1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the XCoreTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "XCoreISelLowering.h" 15 #include "XCore.h" 16 #include "XCoreMachineFunctionInfo.h" 17 #include "XCoreSubtarget.h" 18 #include "XCoreTargetMachine.h" 19 #include "XCoreTargetObjectFile.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAGISel.h" 27 #include "llvm/CodeGen/ValueTypes.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <algorithm> 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "xcore-lower" 44 45 const char *XCoreTargetLowering:: 46 getTargetNodeName(unsigned Opcode) const 47 { 48 switch ((XCoreISD::NodeType)Opcode) 49 { 50 case XCoreISD::FIRST_NUMBER : break; 51 case XCoreISD::BL : return "XCoreISD::BL"; 52 case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper"; 53 case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper"; 54 case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper"; 55 case XCoreISD::LDWSP : return "XCoreISD::LDWSP"; 56 case XCoreISD::STWSP : return "XCoreISD::STWSP"; 57 case XCoreISD::RETSP : return "XCoreISD::RETSP"; 58 case XCoreISD::LADD : return "XCoreISD::LADD"; 59 case XCoreISD::LSUB : return "XCoreISD::LSUB"; 60 case XCoreISD::LMUL : return "XCoreISD::LMUL"; 61 case XCoreISD::MACCU : return "XCoreISD::MACCU"; 62 case XCoreISD::MACCS : return "XCoreISD::MACCS"; 63 case XCoreISD::CRC8 : return "XCoreISD::CRC8"; 64 case XCoreISD::BR_JT : return "XCoreISD::BR_JT"; 65 case XCoreISD::BR_JT32 : return "XCoreISD::BR_JT32"; 66 case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET"; 67 case XCoreISD::EH_RETURN : return "XCoreISD::EH_RETURN"; 68 case XCoreISD::MEMBARRIER : return "XCoreISD::MEMBARRIER"; 69 } 70 return nullptr; 71 } 72 73 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM, 74 const XCoreSubtarget &Subtarget) 75 : TargetLowering(TM), TM(TM), Subtarget(Subtarget) { 76 77 // Set up the register classes. 78 addRegisterClass(MVT::i32, &XCore::GRRegsRegClass); 79 80 // Compute derived properties from the register classes 81 computeRegisterProperties(Subtarget.getRegisterInfo()); 82 83 setStackPointerRegisterToSaveRestore(XCore::SP); 84 85 setSchedulingPreference(Sched::Source); 86 87 // Use i32 for setcc operations results (slt, sgt, ...). 88 setBooleanContents(ZeroOrOneBooleanContent); 89 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 90 91 // XCore does not have the NodeTypes below. 92 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 93 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); 94 95 // 64bit 96 setOperationAction(ISD::ADD, MVT::i64, Custom); 97 setOperationAction(ISD::SUB, MVT::i64, Custom); 98 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom); 99 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom); 100 setOperationAction(ISD::MULHS, MVT::i32, Expand); 101 setOperationAction(ISD::MULHU, MVT::i32, Expand); 102 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); 103 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 104 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); 105 106 // Bit Manipulation 107 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 108 setOperationAction(ISD::ROTL , MVT::i32, Expand); 109 setOperationAction(ISD::ROTR , MVT::i32, Expand); 110 111 setOperationAction(ISD::TRAP, MVT::Other, Legal); 112 113 // Jump tables. 114 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 115 116 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 117 setOperationAction(ISD::BlockAddress, MVT::i32 , Custom); 118 119 // Conversion of i64 -> double produces constantpool nodes 120 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 121 122 // Loads 123 for (MVT VT : MVT::integer_valuetypes()) { 124 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 125 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 126 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 127 128 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 129 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand); 130 } 131 132 // Custom expand misaligned loads / stores. 133 setOperationAction(ISD::LOAD, MVT::i32, Custom); 134 setOperationAction(ISD::STORE, MVT::i32, Custom); 135 136 // Varargs 137 setOperationAction(ISD::VAEND, MVT::Other, Expand); 138 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 139 setOperationAction(ISD::VAARG, MVT::Other, Custom); 140 setOperationAction(ISD::VASTART, MVT::Other, Custom); 141 142 // Dynamic stack 143 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 144 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 145 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 146 147 // Exception handling 148 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); 149 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); 150 151 // Atomic operations 152 // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic. 153 // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP. 154 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 155 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); 156 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); 157 158 // TRAMPOLINE is custom lowered. 159 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 160 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 161 162 // We want to custom lower some of our intrinsics. 163 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 164 165 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4; 166 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize 167 = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2; 168 169 // We have target-specific dag combine patterns for the following nodes: 170 setTargetDAGCombine(ISD::STORE); 171 setTargetDAGCombine(ISD::ADD); 172 setTargetDAGCombine(ISD::INTRINSIC_VOID); 173 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 174 175 setMinFunctionAlignment(1); 176 setPrefFunctionAlignment(2); 177 } 178 179 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 180 if (Val.getOpcode() != ISD::LOAD) 181 return false; 182 183 EVT VT1 = Val.getValueType(); 184 if (!VT1.isSimple() || !VT1.isInteger() || 185 !VT2.isSimple() || !VT2.isInteger()) 186 return false; 187 188 switch (VT1.getSimpleVT().SimpleTy) { 189 default: break; 190 case MVT::i8: 191 return true; 192 } 193 194 return false; 195 } 196 197 SDValue XCoreTargetLowering:: 198 LowerOperation(SDValue Op, SelectionDAG &DAG) const { 199 switch (Op.getOpcode()) 200 { 201 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); 202 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 203 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 204 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 205 case ISD::BR_JT: return LowerBR_JT(Op, DAG); 206 case ISD::LOAD: return LowerLOAD(Op, DAG); 207 case ISD::STORE: return LowerSTORE(Op, DAG); 208 case ISD::VAARG: return LowerVAARG(Op, DAG); 209 case ISD::VASTART: return LowerVASTART(Op, DAG); 210 case ISD::SMUL_LOHI: return LowerSMUL_LOHI(Op, DAG); 211 case ISD::UMUL_LOHI: return LowerUMUL_LOHI(Op, DAG); 212 // FIXME: Remove these when LegalizeDAGTypes lands. 213 case ISD::ADD: 214 case ISD::SUB: return ExpandADDSUB(Op.getNode(), DAG); 215 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 216 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 217 case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); 218 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 219 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 220 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 221 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG); 222 case ISD::ATOMIC_LOAD: return LowerATOMIC_LOAD(Op, DAG); 223 case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG); 224 default: 225 llvm_unreachable("unimplemented operand"); 226 } 227 } 228 229 /// ReplaceNodeResults - Replace the results of node with an illegal result 230 /// type with new values built out of custom code. 231 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N, 232 SmallVectorImpl<SDValue>&Results, 233 SelectionDAG &DAG) const { 234 switch (N->getOpcode()) { 235 default: 236 llvm_unreachable("Don't know how to custom expand this!"); 237 case ISD::ADD: 238 case ISD::SUB: 239 Results.push_back(ExpandADDSUB(N, DAG)); 240 return; 241 } 242 } 243 244 //===----------------------------------------------------------------------===// 245 // Misc Lower Operation implementation 246 //===----------------------------------------------------------------------===// 247 248 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA, 249 const GlobalValue *GV, 250 SelectionDAG &DAG) const { 251 // FIXME there is no actual debug info here 252 SDLoc dl(GA); 253 254 if (GV->getValueType()->isFunctionTy()) 255 return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA); 256 257 const auto *GVar = dyn_cast<GlobalVariable>(GV); 258 if ((GV->hasSection() && GV->getSection().startswith(".cp.")) || 259 (GVar && GVar->isConstant() && GV->hasLocalLinkage())) 260 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA); 261 262 return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA); 263 } 264 265 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) { 266 if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small) 267 return true; 268 269 Type *ObjType = GV->getValueType(); 270 if (!ObjType->isSized()) 271 return false; 272 273 auto &DL = GV->getParent()->getDataLayout(); 274 unsigned ObjSize = DL.getTypeAllocSize(ObjType); 275 return ObjSize < CodeModelLargeSize && ObjSize != 0; 276 } 277 278 SDValue XCoreTargetLowering:: 279 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const 280 { 281 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op); 282 const GlobalValue *GV = GN->getGlobal(); 283 SDLoc DL(GN); 284 int64_t Offset = GN->getOffset(); 285 if (IsSmallObject(GV, *this)) { 286 // We can only fold positive offsets that are a multiple of the word size. 287 int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0); 288 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset); 289 GA = getGlobalAddressWrapper(GA, GV, DAG); 290 // Handle the rest of the offset. 291 if (Offset != FoldedOffset) { 292 SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32); 293 GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining); 294 } 295 return GA; 296 } else { 297 // Ideally we would not fold in offset with an index <= 11. 298 Type *Ty = Type::getInt8PtrTy(*DAG.getContext()); 299 Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty); 300 Ty = Type::getInt32Ty(*DAG.getContext()); 301 Constant *Idx = ConstantInt::get(Ty, Offset); 302 Constant *GAI = ConstantExpr::getGetElementPtr( 303 Type::getInt8Ty(*DAG.getContext()), GA, Idx); 304 SDValue CP = DAG.getConstantPool(GAI, MVT::i32); 305 return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, 306 DAG.getEntryNode(), CP, MachinePointerInfo()); 307 } 308 } 309 310 SDValue XCoreTargetLowering:: 311 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const 312 { 313 SDLoc DL(Op); 314 auto PtrVT = getPointerTy(DAG.getDataLayout()); 315 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 316 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT); 317 318 return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result); 319 } 320 321 SDValue XCoreTargetLowering:: 322 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const 323 { 324 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 325 // FIXME there isn't really debug info here 326 SDLoc dl(CP); 327 EVT PtrVT = Op.getValueType(); 328 SDValue Res; 329 if (CP->isMachineConstantPoolEntry()) { 330 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 331 CP->getAlignment(), CP->getOffset()); 332 } else { 333 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 334 CP->getAlignment(), CP->getOffset()); 335 } 336 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res); 337 } 338 339 unsigned XCoreTargetLowering::getJumpTableEncoding() const { 340 return MachineJumpTableInfo::EK_Inline; 341 } 342 343 SDValue XCoreTargetLowering:: 344 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const 345 { 346 SDValue Chain = Op.getOperand(0); 347 SDValue Table = Op.getOperand(1); 348 SDValue Index = Op.getOperand(2); 349 SDLoc dl(Op); 350 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table); 351 unsigned JTI = JT->getIndex(); 352 MachineFunction &MF = DAG.getMachineFunction(); 353 const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 354 SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32); 355 356 unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size(); 357 if (NumEntries <= 32) { 358 return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index); 359 } 360 assert((NumEntries >> 31) == 0); 361 SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index, 362 DAG.getConstant(1, dl, MVT::i32)); 363 return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT, 364 ScaledIndex); 365 } 366 367 SDValue XCoreTargetLowering::lowerLoadWordFromAlignedBasePlusOffset( 368 const SDLoc &DL, SDValue Chain, SDValue Base, int64_t Offset, 369 SelectionDAG &DAG) const { 370 auto PtrVT = getPointerTy(DAG.getDataLayout()); 371 if ((Offset & 0x3) == 0) { 372 return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo()); 373 } 374 // Lower to pair of consecutive word aligned loads plus some bit shifting. 375 int32_t HighOffset = alignTo(Offset, 4); 376 int32_t LowOffset = HighOffset - 4; 377 SDValue LowAddr, HighAddr; 378 if (GlobalAddressSDNode *GASD = 379 dyn_cast<GlobalAddressSDNode>(Base.getNode())) { 380 LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(), 381 LowOffset); 382 HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(), 383 HighOffset); 384 } else { 385 LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base, 386 DAG.getConstant(LowOffset, DL, MVT::i32)); 387 HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base, 388 DAG.getConstant(HighOffset, DL, MVT::i32)); 389 } 390 SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32); 391 SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32); 392 393 SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo()); 394 SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo()); 395 SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift); 396 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift); 397 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted); 398 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1), 399 High.getValue(1)); 400 SDValue Ops[] = { Result, Chain }; 401 return DAG.getMergeValues(Ops, DL); 402 } 403 404 static bool isWordAligned(SDValue Value, SelectionDAG &DAG) 405 { 406 KnownBits Known; 407 DAG.computeKnownBits(Value, Known); 408 return Known.countMinTrailingZeros() >= 2; 409 } 410 411 SDValue XCoreTargetLowering:: 412 LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 413 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 414 LoadSDNode *LD = cast<LoadSDNode>(Op); 415 assert(LD->getExtensionType() == ISD::NON_EXTLOAD && 416 "Unexpected extension type"); 417 assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT"); 418 if (allowsMisalignedMemoryAccesses(LD->getMemoryVT(), 419 LD->getAddressSpace(), 420 LD->getAlignment())) 421 return SDValue(); 422 423 auto &TD = DAG.getDataLayout(); 424 unsigned ABIAlignment = TD.getABITypeAlignment( 425 LD->getMemoryVT().getTypeForEVT(*DAG.getContext())); 426 // Leave aligned load alone. 427 if (LD->getAlignment() >= ABIAlignment) 428 return SDValue(); 429 430 SDValue Chain = LD->getChain(); 431 SDValue BasePtr = LD->getBasePtr(); 432 SDLoc DL(Op); 433 434 if (!LD->isVolatile()) { 435 const GlobalValue *GV; 436 int64_t Offset = 0; 437 if (DAG.isBaseWithConstantOffset(BasePtr) && 438 isWordAligned(BasePtr->getOperand(0), DAG)) { 439 SDValue NewBasePtr = BasePtr->getOperand(0); 440 Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue(); 441 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr, 442 Offset, DAG); 443 } 444 if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) && 445 MinAlign(GV->getAlignment(), 4) == 4) { 446 SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL, 447 BasePtr->getValueType(0)); 448 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr, 449 Offset, DAG); 450 } 451 } 452 453 if (LD->getAlignment() == 2) { 454 SDValue Low = 455 DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, BasePtr, 456 LD->getPointerInfo(), MVT::i16, 457 /* Alignment = */ 2, LD->getMemOperand()->getFlags()); 458 SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, 459 DAG.getConstant(2, DL, MVT::i32)); 460 SDValue High = 461 DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, HighAddr, 462 LD->getPointerInfo().getWithOffset(2), MVT::i16, 463 /* Alignment = */ 2, LD->getMemOperand()->getFlags()); 464 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, 465 DAG.getConstant(16, DL, MVT::i32)); 466 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted); 467 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1), 468 High.getValue(1)); 469 SDValue Ops[] = { Result, Chain }; 470 return DAG.getMergeValues(Ops, DL); 471 } 472 473 // Lower to a call to __misaligned_load(BasePtr). 474 Type *IntPtrTy = TD.getIntPtrType(*DAG.getContext()); 475 TargetLowering::ArgListTy Args; 476 TargetLowering::ArgListEntry Entry; 477 478 Entry.Ty = IntPtrTy; 479 Entry.Node = BasePtr; 480 Args.push_back(Entry); 481 482 TargetLowering::CallLoweringInfo CLI(DAG); 483 CLI.setDebugLoc(DL).setChain(Chain).setLibCallee( 484 CallingConv::C, IntPtrTy, 485 DAG.getExternalSymbol("__misaligned_load", 486 getPointerTy(DAG.getDataLayout())), 487 std::move(Args)); 488 489 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 490 SDValue Ops[] = { CallResult.first, CallResult.second }; 491 return DAG.getMergeValues(Ops, DL); 492 } 493 494 SDValue XCoreTargetLowering:: 495 LowerSTORE(SDValue Op, SelectionDAG &DAG) const 496 { 497 StoreSDNode *ST = cast<StoreSDNode>(Op); 498 assert(!ST->isTruncatingStore() && "Unexpected store type"); 499 assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT"); 500 if (allowsMisalignedMemoryAccesses(ST->getMemoryVT(), 501 ST->getAddressSpace(), 502 ST->getAlignment())) { 503 return SDValue(); 504 } 505 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment( 506 ST->getMemoryVT().getTypeForEVT(*DAG.getContext())); 507 // Leave aligned store alone. 508 if (ST->getAlignment() >= ABIAlignment) { 509 return SDValue(); 510 } 511 SDValue Chain = ST->getChain(); 512 SDValue BasePtr = ST->getBasePtr(); 513 SDValue Value = ST->getValue(); 514 SDLoc dl(Op); 515 516 if (ST->getAlignment() == 2) { 517 SDValue Low = Value; 518 SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value, 519 DAG.getConstant(16, dl, MVT::i32)); 520 SDValue StoreLow = DAG.getTruncStore( 521 Chain, dl, Low, BasePtr, ST->getPointerInfo(), MVT::i16, 522 /* Alignment = */ 2, ST->getMemOperand()->getFlags()); 523 SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr, 524 DAG.getConstant(2, dl, MVT::i32)); 525 SDValue StoreHigh = DAG.getTruncStore( 526 Chain, dl, High, HighAddr, ST->getPointerInfo().getWithOffset(2), 527 MVT::i16, /* Alignment = */ 2, ST->getMemOperand()->getFlags()); 528 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh); 529 } 530 531 // Lower to a call to __misaligned_store(BasePtr, Value). 532 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 533 TargetLowering::ArgListTy Args; 534 TargetLowering::ArgListEntry Entry; 535 536 Entry.Ty = IntPtrTy; 537 Entry.Node = BasePtr; 538 Args.push_back(Entry); 539 540 Entry.Node = Value; 541 Args.push_back(Entry); 542 543 TargetLowering::CallLoweringInfo CLI(DAG); 544 CLI.setDebugLoc(dl).setChain(Chain).setCallee( 545 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 546 DAG.getExternalSymbol("__misaligned_store", 547 getPointerTy(DAG.getDataLayout())), 548 std::move(Args)); 549 550 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 551 return CallResult.second; 552 } 553 554 SDValue XCoreTargetLowering:: 555 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const 556 { 557 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI && 558 "Unexpected operand to lower!"); 559 SDLoc dl(Op); 560 SDValue LHS = Op.getOperand(0); 561 SDValue RHS = Op.getOperand(1); 562 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 563 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl, 564 DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero, 565 LHS, RHS); 566 SDValue Lo(Hi.getNode(), 1); 567 SDValue Ops[] = { Lo, Hi }; 568 return DAG.getMergeValues(Ops, dl); 569 } 570 571 SDValue XCoreTargetLowering:: 572 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const 573 { 574 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI && 575 "Unexpected operand to lower!"); 576 SDLoc dl(Op); 577 SDValue LHS = Op.getOperand(0); 578 SDValue RHS = Op.getOperand(1); 579 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 580 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl, 581 DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS, 582 Zero, Zero); 583 SDValue Lo(Hi.getNode(), 1); 584 SDValue Ops[] = { Lo, Hi }; 585 return DAG.getMergeValues(Ops, dl); 586 } 587 588 /// isADDADDMUL - Return whether Op is in a form that is equivalent to 589 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then 590 /// each intermediate result in the calculation must also have a single use. 591 /// If the Op is in the correct form the constituent parts are written to Mul0, 592 /// Mul1, Addend0 and Addend1. 593 static bool 594 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0, 595 SDValue &Addend1, bool requireIntermediatesHaveOneUse) 596 { 597 if (Op.getOpcode() != ISD::ADD) 598 return false; 599 SDValue N0 = Op.getOperand(0); 600 SDValue N1 = Op.getOperand(1); 601 SDValue AddOp; 602 SDValue OtherOp; 603 if (N0.getOpcode() == ISD::ADD) { 604 AddOp = N0; 605 OtherOp = N1; 606 } else if (N1.getOpcode() == ISD::ADD) { 607 AddOp = N1; 608 OtherOp = N0; 609 } else { 610 return false; 611 } 612 if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse()) 613 return false; 614 if (OtherOp.getOpcode() == ISD::MUL) { 615 // add(add(a,b),mul(x,y)) 616 if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse()) 617 return false; 618 Mul0 = OtherOp.getOperand(0); 619 Mul1 = OtherOp.getOperand(1); 620 Addend0 = AddOp.getOperand(0); 621 Addend1 = AddOp.getOperand(1); 622 return true; 623 } 624 if (AddOp.getOperand(0).getOpcode() == ISD::MUL) { 625 // add(add(mul(x,y),a),b) 626 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse()) 627 return false; 628 Mul0 = AddOp.getOperand(0).getOperand(0); 629 Mul1 = AddOp.getOperand(0).getOperand(1); 630 Addend0 = AddOp.getOperand(1); 631 Addend1 = OtherOp; 632 return true; 633 } 634 if (AddOp.getOperand(1).getOpcode() == ISD::MUL) { 635 // add(add(a,mul(x,y)),b) 636 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse()) 637 return false; 638 Mul0 = AddOp.getOperand(1).getOperand(0); 639 Mul1 = AddOp.getOperand(1).getOperand(1); 640 Addend0 = AddOp.getOperand(0); 641 Addend1 = OtherOp; 642 return true; 643 } 644 return false; 645 } 646 647 SDValue XCoreTargetLowering:: 648 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const 649 { 650 SDValue Mul; 651 SDValue Other; 652 if (N->getOperand(0).getOpcode() == ISD::MUL) { 653 Mul = N->getOperand(0); 654 Other = N->getOperand(1); 655 } else if (N->getOperand(1).getOpcode() == ISD::MUL) { 656 Mul = N->getOperand(1); 657 Other = N->getOperand(0); 658 } else { 659 return SDValue(); 660 } 661 SDLoc dl(N); 662 SDValue LL, RL, AddendL, AddendH; 663 LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 664 Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32)); 665 RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 666 Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32)); 667 AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 668 Other, DAG.getConstant(0, dl, MVT::i32)); 669 AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 670 Other, DAG.getConstant(1, dl, MVT::i32)); 671 APInt HighMask = APInt::getHighBitsSet(64, 32); 672 unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0)); 673 unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1)); 674 if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) && 675 DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) { 676 // The inputs are both zero-extended. 677 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl, 678 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 679 AddendL, LL, RL); 680 SDValue Lo(Hi.getNode(), 1); 681 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 682 } 683 if (LHSSB > 32 && RHSSB > 32) { 684 // The inputs are both sign-extended. 685 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl, 686 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 687 AddendL, LL, RL); 688 SDValue Lo(Hi.getNode(), 1); 689 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 690 } 691 SDValue LH, RH; 692 LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 693 Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32)); 694 RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 695 Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32)); 696 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl, 697 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 698 AddendL, LL, RL); 699 SDValue Lo(Hi.getNode(), 1); 700 RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH); 701 LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL); 702 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH); 703 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH); 704 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 705 } 706 707 SDValue XCoreTargetLowering:: 708 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const 709 { 710 assert(N->getValueType(0) == MVT::i64 && 711 (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 712 "Unknown operand to lower!"); 713 714 if (N->getOpcode() == ISD::ADD) 715 if (SDValue Result = TryExpandADDWithMul(N, DAG)) 716 return Result; 717 718 SDLoc dl(N); 719 720 // Extract components 721 SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 722 N->getOperand(0), 723 DAG.getConstant(0, dl, MVT::i32)); 724 SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 725 N->getOperand(0), 726 DAG.getConstant(1, dl, MVT::i32)); 727 SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 728 N->getOperand(1), 729 DAG.getConstant(0, dl, MVT::i32)); 730 SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 731 N->getOperand(1), 732 DAG.getConstant(1, dl, MVT::i32)); 733 734 // Expand 735 unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD : 736 XCoreISD::LSUB; 737 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 738 SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), 739 LHSL, RHSL, Zero); 740 SDValue Carry(Lo.getNode(), 1); 741 742 SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), 743 LHSH, RHSH, Carry); 744 SDValue Ignored(Hi.getNode(), 1); 745 // Merge the pieces 746 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 747 } 748 749 SDValue XCoreTargetLowering:: 750 LowerVAARG(SDValue Op, SelectionDAG &DAG) const 751 { 752 // Whist llvm does not support aggregate varargs we can ignore 753 // the possibility of the ValueType being an implicit byVal vararg. 754 SDNode *Node = Op.getNode(); 755 EVT VT = Node->getValueType(0); // not an aggregate 756 SDValue InChain = Node->getOperand(0); 757 SDValue VAListPtr = Node->getOperand(1); 758 EVT PtrVT = VAListPtr.getValueType(); 759 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 760 SDLoc dl(Node); 761 SDValue VAList = 762 DAG.getLoad(PtrVT, dl, InChain, VAListPtr, MachinePointerInfo(SV)); 763 // Increment the pointer, VAList, to the next vararg 764 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList, 765 DAG.getIntPtrConstant(VT.getSizeInBits() / 8, 766 dl)); 767 // Store the incremented VAList to the legalized pointer 768 InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr, 769 MachinePointerInfo(SV)); 770 // Load the actual argument out of the pointer VAList 771 return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo()); 772 } 773 774 SDValue XCoreTargetLowering:: 775 LowerVASTART(SDValue Op, SelectionDAG &DAG) const 776 { 777 SDLoc dl(Op); 778 // vastart stores the address of the VarArgsFrameIndex slot into the 779 // memory location argument 780 MachineFunction &MF = DAG.getMachineFunction(); 781 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 782 SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32); 783 return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1), 784 MachinePointerInfo()); 785 } 786 787 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op, 788 SelectionDAG &DAG) const { 789 // This nodes represent llvm.frameaddress on the DAG. 790 // It takes one operand, the index of the frame address to return. 791 // An index of zero corresponds to the current function's frame address. 792 // An index of one to the parent's frame address, and so on. 793 // Depths > 0 not supported yet! 794 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0) 795 return SDValue(); 796 797 MachineFunction &MF = DAG.getMachineFunction(); 798 const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 799 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), 800 RegInfo->getFrameRegister(MF), MVT::i32); 801 } 802 803 SDValue XCoreTargetLowering:: 804 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { 805 // This nodes represent llvm.returnaddress on the DAG. 806 // It takes one operand, the index of the return address to return. 807 // An index of zero corresponds to the current function's return address. 808 // An index of one to the parent's return address, and so on. 809 // Depths > 0 not supported yet! 810 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0) 811 return SDValue(); 812 813 MachineFunction &MF = DAG.getMachineFunction(); 814 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 815 int FI = XFI->createLRSpillSlot(MF); 816 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 817 return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op), 818 DAG.getEntryNode(), FIN, 819 MachinePointerInfo::getFixedStack(MF, FI)); 820 } 821 822 SDValue XCoreTargetLowering:: 823 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const { 824 // This node represents offset from frame pointer to first on-stack argument. 825 // This is needed for correct stack adjustment during unwind. 826 // However, we don't know the offset until after the frame has be finalised. 827 // This is done during the XCoreFTAOElim pass. 828 return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32); 829 } 830 831 SDValue XCoreTargetLowering:: 832 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { 833 // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) 834 // This node represents 'eh_return' gcc dwarf builtin, which is used to 835 // return from exception. The general meaning is: adjust stack by OFFSET and 836 // pass execution to HANDLER. 837 MachineFunction &MF = DAG.getMachineFunction(); 838 SDValue Chain = Op.getOperand(0); 839 SDValue Offset = Op.getOperand(1); 840 SDValue Handler = Op.getOperand(2); 841 SDLoc dl(Op); 842 843 // Absolute SP = (FP + FrameToArgs) + Offset 844 const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 845 SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl, 846 RegInfo->getFrameRegister(MF), MVT::i32); 847 SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl, 848 MVT::i32); 849 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs); 850 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset); 851 852 // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister 853 // which leaves 2 caller saved registers, R2 & R3 for us to use. 854 unsigned StackReg = XCore::R2; 855 unsigned HandlerReg = XCore::R3; 856 857 SDValue OutChains[] = { 858 DAG.getCopyToReg(Chain, dl, StackReg, Stack), 859 DAG.getCopyToReg(Chain, dl, HandlerReg, Handler) 860 }; 861 862 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 863 864 return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain, 865 DAG.getRegister(StackReg, MVT::i32), 866 DAG.getRegister(HandlerReg, MVT::i32)); 867 868 } 869 870 SDValue XCoreTargetLowering:: 871 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { 872 return Op.getOperand(0); 873 } 874 875 SDValue XCoreTargetLowering:: 876 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { 877 SDValue Chain = Op.getOperand(0); 878 SDValue Trmp = Op.getOperand(1); // trampoline 879 SDValue FPtr = Op.getOperand(2); // nested function 880 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 881 882 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 883 884 // .align 4 885 // LDAPF_u10 r11, nest 886 // LDW_2rus r11, r11[0] 887 // STWSP_ru6 r11, sp[0] 888 // LDAPF_u10 r11, fptr 889 // LDW_2rus r11, r11[0] 890 // BAU_1r r11 891 // nest: 892 // .word nest 893 // fptr: 894 // .word fptr 895 SDValue OutChains[5]; 896 897 SDValue Addr = Trmp; 898 899 SDLoc dl(Op); 900 OutChains[0] = 901 DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr, 902 MachinePointerInfo(TrmpAddr)); 903 904 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 905 DAG.getConstant(4, dl, MVT::i32)); 906 OutChains[1] = 907 DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr, 908 MachinePointerInfo(TrmpAddr, 4)); 909 910 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 911 DAG.getConstant(8, dl, MVT::i32)); 912 OutChains[2] = 913 DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr, 914 MachinePointerInfo(TrmpAddr, 8)); 915 916 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 917 DAG.getConstant(12, dl, MVT::i32)); 918 OutChains[3] = 919 DAG.getStore(Chain, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12)); 920 921 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 922 DAG.getConstant(16, dl, MVT::i32)); 923 OutChains[4] = 924 DAG.getStore(Chain, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 16)); 925 926 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 927 } 928 929 SDValue XCoreTargetLowering:: 930 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { 931 SDLoc DL(Op); 932 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 933 switch (IntNo) { 934 case Intrinsic::xcore_crc8: 935 EVT VT = Op.getValueType(); 936 SDValue Data = 937 DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT), 938 Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3)); 939 SDValue Crc(Data.getNode(), 1); 940 SDValue Results[] = { Crc, Data }; 941 return DAG.getMergeValues(Results, DL); 942 } 943 return SDValue(); 944 } 945 946 SDValue XCoreTargetLowering:: 947 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const { 948 SDLoc DL(Op); 949 return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 950 } 951 952 SDValue XCoreTargetLowering:: 953 LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const { 954 AtomicSDNode *N = cast<AtomicSDNode>(Op); 955 assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP"); 956 assert((N->getOrdering() == AtomicOrdering::Unordered || 957 N->getOrdering() == AtomicOrdering::Monotonic) && 958 "setInsertFencesForAtomic(true) expects unordered / monotonic"); 959 if (N->getMemoryVT() == MVT::i32) { 960 if (N->getAlignment() < 4) 961 report_fatal_error("atomic load must be aligned"); 962 return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op), 963 N->getChain(), N->getBasePtr(), N->getPointerInfo(), 964 N->getAlignment(), N->getMemOperand()->getFlags(), 965 N->getAAInfo(), N->getRanges()); 966 } 967 if (N->getMemoryVT() == MVT::i16) { 968 if (N->getAlignment() < 2) 969 report_fatal_error("atomic load must be aligned"); 970 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(), 971 N->getBasePtr(), N->getPointerInfo(), MVT::i16, 972 N->getAlignment(), N->getMemOperand()->getFlags(), 973 N->getAAInfo()); 974 } 975 if (N->getMemoryVT() == MVT::i8) 976 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(), 977 N->getBasePtr(), N->getPointerInfo(), MVT::i8, 978 N->getAlignment(), N->getMemOperand()->getFlags(), 979 N->getAAInfo()); 980 return SDValue(); 981 } 982 983 SDValue XCoreTargetLowering:: 984 LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const { 985 AtomicSDNode *N = cast<AtomicSDNode>(Op); 986 assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP"); 987 assert((N->getOrdering() == AtomicOrdering::Unordered || 988 N->getOrdering() == AtomicOrdering::Monotonic) && 989 "setInsertFencesForAtomic(true) expects unordered / monotonic"); 990 if (N->getMemoryVT() == MVT::i32) { 991 if (N->getAlignment() < 4) 992 report_fatal_error("atomic store must be aligned"); 993 return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(), N->getBasePtr(), 994 N->getPointerInfo(), N->getAlignment(), 995 N->getMemOperand()->getFlags(), N->getAAInfo()); 996 } 997 if (N->getMemoryVT() == MVT::i16) { 998 if (N->getAlignment() < 2) 999 report_fatal_error("atomic store must be aligned"); 1000 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(), 1001 N->getBasePtr(), N->getPointerInfo(), MVT::i16, 1002 N->getAlignment(), N->getMemOperand()->getFlags(), 1003 N->getAAInfo()); 1004 } 1005 if (N->getMemoryVT() == MVT::i8) 1006 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(), 1007 N->getBasePtr(), N->getPointerInfo(), MVT::i8, 1008 N->getAlignment(), N->getMemOperand()->getFlags(), 1009 N->getAAInfo()); 1010 return SDValue(); 1011 } 1012 1013 //===----------------------------------------------------------------------===// 1014 // Calling Convention Implementation 1015 //===----------------------------------------------------------------------===// 1016 1017 #include "XCoreGenCallingConv.inc" 1018 1019 //===----------------------------------------------------------------------===// 1020 // Call Calling Convention Implementation 1021 //===----------------------------------------------------------------------===// 1022 1023 /// XCore call implementation 1024 SDValue 1025 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 1026 SmallVectorImpl<SDValue> &InVals) const { 1027 SelectionDAG &DAG = CLI.DAG; 1028 SDLoc &dl = CLI.DL; 1029 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1030 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1031 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1032 SDValue Chain = CLI.Chain; 1033 SDValue Callee = CLI.Callee; 1034 bool &isTailCall = CLI.IsTailCall; 1035 CallingConv::ID CallConv = CLI.CallConv; 1036 bool isVarArg = CLI.IsVarArg; 1037 1038 // XCore target does not yet support tail call optimization. 1039 isTailCall = false; 1040 1041 // For now, only CallingConv::C implemented 1042 switch (CallConv) 1043 { 1044 default: 1045 report_fatal_error("Unsupported calling convention"); 1046 case CallingConv::Fast: 1047 case CallingConv::C: 1048 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall, 1049 Outs, OutVals, Ins, dl, DAG, InVals); 1050 } 1051 } 1052 1053 /// LowerCallResult - Lower the result values of a call into the 1054 /// appropriate copies out of appropriate physical registers / memory locations. 1055 static SDValue LowerCallResult(SDValue Chain, SDValue InFlag, 1056 const SmallVectorImpl<CCValAssign> &RVLocs, 1057 const SDLoc &dl, SelectionDAG &DAG, 1058 SmallVectorImpl<SDValue> &InVals) { 1059 SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs; 1060 // Copy results out of physical registers. 1061 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 1062 const CCValAssign &VA = RVLocs[i]; 1063 if (VA.isRegLoc()) { 1064 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(), 1065 InFlag).getValue(1); 1066 InFlag = Chain.getValue(2); 1067 InVals.push_back(Chain.getValue(0)); 1068 } else { 1069 assert(VA.isMemLoc()); 1070 ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(), 1071 InVals.size())); 1072 // Reserve space for this result. 1073 InVals.push_back(SDValue()); 1074 } 1075 } 1076 1077 // Copy results out of memory. 1078 SmallVector<SDValue, 4> MemOpChains; 1079 for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) { 1080 int offset = ResultMemLocs[i].first; 1081 unsigned index = ResultMemLocs[i].second; 1082 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 1083 SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) }; 1084 SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops); 1085 InVals[index] = load; 1086 MemOpChains.push_back(load.getValue(1)); 1087 } 1088 1089 // Transform all loads nodes into one single node because 1090 // all load nodes are independent of each other. 1091 if (!MemOpChains.empty()) 1092 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1093 1094 return Chain; 1095 } 1096 1097 /// LowerCCCCallTo - functions arguments are copied from virtual 1098 /// regs to (physical regs)/(stack frame), CALLSEQ_START and 1099 /// CALLSEQ_END are emitted. 1100 /// TODO: isTailCall, sret. 1101 SDValue XCoreTargetLowering::LowerCCCCallTo( 1102 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 1103 bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs, 1104 const SmallVectorImpl<SDValue> &OutVals, 1105 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 1106 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1107 1108 // Analyze operands of the call, assigning locations to each operand. 1109 SmallVector<CCValAssign, 16> ArgLocs; 1110 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 1111 *DAG.getContext()); 1112 1113 // The ABI dictates there should be one stack slot available to the callee 1114 // on function entry (for saving lr). 1115 CCInfo.AllocateStack(4, 4); 1116 1117 CCInfo.AnalyzeCallOperands(Outs, CC_XCore); 1118 1119 SmallVector<CCValAssign, 16> RVLocs; 1120 // Analyze return values to determine the number of bytes of stack required. 1121 CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 1122 *DAG.getContext()); 1123 RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4); 1124 RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore); 1125 1126 // Get a count of how many bytes are to be pushed on the stack. 1127 unsigned NumBytes = RetCCInfo.getNextStackOffset(); 1128 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1129 1130 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 1131 1132 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass; 1133 SmallVector<SDValue, 12> MemOpChains; 1134 1135 // Walk the register/memloc assignments, inserting copies/loads. 1136 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1137 CCValAssign &VA = ArgLocs[i]; 1138 SDValue Arg = OutVals[i]; 1139 1140 // Promote the value if needed. 1141 switch (VA.getLocInfo()) { 1142 default: llvm_unreachable("Unknown loc info!"); 1143 case CCValAssign::Full: break; 1144 case CCValAssign::SExt: 1145 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 1146 break; 1147 case CCValAssign::ZExt: 1148 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 1149 break; 1150 case CCValAssign::AExt: 1151 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 1152 break; 1153 } 1154 1155 // Arguments that can be passed on register must be kept at 1156 // RegsToPass vector 1157 if (VA.isRegLoc()) { 1158 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 1159 } else { 1160 assert(VA.isMemLoc()); 1161 1162 int Offset = VA.getLocMemOffset(); 1163 1164 MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other, 1165 Chain, Arg, 1166 DAG.getConstant(Offset/4, dl, 1167 MVT::i32))); 1168 } 1169 } 1170 1171 // Transform all store nodes into one single node because 1172 // all store nodes are independent of each other. 1173 if (!MemOpChains.empty()) 1174 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1175 1176 // Build a sequence of copy-to-reg nodes chained together with token 1177 // chain and flag operands which copy the outgoing args into registers. 1178 // The InFlag in necessary since all emitted instructions must be 1179 // stuck together. 1180 SDValue InFlag; 1181 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1182 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 1183 RegsToPass[i].second, InFlag); 1184 InFlag = Chain.getValue(1); 1185 } 1186 1187 // If the callee is a GlobalAddress node (quite common, every direct call is) 1188 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1189 // Likewise ExternalSymbol -> TargetExternalSymbol. 1190 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1191 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32); 1192 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 1193 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32); 1194 1195 // XCoreBranchLink = #chain, #target_address, #opt_in_flags... 1196 // = Chain, Callee, Reg#1, Reg#2, ... 1197 // 1198 // Returns a chain & a flag for retval copy to use. 1199 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1200 SmallVector<SDValue, 8> Ops; 1201 Ops.push_back(Chain); 1202 Ops.push_back(Callee); 1203 1204 // Add argument registers to the end of the list so that they are 1205 // known live into the call. 1206 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1207 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1208 RegsToPass[i].second.getValueType())); 1209 1210 if (InFlag.getNode()) 1211 Ops.push_back(InFlag); 1212 1213 Chain = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops); 1214 InFlag = Chain.getValue(1); 1215 1216 // Create the CALLSEQ_END node. 1217 Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true), 1218 DAG.getConstant(0, dl, PtrVT, true), InFlag, dl); 1219 InFlag = Chain.getValue(1); 1220 1221 // Handle result values, copying them out of physregs into vregs that we 1222 // return. 1223 return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals); 1224 } 1225 1226 //===----------------------------------------------------------------------===// 1227 // Formal Arguments Calling Convention Implementation 1228 //===----------------------------------------------------------------------===// 1229 1230 namespace { 1231 struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; }; 1232 } 1233 1234 /// XCore formal arguments implementation 1235 SDValue XCoreTargetLowering::LowerFormalArguments( 1236 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 1237 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 1238 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1239 switch (CallConv) 1240 { 1241 default: 1242 report_fatal_error("Unsupported calling convention"); 1243 case CallingConv::C: 1244 case CallingConv::Fast: 1245 return LowerCCCArguments(Chain, CallConv, isVarArg, 1246 Ins, dl, DAG, InVals); 1247 } 1248 } 1249 1250 /// LowerCCCArguments - transform physical registers into 1251 /// virtual registers and generate load operations for 1252 /// arguments places on the stack. 1253 /// TODO: sret 1254 SDValue XCoreTargetLowering::LowerCCCArguments( 1255 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 1256 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 1257 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1258 MachineFunction &MF = DAG.getMachineFunction(); 1259 MachineFrameInfo &MFI = MF.getFrameInfo(); 1260 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1261 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 1262 1263 // Assign locations to all of the incoming arguments. 1264 SmallVector<CCValAssign, 16> ArgLocs; 1265 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 1266 *DAG.getContext()); 1267 1268 CCInfo.AnalyzeFormalArguments(Ins, CC_XCore); 1269 1270 unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize(); 1271 1272 unsigned LRSaveSize = StackSlotSize; 1273 1274 if (!isVarArg) 1275 XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize); 1276 1277 // All getCopyFromReg ops must precede any getMemcpys to prevent the 1278 // scheduler clobbering a register before it has been copied. 1279 // The stages are: 1280 // 1. CopyFromReg (and load) arg & vararg registers. 1281 // 2. Chain CopyFromReg nodes into a TokenFactor. 1282 // 3. Memcpy 'byVal' args & push final InVals. 1283 // 4. Chain mem ops nodes into a TokenFactor. 1284 SmallVector<SDValue, 4> CFRegNode; 1285 SmallVector<ArgDataPair, 4> ArgData; 1286 SmallVector<SDValue, 4> MemOps; 1287 1288 // 1a. CopyFromReg (and load) arg registers. 1289 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1290 1291 CCValAssign &VA = ArgLocs[i]; 1292 SDValue ArgIn; 1293 1294 if (VA.isRegLoc()) { 1295 // Arguments passed in registers 1296 EVT RegVT = VA.getLocVT(); 1297 switch (RegVT.getSimpleVT().SimpleTy) { 1298 default: 1299 { 1300 #ifndef NDEBUG 1301 errs() << "LowerFormalArguments Unhandled argument type: " 1302 << RegVT.getEVTString() << "\n"; 1303 #endif 1304 llvm_unreachable(nullptr); 1305 } 1306 case MVT::i32: 1307 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass); 1308 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1309 ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); 1310 CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1)); 1311 } 1312 } else { 1313 // sanity check 1314 assert(VA.isMemLoc()); 1315 // Load the argument to a virtual register 1316 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8; 1317 if (ObjSize > StackSlotSize) { 1318 errs() << "LowerFormalArguments Unhandled argument type: " 1319 << EVT(VA.getLocVT()).getEVTString() 1320 << "\n"; 1321 } 1322 // Create the frame index object for this incoming parameter... 1323 int FI = MFI.CreateFixedObject(ObjSize, 1324 LRSaveSize + VA.getLocMemOffset(), 1325 true); 1326 1327 // Create the SelectionDAG nodes corresponding to a load 1328 //from this parameter 1329 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1330 ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, 1331 MachinePointerInfo::getFixedStack(MF, FI)); 1332 } 1333 const ArgDataPair ADP = { ArgIn, Ins[i].Flags }; 1334 ArgData.push_back(ADP); 1335 } 1336 1337 // 1b. CopyFromReg vararg registers. 1338 if (isVarArg) { 1339 // Argument registers 1340 static const MCPhysReg ArgRegs[] = { 1341 XCore::R0, XCore::R1, XCore::R2, XCore::R3 1342 }; 1343 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 1344 unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs); 1345 if (FirstVAReg < array_lengthof(ArgRegs)) { 1346 int offset = 0; 1347 // Save remaining registers, storing higher register numbers at a higher 1348 // address 1349 for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) { 1350 // Create a stack slot 1351 int FI = MFI.CreateFixedObject(4, offset, true); 1352 if (i == (int)FirstVAReg) { 1353 XFI->setVarArgsFrameIndex(FI); 1354 } 1355 offset -= StackSlotSize; 1356 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1357 // Move argument from phys reg -> virt reg 1358 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass); 1359 RegInfo.addLiveIn(ArgRegs[i], VReg); 1360 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 1361 CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1)); 1362 // Move argument from virt reg -> stack 1363 SDValue Store = 1364 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 1365 MemOps.push_back(Store); 1366 } 1367 } else { 1368 // This will point to the next argument passed via stack. 1369 XFI->setVarArgsFrameIndex( 1370 MFI.CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(), 1371 true)); 1372 } 1373 } 1374 1375 // 2. chain CopyFromReg nodes into a TokenFactor. 1376 if (!CFRegNode.empty()) 1377 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode); 1378 1379 // 3. Memcpy 'byVal' args & push final InVals. 1380 // Aggregates passed "byVal" need to be copied by the callee. 1381 // The callee will use a pointer to this copy, rather than the original 1382 // pointer. 1383 for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(), 1384 ArgDE = ArgData.end(); 1385 ArgDI != ArgDE; ++ArgDI) { 1386 if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) { 1387 unsigned Size = ArgDI->Flags.getByValSize(); 1388 unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign()); 1389 // Create a new object on the stack and copy the pointee into it. 1390 int FI = MFI.CreateStackObject(Size, Align, false); 1391 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1392 InVals.push_back(FIN); 1393 MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV, 1394 DAG.getConstant(Size, dl, MVT::i32), 1395 Align, false, false, false, 1396 MachinePointerInfo(), 1397 MachinePointerInfo())); 1398 } else { 1399 InVals.push_back(ArgDI->SDV); 1400 } 1401 } 1402 1403 // 4, chain mem ops nodes into a TokenFactor. 1404 if (!MemOps.empty()) { 1405 MemOps.push_back(Chain); 1406 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 1407 } 1408 1409 return Chain; 1410 } 1411 1412 //===----------------------------------------------------------------------===// 1413 // Return Value Calling Convention Implementation 1414 //===----------------------------------------------------------------------===// 1415 1416 bool XCoreTargetLowering:: 1417 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, 1418 bool isVarArg, 1419 const SmallVectorImpl<ISD::OutputArg> &Outs, 1420 LLVMContext &Context) const { 1421 SmallVector<CCValAssign, 16> RVLocs; 1422 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 1423 if (!CCInfo.CheckReturn(Outs, RetCC_XCore)) 1424 return false; 1425 if (CCInfo.getNextStackOffset() != 0 && isVarArg) 1426 return false; 1427 return true; 1428 } 1429 1430 SDValue 1431 XCoreTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1432 bool isVarArg, 1433 const SmallVectorImpl<ISD::OutputArg> &Outs, 1434 const SmallVectorImpl<SDValue> &OutVals, 1435 const SDLoc &dl, SelectionDAG &DAG) const { 1436 1437 XCoreFunctionInfo *XFI = 1438 DAG.getMachineFunction().getInfo<XCoreFunctionInfo>(); 1439 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 1440 1441 // CCValAssign - represent the assignment of 1442 // the return value to a location 1443 SmallVector<CCValAssign, 16> RVLocs; 1444 1445 // CCState - Info about the registers and stack slot. 1446 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 1447 *DAG.getContext()); 1448 1449 // Analyze return values. 1450 if (!isVarArg) 1451 CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4); 1452 1453 CCInfo.AnalyzeReturn(Outs, RetCC_XCore); 1454 1455 SDValue Flag; 1456 SmallVector<SDValue, 4> RetOps(1, Chain); 1457 1458 // Return on XCore is always a "retsp 0" 1459 RetOps.push_back(DAG.getConstant(0, dl, MVT::i32)); 1460 1461 SmallVector<SDValue, 4> MemOpChains; 1462 // Handle return values that must be copied to memory. 1463 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 1464 CCValAssign &VA = RVLocs[i]; 1465 if (VA.isRegLoc()) 1466 continue; 1467 assert(VA.isMemLoc()); 1468 if (isVarArg) { 1469 report_fatal_error("Can't return value from vararg function in memory"); 1470 } 1471 1472 int Offset = VA.getLocMemOffset(); 1473 unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8; 1474 // Create the frame index object for the memory location. 1475 int FI = MFI.CreateFixedObject(ObjSize, Offset, false); 1476 1477 // Create a SelectionDAG node corresponding to a store 1478 // to this memory location. 1479 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1480 MemOpChains.push_back(DAG.getStore( 1481 Chain, dl, OutVals[i], FIN, 1482 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 1483 } 1484 1485 // Transform all store nodes into one single node because 1486 // all stores are independent of each other. 1487 if (!MemOpChains.empty()) 1488 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1489 1490 // Now handle return values copied to registers. 1491 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 1492 CCValAssign &VA = RVLocs[i]; 1493 if (!VA.isRegLoc()) 1494 continue; 1495 // Copy the result values into the output registers. 1496 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); 1497 1498 // guarantee that all emitted copies are 1499 // stuck together, avoiding something bad 1500 Flag = Chain.getValue(1); 1501 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 1502 } 1503 1504 RetOps[0] = Chain; // Update chain. 1505 1506 // Add the flag if we have it. 1507 if (Flag.getNode()) 1508 RetOps.push_back(Flag); 1509 1510 return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps); 1511 } 1512 1513 //===----------------------------------------------------------------------===// 1514 // Other Lowering Code 1515 //===----------------------------------------------------------------------===// 1516 1517 MachineBasicBlock * 1518 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 1519 MachineBasicBlock *BB) const { 1520 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1521 DebugLoc dl = MI.getDebugLoc(); 1522 assert((MI.getOpcode() == XCore::SELECT_CC) && 1523 "Unexpected instr type to insert"); 1524 1525 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond 1526 // control-flow pattern. The incoming instruction knows the destination vreg 1527 // to set, the condition code register to branch on, the true/false values to 1528 // select between, and a branch opcode to use. 1529 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1530 MachineFunction::iterator It = ++BB->getIterator(); 1531 1532 // thisMBB: 1533 // ... 1534 // TrueVal = ... 1535 // cmpTY ccX, r1, r2 1536 // bCC copy1MBB 1537 // fallthrough --> copy0MBB 1538 MachineBasicBlock *thisMBB = BB; 1539 MachineFunction *F = BB->getParent(); 1540 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 1541 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 1542 F->insert(It, copy0MBB); 1543 F->insert(It, sinkMBB); 1544 1545 // Transfer the remainder of BB and its successor edges to sinkMBB. 1546 sinkMBB->splice(sinkMBB->begin(), BB, 1547 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1548 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 1549 1550 // Next, add the true and fallthrough blocks as its successors. 1551 BB->addSuccessor(copy0MBB); 1552 BB->addSuccessor(sinkMBB); 1553 1554 BuildMI(BB, dl, TII.get(XCore::BRFT_lru6)) 1555 .addReg(MI.getOperand(1).getReg()) 1556 .addMBB(sinkMBB); 1557 1558 // copy0MBB: 1559 // %FalseValue = ... 1560 // # fallthrough to sinkMBB 1561 BB = copy0MBB; 1562 1563 // Update machine-CFG edges 1564 BB->addSuccessor(sinkMBB); 1565 1566 // sinkMBB: 1567 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 1568 // ... 1569 BB = sinkMBB; 1570 BuildMI(*BB, BB->begin(), dl, TII.get(XCore::PHI), MI.getOperand(0).getReg()) 1571 .addReg(MI.getOperand(3).getReg()) 1572 .addMBB(copy0MBB) 1573 .addReg(MI.getOperand(2).getReg()) 1574 .addMBB(thisMBB); 1575 1576 MI.eraseFromParent(); // The pseudo instruction is gone now. 1577 return BB; 1578 } 1579 1580 //===----------------------------------------------------------------------===// 1581 // Target Optimization Hooks 1582 //===----------------------------------------------------------------------===// 1583 1584 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N, 1585 DAGCombinerInfo &DCI) const { 1586 SelectionDAG &DAG = DCI.DAG; 1587 SDLoc dl(N); 1588 switch (N->getOpcode()) { 1589 default: break; 1590 case ISD::INTRINSIC_VOID: 1591 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 1592 case Intrinsic::xcore_outt: 1593 case Intrinsic::xcore_outct: 1594 case Intrinsic::xcore_chkct: { 1595 SDValue OutVal = N->getOperand(3); 1596 // These instructions ignore the high bits. 1597 if (OutVal.hasOneUse()) { 1598 unsigned BitWidth = OutVal.getValueSizeInBits(); 1599 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8); 1600 KnownBits Known; 1601 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1602 !DCI.isBeforeLegalizeOps()); 1603 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1604 if (TLI.ShrinkDemandedConstant(OutVal, DemandedMask, TLO) || 1605 TLI.SimplifyDemandedBits(OutVal, DemandedMask, Known, TLO)) 1606 DCI.CommitTargetLoweringOpt(TLO); 1607 } 1608 break; 1609 } 1610 case Intrinsic::xcore_setpt: { 1611 SDValue Time = N->getOperand(3); 1612 // This instruction ignores the high bits. 1613 if (Time.hasOneUse()) { 1614 unsigned BitWidth = Time.getValueSizeInBits(); 1615 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16); 1616 KnownBits Known; 1617 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1618 !DCI.isBeforeLegalizeOps()); 1619 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1620 if (TLI.ShrinkDemandedConstant(Time, DemandedMask, TLO) || 1621 TLI.SimplifyDemandedBits(Time, DemandedMask, Known, TLO)) 1622 DCI.CommitTargetLoweringOpt(TLO); 1623 } 1624 break; 1625 } 1626 } 1627 break; 1628 case XCoreISD::LADD: { 1629 SDValue N0 = N->getOperand(0); 1630 SDValue N1 = N->getOperand(1); 1631 SDValue N2 = N->getOperand(2); 1632 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1633 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1634 EVT VT = N0.getValueType(); 1635 1636 // canonicalize constant to RHS 1637 if (N0C && !N1C) 1638 return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2); 1639 1640 // fold (ladd 0, 0, x) -> 0, x & 1 1641 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) { 1642 SDValue Carry = DAG.getConstant(0, dl, VT); 1643 SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2, 1644 DAG.getConstant(1, dl, VT)); 1645 SDValue Ops[] = { Result, Carry }; 1646 return DAG.getMergeValues(Ops, dl); 1647 } 1648 1649 // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the 1650 // low bit set 1651 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) { 1652 KnownBits Known; 1653 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1654 VT.getSizeInBits() - 1); 1655 DAG.computeKnownBits(N2, Known); 1656 if ((Known.Zero & Mask) == Mask) { 1657 SDValue Carry = DAG.getConstant(0, dl, VT); 1658 SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2); 1659 SDValue Ops[] = { Result, Carry }; 1660 return DAG.getMergeValues(Ops, dl); 1661 } 1662 } 1663 } 1664 break; 1665 case XCoreISD::LSUB: { 1666 SDValue N0 = N->getOperand(0); 1667 SDValue N1 = N->getOperand(1); 1668 SDValue N2 = N->getOperand(2); 1669 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1670 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1671 EVT VT = N0.getValueType(); 1672 1673 // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set 1674 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) { 1675 KnownBits Known; 1676 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1677 VT.getSizeInBits() - 1); 1678 DAG.computeKnownBits(N2, Known); 1679 if ((Known.Zero & Mask) == Mask) { 1680 SDValue Borrow = N2; 1681 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, 1682 DAG.getConstant(0, dl, VT), N2); 1683 SDValue Ops[] = { Result, Borrow }; 1684 return DAG.getMergeValues(Ops, dl); 1685 } 1686 } 1687 1688 // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the 1689 // low bit set 1690 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) { 1691 KnownBits Known; 1692 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1693 VT.getSizeInBits() - 1); 1694 DAG.computeKnownBits(N2, Known); 1695 if ((Known.Zero & Mask) == Mask) { 1696 SDValue Borrow = DAG.getConstant(0, dl, VT); 1697 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2); 1698 SDValue Ops[] = { Result, Borrow }; 1699 return DAG.getMergeValues(Ops, dl); 1700 } 1701 } 1702 } 1703 break; 1704 case XCoreISD::LMUL: { 1705 SDValue N0 = N->getOperand(0); 1706 SDValue N1 = N->getOperand(1); 1707 SDValue N2 = N->getOperand(2); 1708 SDValue N3 = N->getOperand(3); 1709 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1710 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1711 EVT VT = N0.getValueType(); 1712 // Canonicalize multiplicative constant to RHS. If both multiplicative 1713 // operands are constant canonicalize smallest to RHS. 1714 if ((N0C && !N1C) || 1715 (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue())) 1716 return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT), 1717 N1, N0, N2, N3); 1718 1719 // lmul(x, 0, a, b) 1720 if (N1C && N1C->isNullValue()) { 1721 // If the high result is unused fold to add(a, b) 1722 if (N->hasNUsesOfValue(0, 0)) { 1723 SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3); 1724 SDValue Ops[] = { Lo, Lo }; 1725 return DAG.getMergeValues(Ops, dl); 1726 } 1727 // Otherwise fold to ladd(a, b, 0) 1728 SDValue Result = 1729 DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1); 1730 SDValue Carry(Result.getNode(), 1); 1731 SDValue Ops[] = { Carry, Result }; 1732 return DAG.getMergeValues(Ops, dl); 1733 } 1734 } 1735 break; 1736 case ISD::ADD: { 1737 // Fold 32 bit expressions such as add(add(mul(x,y),a),b) -> 1738 // lmul(x, y, a, b). The high result of lmul will be ignored. 1739 // This is only profitable if the intermediate results are unused 1740 // elsewhere. 1741 SDValue Mul0, Mul1, Addend0, Addend1; 1742 if (N->getValueType(0) == MVT::i32 && 1743 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) { 1744 SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl, 1745 DAG.getVTList(MVT::i32, MVT::i32), Mul0, 1746 Mul1, Addend0, Addend1); 1747 SDValue Result(Ignored.getNode(), 1); 1748 return Result; 1749 } 1750 APInt HighMask = APInt::getHighBitsSet(64, 32); 1751 // Fold 64 bit expression such as add(add(mul(x,y),a),b) -> 1752 // lmul(x, y, a, b) if all operands are zero-extended. We do this 1753 // before type legalization as it is messy to match the operands after 1754 // that. 1755 if (N->getValueType(0) == MVT::i64 && 1756 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) && 1757 DAG.MaskedValueIsZero(Mul0, HighMask) && 1758 DAG.MaskedValueIsZero(Mul1, HighMask) && 1759 DAG.MaskedValueIsZero(Addend0, HighMask) && 1760 DAG.MaskedValueIsZero(Addend1, HighMask)) { 1761 SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1762 Mul0, DAG.getConstant(0, dl, MVT::i32)); 1763 SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1764 Mul1, DAG.getConstant(0, dl, MVT::i32)); 1765 SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1766 Addend0, DAG.getConstant(0, dl, MVT::i32)); 1767 SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1768 Addend1, DAG.getConstant(0, dl, MVT::i32)); 1769 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl, 1770 DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L, 1771 Addend0L, Addend1L); 1772 SDValue Lo(Hi.getNode(), 1); 1773 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 1774 } 1775 } 1776 break; 1777 case ISD::STORE: { 1778 // Replace unaligned store of unaligned load with memmove. 1779 StoreSDNode *ST = cast<StoreSDNode>(N); 1780 if (!DCI.isBeforeLegalize() || 1781 allowsMisalignedMemoryAccesses(ST->getMemoryVT(), 1782 ST->getAddressSpace(), 1783 ST->getAlignment()) || 1784 ST->isVolatile() || ST->isIndexed()) { 1785 break; 1786 } 1787 SDValue Chain = ST->getChain(); 1788 1789 unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits(); 1790 assert((StoreBits % 8) == 0 && 1791 "Store size in bits must be a multiple of 8"); 1792 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment( 1793 ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext())); 1794 unsigned Alignment = ST->getAlignment(); 1795 if (Alignment >= ABIAlignment) { 1796 break; 1797 } 1798 1799 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) { 1800 if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() && 1801 LD->getAlignment() == Alignment && 1802 !LD->isVolatile() && !LD->isIndexed() && 1803 Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) { 1804 bool isTail = isInTailCallPosition(DAG, ST, Chain); 1805 return DAG.getMemmove(Chain, dl, ST->getBasePtr(), 1806 LD->getBasePtr(), 1807 DAG.getConstant(StoreBits/8, dl, MVT::i32), 1808 Alignment, false, isTail, ST->getPointerInfo(), 1809 LD->getPointerInfo()); 1810 } 1811 } 1812 break; 1813 } 1814 } 1815 return SDValue(); 1816 } 1817 1818 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1819 KnownBits &Known, 1820 const APInt &DemandedElts, 1821 const SelectionDAG &DAG, 1822 unsigned Depth) const { 1823 Known.resetAll(); 1824 switch (Op.getOpcode()) { 1825 default: break; 1826 case XCoreISD::LADD: 1827 case XCoreISD::LSUB: 1828 if (Op.getResNo() == 1) { 1829 // Top bits of carry / borrow are clear. 1830 Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(), 1831 Known.getBitWidth() - 1); 1832 } 1833 break; 1834 case ISD::INTRINSIC_W_CHAIN: 1835 { 1836 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1837 switch (IntNo) { 1838 case Intrinsic::xcore_getts: 1839 // High bits are known to be zero. 1840 Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(), 1841 Known.getBitWidth() - 16); 1842 break; 1843 case Intrinsic::xcore_int: 1844 case Intrinsic::xcore_inct: 1845 // High bits are known to be zero. 1846 Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(), 1847 Known.getBitWidth() - 8); 1848 break; 1849 case Intrinsic::xcore_testct: 1850 // Result is either 0 or 1. 1851 Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(), 1852 Known.getBitWidth() - 1); 1853 break; 1854 case Intrinsic::xcore_testwct: 1855 // Result is in the range 0 - 4. 1856 Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(), 1857 Known.getBitWidth() - 3); 1858 break; 1859 } 1860 } 1861 break; 1862 } 1863 } 1864 1865 //===----------------------------------------------------------------------===// 1866 // Addressing mode description hooks 1867 //===----------------------------------------------------------------------===// 1868 1869 static inline bool isImmUs(int64_t val) 1870 { 1871 return (val >= 0 && val <= 11); 1872 } 1873 1874 static inline bool isImmUs2(int64_t val) 1875 { 1876 return (val%2 == 0 && isImmUs(val/2)); 1877 } 1878 1879 static inline bool isImmUs4(int64_t val) 1880 { 1881 return (val%4 == 0 && isImmUs(val/4)); 1882 } 1883 1884 /// isLegalAddressingMode - Return true if the addressing mode represented 1885 /// by AM is legal for this target, for a load/store of the specified type. 1886 bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1887 const AddrMode &AM, Type *Ty, 1888 unsigned AS, 1889 Instruction *I) const { 1890 if (Ty->getTypeID() == Type::VoidTyID) 1891 return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs); 1892 1893 unsigned Size = DL.getTypeAllocSize(Ty); 1894 if (AM.BaseGV) { 1895 return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 && 1896 AM.BaseOffs%4 == 0; 1897 } 1898 1899 switch (Size) { 1900 case 1: 1901 // reg + imm 1902 if (AM.Scale == 0) { 1903 return isImmUs(AM.BaseOffs); 1904 } 1905 // reg + reg 1906 return AM.Scale == 1 && AM.BaseOffs == 0; 1907 case 2: 1908 case 3: 1909 // reg + imm 1910 if (AM.Scale == 0) { 1911 return isImmUs2(AM.BaseOffs); 1912 } 1913 // reg + reg<<1 1914 return AM.Scale == 2 && AM.BaseOffs == 0; 1915 default: 1916 // reg + imm 1917 if (AM.Scale == 0) { 1918 return isImmUs4(AM.BaseOffs); 1919 } 1920 // reg + reg<<2 1921 return AM.Scale == 4 && AM.BaseOffs == 0; 1922 } 1923 } 1924 1925 //===----------------------------------------------------------------------===// 1926 // XCore Inline Assembly Support 1927 //===----------------------------------------------------------------------===// 1928 1929 std::pair<unsigned, const TargetRegisterClass *> 1930 XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 1931 StringRef Constraint, 1932 MVT VT) const { 1933 if (Constraint.size() == 1) { 1934 switch (Constraint[0]) { 1935 default : break; 1936 case 'r': 1937 return std::make_pair(0U, &XCore::GRRegsRegClass); 1938 } 1939 } 1940 // Use the default implementation in TargetLowering to convert the register 1941 // constraint into a member of a register class. 1942 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1943 } 1944