1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the XCoreTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "XCoreISelLowering.h" 15 #include "XCore.h" 16 #include "XCoreMachineFunctionInfo.h" 17 #include "XCoreSubtarget.h" 18 #include "XCoreTargetMachine.h" 19 #include "XCoreTargetObjectFile.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAGISel.h" 27 #include "llvm/CodeGen/ValueTypes.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "xcore-lower" 43 44 const char *XCoreTargetLowering:: 45 getTargetNodeName(unsigned Opcode) const 46 { 47 switch ((XCoreISD::NodeType)Opcode) 48 { 49 case XCoreISD::FIRST_NUMBER : break; 50 case XCoreISD::BL : return "XCoreISD::BL"; 51 case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper"; 52 case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper"; 53 case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper"; 54 case XCoreISD::LDWSP : return "XCoreISD::LDWSP"; 55 case XCoreISD::STWSP : return "XCoreISD::STWSP"; 56 case XCoreISD::RETSP : return "XCoreISD::RETSP"; 57 case XCoreISD::LADD : return "XCoreISD::LADD"; 58 case XCoreISD::LSUB : return "XCoreISD::LSUB"; 59 case XCoreISD::LMUL : return "XCoreISD::LMUL"; 60 case XCoreISD::MACCU : return "XCoreISD::MACCU"; 61 case XCoreISD::MACCS : return "XCoreISD::MACCS"; 62 case XCoreISD::CRC8 : return "XCoreISD::CRC8"; 63 case XCoreISD::BR_JT : return "XCoreISD::BR_JT"; 64 case XCoreISD::BR_JT32 : return "XCoreISD::BR_JT32"; 65 case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET"; 66 case XCoreISD::EH_RETURN : return "XCoreISD::EH_RETURN"; 67 case XCoreISD::MEMBARRIER : return "XCoreISD::MEMBARRIER"; 68 } 69 return nullptr; 70 } 71 72 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM, 73 const XCoreSubtarget &Subtarget) 74 : TargetLowering(TM), TM(TM), Subtarget(Subtarget) { 75 76 // Set up the register classes. 77 addRegisterClass(MVT::i32, &XCore::GRRegsRegClass); 78 79 // Compute derived properties from the register classes 80 computeRegisterProperties(Subtarget.getRegisterInfo()); 81 82 setStackPointerRegisterToSaveRestore(XCore::SP); 83 84 setSchedulingPreference(Sched::Source); 85 86 // Use i32 for setcc operations results (slt, sgt, ...). 87 setBooleanContents(ZeroOrOneBooleanContent); 88 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 89 90 // XCore does not have the NodeTypes below. 91 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 92 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); 93 setOperationAction(ISD::ADDC, MVT::i32, Expand); 94 setOperationAction(ISD::ADDE, MVT::i32, Expand); 95 setOperationAction(ISD::SUBC, MVT::i32, Expand); 96 setOperationAction(ISD::SUBE, MVT::i32, Expand); 97 98 // 64bit 99 setOperationAction(ISD::ADD, MVT::i64, Custom); 100 setOperationAction(ISD::SUB, MVT::i64, Custom); 101 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom); 102 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom); 103 setOperationAction(ISD::MULHS, MVT::i32, Expand); 104 setOperationAction(ISD::MULHU, MVT::i32, Expand); 105 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); 106 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 107 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); 108 109 // Bit Manipulation 110 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 111 setOperationAction(ISD::ROTL , MVT::i32, Expand); 112 setOperationAction(ISD::ROTR , MVT::i32, Expand); 113 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 114 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 115 116 setOperationAction(ISD::TRAP, MVT::Other, Legal); 117 118 // Jump tables. 119 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 120 121 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 122 setOperationAction(ISD::BlockAddress, MVT::i32 , Custom); 123 124 // Conversion of i64 -> double produces constantpool nodes 125 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 126 127 // Loads 128 for (MVT VT : MVT::integer_valuetypes()) { 129 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 130 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 131 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 132 133 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 134 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand); 135 } 136 137 // Custom expand misaligned loads / stores. 138 setOperationAction(ISD::LOAD, MVT::i32, Custom); 139 setOperationAction(ISD::STORE, MVT::i32, Custom); 140 141 // Varargs 142 setOperationAction(ISD::VAEND, MVT::Other, Expand); 143 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 144 setOperationAction(ISD::VAARG, MVT::Other, Custom); 145 setOperationAction(ISD::VASTART, MVT::Other, Custom); 146 147 // Dynamic stack 148 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 149 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 150 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 151 152 // Exception handling 153 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); 154 setExceptionPointerRegister(XCore::R0); 155 setExceptionSelectorRegister(XCore::R1); 156 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); 157 158 // Atomic operations 159 // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic. 160 // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP. 161 setInsertFencesForAtomic(true); 162 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 163 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); 164 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); 165 166 // TRAMPOLINE is custom lowered. 167 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 168 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 169 170 // We want to custom lower some of our intrinsics. 171 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 172 173 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4; 174 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize 175 = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2; 176 177 // We have target-specific dag combine patterns for the following nodes: 178 setTargetDAGCombine(ISD::STORE); 179 setTargetDAGCombine(ISD::ADD); 180 setTargetDAGCombine(ISD::INTRINSIC_VOID); 181 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 182 183 setMinFunctionAlignment(1); 184 setPrefFunctionAlignment(2); 185 } 186 187 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 188 if (Val.getOpcode() != ISD::LOAD) 189 return false; 190 191 EVT VT1 = Val.getValueType(); 192 if (!VT1.isSimple() || !VT1.isInteger() || 193 !VT2.isSimple() || !VT2.isInteger()) 194 return false; 195 196 switch (VT1.getSimpleVT().SimpleTy) { 197 default: break; 198 case MVT::i8: 199 return true; 200 } 201 202 return false; 203 } 204 205 SDValue XCoreTargetLowering:: 206 LowerOperation(SDValue Op, SelectionDAG &DAG) const { 207 switch (Op.getOpcode()) 208 { 209 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); 210 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 211 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 212 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 213 case ISD::BR_JT: return LowerBR_JT(Op, DAG); 214 case ISD::LOAD: return LowerLOAD(Op, DAG); 215 case ISD::STORE: return LowerSTORE(Op, DAG); 216 case ISD::VAARG: return LowerVAARG(Op, DAG); 217 case ISD::VASTART: return LowerVASTART(Op, DAG); 218 case ISD::SMUL_LOHI: return LowerSMUL_LOHI(Op, DAG); 219 case ISD::UMUL_LOHI: return LowerUMUL_LOHI(Op, DAG); 220 // FIXME: Remove these when LegalizeDAGTypes lands. 221 case ISD::ADD: 222 case ISD::SUB: return ExpandADDSUB(Op.getNode(), DAG); 223 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 224 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 225 case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); 226 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 227 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 228 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 229 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG); 230 case ISD::ATOMIC_LOAD: return LowerATOMIC_LOAD(Op, DAG); 231 case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG); 232 default: 233 llvm_unreachable("unimplemented operand"); 234 } 235 } 236 237 /// ReplaceNodeResults - Replace the results of node with an illegal result 238 /// type with new values built out of custom code. 239 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N, 240 SmallVectorImpl<SDValue>&Results, 241 SelectionDAG &DAG) const { 242 switch (N->getOpcode()) { 243 default: 244 llvm_unreachable("Don't know how to custom expand this!"); 245 case ISD::ADD: 246 case ISD::SUB: 247 Results.push_back(ExpandADDSUB(N, DAG)); 248 return; 249 } 250 } 251 252 //===----------------------------------------------------------------------===// 253 // Misc Lower Operation implementation 254 //===----------------------------------------------------------------------===// 255 256 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA, 257 const GlobalValue *GV, 258 SelectionDAG &DAG) const { 259 // FIXME there is no actual debug info here 260 SDLoc dl(GA); 261 262 if (GV->getType()->getElementType()->isFunctionTy()) 263 return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA); 264 265 const auto *GVar = dyn_cast<GlobalVariable>(GV); 266 if ((GV->hasSection() && StringRef(GV->getSection()).startswith(".cp.")) || 267 (GVar && GVar->isConstant() && GV->hasLocalLinkage())) 268 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA); 269 270 return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA); 271 } 272 273 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) { 274 if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small) 275 return true; 276 277 Type *ObjType = GV->getType()->getPointerElementType(); 278 if (!ObjType->isSized()) 279 return false; 280 281 auto &DL = GV->getParent()->getDataLayout(); 282 unsigned ObjSize = DL.getTypeAllocSize(ObjType); 283 return ObjSize < CodeModelLargeSize && ObjSize != 0; 284 } 285 286 SDValue XCoreTargetLowering:: 287 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const 288 { 289 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op); 290 const GlobalValue *GV = GN->getGlobal(); 291 SDLoc DL(GN); 292 int64_t Offset = GN->getOffset(); 293 if (IsSmallObject(GV, *this)) { 294 // We can only fold positive offsets that are a multiple of the word size. 295 int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0); 296 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset); 297 GA = getGlobalAddressWrapper(GA, GV, DAG); 298 // Handle the rest of the offset. 299 if (Offset != FoldedOffset) { 300 SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32); 301 GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining); 302 } 303 return GA; 304 } else { 305 // Ideally we would not fold in offset with an index <= 11. 306 Type *Ty = Type::getInt8PtrTy(*DAG.getContext()); 307 Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty); 308 Ty = Type::getInt32Ty(*DAG.getContext()); 309 Constant *Idx = ConstantInt::get(Ty, Offset); 310 Constant *GAI = ConstantExpr::getGetElementPtr( 311 Type::getInt8Ty(*DAG.getContext()), GA, Idx); 312 SDValue CP = DAG.getConstantPool(GAI, MVT::i32); 313 return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, 314 DAG.getEntryNode(), CP, MachinePointerInfo(), false, 315 false, false, 0); 316 } 317 } 318 319 SDValue XCoreTargetLowering:: 320 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const 321 { 322 SDLoc DL(Op); 323 auto PtrVT = getPointerTy(DAG.getDataLayout()); 324 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 325 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT); 326 327 return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result); 328 } 329 330 SDValue XCoreTargetLowering:: 331 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const 332 { 333 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 334 // FIXME there isn't really debug info here 335 SDLoc dl(CP); 336 EVT PtrVT = Op.getValueType(); 337 SDValue Res; 338 if (CP->isMachineConstantPoolEntry()) { 339 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 340 CP->getAlignment(), CP->getOffset()); 341 } else { 342 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 343 CP->getAlignment(), CP->getOffset()); 344 } 345 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res); 346 } 347 348 unsigned XCoreTargetLowering::getJumpTableEncoding() const { 349 return MachineJumpTableInfo::EK_Inline; 350 } 351 352 SDValue XCoreTargetLowering:: 353 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const 354 { 355 SDValue Chain = Op.getOperand(0); 356 SDValue Table = Op.getOperand(1); 357 SDValue Index = Op.getOperand(2); 358 SDLoc dl(Op); 359 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table); 360 unsigned JTI = JT->getIndex(); 361 MachineFunction &MF = DAG.getMachineFunction(); 362 const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 363 SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32); 364 365 unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size(); 366 if (NumEntries <= 32) { 367 return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index); 368 } 369 assert((NumEntries >> 31) == 0); 370 SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index, 371 DAG.getConstant(1, dl, MVT::i32)); 372 return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT, 373 ScaledIndex); 374 } 375 376 SDValue XCoreTargetLowering:: 377 lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL, SDValue Chain, SDValue Base, 378 int64_t Offset, SelectionDAG &DAG) const 379 { 380 auto PtrVT = getPointerTy(DAG.getDataLayout()); 381 if ((Offset & 0x3) == 0) { 382 return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo(), false, 383 false, false, 0); 384 } 385 // Lower to pair of consecutive word aligned loads plus some bit shifting. 386 int32_t HighOffset = RoundUpToAlignment(Offset, 4); 387 int32_t LowOffset = HighOffset - 4; 388 SDValue LowAddr, HighAddr; 389 if (GlobalAddressSDNode *GASD = 390 dyn_cast<GlobalAddressSDNode>(Base.getNode())) { 391 LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(), 392 LowOffset); 393 HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(), 394 HighOffset); 395 } else { 396 LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base, 397 DAG.getConstant(LowOffset, DL, MVT::i32)); 398 HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base, 399 DAG.getConstant(HighOffset, DL, MVT::i32)); 400 } 401 SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32); 402 SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32); 403 404 SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo(), 405 false, false, false, 0); 406 SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo(), 407 false, false, false, 0); 408 SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift); 409 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift); 410 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted); 411 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1), 412 High.getValue(1)); 413 SDValue Ops[] = { Result, Chain }; 414 return DAG.getMergeValues(Ops, DL); 415 } 416 417 static bool isWordAligned(SDValue Value, SelectionDAG &DAG) 418 { 419 APInt KnownZero, KnownOne; 420 DAG.computeKnownBits(Value, KnownZero, KnownOne); 421 return KnownZero.countTrailingOnes() >= 2; 422 } 423 424 SDValue XCoreTargetLowering:: 425 LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 426 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 427 LoadSDNode *LD = cast<LoadSDNode>(Op); 428 assert(LD->getExtensionType() == ISD::NON_EXTLOAD && 429 "Unexpected extension type"); 430 assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT"); 431 if (allowsMisalignedMemoryAccesses(LD->getMemoryVT(), 432 LD->getAddressSpace(), 433 LD->getAlignment())) 434 return SDValue(); 435 436 auto &TD = DAG.getDataLayout(); 437 unsigned ABIAlignment = TD.getABITypeAlignment( 438 LD->getMemoryVT().getTypeForEVT(*DAG.getContext())); 439 // Leave aligned load alone. 440 if (LD->getAlignment() >= ABIAlignment) 441 return SDValue(); 442 443 SDValue Chain = LD->getChain(); 444 SDValue BasePtr = LD->getBasePtr(); 445 SDLoc DL(Op); 446 447 if (!LD->isVolatile()) { 448 const GlobalValue *GV; 449 int64_t Offset = 0; 450 if (DAG.isBaseWithConstantOffset(BasePtr) && 451 isWordAligned(BasePtr->getOperand(0), DAG)) { 452 SDValue NewBasePtr = BasePtr->getOperand(0); 453 Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue(); 454 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr, 455 Offset, DAG); 456 } 457 if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) && 458 MinAlign(GV->getAlignment(), 4) == 4) { 459 SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL, 460 BasePtr->getValueType(0)); 461 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr, 462 Offset, DAG); 463 } 464 } 465 466 if (LD->getAlignment() == 2) { 467 SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, 468 BasePtr, LD->getPointerInfo(), MVT::i16, 469 LD->isVolatile(), LD->isNonTemporal(), 470 LD->isInvariant(), 2); 471 SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, 472 DAG.getConstant(2, DL, MVT::i32)); 473 SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 474 HighAddr, 475 LD->getPointerInfo().getWithOffset(2), 476 MVT::i16, LD->isVolatile(), 477 LD->isNonTemporal(), LD->isInvariant(), 2); 478 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, 479 DAG.getConstant(16, DL, MVT::i32)); 480 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted); 481 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1), 482 High.getValue(1)); 483 SDValue Ops[] = { Result, Chain }; 484 return DAG.getMergeValues(Ops, DL); 485 } 486 487 // Lower to a call to __misaligned_load(BasePtr). 488 Type *IntPtrTy = TD.getIntPtrType(*DAG.getContext()); 489 TargetLowering::ArgListTy Args; 490 TargetLowering::ArgListEntry Entry; 491 492 Entry.Ty = IntPtrTy; 493 Entry.Node = BasePtr; 494 Args.push_back(Entry); 495 496 TargetLowering::CallLoweringInfo CLI(DAG); 497 CLI.setDebugLoc(DL).setChain(Chain).setCallee( 498 CallingConv::C, IntPtrTy, 499 DAG.getExternalSymbol("__misaligned_load", 500 getPointerTy(DAG.getDataLayout())), 501 std::move(Args), 0); 502 503 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 504 SDValue Ops[] = { CallResult.first, CallResult.second }; 505 return DAG.getMergeValues(Ops, DL); 506 } 507 508 SDValue XCoreTargetLowering:: 509 LowerSTORE(SDValue Op, SelectionDAG &DAG) const 510 { 511 StoreSDNode *ST = cast<StoreSDNode>(Op); 512 assert(!ST->isTruncatingStore() && "Unexpected store type"); 513 assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT"); 514 if (allowsMisalignedMemoryAccesses(ST->getMemoryVT(), 515 ST->getAddressSpace(), 516 ST->getAlignment())) { 517 return SDValue(); 518 } 519 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment( 520 ST->getMemoryVT().getTypeForEVT(*DAG.getContext())); 521 // Leave aligned store alone. 522 if (ST->getAlignment() >= ABIAlignment) { 523 return SDValue(); 524 } 525 SDValue Chain = ST->getChain(); 526 SDValue BasePtr = ST->getBasePtr(); 527 SDValue Value = ST->getValue(); 528 SDLoc dl(Op); 529 530 if (ST->getAlignment() == 2) { 531 SDValue Low = Value; 532 SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value, 533 DAG.getConstant(16, dl, MVT::i32)); 534 SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr, 535 ST->getPointerInfo(), MVT::i16, 536 ST->isVolatile(), ST->isNonTemporal(), 537 2); 538 SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr, 539 DAG.getConstant(2, dl, MVT::i32)); 540 SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr, 541 ST->getPointerInfo().getWithOffset(2), 542 MVT::i16, ST->isVolatile(), 543 ST->isNonTemporal(), 2); 544 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh); 545 } 546 547 // Lower to a call to __misaligned_store(BasePtr, Value). 548 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 549 TargetLowering::ArgListTy Args; 550 TargetLowering::ArgListEntry Entry; 551 552 Entry.Ty = IntPtrTy; 553 Entry.Node = BasePtr; 554 Args.push_back(Entry); 555 556 Entry.Node = Value; 557 Args.push_back(Entry); 558 559 TargetLowering::CallLoweringInfo CLI(DAG); 560 CLI.setDebugLoc(dl).setChain(Chain).setCallee( 561 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 562 DAG.getExternalSymbol("__misaligned_store", 563 getPointerTy(DAG.getDataLayout())), 564 std::move(Args), 0); 565 566 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 567 return CallResult.second; 568 } 569 570 SDValue XCoreTargetLowering:: 571 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const 572 { 573 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI && 574 "Unexpected operand to lower!"); 575 SDLoc dl(Op); 576 SDValue LHS = Op.getOperand(0); 577 SDValue RHS = Op.getOperand(1); 578 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 579 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl, 580 DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero, 581 LHS, RHS); 582 SDValue Lo(Hi.getNode(), 1); 583 SDValue Ops[] = { Lo, Hi }; 584 return DAG.getMergeValues(Ops, dl); 585 } 586 587 SDValue XCoreTargetLowering:: 588 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const 589 { 590 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI && 591 "Unexpected operand to lower!"); 592 SDLoc dl(Op); 593 SDValue LHS = Op.getOperand(0); 594 SDValue RHS = Op.getOperand(1); 595 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 596 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl, 597 DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS, 598 Zero, Zero); 599 SDValue Lo(Hi.getNode(), 1); 600 SDValue Ops[] = { Lo, Hi }; 601 return DAG.getMergeValues(Ops, dl); 602 } 603 604 /// isADDADDMUL - Return whether Op is in a form that is equivalent to 605 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then 606 /// each intermediate result in the calculation must also have a single use. 607 /// If the Op is in the correct form the constituent parts are written to Mul0, 608 /// Mul1, Addend0 and Addend1. 609 static bool 610 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0, 611 SDValue &Addend1, bool requireIntermediatesHaveOneUse) 612 { 613 if (Op.getOpcode() != ISD::ADD) 614 return false; 615 SDValue N0 = Op.getOperand(0); 616 SDValue N1 = Op.getOperand(1); 617 SDValue AddOp; 618 SDValue OtherOp; 619 if (N0.getOpcode() == ISD::ADD) { 620 AddOp = N0; 621 OtherOp = N1; 622 } else if (N1.getOpcode() == ISD::ADD) { 623 AddOp = N1; 624 OtherOp = N0; 625 } else { 626 return false; 627 } 628 if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse()) 629 return false; 630 if (OtherOp.getOpcode() == ISD::MUL) { 631 // add(add(a,b),mul(x,y)) 632 if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse()) 633 return false; 634 Mul0 = OtherOp.getOperand(0); 635 Mul1 = OtherOp.getOperand(1); 636 Addend0 = AddOp.getOperand(0); 637 Addend1 = AddOp.getOperand(1); 638 return true; 639 } 640 if (AddOp.getOperand(0).getOpcode() == ISD::MUL) { 641 // add(add(mul(x,y),a),b) 642 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse()) 643 return false; 644 Mul0 = AddOp.getOperand(0).getOperand(0); 645 Mul1 = AddOp.getOperand(0).getOperand(1); 646 Addend0 = AddOp.getOperand(1); 647 Addend1 = OtherOp; 648 return true; 649 } 650 if (AddOp.getOperand(1).getOpcode() == ISD::MUL) { 651 // add(add(a,mul(x,y)),b) 652 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse()) 653 return false; 654 Mul0 = AddOp.getOperand(1).getOperand(0); 655 Mul1 = AddOp.getOperand(1).getOperand(1); 656 Addend0 = AddOp.getOperand(0); 657 Addend1 = OtherOp; 658 return true; 659 } 660 return false; 661 } 662 663 SDValue XCoreTargetLowering:: 664 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const 665 { 666 SDValue Mul; 667 SDValue Other; 668 if (N->getOperand(0).getOpcode() == ISD::MUL) { 669 Mul = N->getOperand(0); 670 Other = N->getOperand(1); 671 } else if (N->getOperand(1).getOpcode() == ISD::MUL) { 672 Mul = N->getOperand(1); 673 Other = N->getOperand(0); 674 } else { 675 return SDValue(); 676 } 677 SDLoc dl(N); 678 SDValue LL, RL, AddendL, AddendH; 679 LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 680 Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32)); 681 RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 682 Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32)); 683 AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 684 Other, DAG.getConstant(0, dl, MVT::i32)); 685 AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 686 Other, DAG.getConstant(1, dl, MVT::i32)); 687 APInt HighMask = APInt::getHighBitsSet(64, 32); 688 unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0)); 689 unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1)); 690 if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) && 691 DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) { 692 // The inputs are both zero-extended. 693 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl, 694 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 695 AddendL, LL, RL); 696 SDValue Lo(Hi.getNode(), 1); 697 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 698 } 699 if (LHSSB > 32 && RHSSB > 32) { 700 // The inputs are both sign-extended. 701 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl, 702 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 703 AddendL, LL, RL); 704 SDValue Lo(Hi.getNode(), 1); 705 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 706 } 707 SDValue LH, RH; 708 LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 709 Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32)); 710 RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 711 Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32)); 712 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl, 713 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 714 AddendL, LL, RL); 715 SDValue Lo(Hi.getNode(), 1); 716 RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH); 717 LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL); 718 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH); 719 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH); 720 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 721 } 722 723 SDValue XCoreTargetLowering:: 724 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const 725 { 726 assert(N->getValueType(0) == MVT::i64 && 727 (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 728 "Unknown operand to lower!"); 729 730 if (N->getOpcode() == ISD::ADD) { 731 SDValue Result = TryExpandADDWithMul(N, DAG); 732 if (Result.getNode()) 733 return Result; 734 } 735 736 SDLoc dl(N); 737 738 // Extract components 739 SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 740 N->getOperand(0), 741 DAG.getConstant(0, dl, MVT::i32)); 742 SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 743 N->getOperand(0), 744 DAG.getConstant(1, dl, MVT::i32)); 745 SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 746 N->getOperand(1), 747 DAG.getConstant(0, dl, MVT::i32)); 748 SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 749 N->getOperand(1), 750 DAG.getConstant(1, dl, MVT::i32)); 751 752 // Expand 753 unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD : 754 XCoreISD::LSUB; 755 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 756 SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), 757 LHSL, RHSL, Zero); 758 SDValue Carry(Lo.getNode(), 1); 759 760 SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), 761 LHSH, RHSH, Carry); 762 SDValue Ignored(Hi.getNode(), 1); 763 // Merge the pieces 764 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 765 } 766 767 SDValue XCoreTargetLowering:: 768 LowerVAARG(SDValue Op, SelectionDAG &DAG) const 769 { 770 // Whist llvm does not support aggregate varargs we can ignore 771 // the possibility of the ValueType being an implicit byVal vararg. 772 SDNode *Node = Op.getNode(); 773 EVT VT = Node->getValueType(0); // not an aggregate 774 SDValue InChain = Node->getOperand(0); 775 SDValue VAListPtr = Node->getOperand(1); 776 EVT PtrVT = VAListPtr.getValueType(); 777 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 778 SDLoc dl(Node); 779 SDValue VAList = DAG.getLoad(PtrVT, dl, InChain, 780 VAListPtr, MachinePointerInfo(SV), 781 false, false, false, 0); 782 // Increment the pointer, VAList, to the next vararg 783 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList, 784 DAG.getIntPtrConstant(VT.getSizeInBits() / 8, 785 dl)); 786 // Store the incremented VAList to the legalized pointer 787 InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr, 788 MachinePointerInfo(SV), false, false, 0); 789 // Load the actual argument out of the pointer VAList 790 return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(), 791 false, false, false, 0); 792 } 793 794 SDValue XCoreTargetLowering:: 795 LowerVASTART(SDValue Op, SelectionDAG &DAG) const 796 { 797 SDLoc dl(Op); 798 // vastart stores the address of the VarArgsFrameIndex slot into the 799 // memory location argument 800 MachineFunction &MF = DAG.getMachineFunction(); 801 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 802 SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32); 803 return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1), 804 MachinePointerInfo(), false, false, 0); 805 } 806 807 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op, 808 SelectionDAG &DAG) const { 809 // This nodes represent llvm.frameaddress on the DAG. 810 // It takes one operand, the index of the frame address to return. 811 // An index of zero corresponds to the current function's frame address. 812 // An index of one to the parent's frame address, and so on. 813 // Depths > 0 not supported yet! 814 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0) 815 return SDValue(); 816 817 MachineFunction &MF = DAG.getMachineFunction(); 818 const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 819 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), 820 RegInfo->getFrameRegister(MF), MVT::i32); 821 } 822 823 SDValue XCoreTargetLowering:: 824 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { 825 // This nodes represent llvm.returnaddress on the DAG. 826 // It takes one operand, the index of the return address to return. 827 // An index of zero corresponds to the current function's return address. 828 // An index of one to the parent's return address, and so on. 829 // Depths > 0 not supported yet! 830 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0) 831 return SDValue(); 832 833 MachineFunction &MF = DAG.getMachineFunction(); 834 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 835 int FI = XFI->createLRSpillSlot(MF); 836 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 837 return DAG.getLoad( 838 getPointerTy(DAG.getDataLayout()), SDLoc(Op), DAG.getEntryNode(), FIN, 839 MachinePointerInfo::getFixedStack(MF, FI), false, false, false, 0); 840 } 841 842 SDValue XCoreTargetLowering:: 843 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const { 844 // This node represents offset from frame pointer to first on-stack argument. 845 // This is needed for correct stack adjustment during unwind. 846 // However, we don't know the offset until after the frame has be finalised. 847 // This is done during the XCoreFTAOElim pass. 848 return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32); 849 } 850 851 SDValue XCoreTargetLowering:: 852 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { 853 // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) 854 // This node represents 'eh_return' gcc dwarf builtin, which is used to 855 // return from exception. The general meaning is: adjust stack by OFFSET and 856 // pass execution to HANDLER. 857 MachineFunction &MF = DAG.getMachineFunction(); 858 SDValue Chain = Op.getOperand(0); 859 SDValue Offset = Op.getOperand(1); 860 SDValue Handler = Op.getOperand(2); 861 SDLoc dl(Op); 862 863 // Absolute SP = (FP + FrameToArgs) + Offset 864 const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 865 SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl, 866 RegInfo->getFrameRegister(MF), MVT::i32); 867 SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl, 868 MVT::i32); 869 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs); 870 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset); 871 872 // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister 873 // which leaves 2 caller saved registers, R2 & R3 for us to use. 874 unsigned StackReg = XCore::R2; 875 unsigned HandlerReg = XCore::R3; 876 877 SDValue OutChains[] = { 878 DAG.getCopyToReg(Chain, dl, StackReg, Stack), 879 DAG.getCopyToReg(Chain, dl, HandlerReg, Handler) 880 }; 881 882 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 883 884 return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain, 885 DAG.getRegister(StackReg, MVT::i32), 886 DAG.getRegister(HandlerReg, MVT::i32)); 887 888 } 889 890 SDValue XCoreTargetLowering:: 891 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { 892 return Op.getOperand(0); 893 } 894 895 SDValue XCoreTargetLowering:: 896 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { 897 SDValue Chain = Op.getOperand(0); 898 SDValue Trmp = Op.getOperand(1); // trampoline 899 SDValue FPtr = Op.getOperand(2); // nested function 900 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 901 902 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 903 904 // .align 4 905 // LDAPF_u10 r11, nest 906 // LDW_2rus r11, r11[0] 907 // STWSP_ru6 r11, sp[0] 908 // LDAPF_u10 r11, fptr 909 // LDW_2rus r11, r11[0] 910 // BAU_1r r11 911 // nest: 912 // .word nest 913 // fptr: 914 // .word fptr 915 SDValue OutChains[5]; 916 917 SDValue Addr = Trmp; 918 919 SDLoc dl(Op); 920 OutChains[0] = DAG.getStore(Chain, dl, 921 DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr, 922 MachinePointerInfo(TrmpAddr), false, false, 0); 923 924 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 925 DAG.getConstant(4, dl, MVT::i32)); 926 OutChains[1] = DAG.getStore(Chain, dl, 927 DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr, 928 MachinePointerInfo(TrmpAddr, 4), false, false, 0); 929 930 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 931 DAG.getConstant(8, dl, MVT::i32)); 932 OutChains[2] = DAG.getStore(Chain, dl, 933 DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr, 934 MachinePointerInfo(TrmpAddr, 8), false, false, 0); 935 936 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 937 DAG.getConstant(12, dl, MVT::i32)); 938 OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr, 939 MachinePointerInfo(TrmpAddr, 12), false, false, 940 0); 941 942 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 943 DAG.getConstant(16, dl, MVT::i32)); 944 OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr, 945 MachinePointerInfo(TrmpAddr, 16), false, false, 946 0); 947 948 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 949 } 950 951 SDValue XCoreTargetLowering:: 952 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { 953 SDLoc DL(Op); 954 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 955 switch (IntNo) { 956 case Intrinsic::xcore_crc8: 957 EVT VT = Op.getValueType(); 958 SDValue Data = 959 DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT), 960 Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3)); 961 SDValue Crc(Data.getNode(), 1); 962 SDValue Results[] = { Crc, Data }; 963 return DAG.getMergeValues(Results, DL); 964 } 965 return SDValue(); 966 } 967 968 SDValue XCoreTargetLowering:: 969 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const { 970 SDLoc DL(Op); 971 return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 972 } 973 974 SDValue XCoreTargetLowering:: 975 LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const { 976 AtomicSDNode *N = cast<AtomicSDNode>(Op); 977 assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP"); 978 assert(N->getOrdering() <= Monotonic && 979 "setInsertFencesForAtomic(true) and yet greater than Monotonic"); 980 if (N->getMemoryVT() == MVT::i32) { 981 if (N->getAlignment() < 4) 982 report_fatal_error("atomic load must be aligned"); 983 return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op), 984 N->getChain(), N->getBasePtr(), N->getPointerInfo(), 985 N->isVolatile(), N->isNonTemporal(), N->isInvariant(), 986 N->getAlignment(), N->getAAInfo(), N->getRanges()); 987 } 988 if (N->getMemoryVT() == MVT::i16) { 989 if (N->getAlignment() < 2) 990 report_fatal_error("atomic load must be aligned"); 991 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(), 992 N->getBasePtr(), N->getPointerInfo(), MVT::i16, 993 N->isVolatile(), N->isNonTemporal(), 994 N->isInvariant(), N->getAlignment(), N->getAAInfo()); 995 } 996 if (N->getMemoryVT() == MVT::i8) 997 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(), 998 N->getBasePtr(), N->getPointerInfo(), MVT::i8, 999 N->isVolatile(), N->isNonTemporal(), 1000 N->isInvariant(), N->getAlignment(), N->getAAInfo()); 1001 return SDValue(); 1002 } 1003 1004 SDValue XCoreTargetLowering:: 1005 LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const { 1006 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1007 assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP"); 1008 assert(N->getOrdering() <= Monotonic && 1009 "setInsertFencesForAtomic(true) and yet greater than Monotonic"); 1010 if (N->getMemoryVT() == MVT::i32) { 1011 if (N->getAlignment() < 4) 1012 report_fatal_error("atomic store must be aligned"); 1013 return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(), 1014 N->getBasePtr(), N->getPointerInfo(), 1015 N->isVolatile(), N->isNonTemporal(), 1016 N->getAlignment(), N->getAAInfo()); 1017 } 1018 if (N->getMemoryVT() == MVT::i16) { 1019 if (N->getAlignment() < 2) 1020 report_fatal_error("atomic store must be aligned"); 1021 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(), 1022 N->getBasePtr(), N->getPointerInfo(), MVT::i16, 1023 N->isVolatile(), N->isNonTemporal(), 1024 N->getAlignment(), N->getAAInfo()); 1025 } 1026 if (N->getMemoryVT() == MVT::i8) 1027 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(), 1028 N->getBasePtr(), N->getPointerInfo(), MVT::i8, 1029 N->isVolatile(), N->isNonTemporal(), 1030 N->getAlignment(), N->getAAInfo()); 1031 return SDValue(); 1032 } 1033 1034 //===----------------------------------------------------------------------===// 1035 // Calling Convention Implementation 1036 //===----------------------------------------------------------------------===// 1037 1038 #include "XCoreGenCallingConv.inc" 1039 1040 //===----------------------------------------------------------------------===// 1041 // Call Calling Convention Implementation 1042 //===----------------------------------------------------------------------===// 1043 1044 /// XCore call implementation 1045 SDValue 1046 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 1047 SmallVectorImpl<SDValue> &InVals) const { 1048 SelectionDAG &DAG = CLI.DAG; 1049 SDLoc &dl = CLI.DL; 1050 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1051 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1052 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1053 SDValue Chain = CLI.Chain; 1054 SDValue Callee = CLI.Callee; 1055 bool &isTailCall = CLI.IsTailCall; 1056 CallingConv::ID CallConv = CLI.CallConv; 1057 bool isVarArg = CLI.IsVarArg; 1058 1059 // XCore target does not yet support tail call optimization. 1060 isTailCall = false; 1061 1062 // For now, only CallingConv::C implemented 1063 switch (CallConv) 1064 { 1065 default: 1066 llvm_unreachable("Unsupported calling convention"); 1067 case CallingConv::Fast: 1068 case CallingConv::C: 1069 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall, 1070 Outs, OutVals, Ins, dl, DAG, InVals); 1071 } 1072 } 1073 1074 /// LowerCallResult - Lower the result values of a call into the 1075 /// appropriate copies out of appropriate physical registers / memory locations. 1076 static SDValue 1077 LowerCallResult(SDValue Chain, SDValue InFlag, 1078 const SmallVectorImpl<CCValAssign> &RVLocs, 1079 SDLoc dl, SelectionDAG &DAG, 1080 SmallVectorImpl<SDValue> &InVals) { 1081 SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs; 1082 // Copy results out of physical registers. 1083 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 1084 const CCValAssign &VA = RVLocs[i]; 1085 if (VA.isRegLoc()) { 1086 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(), 1087 InFlag).getValue(1); 1088 InFlag = Chain.getValue(2); 1089 InVals.push_back(Chain.getValue(0)); 1090 } else { 1091 assert(VA.isMemLoc()); 1092 ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(), 1093 InVals.size())); 1094 // Reserve space for this result. 1095 InVals.push_back(SDValue()); 1096 } 1097 } 1098 1099 // Copy results out of memory. 1100 SmallVector<SDValue, 4> MemOpChains; 1101 for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) { 1102 int offset = ResultMemLocs[i].first; 1103 unsigned index = ResultMemLocs[i].second; 1104 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 1105 SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) }; 1106 SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops); 1107 InVals[index] = load; 1108 MemOpChains.push_back(load.getValue(1)); 1109 } 1110 1111 // Transform all loads nodes into one single node because 1112 // all load nodes are independent of each other. 1113 if (!MemOpChains.empty()) 1114 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1115 1116 return Chain; 1117 } 1118 1119 /// LowerCCCCallTo - functions arguments are copied from virtual 1120 /// regs to (physical regs)/(stack frame), CALLSEQ_START and 1121 /// CALLSEQ_END are emitted. 1122 /// TODO: isTailCall, sret. 1123 SDValue 1124 XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee, 1125 CallingConv::ID CallConv, bool isVarArg, 1126 bool isTailCall, 1127 const SmallVectorImpl<ISD::OutputArg> &Outs, 1128 const SmallVectorImpl<SDValue> &OutVals, 1129 const SmallVectorImpl<ISD::InputArg> &Ins, 1130 SDLoc dl, SelectionDAG &DAG, 1131 SmallVectorImpl<SDValue> &InVals) const { 1132 1133 // Analyze operands of the call, assigning locations to each operand. 1134 SmallVector<CCValAssign, 16> ArgLocs; 1135 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 1136 *DAG.getContext()); 1137 1138 // The ABI dictates there should be one stack slot available to the callee 1139 // on function entry (for saving lr). 1140 CCInfo.AllocateStack(4, 4); 1141 1142 CCInfo.AnalyzeCallOperands(Outs, CC_XCore); 1143 1144 SmallVector<CCValAssign, 16> RVLocs; 1145 // Analyze return values to determine the number of bytes of stack required. 1146 CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 1147 *DAG.getContext()); 1148 RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4); 1149 RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore); 1150 1151 // Get a count of how many bytes are to be pushed on the stack. 1152 unsigned NumBytes = RetCCInfo.getNextStackOffset(); 1153 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1154 1155 Chain = DAG.getCALLSEQ_START(Chain, 1156 DAG.getConstant(NumBytes, dl, PtrVT, true), dl); 1157 1158 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass; 1159 SmallVector<SDValue, 12> MemOpChains; 1160 1161 // Walk the register/memloc assignments, inserting copies/loads. 1162 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1163 CCValAssign &VA = ArgLocs[i]; 1164 SDValue Arg = OutVals[i]; 1165 1166 // Promote the value if needed. 1167 switch (VA.getLocInfo()) { 1168 default: llvm_unreachable("Unknown loc info!"); 1169 case CCValAssign::Full: break; 1170 case CCValAssign::SExt: 1171 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 1172 break; 1173 case CCValAssign::ZExt: 1174 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 1175 break; 1176 case CCValAssign::AExt: 1177 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 1178 break; 1179 } 1180 1181 // Arguments that can be passed on register must be kept at 1182 // RegsToPass vector 1183 if (VA.isRegLoc()) { 1184 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 1185 } else { 1186 assert(VA.isMemLoc()); 1187 1188 int Offset = VA.getLocMemOffset(); 1189 1190 MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other, 1191 Chain, Arg, 1192 DAG.getConstant(Offset/4, dl, 1193 MVT::i32))); 1194 } 1195 } 1196 1197 // Transform all store nodes into one single node because 1198 // all store nodes are independent of each other. 1199 if (!MemOpChains.empty()) 1200 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1201 1202 // Build a sequence of copy-to-reg nodes chained together with token 1203 // chain and flag operands which copy the outgoing args into registers. 1204 // The InFlag in necessary since all emitted instructions must be 1205 // stuck together. 1206 SDValue InFlag; 1207 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1208 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 1209 RegsToPass[i].second, InFlag); 1210 InFlag = Chain.getValue(1); 1211 } 1212 1213 // If the callee is a GlobalAddress node (quite common, every direct call is) 1214 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1215 // Likewise ExternalSymbol -> TargetExternalSymbol. 1216 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1217 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32); 1218 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 1219 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32); 1220 1221 // XCoreBranchLink = #chain, #target_address, #opt_in_flags... 1222 // = Chain, Callee, Reg#1, Reg#2, ... 1223 // 1224 // Returns a chain & a flag for retval copy to use. 1225 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1226 SmallVector<SDValue, 8> Ops; 1227 Ops.push_back(Chain); 1228 Ops.push_back(Callee); 1229 1230 // Add argument registers to the end of the list so that they are 1231 // known live into the call. 1232 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1233 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1234 RegsToPass[i].second.getValueType())); 1235 1236 if (InFlag.getNode()) 1237 Ops.push_back(InFlag); 1238 1239 Chain = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops); 1240 InFlag = Chain.getValue(1); 1241 1242 // Create the CALLSEQ_END node. 1243 Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true), 1244 DAG.getConstant(0, dl, PtrVT, true), InFlag, dl); 1245 InFlag = Chain.getValue(1); 1246 1247 // Handle result values, copying them out of physregs into vregs that we 1248 // return. 1249 return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals); 1250 } 1251 1252 //===----------------------------------------------------------------------===// 1253 // Formal Arguments Calling Convention Implementation 1254 //===----------------------------------------------------------------------===// 1255 1256 namespace { 1257 struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; }; 1258 } 1259 1260 /// XCore formal arguments implementation 1261 SDValue 1262 XCoreTargetLowering::LowerFormalArguments(SDValue Chain, 1263 CallingConv::ID CallConv, 1264 bool isVarArg, 1265 const SmallVectorImpl<ISD::InputArg> &Ins, 1266 SDLoc dl, 1267 SelectionDAG &DAG, 1268 SmallVectorImpl<SDValue> &InVals) 1269 const { 1270 switch (CallConv) 1271 { 1272 default: 1273 llvm_unreachable("Unsupported calling convention"); 1274 case CallingConv::C: 1275 case CallingConv::Fast: 1276 return LowerCCCArguments(Chain, CallConv, isVarArg, 1277 Ins, dl, DAG, InVals); 1278 } 1279 } 1280 1281 /// LowerCCCArguments - transform physical registers into 1282 /// virtual registers and generate load operations for 1283 /// arguments places on the stack. 1284 /// TODO: sret 1285 SDValue 1286 XCoreTargetLowering::LowerCCCArguments(SDValue Chain, 1287 CallingConv::ID CallConv, 1288 bool isVarArg, 1289 const SmallVectorImpl<ISD::InputArg> 1290 &Ins, 1291 SDLoc dl, 1292 SelectionDAG &DAG, 1293 SmallVectorImpl<SDValue> &InVals) const { 1294 MachineFunction &MF = DAG.getMachineFunction(); 1295 MachineFrameInfo *MFI = MF.getFrameInfo(); 1296 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1297 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 1298 1299 // Assign locations to all of the incoming arguments. 1300 SmallVector<CCValAssign, 16> ArgLocs; 1301 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 1302 *DAG.getContext()); 1303 1304 CCInfo.AnalyzeFormalArguments(Ins, CC_XCore); 1305 1306 unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize(); 1307 1308 unsigned LRSaveSize = StackSlotSize; 1309 1310 if (!isVarArg) 1311 XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize); 1312 1313 // All getCopyFromReg ops must precede any getMemcpys to prevent the 1314 // scheduler clobbering a register before it has been copied. 1315 // The stages are: 1316 // 1. CopyFromReg (and load) arg & vararg registers. 1317 // 2. Chain CopyFromReg nodes into a TokenFactor. 1318 // 3. Memcpy 'byVal' args & push final InVals. 1319 // 4. Chain mem ops nodes into a TokenFactor. 1320 SmallVector<SDValue, 4> CFRegNode; 1321 SmallVector<ArgDataPair, 4> ArgData; 1322 SmallVector<SDValue, 4> MemOps; 1323 1324 // 1a. CopyFromReg (and load) arg registers. 1325 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1326 1327 CCValAssign &VA = ArgLocs[i]; 1328 SDValue ArgIn; 1329 1330 if (VA.isRegLoc()) { 1331 // Arguments passed in registers 1332 EVT RegVT = VA.getLocVT(); 1333 switch (RegVT.getSimpleVT().SimpleTy) { 1334 default: 1335 { 1336 #ifndef NDEBUG 1337 errs() << "LowerFormalArguments Unhandled argument type: " 1338 << RegVT.getSimpleVT().SimpleTy << "\n"; 1339 #endif 1340 llvm_unreachable(nullptr); 1341 } 1342 case MVT::i32: 1343 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass); 1344 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1345 ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); 1346 CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1)); 1347 } 1348 } else { 1349 // sanity check 1350 assert(VA.isMemLoc()); 1351 // Load the argument to a virtual register 1352 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8; 1353 if (ObjSize > StackSlotSize) { 1354 errs() << "LowerFormalArguments Unhandled argument type: " 1355 << EVT(VA.getLocVT()).getEVTString() 1356 << "\n"; 1357 } 1358 // Create the frame index object for this incoming parameter... 1359 int FI = MFI->CreateFixedObject(ObjSize, 1360 LRSaveSize + VA.getLocMemOffset(), 1361 true); 1362 1363 // Create the SelectionDAG nodes corresponding to a load 1364 //from this parameter 1365 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1366 ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, 1367 MachinePointerInfo::getFixedStack(MF, FI), false, 1368 false, false, 0); 1369 } 1370 const ArgDataPair ADP = { ArgIn, Ins[i].Flags }; 1371 ArgData.push_back(ADP); 1372 } 1373 1374 // 1b. CopyFromReg vararg registers. 1375 if (isVarArg) { 1376 // Argument registers 1377 static const MCPhysReg ArgRegs[] = { 1378 XCore::R0, XCore::R1, XCore::R2, XCore::R3 1379 }; 1380 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 1381 unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs); 1382 if (FirstVAReg < array_lengthof(ArgRegs)) { 1383 int offset = 0; 1384 // Save remaining registers, storing higher register numbers at a higher 1385 // address 1386 for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) { 1387 // Create a stack slot 1388 int FI = MFI->CreateFixedObject(4, offset, true); 1389 if (i == (int)FirstVAReg) { 1390 XFI->setVarArgsFrameIndex(FI); 1391 } 1392 offset -= StackSlotSize; 1393 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1394 // Move argument from phys reg -> virt reg 1395 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass); 1396 RegInfo.addLiveIn(ArgRegs[i], VReg); 1397 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 1398 CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1)); 1399 // Move argument from virt reg -> stack 1400 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1401 MachinePointerInfo(), false, false, 0); 1402 MemOps.push_back(Store); 1403 } 1404 } else { 1405 // This will point to the next argument passed via stack. 1406 XFI->setVarArgsFrameIndex( 1407 MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(), 1408 true)); 1409 } 1410 } 1411 1412 // 2. chain CopyFromReg nodes into a TokenFactor. 1413 if (!CFRegNode.empty()) 1414 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode); 1415 1416 // 3. Memcpy 'byVal' args & push final InVals. 1417 // Aggregates passed "byVal" need to be copied by the callee. 1418 // The callee will use a pointer to this copy, rather than the original 1419 // pointer. 1420 for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(), 1421 ArgDE = ArgData.end(); 1422 ArgDI != ArgDE; ++ArgDI) { 1423 if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) { 1424 unsigned Size = ArgDI->Flags.getByValSize(); 1425 unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign()); 1426 // Create a new object on the stack and copy the pointee into it. 1427 int FI = MFI->CreateStackObject(Size, Align, false); 1428 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1429 InVals.push_back(FIN); 1430 MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV, 1431 DAG.getConstant(Size, dl, MVT::i32), 1432 Align, false, false, false, 1433 MachinePointerInfo(), 1434 MachinePointerInfo())); 1435 } else { 1436 InVals.push_back(ArgDI->SDV); 1437 } 1438 } 1439 1440 // 4, chain mem ops nodes into a TokenFactor. 1441 if (!MemOps.empty()) { 1442 MemOps.push_back(Chain); 1443 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 1444 } 1445 1446 return Chain; 1447 } 1448 1449 //===----------------------------------------------------------------------===// 1450 // Return Value Calling Convention Implementation 1451 //===----------------------------------------------------------------------===// 1452 1453 bool XCoreTargetLowering:: 1454 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, 1455 bool isVarArg, 1456 const SmallVectorImpl<ISD::OutputArg> &Outs, 1457 LLVMContext &Context) const { 1458 SmallVector<CCValAssign, 16> RVLocs; 1459 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 1460 if (!CCInfo.CheckReturn(Outs, RetCC_XCore)) 1461 return false; 1462 if (CCInfo.getNextStackOffset() != 0 && isVarArg) 1463 return false; 1464 return true; 1465 } 1466 1467 SDValue 1468 XCoreTargetLowering::LowerReturn(SDValue Chain, 1469 CallingConv::ID CallConv, bool isVarArg, 1470 const SmallVectorImpl<ISD::OutputArg> &Outs, 1471 const SmallVectorImpl<SDValue> &OutVals, 1472 SDLoc dl, SelectionDAG &DAG) const { 1473 1474 XCoreFunctionInfo *XFI = 1475 DAG.getMachineFunction().getInfo<XCoreFunctionInfo>(); 1476 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 1477 1478 // CCValAssign - represent the assignment of 1479 // the return value to a location 1480 SmallVector<CCValAssign, 16> RVLocs; 1481 1482 // CCState - Info about the registers and stack slot. 1483 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 1484 *DAG.getContext()); 1485 1486 // Analyze return values. 1487 if (!isVarArg) 1488 CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4); 1489 1490 CCInfo.AnalyzeReturn(Outs, RetCC_XCore); 1491 1492 SDValue Flag; 1493 SmallVector<SDValue, 4> RetOps(1, Chain); 1494 1495 // Return on XCore is always a "retsp 0" 1496 RetOps.push_back(DAG.getConstant(0, dl, MVT::i32)); 1497 1498 SmallVector<SDValue, 4> MemOpChains; 1499 // Handle return values that must be copied to memory. 1500 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 1501 CCValAssign &VA = RVLocs[i]; 1502 if (VA.isRegLoc()) 1503 continue; 1504 assert(VA.isMemLoc()); 1505 if (isVarArg) { 1506 report_fatal_error("Can't return value from vararg function in memory"); 1507 } 1508 1509 int Offset = VA.getLocMemOffset(); 1510 unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8; 1511 // Create the frame index object for the memory location. 1512 int FI = MFI->CreateFixedObject(ObjSize, Offset, false); 1513 1514 // Create a SelectionDAG node corresponding to a store 1515 // to this memory location. 1516 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1517 MemOpChains.push_back(DAG.getStore( 1518 Chain, dl, OutVals[i], FIN, 1519 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false, 1520 false, 0)); 1521 } 1522 1523 // Transform all store nodes into one single node because 1524 // all stores are independent of each other. 1525 if (!MemOpChains.empty()) 1526 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1527 1528 // Now handle return values copied to registers. 1529 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 1530 CCValAssign &VA = RVLocs[i]; 1531 if (!VA.isRegLoc()) 1532 continue; 1533 // Copy the result values into the output registers. 1534 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); 1535 1536 // guarantee that all emitted copies are 1537 // stuck together, avoiding something bad 1538 Flag = Chain.getValue(1); 1539 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 1540 } 1541 1542 RetOps[0] = Chain; // Update chain. 1543 1544 // Add the flag if we have it. 1545 if (Flag.getNode()) 1546 RetOps.push_back(Flag); 1547 1548 return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps); 1549 } 1550 1551 //===----------------------------------------------------------------------===// 1552 // Other Lowering Code 1553 //===----------------------------------------------------------------------===// 1554 1555 MachineBasicBlock * 1556 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 1557 MachineBasicBlock *BB) const { 1558 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1559 DebugLoc dl = MI->getDebugLoc(); 1560 assert((MI->getOpcode() == XCore::SELECT_CC) && 1561 "Unexpected instr type to insert"); 1562 1563 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond 1564 // control-flow pattern. The incoming instruction knows the destination vreg 1565 // to set, the condition code register to branch on, the true/false values to 1566 // select between, and a branch opcode to use. 1567 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1568 MachineFunction::iterator It = BB; 1569 ++It; 1570 1571 // thisMBB: 1572 // ... 1573 // TrueVal = ... 1574 // cmpTY ccX, r1, r2 1575 // bCC copy1MBB 1576 // fallthrough --> copy0MBB 1577 MachineBasicBlock *thisMBB = BB; 1578 MachineFunction *F = BB->getParent(); 1579 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 1580 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 1581 F->insert(It, copy0MBB); 1582 F->insert(It, sinkMBB); 1583 1584 // Transfer the remainder of BB and its successor edges to sinkMBB. 1585 sinkMBB->splice(sinkMBB->begin(), BB, 1586 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1587 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 1588 1589 // Next, add the true and fallthrough blocks as its successors. 1590 BB->addSuccessor(copy0MBB); 1591 BB->addSuccessor(sinkMBB); 1592 1593 BuildMI(BB, dl, TII.get(XCore::BRFT_lru6)) 1594 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 1595 1596 // copy0MBB: 1597 // %FalseValue = ... 1598 // # fallthrough to sinkMBB 1599 BB = copy0MBB; 1600 1601 // Update machine-CFG edges 1602 BB->addSuccessor(sinkMBB); 1603 1604 // sinkMBB: 1605 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 1606 // ... 1607 BB = sinkMBB; 1608 BuildMI(*BB, BB->begin(), dl, 1609 TII.get(XCore::PHI), MI->getOperand(0).getReg()) 1610 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 1611 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 1612 1613 MI->eraseFromParent(); // The pseudo instruction is gone now. 1614 return BB; 1615 } 1616 1617 //===----------------------------------------------------------------------===// 1618 // Target Optimization Hooks 1619 //===----------------------------------------------------------------------===// 1620 1621 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N, 1622 DAGCombinerInfo &DCI) const { 1623 SelectionDAG &DAG = DCI.DAG; 1624 SDLoc dl(N); 1625 switch (N->getOpcode()) { 1626 default: break; 1627 case ISD::INTRINSIC_VOID: 1628 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 1629 case Intrinsic::xcore_outt: 1630 case Intrinsic::xcore_outct: 1631 case Intrinsic::xcore_chkct: { 1632 SDValue OutVal = N->getOperand(3); 1633 // These instructions ignore the high bits. 1634 if (OutVal.hasOneUse()) { 1635 unsigned BitWidth = OutVal.getValueSizeInBits(); 1636 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8); 1637 APInt KnownZero, KnownOne; 1638 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1639 !DCI.isBeforeLegalizeOps()); 1640 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1641 if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) || 1642 TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne, 1643 TLO)) 1644 DCI.CommitTargetLoweringOpt(TLO); 1645 } 1646 break; 1647 } 1648 case Intrinsic::xcore_setpt: { 1649 SDValue Time = N->getOperand(3); 1650 // This instruction ignores the high bits. 1651 if (Time.hasOneUse()) { 1652 unsigned BitWidth = Time.getValueSizeInBits(); 1653 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16); 1654 APInt KnownZero, KnownOne; 1655 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1656 !DCI.isBeforeLegalizeOps()); 1657 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1658 if (TLO.ShrinkDemandedConstant(Time, DemandedMask) || 1659 TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne, 1660 TLO)) 1661 DCI.CommitTargetLoweringOpt(TLO); 1662 } 1663 break; 1664 } 1665 } 1666 break; 1667 case XCoreISD::LADD: { 1668 SDValue N0 = N->getOperand(0); 1669 SDValue N1 = N->getOperand(1); 1670 SDValue N2 = N->getOperand(2); 1671 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1672 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1673 EVT VT = N0.getValueType(); 1674 1675 // canonicalize constant to RHS 1676 if (N0C && !N1C) 1677 return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2); 1678 1679 // fold (ladd 0, 0, x) -> 0, x & 1 1680 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) { 1681 SDValue Carry = DAG.getConstant(0, dl, VT); 1682 SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2, 1683 DAG.getConstant(1, dl, VT)); 1684 SDValue Ops[] = { Result, Carry }; 1685 return DAG.getMergeValues(Ops, dl); 1686 } 1687 1688 // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the 1689 // low bit set 1690 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) { 1691 APInt KnownZero, KnownOne; 1692 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1693 VT.getSizeInBits() - 1); 1694 DAG.computeKnownBits(N2, KnownZero, KnownOne); 1695 if ((KnownZero & Mask) == Mask) { 1696 SDValue Carry = DAG.getConstant(0, dl, VT); 1697 SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2); 1698 SDValue Ops[] = { Result, Carry }; 1699 return DAG.getMergeValues(Ops, dl); 1700 } 1701 } 1702 } 1703 break; 1704 case XCoreISD::LSUB: { 1705 SDValue N0 = N->getOperand(0); 1706 SDValue N1 = N->getOperand(1); 1707 SDValue N2 = N->getOperand(2); 1708 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1709 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1710 EVT VT = N0.getValueType(); 1711 1712 // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set 1713 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) { 1714 APInt KnownZero, KnownOne; 1715 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1716 VT.getSizeInBits() - 1); 1717 DAG.computeKnownBits(N2, KnownZero, KnownOne); 1718 if ((KnownZero & Mask) == Mask) { 1719 SDValue Borrow = N2; 1720 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, 1721 DAG.getConstant(0, dl, VT), N2); 1722 SDValue Ops[] = { Result, Borrow }; 1723 return DAG.getMergeValues(Ops, dl); 1724 } 1725 } 1726 1727 // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the 1728 // low bit set 1729 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) { 1730 APInt KnownZero, KnownOne; 1731 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1732 VT.getSizeInBits() - 1); 1733 DAG.computeKnownBits(N2, KnownZero, KnownOne); 1734 if ((KnownZero & Mask) == Mask) { 1735 SDValue Borrow = DAG.getConstant(0, dl, VT); 1736 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2); 1737 SDValue Ops[] = { Result, Borrow }; 1738 return DAG.getMergeValues(Ops, dl); 1739 } 1740 } 1741 } 1742 break; 1743 case XCoreISD::LMUL: { 1744 SDValue N0 = N->getOperand(0); 1745 SDValue N1 = N->getOperand(1); 1746 SDValue N2 = N->getOperand(2); 1747 SDValue N3 = N->getOperand(3); 1748 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1749 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1750 EVT VT = N0.getValueType(); 1751 // Canonicalize multiplicative constant to RHS. If both multiplicative 1752 // operands are constant canonicalize smallest to RHS. 1753 if ((N0C && !N1C) || 1754 (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue())) 1755 return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT), 1756 N1, N0, N2, N3); 1757 1758 // lmul(x, 0, a, b) 1759 if (N1C && N1C->isNullValue()) { 1760 // If the high result is unused fold to add(a, b) 1761 if (N->hasNUsesOfValue(0, 0)) { 1762 SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3); 1763 SDValue Ops[] = { Lo, Lo }; 1764 return DAG.getMergeValues(Ops, dl); 1765 } 1766 // Otherwise fold to ladd(a, b, 0) 1767 SDValue Result = 1768 DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1); 1769 SDValue Carry(Result.getNode(), 1); 1770 SDValue Ops[] = { Carry, Result }; 1771 return DAG.getMergeValues(Ops, dl); 1772 } 1773 } 1774 break; 1775 case ISD::ADD: { 1776 // Fold 32 bit expressions such as add(add(mul(x,y),a),b) -> 1777 // lmul(x, y, a, b). The high result of lmul will be ignored. 1778 // This is only profitable if the intermediate results are unused 1779 // elsewhere. 1780 SDValue Mul0, Mul1, Addend0, Addend1; 1781 if (N->getValueType(0) == MVT::i32 && 1782 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) { 1783 SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl, 1784 DAG.getVTList(MVT::i32, MVT::i32), Mul0, 1785 Mul1, Addend0, Addend1); 1786 SDValue Result(Ignored.getNode(), 1); 1787 return Result; 1788 } 1789 APInt HighMask = APInt::getHighBitsSet(64, 32); 1790 // Fold 64 bit expression such as add(add(mul(x,y),a),b) -> 1791 // lmul(x, y, a, b) if all operands are zero-extended. We do this 1792 // before type legalization as it is messy to match the operands after 1793 // that. 1794 if (N->getValueType(0) == MVT::i64 && 1795 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) && 1796 DAG.MaskedValueIsZero(Mul0, HighMask) && 1797 DAG.MaskedValueIsZero(Mul1, HighMask) && 1798 DAG.MaskedValueIsZero(Addend0, HighMask) && 1799 DAG.MaskedValueIsZero(Addend1, HighMask)) { 1800 SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1801 Mul0, DAG.getConstant(0, dl, MVT::i32)); 1802 SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1803 Mul1, DAG.getConstant(0, dl, MVT::i32)); 1804 SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1805 Addend0, DAG.getConstant(0, dl, MVT::i32)); 1806 SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1807 Addend1, DAG.getConstant(0, dl, MVT::i32)); 1808 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl, 1809 DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L, 1810 Addend0L, Addend1L); 1811 SDValue Lo(Hi.getNode(), 1); 1812 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 1813 } 1814 } 1815 break; 1816 case ISD::STORE: { 1817 // Replace unaligned store of unaligned load with memmove. 1818 StoreSDNode *ST = cast<StoreSDNode>(N); 1819 if (!DCI.isBeforeLegalize() || 1820 allowsMisalignedMemoryAccesses(ST->getMemoryVT(), 1821 ST->getAddressSpace(), 1822 ST->getAlignment()) || 1823 ST->isVolatile() || ST->isIndexed()) { 1824 break; 1825 } 1826 SDValue Chain = ST->getChain(); 1827 1828 unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits(); 1829 assert((StoreBits % 8) == 0 && 1830 "Store size in bits must be a multiple of 8"); 1831 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment( 1832 ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext())); 1833 unsigned Alignment = ST->getAlignment(); 1834 if (Alignment >= ABIAlignment) { 1835 break; 1836 } 1837 1838 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) { 1839 if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() && 1840 LD->getAlignment() == Alignment && 1841 !LD->isVolatile() && !LD->isIndexed() && 1842 Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) { 1843 bool isTail = isInTailCallPosition(DAG, ST, Chain); 1844 return DAG.getMemmove(Chain, dl, ST->getBasePtr(), 1845 LD->getBasePtr(), 1846 DAG.getConstant(StoreBits/8, dl, MVT::i32), 1847 Alignment, false, isTail, ST->getPointerInfo(), 1848 LD->getPointerInfo()); 1849 } 1850 } 1851 break; 1852 } 1853 } 1854 return SDValue(); 1855 } 1856 1857 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1858 APInt &KnownZero, 1859 APInt &KnownOne, 1860 const SelectionDAG &DAG, 1861 unsigned Depth) const { 1862 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 1863 switch (Op.getOpcode()) { 1864 default: break; 1865 case XCoreISD::LADD: 1866 case XCoreISD::LSUB: 1867 if (Op.getResNo() == 1) { 1868 // Top bits of carry / borrow are clear. 1869 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1870 KnownZero.getBitWidth() - 1); 1871 } 1872 break; 1873 case ISD::INTRINSIC_W_CHAIN: 1874 { 1875 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1876 switch (IntNo) { 1877 case Intrinsic::xcore_getts: 1878 // High bits are known to be zero. 1879 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1880 KnownZero.getBitWidth() - 16); 1881 break; 1882 case Intrinsic::xcore_int: 1883 case Intrinsic::xcore_inct: 1884 // High bits are known to be zero. 1885 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1886 KnownZero.getBitWidth() - 8); 1887 break; 1888 case Intrinsic::xcore_testct: 1889 // Result is either 0 or 1. 1890 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1891 KnownZero.getBitWidth() - 1); 1892 break; 1893 case Intrinsic::xcore_testwct: 1894 // Result is in the range 0 - 4. 1895 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1896 KnownZero.getBitWidth() - 3); 1897 break; 1898 } 1899 } 1900 break; 1901 } 1902 } 1903 1904 //===----------------------------------------------------------------------===// 1905 // Addressing mode description hooks 1906 //===----------------------------------------------------------------------===// 1907 1908 static inline bool isImmUs(int64_t val) 1909 { 1910 return (val >= 0 && val <= 11); 1911 } 1912 1913 static inline bool isImmUs2(int64_t val) 1914 { 1915 return (val%2 == 0 && isImmUs(val/2)); 1916 } 1917 1918 static inline bool isImmUs4(int64_t val) 1919 { 1920 return (val%4 == 0 && isImmUs(val/4)); 1921 } 1922 1923 /// isLegalAddressingMode - Return true if the addressing mode represented 1924 /// by AM is legal for this target, for a load/store of the specified type. 1925 bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1926 const AddrMode &AM, Type *Ty, 1927 unsigned AS) const { 1928 if (Ty->getTypeID() == Type::VoidTyID) 1929 return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs); 1930 1931 unsigned Size = DL.getTypeAllocSize(Ty); 1932 if (AM.BaseGV) { 1933 return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 && 1934 AM.BaseOffs%4 == 0; 1935 } 1936 1937 switch (Size) { 1938 case 1: 1939 // reg + imm 1940 if (AM.Scale == 0) { 1941 return isImmUs(AM.BaseOffs); 1942 } 1943 // reg + reg 1944 return AM.Scale == 1 && AM.BaseOffs == 0; 1945 case 2: 1946 case 3: 1947 // reg + imm 1948 if (AM.Scale == 0) { 1949 return isImmUs2(AM.BaseOffs); 1950 } 1951 // reg + reg<<1 1952 return AM.Scale == 2 && AM.BaseOffs == 0; 1953 default: 1954 // reg + imm 1955 if (AM.Scale == 0) { 1956 return isImmUs4(AM.BaseOffs); 1957 } 1958 // reg + reg<<2 1959 return AM.Scale == 4 && AM.BaseOffs == 0; 1960 } 1961 } 1962 1963 //===----------------------------------------------------------------------===// 1964 // XCore Inline Assembly Support 1965 //===----------------------------------------------------------------------===// 1966 1967 std::pair<unsigned, const TargetRegisterClass *> 1968 XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 1969 StringRef Constraint, 1970 MVT VT) const { 1971 if (Constraint.size() == 1) { 1972 switch (Constraint[0]) { 1973 default : break; 1974 case 'r': 1975 return std::make_pair(0U, &XCore::GRRegsRegClass); 1976 } 1977 } 1978 // Use the default implementation in TargetLowering to convert the register 1979 // constraint into a member of a register class. 1980 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1981 } 1982