNo),
6022             DepClassTy::OPTIONAL);
6023 
6024         // If a call site argument use is nofree, we are fine.
6025         const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
6026             *this, IRPosition::callsite_argument(*CB, ArgNo),
6027             DepClassTy::OPTIONAL);
6028 
6029         bool MaybeCaptured = !NoCaptureAA.isAssumedNoCapture();
6030         bool MaybeFreed = !ArgNoFreeAA.isAssumedNoFree();
6031         if (MaybeCaptured ||
6032             (AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared &&
6033              MaybeFreed)) {
6034           AI.HasPotentiallyFreeingUnknownUses |= MaybeFreed;
6035 
6036           // Emit a missed remark if this is missed OpenMP globalization.
6037           auto Remark = [&](OptimizationRemarkMissed ORM) {
6038             return ORM
6039                    << "Could not move globalized variable to the stack. "
6040                       "Variable is potentially captured in call. Mark "
6041                       "parameter as `__attribute__((noescape))` to override.";
6042           };
6043 
6044           if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
6045             A.emitRemark<OptimizationRemarkMissed>(AI.CB, "OMP113", Remark);
6046 
6047           LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
6048           ValidUsesOnly = false;
6049         }
6050         return true;
6051       }
6052 
6053       if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
6054           isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
6055         Follow = true;
6056         return true;
6057       }
6058       // Unknown user for which we can not track uses further (in a way that
6059       // makes sense).
6060       LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
6061       ValidUsesOnly = false;
6062       return true;
6063     };
6064     A.checkForAllUses(Pred, *this, *AI.CB);
6065     return ValidUsesOnly;
6066   };
6067 
6068   // The actual update starts here. We look at all allocations and depending on
6069   // their status perform the appropriate check(s).
6070   for (auto &It : AllocationInfos) {
6071     AllocationInfo &AI = *It.second;
6072     if (AI.Status == AllocationInfo::INVALID)
6073       continue;
6074 
6075     if (MaxHeapToStackSize == -1) {
6076       if (AI.Kind == AllocationInfo::AllocationKind::ALIGNED_ALLOC)
6077         if (!getAPInt(A, *this, *AI.CB->getArgOperand(0)).hasValue()) {
6078           LLVM_DEBUG(dbgs() << "[H2S] Unknown allocation alignment: " << *AI.CB
6079                             << "\n");
6080           AI.Status = AllocationInfo::INVALID;
6081           Changed = ChangeStatus::CHANGED;
6082           continue;
6083         }
6084     } else {
6085       Optional<APInt> Size = getSize(A, *this, AI);
6086       if (!Size.hasValue() || Size.getValue().ugt(MaxHeapToStackSize)) {
6087         LLVM_DEBUG({
6088           if (!Size.hasValue())
6089             dbgs() << "[H2S] Unknown allocation size (or alignment): " << *AI.CB
6090                    << "\n";
6091           else
6092             dbgs() << "[H2S] Allocation size too large: " << *AI.CB << " vs. "
6093                    << MaxHeapToStackSize << "\n";
6094         });
6095 
6096         AI.Status = AllocationInfo::INVALID;
6097         Changed = ChangeStatus::CHANGED;
6098         continue;
6099       }
6100     }
6101 
6102     switch (AI.Status) {
6103     case AllocationInfo::STACK_DUE_TO_USE:
6104       if (UsesCheck(AI))
6105         continue;
6106       AI.Status = AllocationInfo::STACK_DUE_TO_FREE;
6107       LLVM_FALLTHROUGH;
6108     case AllocationInfo::STACK_DUE_TO_FREE:
6109       if (FreeCheck(AI))
6110         continue;
6111       AI.Status = AllocationInfo::INVALID;
6112       Changed = ChangeStatus::CHANGED;
6113       continue;
6114     case AllocationInfo::INVALID:
6115       llvm_unreachable("Invalid allocations should never reach this point!");
6116     };
6117   }
6118 
6119   return Changed;
6120 }
6121 
6122 /// ----------------------- Privatizable Pointers ------------------------------
6123 struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
6124   AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
6125       : AAPrivatizablePtr(IRP, A), PrivatizableType(llvm::None) {}
6126 
6127   ChangeStatus indicatePessimisticFixpoint() override {
6128     AAPrivatizablePtr::indicatePessimisticFixpoint();
6129     PrivatizableType = nullptr;
6130     return ChangeStatus::CHANGED;
6131   }
6132 
6133   /// Identify the type we can chose for a private copy of the underlying
6134   /// argument. None means it is not clear yet, nullptr means there is none.
6135   virtual Optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
6136 
6137   /// Return a privatizable type that encloses both T0 and T1.
6138   /// TODO: This is merely a stub for now as we should manage a mapping as well.
6139   Optional<Type *> combineTypes(Optional<Type *> T0, Optional<Type *> T1) {
6140     if (!T0.hasValue())
6141       return T1;
6142     if (!T1.hasValue())
6143       return T0;
6144     if (T0 == T1)
6145       return T0;
6146     return nullptr;
6147   }
6148 
6149   Optional<Type *> getPrivatizableType() const override {
6150     return PrivatizableType;
6151   }
6152 
6153   const std::string getAsStr() const override {
6154     return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
6155   }
6156 
6157 protected:
6158   Optional<Type *> PrivatizableType;
6159 };
6160 
6161 // TODO: Do this for call site arguments (probably also other values) as well.
6162 
6163 struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
6164   AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
6165       : AAPrivatizablePtrImpl(IRP, A) {}
6166 
6167   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6168   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6169     // If this is a byval argument and we know all the call sites (so we can
6170     // rewrite them), there is no need to check them explicitly.
6171     bool AllCallSitesKnown;
6172     if (getIRPosition().hasAttr(Attribute::ByVal) &&
6173         A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
6174                                true, AllCallSitesKnown))
6175       return getAssociatedValue().getType()->getPointerElementType();
6176 
6177     Optional<Type *> Ty;
6178     unsigned ArgNo = getIRPosition().getCallSiteArgNo();
6179 
6180     // Make sure the associated call site argument has the same type at all call
6181     // sites and it is an allocation we know is safe to privatize, for now that
6182     // means we only allow alloca instructions.
6183     // TODO: We can additionally analyze the accesses in the callee to  create
6184     //       the type from that information instead. That is a little more
6185     //       involved and will be done in a follow up patch.
6186     auto CallSiteCheck = [&](AbstractCallSite ACS) {
6187       IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
6188       // Check if a coresponding argument was found or if it is one not
6189       // associated (which can happen for callback calls).
6190       if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
6191         return false;
6192 
6193       // Check that all call sites agree on a type.
6194       auto &PrivCSArgAA =
6195           A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos, DepClassTy::REQUIRED);
6196       Optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
6197 
6198       LLVM_DEBUG({
6199         dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
6200         if (CSTy.hasValue() && CSTy.getValue())
6201           CSTy.getValue()->print(dbgs());
6202         else if (CSTy.hasValue())
6203           dbgs() << "<nullptr>";
6204         else
6205           dbgs() << "<none>";
6206       });
6207 
6208       Ty = combineTypes(Ty, CSTy);
6209 
6210       LLVM_DEBUG({
6211         dbgs() << " : New Type: ";
6212         if (Ty.hasValue() && Ty.getValue())
6213           Ty.getValue()->print(dbgs());
6214         else if (Ty.hasValue())
6215           dbgs() << "<nullptr>";
6216         else
6217           dbgs() << "<none>";
6218         dbgs() << "\n";
6219       });
6220 
6221       return !Ty.hasValue() || Ty.getValue();
6222     };
6223 
6224     if (!A.checkForAllCallSites(CallSiteCheck, *this, true, AllCallSitesKnown))
6225       return nullptr;
6226     return Ty;
6227   }
6228 
6229   /// See AbstractAttribute::updateImpl(...).
6230   ChangeStatus updateImpl(Attributor &A) override {
6231     PrivatizableType = identifyPrivatizableType(A);
6232     if (!PrivatizableType.hasValue())
6233       return ChangeStatus::UNCHANGED;
6234     if (!PrivatizableType.getValue())
6235       return indicatePessimisticFixpoint();
6236 
6237     // The dependence is optional so we don't give up once we give up on the
6238     // alignment.
6239     A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
6240                         DepClassTy::OPTIONAL);
6241 
6242     // Avoid arguments with padding for now.
6243     if (!getIRPosition().hasAttr(Attribute::ByVal) &&
6244         !ArgumentPromotionPass::isDenselyPacked(PrivatizableType.getValue(),
6245                                                 A.getInfoCache().getDL())) {
6246       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
6247       return indicatePessimisticFixpoint();
6248     }
6249 
6250     // Verify callee and caller agree on how the promoted argument would be
6251     // passed.
6252     // TODO: The use of the ArgumentPromotion interface here is ugly, we need a
6253     // specialized form of TargetTransformInfo::areFunctionArgsABICompatible
6254     // which doesn't require the arguments ArgumentPromotion wanted to pass.
6255     Function &Fn = *getIRPosition().getAnchorScope();
6256     SmallPtrSet<Argument *, 1> ArgsToPromote, Dummy;
6257     ArgsToPromote.insert(getAssociatedArgument());
6258     const auto *TTI =
6259         A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
6260     if (!TTI ||
6261         !ArgumentPromotionPass::areFunctionArgsABICompatible(
6262             Fn, *TTI, ArgsToPromote, Dummy) ||
6263         ArgsToPromote.empty()) {
6264       LLVM_DEBUG(
6265           dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
6266                  << Fn.getName() << "\n");
6267       return indicatePessimisticFixpoint();
6268     }
6269 
6270     // Collect the types that will replace the privatizable type in the function
6271     // signature.
6272     SmallVector<Type *, 16> ReplacementTypes;
6273     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6274 
6275     // Register a rewrite of the argument.
6276     Argument *Arg = getAssociatedArgument();
6277     if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
6278       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
6279       return indicatePessimisticFixpoint();
6280     }
6281 
6282     unsigned ArgNo = Arg->getArgNo();
6283 
6284     // Helper to check if for the given call site the associated argument is
6285     // passed to a callback where the privatization would be different.
6286     auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
6287       SmallVector<const Use *, 4> CallbackUses;
6288       AbstractCallSite::getCallbackUses(CB, CallbackUses);
6289       for (const Use *U : CallbackUses) {
6290         AbstractCallSite CBACS(U);
6291         assert(CBACS && CBACS.isCallbackCall());
6292         for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
6293           int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
6294 
6295           LLVM_DEBUG({
6296             dbgs()
6297                 << "[AAPrivatizablePtr] Argument " << *Arg
6298                 << "check if can be privatized in the context of its parent ("
6299                 << Arg->getParent()->getName()
6300                 << ")\n[AAPrivatizablePtr] because it is an argument in a "
6301                    "callback ("
6302                 << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6303                 << ")\n[AAPrivatizablePtr] " << CBArg << " : "
6304                 << CBACS.getCallArgOperand(CBArg) << " vs "
6305                 << CB.getArgOperand(ArgNo) << "\n"
6306                 << "[AAPrivatizablePtr] " << CBArg << " : "
6307                 << CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
6308           });
6309 
6310           if (CBArgNo != int(ArgNo))
6311             continue;
6312           const auto &CBArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6313               *this, IRPosition::argument(CBArg), DepClassTy::REQUIRED);
6314           if (CBArgPrivAA.isValidState()) {
6315             auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
6316             if (!CBArgPrivTy.hasValue())
6317               continue;
6318             if (CBArgPrivTy.getValue() == PrivatizableType)
6319               continue;
6320           }
6321 
6322           LLVM_DEBUG({
6323             dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6324                    << " cannot be privatized in the context of its parent ("
6325                    << Arg->getParent()->getName()
6326                    << ")\n[AAPrivatizablePtr] because it is an argument in a "
6327                       "callback ("
6328                    << CBArgNo << "@" << CBACS.getCalledFunction()->getName()
6329                    << ").\n[AAPrivatizablePtr] for which the argument "
6330                       "privatization is not compatible.\n";
6331           });
6332           return false;
6333         }
6334       }
6335       return true;
6336     };
6337 
6338     // Helper to check if for the given call site the associated argument is
6339     // passed to a direct call where the privatization would be different.
6340     auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
6341       CallBase *DC = cast<CallBase>(ACS.getInstruction());
6342       int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
6343       assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->getNumArgOperands() &&
6344              "Expected a direct call operand for callback call operand");
6345 
6346       LLVM_DEBUG({
6347         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6348                << " check if be privatized in the context of its parent ("
6349                << Arg->getParent()->getName()
6350                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6351                   "direct call of ("
6352                << DCArgNo << "@" << DC->getCalledFunction()->getName()
6353                << ").\n";
6354       });
6355 
6356       Function *DCCallee = DC->getCalledFunction();
6357       if (unsigned(DCArgNo) < DCCallee->arg_size()) {
6358         const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
6359             *this, IRPosition::argument(*DCCallee->getArg(DCArgNo)),
6360             DepClassTy::REQUIRED);
6361         if (DCArgPrivAA.isValidState()) {
6362           auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
6363           if (!DCArgPrivTy.hasValue())
6364             return true;
6365           if (DCArgPrivTy.getValue() == PrivatizableType)
6366             return true;
6367         }
6368       }
6369 
6370       LLVM_DEBUG({
6371         dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
6372                << " cannot be privatized in the context of its parent ("
6373                << Arg->getParent()->getName()
6374                << ")\n[AAPrivatizablePtr] because it is an argument in a "
6375                   "direct call of ("
6376                << ACS.getInstruction()->getCalledFunction()->getName()
6377                << ").\n[AAPrivatizablePtr] for which the argument "
6378                   "privatization is not compatible.\n";
6379       });
6380       return false;
6381     };
6382 
6383     // Helper to check if the associated argument is used at the given abstract
6384     // call site in a way that is incompatible with the privatization assumed
6385     // here.
6386     auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
6387       if (ACS.isDirectCall())
6388         return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
6389       if (ACS.isCallbackCall())
6390         return IsCompatiblePrivArgOfDirectCS(ACS);
6391       return false;
6392     };
6393 
6394     bool AllCallSitesKnown;
6395     if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
6396                                 AllCallSitesKnown))
6397       return indicatePessimisticFixpoint();
6398 
6399     return ChangeStatus::UNCHANGED;
6400   }
6401 
6402   /// Given a type to private \p PrivType, collect the constituates (which are
6403   /// used) in \p ReplacementTypes.
6404   static void
6405   identifyReplacementTypes(Type *PrivType,
6406                            SmallVectorImpl<Type *> &ReplacementTypes) {
6407     // TODO: For now we expand the privatization type to the fullest which can
6408     //       lead to dead arguments that need to be removed later.
6409     assert(PrivType && "Expected privatizable type!");
6410 
6411     // Traverse the type, extract constituate types on the outermost level.
6412     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6413       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
6414         ReplacementTypes.push_back(PrivStructType->getElementType(u));
6415     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6416       ReplacementTypes.append(PrivArrayType->getNumElements(),
6417                               PrivArrayType->getElementType());
6418     } else {
6419       ReplacementTypes.push_back(PrivType);
6420     }
6421   }
6422 
6423   /// Initialize \p Base according to the type \p PrivType at position \p IP.
6424   /// The values needed are taken from the arguments of \p F starting at
6425   /// position \p ArgNo.
6426   static void createInitialization(Type *PrivType, Value &Base, Function &F,
6427                                    unsigned ArgNo, Instruction &IP) {
6428     assert(PrivType && "Expected privatizable type!");
6429 
6430     IRBuilder<NoFolder> IRB(&IP);
6431     const DataLayout &DL = F.getParent()->getDataLayout();
6432 
6433     // Traverse the type, build GEPs and stores.
6434     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6435       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6436       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6437         Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
6438         Value *Ptr =
6439             constructPointer(PointeeTy, PrivType, &Base,
6440                              PrivStructLayout->getElementOffset(u), IRB, DL);
6441         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6442       }
6443     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6444       Type *PointeeTy = PrivArrayType->getElementType();
6445       Type *PointeePtrTy = PointeeTy->getPointerTo();
6446       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6447       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6448         Value *Ptr = constructPointer(PointeePtrTy, PrivType, &Base,
6449                                       u * PointeeTySize, IRB, DL);
6450         new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
6451       }
6452     } else {
6453       new StoreInst(F.getArg(ArgNo), &Base, &IP);
6454     }
6455   }
6456 
6457   /// Extract values from \p Base according to the type \p PrivType at the
6458   /// call position \p ACS. The values are appended to \p ReplacementValues.
6459   void createReplacementValues(Align Alignment, Type *PrivType,
6460                                AbstractCallSite ACS, Value *Base,
6461                                SmallVectorImpl<Value *> &ReplacementValues) {
6462     assert(Base && "Expected base value!");
6463     assert(PrivType && "Expected privatizable type!");
6464     Instruction *IP = ACS.getInstruction();
6465 
6466     IRBuilder<NoFolder> IRB(IP);
6467     const DataLayout &DL = IP->getModule()->getDataLayout();
6468 
6469     if (Base->getType()->getPointerElementType() != PrivType)
6470       Base = BitCastInst::CreateBitOrPointerCast(Base, PrivType->getPointerTo(),
6471                                                  "", ACS.getInstruction());
6472 
6473     // Traverse the type, build GEPs and loads.
6474     if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
6475       const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
6476       for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
6477         Type *PointeeTy = PrivStructType->getElementType(u);
6478         Value *Ptr =
6479             constructPointer(PointeeTy->getPointerTo(), PrivType, Base,
6480                              PrivStructLayout->getElementOffset(u), IRB, DL);
6481         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6482         L->setAlignment(Alignment);
6483         ReplacementValues.push_back(L);
6484       }
6485     } else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
6486       Type *PointeeTy = PrivArrayType->getElementType();
6487       uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
6488       Type *PointeePtrTy = PointeeTy->getPointerTo();
6489       for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
6490         Value *Ptr = constructPointer(PointeePtrTy, PrivType, Base,
6491                                       u * PointeeTySize, IRB, DL);
6492         LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
6493         L->setAlignment(Alignment);
6494         ReplacementValues.push_back(L);
6495       }
6496     } else {
6497       LoadInst *L = new LoadInst(PrivType, Base, "", IP);
6498       L->setAlignment(Alignment);
6499       ReplacementValues.push_back(L);
6500     }
6501   }
6502 
6503   /// See AbstractAttribute::manifest(...)
6504   ChangeStatus manifest(Attributor &A) override {
6505     if (!PrivatizableType.hasValue())
6506       return ChangeStatus::UNCHANGED;
6507     assert(PrivatizableType.getValue() && "Expected privatizable type!");
6508 
6509     // Collect all tail calls in the function as we cannot allow new allocas to
6510     // escape into tail recursion.
6511     // TODO: Be smarter about new allocas escaping into tail calls.
6512     SmallVector<CallInst *, 16> TailCalls;
6513     bool UsedAssumedInformation = false;
6514     if (!A.checkForAllInstructions(
6515             [&](Instruction &I) {
6516               CallInst &CI = cast<CallInst>(I);
6517               if (CI.isTailCall())
6518                 TailCalls.push_back(&CI);
6519               return true;
6520             },
6521             *this, {Instruction::Call}, UsedAssumedInformation))
6522       return ChangeStatus::UNCHANGED;
6523 
6524     Argument *Arg = getAssociatedArgument();
6525     // Query AAAlign attribute for alignment of associated argument to
6526     // determine the best alignment of loads.
6527     const auto &AlignAA =
6528         A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg), DepClassTy::NONE);
6529 
6530     // Callback to repair the associated function. A new alloca is placed at the
6531     // beginning and initialized with the values passed through arguments. The
6532     // new alloca replaces the use of the old pointer argument.
6533     Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
6534         [=](const Attributor::ArgumentReplacementInfo &ARI,
6535             Function &ReplacementFn, Function::arg_iterator ArgIt) {
6536           BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
6537           Instruction *IP = &*EntryBB.getFirstInsertionPt();
6538           Instruction *AI = new AllocaInst(PrivatizableType.getValue(), 0,
6539                                            Arg->getName() + ".priv", IP);
6540           createInitialization(PrivatizableType.getValue(), *AI, ReplacementFn,
6541                                ArgIt->getArgNo(), *IP);
6542 
6543           if (AI->getType() != Arg->getType())
6544             AI =
6545                 BitCastInst::CreateBitOrPointerCast(AI, Arg->getType(), "", IP);
6546           Arg->replaceAllUsesWith(AI);
6547 
6548           for (CallInst *CI : TailCalls)
6549             CI->setTailCall(false);
6550         };
6551 
6552     // Callback to repair a call site of the associated function. The elements
6553     // of the privatizable type are loaded prior to the call and passed to the
6554     // new function version.
6555     Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
6556         [=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI,
6557                       AbstractCallSite ACS,
6558                       SmallVectorImpl<Value *> &NewArgOperands) {
6559           // When no alignment is specified for the load instruction,
6560           // natural alignment is assumed.
6561           createReplacementValues(
6562               assumeAligned(AlignAA.getAssumedAlign()),
6563               PrivatizableType.getValue(), ACS,
6564               ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
6565               NewArgOperands);
6566         };
6567 
6568     // Collect the types that will replace the privatizable type in the function
6569     // signature.
6570     SmallVector<Type *, 16> ReplacementTypes;
6571     identifyReplacementTypes(PrivatizableType.getValue(), ReplacementTypes);
6572 
6573     // Register a rewrite of the argument.
6574     if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
6575                                            std::move(FnRepairCB),
6576                                            std::move(ACSRepairCB)))
6577       return ChangeStatus::CHANGED;
6578     return ChangeStatus::UNCHANGED;
6579   }
6580 
6581   /// See AbstractAttribute::trackStatistics()
6582   void trackStatistics() const override {
6583     STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
6584   }
6585 };
6586 
6587 struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
6588   AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
6589       : AAPrivatizablePtrImpl(IRP, A) {}
6590 
6591   /// See AbstractAttribute::initialize(...).
6592   virtual void initialize(Attributor &A) override {
6593     // TODO: We can privatize more than arguments.
6594     indicatePessimisticFixpoint();
6595   }
6596 
6597   ChangeStatus updateImpl(Attributor &A) override {
6598     llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
6599                      "updateImpl will not be called");
6600   }
6601 
6602   /// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
6603   Optional<Type *> identifyPrivatizableType(Attributor &A) override {
6604     Value *Obj = getUnderlyingObject(&getAssociatedValue());
6605     if (!Obj) {
6606       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
6607       return nullptr;
6608     }
6609 
6610     if (auto *AI = dyn_cast<AllocaInst>(Obj))
6611       if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
6612         if (CI->isOne())
6613           return Obj->getType()->getPointerElementType();
6614     if (auto *Arg = dyn_cast<Argument>(Obj)) {
6615       auto &PrivArgAA = A.getAAFor<AAPrivatizablePtr>(
6616           *this, IRPosition::argument(*Arg), DepClassTy::REQUIRED);
6617       if (PrivArgAA.isAssumedPrivatizablePtr())
6618         return Obj->getType()->getPointerElementType();
6619     }
6620 
6621     LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
6622                          "alloca nor privatizable argument: "
6623                       << *Obj << "!\n");
6624     return nullptr;
6625   }
6626 
6627   /// See AbstractAttribute::trackStatistics()
6628   void trackStatistics() const override {
6629     STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
6630   }
6631 };
6632 
6633 struct AAPrivatizablePtrCallSiteArgument final
6634     : public AAPrivatizablePtrFloating {
6635   AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
6636       : AAPrivatizablePtrFloating(IRP, A) {}
6637 
6638   /// See AbstractAttribute::initialize(...).
6639   void initialize(Attributor &A) override {
6640     if (getIRPosition().hasAttr(Attribute::ByVal))
6641       indicateOptimisticFixpoint();
6642   }
6643 
6644   /// See AbstractAttribute::updateImpl(...).
6645   ChangeStatus updateImpl(Attributor &A) override {
6646     PrivatizableType = identifyPrivatizableType(A);
6647     if (!PrivatizableType.hasValue())
6648       return ChangeStatus::UNCHANGED;
6649     if (!PrivatizableType.getValue())
6650       return indicatePessimisticFixpoint();
6651 
6652     const IRPosition &IRP = getIRPosition();
6653     auto &NoCaptureAA =
6654         A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::REQUIRED);
6655     if (!NoCaptureAA.isAssumedNoCapture()) {
6656       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
6657       return indicatePessimisticFixpoint();
6658     }
6659 
6660     auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP, DepClassTy::REQUIRED);
6661     if (!NoAliasAA.isAssumedNoAlias()) {
6662       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
6663       return indicatePessimisticFixpoint();
6664     }
6665 
6666     const auto &MemBehaviorAA =
6667         A.getAAFor<AAMemoryBehavior>(*this, IRP, DepClassTy::REQUIRED);
6668     if (!MemBehaviorAA.isAssumedReadOnly()) {
6669       LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
6670       return indicatePessimisticFixpoint();
6671     }
6672 
6673     return ChangeStatus::UNCHANGED;
6674   }
6675 
6676   /// See AbstractAttribute::trackStatistics()
6677   void trackStatistics() const override {
6678     STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
6679   }
6680 };
6681 
6682 struct AAPrivatizablePtrCallSiteReturned final
6683     : public AAPrivatizablePtrFloating {
6684   AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
6685       : AAPrivatizablePtrFloating(IRP, A) {}
6686 
6687   /// See AbstractAttribute::initialize(...).
6688   void initialize(Attributor &A) override {
6689     // TODO: We can privatize more than arguments.
6690     indicatePessimisticFixpoint();
6691   }
6692 
6693   /// See AbstractAttribute::trackStatistics()
6694   void trackStatistics() const override {
6695     STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
6696   }
6697 };
6698 
6699 struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
6700   AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
6701       : AAPrivatizablePtrFloating(IRP, A) {}
6702 
6703   /// See AbstractAttribute::initialize(...).
6704   void initialize(Attributor &A) override {
6705     // TODO: We can privatize more than arguments.
6706     indicatePessimisticFixpoint();
6707   }
6708 
6709   /// See AbstractAttribute::trackStatistics()
6710   void trackStatistics() const override {
6711     STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
6712   }
6713 };
6714 
6715 /// -------------------- Memory Behavior Attributes ----------------------------
6716 /// Includes read-none, read-only, and write-only.
6717 /// ----------------------------------------------------------------------------
6718 struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
6719   AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
6720       : AAMemoryBehavior(IRP, A) {}
6721 
6722   /// See AbstractAttribute::initialize(...).
6723   void initialize(Attributor &A) override {
6724     intersectAssumedBits(BEST_STATE);
6725     getKnownStateFromValue(getIRPosition(), getState());
6726     AAMemoryBehavior::initialize(A);
6727   }
6728 
6729   /// Return the memory behavior information encoded in the IR for \p IRP.
6730   static void getKnownStateFromValue(const IRPosition &IRP,
6731                                      BitIntegerState &State,
6732                                      bool IgnoreSubsumingPositions = false) {
6733     SmallVector<Attribute, 2> Attrs;
6734     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
6735     for (const Attribute &Attr : Attrs) {
6736       switch (Attr.getKindAsEnum()) {
6737       case Attribute::ReadNone:
6738         State.addKnownBits(NO_ACCESSES);
6739         break;
6740       case Attribute::ReadOnly:
6741         State.addKnownBits(NO_WRITES);
6742         break;
6743       case Attribute::WriteOnly:
6744         State.addKnownBits(NO_READS);
6745         break;
6746       default:
6747         llvm_unreachable("Unexpected attribute!");
6748       }
6749     }
6750 
6751     if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
6752       if (!I->mayReadFromMemory())
6753         State.addKnownBits(NO_READS);
6754       if (!I->mayWriteToMemory())
6755         State.addKnownBits(NO_WRITES);
6756     }
6757   }
6758 
6759   /// See AbstractAttribute::getDeducedAttributes(...).
6760   void getDeducedAttributes(LLVMContext &Ctx,
6761                             SmallVectorImpl<Attribute> &Attrs) const override {
6762     assert(Attrs.size() == 0);
6763     if (isAssumedReadNone())
6764       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
6765     else if (isAssumedReadOnly())
6766       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
6767     else if (isAssumedWriteOnly())
6768       Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
6769     assert(Attrs.size() <= 1);
6770   }
6771 
6772   /// See AbstractAttribute::manifest(...).
6773   ChangeStatus manifest(Attributor &A) override {
6774     if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
6775       return ChangeStatus::UNCHANGED;
6776 
6777     const IRPosition &IRP = getIRPosition();
6778 
6779     // Check if we would improve the existing attributes first.
6780     SmallVector<Attribute, 4> DeducedAttrs;
6781     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
6782     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
6783           return IRP.hasAttr(Attr.getKindAsEnum(),
6784                              /* IgnoreSubsumingPositions */ true);
6785         }))
6786       return ChangeStatus::UNCHANGED;
6787 
6788     // Clear existing attributes.
6789     IRP.removeAttrs(AttrKinds);
6790 
6791     // Use the generic manifest method.
6792     return IRAttribute::manifest(A);
6793   }
6794 
6795   /// See AbstractState::getAsStr().
6796   const std::string getAsStr() const override {
6797     if (isAssumedReadNone())
6798       return "readnone";
6799     if (isAssumedReadOnly())
6800       return "readonly";
6801     if (isAssumedWriteOnly())
6802       return "writeonly";
6803     return "may-read/write";
6804   }
6805 
6806   /// The set of IR attributes AAMemoryBehavior deals with.
6807   static const Attribute::AttrKind AttrKinds[3];
6808 };
6809 
6810 const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
6811     Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
6812 
6813 /// Memory behavior attribute for a floating value.
6814 struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
6815   AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
6816       : AAMemoryBehaviorImpl(IRP, A) {}
6817 
6818   /// See AbstractAttribute::updateImpl(...).
6819   ChangeStatus updateImpl(Attributor &A) override;
6820 
6821   /// See AbstractAttribute::trackStatistics()
6822   void trackStatistics() const override {
6823     if (isAssumedReadNone())
6824       STATS_DECLTRACK_FLOATING_ATTR(readnone)
6825     else if (isAssumedReadOnly())
6826       STATS_DECLTRACK_FLOATING_ATTR(readonly)
6827     else if (isAssumedWriteOnly())
6828       STATS_DECLTRACK_FLOATING_ATTR(writeonly)
6829   }
6830 
6831 private:
6832   /// Return true if users of \p UserI might access the underlying
6833   /// variable/location described by \p U and should therefore be analyzed.
6834   bool followUsersOfUseIn(Attributor &A, const Use &U,
6835                           const Instruction *UserI);
6836 
6837   /// Update the state according to the effect of use \p U in \p UserI.
6838   void analyzeUseIn(Attributor &A, const Use &U, const Instruction *UserI);
6839 };
6840 
6841 /// Memory behavior attribute for function argument.
6842 struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
6843   AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
6844       : AAMemoryBehaviorFloating(IRP, A) {}
6845 
6846   /// See AbstractAttribute::initialize(...).
6847   void initialize(Attributor &A) override {
6848     intersectAssumedBits(BEST_STATE);
6849     const IRPosition &IRP = getIRPosition();
6850     // TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
6851     // can query it when we use has/getAttr. That would allow us to reuse the
6852     // initialize of the base class here.
6853     bool HasByVal =
6854         IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
6855     getKnownStateFromValue(IRP, getState(),
6856                            /* IgnoreSubsumingPositions */ HasByVal);
6857 
6858     // Initialize the use vector with all direct uses of the associated value.
6859     Argument *Arg = getAssociatedArgument();
6860     if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent())))
6861       indicatePessimisticFixpoint();
6862   }
6863 
6864   ChangeStatus manifest(Attributor &A) override {
6865     // TODO: Pointer arguments are not supported on vectors of pointers yet.
6866     if (!getAssociatedValue().getType()->isPointerTy())
6867       return ChangeStatus::UNCHANGED;
6868 
6869     // TODO: From readattrs.ll: "inalloca parameters are always
6870     //                           considered written"
6871     if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) {
6872       removeKnownBits(NO_WRITES);
6873       removeAssumedBits(NO_WRITES);
6874     }
6875     return AAMemoryBehaviorFloating::manifest(A);
6876   }
6877 
6878   /// See AbstractAttribute::trackStatistics()
6879   void trackStatistics() const override {
6880     if (isAssumedReadNone())
6881       STATS_DECLTRACK_ARG_ATTR(readnone)
6882     else if (isAssumedReadOnly())
6883       STATS_DECLTRACK_ARG_ATTR(readonly)
6884     else if (isAssumedWriteOnly())
6885       STATS_DECLTRACK_ARG_ATTR(writeonly)
6886   }
6887 };
6888 
6889 struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
6890   AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
6891       : AAMemoryBehaviorArgument(IRP, A) {}
6892 
6893   /// See AbstractAttribute::initialize(...).
6894   void initialize(Attributor &A) override {
6895     // If we don't have an associated attribute this is either a variadic call
6896     // or an indirect call, either way, nothing to do here.
6897     Argument *Arg = getAssociatedArgument();
6898     if (!Arg) {
6899       indicatePessimisticFixpoint();
6900       return;
6901     }
6902     if (Arg->hasByValAttr()) {
6903       addKnownBits(NO_WRITES);
6904       removeKnownBits(NO_READS);
6905       removeAssumedBits(NO_READS);
6906     }
6907     AAMemoryBehaviorArgument::initialize(A);
6908     if (getAssociatedFunction()->isDeclaration())
6909       indicatePessimisticFixpoint();
6910   }
6911 
6912   /// See AbstractAttribute::updateImpl(...).
6913   ChangeStatus updateImpl(Attributor &A) override {
6914     // TODO: Once we have call site specific value information we can provide
6915     //       call site specific liveness liveness information and then it makes
6916     //       sense to specialize attributes for call sites arguments instead of
6917     //       redirecting requests to the callee argument.
6918     Argument *Arg = getAssociatedArgument();
6919     const IRPosition &ArgPos = IRPosition::argument(*Arg);
6920     auto &ArgAA =
6921         A.getAAFor<AAMemoryBehavior>(*this, ArgPos, DepClassTy::REQUIRED);
6922     return clampStateAndIndicateChange(getState(), ArgAA.getState());
6923   }
6924 
6925   /// See AbstractAttribute::trackStatistics()
6926   void trackStatistics() const override {
6927     if (isAssumedReadNone())
6928       STATS_DECLTRACK_CSARG_ATTR(readnone)
6929     else if (isAssumedReadOnly())
6930       STATS_DECLTRACK_CSARG_ATTR(readonly)
6931     else if (isAssumedWriteOnly())
6932       STATS_DECLTRACK_CSARG_ATTR(writeonly)
6933   }
6934 };
6935 
6936 /// Memory behavior attribute for a call site return position.
6937 struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
6938   AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
6939       : AAMemoryBehaviorFloating(IRP, A) {}
6940 
6941   /// See AbstractAttribute::initialize(...).
6942   void initialize(Attributor &A) override {
6943     AAMemoryBehaviorImpl::initialize(A);
6944     Function *F = getAssociatedFunction();
6945     if (!F || F->isDeclaration())
6946       indicatePessimisticFixpoint();
6947   }
6948 
6949   /// See AbstractAttribute::manifest(...).
6950   ChangeStatus manifest(Attributor &A) override {
6951     // We do not annotate returned values.
6952     return ChangeStatus::UNCHANGED;
6953   }
6954 
6955   /// See AbstractAttribute::trackStatistics()
6956   void trackStatistics() const override {}
6957 };
6958 
6959 /// An AA to represent the memory behavior function attributes.
6960 struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
6961   AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
6962       : AAMemoryBehaviorImpl(IRP, A) {}
6963 
6964   /// See AbstractAttribute::updateImpl(Attributor &A).
6965   virtual ChangeStatus updateImpl(Attributor &A) override;
6966 
6967   /// See AbstractAttribute::manifest(...).
6968   ChangeStatus manifest(Attributor &A) override {
6969     Function &F = cast<Function>(getAnchorValue());
6970     if (isAssumedReadNone()) {
6971       F.removeFnAttr(Attribute::ArgMemOnly);
6972       F.removeFnAttr(Attribute::InaccessibleMemOnly);
6973       F.removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
6974     }
6975     return AAMemoryBehaviorImpl::manifest(A);
6976   }
6977 
6978   /// See AbstractAttribute::trackStatistics()
6979   void trackStatistics() const override {
6980     if (isAssumedReadNone())
6981       STATS_DECLTRACK_FN_ATTR(readnone)
6982     else if (isAssumedReadOnly())
6983       STATS_DECLTRACK_FN_ATTR(readonly)
6984     else if (isAssumedWriteOnly())
6985       STATS_DECLTRACK_FN_ATTR(writeonly)
6986   }
6987 };
6988 
6989 /// AAMemoryBehavior attribute for call sites.
6990 struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
6991   AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
6992       : AAMemoryBehaviorImpl(IRP, A) {}
6993 
6994   /// See AbstractAttribute::initialize(...).
6995   void initialize(Attributor &A) override {
6996     AAMemoryBehaviorImpl::initialize(A);
6997     Function *F = getAssociatedFunction();
6998     if (!F || F->isDeclaration())
6999       indicatePessimisticFixpoint();
7000   }
7001 
7002   /// See AbstractAttribute::updateImpl(...).
7003   ChangeStatus updateImpl(Attributor &A) override {
7004     // TODO: Once we have call site specific value information we can provide
7005     //       call site specific liveness liveness information and then it makes
7006     //       sense to specialize attributes for call sites arguments instead of
7007     //       redirecting requests to the callee argument.
7008     Function *F = getAssociatedFunction();
7009     const IRPosition &FnPos = IRPosition::function(*F);
7010     auto &FnAA =
7011         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::REQUIRED);
7012     return clampStateAndIndicateChange(getState(), FnAA.getState());
7013   }
7014 
7015   /// See AbstractAttribute::trackStatistics()
7016   void trackStatistics() const override {
7017     if (isAssumedReadNone())
7018       STATS_DECLTRACK_CS_ATTR(readnone)
7019     else if (isAssumedReadOnly())
7020       STATS_DECLTRACK_CS_ATTR(readonly)
7021     else if (isAssumedWriteOnly())
7022       STATS_DECLTRACK_CS_ATTR(writeonly)
7023   }
7024 };
7025 
7026 ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
7027 
7028   // The current assumed state used to determine a change.
7029   auto AssumedState = getAssumed();
7030 
7031   auto CheckRWInst = [&](Instruction &I) {
7032     // If the instruction has an own memory behavior state, use it to restrict
7033     // the local state. No further analysis is required as the other memory
7034     // state is as optimistic as it gets.
7035     if (const auto *CB = dyn_cast<CallBase>(&I)) {
7036       const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
7037           *this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
7038       intersectAssumedBits(MemBehaviorAA.getAssumed());
7039       return !isAtFixpoint();
7040     }
7041 
7042     // Remove access kind modifiers if necessary.
7043     if (I.mayReadFromMemory())
7044       removeAssumedBits(NO_READS);
7045     if (I.mayWriteToMemory())
7046       removeAssumedBits(NO_WRITES);
7047     return !isAtFixpoint();
7048   };
7049 
7050   bool UsedAssumedInformation = false;
7051   if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7052                                           UsedAssumedInformation))
7053     return indicatePessimisticFixpoint();
7054 
7055   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7056                                         : ChangeStatus::UNCHANGED;
7057 }
7058 
7059 ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
7060 
7061   const IRPosition &IRP = getIRPosition();
7062   const IRPosition &FnPos = IRPosition::function_scope(IRP);
7063   AAMemoryBehavior::StateType &S = getState();
7064 
7065   // First, check the function scope. We take the known information and we avoid
7066   // work if the assumed information implies the current assumed information for
7067   // this attribute. This is a valid for all but byval arguments.
7068   Argument *Arg = IRP.getAssociatedArgument();
7069   AAMemoryBehavior::base_t FnMemAssumedState =
7070       AAMemoryBehavior::StateType::getWorstState();
7071   if (!Arg || !Arg->hasByValAttr()) {
7072     const auto &FnMemAA =
7073         A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::OPTIONAL);
7074     FnMemAssumedState = FnMemAA.getAssumed();
7075     S.addKnownBits(FnMemAA.getKnown());
7076     if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
7077       return ChangeStatus::UNCHANGED;
7078   }
7079 
7080   // Make sure the value is not captured (except through "return"), if
7081   // it is, any information derived would be irrelevant anyway as we cannot
7082   // check the potential aliases introduced by the capture. However, no need
7083   // to fall back to anythign less optimistic than the function state.
7084   const auto &ArgNoCaptureAA =
7085       A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::OPTIONAL);
7086   if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
7087     S.intersectAssumedBits(FnMemAssumedState);
7088     return ChangeStatus::CHANGED;
7089   }
7090 
7091   // The current assumed state used to determine a change.
7092   auto AssumedState = S.getAssumed();
7093 
7094   // Visit and expand uses until all are analyzed or a fixpoint is reached.
7095   auto UsePred = [&](const Use &U, bool &Follow) -> bool {
7096     Instruction *UserI = cast<Instruction>(U.getUser());
7097     LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << *U << " in " << *UserI
7098                       << " \n");
7099 
7100     // Droppable users, e.g., llvm::assume does not actually perform any action.
7101     if (UserI->isDroppable())
7102       return true;
7103 
7104     // Check if the users of UserI should also be visited.
7105     Follow = followUsersOfUseIn(A, U, UserI);
7106 
7107     // If UserI might touch memory we analyze the use in detail.
7108     if (UserI->mayReadOrWriteMemory())
7109       analyzeUseIn(A, U, UserI);
7110 
7111     return !isAtFixpoint();
7112   };
7113 
7114   if (!A.checkForAllUses(UsePred, *this, getAssociatedValue()))
7115     return indicatePessimisticFixpoint();
7116 
7117   return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
7118                                         : ChangeStatus::UNCHANGED;
7119 }
7120 
7121 bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use &U,
7122                                                   const Instruction *UserI) {
7123   // The loaded value is unrelated to the pointer argument, no need to
7124   // follow the users of the load.
7125   if (isa<LoadInst>(UserI))
7126     return false;
7127 
7128   // By default we follow all uses assuming UserI might leak information on U,
7129   // we have special handling for call sites operands though.
7130   const auto *CB = dyn_cast<CallBase>(UserI);
7131   if (!CB || !CB->isArgOperand(&U))
7132     return true;
7133 
7134   // If the use is a call argument known not to be captured, the users of
7135   // the call do not need to be visited because they have to be unrelated to
7136   // the input. Note that this check is not trivial even though we disallow
7137   // general capturing of the underlying argument. The reason is that the
7138   // call might the argument "through return", which we allow and for which we
7139   // need to check call users.
7140   if (U.get()->getType()->isPointerTy()) {
7141     unsigned ArgNo = CB->getArgOperandNo(&U);
7142     const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
7143         *this, IRPosition::callsite_argument(*CB, ArgNo), DepClassTy::OPTIONAL);
7144     return !ArgNoCaptureAA.isAssumedNoCapture();
7145   }
7146 
7147   return true;
7148 }
7149 
7150 void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use &U,
7151                                             const Instruction *UserI) {
7152   assert(UserI->mayReadOrWriteMemory());
7153 
7154   switch (UserI->getOpcode()) {
7155   default:
7156     // TODO: Handle all atomics and other side-effect operations we know of.
7157     break;
7158   case Instruction::Load:
7159     // Loads cause the NO_READS property to disappear.
7160     removeAssumedBits(NO_READS);
7161     return;
7162 
7163   case Instruction::Store:
7164     // Stores cause the NO_WRITES property to disappear if the use is the
7165     // pointer operand. Note that we do assume that capturing was taken care of
7166     // somewhere else.
7167     if (cast<StoreInst>(UserI)->getPointerOperand() == U.get())
7168       removeAssumedBits(NO_WRITES);
7169     return;
7170 
7171   case Instruction::Call:
7172   case Instruction::CallBr:
7173   case Instruction::Invoke: {
7174     // For call sites we look at the argument memory behavior attribute (this
7175     // could be recursive!) in order to restrict our own state.
7176     const auto *CB = cast<CallBase>(UserI);
7177 
7178     // Give up on operand bundles.
7179     if (CB->isBundleOperand(&U)) {
7180       indicatePessimisticFixpoint();
7181       return;
7182     }
7183 
7184     // Calling a function does read the function pointer, maybe write it if the
7185     // function is self-modifying.
7186     if (CB->isCallee(&U)) {
7187       removeAssumedBits(NO_READS);
7188       break;
7189     }
7190 
7191     // Adjust the possible access behavior based on the information on the
7192     // argument.
7193     IRPosition Pos;
7194     if (U.get()->getType()->isPointerTy())
7195       Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
7196     else
7197       Pos = IRPosition::callsite_function(*CB);
7198     const auto &MemBehaviorAA =
7199         A.getAAFor<AAMemoryBehavior>(*this, Pos, DepClassTy::OPTIONAL);
7200     // "assumed" has at most the same bits as the MemBehaviorAA assumed
7201     // and at least "known".
7202     intersectAssumedBits(MemBehaviorAA.getAssumed());
7203     return;
7204   }
7205   };
7206 
7207   // Generally, look at the "may-properties" and adjust the assumed state if we
7208   // did not trigger special handling before.
7209   if (UserI->mayReadFromMemory())
7210     removeAssumedBits(NO_READS);
7211   if (UserI->mayWriteToMemory())
7212     removeAssumedBits(NO_WRITES);
7213 }
7214 
7215 /// -------------------- Memory Locations Attributes ---------------------------
7216 /// Includes read-none, argmemonly, inaccessiblememonly,
7217 /// inaccessiblememorargmemonly
7218 /// ----------------------------------------------------------------------------
7219 
7220 std::string AAMemoryLocation::getMemoryLocationsAsStr(
7221     AAMemoryLocation::MemoryLocationsKind MLK) {
7222   if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
7223     return "all memory";
7224   if (MLK == AAMemoryLocation::NO_LOCATIONS)
7225     return "no memory";
7226   std::string S = "memory:";
7227   if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
7228     S += "stack,";
7229   if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
7230     S += "constant,";
7231   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
7232     S += "internal global,";
7233   if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
7234     S += "external global,";
7235   if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
7236     S += "argument,";
7237   if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
7238     S += "inaccessible,";
7239   if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
7240     S += "malloced,";
7241   if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
7242     S += "unknown,";
7243   S.pop_back();
7244   return S;
7245 }
7246 
7247 namespace {
7248 struct AAMemoryLocationImpl : public AAMemoryLocation {
7249 
7250   AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
7251       : AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
7252     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7253       AccessKind2Accesses[u] = nullptr;
7254   }
7255 
7256   ~AAMemoryLocationImpl() {
7257     // The AccessSets are allocated via a BumpPtrAllocator, we call
7258     // the destructor manually.
7259     for (unsigned u = 0; u < llvm::CTLog2<VALID_STATE>(); ++u)
7260       if (AccessKind2Accesses[u])
7261         AccessKind2Accesses[u]->~AccessSet();
7262   }
7263 
7264   /// See AbstractAttribute::initialize(...).
7265   void initialize(Attributor &A) override {
7266     intersectAssumedBits(BEST_STATE);
7267     getKnownStateFromValue(A, getIRPosition(), getState());
7268     AAMemoryLocation::initialize(A);
7269   }
7270 
7271   /// Return the memory behavior information encoded in the IR for \p IRP.
7272   static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
7273                                      BitIntegerState &State,
7274                                      bool IgnoreSubsumingPositions = false) {
7275     // For internal functions we ignore `argmemonly` and
7276     // `inaccessiblememorargmemonly` as we might break it via interprocedural
7277     // constant propagation. It is unclear if this is the best way but it is
7278     // unlikely this will cause real performance problems. If we are deriving
7279     // attributes for the anchor function we even remove the attribute in
7280     // addition to ignoring it.
7281     bool UseArgMemOnly = true;
7282     Function *AnchorFn = IRP.getAnchorScope();
7283     if (AnchorFn && A.isRunOn(*AnchorFn))
7284       UseArgMemOnly = !AnchorFn->hasLocalLinkage();
7285 
7286     SmallVector<Attribute, 2> Attrs;
7287     IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
7288     for (const Attribute &Attr : Attrs) {
7289       switch (Attr.getKindAsEnum()) {
7290       case Attribute::ReadNone:
7291         State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
7292         break;
7293       case Attribute::InaccessibleMemOnly:
7294         State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
7295         break;
7296       case Attribute::ArgMemOnly:
7297         if (UseArgMemOnly)
7298           State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
7299         else
7300           IRP.removeAttrs({Attribute::ArgMemOnly});
7301         break;
7302       case Attribute::InaccessibleMemOrArgMemOnly:
7303         if (UseArgMemOnly)
7304           State.addKnownBits(inverseLocation(
7305               NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
7306         else
7307           IRP.removeAttrs({Attribute::InaccessibleMemOrArgMemOnly});
7308         break;
7309       default:
7310         llvm_unreachable("Unexpected attribute!");
7311       }
7312     }
7313   }
7314 
7315   /// See AbstractAttribute::getDeducedAttributes(...).
7316   void getDeducedAttributes(LLVMContext &Ctx,
7317                             SmallVectorImpl<Attribute> &Attrs) const override {
7318     assert(Attrs.size() == 0);
7319     if (isAssumedReadNone()) {
7320       Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
7321     } else if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
7322       if (isAssumedInaccessibleMemOnly())
7323         Attrs.push_back(Attribute::get(Ctx, Attribute::InaccessibleMemOnly));
7324       else if (isAssumedArgMemOnly())
7325         Attrs.push_back(Attribute::get(Ctx, Attribute::ArgMemOnly));
7326       else if (isAssumedInaccessibleOrArgMemOnly())
7327         Attrs.push_back(
7328             Attribute::get(Ctx, Attribute::InaccessibleMemOrArgMemOnly));
7329     }
7330     assert(Attrs.size() <= 1);
7331   }
7332 
7333   /// See AbstractAttribute::manifest(...).
7334   ChangeStatus manifest(Attributor &A) override {
7335     const IRPosition &IRP = getIRPosition();
7336 
7337     // Check if we would improve the existing attributes first.
7338     SmallVector<Attribute, 4> DeducedAttrs;
7339     getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
7340     if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
7341           return IRP.hasAttr(Attr.getKindAsEnum(),
7342                              /* IgnoreSubsumingPositions */ true);
7343         }))
7344       return ChangeStatus::UNCHANGED;
7345 
7346     // Clear existing attributes.
7347     IRP.removeAttrs(AttrKinds);
7348     if (isAssumedReadNone())
7349       IRP.removeAttrs(AAMemoryBehaviorImpl::AttrKinds);
7350 
7351     // Use the generic manifest method.
7352     return IRAttribute::manifest(A);
7353   }
7354 
7355   /// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
7356   bool checkForAllAccessesToMemoryKind(
7357       function_ref<bool(const Instruction *, const Value *, AccessKind,
7358                         MemoryLocationsKind)>
7359           Pred,
7360       MemoryLocationsKind RequestedMLK) const override {
7361     if (!isValidState())
7362       return false;
7363 
7364     MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
7365     if (AssumedMLK == NO_LOCATIONS)
7366       return true;
7367 
7368     unsigned Idx = 0;
7369     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
7370          CurMLK *= 2, ++Idx) {
7371       if (CurMLK & RequestedMLK)
7372         continue;
7373 
7374       if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
7375         for (const AccessInfo &AI : *Accesses)
7376           if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
7377             return false;
7378     }
7379 
7380     return true;
7381   }
7382 
7383   ChangeStatus indicatePessimisticFixpoint() override {
7384     // If we give up and indicate a pessimistic fixpoint this instruction will
7385     // become an access for all potential access kinds:
7386     // TODO: Add pointers for argmemonly and globals to improve the results of
7387     //       checkForAllAccessesToMemoryKind.
7388     bool Changed = false;
7389     MemoryLocationsKind KnownMLK = getKnown();
7390     Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
7391     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
7392       if (!(CurMLK & KnownMLK))
7393         updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
7394                                   getAccessKindFromInst(I));
7395     return AAMemoryLocation::indicatePessimisticFixpoint();
7396   }
7397 
7398 protected:
7399   /// Helper struct to tie together an instruction that has a read or write
7400   /// effect with the pointer it accesses (if any).
7401   struct AccessInfo {
7402 
7403     /// The instruction that caused the access.
7404     const Instruction *I;
7405 
7406     /// The base pointer that is accessed, or null if unknown.
7407     const Value *Ptr;
7408 
7409     /// The kind of access (read/write/read+write).
7410     AccessKind Kind;
7411 
7412     bool operator==(const AccessInfo &RHS) const {
7413       return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
7414     }
7415     bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
7416       if (LHS.I != RHS.I)
7417         return LHS.I < RHS.I;
7418       if (LHS.Ptr != RHS.Ptr)
7419         return LHS.Ptr < RHS.Ptr;
7420       if (LHS.Kind != RHS.Kind)
7421         return LHS.Kind < RHS.Kind;
7422       return false;
7423     }
7424   };
7425 
7426   /// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
7427   /// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
7428   using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
7429   AccessSet *AccessKind2Accesses[llvm::CTLog2<VALID_STATE>()];
7430 
7431   /// Categorize the pointer arguments of CB that might access memory in
7432   /// AccessedLoc and update the state and access map accordingly.
7433   void
7434   categorizeArgumentPointerLocations(Attributor &A, CallBase &CB,
7435                                      AAMemoryLocation::StateType &AccessedLocs,
7436                                      bool &Changed);
7437 
7438   /// Return the kind(s) of location that may be accessed by \p V.
7439   AAMemoryLocation::MemoryLocationsKind
7440   categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
7441 
7442   /// Return the access kind as determined by \p I.
7443   AccessKind getAccessKindFromInst(const Instruction *I) {
7444     AccessKind AK = READ_WRITE;
7445     if (I) {
7446       AK = I->mayReadFromMemory() ? READ : NONE;
7447       AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
7448     }
7449     return AK;
7450   }
7451 
7452   /// Update the state \p State and the AccessKind2Accesses given that \p I is
7453   /// an access of kind \p AK to a \p MLK memory location with the access
7454   /// pointer \p Ptr.
7455   void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
7456                                  MemoryLocationsKind MLK, const Instruction *I,
7457                                  const Value *Ptr, bool &Changed,
7458                                  AccessKind AK = READ_WRITE) {
7459 
7460     assert(isPowerOf2_32(MLK) && "Expected a single location set!");
7461     auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
7462     if (!Accesses)
7463       Accesses = new (Allocator) AccessSet();
7464     Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
7465     State.removeAssumedBits(MLK);
7466   }
7467 
7468   /// Determine the underlying locations kinds for \p Ptr, e.g., globals or
7469   /// arguments, and update the state and access map accordingly.
7470   void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
7471                           AAMemoryLocation::StateType &State, bool &Changed);
7472 
7473   /// Used to allocate access sets.
7474   BumpPtrAllocator &Allocator;
7475 
7476   /// The set of IR attributes AAMemoryLocation deals with.
7477   static const Attribute::AttrKind AttrKinds[4];
7478 };
7479 
7480 const Attribute::AttrKind AAMemoryLocationImpl::AttrKinds[] = {
7481     Attribute::ReadNone, Attribute::InaccessibleMemOnly, Attribute::ArgMemOnly,
7482     Attribute::InaccessibleMemOrArgMemOnly};
7483 
7484 void AAMemoryLocationImpl::categorizePtrValue(
7485     Attributor &A, const Instruction &I, const Value &Ptr,
7486     AAMemoryLocation::StateType &State, bool &Changed) {
7487   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
7488                     << Ptr << " ["
7489                     << getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
7490 
7491   SmallVector<Value *, 8> Objects;
7492   if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, *this, &I)) {
7493     LLVM_DEBUG(
7494         dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
7495     updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
7496                               getAccessKindFromInst(&I));
7497     return;
7498   }
7499 
7500   for (Value *Obj : Objects) {
7501     // TODO: recognize the TBAA used for constant accesses.
7502     MemoryLocationsKind MLK = NO_LOCATIONS;
7503     assert(!isa<GEPOperator>(Obj) && "GEPs should have been stripped.");
7504     if (isa<UndefValue>(Obj))
7505       continue;
7506     if (auto *Arg = dyn_cast<Argument>(Obj)) {
7507       if (Arg->hasByValAttr())
7508         MLK = NO_LOCAL_MEM;
7509       else
7510         MLK = NO_ARGUMENT_MEM;
7511     } else if (auto *GV = dyn_cast<GlobalValue>(Obj)) {
7512       // Reading constant memory is not treated as a read "effect" by the
7513       // function attr pass so we won't neither. Constants defined by TBAA are
7514       // similar. (We know we do not write it because it is constant.)
7515       if (auto *GVar = dyn_cast<GlobalVariable>(GV))
7516         if (GVar->isConstant())
7517           continue;
7518 
7519       if (GV->hasLocalLinkage())
7520         MLK = NO_GLOBAL_INTERNAL_MEM;
7521       else
7522         MLK = NO_GLOBAL_EXTERNAL_MEM;
7523     } else if (isa<ConstantPointerNull>(Obj) &&
7524                !NullPointerIsDefined(getAssociatedFunction(),
7525                                      Ptr.getType()->getPointerAddressSpace())) {
7526       continue;
7527     } else if (isa<AllocaInst>(Obj)) {
7528       MLK = NO_LOCAL_MEM;
7529     } else if (const auto *CB = dyn_cast<CallBase>(Obj)) {
7530       const auto &NoAliasAA = A.getAAFor<AANoAlias>(
7531           *this, IRPosition::callsite_returned(*CB), DepClassTy::OPTIONAL);
7532       if (NoAliasAA.isAssumedNoAlias())
7533         MLK = NO_MALLOCED_MEM;
7534       else
7535         MLK = NO_UNKOWN_MEM;
7536     } else {
7537       MLK = NO_UNKOWN_MEM;
7538     }
7539 
7540     assert(MLK != NO_LOCATIONS && "No location specified!");
7541     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value can be categorized: "
7542                       << *Obj << " -> " << getMemoryLocationsAsStr(MLK)
7543                       << "\n");
7544     updateStateAndAccessesMap(getState(), MLK, &I, Obj, Changed,
7545                               getAccessKindFromInst(&I));
7546   }
7547 
7548   LLVM_DEBUG(
7549       dbgs() << "[AAMemoryLocation] Accessed locations with pointer locations: "
7550              << getMemoryLocationsAsStr(State.getAssumed()) << "\n");
7551 }
7552 
7553 void AAMemoryLocationImpl::categorizeArgumentPointerLocations(
7554     Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs,
7555     bool &Changed) {
7556   for (unsigned ArgNo = 0, E = CB.getNumArgOperands(); ArgNo < E; ++ArgNo) {
7557 
7558     // Skip non-pointer arguments.
7559     const Value *ArgOp = CB.getArgOperand(ArgNo);
7560     if (!ArgOp->getType()->isPtrOrPtrVectorTy())
7561       continue;
7562 
7563     // Skip readnone arguments.
7564     const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo);
7565     const auto &ArgOpMemLocationAA =
7566         A.getAAFor<AAMemoryBehavior>(*this, ArgOpIRP, DepClassTy::OPTIONAL);
7567 
7568     if (ArgOpMemLocationAA.isAssumedReadNone())
7569       continue;
7570 
7571     // Categorize potentially accessed pointer arguments as if there was an
7572     // access instruction with them as pointer.
7573     categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed);
7574   }
7575 }
7576 
7577 AAMemoryLocation::MemoryLocationsKind
7578 AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
7579                                                   bool &Changed) {
7580   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
7581                     << I << "\n");
7582 
7583   AAMemoryLocation::StateType AccessedLocs;
7584   AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
7585 
7586   if (auto *CB = dyn_cast<CallBase>(&I)) {
7587 
7588     // First check if we assume any memory is access is visible.
7589     const auto &CBMemLocationAA = A.getAAFor<AAMemoryLocation>(
7590         *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
7591     LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
7592                       << " [" << CBMemLocationAA << "]\n");
7593 
7594     if (CBMemLocationAA.isAssumedReadNone())
7595       return NO_LOCATIONS;
7596 
7597     if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) {
7598       updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
7599                                 Changed, getAccessKindFromInst(&I));
7600       return AccessedLocs.getAssumed();
7601     }
7602 
7603     uint32_t CBAssumedNotAccessedLocs =
7604         CBMemLocationAA.getAssumedNotAccessedLocation();
7605 
7606     // Set the argmemonly and global bit as we handle them separately below.
7607     uint32_t CBAssumedNotAccessedLocsNoArgMem =
7608         CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
7609 
7610     for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
7611       if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
7612         continue;
7613       updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
7614                                 getAccessKindFromInst(&I));
7615     }
7616 
7617     // Now handle global memory if it might be accessed. This is slightly tricky
7618     // as NO_GLOBAL_MEM has multiple bits set.
7619     bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
7620     if (HasGlobalAccesses) {
7621       auto AccessPred = [&](const Instruction *, const Value *Ptr,
7622                             AccessKind Kind, MemoryLocationsKind MLK) {
7623         updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
7624                                   getAccessKindFromInst(&I));
7625         return true;
7626       };
7627       if (!CBMemLocationAA.checkForAllAccessesToMemoryKind(
7628               AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
7629         return AccessedLocs.getWorstState();
7630     }
7631 
7632     LLVM_DEBUG(
7633         dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
7634                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7635 
7636     // Now handle argument memory if it might be accessed.
7637     bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
7638     if (HasArgAccesses)
7639       categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed);
7640 
7641     LLVM_DEBUG(
7642         dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
7643                << getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
7644 
7645     return AccessedLocs.getAssumed();
7646   }
7647 
7648   if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
7649     LLVM_DEBUG(
7650         dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
7651                << I << " [" << *Ptr << "]\n");
7652     categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
7653     return AccessedLocs.getAssumed();
7654   }
7655 
7656   LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
7657                     << I << "\n");
7658   updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
7659                             getAccessKindFromInst(&I));
7660   return AccessedLocs.getAssumed();
7661 }
7662 
7663 /// An AA to represent the memory behavior function attributes.
7664 struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
7665   AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
7666       : AAMemoryLocationImpl(IRP, A) {}
7667 
7668   /// See AbstractAttribute::updateImpl(Attributor &A).
7669   virtual ChangeStatus updateImpl(Attributor &A) override {
7670 
7671     const auto &MemBehaviorAA =
7672         A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
7673     if (MemBehaviorAA.isAssumedReadNone()) {
7674       if (MemBehaviorAA.isKnownReadNone())
7675         return indicateOptimisticFixpoint();
7676       assert(isAssumedReadNone() &&
7677              "AAMemoryLocation was not read-none but AAMemoryBehavior was!");
7678       A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
7679       return ChangeStatus::UNCHANGED;
7680     }
7681 
7682     // The current assumed state used to determine a change.
7683     auto AssumedState = getAssumed();
7684     bool Changed = false;
7685 
7686     auto CheckRWInst = [&](Instruction &I) {
7687       MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
7688       LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
7689                         << ": " << getMemoryLocationsAsStr(MLK) << "\n");
7690       removeAssumedBits(inverseLocation(MLK, false, false));
7691       // Stop once only the valid bit set in the *not assumed location*, thus
7692       // once we don't actually exclude any memory locations in the state.
7693       return getAssumedNotAccessedLocation() != VALID_STATE;
7694     };
7695 
7696     bool UsedAssumedInformation = false;
7697     if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
7698                                             UsedAssumedInformation))
7699       return indicatePessimisticFixpoint();
7700 
7701     Changed |= AssumedState != getAssumed();
7702     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
7703   }
7704 
7705   /// See AbstractAttribute::trackStatistics()
7706   void trackStatistics() const override {
7707     if (isAssumedReadNone())
7708       STATS_DECLTRACK_FN_ATTR(readnone)
7709     else if (isAssumedArgMemOnly())
7710       STATS_DECLTRACK_FN_ATTR(argmemonly)
7711     else if (isAssumedInaccessibleMemOnly())
7712       STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
7713     else if (isAssumedInaccessibleOrArgMemOnly())
7714       STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
7715   }
7716 };
7717 
7718 /// AAMemoryLocation attribute for call sites.
7719 struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
7720   AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
7721       : AAMemoryLocationImpl(IRP, A) {}
7722 
7723   /// See AbstractAttribute::initialize(...).
7724   void initialize(Attributor &A) override {
7725     AAMemoryLocationImpl::initialize(A);
7726     Function *F = getAssociatedFunction();
7727     if (!F || F->isDeclaration())
7728       indicatePessimisticFixpoint();
7729   }
7730 
7731   /// See AbstractAttribute::updateImpl(...).
7732   ChangeStatus updateImpl(Attributor &A) override {
7733     // TODO: Once we have call site specific value information we can provide
7734     //       call site specific liveness liveness information and then it makes
7735     //       sense to specialize attributes for call sites arguments instead of
7736     //       redirecting requests to the callee argument.
7737     Function *F = getAssociatedFunction();
7738     const IRPosition &FnPos = IRPosition::function(*F);
7739     auto &FnAA =
7740         A.getAAFor<AAMemoryLocation>(*this, FnPos, DepClassTy::REQUIRED);
7741     bool Changed = false;
7742     auto AccessPred = [&](const Instruction *I, const Value *Ptr,
7743                           AccessKind Kind, MemoryLocationsKind MLK) {
7744       updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
7745                                 getAccessKindFromInst(I));
7746       return true;
7747     };
7748     if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
7749       return indicatePessimisticFixpoint();
7750     return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
7751   }
7752 
7753   /// See AbstractAttribute::trackStatistics()
7754   void trackStatistics() const override {
7755     if (isAssumedReadNone())
7756       STATS_DECLTRACK_CS_ATTR(readnone)
7757   }
7758 };
7759 
7760 /// ------------------ Value Constant Range Attribute -------------------------
7761 
7762 struct AAValueConstantRangeImpl : AAValueConstantRange {
7763   using StateType = IntegerRangeState;
7764   AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
7765       : AAValueConstantRange(IRP, A) {}
7766 
7767   /// See AbstractAttribute::getAsStr().
7768   const std::string getAsStr() const override {
7769     std::string Str;
7770     llvm::raw_string_ostream OS(Str);
7771     OS << "range(" << getBitWidth() << ")<";
7772     getKnown().print(OS);
7773     OS << " / ";
7774     getAssumed().print(OS);
7775     OS << ">";
7776     return OS.str();
7777   }
7778 
7779   /// Helper function to get a SCEV expr for the associated value at program
7780   /// point \p I.
7781   const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
7782     if (!getAnchorScope())
7783       return nullptr;
7784 
7785     ScalarEvolution *SE =
7786         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
7787             *getAnchorScope());
7788 
7789     LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
7790         *getAnchorScope());
7791 
7792     if (!SE || !LI)
7793       return nullptr;
7794 
7795     const SCEV *S = SE->getSCEV(&getAssociatedValue());
7796     if (!I)
7797       return S;
7798 
7799     return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
7800   }
7801 
7802   /// Helper function to get a range from SCEV for the associated value at
7803   /// program point \p I.
7804   ConstantRange getConstantRangeFromSCEV(Attributor &A,
7805                                          const Instruction *I = nullptr) const {
7806     if (!getAnchorScope())
7807       return getWorstState(getBitWidth());
7808 
7809     ScalarEvolution *SE =
7810         A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
7811             *getAnchorScope());
7812 
7813     const SCEV *S = getSCEV(A, I);
7814     if (!SE || !S)
7815       return getWorstState(getBitWidth());
7816 
7817     return SE->getUnsignedRange(S);
7818   }
7819 
7820   /// Helper function to get a range from LVI for the associated value at
7821   /// program point \p I.
7822   ConstantRange
7823   getConstantRangeFromLVI(Attributor &A,
7824                           const Instruction *CtxI = nullptr) const {
7825     if (!getAnchorScope())
7826       return getWorstState(getBitWidth());
7827 
7828     LazyValueInfo *LVI =
7829         A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
7830             *getAnchorScope());
7831 
7832     if (!LVI || !CtxI)
7833       return getWorstState(getBitWidth());
7834     return LVI->getConstantRange(&getAssociatedValue(),
7835                                  const_cast<Instruction *>(CtxI));
7836   }
7837 
7838   /// Return true if \p CtxI is valid for querying outside analyses.
7839   /// This basically makes sure we do not ask intra-procedural analysis
7840   /// about a context in the wrong function or a context that violates
7841   /// dominance assumptions they might have. The \p AllowAACtxI flag indicates
7842   /// if the original context of this AA is OK or should be considered invalid.
7843   bool isValidCtxInstructionForOutsideAnalysis(Attributor &A,
7844                                                const Instruction *CtxI,
7845                                                bool AllowAACtxI) const {
7846     if (!CtxI || (!AllowAACtxI && CtxI == getCtxI()))
7847       return false;
7848 
7849     // Our context might be in a different function, neither intra-procedural
7850     // analysis (ScalarEvolution nor LazyValueInfo) can handle that.
7851     if (!AA::isValidInScope(getAssociatedValue(), CtxI->getFunction()))
7852       return false;
7853 
7854     // If the context is not dominated by the value there are paths to the
7855     // context that do not define the value. This cannot be handled by
7856     // LazyValueInfo so we need to bail.
7857     if (auto *I = dyn_cast<Instruction>(&getAssociatedValue())) {
7858       InformationCache &InfoCache = A.getInfoCache();
7859       const DominatorTree *DT =
7860           InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
7861               *I->getFunction());
7862       return DT && DT->dominates(I, CtxI);
7863     }
7864 
7865     return true;
7866   }
7867 
7868   /// See AAValueConstantRange::getKnownConstantRange(..).
7869   ConstantRange
7870   getKnownConstantRange(Attributor &A,
7871                         const Instruction *CtxI = nullptr) const override {
7872     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
7873                                                  /* AllowAACtxI */ false))
7874       return getKnown();
7875 
7876     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
7877     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
7878     return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
7879   }
7880 
7881   /// See AAValueConstantRange::getAssumedConstantRange(..).
7882   ConstantRange
7883   getAssumedConstantRange(Attributor &A,
7884                           const Instruction *CtxI = nullptr) const override {
7885     // TODO: Make SCEV use Attributor assumption.
7886     //       We may be able to bound a variable range via assumptions in
7887     //       Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
7888     //       evolve to x^2 + x, then we can say that y is in [2, 12].
7889     if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
7890                                                  /* AllowAACtxI */ false))
7891       return getAssumed();
7892 
7893     ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
7894     ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
7895     return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
7896   }
7897 
7898   /// See AbstractAttribute::initialize(..).
7899   void initialize(Attributor &A) override {
7900     // Intersect a range given by SCEV.
7901     intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
7902 
7903     // Intersect a range given by LVI.
7904     intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
7905   }
7906 
7907   /// Helper function to create MDNode for range metadata.
7908   static MDNode *
7909   getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
7910                             const ConstantRange &AssumedConstantRange) {
7911     Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
7912                                   Ty, AssumedConstantRange.getLower())),
7913                               ConstantAsMetadata::get(ConstantInt::get(
7914                                   Ty, AssumedConstantRange.getUpper()))};
7915     return MDNode::get(Ctx, LowAndHigh);
7916   }
7917 
7918   /// Return true if \p Assumed is included in \p KnownRanges.
7919   static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
7920 
7921     if (Assumed.isFullSet())
7922       return false;
7923 
7924     if (!KnownRanges)
7925       return true;
7926 
7927     // If multiple ranges are annotated in IR, we give up to annotate assumed
7928     // range for now.
7929 
7930     // TODO:  If there exists a known range which containts assumed range, we
7931     // can say assumed range is better.
7932     if (KnownRanges->getNumOperands() > 2)
7933       return false;
7934 
7935     ConstantInt *Lower =
7936         mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
7937     ConstantInt *Upper =
7938         mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
7939 
7940     ConstantRange Known(Lower->getValue(), Upper->getValue());
7941     return Known.contains(Assumed) && Known != Assumed;
7942   }
7943 
7944   /// Helper function to set range metadata.
7945   static bool
7946   setRangeMetadataIfisBetterRange(Instruction *I,
7947                                   const ConstantRange &AssumedConstantRange) {
7948     auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
7949     if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
7950       if (!AssumedConstantRange.isEmptySet()) {
7951         I->setMetadata(LLVMContext::MD_range,
7952                        getMDNodeForConstantRange(I->getType(), I->getContext(),
7953                                                  AssumedConstantRange));
7954         return true;
7955       }
7956     }
7957     return false;
7958   }
7959 
7960   /// See AbstractAttribute::manifest()
7961   ChangeStatus manifest(Attributor &A) override {
7962     ChangeStatus Changed = ChangeStatus::UNCHANGED;
7963     ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
7964     assert(!AssumedConstantRange.isFullSet() && "Invalid state");
7965 
7966     auto &V = getAssociatedValue();
7967     if (!AssumedConstantRange.isEmptySet() &&
7968         !AssumedConstantRange.isSingleElement()) {
7969       if (Instruction *I = dyn_cast<Instruction>(&V)) {
7970         assert(I == getCtxI() && "Should not annotate an instruction which is "
7971                                  "not the context instruction");
7972         if (isa<CallInst>(I) || isa<LoadInst>(I))
7973           if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
7974             Changed = ChangeStatus::CHANGED;
7975       }
7976     }
7977 
7978     return Changed;
7979   }
7980 };
7981 
7982 struct AAValueConstantRangeArgument final
7983     : AAArgumentFromCallSiteArguments<
7984           AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
7985           true /* BridgeCallBaseContext */> {
7986   using Base = AAArgumentFromCallSiteArguments<
7987       AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
7988       true /* BridgeCallBaseContext */>;
7989   AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
7990       : Base(IRP, A) {}
7991 
7992   /// See AbstractAttribute::initialize(..).
7993   void initialize(Attributor &A) override {
7994     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
7995       indicatePessimisticFixpoint();
7996     } else {
7997       Base::initialize(A);
7998     }
7999   }
8000 
8001   /// See AbstractAttribute::trackStatistics()
8002   void trackStatistics() const override {
8003     STATS_DECLTRACK_ARG_ATTR(value_range)
8004   }
8005 };
8006 
8007 struct AAValueConstantRangeReturned
8008     : AAReturnedFromReturnedValues<AAValueConstantRange,
8009                                    AAValueConstantRangeImpl,
8010                                    AAValueConstantRangeImpl::StateType,
8011                                    /* PropogateCallBaseContext */ true> {
8012   using Base =
8013       AAReturnedFromReturnedValues<AAValueConstantRange,
8014                                    AAValueConstantRangeImpl,
8015                                    AAValueConstantRangeImpl::StateType,
8016                                    /* PropogateCallBaseContext */ true>;
8017   AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
8018       : Base(IRP, A) {}
8019 
8020   /// See AbstractAttribute::initialize(...).
8021   void initialize(Attributor &A) override {}
8022 
8023   /// See AbstractAttribute::trackStatistics()
8024   void trackStatistics() const override {
8025     STATS_DECLTRACK_FNRET_ATTR(value_range)
8026   }
8027 };
8028 
8029 struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
8030   AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
8031       : AAValueConstantRangeImpl(IRP, A) {}
8032 
8033   /// See AbstractAttribute::initialize(...).
8034   void initialize(Attributor &A) override {
8035     AAValueConstantRangeImpl::initialize(A);
8036     Value &V = getAssociatedValue();
8037 
8038     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8039       unionAssumed(ConstantRange(C->getValue()));
8040       indicateOptimisticFixpoint();
8041       return;
8042     }
8043 
8044     if (isa<UndefValue>(&V)) {
8045       // Collapse the undef state to 0.
8046       unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
8047       indicateOptimisticFixpoint();
8048       return;
8049     }
8050 
8051     if (isa<CallBase>(&V))
8052       return;
8053 
8054     if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
8055       return;
8056     // If it is a load instruction with range metadata, use it.
8057     if (LoadInst *LI = dyn_cast<LoadInst>(&V))
8058       if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
8059         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8060         return;
8061       }
8062 
8063     // We can work with PHI and select instruction as we traverse their operands
8064     // during update.
8065     if (isa<SelectInst>(V) || isa<PHINode>(V))
8066       return;
8067 
8068     // Otherwise we give up.
8069     indicatePessimisticFixpoint();
8070 
8071     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
8072                       << getAssociatedValue() << "\n");
8073   }
8074 
8075   bool calculateBinaryOperator(
8076       Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
8077       const Instruction *CtxI,
8078       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8079     Value *LHS = BinOp->getOperand(0);
8080     Value *RHS = BinOp->getOperand(1);
8081 
8082     // Simplify the operands first.
8083     bool UsedAssumedInformation = false;
8084     const auto &SimplifiedLHS =
8085         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8086                                *this, UsedAssumedInformation);
8087     if (!SimplifiedLHS.hasValue())
8088       return true;
8089     if (SimplifiedLHS.getValue())
8090       LHS = *SimplifiedLHS;
8091 
8092     const auto &SimplifiedRHS =
8093         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8094                                *this, UsedAssumedInformation);
8095     if (!SimplifiedRHS.hasValue())
8096       return true;
8097     if (SimplifiedRHS.getValue())
8098       RHS = *SimplifiedRHS;
8099 
8100     // TODO: Allow non integers as well.
8101     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8102       return false;
8103 
8104     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8105         *this, IRPosition::value(*LHS, getCallBaseContext()),
8106         DepClassTy::REQUIRED);
8107     QuerriedAAs.push_back(&LHSAA);
8108     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8109 
8110     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8111         *this, IRPosition::value(*RHS, getCallBaseContext()),
8112         DepClassTy::REQUIRED);
8113     QuerriedAAs.push_back(&RHSAA);
8114     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8115 
8116     auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
8117 
8118     T.unionAssumed(AssumedRange);
8119 
8120     // TODO: Track a known state too.
8121 
8122     return T.isValidState();
8123   }
8124 
8125   bool calculateCastInst(
8126       Attributor &A, CastInst *CastI, IntegerRangeState &T,
8127       const Instruction *CtxI,
8128       SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8129     assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
8130     // TODO: Allow non integers as well.
8131     Value *OpV = CastI->getOperand(0);
8132 
8133     // Simplify the operand first.
8134     bool UsedAssumedInformation = false;
8135     const auto &SimplifiedOpV =
8136         A.getAssumedSimplified(IRPosition::value(*OpV, getCallBaseContext()),
8137                                *this, UsedAssumedInformation);
8138     if (!SimplifiedOpV.hasValue())
8139       return true;
8140     if (SimplifiedOpV.getValue())
8141       OpV = *SimplifiedOpV;
8142 
8143     if (!OpV->getType()->isIntegerTy())
8144       return false;
8145 
8146     auto &OpAA = A.getAAFor<AAValueConstantRange>(
8147         *this, IRPosition::value(*OpV, getCallBaseContext()),
8148         DepClassTy::REQUIRED);
8149     QuerriedAAs.push_back(&OpAA);
8150     T.unionAssumed(
8151         OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
8152     return T.isValidState();
8153   }
8154 
8155   bool
8156   calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
8157                    const Instruction *CtxI,
8158                    SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
8159     Value *LHS = CmpI->getOperand(0);
8160     Value *RHS = CmpI->getOperand(1);
8161 
8162     // Simplify the operands first.
8163     bool UsedAssumedInformation = false;
8164     const auto &SimplifiedLHS =
8165         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8166                                *this, UsedAssumedInformation);
8167     if (!SimplifiedLHS.hasValue())
8168       return true;
8169     if (SimplifiedLHS.getValue())
8170       LHS = *SimplifiedLHS;
8171 
8172     const auto &SimplifiedRHS =
8173         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8174                                *this, UsedAssumedInformation);
8175     if (!SimplifiedRHS.hasValue())
8176       return true;
8177     if (SimplifiedRHS.getValue())
8178       RHS = *SimplifiedRHS;
8179 
8180     // TODO: Allow non integers as well.
8181     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8182       return false;
8183 
8184     auto &LHSAA = A.getAAFor<AAValueConstantRange>(
8185         *this, IRPosition::value(*LHS, getCallBaseContext()),
8186         DepClassTy::REQUIRED);
8187     QuerriedAAs.push_back(&LHSAA);
8188     auto &RHSAA = A.getAAFor<AAValueConstantRange>(
8189         *this, IRPosition::value(*RHS, getCallBaseContext()),
8190         DepClassTy::REQUIRED);
8191     QuerriedAAs.push_back(&RHSAA);
8192     auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
8193     auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
8194 
8195     // If one of them is empty set, we can't decide.
8196     if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
8197       return true;
8198 
8199     bool MustTrue = false, MustFalse = false;
8200 
8201     auto AllowedRegion =
8202         ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
8203 
8204     if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
8205       MustFalse = true;
8206 
8207     if (LHSAARange.icmp(CmpI->getPredicate(), RHSAARange))
8208       MustTrue = true;
8209 
8210     assert((!MustTrue || !MustFalse) &&
8211            "Either MustTrue or MustFalse should be false!");
8212 
8213     if (MustTrue)
8214       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
8215     else if (MustFalse)
8216       T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
8217     else
8218       T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
8219 
8220     LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
8221                       << " " << RHSAA << "\n");
8222 
8223     // TODO: Track a known state too.
8224     return T.isValidState();
8225   }
8226 
8227   /// See AbstractAttribute::updateImpl(...).
8228   ChangeStatus updateImpl(Attributor &A) override {
8229     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
8230                             IntegerRangeState &T, bool Stripped) -> bool {
8231       Instruction *I = dyn_cast<Instruction>(&V);
8232       if (!I || isa<CallBase>(I)) {
8233 
8234         // Simplify the operand first.
8235         bool UsedAssumedInformation = false;
8236         const auto &SimplifiedOpV =
8237             A.getAssumedSimplified(IRPosition::value(V, getCallBaseContext()),
8238                                    *this, UsedAssumedInformation);
8239         if (!SimplifiedOpV.hasValue())
8240           return true;
8241         Value *VPtr = &V;
8242         if (*SimplifiedOpV)
8243           VPtr = *SimplifiedOpV;
8244 
8245         // If the value is not instruction, we query AA to Attributor.
8246         const auto &AA = A.getAAFor<AAValueConstantRange>(
8247             *this, IRPosition::value(*VPtr, getCallBaseContext()),
8248             DepClassTy::REQUIRED);
8249 
8250         // Clamp operator is not used to utilize a program point CtxI.
8251         T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
8252 
8253         return T.isValidState();
8254       }
8255 
8256       SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
8257       if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
8258         if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
8259           return false;
8260       } else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
8261         if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
8262           return false;
8263       } else if (auto *CastI = dyn_cast<CastInst>(I)) {
8264         if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
8265           return false;
8266       } else {
8267         // Give up with other instructions.
8268         // TODO: Add other instructions
8269 
8270         T.indicatePessimisticFixpoint();
8271         return false;
8272       }
8273 
8274       // Catch circular reasoning in a pessimistic way for now.
8275       // TODO: Check how the range evolves and if we stripped anything, see also
8276       //       AADereferenceable or AAAlign for similar situations.
8277       for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
8278         if (QueriedAA != this)
8279           continue;
8280         // If we are in a stady state we do not need to worry.
8281         if (T.getAssumed() == getState().getAssumed())
8282           continue;
8283         T.indicatePessimisticFixpoint();
8284       }
8285 
8286       return T.isValidState();
8287     };
8288 
8289     IntegerRangeState T(getBitWidth());
8290 
8291     if (!genericValueTraversal<IntegerRangeState>(A, getIRPosition(), *this, T,
8292                                                   VisitValueCB, getCtxI(),
8293                                                   /* UseValueSimplify */ false))
8294       return indicatePessimisticFixpoint();
8295 
8296     return clampStateAndIndicateChange(getState(), T);
8297   }
8298 
8299   /// See AbstractAttribute::trackStatistics()
8300   void trackStatistics() const override {
8301     STATS_DECLTRACK_FLOATING_ATTR(value_range)
8302   }
8303 };
8304 
8305 struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
8306   AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
8307       : AAValueConstantRangeImpl(IRP, A) {}
8308 
8309   /// See AbstractAttribute::initialize(...).
8310   ChangeStatus updateImpl(Attributor &A) override {
8311     llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
8312                      "not be called");
8313   }
8314 
8315   /// See AbstractAttribute::trackStatistics()
8316   void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
8317 };
8318 
8319 struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
8320   AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
8321       : AAValueConstantRangeFunction(IRP, A) {}
8322 
8323   /// See AbstractAttribute::trackStatistics()
8324   void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
8325 };
8326 
8327 struct AAValueConstantRangeCallSiteReturned
8328     : AACallSiteReturnedFromReturned<AAValueConstantRange,
8329                                      AAValueConstantRangeImpl,
8330                                      AAValueConstantRangeImpl::StateType,
8331                                      /* IntroduceCallBaseContext */ true> {
8332   AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
8333       : AACallSiteReturnedFromReturned<AAValueConstantRange,
8334                                        AAValueConstantRangeImpl,
8335                                        AAValueConstantRangeImpl::StateType,
8336                                        /* IntroduceCallBaseContext */ true>(IRP,
8337                                                                             A) {
8338   }
8339 
8340   /// See AbstractAttribute::initialize(...).
8341   void initialize(Attributor &A) override {
8342     // If it is a load instruction with range metadata, use the metadata.
8343     if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
8344       if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
8345         intersectKnown(getConstantRangeFromMetadata(*RangeMD));
8346 
8347     AAValueConstantRangeImpl::initialize(A);
8348   }
8349 
8350   /// See AbstractAttribute::trackStatistics()
8351   void trackStatistics() const override {
8352     STATS_DECLTRACK_CSRET_ATTR(value_range)
8353   }
8354 };
8355 struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
8356   AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
8357       : AAValueConstantRangeFloating(IRP, A) {}
8358 
8359   /// See AbstractAttribute::manifest()
8360   ChangeStatus manifest(Attributor &A) override {
8361     return ChangeStatus::UNCHANGED;
8362   }
8363 
8364   /// See AbstractAttribute::trackStatistics()
8365   void trackStatistics() const override {
8366     STATS_DECLTRACK_CSARG_ATTR(value_range)
8367   }
8368 };
8369 
8370 /// ------------------ Potential Values Attribute -------------------------
8371 
8372 struct AAPotentialValuesImpl : AAPotentialValues {
8373   using StateType = PotentialConstantIntValuesState;
8374 
8375   AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
8376       : AAPotentialValues(IRP, A) {}
8377 
8378   /// See AbstractAttribute::getAsStr().
8379   const std::string getAsStr() const override {
8380     std::string Str;
8381     llvm::raw_string_ostream OS(Str);
8382     OS << getState();
8383     return OS.str();
8384   }
8385 
8386   /// See AbstractAttribute::updateImpl(...).
8387   ChangeStatus updateImpl(Attributor &A) override {
8388     return indicatePessimisticFixpoint();
8389   }
8390 };
8391 
8392 struct AAPotentialValuesArgument final
8393     : AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8394                                       PotentialConstantIntValuesState> {
8395   using Base =
8396       AAArgumentFromCallSiteArguments<AAPotentialValues, AAPotentialValuesImpl,
8397                                       PotentialConstantIntValuesState>;
8398   AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
8399       : Base(IRP, A) {}
8400 
8401   /// See AbstractAttribute::initialize(..).
8402   void initialize(Attributor &A) override {
8403     if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
8404       indicatePessimisticFixpoint();
8405     } else {
8406       Base::initialize(A);
8407     }
8408   }
8409 
8410   /// See AbstractAttribute::trackStatistics()
8411   void trackStatistics() const override {
8412     STATS_DECLTRACK_ARG_ATTR(potential_values)
8413   }
8414 };
8415 
8416 struct AAPotentialValuesReturned
8417     : AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> {
8418   using Base =
8419       AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>;
8420   AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
8421       : Base(IRP, A) {}
8422 
8423   /// See AbstractAttribute::trackStatistics()
8424   void trackStatistics() const override {
8425     STATS_DECLTRACK_FNRET_ATTR(potential_values)
8426   }
8427 };
8428 
8429 struct AAPotentialValuesFloating : AAPotentialValuesImpl {
8430   AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
8431       : AAPotentialValuesImpl(IRP, A) {}
8432 
8433   /// See AbstractAttribute::initialize(..).
8434   void initialize(Attributor &A) override {
8435     Value &V = getAssociatedValue();
8436 
8437     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8438       unionAssumed(C->getValue());
8439       indicateOptimisticFixpoint();
8440       return;
8441     }
8442 
8443     if (isa<UndefValue>(&V)) {
8444       unionAssumedWithUndef();
8445       indicateOptimisticFixpoint();
8446       return;
8447     }
8448 
8449     if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
8450       return;
8451 
8452     if (isa<SelectInst>(V) || isa<PHINode>(V) || isa<LoadInst>(V))
8453       return;
8454 
8455     indicatePessimisticFixpoint();
8456 
8457     LLVM_DEBUG(dbgs() << "[AAPotentialValues] We give up: "
8458                       << getAssociatedValue() << "\n");
8459   }
8460 
8461   static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
8462                                 const APInt &RHS) {
8463     ICmpInst::Predicate Pred = ICI->getPredicate();
8464     switch (Pred) {
8465     case ICmpInst::ICMP_UGT:
8466       return LHS.ugt(RHS);
8467     case ICmpInst::ICMP_SGT:
8468       return LHS.sgt(RHS);
8469     case ICmpInst::ICMP_EQ:
8470       return LHS.eq(RHS);
8471     case ICmpInst::ICMP_UGE:
8472       return LHS.uge(RHS);
8473     case ICmpInst::ICMP_SGE:
8474       return LHS.sge(RHS);
8475     case ICmpInst::ICMP_ULT:
8476       return LHS.ult(RHS);
8477     case ICmpInst::ICMP_SLT:
8478       return LHS.slt(RHS);
8479     case ICmpInst::ICMP_NE:
8480       return LHS.ne(RHS);
8481     case ICmpInst::ICMP_ULE:
8482       return LHS.ule(RHS);
8483     case ICmpInst::ICMP_SLE:
8484       return LHS.sle(RHS);
8485     default:
8486       llvm_unreachable("Invalid ICmp predicate!");
8487     }
8488   }
8489 
8490   static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
8491                                  uint32_t ResultBitWidth) {
8492     Instruction::CastOps CastOp = CI->getOpcode();
8493     switch (CastOp) {
8494     default:
8495       llvm_unreachable("unsupported or not integer cast");
8496     case Instruction::Trunc:
8497       return Src.trunc(ResultBitWidth);
8498     case Instruction::SExt:
8499       return Src.sext(ResultBitWidth);
8500     case Instruction::ZExt:
8501       return Src.zext(ResultBitWidth);
8502     case Instruction::BitCast:
8503       return Src;
8504     }
8505   }
8506 
8507   static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
8508                                        const APInt &LHS, const APInt &RHS,
8509                                        bool &SkipOperation, bool &Unsupported) {
8510     Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
8511     // Unsupported is set to true when the binary operator is not supported.
8512     // SkipOperation is set to true when UB occur with the given operand pair
8513     // (LHS, RHS).
8514     // TODO: we should look at nsw and nuw keywords to handle operations
8515     //       that create poison or undef value.
8516     switch (BinOpcode) {
8517     default:
8518       Unsupported = true;
8519       return LHS;
8520     case Instruction::Add:
8521       return LHS + RHS;
8522     case Instruction::Sub:
8523       return LHS - RHS;
8524     case Instruction::Mul:
8525       return LHS * RHS;
8526     case Instruction::UDiv:
8527       if (RHS.isNullValue()) {
8528         SkipOperation = true;
8529         return LHS;
8530       }
8531       return LHS.udiv(RHS);
8532     case Instruction::SDiv:
8533       if (RHS.isNullValue()) {
8534         SkipOperation = true;
8535         return LHS;
8536       }
8537       return LHS.sdiv(RHS);
8538     case Instruction::URem:
8539       if (RHS.isNullValue()) {
8540         SkipOperation = true;
8541         return LHS;
8542       }
8543       return LHS.urem(RHS);
8544     case Instruction::SRem:
8545       if (RHS.isNullValue()) {
8546         SkipOperation = true;
8547         return LHS;
8548       }
8549       return LHS.srem(RHS);
8550     case Instruction::Shl:
8551       return LHS.shl(RHS);
8552     case Instruction::LShr:
8553       return LHS.lshr(RHS);
8554     case Instruction::AShr:
8555       return LHS.ashr(RHS);
8556     case Instruction::And:
8557       return LHS & RHS;
8558     case Instruction::Or:
8559       return LHS | RHS;
8560     case Instruction::Xor:
8561       return LHS ^ RHS;
8562     }
8563   }
8564 
8565   bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp,
8566                                            const APInt &LHS, const APInt &RHS) {
8567     bool SkipOperation = false;
8568     bool Unsupported = false;
8569     APInt Result =
8570         calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported);
8571     if (Unsupported)
8572       return false;
8573     // If SkipOperation is true, we can ignore this operand pair (L, R).
8574     if (!SkipOperation)
8575       unionAssumed(Result);
8576     return isValidState();
8577   }
8578 
8579   ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
8580     auto AssumedBefore = getAssumed();
8581     Value *LHS = ICI->getOperand(0);
8582     Value *RHS = ICI->getOperand(1);
8583 
8584     // Simplify the operands first.
8585     bool UsedAssumedInformation = false;
8586     const auto &SimplifiedLHS =
8587         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8588                                *this, UsedAssumedInformation);
8589     if (!SimplifiedLHS.hasValue())
8590       return ChangeStatus::UNCHANGED;
8591     if (SimplifiedLHS.getValue())
8592       LHS = *SimplifiedLHS;
8593 
8594     const auto &SimplifiedRHS =
8595         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8596                                *this, UsedAssumedInformation);
8597     if (!SimplifiedRHS.hasValue())
8598       return ChangeStatus::UNCHANGED;
8599     if (SimplifiedRHS.getValue())
8600       RHS = *SimplifiedRHS;
8601 
8602     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8603       return indicatePessimisticFixpoint();
8604 
8605     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8606                                                 DepClassTy::REQUIRED);
8607     if (!LHSAA.isValidState())
8608       return indicatePessimisticFixpoint();
8609 
8610     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8611                                                 DepClassTy::REQUIRED);
8612     if (!RHSAA.isValidState())
8613       return indicatePessimisticFixpoint();
8614 
8615     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
8616     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
8617 
8618     // TODO: make use of undef flag to limit potential values aggressively.
8619     bool MaybeTrue = false, MaybeFalse = false;
8620     const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0);
8621     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
8622       // The result of any comparison between undefs can be soundly replaced
8623       // with undef.
8624       unionAssumedWithUndef();
8625     } else if (LHSAA.undefIsContained()) {
8626       for (const APInt &R : RHSAAPVS) {
8627         bool CmpResult = calculateICmpInst(ICI, Zero, R);
8628         MaybeTrue |= CmpResult;
8629         MaybeFalse |= !CmpResult;
8630         if (MaybeTrue & MaybeFalse)
8631           return indicatePessimisticFixpoint();
8632       }
8633     } else if (RHSAA.undefIsContained()) {
8634       for (const APInt &L : LHSAAPVS) {
8635         bool CmpResult = calculateICmpInst(ICI, L, Zero);
8636         MaybeTrue |= CmpResult;
8637         MaybeFalse |= !CmpResult;
8638         if (MaybeTrue & MaybeFalse)
8639           return indicatePessimisticFixpoint();
8640       }
8641     } else {
8642       for (const APInt &L : LHSAAPVS) {
8643         for (const APInt &R : RHSAAPVS) {
8644           bool CmpResult = calculateICmpInst(ICI, L, R);
8645           MaybeTrue |= CmpResult;
8646           MaybeFalse |= !CmpResult;
8647           if (MaybeTrue & MaybeFalse)
8648             return indicatePessimisticFixpoint();
8649         }
8650       }
8651     }
8652     if (MaybeTrue)
8653       unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
8654     if (MaybeFalse)
8655       unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
8656     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8657                                          : ChangeStatus::CHANGED;
8658   }
8659 
8660   ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
8661     auto AssumedBefore = getAssumed();
8662     Value *LHS = SI->getTrueValue();
8663     Value *RHS = SI->getFalseValue();
8664 
8665     // Simplify the operands first.
8666     bool UsedAssumedInformation = false;
8667     const auto &SimplifiedLHS =
8668         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8669                                *this, UsedAssumedInformation);
8670     if (!SimplifiedLHS.hasValue())
8671       return ChangeStatus::UNCHANGED;
8672     if (SimplifiedLHS.getValue())
8673       LHS = *SimplifiedLHS;
8674 
8675     const auto &SimplifiedRHS =
8676         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8677                                *this, UsedAssumedInformation);
8678     if (!SimplifiedRHS.hasValue())
8679       return ChangeStatus::UNCHANGED;
8680     if (SimplifiedRHS.getValue())
8681       RHS = *SimplifiedRHS;
8682 
8683     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8684       return indicatePessimisticFixpoint();
8685 
8686     Optional<Constant *> C = A.getAssumedConstant(*SI->getCondition(), *this,
8687                                                   UsedAssumedInformation);
8688 
8689     // Check if we only need one operand.
8690     bool OnlyLeft = false, OnlyRight = false;
8691     if (C.hasValue() && *C && (*C)->isOneValue())
8692       OnlyLeft = true;
8693     else if (C.hasValue() && *C && (*C)->isZeroValue())
8694       OnlyRight = true;
8695 
8696     const AAPotentialValues *LHSAA = nullptr, *RHSAA = nullptr;
8697     if (!OnlyRight) {
8698       LHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8699                                              DepClassTy::REQUIRED);
8700       if (!LHSAA->isValidState())
8701         return indicatePessimisticFixpoint();
8702     }
8703     if (!OnlyLeft) {
8704       RHSAA = &A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8705                                              DepClassTy::REQUIRED);
8706       if (!RHSAA->isValidState())
8707         return indicatePessimisticFixpoint();
8708     }
8709 
8710     if (!LHSAA || !RHSAA) {
8711       // select (true/false), lhs, rhs
8712       auto *OpAA = LHSAA ? LHSAA : RHSAA;
8713 
8714       if (OpAA->undefIsContained())
8715         unionAssumedWithUndef();
8716       else
8717         unionAssumed(*OpAA);
8718 
8719     } else if (LHSAA->undefIsContained() && RHSAA->undefIsContained()) {
8720       // select i1 *, undef , undef => undef
8721       unionAssumedWithUndef();
8722     } else {
8723       unionAssumed(*LHSAA);
8724       unionAssumed(*RHSAA);
8725     }
8726     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8727                                          : ChangeStatus::CHANGED;
8728   }
8729 
8730   ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
8731     auto AssumedBefore = getAssumed();
8732     if (!CI->isIntegerCast())
8733       return indicatePessimisticFixpoint();
8734     assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
8735     uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
8736     Value *Src = CI->getOperand(0);
8737 
8738     // Simplify the operand first.
8739     bool UsedAssumedInformation = false;
8740     const auto &SimplifiedSrc =
8741         A.getAssumedSimplified(IRPosition::value(*Src, getCallBaseContext()),
8742                                *this, UsedAssumedInformation);
8743     if (!SimplifiedSrc.hasValue())
8744       return ChangeStatus::UNCHANGED;
8745     if (SimplifiedSrc.getValue())
8746       Src = *SimplifiedSrc;
8747 
8748     auto &SrcAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*Src),
8749                                                 DepClassTy::REQUIRED);
8750     if (!SrcAA.isValidState())
8751       return indicatePessimisticFixpoint();
8752     const DenseSet<APInt> &SrcAAPVS = SrcAA.getAssumedSet();
8753     if (SrcAA.undefIsContained())
8754       unionAssumedWithUndef();
8755     else {
8756       for (const APInt &S : SrcAAPVS) {
8757         APInt T = calculateCastInst(CI, S, ResultBitWidth);
8758         unionAssumed(T);
8759       }
8760     }
8761     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8762                                          : ChangeStatus::CHANGED;
8763   }
8764 
8765   ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
8766     auto AssumedBefore = getAssumed();
8767     Value *LHS = BinOp->getOperand(0);
8768     Value *RHS = BinOp->getOperand(1);
8769 
8770     // Simplify the operands first.
8771     bool UsedAssumedInformation = false;
8772     const auto &SimplifiedLHS =
8773         A.getAssumedSimplified(IRPosition::value(*LHS, getCallBaseContext()),
8774                                *this, UsedAssumedInformation);
8775     if (!SimplifiedLHS.hasValue())
8776       return ChangeStatus::UNCHANGED;
8777     if (SimplifiedLHS.getValue())
8778       LHS = *SimplifiedLHS;
8779 
8780     const auto &SimplifiedRHS =
8781         A.getAssumedSimplified(IRPosition::value(*RHS, getCallBaseContext()),
8782                                *this, UsedAssumedInformation);
8783     if (!SimplifiedRHS.hasValue())
8784       return ChangeStatus::UNCHANGED;
8785     if (SimplifiedRHS.getValue())
8786       RHS = *SimplifiedRHS;
8787 
8788     if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
8789       return indicatePessimisticFixpoint();
8790 
8791     auto &LHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*LHS),
8792                                                 DepClassTy::REQUIRED);
8793     if (!LHSAA.isValidState())
8794       return indicatePessimisticFixpoint();
8795 
8796     auto &RHSAA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(*RHS),
8797                                                 DepClassTy::REQUIRED);
8798     if (!RHSAA.isValidState())
8799       return indicatePessimisticFixpoint();
8800 
8801     const DenseSet<APInt> &LHSAAPVS = LHSAA.getAssumedSet();
8802     const DenseSet<APInt> &RHSAAPVS = RHSAA.getAssumedSet();
8803     const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0);
8804 
8805     // TODO: make use of undef flag to limit potential values aggressively.
8806     if (LHSAA.undefIsContained() && RHSAA.undefIsContained()) {
8807       if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero))
8808         return indicatePessimisticFixpoint();
8809     } else if (LHSAA.undefIsContained()) {
8810       for (const APInt &R : RHSAAPVS) {
8811         if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R))
8812           return indicatePessimisticFixpoint();
8813       }
8814     } else if (RHSAA.undefIsContained()) {
8815       for (const APInt &L : LHSAAPVS) {
8816         if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero))
8817           return indicatePessimisticFixpoint();
8818       }
8819     } else {
8820       for (const APInt &L : LHSAAPVS) {
8821         for (const APInt &R : RHSAAPVS) {
8822           if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R))
8823             return indicatePessimisticFixpoint();
8824         }
8825       }
8826     }
8827     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8828                                          : ChangeStatus::CHANGED;
8829   }
8830 
8831   ChangeStatus updateWithPHINode(Attributor &A, PHINode *PHI) {
8832     auto AssumedBefore = getAssumed();
8833     for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
8834       Value *IncomingValue = PHI->getIncomingValue(u);
8835 
8836       // Simplify the operand first.
8837       bool UsedAssumedInformation = false;
8838       const auto &SimplifiedIncomingValue = A.getAssumedSimplified(
8839           IRPosition::value(*IncomingValue, getCallBaseContext()), *this,
8840           UsedAssumedInformation);
8841       if (!SimplifiedIncomingValue.hasValue())
8842         continue;
8843       if (SimplifiedIncomingValue.getValue())
8844         IncomingValue = *SimplifiedIncomingValue;
8845 
8846       auto &PotentialValuesAA = A.getAAFor<AAPotentialValues>(
8847           *this, IRPosition::value(*IncomingValue), DepClassTy::REQUIRED);
8848       if (!PotentialValuesAA.isValidState())
8849         return indicatePessimisticFixpoint();
8850       if (PotentialValuesAA.undefIsContained())
8851         unionAssumedWithUndef();
8852       else
8853         unionAssumed(PotentialValuesAA.getAssumed());
8854     }
8855     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8856                                          : ChangeStatus::CHANGED;
8857   }
8858 
8859   ChangeStatus updateWithLoad(Attributor &A, LoadInst &L) {
8860     if (!L.getType()->isIntegerTy())
8861       return indicatePessimisticFixpoint();
8862 
8863     auto Union = [&](Value &V) {
8864       if (isa<UndefValue>(V)) {
8865         unionAssumedWithUndef();
8866         return true;
8867       }
8868       if (ConstantInt *CI = dyn_cast<ConstantInt>(&V)) {
8869         unionAssumed(CI->getValue());
8870         return true;
8871       }
8872       return false;
8873     };
8874     auto AssumedBefore = getAssumed();
8875 
8876     if (!AAValueSimplifyImpl::handleLoad(A, *this, L, Union))
8877       return indicatePessimisticFixpoint();
8878 
8879     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8880                                          : ChangeStatus::CHANGED;
8881   }
8882 
8883   /// See AbstractAttribute::updateImpl(...).
8884   ChangeStatus updateImpl(Attributor &A) override {
8885     Value &V = getAssociatedValue();
8886     Instruction *I = dyn_cast<Instruction>(&V);
8887 
8888     if (auto *ICI = dyn_cast<ICmpInst>(I))
8889       return updateWithICmpInst(A, ICI);
8890 
8891     if (auto *SI = dyn_cast<SelectInst>(I))
8892       return updateWithSelectInst(A, SI);
8893 
8894     if (auto *CI = dyn_cast<CastInst>(I))
8895       return updateWithCastInst(A, CI);
8896 
8897     if (auto *BinOp = dyn_cast<BinaryOperator>(I))
8898       return updateWithBinaryOperator(A, BinOp);
8899 
8900     if (auto *PHI = dyn_cast<PHINode>(I))
8901       return updateWithPHINode(A, PHI);
8902 
8903     if (auto *L = dyn_cast<LoadInst>(I))
8904       return updateWithLoad(A, *L);
8905 
8906     return indicatePessimisticFixpoint();
8907   }
8908 
8909   /// See AbstractAttribute::trackStatistics()
8910   void trackStatistics() const override {
8911     STATS_DECLTRACK_FLOATING_ATTR(potential_values)
8912   }
8913 };
8914 
8915 struct AAPotentialValuesFunction : AAPotentialValuesImpl {
8916   AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
8917       : AAPotentialValuesImpl(IRP, A) {}
8918 
8919   /// See AbstractAttribute::initialize(...).
8920   ChangeStatus updateImpl(Attributor &A) override {
8921     llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
8922                      "not be called");
8923   }
8924 
8925   /// See AbstractAttribute::trackStatistics()
8926   void trackStatistics() const override {
8927     STATS_DECLTRACK_FN_ATTR(potential_values)
8928   }
8929 };
8930 
8931 struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
8932   AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
8933       : AAPotentialValuesFunction(IRP, A) {}
8934 
8935   /// See AbstractAttribute::trackStatistics()
8936   void trackStatistics() const override {
8937     STATS_DECLTRACK_CS_ATTR(potential_values)
8938   }
8939 };
8940 
8941 struct AAPotentialValuesCallSiteReturned
8942     : AACallSiteReturnedFromReturned<AAPotentialValues, AAPotentialValuesImpl> {
8943   AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
8944       : AACallSiteReturnedFromReturned<AAPotentialValues,
8945                                        AAPotentialValuesImpl>(IRP, A) {}
8946 
8947   /// See AbstractAttribute::trackStatistics()
8948   void trackStatistics() const override {
8949     STATS_DECLTRACK_CSRET_ATTR(potential_values)
8950   }
8951 };
8952 
8953 struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
8954   AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
8955       : AAPotentialValuesFloating(IRP, A) {}
8956 
8957   /// See AbstractAttribute::initialize(..).
8958   void initialize(Attributor &A) override {
8959     Value &V = getAssociatedValue();
8960 
8961     if (auto *C = dyn_cast<ConstantInt>(&V)) {
8962       unionAssumed(C->getValue());
8963       indicateOptimisticFixpoint();
8964       return;
8965     }
8966 
8967     if (isa<UndefValue>(&V)) {
8968       unionAssumedWithUndef();
8969       indicateOptimisticFixpoint();
8970       return;
8971     }
8972   }
8973 
8974   /// See AbstractAttribute::updateImpl(...).
8975   ChangeStatus updateImpl(Attributor &A) override {
8976     Value &V = getAssociatedValue();
8977     auto AssumedBefore = getAssumed();
8978     auto &AA = A.getAAFor<AAPotentialValues>(*this, IRPosition::value(V),
8979                                              DepClassTy::REQUIRED);
8980     const auto &S = AA.getAssumed();
8981     unionAssumed(S);
8982     return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
8983                                          : ChangeStatus::CHANGED;
8984   }
8985 
8986   /// See AbstractAttribute::trackStatistics()
8987   void trackStatistics() const override {
8988     STATS_DECLTRACK_CSARG_ATTR(potential_values)
8989   }
8990 };
8991 
8992 /// ------------------------ NoUndef Attribute ---------------------------------
8993 struct AANoUndefImpl : AANoUndef {
8994   AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
8995 
8996   /// See AbstractAttribute::initialize(...).
8997   void initialize(Attributor &A) override {
8998     if (getIRPosition().hasAttr({Attribute::NoUndef})) {
8999       indicateOptimisticFixpoint();
9000       return;
9001     }
9002     Value &V = getAssociatedValue();
9003     if (isa<UndefValue>(V))
9004       indicatePessimisticFixpoint();
9005     else if (isa<FreezeInst>(V))
9006       indicateOptimisticFixpoint();
9007     else if (getPositionKind() != IRPosition::IRP_RETURNED &&
9008              isGuaranteedNotToBeUndefOrPoison(&V))
9009       indicateOptimisticFixpoint();
9010     else
9011       AANoUndef::initialize(A);
9012   }
9013 
9014   /// See followUsesInMBEC
9015   bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
9016                        AANoUndef::StateType &State) {
9017     const Value *UseV = U->get();
9018     const DominatorTree *DT = nullptr;
9019     AssumptionCache *AC = nullptr;
9020     InformationCache &InfoCache = A.getInfoCache();
9021     if (Function *F = getAnchorScope()) {
9022       DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
9023       AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
9024     }
9025     State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT));
9026     bool TrackUse = false;
9027     // Track use for instructions which must produce undef or poison bits when
9028     // at least one operand contains such bits.
9029     if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
9030       TrackUse = true;
9031     return TrackUse;
9032   }
9033 
9034   /// See AbstractAttribute::getAsStr().
9035   const std::string getAsStr() const override {
9036     return getAssumed() ? "noundef" : "may-undef-or-poison";
9037   }
9038 
9039   ChangeStatus manifest(Attributor &A) override {
9040     // We don't manifest noundef attribute for dead positions because the
9041     // associated values with dead positions would be replaced with undef
9042     // values.
9043     bool UsedAssumedInformation = false;
9044     if (A.isAssumedDead(getIRPosition(), nullptr, nullptr,
9045                         UsedAssumedInformation))
9046       return ChangeStatus::UNCHANGED;
9047     // A position whose simplified value does not have any value is
9048     // considered to be dead. We don't manifest noundef in such positions for
9049     // the same reason above.
9050     if (!A.getAssumedSimplified(getIRPosition(), *this, UsedAssumedInformation)
9051              .hasValue())
9052       return ChangeStatus::UNCHANGED;
9053     return AANoUndef::manifest(A);
9054   }
9055 };
9056 
9057 struct AANoUndefFloating : public AANoUndefImpl {
9058   AANoUndefFloating(const IRPosition &IRP, Attributor &A)
9059       : AANoUndefImpl(IRP, A) {}
9060 
9061   /// See AbstractAttribute::initialize(...).
9062   void initialize(Attributor &A) override {
9063     AANoUndefImpl::initialize(A);
9064     if (!getState().isAtFixpoint())
9065       if (Instruction *CtxI = getCtxI())
9066         followUsesInMBEC(*this, A, getState(), *CtxI);
9067   }
9068 
9069   /// See AbstractAttribute::updateImpl(...).
9070   ChangeStatus updateImpl(Attributor &A) override {
9071     auto VisitValueCB = [&](Value &V, const Instruction *CtxI,
9072                             AANoUndef::StateType &T, bool Stripped) -> bool {
9073       const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V),
9074                                              DepClassTy::REQUIRED);
9075       if (!Stripped && this == &AA) {
9076         T.indicatePessimisticFixpoint();
9077       } else {
9078         const AANoUndef::StateType &S =
9079             static_cast<const AANoUndef::StateType &>(AA.getState());
9080         T ^= S;
9081       }
9082       return T.isValidState();
9083     };
9084 
9085     StateType T;
9086     if (!genericValueTraversal<StateType>(A, getIRPosition(), *this, T,
9087                                           VisitValueCB, getCtxI()))
9088       return indicatePessimisticFixpoint();
9089 
9090     return clampStateAndIndicateChange(getState(), T);
9091   }
9092 
9093   /// See AbstractAttribute::trackStatistics()
9094   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9095 };
9096 
9097 struct AANoUndefReturned final
9098     : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> {
9099   AANoUndefReturned(const IRPosition &IRP, Attributor &A)
9100       : AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {}
9101 
9102   /// See AbstractAttribute::trackStatistics()
9103   void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
9104 };
9105 
9106 struct AANoUndefArgument final
9107     : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> {
9108   AANoUndefArgument(const IRPosition &IRP, Attributor &A)
9109       : AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {}
9110 
9111   /// See AbstractAttribute::trackStatistics()
9112   void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
9113 };
9114 
9115 struct AANoUndefCallSiteArgument final : AANoUndefFloating {
9116   AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
9117       : AANoUndefFloating(IRP, A) {}
9118 
9119   /// See AbstractAttribute::trackStatistics()
9120   void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
9121 };
9122 
9123 struct AANoUndefCallSiteReturned final
9124     : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> {
9125   AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
9126       : AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {}
9127 
9128   /// See AbstractAttribute::trackStatistics()
9129   void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
9130 };
9131 
9132 struct AACallEdgesFunction : public AACallEdges {
9133   AACallEdgesFunction(const IRPosition &IRP, Attributor &A)
9134       : AACallEdges(IRP, A) {}
9135 
9136   /// See AbstractAttribute::updateImpl(...).
9137   ChangeStatus updateImpl(Attributor &A) override {
9138     ChangeStatus Change = ChangeStatus::UNCHANGED;
9139     bool OldHasUnknownCallee = HasUnknownCallee;
9140     bool OldHasUnknownCalleeNonAsm = HasUnknownCalleeNonAsm;
9141 
9142     auto AddCalledFunction = [&](Function *Fn) {
9143       if (CalledFunctions.insert(Fn)) {
9144         Change = ChangeStatus::CHANGED;
9145         LLVM_DEBUG(dbgs() << "[AACallEdges] New call edge: " << Fn->getName()
9146                           << "\n");
9147       }
9148     };
9149 
9150     auto VisitValue = [&](Value &V, const Instruction *CtxI, bool &HasUnknown,
9151                           bool Stripped) -> bool {
9152       if (Function *Fn = dyn_cast<Function>(&V)) {
9153         AddCalledFunction(Fn);
9154       } else {
9155         LLVM_DEBUG(dbgs() << "[AACallEdges] Unrecognized value: " << V << "\n");
9156         HasUnknown = true;
9157         HasUnknownCalleeNonAsm = true;
9158       }
9159 
9160       // Explore all values.
9161       return true;
9162     };
9163 
9164     // Process any value that we might call.
9165     auto ProcessCalledOperand = [&](Value *V, Instruction *Ctx) {
9166       if (!genericValueTraversal<bool>(
9167               A, IRPosition::value(*V), *this, HasUnknownCallee, VisitValue,
9168               nullptr, false)) {
9169         // If we haven't gone through all values, assume that there are unknown
9170         // callees.
9171         HasUnknownCallee = true;
9172         HasUnknownCalleeNonAsm = true;
9173       }
9174     };
9175 
9176     auto ProcessCallInst = [&](Instruction &Inst) {
9177       CallBase &CB = static_cast<CallBase &>(Inst);
9178       if (CB.isInlineAsm()) {
9179         HasUnknownCallee = true;
9180         return true;
9181       }
9182 
9183       // Process callee metadata if available.
9184       if (auto *MD = Inst.getMetadata(LLVMContext::MD_callees)) {
9185         for (auto &Op : MD->operands()) {
9186           Function *Callee = mdconst::extract_or_null<Function>(Op);
9187           if (Callee)
9188             AddCalledFunction(Callee);
9189         }
9190         // Callees metadata grantees that the called function is one of its
9191         // operands, So we are done.
9192         return true;
9193       }
9194 
9195       // The most simple case.
9196       ProcessCalledOperand(CB.getCalledOperand(), &Inst);
9197 
9198       // Process callback functions.
9199       SmallVector<const Use *, 4u> CallbackUses;
9200       AbstractCallSite::getCallbackUses(CB, CallbackUses);
9201       for (const Use *U : CallbackUses)
9202         ProcessCalledOperand(U->get(), &Inst);
9203 
9204       return true;
9205     };
9206 
9207     // Visit all callable instructions.
9208     bool UsedAssumedInformation = false;
9209     if (!A.checkForAllCallLikeInstructions(ProcessCallInst, *this,
9210                                            UsedAssumedInformation)) {
9211       // If we haven't looked at all call like instructions, assume that there
9212       // are unknown callees.
9213       HasUnknownCallee = true;
9214       HasUnknownCalleeNonAsm = true;
9215     }
9216 
9217     // Track changes.
9218     if (OldHasUnknownCallee != HasUnknownCallee ||
9219         OldHasUnknownCalleeNonAsm != HasUnknownCalleeNonAsm)
9220       Change = ChangeStatus::CHANGED;
9221 
9222     return Change;
9223   }
9224 
9225   virtual const SetVector<Function *> &getOptimisticEdges() const override {
9226     return CalledFunctions;
9227   };
9228 
9229   virtual bool hasUnknownCallee() const override { return HasUnknownCallee; }
9230 
9231   virtual bool hasNonAsmUnknownCallee() const override {
9232     return HasUnknownCalleeNonAsm;
9233   }
9234 
9235   const std::string getAsStr() const override {
9236     return "CallEdges[" + std::to_string(HasUnknownCallee) + "," +
9237            std::to_string(CalledFunctions.size()) + "]";
9238   }
9239 
9240   void trackStatistics() const override {}
9241 
9242   /// Optimistic set of functions that might be called by this function.
9243   SetVector<Function *> CalledFunctions;
9244 
9245   /// Is there any call with a unknown callee.
9246   bool HasUnknownCallee = false;
9247 
9248   /// Is there any call with a unknown callee, excluding any inline asm.
9249   bool HasUnknownCalleeNonAsm = false;
9250 };
9251 
9252 struct AAFunctionReachabilityFunction : public AAFunctionReachability {
9253   AAFunctionReachabilityFunction(const IRPosition &IRP, Attributor &A)
9254       : AAFunctionReachability(IRP, A) {}
9255 
9256   bool canReach(Attributor &A, Function *Fn) const override {
9257     // Assume that we can reach any function if we can reach a call with
9258     // unknown callee.
9259     if (CanReachUnknownCallee)
9260       return true;
9261 
9262     if (ReachableQueries.count(Fn))
9263       return true;
9264 
9265     if (UnreachableQueries.count(Fn))
9266       return false;
9267 
9268     const AACallEdges &AAEdges =
9269         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9270 
9271     const SetVector<Function *> &Edges = AAEdges.getOptimisticEdges();
9272     bool Result = checkIfReachable(A, Edges, Fn);
9273 
9274     // Attributor returns attributes as const, so this function has to be
9275     // const for users of this attribute to use it without having to do
9276     // a const_cast.
9277     // This is a hack for us to be able to cache queries.
9278     auto *NonConstThis = const_cast<AAFunctionReachabilityFunction *>(this);
9279 
9280     if (Result)
9281       NonConstThis->ReachableQueries.insert(Fn);
9282     else
9283       NonConstThis->UnreachableQueries.insert(Fn);
9284 
9285     return Result;
9286   }
9287 
9288   /// See AbstractAttribute::updateImpl(...).
9289   ChangeStatus updateImpl(Attributor &A) override {
9290     if (CanReachUnknownCallee)
9291       return ChangeStatus::UNCHANGED;
9292 
9293     const AACallEdges &AAEdges =
9294         A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::REQUIRED);
9295     const SetVector<Function *> &Edges = AAEdges.getOptimisticEdges();
9296     ChangeStatus Change = ChangeStatus::UNCHANGED;
9297 
9298     if (AAEdges.hasUnknownCallee()) {
9299       bool OldCanReachUnknown = CanReachUnknownCallee;
9300       CanReachUnknownCallee = true;
9301       return OldCanReachUnknown ? ChangeStatus::UNCHANGED
9302                                 : ChangeStatus::CHANGED;
9303     }
9304 
9305     // Check if any of the unreachable functions become reachable.
9306     for (auto Current = UnreachableQueries.begin();
9307          Current != UnreachableQueries.end();) {
9308       if (!checkIfReachable(A, Edges, *Current)) {
9309         Current++;
9310         continue;
9311       }
9312       ReachableQueries.insert(*Current);
9313       UnreachableQueries.erase(*Current++);
9314       Change = ChangeStatus::CHANGED;
9315     }
9316 
9317     return Change;
9318   }
9319 
9320   const std::string getAsStr() const override {
9321     size_t QueryCount = ReachableQueries.size() + UnreachableQueries.size();
9322 
9323     return "FunctionReachability [" + std::to_string(ReachableQueries.size()) +
9324            "," + std::to_string(QueryCount) + "]";
9325   }
9326 
9327   void trackStatistics() const override {}
9328 
9329 private:
9330   bool canReachUnknownCallee() const override { return CanReachUnknownCallee; }
9331 
9332   bool checkIfReachable(Attributor &A, const SetVector<Function *> &Edges,
9333                         Function *Fn) const {
9334     if (Edges.count(Fn))
9335       return true;
9336 
9337     for (Function *Edge : Edges) {
9338       // We don't need a dependency if the result is reachable.
9339       const AAFunctionReachability &EdgeReachability =
9340           A.getAAFor<AAFunctionReachability>(*this, IRPosition::function(*Edge),
9341                                              DepClassTy::NONE);
9342 
9343       if (EdgeReachability.canReach(A, Fn))
9344         return true;
9345     }
9346     for (Function *Fn : Edges)
9347       A.getAAFor<AAFunctionReachability>(*this, IRPosition::function(*Fn),
9348                                          DepClassTy::REQUIRED);
9349 
9350     return false;
9351   }
9352 
9353   /// Set of functions that we know for sure is reachable.
9354   SmallPtrSet<Function *, 8> ReachableQueries;
9355 
9356   /// Set of functions that are unreachable, but might become reachable.
9357   SmallPtrSet<Function *, 8> UnreachableQueries;
9358 
9359   /// If we can reach a function with a call to a unknown function we assume
9360   /// that we can reach any function.
9361   bool CanReachUnknownCallee = false;
9362 };
9363 
9364 } // namespace
9365 
9366 AACallGraphNode *AACallEdgeIterator::operator*() const {
9367   return static_cast<AACallGraphNode *>(const_cast<AACallEdges *>(
9368       &A.getOrCreateAAFor<AACallEdges>(IRPosition::function(**I))));
9369 }
9370 
9371 void AttributorCallGraph::print() { llvm::WriteGraph(outs(), this); }
9372 
9373 const char AAReturnedValues::ID = 0;
9374 const char AANoUnwind::ID = 0;
9375 const char AANoSync::ID = 0;
9376 const char AANoFree::ID = 0;
9377 const char AANonNull::ID = 0;
9378 const char AANoRecurse::ID = 0;
9379 const char AAWillReturn::ID = 0;
9380 const char AAUndefinedBehavior::ID = 0;
9381 const char AANoAlias::ID = 0;
9382 const char AAReachability::ID = 0;
9383 const char AANoReturn::ID = 0;
9384 const char AAIsDead::ID = 0;
9385 const char AADereferenceable::ID = 0;
9386 const char AAAlign::ID = 0;
9387 const char AANoCapture::ID = 0;
9388 const char AAValueSimplify::ID = 0;
9389 const char AAHeapToStack::ID = 0;
9390 const char AAPrivatizablePtr::ID = 0;
9391 const char AAMemoryBehavior::ID = 0;
9392 const char AAMemoryLocation::ID = 0;
9393 const char AAValueConstantRange::ID = 0;
9394 const char AAPotentialValues::ID = 0;
9395 const char AANoUndef::ID = 0;
9396 const char AACallEdges::ID = 0;
9397 const char AAFunctionReachability::ID = 0;
9398 const char AAPointerInfo::ID = 0;
9399 
9400 // Macro magic to create the static generator function for attributes that
9401 // follow the naming scheme.
9402 
9403 #define SWITCH_PK_INV(CLASS, PK, POS_NAME)                                     \
9404   case IRPosition::PK:                                                         \
9405     llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
9406 
9407 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX)                               \
9408   case IRPosition::PK:                                                         \
9409     AA = new (A.Allocator) CLASS##SUFFIX(IRP, A);                              \
9410     ++NumAAs;                                                                  \
9411     break;
9412 
9413 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                 \
9414   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9415     CLASS *AA = nullptr;                                                       \
9416     switch (IRP.getPositionKind()) {                                           \
9417       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9418       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
9419       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
9420       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9421       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
9422       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
9423       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9424       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9425     }                                                                          \
9426     return *AA;                                                                \
9427   }
9428 
9429 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                    \
9430   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9431     CLASS *AA = nullptr;                                                       \
9432     switch (IRP.getPositionKind()) {                                           \
9433       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9434       SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function")                           \
9435       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
9436       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9437       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9438       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
9439       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9440       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9441     }                                                                          \
9442     return *AA;                                                                \
9443   }
9444 
9445 #define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                      \
9446   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9447     CLASS *AA = nullptr;                                                       \
9448     switch (IRP.getPositionKind()) {                                           \
9449       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9450       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9451       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9452       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9453       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9454       SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned)                     \
9455       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9456       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9457     }                                                                          \
9458     return *AA;                                                                \
9459   }
9460 
9461 #define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)            \
9462   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9463     CLASS *AA = nullptr;                                                       \
9464     switch (IRP.getPositionKind()) {                                           \
9465       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9466       SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument")                           \
9467       SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating")                              \
9468       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9469       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned")       \
9470       SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument")       \
9471       SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site")                         \
9472       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9473     }                                                                          \
9474     return *AA;                                                                \
9475   }
9476 
9477 #define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS)                  \
9478   CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) {      \
9479     CLASS *AA = nullptr;                                                       \
9480     switch (IRP.getPositionKind()) {                                           \
9481       SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid")                             \
9482       SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned")                           \
9483       SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function)                     \
9484       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite)                    \
9485       SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating)                        \
9486       SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument)                     \
9487       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned)   \
9488       SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument)   \
9489     }                                                                          \
9490     return *AA;                                                                \
9491   }
9492 
9493 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
9494 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
9495 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
9496 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
9497 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
9498 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
9499 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
9500 
9501 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
9502 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
9503 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
9504 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
9505 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
9506 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
9507 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
9508 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
9509 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
9510 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPointerInfo)
9511 
9512 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
9513 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
9514 CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
9515 
9516 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
9517 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReachability)
9518 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
9519 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AACallEdges)
9520 CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAFunctionReachability)
9521 
9522 CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
9523 
9524 #undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
9525 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
9526 #undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
9527 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
9528 #undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
9529 #undef SWITCH_PK_CREATE
9530 #undef SWITCH_PK_INV
9531