1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the XCoreTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "XCoreISelLowering.h"
14 #include "XCore.h"
15 #include "XCoreMachineFunctionInfo.h"
16 #include "XCoreSubtarget.h"
17 #include "XCoreTargetMachine.h"
18 #include "XCoreTargetObjectFile.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/CallingConv.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/IntrinsicsXCore.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/KnownBits.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39
40 using namespace llvm;
41
42 #define DEBUG_TYPE "xcore-lower"
43
44 const char *XCoreTargetLowering::
getTargetNodeName(unsigned Opcode) const45 getTargetNodeName(unsigned Opcode) const
46 {
47 switch ((XCoreISD::NodeType)Opcode)
48 {
49 case XCoreISD::FIRST_NUMBER : break;
50 case XCoreISD::BL : return "XCoreISD::BL";
51 case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
52 case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
53 case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
54 case XCoreISD::LDWSP : return "XCoreISD::LDWSP";
55 case XCoreISD::STWSP : return "XCoreISD::STWSP";
56 case XCoreISD::RETSP : return "XCoreISD::RETSP";
57 case XCoreISD::LADD : return "XCoreISD::LADD";
58 case XCoreISD::LSUB : return "XCoreISD::LSUB";
59 case XCoreISD::LMUL : return "XCoreISD::LMUL";
60 case XCoreISD::MACCU : return "XCoreISD::MACCU";
61 case XCoreISD::MACCS : return "XCoreISD::MACCS";
62 case XCoreISD::CRC8 : return "XCoreISD::CRC8";
63 case XCoreISD::BR_JT : return "XCoreISD::BR_JT";
64 case XCoreISD::BR_JT32 : return "XCoreISD::BR_JT32";
65 case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
66 case XCoreISD::EH_RETURN : return "XCoreISD::EH_RETURN";
67 case XCoreISD::MEMBARRIER : return "XCoreISD::MEMBARRIER";
68 }
69 return nullptr;
70 }
71
XCoreTargetLowering(const TargetMachine & TM,const XCoreSubtarget & Subtarget)72 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
73 const XCoreSubtarget &Subtarget)
74 : TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
75
76 // Set up the register classes.
77 addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
78
79 // Compute derived properties from the register classes
80 computeRegisterProperties(Subtarget.getRegisterInfo());
81
82 setStackPointerRegisterToSaveRestore(XCore::SP);
83
84 setSchedulingPreference(Sched::Source);
85
86 // Use i32 for setcc operations results (slt, sgt, ...).
87 setBooleanContents(ZeroOrOneBooleanContent);
88 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
89
90 // XCore does not have the NodeTypes below.
91 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
92 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
93
94 // 64bit
95 setOperationAction(ISD::ADD, MVT::i64, Custom);
96 setOperationAction(ISD::SUB, MVT::i64, Custom);
97 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
98 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
99 setOperationAction(ISD::MULHS, MVT::i32, Expand);
100 setOperationAction(ISD::MULHU, MVT::i32, Expand);
101 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
102 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
103 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
104
105 // Bit Manipulation
106 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
107 setOperationAction(ISD::ROTL , MVT::i32, Expand);
108 setOperationAction(ISD::ROTR , MVT::i32, Expand);
109 setOperationAction(ISD::BITREVERSE , MVT::i32, Legal);
110
111 setOperationAction(ISD::TRAP, MVT::Other, Legal);
112
113 // Jump tables.
114 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
115
116 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
117 setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
118
119 // Conversion of i64 -> double produces constantpool nodes
120 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
121
122 // Loads
123 for (MVT VT : MVT::integer_valuetypes()) {
124 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
125 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
126 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
127
128 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
129 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
130 }
131
132 // Custom expand misaligned loads / stores.
133 setOperationAction(ISD::LOAD, MVT::i32, Custom);
134 setOperationAction(ISD::STORE, MVT::i32, Custom);
135
136 // Varargs
137 setOperationAction(ISD::VAEND, MVT::Other, Expand);
138 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
139 setOperationAction(ISD::VAARG, MVT::Other, Custom);
140 setOperationAction(ISD::VASTART, MVT::Other, Custom);
141
142 // Dynamic stack
143 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
144 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
145 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
146
147 // Exception handling
148 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
149 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
150
151 // Atomic operations
152 // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
153 // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
154 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
155 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
156 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
157
158 // TRAMPOLINE is custom lowered.
159 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
160 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
161
162 // We want to custom lower some of our intrinsics.
163 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
164
165 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
166 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
167 = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
168
169 // We have target-specific dag combine patterns for the following nodes:
170 setTargetDAGCombine(
171 {ISD::STORE, ISD::ADD, ISD::INTRINSIC_VOID, ISD::INTRINSIC_W_CHAIN});
172
173 setMinFunctionAlignment(Align(2));
174 setPrefFunctionAlignment(Align(4));
175 }
176
isZExtFree(SDValue Val,EVT VT2) const177 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
178 if (Val.getOpcode() != ISD::LOAD)
179 return false;
180
181 EVT VT1 = Val.getValueType();
182 if (!VT1.isSimple() || !VT1.isInteger() ||
183 !VT2.isSimple() || !VT2.isInteger())
184 return false;
185
186 switch (VT1.getSimpleVT().SimpleTy) {
187 default: break;
188 case MVT::i8:
189 return true;
190 }
191
192 return false;
193 }
194
195 SDValue XCoreTargetLowering::
LowerOperation(SDValue Op,SelectionDAG & DAG) const196 LowerOperation(SDValue Op, SelectionDAG &DAG) const {
197 switch (Op.getOpcode())
198 {
199 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
200 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
201 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
202 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
203 case ISD::BR_JT: return LowerBR_JT(Op, DAG);
204 case ISD::LOAD: return LowerLOAD(Op, DAG);
205 case ISD::STORE: return LowerSTORE(Op, DAG);
206 case ISD::VAARG: return LowerVAARG(Op, DAG);
207 case ISD::VASTART: return LowerVASTART(Op, DAG);
208 case ISD::SMUL_LOHI: return LowerSMUL_LOHI(Op, DAG);
209 case ISD::UMUL_LOHI: return LowerUMUL_LOHI(Op, DAG);
210 // FIXME: Remove these when LegalizeDAGTypes lands.
211 case ISD::ADD:
212 case ISD::SUB: return ExpandADDSUB(Op.getNode(), DAG);
213 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
214 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
215 case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
216 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
217 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
218 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
219 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
220 case ISD::ATOMIC_LOAD: return LowerATOMIC_LOAD(Op, DAG);
221 case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG);
222 default:
223 llvm_unreachable("unimplemented operand");
224 }
225 }
226
227 /// ReplaceNodeResults - Replace the results of node with an illegal result
228 /// type with new values built out of custom code.
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const229 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
230 SmallVectorImpl<SDValue>&Results,
231 SelectionDAG &DAG) const {
232 switch (N->getOpcode()) {
233 default:
234 llvm_unreachable("Don't know how to custom expand this!");
235 case ISD::ADD:
236 case ISD::SUB:
237 Results.push_back(ExpandADDSUB(N, DAG));
238 return;
239 }
240 }
241
242 //===----------------------------------------------------------------------===//
243 // Misc Lower Operation implementation
244 //===----------------------------------------------------------------------===//
245
getGlobalAddressWrapper(SDValue GA,const GlobalValue * GV,SelectionDAG & DAG) const246 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
247 const GlobalValue *GV,
248 SelectionDAG &DAG) const {
249 // FIXME there is no actual debug info here
250 SDLoc dl(GA);
251
252 if (GV->getValueType()->isFunctionTy())
253 return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
254
255 const auto *GVar = dyn_cast<GlobalVariable>(GV);
256 if ((GV->hasSection() && GV->getSection().startswith(".cp.")) ||
257 (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
258 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
259
260 return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
261 }
262
IsSmallObject(const GlobalValue * GV,const XCoreTargetLowering & XTL)263 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
264 if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
265 return true;
266
267 Type *ObjType = GV->getValueType();
268 if (!ObjType->isSized())
269 return false;
270
271 auto &DL = GV->getParent()->getDataLayout();
272 unsigned ObjSize = DL.getTypeAllocSize(ObjType);
273 return ObjSize < CodeModelLargeSize && ObjSize != 0;
274 }
275
276 SDValue XCoreTargetLowering::
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const277 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
278 {
279 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
280 const GlobalValue *GV = GN->getGlobal();
281 SDLoc DL(GN);
282 int64_t Offset = GN->getOffset();
283 if (IsSmallObject(GV, *this)) {
284 // We can only fold positive offsets that are a multiple of the word size.
285 int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
286 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
287 GA = getGlobalAddressWrapper(GA, GV, DAG);
288 // Handle the rest of the offset.
289 if (Offset != FoldedOffset) {
290 SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32);
291 GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
292 }
293 return GA;
294 } else {
295 // Ideally we would not fold in offset with an index <= 11.
296 Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
297 Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
298 Ty = Type::getInt32Ty(*DAG.getContext());
299 Constant *Idx = ConstantInt::get(Ty, Offset);
300 Constant *GAI = ConstantExpr::getGetElementPtr(
301 Type::getInt8Ty(*DAG.getContext()), GA, Idx);
302 SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
303 return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL,
304 DAG.getEntryNode(), CP, MachinePointerInfo());
305 }
306 }
307
308 SDValue XCoreTargetLowering::
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const309 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
310 {
311 SDLoc DL(Op);
312 auto PtrVT = getPointerTy(DAG.getDataLayout());
313 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
314 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
315
316 return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result);
317 }
318
319 SDValue XCoreTargetLowering::
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const320 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
321 {
322 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
323 // FIXME there isn't really debug info here
324 SDLoc dl(CP);
325 EVT PtrVT = Op.getValueType();
326 SDValue Res;
327 if (CP->isMachineConstantPoolEntry()) {
328 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
329 CP->getAlign(), CP->getOffset());
330 } else {
331 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
332 CP->getOffset());
333 }
334 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
335 }
336
getJumpTableEncoding() const337 unsigned XCoreTargetLowering::getJumpTableEncoding() const {
338 return MachineJumpTableInfo::EK_Inline;
339 }
340
341 SDValue XCoreTargetLowering::
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const342 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
343 {
344 SDValue Chain = Op.getOperand(0);
345 SDValue Table = Op.getOperand(1);
346 SDValue Index = Op.getOperand(2);
347 SDLoc dl(Op);
348 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
349 unsigned JTI = JT->getIndex();
350 MachineFunction &MF = DAG.getMachineFunction();
351 const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
352 SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
353
354 unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
355 if (NumEntries <= 32) {
356 return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
357 }
358 assert((NumEntries >> 31) == 0);
359 SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
360 DAG.getConstant(1, dl, MVT::i32));
361 return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
362 ScaledIndex);
363 }
364
lowerLoadWordFromAlignedBasePlusOffset(const SDLoc & DL,SDValue Chain,SDValue Base,int64_t Offset,SelectionDAG & DAG) const365 SDValue XCoreTargetLowering::lowerLoadWordFromAlignedBasePlusOffset(
366 const SDLoc &DL, SDValue Chain, SDValue Base, int64_t Offset,
367 SelectionDAG &DAG) const {
368 auto PtrVT = getPointerTy(DAG.getDataLayout());
369 if ((Offset & 0x3) == 0) {
370 return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo());
371 }
372 // Lower to pair of consecutive word aligned loads plus some bit shifting.
373 int32_t HighOffset = alignTo(Offset, 4);
374 int32_t LowOffset = HighOffset - 4;
375 SDValue LowAddr, HighAddr;
376 if (GlobalAddressSDNode *GASD =
377 dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
378 LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
379 LowOffset);
380 HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
381 HighOffset);
382 } else {
383 LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
384 DAG.getConstant(LowOffset, DL, MVT::i32));
385 HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
386 DAG.getConstant(HighOffset, DL, MVT::i32));
387 }
388 SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32);
389 SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32);
390
391 SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo());
392 SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo());
393 SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
394 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
395 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
396 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
397 High.getValue(1));
398 SDValue Ops[] = { Result, Chain };
399 return DAG.getMergeValues(Ops, DL);
400 }
401
isWordAligned(SDValue Value,SelectionDAG & DAG)402 static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
403 {
404 KnownBits Known = DAG.computeKnownBits(Value);
405 return Known.countMinTrailingZeros() >= 2;
406 }
407
LowerLOAD(SDValue Op,SelectionDAG & DAG) const408 SDValue XCoreTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
409 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
410 LLVMContext &Context = *DAG.getContext();
411 LoadSDNode *LD = cast<LoadSDNode>(Op);
412 assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
413 "Unexpected extension type");
414 assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
415
416 if (allowsMemoryAccessForAlignment(Context, DAG.getDataLayout(),
417 LD->getMemoryVT(), *LD->getMemOperand()))
418 return SDValue();
419
420 SDValue Chain = LD->getChain();
421 SDValue BasePtr = LD->getBasePtr();
422 SDLoc DL(Op);
423
424 if (!LD->isVolatile()) {
425 const GlobalValue *GV;
426 int64_t Offset = 0;
427 if (DAG.isBaseWithConstantOffset(BasePtr) &&
428 isWordAligned(BasePtr->getOperand(0), DAG)) {
429 SDValue NewBasePtr = BasePtr->getOperand(0);
430 Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
431 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
432 Offset, DAG);
433 }
434 if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
435 GV->getPointerAlignment(DAG.getDataLayout()) >= 4) {
436 SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
437 BasePtr->getValueType(0));
438 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
439 Offset, DAG);
440 }
441 }
442
443 if (LD->getAlign() == Align(2)) {
444 SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, BasePtr,
445 LD->getPointerInfo(), MVT::i16, Align(2),
446 LD->getMemOperand()->getFlags());
447 SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
448 DAG.getConstant(2, DL, MVT::i32));
449 SDValue High =
450 DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, HighAddr,
451 LD->getPointerInfo().getWithOffset(2), MVT::i16,
452 Align(2), LD->getMemOperand()->getFlags());
453 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
454 DAG.getConstant(16, DL, MVT::i32));
455 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
456 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
457 High.getValue(1));
458 SDValue Ops[] = { Result, Chain };
459 return DAG.getMergeValues(Ops, DL);
460 }
461
462 // Lower to a call to __misaligned_load(BasePtr).
463 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(Context);
464 TargetLowering::ArgListTy Args;
465 TargetLowering::ArgListEntry Entry;
466
467 Entry.Ty = IntPtrTy;
468 Entry.Node = BasePtr;
469 Args.push_back(Entry);
470
471 TargetLowering::CallLoweringInfo CLI(DAG);
472 CLI.setDebugLoc(DL).setChain(Chain).setLibCallee(
473 CallingConv::C, IntPtrTy,
474 DAG.getExternalSymbol("__misaligned_load",
475 getPointerTy(DAG.getDataLayout())),
476 std::move(Args));
477
478 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
479 SDValue Ops[] = { CallResult.first, CallResult.second };
480 return DAG.getMergeValues(Ops, DL);
481 }
482
LowerSTORE(SDValue Op,SelectionDAG & DAG) const483 SDValue XCoreTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
484 LLVMContext &Context = *DAG.getContext();
485 StoreSDNode *ST = cast<StoreSDNode>(Op);
486 assert(!ST->isTruncatingStore() && "Unexpected store type");
487 assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
488
489 if (allowsMemoryAccessForAlignment(Context, DAG.getDataLayout(),
490 ST->getMemoryVT(), *ST->getMemOperand()))
491 return SDValue();
492
493 SDValue Chain = ST->getChain();
494 SDValue BasePtr = ST->getBasePtr();
495 SDValue Value = ST->getValue();
496 SDLoc dl(Op);
497
498 if (ST->getAlign() == Align(2)) {
499 SDValue Low = Value;
500 SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
501 DAG.getConstant(16, dl, MVT::i32));
502 SDValue StoreLow =
503 DAG.getTruncStore(Chain, dl, Low, BasePtr, ST->getPointerInfo(),
504 MVT::i16, Align(2), ST->getMemOperand()->getFlags());
505 SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
506 DAG.getConstant(2, dl, MVT::i32));
507 SDValue StoreHigh = DAG.getTruncStore(
508 Chain, dl, High, HighAddr, ST->getPointerInfo().getWithOffset(2),
509 MVT::i16, Align(2), ST->getMemOperand()->getFlags());
510 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
511 }
512
513 // Lower to a call to __misaligned_store(BasePtr, Value).
514 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(Context);
515 TargetLowering::ArgListTy Args;
516 TargetLowering::ArgListEntry Entry;
517
518 Entry.Ty = IntPtrTy;
519 Entry.Node = BasePtr;
520 Args.push_back(Entry);
521
522 Entry.Node = Value;
523 Args.push_back(Entry);
524
525 TargetLowering::CallLoweringInfo CLI(DAG);
526 CLI.setDebugLoc(dl).setChain(Chain).setCallee(
527 CallingConv::C, Type::getVoidTy(Context),
528 DAG.getExternalSymbol("__misaligned_store",
529 getPointerTy(DAG.getDataLayout())),
530 std::move(Args));
531
532 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
533 return CallResult.second;
534 }
535
536 SDValue XCoreTargetLowering::
LowerSMUL_LOHI(SDValue Op,SelectionDAG & DAG) const537 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
538 {
539 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
540 "Unexpected operand to lower!");
541 SDLoc dl(Op);
542 SDValue LHS = Op.getOperand(0);
543 SDValue RHS = Op.getOperand(1);
544 SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
545 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
546 DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
547 LHS, RHS);
548 SDValue Lo(Hi.getNode(), 1);
549 SDValue Ops[] = { Lo, Hi };
550 return DAG.getMergeValues(Ops, dl);
551 }
552
553 SDValue XCoreTargetLowering::
LowerUMUL_LOHI(SDValue Op,SelectionDAG & DAG) const554 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
555 {
556 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
557 "Unexpected operand to lower!");
558 SDLoc dl(Op);
559 SDValue LHS = Op.getOperand(0);
560 SDValue RHS = Op.getOperand(1);
561 SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
562 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
563 DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
564 Zero, Zero);
565 SDValue Lo(Hi.getNode(), 1);
566 SDValue Ops[] = { Lo, Hi };
567 return DAG.getMergeValues(Ops, dl);
568 }
569
570 /// isADDADDMUL - Return whether Op is in a form that is equivalent to
571 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
572 /// each intermediate result in the calculation must also have a single use.
573 /// If the Op is in the correct form the constituent parts are written to Mul0,
574 /// Mul1, Addend0 and Addend1.
575 static bool
isADDADDMUL(SDValue Op,SDValue & Mul0,SDValue & Mul1,SDValue & Addend0,SDValue & Addend1,bool requireIntermediatesHaveOneUse)576 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
577 SDValue &Addend1, bool requireIntermediatesHaveOneUse)
578 {
579 if (Op.getOpcode() != ISD::ADD)
580 return false;
581 SDValue N0 = Op.getOperand(0);
582 SDValue N1 = Op.getOperand(1);
583 SDValue AddOp;
584 SDValue OtherOp;
585 if (N0.getOpcode() == ISD::ADD) {
586 AddOp = N0;
587 OtherOp = N1;
588 } else if (N1.getOpcode() == ISD::ADD) {
589 AddOp = N1;
590 OtherOp = N0;
591 } else {
592 return false;
593 }
594 if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
595 return false;
596 if (OtherOp.getOpcode() == ISD::MUL) {
597 // add(add(a,b),mul(x,y))
598 if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
599 return false;
600 Mul0 = OtherOp.getOperand(0);
601 Mul1 = OtherOp.getOperand(1);
602 Addend0 = AddOp.getOperand(0);
603 Addend1 = AddOp.getOperand(1);
604 return true;
605 }
606 if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
607 // add(add(mul(x,y),a),b)
608 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
609 return false;
610 Mul0 = AddOp.getOperand(0).getOperand(0);
611 Mul1 = AddOp.getOperand(0).getOperand(1);
612 Addend0 = AddOp.getOperand(1);
613 Addend1 = OtherOp;
614 return true;
615 }
616 if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
617 // add(add(a,mul(x,y)),b)
618 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
619 return false;
620 Mul0 = AddOp.getOperand(1).getOperand(0);
621 Mul1 = AddOp.getOperand(1).getOperand(1);
622 Addend0 = AddOp.getOperand(0);
623 Addend1 = OtherOp;
624 return true;
625 }
626 return false;
627 }
628
629 SDValue XCoreTargetLowering::
TryExpandADDWithMul(SDNode * N,SelectionDAG & DAG) const630 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
631 {
632 SDValue Mul;
633 SDValue Other;
634 if (N->getOperand(0).getOpcode() == ISD::MUL) {
635 Mul = N->getOperand(0);
636 Other = N->getOperand(1);
637 } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
638 Mul = N->getOperand(1);
639 Other = N->getOperand(0);
640 } else {
641 return SDValue();
642 }
643 SDLoc dl(N);
644 SDValue LL, RL, AddendL, AddendH;
645 LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
646 Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32));
647 RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
648 Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
649 AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
650 Other, DAG.getConstant(0, dl, MVT::i32));
651 AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
652 Other, DAG.getConstant(1, dl, MVT::i32));
653 APInt HighMask = APInt::getHighBitsSet(64, 32);
654 unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
655 unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
656 if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
657 DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
658 // The inputs are both zero-extended.
659 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
660 DAG.getVTList(MVT::i32, MVT::i32), AddendH,
661 AddendL, LL, RL);
662 SDValue Lo(Hi.getNode(), 1);
663 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
664 }
665 if (LHSSB > 32 && RHSSB > 32) {
666 // The inputs are both sign-extended.
667 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
668 DAG.getVTList(MVT::i32, MVT::i32), AddendH,
669 AddendL, LL, RL);
670 SDValue Lo(Hi.getNode(), 1);
671 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
672 }
673 SDValue LH, RH;
674 LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
675 Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32));
676 RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
677 Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32));
678 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
679 DAG.getVTList(MVT::i32, MVT::i32), AddendH,
680 AddendL, LL, RL);
681 SDValue Lo(Hi.getNode(), 1);
682 RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
683 LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
684 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
685 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
686 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
687 }
688
689 SDValue XCoreTargetLowering::
ExpandADDSUB(SDNode * N,SelectionDAG & DAG) const690 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
691 {
692 assert(N->getValueType(0) == MVT::i64 &&
693 (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
694 "Unknown operand to lower!");
695
696 if (N->getOpcode() == ISD::ADD)
697 if (SDValue Result = TryExpandADDWithMul(N, DAG))
698 return Result;
699
700 SDLoc dl(N);
701
702 // Extract components
703 SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
704 N->getOperand(0),
705 DAG.getConstant(0, dl, MVT::i32));
706 SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
707 N->getOperand(0),
708 DAG.getConstant(1, dl, MVT::i32));
709 SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
710 N->getOperand(1),
711 DAG.getConstant(0, dl, MVT::i32));
712 SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
713 N->getOperand(1),
714 DAG.getConstant(1, dl, MVT::i32));
715
716 // Expand
717 unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
718 XCoreISD::LSUB;
719 SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
720 SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
721 LHSL, RHSL, Zero);
722 SDValue Carry(Lo.getNode(), 1);
723
724 SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
725 LHSH, RHSH, Carry);
726 SDValue Ignored(Hi.getNode(), 1);
727 // Merge the pieces
728 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
729 }
730
731 SDValue XCoreTargetLowering::
LowerVAARG(SDValue Op,SelectionDAG & DAG) const732 LowerVAARG(SDValue Op, SelectionDAG &DAG) const
733 {
734 // Whist llvm does not support aggregate varargs we can ignore
735 // the possibility of the ValueType being an implicit byVal vararg.
736 SDNode *Node = Op.getNode();
737 EVT VT = Node->getValueType(0); // not an aggregate
738 SDValue InChain = Node->getOperand(0);
739 SDValue VAListPtr = Node->getOperand(1);
740 EVT PtrVT = VAListPtr.getValueType();
741 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
742 SDLoc dl(Node);
743 SDValue VAList =
744 DAG.getLoad(PtrVT, dl, InChain, VAListPtr, MachinePointerInfo(SV));
745 // Increment the pointer, VAList, to the next vararg
746 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
747 DAG.getIntPtrConstant(VT.getSizeInBits() / 8,
748 dl));
749 // Store the incremented VAList to the legalized pointer
750 InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
751 MachinePointerInfo(SV));
752 // Load the actual argument out of the pointer VAList
753 return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo());
754 }
755
756 SDValue XCoreTargetLowering::
LowerVASTART(SDValue Op,SelectionDAG & DAG) const757 LowerVASTART(SDValue Op, SelectionDAG &DAG) const
758 {
759 SDLoc dl(Op);
760 // vastart stores the address of the VarArgsFrameIndex slot into the
761 // memory location argument
762 MachineFunction &MF = DAG.getMachineFunction();
763 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
764 SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
765 return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
766 MachinePointerInfo());
767 }
768
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const769 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
770 SelectionDAG &DAG) const {
771 // This nodes represent llvm.frameaddress on the DAG.
772 // It takes one operand, the index of the frame address to return.
773 // An index of zero corresponds to the current function's frame address.
774 // An index of one to the parent's frame address, and so on.
775 // Depths > 0 not supported yet!
776 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
777 return SDValue();
778
779 MachineFunction &MF = DAG.getMachineFunction();
780 const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
781 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
782 RegInfo->getFrameRegister(MF), MVT::i32);
783 }
784
785 SDValue XCoreTargetLowering::
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const786 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
787 // This nodes represent llvm.returnaddress on the DAG.
788 // It takes one operand, the index of the return address to return.
789 // An index of zero corresponds to the current function's return address.
790 // An index of one to the parent's return address, and so on.
791 // Depths > 0 not supported yet!
792 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
793 return SDValue();
794
795 MachineFunction &MF = DAG.getMachineFunction();
796 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
797 int FI = XFI->createLRSpillSlot(MF);
798 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
799 return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
800 DAG.getEntryNode(), FIN,
801 MachinePointerInfo::getFixedStack(MF, FI));
802 }
803
804 SDValue XCoreTargetLowering::
LowerFRAME_TO_ARGS_OFFSET(SDValue Op,SelectionDAG & DAG) const805 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
806 // This node represents offset from frame pointer to first on-stack argument.
807 // This is needed for correct stack adjustment during unwind.
808 // However, we don't know the offset until after the frame has be finalised.
809 // This is done during the XCoreFTAOElim pass.
810 return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
811 }
812
813 SDValue XCoreTargetLowering::
LowerEH_RETURN(SDValue Op,SelectionDAG & DAG) const814 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
815 // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
816 // This node represents 'eh_return' gcc dwarf builtin, which is used to
817 // return from exception. The general meaning is: adjust stack by OFFSET and
818 // pass execution to HANDLER.
819 MachineFunction &MF = DAG.getMachineFunction();
820 SDValue Chain = Op.getOperand(0);
821 SDValue Offset = Op.getOperand(1);
822 SDValue Handler = Op.getOperand(2);
823 SDLoc dl(Op);
824
825 // Absolute SP = (FP + FrameToArgs) + Offset
826 const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
827 SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
828 RegInfo->getFrameRegister(MF), MVT::i32);
829 SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
830 MVT::i32);
831 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
832 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
833
834 // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
835 // which leaves 2 caller saved registers, R2 & R3 for us to use.
836 unsigned StackReg = XCore::R2;
837 unsigned HandlerReg = XCore::R3;
838
839 SDValue OutChains[] = {
840 DAG.getCopyToReg(Chain, dl, StackReg, Stack),
841 DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
842 };
843
844 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
845
846 return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
847 DAG.getRegister(StackReg, MVT::i32),
848 DAG.getRegister(HandlerReg, MVT::i32));
849
850 }
851
852 SDValue XCoreTargetLowering::
LowerADJUST_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const853 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
854 return Op.getOperand(0);
855 }
856
857 SDValue XCoreTargetLowering::
LowerINIT_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const858 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
859 SDValue Chain = Op.getOperand(0);
860 SDValue Trmp = Op.getOperand(1); // trampoline
861 SDValue FPtr = Op.getOperand(2); // nested function
862 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
863
864 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
865
866 // .align 4
867 // LDAPF_u10 r11, nest
868 // LDW_2rus r11, r11[0]
869 // STWSP_ru6 r11, sp[0]
870 // LDAPF_u10 r11, fptr
871 // LDW_2rus r11, r11[0]
872 // BAU_1r r11
873 // nest:
874 // .word nest
875 // fptr:
876 // .word fptr
877 SDValue OutChains[5];
878
879 SDValue Addr = Trmp;
880
881 SDLoc dl(Op);
882 OutChains[0] =
883 DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr,
884 MachinePointerInfo(TrmpAddr));
885
886 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
887 DAG.getConstant(4, dl, MVT::i32));
888 OutChains[1] =
889 DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr,
890 MachinePointerInfo(TrmpAddr, 4));
891
892 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
893 DAG.getConstant(8, dl, MVT::i32));
894 OutChains[2] =
895 DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr,
896 MachinePointerInfo(TrmpAddr, 8));
897
898 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
899 DAG.getConstant(12, dl, MVT::i32));
900 OutChains[3] =
901 DAG.getStore(Chain, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12));
902
903 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
904 DAG.getConstant(16, dl, MVT::i32));
905 OutChains[4] =
906 DAG.getStore(Chain, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 16));
907
908 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
909 }
910
911 SDValue XCoreTargetLowering::
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const912 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
913 SDLoc DL(Op);
914 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
915 switch (IntNo) {
916 case Intrinsic::xcore_crc8:
917 EVT VT = Op.getValueType();
918 SDValue Data =
919 DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
920 Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
921 SDValue Crc(Data.getNode(), 1);
922 SDValue Results[] = { Crc, Data };
923 return DAG.getMergeValues(Results, DL);
924 }
925 return SDValue();
926 }
927
928 SDValue XCoreTargetLowering::
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG) const929 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
930 SDLoc DL(Op);
931 return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
932 }
933
934 SDValue XCoreTargetLowering::
LowerATOMIC_LOAD(SDValue Op,SelectionDAG & DAG) const935 LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
936 AtomicSDNode *N = cast<AtomicSDNode>(Op);
937 assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
938 assert((N->getSuccessOrdering() == AtomicOrdering::Unordered ||
939 N->getSuccessOrdering() == AtomicOrdering::Monotonic) &&
940 "setInsertFencesForAtomic(true) expects unordered / monotonic");
941 if (N->getMemoryVT() == MVT::i32) {
942 if (N->getAlign() < Align(4))
943 report_fatal_error("atomic load must be aligned");
944 return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
945 N->getChain(), N->getBasePtr(), N->getPointerInfo(),
946 N->getAlign(), N->getMemOperand()->getFlags(),
947 N->getAAInfo(), N->getRanges());
948 }
949 if (N->getMemoryVT() == MVT::i16) {
950 if (N->getAlign() < Align(2))
951 report_fatal_error("atomic load must be aligned");
952 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
953 N->getBasePtr(), N->getPointerInfo(), MVT::i16,
954 N->getAlign(), N->getMemOperand()->getFlags(),
955 N->getAAInfo());
956 }
957 if (N->getMemoryVT() == MVT::i8)
958 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
959 N->getBasePtr(), N->getPointerInfo(), MVT::i8,
960 N->getAlign(), N->getMemOperand()->getFlags(),
961 N->getAAInfo());
962 return SDValue();
963 }
964
965 SDValue XCoreTargetLowering::
LowerATOMIC_STORE(SDValue Op,SelectionDAG & DAG) const966 LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
967 AtomicSDNode *N = cast<AtomicSDNode>(Op);
968 assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
969 assert((N->getSuccessOrdering() == AtomicOrdering::Unordered ||
970 N->getSuccessOrdering() == AtomicOrdering::Monotonic) &&
971 "setInsertFencesForAtomic(true) expects unordered / monotonic");
972 if (N->getMemoryVT() == MVT::i32) {
973 if (N->getAlign() < Align(4))
974 report_fatal_error("atomic store must be aligned");
975 return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(), N->getBasePtr(),
976 N->getPointerInfo(), N->getAlign(),
977 N->getMemOperand()->getFlags(), N->getAAInfo());
978 }
979 if (N->getMemoryVT() == MVT::i16) {
980 if (N->getAlign() < Align(2))
981 report_fatal_error("atomic store must be aligned");
982 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
983 N->getBasePtr(), N->getPointerInfo(), MVT::i16,
984 N->getAlign(), N->getMemOperand()->getFlags(),
985 N->getAAInfo());
986 }
987 if (N->getMemoryVT() == MVT::i8)
988 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
989 N->getBasePtr(), N->getPointerInfo(), MVT::i8,
990 N->getAlign(), N->getMemOperand()->getFlags(),
991 N->getAAInfo());
992 return SDValue();
993 }
994
995 MachineMemOperand::Flags
getTargetMMOFlags(const Instruction & I) const996 XCoreTargetLowering::getTargetMMOFlags(const Instruction &I) const {
997 // Because of how we convert atomic_load and atomic_store to normal loads and
998 // stores in the DAG, we need to ensure that the MMOs are marked volatile
999 // since DAGCombine hasn't been updated to account for atomic, but non
1000 // volatile loads. (See D57601)
1001 if (auto *SI = dyn_cast<StoreInst>(&I))
1002 if (SI->isAtomic())
1003 return MachineMemOperand::MOVolatile;
1004 if (auto *LI = dyn_cast<LoadInst>(&I))
1005 if (LI->isAtomic())
1006 return MachineMemOperand::MOVolatile;
1007 if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
1008 if (AI->isAtomic())
1009 return MachineMemOperand::MOVolatile;
1010 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
1011 if (AI->isAtomic())
1012 return MachineMemOperand::MOVolatile;
1013 return MachineMemOperand::MONone;
1014 }
1015
1016 //===----------------------------------------------------------------------===//
1017 // Calling Convention Implementation
1018 //===----------------------------------------------------------------------===//
1019
1020 #include "XCoreGenCallingConv.inc"
1021
1022 //===----------------------------------------------------------------------===//
1023 // Call Calling Convention Implementation
1024 //===----------------------------------------------------------------------===//
1025
1026 /// XCore call implementation
1027 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1028 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1029 SmallVectorImpl<SDValue> &InVals) const {
1030 SelectionDAG &DAG = CLI.DAG;
1031 SDLoc &dl = CLI.DL;
1032 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1033 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1034 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1035 SDValue Chain = CLI.Chain;
1036 SDValue Callee = CLI.Callee;
1037 bool &isTailCall = CLI.IsTailCall;
1038 CallingConv::ID CallConv = CLI.CallConv;
1039 bool isVarArg = CLI.IsVarArg;
1040
1041 // XCore target does not yet support tail call optimization.
1042 isTailCall = false;
1043
1044 // For now, only CallingConv::C implemented
1045 switch (CallConv)
1046 {
1047 default:
1048 report_fatal_error("Unsupported calling convention");
1049 case CallingConv::Fast:
1050 case CallingConv::C:
1051 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
1052 Outs, OutVals, Ins, dl, DAG, InVals);
1053 }
1054 }
1055
1056 /// LowerCallResult - Lower the result values of a call into the
1057 /// appropriate copies out of appropriate physical registers / memory locations.
LowerCallResult(SDValue Chain,SDValue InFlag,const SmallVectorImpl<CCValAssign> & RVLocs,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals)1058 static SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
1059 const SmallVectorImpl<CCValAssign> &RVLocs,
1060 const SDLoc &dl, SelectionDAG &DAG,
1061 SmallVectorImpl<SDValue> &InVals) {
1062 SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
1063 // Copy results out of physical registers.
1064 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1065 const CCValAssign &VA = RVLocs[i];
1066 if (VA.isRegLoc()) {
1067 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
1068 InFlag).getValue(1);
1069 InFlag = Chain.getValue(2);
1070 InVals.push_back(Chain.getValue(0));
1071 } else {
1072 assert(VA.isMemLoc());
1073 ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
1074 InVals.size()));
1075 // Reserve space for this result.
1076 InVals.push_back(SDValue());
1077 }
1078 }
1079
1080 // Copy results out of memory.
1081 SmallVector<SDValue, 4> MemOpChains;
1082 for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
1083 int offset = ResultMemLocs[i].first;
1084 unsigned index = ResultMemLocs[i].second;
1085 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
1086 SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) };
1087 SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
1088 InVals[index] = load;
1089 MemOpChains.push_back(load.getValue(1));
1090 }
1091
1092 // Transform all loads nodes into one single node because
1093 // all load nodes are independent of each other.
1094 if (!MemOpChains.empty())
1095 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1096
1097 return Chain;
1098 }
1099
1100 /// LowerCCCCallTo - functions arguments are copied from virtual
1101 /// regs to (physical regs)/(stack frame), CALLSEQ_START and
1102 /// CALLSEQ_END are emitted.
1103 /// TODO: isTailCall, sret.
LowerCCCCallTo(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1104 SDValue XCoreTargetLowering::LowerCCCCallTo(
1105 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
1106 bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
1107 const SmallVectorImpl<SDValue> &OutVals,
1108 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1109 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1110
1111 // Analyze operands of the call, assigning locations to each operand.
1112 SmallVector<CCValAssign, 16> ArgLocs;
1113 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1114 *DAG.getContext());
1115
1116 // The ABI dictates there should be one stack slot available to the callee
1117 // on function entry (for saving lr).
1118 CCInfo.AllocateStack(4, Align(4));
1119
1120 CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
1121
1122 SmallVector<CCValAssign, 16> RVLocs;
1123 // Analyze return values to determine the number of bytes of stack required.
1124 CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1125 *DAG.getContext());
1126 RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), Align(4));
1127 RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
1128
1129 // Get a count of how many bytes are to be pushed on the stack.
1130 unsigned NumBytes = RetCCInfo.getNextStackOffset();
1131 auto PtrVT = getPointerTy(DAG.getDataLayout());
1132
1133 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
1134
1135 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
1136 SmallVector<SDValue, 12> MemOpChains;
1137
1138 // Walk the register/memloc assignments, inserting copies/loads.
1139 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1140 CCValAssign &VA = ArgLocs[i];
1141 SDValue Arg = OutVals[i];
1142
1143 // Promote the value if needed.
1144 switch (VA.getLocInfo()) {
1145 default: llvm_unreachable("Unknown loc info!");
1146 case CCValAssign::Full: break;
1147 case CCValAssign::SExt:
1148 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1149 break;
1150 case CCValAssign::ZExt:
1151 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1152 break;
1153 case CCValAssign::AExt:
1154 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1155 break;
1156 }
1157
1158 // Arguments that can be passed on register must be kept at
1159 // RegsToPass vector
1160 if (VA.isRegLoc()) {
1161 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1162 } else {
1163 assert(VA.isMemLoc());
1164
1165 int Offset = VA.getLocMemOffset();
1166
1167 MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
1168 Chain, Arg,
1169 DAG.getConstant(Offset/4, dl,
1170 MVT::i32)));
1171 }
1172 }
1173
1174 // Transform all store nodes into one single node because
1175 // all store nodes are independent of each other.
1176 if (!MemOpChains.empty())
1177 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1178
1179 // Build a sequence of copy-to-reg nodes chained together with token
1180 // chain and flag operands which copy the outgoing args into registers.
1181 // The InFlag in necessary since all emitted instructions must be
1182 // stuck together.
1183 SDValue InFlag;
1184 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1185 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1186 RegsToPass[i].second, InFlag);
1187 InFlag = Chain.getValue(1);
1188 }
1189
1190 // If the callee is a GlobalAddress node (quite common, every direct call is)
1191 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1192 // Likewise ExternalSymbol -> TargetExternalSymbol.
1193 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1194 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
1195 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1196 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
1197
1198 // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1199 // = Chain, Callee, Reg#1, Reg#2, ...
1200 //
1201 // Returns a chain & a flag for retval copy to use.
1202 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1203 SmallVector<SDValue, 8> Ops;
1204 Ops.push_back(Chain);
1205 Ops.push_back(Callee);
1206
1207 // Add argument registers to the end of the list so that they are
1208 // known live into the call.
1209 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1210 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1211 RegsToPass[i].second.getValueType()));
1212
1213 if (InFlag.getNode())
1214 Ops.push_back(InFlag);
1215
1216 Chain = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
1217 InFlag = Chain.getValue(1);
1218
1219 // Create the CALLSEQ_END node.
1220 Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
1221 DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
1222 InFlag = Chain.getValue(1);
1223
1224 // Handle result values, copying them out of physregs into vregs that we
1225 // return.
1226 return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
1227 }
1228
1229 //===----------------------------------------------------------------------===//
1230 // Formal Arguments Calling Convention Implementation
1231 //===----------------------------------------------------------------------===//
1232
1233 namespace {
1234 struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
1235 }
1236
1237 /// XCore formal arguments implementation
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1238 SDValue XCoreTargetLowering::LowerFormalArguments(
1239 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1240 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1241 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1242 switch (CallConv)
1243 {
1244 default:
1245 report_fatal_error("Unsupported calling convention");
1246 case CallingConv::C:
1247 case CallingConv::Fast:
1248 return LowerCCCArguments(Chain, CallConv, isVarArg,
1249 Ins, dl, DAG, InVals);
1250 }
1251 }
1252
1253 /// LowerCCCArguments - transform physical registers into
1254 /// virtual registers and generate load operations for
1255 /// arguments places on the stack.
1256 /// TODO: sret
LowerCCCArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1257 SDValue XCoreTargetLowering::LowerCCCArguments(
1258 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1259 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1260 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1261 MachineFunction &MF = DAG.getMachineFunction();
1262 MachineFrameInfo &MFI = MF.getFrameInfo();
1263 MachineRegisterInfo &RegInfo = MF.getRegInfo();
1264 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1265
1266 // Assign locations to all of the incoming arguments.
1267 SmallVector<CCValAssign, 16> ArgLocs;
1268 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1269 *DAG.getContext());
1270
1271 CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
1272
1273 unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
1274
1275 unsigned LRSaveSize = StackSlotSize;
1276
1277 if (!isVarArg)
1278 XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
1279
1280 // All getCopyFromReg ops must precede any getMemcpys to prevent the
1281 // scheduler clobbering a register before it has been copied.
1282 // The stages are:
1283 // 1. CopyFromReg (and load) arg & vararg registers.
1284 // 2. Chain CopyFromReg nodes into a TokenFactor.
1285 // 3. Memcpy 'byVal' args & push final InVals.
1286 // 4. Chain mem ops nodes into a TokenFactor.
1287 SmallVector<SDValue, 4> CFRegNode;
1288 SmallVector<ArgDataPair, 4> ArgData;
1289 SmallVector<SDValue, 4> MemOps;
1290
1291 // 1a. CopyFromReg (and load) arg registers.
1292 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1293
1294 CCValAssign &VA = ArgLocs[i];
1295 SDValue ArgIn;
1296
1297 if (VA.isRegLoc()) {
1298 // Arguments passed in registers
1299 EVT RegVT = VA.getLocVT();
1300 switch (RegVT.getSimpleVT().SimpleTy) {
1301 default:
1302 {
1303 #ifndef NDEBUG
1304 errs() << "LowerFormalArguments Unhandled argument type: "
1305 << RegVT.getEVTString() << "\n";
1306 #endif
1307 llvm_unreachable(nullptr);
1308 }
1309 case MVT::i32:
1310 Register VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1311 RegInfo.addLiveIn(VA.getLocReg(), VReg);
1312 ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
1313 CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
1314 }
1315 } else {
1316 // Only arguments passed on the stack should make it here.
1317 assert(VA.isMemLoc());
1318 // Load the argument to a virtual register
1319 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
1320 if (ObjSize > StackSlotSize) {
1321 errs() << "LowerFormalArguments Unhandled argument type: "
1322 << EVT(VA.getLocVT()).getEVTString()
1323 << "\n";
1324 }
1325 // Create the frame index object for this incoming parameter...
1326 int FI = MFI.CreateFixedObject(ObjSize,
1327 LRSaveSize + VA.getLocMemOffset(),
1328 true);
1329
1330 // Create the SelectionDAG nodes corresponding to a load
1331 //from this parameter
1332 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1333 ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1334 MachinePointerInfo::getFixedStack(MF, FI));
1335 }
1336 const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
1337 ArgData.push_back(ADP);
1338 }
1339
1340 // 1b. CopyFromReg vararg registers.
1341 if (isVarArg) {
1342 // Argument registers
1343 static const MCPhysReg ArgRegs[] = {
1344 XCore::R0, XCore::R1, XCore::R2, XCore::R3
1345 };
1346 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1347 unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
1348 if (FirstVAReg < array_lengthof(ArgRegs)) {
1349 int offset = 0;
1350 // Save remaining registers, storing higher register numbers at a higher
1351 // address
1352 for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
1353 // Create a stack slot
1354 int FI = MFI.CreateFixedObject(4, offset, true);
1355 if (i == (int)FirstVAReg) {
1356 XFI->setVarArgsFrameIndex(FI);
1357 }
1358 offset -= StackSlotSize;
1359 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1360 // Move argument from phys reg -> virt reg
1361 Register VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1362 RegInfo.addLiveIn(ArgRegs[i], VReg);
1363 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1364 CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
1365 // Move argument from virt reg -> stack
1366 SDValue Store =
1367 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
1368 MemOps.push_back(Store);
1369 }
1370 } else {
1371 // This will point to the next argument passed via stack.
1372 XFI->setVarArgsFrameIndex(
1373 MFI.CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
1374 true));
1375 }
1376 }
1377
1378 // 2. chain CopyFromReg nodes into a TokenFactor.
1379 if (!CFRegNode.empty())
1380 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
1381
1382 // 3. Memcpy 'byVal' args & push final InVals.
1383 // Aggregates passed "byVal" need to be copied by the callee.
1384 // The callee will use a pointer to this copy, rather than the original
1385 // pointer.
1386 for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
1387 ArgDE = ArgData.end();
1388 ArgDI != ArgDE; ++ArgDI) {
1389 if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
1390 unsigned Size = ArgDI->Flags.getByValSize();
1391 Align Alignment =
1392 std::max(Align(StackSlotSize), ArgDI->Flags.getNonZeroByValAlign());
1393 // Create a new object on the stack and copy the pointee into it.
1394 int FI = MFI.CreateStackObject(Size, Alignment, false);
1395 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1396 InVals.push_back(FIN);
1397 MemOps.push_back(DAG.getMemcpy(
1398 Chain, dl, FIN, ArgDI->SDV, DAG.getConstant(Size, dl, MVT::i32),
1399 Alignment, false, false, false, MachinePointerInfo(),
1400 MachinePointerInfo()));
1401 } else {
1402 InVals.push_back(ArgDI->SDV);
1403 }
1404 }
1405
1406 // 4, chain mem ops nodes into a TokenFactor.
1407 if (!MemOps.empty()) {
1408 MemOps.push_back(Chain);
1409 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
1410 }
1411
1412 return Chain;
1413 }
1414
1415 //===----------------------------------------------------------------------===//
1416 // Return Value Calling Convention Implementation
1417 //===----------------------------------------------------------------------===//
1418
1419 bool XCoreTargetLowering::
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const1420 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1421 bool isVarArg,
1422 const SmallVectorImpl<ISD::OutputArg> &Outs,
1423 LLVMContext &Context) const {
1424 SmallVector<CCValAssign, 16> RVLocs;
1425 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1426 if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
1427 return false;
1428 if (CCInfo.getNextStackOffset() != 0 && isVarArg)
1429 return false;
1430 return true;
1431 }
1432
1433 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const1434 XCoreTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1435 bool isVarArg,
1436 const SmallVectorImpl<ISD::OutputArg> &Outs,
1437 const SmallVectorImpl<SDValue> &OutVals,
1438 const SDLoc &dl, SelectionDAG &DAG) const {
1439
1440 XCoreFunctionInfo *XFI =
1441 DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
1442 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1443
1444 // CCValAssign - represent the assignment of
1445 // the return value to a location
1446 SmallVector<CCValAssign, 16> RVLocs;
1447
1448 // CCState - Info about the registers and stack slot.
1449 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1450 *DAG.getContext());
1451
1452 // Analyze return values.
1453 if (!isVarArg)
1454 CCInfo.AllocateStack(XFI->getReturnStackOffset(), Align(4));
1455
1456 CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
1457
1458 SDValue Flag;
1459 SmallVector<SDValue, 4> RetOps(1, Chain);
1460
1461 // Return on XCore is always a "retsp 0"
1462 RetOps.push_back(DAG.getConstant(0, dl, MVT::i32));
1463
1464 SmallVector<SDValue, 4> MemOpChains;
1465 // Handle return values that must be copied to memory.
1466 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1467 CCValAssign &VA = RVLocs[i];
1468 if (VA.isRegLoc())
1469 continue;
1470 assert(VA.isMemLoc());
1471 if (isVarArg) {
1472 report_fatal_error("Can't return value from vararg function in memory");
1473 }
1474
1475 int Offset = VA.getLocMemOffset();
1476 unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
1477 // Create the frame index object for the memory location.
1478 int FI = MFI.CreateFixedObject(ObjSize, Offset, false);
1479
1480 // Create a SelectionDAG node corresponding to a store
1481 // to this memory location.
1482 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1483 MemOpChains.push_back(DAG.getStore(
1484 Chain, dl, OutVals[i], FIN,
1485 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
1486 }
1487
1488 // Transform all store nodes into one single node because
1489 // all stores are independent of each other.
1490 if (!MemOpChains.empty())
1491 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1492
1493 // Now handle return values copied to registers.
1494 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1495 CCValAssign &VA = RVLocs[i];
1496 if (!VA.isRegLoc())
1497 continue;
1498 // Copy the result values into the output registers.
1499 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1500
1501 // guarantee that all emitted copies are
1502 // stuck together, avoiding something bad
1503 Flag = Chain.getValue(1);
1504 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1505 }
1506
1507 RetOps[0] = Chain; // Update chain.
1508
1509 // Add the flag if we have it.
1510 if (Flag.getNode())
1511 RetOps.push_back(Flag);
1512
1513 return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
1514 }
1515
1516 //===----------------------------------------------------------------------===//
1517 // Other Lowering Code
1518 //===----------------------------------------------------------------------===//
1519
1520 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const1521 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1522 MachineBasicBlock *BB) const {
1523 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1524 DebugLoc dl = MI.getDebugLoc();
1525 assert((MI.getOpcode() == XCore::SELECT_CC) &&
1526 "Unexpected instr type to insert");
1527
1528 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1529 // control-flow pattern. The incoming instruction knows the destination vreg
1530 // to set, the condition code register to branch on, the true/false values to
1531 // select between, and a branch opcode to use.
1532 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1533 MachineFunction::iterator It = ++BB->getIterator();
1534
1535 // thisMBB:
1536 // ...
1537 // TrueVal = ...
1538 // cmpTY ccX, r1, r2
1539 // bCC copy1MBB
1540 // fallthrough --> copy0MBB
1541 MachineBasicBlock *thisMBB = BB;
1542 MachineFunction *F = BB->getParent();
1543 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1544 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1545 F->insert(It, copy0MBB);
1546 F->insert(It, sinkMBB);
1547
1548 // Transfer the remainder of BB and its successor edges to sinkMBB.
1549 sinkMBB->splice(sinkMBB->begin(), BB,
1550 std::next(MachineBasicBlock::iterator(MI)), BB->end());
1551 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1552
1553 // Next, add the true and fallthrough blocks as its successors.
1554 BB->addSuccessor(copy0MBB);
1555 BB->addSuccessor(sinkMBB);
1556
1557 BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
1558 .addReg(MI.getOperand(1).getReg())
1559 .addMBB(sinkMBB);
1560
1561 // copy0MBB:
1562 // %FalseValue = ...
1563 // # fallthrough to sinkMBB
1564 BB = copy0MBB;
1565
1566 // Update machine-CFG edges
1567 BB->addSuccessor(sinkMBB);
1568
1569 // sinkMBB:
1570 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1571 // ...
1572 BB = sinkMBB;
1573 BuildMI(*BB, BB->begin(), dl, TII.get(XCore::PHI), MI.getOperand(0).getReg())
1574 .addReg(MI.getOperand(3).getReg())
1575 .addMBB(copy0MBB)
1576 .addReg(MI.getOperand(2).getReg())
1577 .addMBB(thisMBB);
1578
1579 MI.eraseFromParent(); // The pseudo instruction is gone now.
1580 return BB;
1581 }
1582
1583 //===----------------------------------------------------------------------===//
1584 // Target Optimization Hooks
1585 //===----------------------------------------------------------------------===//
1586
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const1587 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
1588 DAGCombinerInfo &DCI) const {
1589 SelectionDAG &DAG = DCI.DAG;
1590 SDLoc dl(N);
1591 switch (N->getOpcode()) {
1592 default: break;
1593 case ISD::INTRINSIC_VOID:
1594 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
1595 case Intrinsic::xcore_outt:
1596 case Intrinsic::xcore_outct:
1597 case Intrinsic::xcore_chkct: {
1598 SDValue OutVal = N->getOperand(3);
1599 // These instructions ignore the high bits.
1600 if (OutVal.hasOneUse()) {
1601 unsigned BitWidth = OutVal.getValueSizeInBits();
1602 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
1603 KnownBits Known;
1604 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1605 !DCI.isBeforeLegalizeOps());
1606 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1607 if (TLI.ShrinkDemandedConstant(OutVal, DemandedMask, TLO) ||
1608 TLI.SimplifyDemandedBits(OutVal, DemandedMask, Known, TLO))
1609 DCI.CommitTargetLoweringOpt(TLO);
1610 }
1611 break;
1612 }
1613 case Intrinsic::xcore_setpt: {
1614 SDValue Time = N->getOperand(3);
1615 // This instruction ignores the high bits.
1616 if (Time.hasOneUse()) {
1617 unsigned BitWidth = Time.getValueSizeInBits();
1618 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
1619 KnownBits Known;
1620 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1621 !DCI.isBeforeLegalizeOps());
1622 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1623 if (TLI.ShrinkDemandedConstant(Time, DemandedMask, TLO) ||
1624 TLI.SimplifyDemandedBits(Time, DemandedMask, Known, TLO))
1625 DCI.CommitTargetLoweringOpt(TLO);
1626 }
1627 break;
1628 }
1629 }
1630 break;
1631 case XCoreISD::LADD: {
1632 SDValue N0 = N->getOperand(0);
1633 SDValue N1 = N->getOperand(1);
1634 SDValue N2 = N->getOperand(2);
1635 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1636 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1637 EVT VT = N0.getValueType();
1638
1639 // canonicalize constant to RHS
1640 if (N0C && !N1C)
1641 return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
1642
1643 // fold (ladd 0, 0, x) -> 0, x & 1
1644 if (N0C && N0C->isZero() && N1C && N1C->isZero()) {
1645 SDValue Carry = DAG.getConstant(0, dl, VT);
1646 SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
1647 DAG.getConstant(1, dl, VT));
1648 SDValue Ops[] = { Result, Carry };
1649 return DAG.getMergeValues(Ops, dl);
1650 }
1651
1652 // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1653 // low bit set
1654 if (N1C && N1C->isZero() && N->hasNUsesOfValue(0, 1)) {
1655 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1656 VT.getSizeInBits() - 1);
1657 KnownBits Known = DAG.computeKnownBits(N2);
1658 if ((Known.Zero & Mask) == Mask) {
1659 SDValue Carry = DAG.getConstant(0, dl, VT);
1660 SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
1661 SDValue Ops[] = { Result, Carry };
1662 return DAG.getMergeValues(Ops, dl);
1663 }
1664 }
1665 }
1666 break;
1667 case XCoreISD::LSUB: {
1668 SDValue N0 = N->getOperand(0);
1669 SDValue N1 = N->getOperand(1);
1670 SDValue N2 = N->getOperand(2);
1671 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1672 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1673 EVT VT = N0.getValueType();
1674
1675 // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1676 if (N0C && N0C->isZero() && N1C && N1C->isZero()) {
1677 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1678 VT.getSizeInBits() - 1);
1679 KnownBits Known = DAG.computeKnownBits(N2);
1680 if ((Known.Zero & Mask) == Mask) {
1681 SDValue Borrow = N2;
1682 SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
1683 DAG.getConstant(0, dl, VT), N2);
1684 SDValue Ops[] = { Result, Borrow };
1685 return DAG.getMergeValues(Ops, dl);
1686 }
1687 }
1688
1689 // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1690 // low bit set
1691 if (N1C && N1C->isZero() && N->hasNUsesOfValue(0, 1)) {
1692 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1693 VT.getSizeInBits() - 1);
1694 KnownBits Known = DAG.computeKnownBits(N2);
1695 if ((Known.Zero & Mask) == Mask) {
1696 SDValue Borrow = DAG.getConstant(0, dl, VT);
1697 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
1698 SDValue Ops[] = { Result, Borrow };
1699 return DAG.getMergeValues(Ops, dl);
1700 }
1701 }
1702 }
1703 break;
1704 case XCoreISD::LMUL: {
1705 SDValue N0 = N->getOperand(0);
1706 SDValue N1 = N->getOperand(1);
1707 SDValue N2 = N->getOperand(2);
1708 SDValue N3 = N->getOperand(3);
1709 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1710 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1711 EVT VT = N0.getValueType();
1712 // Canonicalize multiplicative constant to RHS. If both multiplicative
1713 // operands are constant canonicalize smallest to RHS.
1714 if ((N0C && !N1C) ||
1715 (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
1716 return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
1717 N1, N0, N2, N3);
1718
1719 // lmul(x, 0, a, b)
1720 if (N1C && N1C->isZero()) {
1721 // If the high result is unused fold to add(a, b)
1722 if (N->hasNUsesOfValue(0, 0)) {
1723 SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
1724 SDValue Ops[] = { Lo, Lo };
1725 return DAG.getMergeValues(Ops, dl);
1726 }
1727 // Otherwise fold to ladd(a, b, 0)
1728 SDValue Result =
1729 DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
1730 SDValue Carry(Result.getNode(), 1);
1731 SDValue Ops[] = { Carry, Result };
1732 return DAG.getMergeValues(Ops, dl);
1733 }
1734 }
1735 break;
1736 case ISD::ADD: {
1737 // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1738 // lmul(x, y, a, b). The high result of lmul will be ignored.
1739 // This is only profitable if the intermediate results are unused
1740 // elsewhere.
1741 SDValue Mul0, Mul1, Addend0, Addend1;
1742 if (N->getValueType(0) == MVT::i32 &&
1743 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
1744 SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
1745 DAG.getVTList(MVT::i32, MVT::i32), Mul0,
1746 Mul1, Addend0, Addend1);
1747 SDValue Result(Ignored.getNode(), 1);
1748 return Result;
1749 }
1750 APInt HighMask = APInt::getHighBitsSet(64, 32);
1751 // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1752 // lmul(x, y, a, b) if all operands are zero-extended. We do this
1753 // before type legalization as it is messy to match the operands after
1754 // that.
1755 if (N->getValueType(0) == MVT::i64 &&
1756 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
1757 DAG.MaskedValueIsZero(Mul0, HighMask) &&
1758 DAG.MaskedValueIsZero(Mul1, HighMask) &&
1759 DAG.MaskedValueIsZero(Addend0, HighMask) &&
1760 DAG.MaskedValueIsZero(Addend1, HighMask)) {
1761 SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1762 Mul0, DAG.getConstant(0, dl, MVT::i32));
1763 SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1764 Mul1, DAG.getConstant(0, dl, MVT::i32));
1765 SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1766 Addend0, DAG.getConstant(0, dl, MVT::i32));
1767 SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1768 Addend1, DAG.getConstant(0, dl, MVT::i32));
1769 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
1770 DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
1771 Addend0L, Addend1L);
1772 SDValue Lo(Hi.getNode(), 1);
1773 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1774 }
1775 }
1776 break;
1777 case ISD::STORE: {
1778 // Replace unaligned store of unaligned load with memmove.
1779 StoreSDNode *ST = cast<StoreSDNode>(N);
1780 if (!DCI.isBeforeLegalize() ||
1781 allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
1782 ST->getMemoryVT(),
1783 *ST->getMemOperand()) ||
1784 ST->isVolatile() || ST->isIndexed()) {
1785 break;
1786 }
1787 SDValue Chain = ST->getChain();
1788
1789 unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
1790 assert((StoreBits % 8) == 0 &&
1791 "Store size in bits must be a multiple of 8");
1792 Align Alignment = ST->getAlign();
1793
1794 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
1795 if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
1796 LD->getAlign() == Alignment &&
1797 !LD->isVolatile() && !LD->isIndexed() &&
1798 Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
1799 bool isTail = isInTailCallPosition(DAG, ST, Chain);
1800 return DAG.getMemmove(Chain, dl, ST->getBasePtr(), LD->getBasePtr(),
1801 DAG.getConstant(StoreBits / 8, dl, MVT::i32),
1802 Alignment, false, isTail,
1803 ST->getPointerInfo(), LD->getPointerInfo());
1804 }
1805 }
1806 break;
1807 }
1808 }
1809 return SDValue();
1810 }
1811
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const1812 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1813 KnownBits &Known,
1814 const APInt &DemandedElts,
1815 const SelectionDAG &DAG,
1816 unsigned Depth) const {
1817 Known.resetAll();
1818 switch (Op.getOpcode()) {
1819 default: break;
1820 case XCoreISD::LADD:
1821 case XCoreISD::LSUB:
1822 if (Op.getResNo() == 1) {
1823 // Top bits of carry / borrow are clear.
1824 Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1825 Known.getBitWidth() - 1);
1826 }
1827 break;
1828 case ISD::INTRINSIC_W_CHAIN:
1829 {
1830 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1831 switch (IntNo) {
1832 case Intrinsic::xcore_getts:
1833 // High bits are known to be zero.
1834 Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1835 Known.getBitWidth() - 16);
1836 break;
1837 case Intrinsic::xcore_int:
1838 case Intrinsic::xcore_inct:
1839 // High bits are known to be zero.
1840 Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1841 Known.getBitWidth() - 8);
1842 break;
1843 case Intrinsic::xcore_testct:
1844 // Result is either 0 or 1.
1845 Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1846 Known.getBitWidth() - 1);
1847 break;
1848 case Intrinsic::xcore_testwct:
1849 // Result is in the range 0 - 4.
1850 Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1851 Known.getBitWidth() - 3);
1852 break;
1853 }
1854 }
1855 break;
1856 }
1857 }
1858
1859 //===----------------------------------------------------------------------===//
1860 // Addressing mode description hooks
1861 //===----------------------------------------------------------------------===//
1862
isImmUs(int64_t val)1863 static inline bool isImmUs(int64_t val)
1864 {
1865 return (val >= 0 && val <= 11);
1866 }
1867
isImmUs2(int64_t val)1868 static inline bool isImmUs2(int64_t val)
1869 {
1870 return (val%2 == 0 && isImmUs(val/2));
1871 }
1872
isImmUs4(int64_t val)1873 static inline bool isImmUs4(int64_t val)
1874 {
1875 return (val%4 == 0 && isImmUs(val/4));
1876 }
1877
1878 /// isLegalAddressingMode - Return true if the addressing mode represented
1879 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const1880 bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1881 const AddrMode &AM, Type *Ty,
1882 unsigned AS,
1883 Instruction *I) const {
1884 if (Ty->getTypeID() == Type::VoidTyID)
1885 return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
1886
1887 unsigned Size = DL.getTypeAllocSize(Ty);
1888 if (AM.BaseGV) {
1889 return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
1890 AM.BaseOffs%4 == 0;
1891 }
1892
1893 switch (Size) {
1894 case 1:
1895 // reg + imm
1896 if (AM.Scale == 0) {
1897 return isImmUs(AM.BaseOffs);
1898 }
1899 // reg + reg
1900 return AM.Scale == 1 && AM.BaseOffs == 0;
1901 case 2:
1902 case 3:
1903 // reg + imm
1904 if (AM.Scale == 0) {
1905 return isImmUs2(AM.BaseOffs);
1906 }
1907 // reg + reg<<1
1908 return AM.Scale == 2 && AM.BaseOffs == 0;
1909 default:
1910 // reg + imm
1911 if (AM.Scale == 0) {
1912 return isImmUs4(AM.BaseOffs);
1913 }
1914 // reg + reg<<2
1915 return AM.Scale == 4 && AM.BaseOffs == 0;
1916 }
1917 }
1918
1919 //===----------------------------------------------------------------------===//
1920 // XCore Inline Assembly Support
1921 //===----------------------------------------------------------------------===//
1922
1923 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const1924 XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1925 StringRef Constraint,
1926 MVT VT) const {
1927 if (Constraint.size() == 1) {
1928 switch (Constraint[0]) {
1929 default : break;
1930 case 'r':
1931 return std::make_pair(0U, &XCore::GRRegsRegClass);
1932 }
1933 }
1934 // Use the default implementation in TargetLowering to convert the register
1935 // constraint into a member of a register class.
1936 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1937 }
1938