1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the XCoreTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "XCoreISelLowering.h" 15 #include "XCore.h" 16 #include "XCoreMachineFunctionInfo.h" 17 #include "XCoreSubtarget.h" 18 #include "XCoreTargetMachine.h" 19 #include "XCoreTargetObjectFile.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAGISel.h" 27 #include "llvm/CodeGen/ValueTypes.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "xcore-lower" 43 44 const char *XCoreTargetLowering:: 45 getTargetNodeName(unsigned Opcode) const 46 { 47 switch (Opcode) 48 { 49 case XCoreISD::BL : return "XCoreISD::BL"; 50 case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper"; 51 case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper"; 52 case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper"; 53 case XCoreISD::LDWSP : return "XCoreISD::LDWSP"; 54 case XCoreISD::STWSP : return "XCoreISD::STWSP"; 55 case XCoreISD::RETSP : return "XCoreISD::RETSP"; 56 case XCoreISD::LADD : return "XCoreISD::LADD"; 57 case XCoreISD::LSUB : return "XCoreISD::LSUB"; 58 case XCoreISD::LMUL : return "XCoreISD::LMUL"; 59 case XCoreISD::MACCU : return "XCoreISD::MACCU"; 60 case XCoreISD::MACCS : return "XCoreISD::MACCS"; 61 case XCoreISD::CRC8 : return "XCoreISD::CRC8"; 62 case XCoreISD::BR_JT : return "XCoreISD::BR_JT"; 63 case XCoreISD::BR_JT32 : return "XCoreISD::BR_JT32"; 64 case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET"; 65 case XCoreISD::EH_RETURN : return "XCoreISD::EH_RETURN"; 66 case XCoreISD::MEMBARRIER : return "XCoreISD::MEMBARRIER"; 67 default : return nullptr; 68 } 69 } 70 71 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM, 72 const XCoreSubtarget &Subtarget) 73 : TargetLowering(TM), TM(TM), Subtarget(Subtarget) { 74 75 // Set up the register classes. 76 addRegisterClass(MVT::i32, &XCore::GRRegsRegClass); 77 78 // Compute derived properties from the register classes 79 computeRegisterProperties(Subtarget.getRegisterInfo()); 80 81 // Division is expensive 82 setIntDivIsCheap(false); 83 84 setStackPointerRegisterToSaveRestore(XCore::SP); 85 86 setSchedulingPreference(Sched::Source); 87 88 // Use i32 for setcc operations results (slt, sgt, ...). 89 setBooleanContents(ZeroOrOneBooleanContent); 90 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 91 92 // XCore does not have the NodeTypes below. 93 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 94 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); 95 setOperationAction(ISD::ADDC, MVT::i32, Expand); 96 setOperationAction(ISD::ADDE, MVT::i32, Expand); 97 setOperationAction(ISD::SUBC, MVT::i32, Expand); 98 setOperationAction(ISD::SUBE, MVT::i32, Expand); 99 100 // 64bit 101 setOperationAction(ISD::ADD, MVT::i64, Custom); 102 setOperationAction(ISD::SUB, MVT::i64, Custom); 103 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom); 104 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom); 105 setOperationAction(ISD::MULHS, MVT::i32, Expand); 106 setOperationAction(ISD::MULHU, MVT::i32, Expand); 107 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); 108 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 109 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); 110 111 // Bit Manipulation 112 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 113 setOperationAction(ISD::ROTL , MVT::i32, Expand); 114 setOperationAction(ISD::ROTR , MVT::i32, Expand); 115 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 116 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 117 118 setOperationAction(ISD::TRAP, MVT::Other, Legal); 119 120 // Jump tables. 121 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 122 123 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 124 setOperationAction(ISD::BlockAddress, MVT::i32 , Custom); 125 126 // Conversion of i64 -> double produces constantpool nodes 127 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 128 129 // Loads 130 for (MVT VT : MVT::integer_valuetypes()) { 131 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 132 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 133 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 134 135 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 136 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand); 137 } 138 139 // Custom expand misaligned loads / stores. 140 setOperationAction(ISD::LOAD, MVT::i32, Custom); 141 setOperationAction(ISD::STORE, MVT::i32, Custom); 142 143 // Varargs 144 setOperationAction(ISD::VAEND, MVT::Other, Expand); 145 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 146 setOperationAction(ISD::VAARG, MVT::Other, Custom); 147 setOperationAction(ISD::VASTART, MVT::Other, Custom); 148 149 // Dynamic stack 150 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 151 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 152 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 153 154 // Exception handling 155 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); 156 setExceptionPointerRegister(XCore::R0); 157 setExceptionSelectorRegister(XCore::R1); 158 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); 159 160 // Atomic operations 161 // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic. 162 // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP. 163 setInsertFencesForAtomic(true); 164 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 165 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); 166 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); 167 168 // TRAMPOLINE is custom lowered. 169 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 170 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 171 172 // We want to custom lower some of our intrinsics. 173 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 174 175 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4; 176 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize 177 = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2; 178 179 // We have target-specific dag combine patterns for the following nodes: 180 setTargetDAGCombine(ISD::STORE); 181 setTargetDAGCombine(ISD::ADD); 182 setTargetDAGCombine(ISD::INTRINSIC_VOID); 183 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 184 185 setMinFunctionAlignment(1); 186 setPrefFunctionAlignment(2); 187 } 188 189 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 190 if (Val.getOpcode() != ISD::LOAD) 191 return false; 192 193 EVT VT1 = Val.getValueType(); 194 if (!VT1.isSimple() || !VT1.isInteger() || 195 !VT2.isSimple() || !VT2.isInteger()) 196 return false; 197 198 switch (VT1.getSimpleVT().SimpleTy) { 199 default: break; 200 case MVT::i8: 201 return true; 202 } 203 204 return false; 205 } 206 207 SDValue XCoreTargetLowering:: 208 LowerOperation(SDValue Op, SelectionDAG &DAG) const { 209 switch (Op.getOpcode()) 210 { 211 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); 212 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 213 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 214 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 215 case ISD::BR_JT: return LowerBR_JT(Op, DAG); 216 case ISD::LOAD: return LowerLOAD(Op, DAG); 217 case ISD::STORE: return LowerSTORE(Op, DAG); 218 case ISD::VAARG: return LowerVAARG(Op, DAG); 219 case ISD::VASTART: return LowerVASTART(Op, DAG); 220 case ISD::SMUL_LOHI: return LowerSMUL_LOHI(Op, DAG); 221 case ISD::UMUL_LOHI: return LowerUMUL_LOHI(Op, DAG); 222 // FIXME: Remove these when LegalizeDAGTypes lands. 223 case ISD::ADD: 224 case ISD::SUB: return ExpandADDSUB(Op.getNode(), DAG); 225 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 226 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 227 case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); 228 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 229 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 230 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 231 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG); 232 case ISD::ATOMIC_LOAD: return LowerATOMIC_LOAD(Op, DAG); 233 case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG); 234 default: 235 llvm_unreachable("unimplemented operand"); 236 } 237 } 238 239 /// ReplaceNodeResults - Replace the results of node with an illegal result 240 /// type with new values built out of custom code. 241 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N, 242 SmallVectorImpl<SDValue>&Results, 243 SelectionDAG &DAG) const { 244 switch (N->getOpcode()) { 245 default: 246 llvm_unreachable("Don't know how to custom expand this!"); 247 case ISD::ADD: 248 case ISD::SUB: 249 Results.push_back(ExpandADDSUB(N, DAG)); 250 return; 251 } 252 } 253 254 //===----------------------------------------------------------------------===// 255 // Misc Lower Operation implementation 256 //===----------------------------------------------------------------------===// 257 258 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA, 259 const GlobalValue *GV, 260 SelectionDAG &DAG) const { 261 // FIXME there is no actual debug info here 262 SDLoc dl(GA); 263 264 if (GV->getType()->getElementType()->isFunctionTy()) 265 return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA); 266 267 const auto *GVar = dyn_cast<GlobalVariable>(GV); 268 if ((GV->hasSection() && StringRef(GV->getSection()).startswith(".cp.")) || 269 (GVar && GVar->isConstant() && GV->hasLocalLinkage())) 270 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA); 271 272 return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA); 273 } 274 275 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) { 276 if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small) 277 return true; 278 279 Type *ObjType = GV->getType()->getPointerElementType(); 280 if (!ObjType->isSized()) 281 return false; 282 283 unsigned ObjSize = XTL.getDataLayout()->getTypeAllocSize(ObjType); 284 return ObjSize < CodeModelLargeSize && ObjSize != 0; 285 } 286 287 SDValue XCoreTargetLowering:: 288 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const 289 { 290 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op); 291 const GlobalValue *GV = GN->getGlobal(); 292 SDLoc DL(GN); 293 int64_t Offset = GN->getOffset(); 294 if (IsSmallObject(GV, *this)) { 295 // We can only fold positive offsets that are a multiple of the word size. 296 int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0); 297 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset); 298 GA = getGlobalAddressWrapper(GA, GV, DAG); 299 // Handle the rest of the offset. 300 if (Offset != FoldedOffset) { 301 SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, MVT::i32); 302 GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining); 303 } 304 return GA; 305 } else { 306 // Ideally we would not fold in offset with an index <= 11. 307 Type *Ty = Type::getInt8PtrTy(*DAG.getContext()); 308 Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty); 309 Ty = Type::getInt32Ty(*DAG.getContext()); 310 Constant *Idx = ConstantInt::get(Ty, Offset); 311 Constant *GAI = ConstantExpr::getGetElementPtr(GA, Idx); 312 SDValue CP = DAG.getConstantPool(GAI, MVT::i32); 313 return DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), CP, 314 MachinePointerInfo(), false, false, false, 0); 315 } 316 } 317 318 SDValue XCoreTargetLowering:: 319 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const 320 { 321 SDLoc DL(Op); 322 323 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 324 SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy()); 325 326 return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, getPointerTy(), Result); 327 } 328 329 SDValue XCoreTargetLowering:: 330 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const 331 { 332 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 333 // FIXME there isn't really debug info here 334 SDLoc dl(CP); 335 EVT PtrVT = Op.getValueType(); 336 SDValue Res; 337 if (CP->isMachineConstantPoolEntry()) { 338 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 339 CP->getAlignment(), CP->getOffset()); 340 } else { 341 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 342 CP->getAlignment(), CP->getOffset()); 343 } 344 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res); 345 } 346 347 unsigned XCoreTargetLowering::getJumpTableEncoding() const { 348 return MachineJumpTableInfo::EK_Inline; 349 } 350 351 SDValue XCoreTargetLowering:: 352 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const 353 { 354 SDValue Chain = Op.getOperand(0); 355 SDValue Table = Op.getOperand(1); 356 SDValue Index = Op.getOperand(2); 357 SDLoc dl(Op); 358 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table); 359 unsigned JTI = JT->getIndex(); 360 MachineFunction &MF = DAG.getMachineFunction(); 361 const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 362 SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32); 363 364 unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size(); 365 if (NumEntries <= 32) { 366 return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index); 367 } 368 assert((NumEntries >> 31) == 0); 369 SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index, 370 DAG.getConstant(1, MVT::i32)); 371 return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT, 372 ScaledIndex); 373 } 374 375 SDValue XCoreTargetLowering:: 376 lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL, SDValue Chain, SDValue Base, 377 int64_t Offset, SelectionDAG &DAG) const 378 { 379 if ((Offset & 0x3) == 0) { 380 return DAG.getLoad(getPointerTy(), DL, Chain, Base, MachinePointerInfo(), 381 false, false, false, 0); 382 } 383 // Lower to pair of consecutive word aligned loads plus some bit shifting. 384 int32_t HighOffset = RoundUpToAlignment(Offset, 4); 385 int32_t LowOffset = HighOffset - 4; 386 SDValue LowAddr, HighAddr; 387 if (GlobalAddressSDNode *GASD = 388 dyn_cast<GlobalAddressSDNode>(Base.getNode())) { 389 LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(), 390 LowOffset); 391 HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(), 392 HighOffset); 393 } else { 394 LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base, 395 DAG.getConstant(LowOffset, MVT::i32)); 396 HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base, 397 DAG.getConstant(HighOffset, MVT::i32)); 398 } 399 SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, MVT::i32); 400 SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, MVT::i32); 401 402 SDValue Low = DAG.getLoad(getPointerTy(), DL, Chain, 403 LowAddr, MachinePointerInfo(), 404 false, false, false, 0); 405 SDValue High = DAG.getLoad(getPointerTy(), DL, Chain, 406 HighAddr, MachinePointerInfo(), 407 false, false, false, 0); 408 SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift); 409 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift); 410 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted); 411 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1), 412 High.getValue(1)); 413 SDValue Ops[] = { Result, Chain }; 414 return DAG.getMergeValues(Ops, DL); 415 } 416 417 static bool isWordAligned(SDValue Value, SelectionDAG &DAG) 418 { 419 APInt KnownZero, KnownOne; 420 DAG.computeKnownBits(Value, KnownZero, KnownOne); 421 return KnownZero.countTrailingOnes() >= 2; 422 } 423 424 SDValue XCoreTargetLowering:: 425 LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 426 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 427 LoadSDNode *LD = cast<LoadSDNode>(Op); 428 assert(LD->getExtensionType() == ISD::NON_EXTLOAD && 429 "Unexpected extension type"); 430 assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT"); 431 if (allowsMisalignedMemoryAccesses(LD->getMemoryVT(), 432 LD->getAddressSpace(), 433 LD->getAlignment())) 434 return SDValue(); 435 436 unsigned ABIAlignment = getDataLayout()-> 437 getABITypeAlignment(LD->getMemoryVT().getTypeForEVT(*DAG.getContext())); 438 // Leave aligned load alone. 439 if (LD->getAlignment() >= ABIAlignment) 440 return SDValue(); 441 442 SDValue Chain = LD->getChain(); 443 SDValue BasePtr = LD->getBasePtr(); 444 SDLoc DL(Op); 445 446 if (!LD->isVolatile()) { 447 const GlobalValue *GV; 448 int64_t Offset = 0; 449 if (DAG.isBaseWithConstantOffset(BasePtr) && 450 isWordAligned(BasePtr->getOperand(0), DAG)) { 451 SDValue NewBasePtr = BasePtr->getOperand(0); 452 Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue(); 453 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr, 454 Offset, DAG); 455 } 456 if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) && 457 MinAlign(GV->getAlignment(), 4) == 4) { 458 SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL, 459 BasePtr->getValueType(0)); 460 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr, 461 Offset, DAG); 462 } 463 } 464 465 if (LD->getAlignment() == 2) { 466 SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, 467 BasePtr, LD->getPointerInfo(), MVT::i16, 468 LD->isVolatile(), LD->isNonTemporal(), 469 LD->isInvariant(), 2); 470 SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, 471 DAG.getConstant(2, MVT::i32)); 472 SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 473 HighAddr, 474 LD->getPointerInfo().getWithOffset(2), 475 MVT::i16, LD->isVolatile(), 476 LD->isNonTemporal(), LD->isInvariant(), 2); 477 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, 478 DAG.getConstant(16, MVT::i32)); 479 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted); 480 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1), 481 High.getValue(1)); 482 SDValue Ops[] = { Result, Chain }; 483 return DAG.getMergeValues(Ops, DL); 484 } 485 486 // Lower to a call to __misaligned_load(BasePtr). 487 Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext()); 488 TargetLowering::ArgListTy Args; 489 TargetLowering::ArgListEntry Entry; 490 491 Entry.Ty = IntPtrTy; 492 Entry.Node = BasePtr; 493 Args.push_back(Entry); 494 495 TargetLowering::CallLoweringInfo CLI(DAG); 496 CLI.setDebugLoc(DL).setChain(Chain) 497 .setCallee(CallingConv::C, IntPtrTy, 498 DAG.getExternalSymbol("__misaligned_load", getPointerTy()), 499 std::move(Args), 0); 500 501 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 502 SDValue Ops[] = { CallResult.first, CallResult.second }; 503 return DAG.getMergeValues(Ops, DL); 504 } 505 506 SDValue XCoreTargetLowering:: 507 LowerSTORE(SDValue Op, SelectionDAG &DAG) const 508 { 509 StoreSDNode *ST = cast<StoreSDNode>(Op); 510 assert(!ST->isTruncatingStore() && "Unexpected store type"); 511 assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT"); 512 if (allowsMisalignedMemoryAccesses(ST->getMemoryVT(), 513 ST->getAddressSpace(), 514 ST->getAlignment())) { 515 return SDValue(); 516 } 517 unsigned ABIAlignment = getDataLayout()-> 518 getABITypeAlignment(ST->getMemoryVT().getTypeForEVT(*DAG.getContext())); 519 // Leave aligned store alone. 520 if (ST->getAlignment() >= ABIAlignment) { 521 return SDValue(); 522 } 523 SDValue Chain = ST->getChain(); 524 SDValue BasePtr = ST->getBasePtr(); 525 SDValue Value = ST->getValue(); 526 SDLoc dl(Op); 527 528 if (ST->getAlignment() == 2) { 529 SDValue Low = Value; 530 SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value, 531 DAG.getConstant(16, MVT::i32)); 532 SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr, 533 ST->getPointerInfo(), MVT::i16, 534 ST->isVolatile(), ST->isNonTemporal(), 535 2); 536 SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr, 537 DAG.getConstant(2, MVT::i32)); 538 SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr, 539 ST->getPointerInfo().getWithOffset(2), 540 MVT::i16, ST->isVolatile(), 541 ST->isNonTemporal(), 2); 542 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh); 543 } 544 545 // Lower to a call to __misaligned_store(BasePtr, Value). 546 Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext()); 547 TargetLowering::ArgListTy Args; 548 TargetLowering::ArgListEntry Entry; 549 550 Entry.Ty = IntPtrTy; 551 Entry.Node = BasePtr; 552 Args.push_back(Entry); 553 554 Entry.Node = Value; 555 Args.push_back(Entry); 556 557 TargetLowering::CallLoweringInfo CLI(DAG); 558 CLI.setDebugLoc(dl).setChain(Chain) 559 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 560 DAG.getExternalSymbol("__misaligned_store", getPointerTy()), 561 std::move(Args), 0); 562 563 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 564 return CallResult.second; 565 } 566 567 SDValue XCoreTargetLowering:: 568 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const 569 { 570 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI && 571 "Unexpected operand to lower!"); 572 SDLoc dl(Op); 573 SDValue LHS = Op.getOperand(0); 574 SDValue RHS = Op.getOperand(1); 575 SDValue Zero = DAG.getConstant(0, MVT::i32); 576 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl, 577 DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero, 578 LHS, RHS); 579 SDValue Lo(Hi.getNode(), 1); 580 SDValue Ops[] = { Lo, Hi }; 581 return DAG.getMergeValues(Ops, dl); 582 } 583 584 SDValue XCoreTargetLowering:: 585 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const 586 { 587 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI && 588 "Unexpected operand to lower!"); 589 SDLoc dl(Op); 590 SDValue LHS = Op.getOperand(0); 591 SDValue RHS = Op.getOperand(1); 592 SDValue Zero = DAG.getConstant(0, MVT::i32); 593 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl, 594 DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS, 595 Zero, Zero); 596 SDValue Lo(Hi.getNode(), 1); 597 SDValue Ops[] = { Lo, Hi }; 598 return DAG.getMergeValues(Ops, dl); 599 } 600 601 /// isADDADDMUL - Return whether Op is in a form that is equivalent to 602 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then 603 /// each intermediate result in the calculation must also have a single use. 604 /// If the Op is in the correct form the constituent parts are written to Mul0, 605 /// Mul1, Addend0 and Addend1. 606 static bool 607 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0, 608 SDValue &Addend1, bool requireIntermediatesHaveOneUse) 609 { 610 if (Op.getOpcode() != ISD::ADD) 611 return false; 612 SDValue N0 = Op.getOperand(0); 613 SDValue N1 = Op.getOperand(1); 614 SDValue AddOp; 615 SDValue OtherOp; 616 if (N0.getOpcode() == ISD::ADD) { 617 AddOp = N0; 618 OtherOp = N1; 619 } else if (N1.getOpcode() == ISD::ADD) { 620 AddOp = N1; 621 OtherOp = N0; 622 } else { 623 return false; 624 } 625 if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse()) 626 return false; 627 if (OtherOp.getOpcode() == ISD::MUL) { 628 // add(add(a,b),mul(x,y)) 629 if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse()) 630 return false; 631 Mul0 = OtherOp.getOperand(0); 632 Mul1 = OtherOp.getOperand(1); 633 Addend0 = AddOp.getOperand(0); 634 Addend1 = AddOp.getOperand(1); 635 return true; 636 } 637 if (AddOp.getOperand(0).getOpcode() == ISD::MUL) { 638 // add(add(mul(x,y),a),b) 639 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse()) 640 return false; 641 Mul0 = AddOp.getOperand(0).getOperand(0); 642 Mul1 = AddOp.getOperand(0).getOperand(1); 643 Addend0 = AddOp.getOperand(1); 644 Addend1 = OtherOp; 645 return true; 646 } 647 if (AddOp.getOperand(1).getOpcode() == ISD::MUL) { 648 // add(add(a,mul(x,y)),b) 649 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse()) 650 return false; 651 Mul0 = AddOp.getOperand(1).getOperand(0); 652 Mul1 = AddOp.getOperand(1).getOperand(1); 653 Addend0 = AddOp.getOperand(0); 654 Addend1 = OtherOp; 655 return true; 656 } 657 return false; 658 } 659 660 SDValue XCoreTargetLowering:: 661 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const 662 { 663 SDValue Mul; 664 SDValue Other; 665 if (N->getOperand(0).getOpcode() == ISD::MUL) { 666 Mul = N->getOperand(0); 667 Other = N->getOperand(1); 668 } else if (N->getOperand(1).getOpcode() == ISD::MUL) { 669 Mul = N->getOperand(1); 670 Other = N->getOperand(0); 671 } else { 672 return SDValue(); 673 } 674 SDLoc dl(N); 675 SDValue LL, RL, AddendL, AddendH; 676 LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 677 Mul.getOperand(0), DAG.getConstant(0, MVT::i32)); 678 RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 679 Mul.getOperand(1), DAG.getConstant(0, MVT::i32)); 680 AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 681 Other, DAG.getConstant(0, MVT::i32)); 682 AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 683 Other, DAG.getConstant(1, MVT::i32)); 684 APInt HighMask = APInt::getHighBitsSet(64, 32); 685 unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0)); 686 unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1)); 687 if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) && 688 DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) { 689 // The inputs are both zero-extended. 690 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl, 691 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 692 AddendL, LL, RL); 693 SDValue Lo(Hi.getNode(), 1); 694 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 695 } 696 if (LHSSB > 32 && RHSSB > 32) { 697 // The inputs are both sign-extended. 698 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl, 699 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 700 AddendL, LL, RL); 701 SDValue Lo(Hi.getNode(), 1); 702 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 703 } 704 SDValue LH, RH; 705 LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 706 Mul.getOperand(0), DAG.getConstant(1, MVT::i32)); 707 RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 708 Mul.getOperand(1), DAG.getConstant(1, MVT::i32)); 709 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl, 710 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 711 AddendL, LL, RL); 712 SDValue Lo(Hi.getNode(), 1); 713 RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH); 714 LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL); 715 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH); 716 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH); 717 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 718 } 719 720 SDValue XCoreTargetLowering:: 721 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const 722 { 723 assert(N->getValueType(0) == MVT::i64 && 724 (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 725 "Unknown operand to lower!"); 726 727 if (N->getOpcode() == ISD::ADD) { 728 SDValue Result = TryExpandADDWithMul(N, DAG); 729 if (Result.getNode()) 730 return Result; 731 } 732 733 SDLoc dl(N); 734 735 // Extract components 736 SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 737 N->getOperand(0), DAG.getConstant(0, MVT::i32)); 738 SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 739 N->getOperand(0), DAG.getConstant(1, MVT::i32)); 740 SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 741 N->getOperand(1), DAG.getConstant(0, MVT::i32)); 742 SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 743 N->getOperand(1), DAG.getConstant(1, MVT::i32)); 744 745 // Expand 746 unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD : 747 XCoreISD::LSUB; 748 SDValue Zero = DAG.getConstant(0, MVT::i32); 749 SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), 750 LHSL, RHSL, Zero); 751 SDValue Carry(Lo.getNode(), 1); 752 753 SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), 754 LHSH, RHSH, Carry); 755 SDValue Ignored(Hi.getNode(), 1); 756 // Merge the pieces 757 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 758 } 759 760 SDValue XCoreTargetLowering:: 761 LowerVAARG(SDValue Op, SelectionDAG &DAG) const 762 { 763 // Whist llvm does not support aggregate varargs we can ignore 764 // the possibility of the ValueType being an implicit byVal vararg. 765 SDNode *Node = Op.getNode(); 766 EVT VT = Node->getValueType(0); // not an aggregate 767 SDValue InChain = Node->getOperand(0); 768 SDValue VAListPtr = Node->getOperand(1); 769 EVT PtrVT = VAListPtr.getValueType(); 770 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 771 SDLoc dl(Node); 772 SDValue VAList = DAG.getLoad(PtrVT, dl, InChain, 773 VAListPtr, MachinePointerInfo(SV), 774 false, false, false, 0); 775 // Increment the pointer, VAList, to the next vararg 776 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList, 777 DAG.getIntPtrConstant(VT.getSizeInBits() / 8)); 778 // Store the incremented VAList to the legalized pointer 779 InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr, 780 MachinePointerInfo(SV), false, false, 0); 781 // Load the actual argument out of the pointer VAList 782 return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(), 783 false, false, false, 0); 784 } 785 786 SDValue XCoreTargetLowering:: 787 LowerVASTART(SDValue Op, SelectionDAG &DAG) const 788 { 789 SDLoc dl(Op); 790 // vastart stores the address of the VarArgsFrameIndex slot into the 791 // memory location argument 792 MachineFunction &MF = DAG.getMachineFunction(); 793 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 794 SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32); 795 return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1), 796 MachinePointerInfo(), false, false, 0); 797 } 798 799 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op, 800 SelectionDAG &DAG) const { 801 // This nodes represent llvm.frameaddress on the DAG. 802 // It takes one operand, the index of the frame address to return. 803 // An index of zero corresponds to the current function's frame address. 804 // An index of one to the parent's frame address, and so on. 805 // Depths > 0 not supported yet! 806 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0) 807 return SDValue(); 808 809 MachineFunction &MF = DAG.getMachineFunction(); 810 const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 811 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), 812 RegInfo->getFrameRegister(MF), MVT::i32); 813 } 814 815 SDValue XCoreTargetLowering:: 816 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { 817 // This nodes represent llvm.returnaddress on the DAG. 818 // It takes one operand, the index of the return address to return. 819 // An index of zero corresponds to the current function's return address. 820 // An index of one to the parent's return address, and so on. 821 // Depths > 0 not supported yet! 822 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0) 823 return SDValue(); 824 825 MachineFunction &MF = DAG.getMachineFunction(); 826 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 827 int FI = XFI->createLRSpillSlot(MF); 828 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 829 return DAG.getLoad(getPointerTy(), SDLoc(Op), DAG.getEntryNode(), FIN, 830 MachinePointerInfo::getFixedStack(FI), false, false, 831 false, 0); 832 } 833 834 SDValue XCoreTargetLowering:: 835 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const { 836 // This node represents offset from frame pointer to first on-stack argument. 837 // This is needed for correct stack adjustment during unwind. 838 // However, we don't know the offset until after the frame has be finalised. 839 // This is done during the XCoreFTAOElim pass. 840 return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32); 841 } 842 843 SDValue XCoreTargetLowering:: 844 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { 845 // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) 846 // This node represents 'eh_return' gcc dwarf builtin, which is used to 847 // return from exception. The general meaning is: adjust stack by OFFSET and 848 // pass execution to HANDLER. 849 MachineFunction &MF = DAG.getMachineFunction(); 850 SDValue Chain = Op.getOperand(0); 851 SDValue Offset = Op.getOperand(1); 852 SDValue Handler = Op.getOperand(2); 853 SDLoc dl(Op); 854 855 // Absolute SP = (FP + FrameToArgs) + Offset 856 const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 857 SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl, 858 RegInfo->getFrameRegister(MF), MVT::i32); 859 SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl, 860 MVT::i32); 861 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs); 862 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset); 863 864 // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister 865 // which leaves 2 caller saved registers, R2 & R3 for us to use. 866 unsigned StackReg = XCore::R2; 867 unsigned HandlerReg = XCore::R3; 868 869 SDValue OutChains[] = { 870 DAG.getCopyToReg(Chain, dl, StackReg, Stack), 871 DAG.getCopyToReg(Chain, dl, HandlerReg, Handler) 872 }; 873 874 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 875 876 return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain, 877 DAG.getRegister(StackReg, MVT::i32), 878 DAG.getRegister(HandlerReg, MVT::i32)); 879 880 } 881 882 SDValue XCoreTargetLowering:: 883 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { 884 return Op.getOperand(0); 885 } 886 887 SDValue XCoreTargetLowering:: 888 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { 889 SDValue Chain = Op.getOperand(0); 890 SDValue Trmp = Op.getOperand(1); // trampoline 891 SDValue FPtr = Op.getOperand(2); // nested function 892 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 893 894 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 895 896 // .align 4 897 // LDAPF_u10 r11, nest 898 // LDW_2rus r11, r11[0] 899 // STWSP_ru6 r11, sp[0] 900 // LDAPF_u10 r11, fptr 901 // LDW_2rus r11, r11[0] 902 // BAU_1r r11 903 // nest: 904 // .word nest 905 // fptr: 906 // .word fptr 907 SDValue OutChains[5]; 908 909 SDValue Addr = Trmp; 910 911 SDLoc dl(Op); 912 OutChains[0] = DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, MVT::i32), 913 Addr, MachinePointerInfo(TrmpAddr), false, false, 914 0); 915 916 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 917 DAG.getConstant(4, MVT::i32)); 918 OutChains[1] = DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, MVT::i32), 919 Addr, MachinePointerInfo(TrmpAddr, 4), false, 920 false, 0); 921 922 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 923 DAG.getConstant(8, MVT::i32)); 924 OutChains[2] = DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, MVT::i32), 925 Addr, MachinePointerInfo(TrmpAddr, 8), false, 926 false, 0); 927 928 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 929 DAG.getConstant(12, MVT::i32)); 930 OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr, 931 MachinePointerInfo(TrmpAddr, 12), false, false, 932 0); 933 934 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 935 DAG.getConstant(16, MVT::i32)); 936 OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr, 937 MachinePointerInfo(TrmpAddr, 16), false, false, 938 0); 939 940 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 941 } 942 943 SDValue XCoreTargetLowering:: 944 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { 945 SDLoc DL(Op); 946 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 947 switch (IntNo) { 948 case Intrinsic::xcore_crc8: 949 EVT VT = Op.getValueType(); 950 SDValue Data = 951 DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT), 952 Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3)); 953 SDValue Crc(Data.getNode(), 1); 954 SDValue Results[] = { Crc, Data }; 955 return DAG.getMergeValues(Results, DL); 956 } 957 return SDValue(); 958 } 959 960 SDValue XCoreTargetLowering:: 961 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const { 962 SDLoc DL(Op); 963 return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 964 } 965 966 SDValue XCoreTargetLowering:: 967 LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const { 968 AtomicSDNode *N = cast<AtomicSDNode>(Op); 969 assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP"); 970 assert(N->getOrdering() <= Monotonic && 971 "setInsertFencesForAtomic(true) and yet greater than Monotonic"); 972 if (N->getMemoryVT() == MVT::i32) { 973 if (N->getAlignment() < 4) 974 report_fatal_error("atomic load must be aligned"); 975 return DAG.getLoad(getPointerTy(), SDLoc(Op), N->getChain(), 976 N->getBasePtr(), N->getPointerInfo(), 977 N->isVolatile(), N->isNonTemporal(), 978 N->isInvariant(), N->getAlignment(), 979 N->getAAInfo(), N->getRanges()); 980 } 981 if (N->getMemoryVT() == MVT::i16) { 982 if (N->getAlignment() < 2) 983 report_fatal_error("atomic load must be aligned"); 984 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(), 985 N->getBasePtr(), N->getPointerInfo(), MVT::i16, 986 N->isVolatile(), N->isNonTemporal(), 987 N->isInvariant(), N->getAlignment(), N->getAAInfo()); 988 } 989 if (N->getMemoryVT() == MVT::i8) 990 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(), 991 N->getBasePtr(), N->getPointerInfo(), MVT::i8, 992 N->isVolatile(), N->isNonTemporal(), 993 N->isInvariant(), N->getAlignment(), N->getAAInfo()); 994 return SDValue(); 995 } 996 997 SDValue XCoreTargetLowering:: 998 LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const { 999 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1000 assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP"); 1001 assert(N->getOrdering() <= Monotonic && 1002 "setInsertFencesForAtomic(true) and yet greater than Monotonic"); 1003 if (N->getMemoryVT() == MVT::i32) { 1004 if (N->getAlignment() < 4) 1005 report_fatal_error("atomic store must be aligned"); 1006 return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(), 1007 N->getBasePtr(), N->getPointerInfo(), 1008 N->isVolatile(), N->isNonTemporal(), 1009 N->getAlignment(), N->getAAInfo()); 1010 } 1011 if (N->getMemoryVT() == MVT::i16) { 1012 if (N->getAlignment() < 2) 1013 report_fatal_error("atomic store must be aligned"); 1014 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(), 1015 N->getBasePtr(), N->getPointerInfo(), MVT::i16, 1016 N->isVolatile(), N->isNonTemporal(), 1017 N->getAlignment(), N->getAAInfo()); 1018 } 1019 if (N->getMemoryVT() == MVT::i8) 1020 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(), 1021 N->getBasePtr(), N->getPointerInfo(), MVT::i8, 1022 N->isVolatile(), N->isNonTemporal(), 1023 N->getAlignment(), N->getAAInfo()); 1024 return SDValue(); 1025 } 1026 1027 //===----------------------------------------------------------------------===// 1028 // Calling Convention Implementation 1029 //===----------------------------------------------------------------------===// 1030 1031 #include "XCoreGenCallingConv.inc" 1032 1033 //===----------------------------------------------------------------------===// 1034 // Call Calling Convention Implementation 1035 //===----------------------------------------------------------------------===// 1036 1037 /// XCore call implementation 1038 SDValue 1039 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 1040 SmallVectorImpl<SDValue> &InVals) const { 1041 SelectionDAG &DAG = CLI.DAG; 1042 SDLoc &dl = CLI.DL; 1043 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1044 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1045 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1046 SDValue Chain = CLI.Chain; 1047 SDValue Callee = CLI.Callee; 1048 bool &isTailCall = CLI.IsTailCall; 1049 CallingConv::ID CallConv = CLI.CallConv; 1050 bool isVarArg = CLI.IsVarArg; 1051 1052 // XCore target does not yet support tail call optimization. 1053 isTailCall = false; 1054 1055 // For now, only CallingConv::C implemented 1056 switch (CallConv) 1057 { 1058 default: 1059 llvm_unreachable("Unsupported calling convention"); 1060 case CallingConv::Fast: 1061 case CallingConv::C: 1062 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall, 1063 Outs, OutVals, Ins, dl, DAG, InVals); 1064 } 1065 } 1066 1067 /// LowerCallResult - Lower the result values of a call into the 1068 /// appropriate copies out of appropriate physical registers / memory locations. 1069 static SDValue 1070 LowerCallResult(SDValue Chain, SDValue InFlag, 1071 const SmallVectorImpl<CCValAssign> &RVLocs, 1072 SDLoc dl, SelectionDAG &DAG, 1073 SmallVectorImpl<SDValue> &InVals) { 1074 SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs; 1075 // Copy results out of physical registers. 1076 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 1077 const CCValAssign &VA = RVLocs[i]; 1078 if (VA.isRegLoc()) { 1079 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(), 1080 InFlag).getValue(1); 1081 InFlag = Chain.getValue(2); 1082 InVals.push_back(Chain.getValue(0)); 1083 } else { 1084 assert(VA.isMemLoc()); 1085 ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(), 1086 InVals.size())); 1087 // Reserve space for this result. 1088 InVals.push_back(SDValue()); 1089 } 1090 } 1091 1092 // Copy results out of memory. 1093 SmallVector<SDValue, 4> MemOpChains; 1094 for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) { 1095 int offset = ResultMemLocs[i].first; 1096 unsigned index = ResultMemLocs[i].second; 1097 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 1098 SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, MVT::i32) }; 1099 SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops); 1100 InVals[index] = load; 1101 MemOpChains.push_back(load.getValue(1)); 1102 } 1103 1104 // Transform all loads nodes into one single node because 1105 // all load nodes are independent of each other. 1106 if (!MemOpChains.empty()) 1107 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1108 1109 return Chain; 1110 } 1111 1112 /// LowerCCCCallTo - functions arguments are copied from virtual 1113 /// regs to (physical regs)/(stack frame), CALLSEQ_START and 1114 /// CALLSEQ_END are emitted. 1115 /// TODO: isTailCall, sret. 1116 SDValue 1117 XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee, 1118 CallingConv::ID CallConv, bool isVarArg, 1119 bool isTailCall, 1120 const SmallVectorImpl<ISD::OutputArg> &Outs, 1121 const SmallVectorImpl<SDValue> &OutVals, 1122 const SmallVectorImpl<ISD::InputArg> &Ins, 1123 SDLoc dl, SelectionDAG &DAG, 1124 SmallVectorImpl<SDValue> &InVals) const { 1125 1126 // Analyze operands of the call, assigning locations to each operand. 1127 SmallVector<CCValAssign, 16> ArgLocs; 1128 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 1129 *DAG.getContext()); 1130 1131 // The ABI dictates there should be one stack slot available to the callee 1132 // on function entry (for saving lr). 1133 CCInfo.AllocateStack(4, 4); 1134 1135 CCInfo.AnalyzeCallOperands(Outs, CC_XCore); 1136 1137 SmallVector<CCValAssign, 16> RVLocs; 1138 // Analyze return values to determine the number of bytes of stack required. 1139 CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 1140 *DAG.getContext()); 1141 RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4); 1142 RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore); 1143 1144 // Get a count of how many bytes are to be pushed on the stack. 1145 unsigned NumBytes = RetCCInfo.getNextStackOffset(); 1146 1147 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, 1148 getPointerTy(), true), dl); 1149 1150 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass; 1151 SmallVector<SDValue, 12> MemOpChains; 1152 1153 // Walk the register/memloc assignments, inserting copies/loads. 1154 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1155 CCValAssign &VA = ArgLocs[i]; 1156 SDValue Arg = OutVals[i]; 1157 1158 // Promote the value if needed. 1159 switch (VA.getLocInfo()) { 1160 default: llvm_unreachable("Unknown loc info!"); 1161 case CCValAssign::Full: break; 1162 case CCValAssign::SExt: 1163 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 1164 break; 1165 case CCValAssign::ZExt: 1166 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 1167 break; 1168 case CCValAssign::AExt: 1169 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 1170 break; 1171 } 1172 1173 // Arguments that can be passed on register must be kept at 1174 // RegsToPass vector 1175 if (VA.isRegLoc()) { 1176 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 1177 } else { 1178 assert(VA.isMemLoc()); 1179 1180 int Offset = VA.getLocMemOffset(); 1181 1182 MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other, 1183 Chain, Arg, 1184 DAG.getConstant(Offset/4, MVT::i32))); 1185 } 1186 } 1187 1188 // Transform all store nodes into one single node because 1189 // all store nodes are independent of each other. 1190 if (!MemOpChains.empty()) 1191 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1192 1193 // Build a sequence of copy-to-reg nodes chained together with token 1194 // chain and flag operands which copy the outgoing args into registers. 1195 // The InFlag in necessary since all emitted instructions must be 1196 // stuck together. 1197 SDValue InFlag; 1198 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1199 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 1200 RegsToPass[i].second, InFlag); 1201 InFlag = Chain.getValue(1); 1202 } 1203 1204 // If the callee is a GlobalAddress node (quite common, every direct call is) 1205 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1206 // Likewise ExternalSymbol -> TargetExternalSymbol. 1207 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1208 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32); 1209 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 1210 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32); 1211 1212 // XCoreBranchLink = #chain, #target_address, #opt_in_flags... 1213 // = Chain, Callee, Reg#1, Reg#2, ... 1214 // 1215 // Returns a chain & a flag for retval copy to use. 1216 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1217 SmallVector<SDValue, 8> Ops; 1218 Ops.push_back(Chain); 1219 Ops.push_back(Callee); 1220 1221 // Add argument registers to the end of the list so that they are 1222 // known live into the call. 1223 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1224 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1225 RegsToPass[i].second.getValueType())); 1226 1227 if (InFlag.getNode()) 1228 Ops.push_back(InFlag); 1229 1230 Chain = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops); 1231 InFlag = Chain.getValue(1); 1232 1233 // Create the CALLSEQ_END node. 1234 Chain = DAG.getCALLSEQ_END(Chain, 1235 DAG.getConstant(NumBytes, getPointerTy(), true), 1236 DAG.getConstant(0, getPointerTy(), true), 1237 InFlag, dl); 1238 InFlag = Chain.getValue(1); 1239 1240 // Handle result values, copying them out of physregs into vregs that we 1241 // return. 1242 return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals); 1243 } 1244 1245 //===----------------------------------------------------------------------===// 1246 // Formal Arguments Calling Convention Implementation 1247 //===----------------------------------------------------------------------===// 1248 1249 namespace { 1250 struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; }; 1251 } 1252 1253 /// XCore formal arguments implementation 1254 SDValue 1255 XCoreTargetLowering::LowerFormalArguments(SDValue Chain, 1256 CallingConv::ID CallConv, 1257 bool isVarArg, 1258 const SmallVectorImpl<ISD::InputArg> &Ins, 1259 SDLoc dl, 1260 SelectionDAG &DAG, 1261 SmallVectorImpl<SDValue> &InVals) 1262 const { 1263 switch (CallConv) 1264 { 1265 default: 1266 llvm_unreachable("Unsupported calling convention"); 1267 case CallingConv::C: 1268 case CallingConv::Fast: 1269 return LowerCCCArguments(Chain, CallConv, isVarArg, 1270 Ins, dl, DAG, InVals); 1271 } 1272 } 1273 1274 /// LowerCCCArguments - transform physical registers into 1275 /// virtual registers and generate load operations for 1276 /// arguments places on the stack. 1277 /// TODO: sret 1278 SDValue 1279 XCoreTargetLowering::LowerCCCArguments(SDValue Chain, 1280 CallingConv::ID CallConv, 1281 bool isVarArg, 1282 const SmallVectorImpl<ISD::InputArg> 1283 &Ins, 1284 SDLoc dl, 1285 SelectionDAG &DAG, 1286 SmallVectorImpl<SDValue> &InVals) const { 1287 MachineFunction &MF = DAG.getMachineFunction(); 1288 MachineFrameInfo *MFI = MF.getFrameInfo(); 1289 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1290 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 1291 1292 // Assign locations to all of the incoming arguments. 1293 SmallVector<CCValAssign, 16> ArgLocs; 1294 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 1295 *DAG.getContext()); 1296 1297 CCInfo.AnalyzeFormalArguments(Ins, CC_XCore); 1298 1299 unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize(); 1300 1301 unsigned LRSaveSize = StackSlotSize; 1302 1303 if (!isVarArg) 1304 XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize); 1305 1306 // All getCopyFromReg ops must precede any getMemcpys to prevent the 1307 // scheduler clobbering a register before it has been copied. 1308 // The stages are: 1309 // 1. CopyFromReg (and load) arg & vararg registers. 1310 // 2. Chain CopyFromReg nodes into a TokenFactor. 1311 // 3. Memcpy 'byVal' args & push final InVals. 1312 // 4. Chain mem ops nodes into a TokenFactor. 1313 SmallVector<SDValue, 4> CFRegNode; 1314 SmallVector<ArgDataPair, 4> ArgData; 1315 SmallVector<SDValue, 4> MemOps; 1316 1317 // 1a. CopyFromReg (and load) arg registers. 1318 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1319 1320 CCValAssign &VA = ArgLocs[i]; 1321 SDValue ArgIn; 1322 1323 if (VA.isRegLoc()) { 1324 // Arguments passed in registers 1325 EVT RegVT = VA.getLocVT(); 1326 switch (RegVT.getSimpleVT().SimpleTy) { 1327 default: 1328 { 1329 #ifndef NDEBUG 1330 errs() << "LowerFormalArguments Unhandled argument type: " 1331 << RegVT.getSimpleVT().SimpleTy << "\n"; 1332 #endif 1333 llvm_unreachable(nullptr); 1334 } 1335 case MVT::i32: 1336 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass); 1337 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1338 ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); 1339 CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1)); 1340 } 1341 } else { 1342 // sanity check 1343 assert(VA.isMemLoc()); 1344 // Load the argument to a virtual register 1345 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8; 1346 if (ObjSize > StackSlotSize) { 1347 errs() << "LowerFormalArguments Unhandled argument type: " 1348 << EVT(VA.getLocVT()).getEVTString() 1349 << "\n"; 1350 } 1351 // Create the frame index object for this incoming parameter... 1352 int FI = MFI->CreateFixedObject(ObjSize, 1353 LRSaveSize + VA.getLocMemOffset(), 1354 true); 1355 1356 // Create the SelectionDAG nodes corresponding to a load 1357 //from this parameter 1358 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1359 ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, 1360 MachinePointerInfo::getFixedStack(FI), 1361 false, false, false, 0); 1362 } 1363 const ArgDataPair ADP = { ArgIn, Ins[i].Flags }; 1364 ArgData.push_back(ADP); 1365 } 1366 1367 // 1b. CopyFromReg vararg registers. 1368 if (isVarArg) { 1369 // Argument registers 1370 static const MCPhysReg ArgRegs[] = { 1371 XCore::R0, XCore::R1, XCore::R2, XCore::R3 1372 }; 1373 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 1374 unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs); 1375 if (FirstVAReg < array_lengthof(ArgRegs)) { 1376 int offset = 0; 1377 // Save remaining registers, storing higher register numbers at a higher 1378 // address 1379 for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) { 1380 // Create a stack slot 1381 int FI = MFI->CreateFixedObject(4, offset, true); 1382 if (i == (int)FirstVAReg) { 1383 XFI->setVarArgsFrameIndex(FI); 1384 } 1385 offset -= StackSlotSize; 1386 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1387 // Move argument from phys reg -> virt reg 1388 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass); 1389 RegInfo.addLiveIn(ArgRegs[i], VReg); 1390 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 1391 CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1)); 1392 // Move argument from virt reg -> stack 1393 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1394 MachinePointerInfo(), false, false, 0); 1395 MemOps.push_back(Store); 1396 } 1397 } else { 1398 // This will point to the next argument passed via stack. 1399 XFI->setVarArgsFrameIndex( 1400 MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(), 1401 true)); 1402 } 1403 } 1404 1405 // 2. chain CopyFromReg nodes into a TokenFactor. 1406 if (!CFRegNode.empty()) 1407 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode); 1408 1409 // 3. Memcpy 'byVal' args & push final InVals. 1410 // Aggregates passed "byVal" need to be copied by the callee. 1411 // The callee will use a pointer to this copy, rather than the original 1412 // pointer. 1413 for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(), 1414 ArgDE = ArgData.end(); 1415 ArgDI != ArgDE; ++ArgDI) { 1416 if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) { 1417 unsigned Size = ArgDI->Flags.getByValSize(); 1418 unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign()); 1419 // Create a new object on the stack and copy the pointee into it. 1420 int FI = MFI->CreateStackObject(Size, Align, false); 1421 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1422 InVals.push_back(FIN); 1423 MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV, 1424 DAG.getConstant(Size, MVT::i32), 1425 Align, false, false, 1426 MachinePointerInfo(), 1427 MachinePointerInfo())); 1428 } else { 1429 InVals.push_back(ArgDI->SDV); 1430 } 1431 } 1432 1433 // 4, chain mem ops nodes into a TokenFactor. 1434 if (!MemOps.empty()) { 1435 MemOps.push_back(Chain); 1436 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 1437 } 1438 1439 return Chain; 1440 } 1441 1442 //===----------------------------------------------------------------------===// 1443 // Return Value Calling Convention Implementation 1444 //===----------------------------------------------------------------------===// 1445 1446 bool XCoreTargetLowering:: 1447 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, 1448 bool isVarArg, 1449 const SmallVectorImpl<ISD::OutputArg> &Outs, 1450 LLVMContext &Context) const { 1451 SmallVector<CCValAssign, 16> RVLocs; 1452 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 1453 if (!CCInfo.CheckReturn(Outs, RetCC_XCore)) 1454 return false; 1455 if (CCInfo.getNextStackOffset() != 0 && isVarArg) 1456 return false; 1457 return true; 1458 } 1459 1460 SDValue 1461 XCoreTargetLowering::LowerReturn(SDValue Chain, 1462 CallingConv::ID CallConv, bool isVarArg, 1463 const SmallVectorImpl<ISD::OutputArg> &Outs, 1464 const SmallVectorImpl<SDValue> &OutVals, 1465 SDLoc dl, SelectionDAG &DAG) const { 1466 1467 XCoreFunctionInfo *XFI = 1468 DAG.getMachineFunction().getInfo<XCoreFunctionInfo>(); 1469 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 1470 1471 // CCValAssign - represent the assignment of 1472 // the return value to a location 1473 SmallVector<CCValAssign, 16> RVLocs; 1474 1475 // CCState - Info about the registers and stack slot. 1476 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 1477 *DAG.getContext()); 1478 1479 // Analyze return values. 1480 if (!isVarArg) 1481 CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4); 1482 1483 CCInfo.AnalyzeReturn(Outs, RetCC_XCore); 1484 1485 SDValue Flag; 1486 SmallVector<SDValue, 4> RetOps(1, Chain); 1487 1488 // Return on XCore is always a "retsp 0" 1489 RetOps.push_back(DAG.getConstant(0, MVT::i32)); 1490 1491 SmallVector<SDValue, 4> MemOpChains; 1492 // Handle return values that must be copied to memory. 1493 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 1494 CCValAssign &VA = RVLocs[i]; 1495 if (VA.isRegLoc()) 1496 continue; 1497 assert(VA.isMemLoc()); 1498 if (isVarArg) { 1499 report_fatal_error("Can't return value from vararg function in memory"); 1500 } 1501 1502 int Offset = VA.getLocMemOffset(); 1503 unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8; 1504 // Create the frame index object for the memory location. 1505 int FI = MFI->CreateFixedObject(ObjSize, Offset, false); 1506 1507 // Create a SelectionDAG node corresponding to a store 1508 // to this memory location. 1509 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1510 MemOpChains.push_back(DAG.getStore(Chain, dl, OutVals[i], FIN, 1511 MachinePointerInfo::getFixedStack(FI), false, false, 1512 0)); 1513 } 1514 1515 // Transform all store nodes into one single node because 1516 // all stores are independent of each other. 1517 if (!MemOpChains.empty()) 1518 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1519 1520 // Now handle return values copied to registers. 1521 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 1522 CCValAssign &VA = RVLocs[i]; 1523 if (!VA.isRegLoc()) 1524 continue; 1525 // Copy the result values into the output registers. 1526 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); 1527 1528 // guarantee that all emitted copies are 1529 // stuck together, avoiding something bad 1530 Flag = Chain.getValue(1); 1531 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 1532 } 1533 1534 RetOps[0] = Chain; // Update chain. 1535 1536 // Add the flag if we have it. 1537 if (Flag.getNode()) 1538 RetOps.push_back(Flag); 1539 1540 return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps); 1541 } 1542 1543 //===----------------------------------------------------------------------===// 1544 // Other Lowering Code 1545 //===----------------------------------------------------------------------===// 1546 1547 MachineBasicBlock * 1548 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 1549 MachineBasicBlock *BB) const { 1550 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1551 DebugLoc dl = MI->getDebugLoc(); 1552 assert((MI->getOpcode() == XCore::SELECT_CC) && 1553 "Unexpected instr type to insert"); 1554 1555 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond 1556 // control-flow pattern. The incoming instruction knows the destination vreg 1557 // to set, the condition code register to branch on, the true/false values to 1558 // select between, and a branch opcode to use. 1559 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1560 MachineFunction::iterator It = BB; 1561 ++It; 1562 1563 // thisMBB: 1564 // ... 1565 // TrueVal = ... 1566 // cmpTY ccX, r1, r2 1567 // bCC copy1MBB 1568 // fallthrough --> copy0MBB 1569 MachineBasicBlock *thisMBB = BB; 1570 MachineFunction *F = BB->getParent(); 1571 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 1572 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 1573 F->insert(It, copy0MBB); 1574 F->insert(It, sinkMBB); 1575 1576 // Transfer the remainder of BB and its successor edges to sinkMBB. 1577 sinkMBB->splice(sinkMBB->begin(), BB, 1578 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1579 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 1580 1581 // Next, add the true and fallthrough blocks as its successors. 1582 BB->addSuccessor(copy0MBB); 1583 BB->addSuccessor(sinkMBB); 1584 1585 BuildMI(BB, dl, TII.get(XCore::BRFT_lru6)) 1586 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 1587 1588 // copy0MBB: 1589 // %FalseValue = ... 1590 // # fallthrough to sinkMBB 1591 BB = copy0MBB; 1592 1593 // Update machine-CFG edges 1594 BB->addSuccessor(sinkMBB); 1595 1596 // sinkMBB: 1597 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 1598 // ... 1599 BB = sinkMBB; 1600 BuildMI(*BB, BB->begin(), dl, 1601 TII.get(XCore::PHI), MI->getOperand(0).getReg()) 1602 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 1603 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 1604 1605 MI->eraseFromParent(); // The pseudo instruction is gone now. 1606 return BB; 1607 } 1608 1609 //===----------------------------------------------------------------------===// 1610 // Target Optimization Hooks 1611 //===----------------------------------------------------------------------===// 1612 1613 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N, 1614 DAGCombinerInfo &DCI) const { 1615 SelectionDAG &DAG = DCI.DAG; 1616 SDLoc dl(N); 1617 switch (N->getOpcode()) { 1618 default: break; 1619 case ISD::INTRINSIC_VOID: 1620 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 1621 case Intrinsic::xcore_outt: 1622 case Intrinsic::xcore_outct: 1623 case Intrinsic::xcore_chkct: { 1624 SDValue OutVal = N->getOperand(3); 1625 // These instructions ignore the high bits. 1626 if (OutVal.hasOneUse()) { 1627 unsigned BitWidth = OutVal.getValueSizeInBits(); 1628 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8); 1629 APInt KnownZero, KnownOne; 1630 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1631 !DCI.isBeforeLegalizeOps()); 1632 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1633 if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) || 1634 TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne, 1635 TLO)) 1636 DCI.CommitTargetLoweringOpt(TLO); 1637 } 1638 break; 1639 } 1640 case Intrinsic::xcore_setpt: { 1641 SDValue Time = N->getOperand(3); 1642 // This instruction ignores the high bits. 1643 if (Time.hasOneUse()) { 1644 unsigned BitWidth = Time.getValueSizeInBits(); 1645 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16); 1646 APInt KnownZero, KnownOne; 1647 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1648 !DCI.isBeforeLegalizeOps()); 1649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1650 if (TLO.ShrinkDemandedConstant(Time, DemandedMask) || 1651 TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne, 1652 TLO)) 1653 DCI.CommitTargetLoweringOpt(TLO); 1654 } 1655 break; 1656 } 1657 } 1658 break; 1659 case XCoreISD::LADD: { 1660 SDValue N0 = N->getOperand(0); 1661 SDValue N1 = N->getOperand(1); 1662 SDValue N2 = N->getOperand(2); 1663 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1664 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1665 EVT VT = N0.getValueType(); 1666 1667 // canonicalize constant to RHS 1668 if (N0C && !N1C) 1669 return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2); 1670 1671 // fold (ladd 0, 0, x) -> 0, x & 1 1672 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) { 1673 SDValue Carry = DAG.getConstant(0, VT); 1674 SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2, 1675 DAG.getConstant(1, VT)); 1676 SDValue Ops[] = { Result, Carry }; 1677 return DAG.getMergeValues(Ops, dl); 1678 } 1679 1680 // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the 1681 // low bit set 1682 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) { 1683 APInt KnownZero, KnownOne; 1684 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1685 VT.getSizeInBits() - 1); 1686 DAG.computeKnownBits(N2, KnownZero, KnownOne); 1687 if ((KnownZero & Mask) == Mask) { 1688 SDValue Carry = DAG.getConstant(0, VT); 1689 SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2); 1690 SDValue Ops[] = { Result, Carry }; 1691 return DAG.getMergeValues(Ops, dl); 1692 } 1693 } 1694 } 1695 break; 1696 case XCoreISD::LSUB: { 1697 SDValue N0 = N->getOperand(0); 1698 SDValue N1 = N->getOperand(1); 1699 SDValue N2 = N->getOperand(2); 1700 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1701 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1702 EVT VT = N0.getValueType(); 1703 1704 // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set 1705 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) { 1706 APInt KnownZero, KnownOne; 1707 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1708 VT.getSizeInBits() - 1); 1709 DAG.computeKnownBits(N2, KnownZero, KnownOne); 1710 if ((KnownZero & Mask) == Mask) { 1711 SDValue Borrow = N2; 1712 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, 1713 DAG.getConstant(0, VT), N2); 1714 SDValue Ops[] = { Result, Borrow }; 1715 return DAG.getMergeValues(Ops, dl); 1716 } 1717 } 1718 1719 // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the 1720 // low bit set 1721 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) { 1722 APInt KnownZero, KnownOne; 1723 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1724 VT.getSizeInBits() - 1); 1725 DAG.computeKnownBits(N2, KnownZero, KnownOne); 1726 if ((KnownZero & Mask) == Mask) { 1727 SDValue Borrow = DAG.getConstant(0, VT); 1728 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2); 1729 SDValue Ops[] = { Result, Borrow }; 1730 return DAG.getMergeValues(Ops, dl); 1731 } 1732 } 1733 } 1734 break; 1735 case XCoreISD::LMUL: { 1736 SDValue N0 = N->getOperand(0); 1737 SDValue N1 = N->getOperand(1); 1738 SDValue N2 = N->getOperand(2); 1739 SDValue N3 = N->getOperand(3); 1740 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1741 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1742 EVT VT = N0.getValueType(); 1743 // Canonicalize multiplicative constant to RHS. If both multiplicative 1744 // operands are constant canonicalize smallest to RHS. 1745 if ((N0C && !N1C) || 1746 (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue())) 1747 return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT), 1748 N1, N0, N2, N3); 1749 1750 // lmul(x, 0, a, b) 1751 if (N1C && N1C->isNullValue()) { 1752 // If the high result is unused fold to add(a, b) 1753 if (N->hasNUsesOfValue(0, 0)) { 1754 SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3); 1755 SDValue Ops[] = { Lo, Lo }; 1756 return DAG.getMergeValues(Ops, dl); 1757 } 1758 // Otherwise fold to ladd(a, b, 0) 1759 SDValue Result = 1760 DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1); 1761 SDValue Carry(Result.getNode(), 1); 1762 SDValue Ops[] = { Carry, Result }; 1763 return DAG.getMergeValues(Ops, dl); 1764 } 1765 } 1766 break; 1767 case ISD::ADD: { 1768 // Fold 32 bit expressions such as add(add(mul(x,y),a),b) -> 1769 // lmul(x, y, a, b). The high result of lmul will be ignored. 1770 // This is only profitable if the intermediate results are unused 1771 // elsewhere. 1772 SDValue Mul0, Mul1, Addend0, Addend1; 1773 if (N->getValueType(0) == MVT::i32 && 1774 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) { 1775 SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl, 1776 DAG.getVTList(MVT::i32, MVT::i32), Mul0, 1777 Mul1, Addend0, Addend1); 1778 SDValue Result(Ignored.getNode(), 1); 1779 return Result; 1780 } 1781 APInt HighMask = APInt::getHighBitsSet(64, 32); 1782 // Fold 64 bit expression such as add(add(mul(x,y),a),b) -> 1783 // lmul(x, y, a, b) if all operands are zero-extended. We do this 1784 // before type legalization as it is messy to match the operands after 1785 // that. 1786 if (N->getValueType(0) == MVT::i64 && 1787 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) && 1788 DAG.MaskedValueIsZero(Mul0, HighMask) && 1789 DAG.MaskedValueIsZero(Mul1, HighMask) && 1790 DAG.MaskedValueIsZero(Addend0, HighMask) && 1791 DAG.MaskedValueIsZero(Addend1, HighMask)) { 1792 SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1793 Mul0, DAG.getConstant(0, MVT::i32)); 1794 SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1795 Mul1, DAG.getConstant(0, MVT::i32)); 1796 SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1797 Addend0, DAG.getConstant(0, MVT::i32)); 1798 SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1799 Addend1, DAG.getConstant(0, MVT::i32)); 1800 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl, 1801 DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L, 1802 Addend0L, Addend1L); 1803 SDValue Lo(Hi.getNode(), 1); 1804 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 1805 } 1806 } 1807 break; 1808 case ISD::STORE: { 1809 // Replace unaligned store of unaligned load with memmove. 1810 StoreSDNode *ST = cast<StoreSDNode>(N); 1811 if (!DCI.isBeforeLegalize() || 1812 allowsMisalignedMemoryAccesses(ST->getMemoryVT(), 1813 ST->getAddressSpace(), 1814 ST->getAlignment()) || 1815 ST->isVolatile() || ST->isIndexed()) { 1816 break; 1817 } 1818 SDValue Chain = ST->getChain(); 1819 1820 unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits(); 1821 if (StoreBits % 8) { 1822 break; 1823 } 1824 unsigned ABIAlignment = getDataLayout()->getABITypeAlignment( 1825 ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext())); 1826 unsigned Alignment = ST->getAlignment(); 1827 if (Alignment >= ABIAlignment) { 1828 break; 1829 } 1830 1831 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) { 1832 if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() && 1833 LD->getAlignment() == Alignment && 1834 !LD->isVolatile() && !LD->isIndexed() && 1835 Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) { 1836 return DAG.getMemmove(Chain, dl, ST->getBasePtr(), 1837 LD->getBasePtr(), 1838 DAG.getConstant(StoreBits/8, MVT::i32), 1839 Alignment, false, ST->getPointerInfo(), 1840 LD->getPointerInfo()); 1841 } 1842 } 1843 break; 1844 } 1845 } 1846 return SDValue(); 1847 } 1848 1849 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1850 APInt &KnownZero, 1851 APInt &KnownOne, 1852 const SelectionDAG &DAG, 1853 unsigned Depth) const { 1854 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 1855 switch (Op.getOpcode()) { 1856 default: break; 1857 case XCoreISD::LADD: 1858 case XCoreISD::LSUB: 1859 if (Op.getResNo() == 1) { 1860 // Top bits of carry / borrow are clear. 1861 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1862 KnownZero.getBitWidth() - 1); 1863 } 1864 break; 1865 case ISD::INTRINSIC_W_CHAIN: 1866 { 1867 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1868 switch (IntNo) { 1869 case Intrinsic::xcore_getts: 1870 // High bits are known to be zero. 1871 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1872 KnownZero.getBitWidth() - 16); 1873 break; 1874 case Intrinsic::xcore_int: 1875 case Intrinsic::xcore_inct: 1876 // High bits are known to be zero. 1877 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1878 KnownZero.getBitWidth() - 8); 1879 break; 1880 case Intrinsic::xcore_testct: 1881 // Result is either 0 or 1. 1882 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1883 KnownZero.getBitWidth() - 1); 1884 break; 1885 case Intrinsic::xcore_testwct: 1886 // Result is in the range 0 - 4. 1887 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1888 KnownZero.getBitWidth() - 3); 1889 break; 1890 } 1891 } 1892 break; 1893 } 1894 } 1895 1896 //===----------------------------------------------------------------------===// 1897 // Addressing mode description hooks 1898 //===----------------------------------------------------------------------===// 1899 1900 static inline bool isImmUs(int64_t val) 1901 { 1902 return (val >= 0 && val <= 11); 1903 } 1904 1905 static inline bool isImmUs2(int64_t val) 1906 { 1907 return (val%2 == 0 && isImmUs(val/2)); 1908 } 1909 1910 static inline bool isImmUs4(int64_t val) 1911 { 1912 return (val%4 == 0 && isImmUs(val/4)); 1913 } 1914 1915 /// isLegalAddressingMode - Return true if the addressing mode represented 1916 /// by AM is legal for this target, for a load/store of the specified type. 1917 bool 1918 XCoreTargetLowering::isLegalAddressingMode(const AddrMode &AM, 1919 Type *Ty) const { 1920 if (Ty->getTypeID() == Type::VoidTyID) 1921 return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs); 1922 1923 const DataLayout *TD = TM.getDataLayout(); 1924 unsigned Size = TD->getTypeAllocSize(Ty); 1925 if (AM.BaseGV) { 1926 return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 && 1927 AM.BaseOffs%4 == 0; 1928 } 1929 1930 switch (Size) { 1931 case 1: 1932 // reg + imm 1933 if (AM.Scale == 0) { 1934 return isImmUs(AM.BaseOffs); 1935 } 1936 // reg + reg 1937 return AM.Scale == 1 && AM.BaseOffs == 0; 1938 case 2: 1939 case 3: 1940 // reg + imm 1941 if (AM.Scale == 0) { 1942 return isImmUs2(AM.BaseOffs); 1943 } 1944 // reg + reg<<1 1945 return AM.Scale == 2 && AM.BaseOffs == 0; 1946 default: 1947 // reg + imm 1948 if (AM.Scale == 0) { 1949 return isImmUs4(AM.BaseOffs); 1950 } 1951 // reg + reg<<2 1952 return AM.Scale == 4 && AM.BaseOffs == 0; 1953 } 1954 } 1955 1956 //===----------------------------------------------------------------------===// 1957 // XCore Inline Assembly Support 1958 //===----------------------------------------------------------------------===// 1959 1960 std::pair<unsigned, const TargetRegisterClass *> 1961 XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 1962 const std::string &Constraint, 1963 MVT VT) const { 1964 if (Constraint.size() == 1) { 1965 switch (Constraint[0]) { 1966 default : break; 1967 case 'r': 1968 return std::make_pair(0U, &XCore::GRRegsRegClass); 1969 } 1970 } 1971 // Use the default implementation in TargetLowering to convert the register 1972 // constraint into a member of a register class. 1973 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1974 } 1975