1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the XCoreTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "XCoreISelLowering.h" 15 #include "XCore.h" 16 #include "XCoreMachineFunctionInfo.h" 17 #include "XCoreSubtarget.h" 18 #include "XCoreTargetMachine.h" 19 #include "XCoreTargetObjectFile.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAGISel.h" 27 #include "llvm/CodeGen/ValueTypes.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "xcore-lower" 43 44 const char *XCoreTargetLowering:: 45 getTargetNodeName(unsigned Opcode) const 46 { 47 switch ((XCoreISD::NodeType)Opcode) 48 { 49 case XCoreISD::FIRST_NUMBER : break; 50 case XCoreISD::BL : return "XCoreISD::BL"; 51 case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper"; 52 case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper"; 53 case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper"; 54 case XCoreISD::LDWSP : return "XCoreISD::LDWSP"; 55 case XCoreISD::STWSP : return "XCoreISD::STWSP"; 56 case XCoreISD::RETSP : return "XCoreISD::RETSP"; 57 case XCoreISD::LADD : return "XCoreISD::LADD"; 58 case XCoreISD::LSUB : return "XCoreISD::LSUB"; 59 case XCoreISD::LMUL : return "XCoreISD::LMUL"; 60 case XCoreISD::MACCU : return "XCoreISD::MACCU"; 61 case XCoreISD::MACCS : return "XCoreISD::MACCS"; 62 case XCoreISD::CRC8 : return "XCoreISD::CRC8"; 63 case XCoreISD::BR_JT : return "XCoreISD::BR_JT"; 64 case XCoreISD::BR_JT32 : return "XCoreISD::BR_JT32"; 65 case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET"; 66 case XCoreISD::EH_RETURN : return "XCoreISD::EH_RETURN"; 67 case XCoreISD::MEMBARRIER : return "XCoreISD::MEMBARRIER"; 68 } 69 return nullptr; 70 } 71 72 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM, 73 const XCoreSubtarget &Subtarget) 74 : TargetLowering(TM), TM(TM), Subtarget(Subtarget) { 75 76 // Set up the register classes. 77 addRegisterClass(MVT::i32, &XCore::GRRegsRegClass); 78 79 // Compute derived properties from the register classes 80 computeRegisterProperties(Subtarget.getRegisterInfo()); 81 82 // Division is expensive 83 setIntDivIsCheap(false); 84 85 setStackPointerRegisterToSaveRestore(XCore::SP); 86 87 setSchedulingPreference(Sched::Source); 88 89 // Use i32 for setcc operations results (slt, sgt, ...). 90 setBooleanContents(ZeroOrOneBooleanContent); 91 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 92 93 // XCore does not have the NodeTypes below. 94 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 95 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); 96 setOperationAction(ISD::ADDC, MVT::i32, Expand); 97 setOperationAction(ISD::ADDE, MVT::i32, Expand); 98 setOperationAction(ISD::SUBC, MVT::i32, Expand); 99 setOperationAction(ISD::SUBE, MVT::i32, Expand); 100 101 // 64bit 102 setOperationAction(ISD::ADD, MVT::i64, Custom); 103 setOperationAction(ISD::SUB, MVT::i64, Custom); 104 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom); 105 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom); 106 setOperationAction(ISD::MULHS, MVT::i32, Expand); 107 setOperationAction(ISD::MULHU, MVT::i32, Expand); 108 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); 109 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 110 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); 111 112 // Bit Manipulation 113 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 114 setOperationAction(ISD::ROTL , MVT::i32, Expand); 115 setOperationAction(ISD::ROTR , MVT::i32, Expand); 116 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 117 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 118 119 setOperationAction(ISD::TRAP, MVT::Other, Legal); 120 121 // Jump tables. 122 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 123 124 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 125 setOperationAction(ISD::BlockAddress, MVT::i32 , Custom); 126 127 // Conversion of i64 -> double produces constantpool nodes 128 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 129 130 // Loads 131 for (MVT VT : MVT::integer_valuetypes()) { 132 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 133 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 134 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 135 136 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 137 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand); 138 } 139 140 // Custom expand misaligned loads / stores. 141 setOperationAction(ISD::LOAD, MVT::i32, Custom); 142 setOperationAction(ISD::STORE, MVT::i32, Custom); 143 144 // Varargs 145 setOperationAction(ISD::VAEND, MVT::Other, Expand); 146 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 147 setOperationAction(ISD::VAARG, MVT::Other, Custom); 148 setOperationAction(ISD::VASTART, MVT::Other, Custom); 149 150 // Dynamic stack 151 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 152 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 153 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 154 155 // Exception handling 156 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); 157 setExceptionPointerRegister(XCore::R0); 158 setExceptionSelectorRegister(XCore::R1); 159 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); 160 161 // Atomic operations 162 // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic. 163 // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP. 164 setInsertFencesForAtomic(true); 165 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 166 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); 167 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); 168 169 // TRAMPOLINE is custom lowered. 170 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 171 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 172 173 // We want to custom lower some of our intrinsics. 174 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 175 176 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4; 177 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize 178 = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2; 179 180 // We have target-specific dag combine patterns for the following nodes: 181 setTargetDAGCombine(ISD::STORE); 182 setTargetDAGCombine(ISD::ADD); 183 setTargetDAGCombine(ISD::INTRINSIC_VOID); 184 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 185 186 setMinFunctionAlignment(1); 187 setPrefFunctionAlignment(2); 188 } 189 190 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 191 if (Val.getOpcode() != ISD::LOAD) 192 return false; 193 194 EVT VT1 = Val.getValueType(); 195 if (!VT1.isSimple() || !VT1.isInteger() || 196 !VT2.isSimple() || !VT2.isInteger()) 197 return false; 198 199 switch (VT1.getSimpleVT().SimpleTy) { 200 default: break; 201 case MVT::i8: 202 return true; 203 } 204 205 return false; 206 } 207 208 SDValue XCoreTargetLowering:: 209 LowerOperation(SDValue Op, SelectionDAG &DAG) const { 210 switch (Op.getOpcode()) 211 { 212 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); 213 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 214 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 215 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 216 case ISD::BR_JT: return LowerBR_JT(Op, DAG); 217 case ISD::LOAD: return LowerLOAD(Op, DAG); 218 case ISD::STORE: return LowerSTORE(Op, DAG); 219 case ISD::VAARG: return LowerVAARG(Op, DAG); 220 case ISD::VASTART: return LowerVASTART(Op, DAG); 221 case ISD::SMUL_LOHI: return LowerSMUL_LOHI(Op, DAG); 222 case ISD::UMUL_LOHI: return LowerUMUL_LOHI(Op, DAG); 223 // FIXME: Remove these when LegalizeDAGTypes lands. 224 case ISD::ADD: 225 case ISD::SUB: return ExpandADDSUB(Op.getNode(), DAG); 226 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 227 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 228 case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); 229 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 230 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 231 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 232 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG); 233 case ISD::ATOMIC_LOAD: return LowerATOMIC_LOAD(Op, DAG); 234 case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG); 235 default: 236 llvm_unreachable("unimplemented operand"); 237 } 238 } 239 240 /// ReplaceNodeResults - Replace the results of node with an illegal result 241 /// type with new values built out of custom code. 242 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N, 243 SmallVectorImpl<SDValue>&Results, 244 SelectionDAG &DAG) const { 245 switch (N->getOpcode()) { 246 default: 247 llvm_unreachable("Don't know how to custom expand this!"); 248 case ISD::ADD: 249 case ISD::SUB: 250 Results.push_back(ExpandADDSUB(N, DAG)); 251 return; 252 } 253 } 254 255 //===----------------------------------------------------------------------===// 256 // Misc Lower Operation implementation 257 //===----------------------------------------------------------------------===// 258 259 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA, 260 const GlobalValue *GV, 261 SelectionDAG &DAG) const { 262 // FIXME there is no actual debug info here 263 SDLoc dl(GA); 264 265 if (GV->getType()->getElementType()->isFunctionTy()) 266 return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA); 267 268 const auto *GVar = dyn_cast<GlobalVariable>(GV); 269 if ((GV->hasSection() && StringRef(GV->getSection()).startswith(".cp.")) || 270 (GVar && GVar->isConstant() && GV->hasLocalLinkage())) 271 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA); 272 273 return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA); 274 } 275 276 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) { 277 if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small) 278 return true; 279 280 Type *ObjType = GV->getType()->getPointerElementType(); 281 if (!ObjType->isSized()) 282 return false; 283 284 unsigned ObjSize = XTL.getDataLayout()->getTypeAllocSize(ObjType); 285 return ObjSize < CodeModelLargeSize && ObjSize != 0; 286 } 287 288 SDValue XCoreTargetLowering:: 289 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const 290 { 291 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op); 292 const GlobalValue *GV = GN->getGlobal(); 293 SDLoc DL(GN); 294 int64_t Offset = GN->getOffset(); 295 if (IsSmallObject(GV, *this)) { 296 // We can only fold positive offsets that are a multiple of the word size. 297 int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0); 298 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset); 299 GA = getGlobalAddressWrapper(GA, GV, DAG); 300 // Handle the rest of the offset. 301 if (Offset != FoldedOffset) { 302 SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32); 303 GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining); 304 } 305 return GA; 306 } else { 307 // Ideally we would not fold in offset with an index <= 11. 308 Type *Ty = Type::getInt8PtrTy(*DAG.getContext()); 309 Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty); 310 Ty = Type::getInt32Ty(*DAG.getContext()); 311 Constant *Idx = ConstantInt::get(Ty, Offset); 312 Constant *GAI = ConstantExpr::getGetElementPtr( 313 Type::getInt8Ty(*DAG.getContext()), GA, Idx); 314 SDValue CP = DAG.getConstantPool(GAI, MVT::i32); 315 return DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), CP, 316 MachinePointerInfo(), false, false, false, 0); 317 } 318 } 319 320 SDValue XCoreTargetLowering:: 321 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const 322 { 323 SDLoc DL(Op); 324 325 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 326 SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy()); 327 328 return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, getPointerTy(), Result); 329 } 330 331 SDValue XCoreTargetLowering:: 332 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const 333 { 334 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 335 // FIXME there isn't really debug info here 336 SDLoc dl(CP); 337 EVT PtrVT = Op.getValueType(); 338 SDValue Res; 339 if (CP->isMachineConstantPoolEntry()) { 340 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 341 CP->getAlignment(), CP->getOffset()); 342 } else { 343 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 344 CP->getAlignment(), CP->getOffset()); 345 } 346 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res); 347 } 348 349 unsigned XCoreTargetLowering::getJumpTableEncoding() const { 350 return MachineJumpTableInfo::EK_Inline; 351 } 352 353 SDValue XCoreTargetLowering:: 354 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const 355 { 356 SDValue Chain = Op.getOperand(0); 357 SDValue Table = Op.getOperand(1); 358 SDValue Index = Op.getOperand(2); 359 SDLoc dl(Op); 360 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table); 361 unsigned JTI = JT->getIndex(); 362 MachineFunction &MF = DAG.getMachineFunction(); 363 const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 364 SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32); 365 366 unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size(); 367 if (NumEntries <= 32) { 368 return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index); 369 } 370 assert((NumEntries >> 31) == 0); 371 SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index, 372 DAG.getConstant(1, dl, MVT::i32)); 373 return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT, 374 ScaledIndex); 375 } 376 377 SDValue XCoreTargetLowering:: 378 lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL, SDValue Chain, SDValue Base, 379 int64_t Offset, SelectionDAG &DAG) const 380 { 381 if ((Offset & 0x3) == 0) { 382 return DAG.getLoad(getPointerTy(), DL, Chain, Base, MachinePointerInfo(), 383 false, false, false, 0); 384 } 385 // Lower to pair of consecutive word aligned loads plus some bit shifting. 386 int32_t HighOffset = RoundUpToAlignment(Offset, 4); 387 int32_t LowOffset = HighOffset - 4; 388 SDValue LowAddr, HighAddr; 389 if (GlobalAddressSDNode *GASD = 390 dyn_cast<GlobalAddressSDNode>(Base.getNode())) { 391 LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(), 392 LowOffset); 393 HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(), 394 HighOffset); 395 } else { 396 LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base, 397 DAG.getConstant(LowOffset, DL, MVT::i32)); 398 HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base, 399 DAG.getConstant(HighOffset, DL, MVT::i32)); 400 } 401 SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32); 402 SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32); 403 404 SDValue Low = DAG.getLoad(getPointerTy(), DL, Chain, 405 LowAddr, MachinePointerInfo(), 406 false, false, false, 0); 407 SDValue High = DAG.getLoad(getPointerTy(), DL, Chain, 408 HighAddr, MachinePointerInfo(), 409 false, false, false, 0); 410 SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift); 411 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift); 412 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted); 413 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1), 414 High.getValue(1)); 415 SDValue Ops[] = { Result, Chain }; 416 return DAG.getMergeValues(Ops, DL); 417 } 418 419 static bool isWordAligned(SDValue Value, SelectionDAG &DAG) 420 { 421 APInt KnownZero, KnownOne; 422 DAG.computeKnownBits(Value, KnownZero, KnownOne); 423 return KnownZero.countTrailingOnes() >= 2; 424 } 425 426 SDValue XCoreTargetLowering:: 427 LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 428 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 429 LoadSDNode *LD = cast<LoadSDNode>(Op); 430 assert(LD->getExtensionType() == ISD::NON_EXTLOAD && 431 "Unexpected extension type"); 432 assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT"); 433 if (allowsMisalignedMemoryAccesses(LD->getMemoryVT(), 434 LD->getAddressSpace(), 435 LD->getAlignment())) 436 return SDValue(); 437 438 unsigned ABIAlignment = getDataLayout()-> 439 getABITypeAlignment(LD->getMemoryVT().getTypeForEVT(*DAG.getContext())); 440 // Leave aligned load alone. 441 if (LD->getAlignment() >= ABIAlignment) 442 return SDValue(); 443 444 SDValue Chain = LD->getChain(); 445 SDValue BasePtr = LD->getBasePtr(); 446 SDLoc DL(Op); 447 448 if (!LD->isVolatile()) { 449 const GlobalValue *GV; 450 int64_t Offset = 0; 451 if (DAG.isBaseWithConstantOffset(BasePtr) && 452 isWordAligned(BasePtr->getOperand(0), DAG)) { 453 SDValue NewBasePtr = BasePtr->getOperand(0); 454 Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue(); 455 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr, 456 Offset, DAG); 457 } 458 if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) && 459 MinAlign(GV->getAlignment(), 4) == 4) { 460 SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL, 461 BasePtr->getValueType(0)); 462 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr, 463 Offset, DAG); 464 } 465 } 466 467 if (LD->getAlignment() == 2) { 468 SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, 469 BasePtr, LD->getPointerInfo(), MVT::i16, 470 LD->isVolatile(), LD->isNonTemporal(), 471 LD->isInvariant(), 2); 472 SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, 473 DAG.getConstant(2, DL, MVT::i32)); 474 SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 475 HighAddr, 476 LD->getPointerInfo().getWithOffset(2), 477 MVT::i16, LD->isVolatile(), 478 LD->isNonTemporal(), LD->isInvariant(), 2); 479 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, 480 DAG.getConstant(16, DL, MVT::i32)); 481 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted); 482 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1), 483 High.getValue(1)); 484 SDValue Ops[] = { Result, Chain }; 485 return DAG.getMergeValues(Ops, DL); 486 } 487 488 // Lower to a call to __misaligned_load(BasePtr). 489 Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext()); 490 TargetLowering::ArgListTy Args; 491 TargetLowering::ArgListEntry Entry; 492 493 Entry.Ty = IntPtrTy; 494 Entry.Node = BasePtr; 495 Args.push_back(Entry); 496 497 TargetLowering::CallLoweringInfo CLI(DAG); 498 CLI.setDebugLoc(DL).setChain(Chain) 499 .setCallee(CallingConv::C, IntPtrTy, 500 DAG.getExternalSymbol("__misaligned_load", getPointerTy()), 501 std::move(Args), 0); 502 503 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 504 SDValue Ops[] = { CallResult.first, CallResult.second }; 505 return DAG.getMergeValues(Ops, DL); 506 } 507 508 SDValue XCoreTargetLowering:: 509 LowerSTORE(SDValue Op, SelectionDAG &DAG) const 510 { 511 StoreSDNode *ST = cast<StoreSDNode>(Op); 512 assert(!ST->isTruncatingStore() && "Unexpected store type"); 513 assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT"); 514 if (allowsMisalignedMemoryAccesses(ST->getMemoryVT(), 515 ST->getAddressSpace(), 516 ST->getAlignment())) { 517 return SDValue(); 518 } 519 unsigned ABIAlignment = getDataLayout()-> 520 getABITypeAlignment(ST->getMemoryVT().getTypeForEVT(*DAG.getContext())); 521 // Leave aligned store alone. 522 if (ST->getAlignment() >= ABIAlignment) { 523 return SDValue(); 524 } 525 SDValue Chain = ST->getChain(); 526 SDValue BasePtr = ST->getBasePtr(); 527 SDValue Value = ST->getValue(); 528 SDLoc dl(Op); 529 530 if (ST->getAlignment() == 2) { 531 SDValue Low = Value; 532 SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value, 533 DAG.getConstant(16, dl, MVT::i32)); 534 SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr, 535 ST->getPointerInfo(), MVT::i16, 536 ST->isVolatile(), ST->isNonTemporal(), 537 2); 538 SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr, 539 DAG.getConstant(2, dl, MVT::i32)); 540 SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr, 541 ST->getPointerInfo().getWithOffset(2), 542 MVT::i16, ST->isVolatile(), 543 ST->isNonTemporal(), 2); 544 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh); 545 } 546 547 // Lower to a call to __misaligned_store(BasePtr, Value). 548 Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext()); 549 TargetLowering::ArgListTy Args; 550 TargetLowering::ArgListEntry Entry; 551 552 Entry.Ty = IntPtrTy; 553 Entry.Node = BasePtr; 554 Args.push_back(Entry); 555 556 Entry.Node = Value; 557 Args.push_back(Entry); 558 559 TargetLowering::CallLoweringInfo CLI(DAG); 560 CLI.setDebugLoc(dl).setChain(Chain) 561 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 562 DAG.getExternalSymbol("__misaligned_store", getPointerTy()), 563 std::move(Args), 0); 564 565 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 566 return CallResult.second; 567 } 568 569 SDValue XCoreTargetLowering:: 570 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const 571 { 572 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI && 573 "Unexpected operand to lower!"); 574 SDLoc dl(Op); 575 SDValue LHS = Op.getOperand(0); 576 SDValue RHS = Op.getOperand(1); 577 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 578 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl, 579 DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero, 580 LHS, RHS); 581 SDValue Lo(Hi.getNode(), 1); 582 SDValue Ops[] = { Lo, Hi }; 583 return DAG.getMergeValues(Ops, dl); 584 } 585 586 SDValue XCoreTargetLowering:: 587 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const 588 { 589 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI && 590 "Unexpected operand to lower!"); 591 SDLoc dl(Op); 592 SDValue LHS = Op.getOperand(0); 593 SDValue RHS = Op.getOperand(1); 594 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 595 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl, 596 DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS, 597 Zero, Zero); 598 SDValue Lo(Hi.getNode(), 1); 599 SDValue Ops[] = { Lo, Hi }; 600 return DAG.getMergeValues(Ops, dl); 601 } 602 603 /// isADDADDMUL - Return whether Op is in a form that is equivalent to 604 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then 605 /// each intermediate result in the calculation must also have a single use. 606 /// If the Op is in the correct form the constituent parts are written to Mul0, 607 /// Mul1, Addend0 and Addend1. 608 static bool 609 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0, 610 SDValue &Addend1, bool requireIntermediatesHaveOneUse) 611 { 612 if (Op.getOpcode() != ISD::ADD) 613 return false; 614 SDValue N0 = Op.getOperand(0); 615 SDValue N1 = Op.getOperand(1); 616 SDValue AddOp; 617 SDValue OtherOp; 618 if (N0.getOpcode() == ISD::ADD) { 619 AddOp = N0; 620 OtherOp = N1; 621 } else if (N1.getOpcode() == ISD::ADD) { 622 AddOp = N1; 623 OtherOp = N0; 624 } else { 625 return false; 626 } 627 if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse()) 628 return false; 629 if (OtherOp.getOpcode() == ISD::MUL) { 630 // add(add(a,b),mul(x,y)) 631 if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse()) 632 return false; 633 Mul0 = OtherOp.getOperand(0); 634 Mul1 = OtherOp.getOperand(1); 635 Addend0 = AddOp.getOperand(0); 636 Addend1 = AddOp.getOperand(1); 637 return true; 638 } 639 if (AddOp.getOperand(0).getOpcode() == ISD::MUL) { 640 // add(add(mul(x,y),a),b) 641 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse()) 642 return false; 643 Mul0 = AddOp.getOperand(0).getOperand(0); 644 Mul1 = AddOp.getOperand(0).getOperand(1); 645 Addend0 = AddOp.getOperand(1); 646 Addend1 = OtherOp; 647 return true; 648 } 649 if (AddOp.getOperand(1).getOpcode() == ISD::MUL) { 650 // add(add(a,mul(x,y)),b) 651 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse()) 652 return false; 653 Mul0 = AddOp.getOperand(1).getOperand(0); 654 Mul1 = AddOp.getOperand(1).getOperand(1); 655 Addend0 = AddOp.getOperand(0); 656 Addend1 = OtherOp; 657 return true; 658 } 659 return false; 660 } 661 662 SDValue XCoreTargetLowering:: 663 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const 664 { 665 SDValue Mul; 666 SDValue Other; 667 if (N->getOperand(0).getOpcode() == ISD::MUL) { 668 Mul = N->getOperand(0); 669 Other = N->getOperand(1); 670 } else if (N->getOperand(1).getOpcode() == ISD::MUL) { 671 Mul = N->getOperand(1); 672 Other = N->getOperand(0); 673 } else { 674 return SDValue(); 675 } 676 SDLoc dl(N); 677 SDValue LL, RL, AddendL, AddendH; 678 LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 679 Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32)); 680 RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 681 Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32)); 682 AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 683 Other, DAG.getConstant(0, dl, MVT::i32)); 684 AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 685 Other, DAG.getConstant(1, dl, MVT::i32)); 686 APInt HighMask = APInt::getHighBitsSet(64, 32); 687 unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0)); 688 unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1)); 689 if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) && 690 DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) { 691 // The inputs are both zero-extended. 692 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl, 693 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 694 AddendL, LL, RL); 695 SDValue Lo(Hi.getNode(), 1); 696 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 697 } 698 if (LHSSB > 32 && RHSSB > 32) { 699 // The inputs are both sign-extended. 700 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl, 701 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 702 AddendL, LL, RL); 703 SDValue Lo(Hi.getNode(), 1); 704 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 705 } 706 SDValue LH, RH; 707 LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 708 Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32)); 709 RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 710 Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32)); 711 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl, 712 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 713 AddendL, LL, RL); 714 SDValue Lo(Hi.getNode(), 1); 715 RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH); 716 LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL); 717 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH); 718 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH); 719 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 720 } 721 722 SDValue XCoreTargetLowering:: 723 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const 724 { 725 assert(N->getValueType(0) == MVT::i64 && 726 (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 727 "Unknown operand to lower!"); 728 729 if (N->getOpcode() == ISD::ADD) { 730 SDValue Result = TryExpandADDWithMul(N, DAG); 731 if (Result.getNode()) 732 return Result; 733 } 734 735 SDLoc dl(N); 736 737 // Extract components 738 SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 739 N->getOperand(0), 740 DAG.getConstant(0, dl, MVT::i32)); 741 SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 742 N->getOperand(0), 743 DAG.getConstant(1, dl, MVT::i32)); 744 SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 745 N->getOperand(1), 746 DAG.getConstant(0, dl, MVT::i32)); 747 SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 748 N->getOperand(1), 749 DAG.getConstant(1, dl, MVT::i32)); 750 751 // Expand 752 unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD : 753 XCoreISD::LSUB; 754 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 755 SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), 756 LHSL, RHSL, Zero); 757 SDValue Carry(Lo.getNode(), 1); 758 759 SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), 760 LHSH, RHSH, Carry); 761 SDValue Ignored(Hi.getNode(), 1); 762 // Merge the pieces 763 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 764 } 765 766 SDValue XCoreTargetLowering:: 767 LowerVAARG(SDValue Op, SelectionDAG &DAG) const 768 { 769 // Whist llvm does not support aggregate varargs we can ignore 770 // the possibility of the ValueType being an implicit byVal vararg. 771 SDNode *Node = Op.getNode(); 772 EVT VT = Node->getValueType(0); // not an aggregate 773 SDValue InChain = Node->getOperand(0); 774 SDValue VAListPtr = Node->getOperand(1); 775 EVT PtrVT = VAListPtr.getValueType(); 776 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 777 SDLoc dl(Node); 778 SDValue VAList = DAG.getLoad(PtrVT, dl, InChain, 779 VAListPtr, MachinePointerInfo(SV), 780 false, false, false, 0); 781 // Increment the pointer, VAList, to the next vararg 782 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList, 783 DAG.getIntPtrConstant(VT.getSizeInBits() / 8, 784 dl)); 785 // Store the incremented VAList to the legalized pointer 786 InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr, 787 MachinePointerInfo(SV), false, false, 0); 788 // Load the actual argument out of the pointer VAList 789 return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(), 790 false, false, false, 0); 791 } 792 793 SDValue XCoreTargetLowering:: 794 LowerVASTART(SDValue Op, SelectionDAG &DAG) const 795 { 796 SDLoc dl(Op); 797 // vastart stores the address of the VarArgsFrameIndex slot into the 798 // memory location argument 799 MachineFunction &MF = DAG.getMachineFunction(); 800 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 801 SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32); 802 return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1), 803 MachinePointerInfo(), false, false, 0); 804 } 805 806 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op, 807 SelectionDAG &DAG) const { 808 // This nodes represent llvm.frameaddress on the DAG. 809 // It takes one operand, the index of the frame address to return. 810 // An index of zero corresponds to the current function's frame address. 811 // An index of one to the parent's frame address, and so on. 812 // Depths > 0 not supported yet! 813 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0) 814 return SDValue(); 815 816 MachineFunction &MF = DAG.getMachineFunction(); 817 const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 818 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), 819 RegInfo->getFrameRegister(MF), MVT::i32); 820 } 821 822 SDValue XCoreTargetLowering:: 823 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { 824 // This nodes represent llvm.returnaddress on the DAG. 825 // It takes one operand, the index of the return address to return. 826 // An index of zero corresponds to the current function's return address. 827 // An index of one to the parent's return address, and so on. 828 // Depths > 0 not supported yet! 829 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0) 830 return SDValue(); 831 832 MachineFunction &MF = DAG.getMachineFunction(); 833 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 834 int FI = XFI->createLRSpillSlot(MF); 835 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 836 return DAG.getLoad(getPointerTy(), SDLoc(Op), DAG.getEntryNode(), FIN, 837 MachinePointerInfo::getFixedStack(FI), false, false, 838 false, 0); 839 } 840 841 SDValue XCoreTargetLowering:: 842 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const { 843 // This node represents offset from frame pointer to first on-stack argument. 844 // This is needed for correct stack adjustment during unwind. 845 // However, we don't know the offset until after the frame has be finalised. 846 // This is done during the XCoreFTAOElim pass. 847 return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32); 848 } 849 850 SDValue XCoreTargetLowering:: 851 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { 852 // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) 853 // This node represents 'eh_return' gcc dwarf builtin, which is used to 854 // return from exception. The general meaning is: adjust stack by OFFSET and 855 // pass execution to HANDLER. 856 MachineFunction &MF = DAG.getMachineFunction(); 857 SDValue Chain = Op.getOperand(0); 858 SDValue Offset = Op.getOperand(1); 859 SDValue Handler = Op.getOperand(2); 860 SDLoc dl(Op); 861 862 // Absolute SP = (FP + FrameToArgs) + Offset 863 const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 864 SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl, 865 RegInfo->getFrameRegister(MF), MVT::i32); 866 SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl, 867 MVT::i32); 868 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs); 869 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset); 870 871 // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister 872 // which leaves 2 caller saved registers, R2 & R3 for us to use. 873 unsigned StackReg = XCore::R2; 874 unsigned HandlerReg = XCore::R3; 875 876 SDValue OutChains[] = { 877 DAG.getCopyToReg(Chain, dl, StackReg, Stack), 878 DAG.getCopyToReg(Chain, dl, HandlerReg, Handler) 879 }; 880 881 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 882 883 return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain, 884 DAG.getRegister(StackReg, MVT::i32), 885 DAG.getRegister(HandlerReg, MVT::i32)); 886 887 } 888 889 SDValue XCoreTargetLowering:: 890 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { 891 return Op.getOperand(0); 892 } 893 894 SDValue XCoreTargetLowering:: 895 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { 896 SDValue Chain = Op.getOperand(0); 897 SDValue Trmp = Op.getOperand(1); // trampoline 898 SDValue FPtr = Op.getOperand(2); // nested function 899 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 900 901 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 902 903 // .align 4 904 // LDAPF_u10 r11, nest 905 // LDW_2rus r11, r11[0] 906 // STWSP_ru6 r11, sp[0] 907 // LDAPF_u10 r11, fptr 908 // LDW_2rus r11, r11[0] 909 // BAU_1r r11 910 // nest: 911 // .word nest 912 // fptr: 913 // .word fptr 914 SDValue OutChains[5]; 915 916 SDValue Addr = Trmp; 917 918 SDLoc dl(Op); 919 OutChains[0] = DAG.getStore(Chain, dl, 920 DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr, 921 MachinePointerInfo(TrmpAddr), false, false, 0); 922 923 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 924 DAG.getConstant(4, dl, MVT::i32)); 925 OutChains[1] = DAG.getStore(Chain, dl, 926 DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr, 927 MachinePointerInfo(TrmpAddr, 4), false, false, 0); 928 929 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 930 DAG.getConstant(8, dl, MVT::i32)); 931 OutChains[2] = DAG.getStore(Chain, dl, 932 DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr, 933 MachinePointerInfo(TrmpAddr, 8), false, false, 0); 934 935 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 936 DAG.getConstant(12, dl, MVT::i32)); 937 OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr, 938 MachinePointerInfo(TrmpAddr, 12), false, false, 939 0); 940 941 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 942 DAG.getConstant(16, dl, MVT::i32)); 943 OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr, 944 MachinePointerInfo(TrmpAddr, 16), false, false, 945 0); 946 947 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 948 } 949 950 SDValue XCoreTargetLowering:: 951 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { 952 SDLoc DL(Op); 953 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 954 switch (IntNo) { 955 case Intrinsic::xcore_crc8: 956 EVT VT = Op.getValueType(); 957 SDValue Data = 958 DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT), 959 Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3)); 960 SDValue Crc(Data.getNode(), 1); 961 SDValue Results[] = { Crc, Data }; 962 return DAG.getMergeValues(Results, DL); 963 } 964 return SDValue(); 965 } 966 967 SDValue XCoreTargetLowering:: 968 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const { 969 SDLoc DL(Op); 970 return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 971 } 972 973 SDValue XCoreTargetLowering:: 974 LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const { 975 AtomicSDNode *N = cast<AtomicSDNode>(Op); 976 assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP"); 977 assert(N->getOrdering() <= Monotonic && 978 "setInsertFencesForAtomic(true) and yet greater than Monotonic"); 979 if (N->getMemoryVT() == MVT::i32) { 980 if (N->getAlignment() < 4) 981 report_fatal_error("atomic load must be aligned"); 982 return DAG.getLoad(getPointerTy(), SDLoc(Op), N->getChain(), 983 N->getBasePtr(), N->getPointerInfo(), 984 N->isVolatile(), N->isNonTemporal(), 985 N->isInvariant(), N->getAlignment(), 986 N->getAAInfo(), N->getRanges()); 987 } 988 if (N->getMemoryVT() == MVT::i16) { 989 if (N->getAlignment() < 2) 990 report_fatal_error("atomic load must be aligned"); 991 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(), 992 N->getBasePtr(), N->getPointerInfo(), MVT::i16, 993 N->isVolatile(), N->isNonTemporal(), 994 N->isInvariant(), N->getAlignment(), N->getAAInfo()); 995 } 996 if (N->getMemoryVT() == MVT::i8) 997 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(), 998 N->getBasePtr(), N->getPointerInfo(), MVT::i8, 999 N->isVolatile(), N->isNonTemporal(), 1000 N->isInvariant(), N->getAlignment(), N->getAAInfo()); 1001 return SDValue(); 1002 } 1003 1004 SDValue XCoreTargetLowering:: 1005 LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const { 1006 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1007 assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP"); 1008 assert(N->getOrdering() <= Monotonic && 1009 "setInsertFencesForAtomic(true) and yet greater than Monotonic"); 1010 if (N->getMemoryVT() == MVT::i32) { 1011 if (N->getAlignment() < 4) 1012 report_fatal_error("atomic store must be aligned"); 1013 return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(), 1014 N->getBasePtr(), N->getPointerInfo(), 1015 N->isVolatile(), N->isNonTemporal(), 1016 N->getAlignment(), N->getAAInfo()); 1017 } 1018 if (N->getMemoryVT() == MVT::i16) { 1019 if (N->getAlignment() < 2) 1020 report_fatal_error("atomic store must be aligned"); 1021 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(), 1022 N->getBasePtr(), N->getPointerInfo(), MVT::i16, 1023 N->isVolatile(), N->isNonTemporal(), 1024 N->getAlignment(), N->getAAInfo()); 1025 } 1026 if (N->getMemoryVT() == MVT::i8) 1027 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(), 1028 N->getBasePtr(), N->getPointerInfo(), MVT::i8, 1029 N->isVolatile(), N->isNonTemporal(), 1030 N->getAlignment(), N->getAAInfo()); 1031 return SDValue(); 1032 } 1033 1034 //===----------------------------------------------------------------------===// 1035 // Calling Convention Implementation 1036 //===----------------------------------------------------------------------===// 1037 1038 #include "XCoreGenCallingConv.inc" 1039 1040 //===----------------------------------------------------------------------===// 1041 // Call Calling Convention Implementation 1042 //===----------------------------------------------------------------------===// 1043 1044 /// XCore call implementation 1045 SDValue 1046 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 1047 SmallVectorImpl<SDValue> &InVals) const { 1048 SelectionDAG &DAG = CLI.DAG; 1049 SDLoc &dl = CLI.DL; 1050 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1051 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1052 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1053 SDValue Chain = CLI.Chain; 1054 SDValue Callee = CLI.Callee; 1055 bool &isTailCall = CLI.IsTailCall; 1056 CallingConv::ID CallConv = CLI.CallConv; 1057 bool isVarArg = CLI.IsVarArg; 1058 1059 // XCore target does not yet support tail call optimization. 1060 isTailCall = false; 1061 1062 // For now, only CallingConv::C implemented 1063 switch (CallConv) 1064 { 1065 default: 1066 llvm_unreachable("Unsupported calling convention"); 1067 case CallingConv::Fast: 1068 case CallingConv::C: 1069 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall, 1070 Outs, OutVals, Ins, dl, DAG, InVals); 1071 } 1072 } 1073 1074 /// LowerCallResult - Lower the result values of a call into the 1075 /// appropriate copies out of appropriate physical registers / memory locations. 1076 static SDValue 1077 LowerCallResult(SDValue Chain, SDValue InFlag, 1078 const SmallVectorImpl<CCValAssign> &RVLocs, 1079 SDLoc dl, SelectionDAG &DAG, 1080 SmallVectorImpl<SDValue> &InVals) { 1081 SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs; 1082 // Copy results out of physical registers. 1083 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 1084 const CCValAssign &VA = RVLocs[i]; 1085 if (VA.isRegLoc()) { 1086 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(), 1087 InFlag).getValue(1); 1088 InFlag = Chain.getValue(2); 1089 InVals.push_back(Chain.getValue(0)); 1090 } else { 1091 assert(VA.isMemLoc()); 1092 ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(), 1093 InVals.size())); 1094 // Reserve space for this result. 1095 InVals.push_back(SDValue()); 1096 } 1097 } 1098 1099 // Copy results out of memory. 1100 SmallVector<SDValue, 4> MemOpChains; 1101 for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) { 1102 int offset = ResultMemLocs[i].first; 1103 unsigned index = ResultMemLocs[i].second; 1104 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 1105 SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) }; 1106 SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops); 1107 InVals[index] = load; 1108 MemOpChains.push_back(load.getValue(1)); 1109 } 1110 1111 // Transform all loads nodes into one single node because 1112 // all load nodes are independent of each other. 1113 if (!MemOpChains.empty()) 1114 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1115 1116 return Chain; 1117 } 1118 1119 /// LowerCCCCallTo - functions arguments are copied from virtual 1120 /// regs to (physical regs)/(stack frame), CALLSEQ_START and 1121 /// CALLSEQ_END are emitted. 1122 /// TODO: isTailCall, sret. 1123 SDValue 1124 XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee, 1125 CallingConv::ID CallConv, bool isVarArg, 1126 bool isTailCall, 1127 const SmallVectorImpl<ISD::OutputArg> &Outs, 1128 const SmallVectorImpl<SDValue> &OutVals, 1129 const SmallVectorImpl<ISD::InputArg> &Ins, 1130 SDLoc dl, SelectionDAG &DAG, 1131 SmallVectorImpl<SDValue> &InVals) const { 1132 1133 // Analyze operands of the call, assigning locations to each operand. 1134 SmallVector<CCValAssign, 16> ArgLocs; 1135 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 1136 *DAG.getContext()); 1137 1138 // The ABI dictates there should be one stack slot available to the callee 1139 // on function entry (for saving lr). 1140 CCInfo.AllocateStack(4, 4); 1141 1142 CCInfo.AnalyzeCallOperands(Outs, CC_XCore); 1143 1144 SmallVector<CCValAssign, 16> RVLocs; 1145 // Analyze return values to determine the number of bytes of stack required. 1146 CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 1147 *DAG.getContext()); 1148 RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4); 1149 RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore); 1150 1151 // Get a count of how many bytes are to be pushed on the stack. 1152 unsigned NumBytes = RetCCInfo.getNextStackOffset(); 1153 1154 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, dl, 1155 getPointerTy(), true), dl); 1156 1157 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass; 1158 SmallVector<SDValue, 12> MemOpChains; 1159 1160 // Walk the register/memloc assignments, inserting copies/loads. 1161 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1162 CCValAssign &VA = ArgLocs[i]; 1163 SDValue Arg = OutVals[i]; 1164 1165 // Promote the value if needed. 1166 switch (VA.getLocInfo()) { 1167 default: llvm_unreachable("Unknown loc info!"); 1168 case CCValAssign::Full: break; 1169 case CCValAssign::SExt: 1170 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 1171 break; 1172 case CCValAssign::ZExt: 1173 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 1174 break; 1175 case CCValAssign::AExt: 1176 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 1177 break; 1178 } 1179 1180 // Arguments that can be passed on register must be kept at 1181 // RegsToPass vector 1182 if (VA.isRegLoc()) { 1183 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 1184 } else { 1185 assert(VA.isMemLoc()); 1186 1187 int Offset = VA.getLocMemOffset(); 1188 1189 MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other, 1190 Chain, Arg, 1191 DAG.getConstant(Offset/4, dl, 1192 MVT::i32))); 1193 } 1194 } 1195 1196 // Transform all store nodes into one single node because 1197 // all store nodes are independent of each other. 1198 if (!MemOpChains.empty()) 1199 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1200 1201 // Build a sequence of copy-to-reg nodes chained together with token 1202 // chain and flag operands which copy the outgoing args into registers. 1203 // The InFlag in necessary since all emitted instructions must be 1204 // stuck together. 1205 SDValue InFlag; 1206 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1207 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 1208 RegsToPass[i].second, InFlag); 1209 InFlag = Chain.getValue(1); 1210 } 1211 1212 // If the callee is a GlobalAddress node (quite common, every direct call is) 1213 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1214 // Likewise ExternalSymbol -> TargetExternalSymbol. 1215 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1216 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32); 1217 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 1218 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32); 1219 1220 // XCoreBranchLink = #chain, #target_address, #opt_in_flags... 1221 // = Chain, Callee, Reg#1, Reg#2, ... 1222 // 1223 // Returns a chain & a flag for retval copy to use. 1224 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1225 SmallVector<SDValue, 8> Ops; 1226 Ops.push_back(Chain); 1227 Ops.push_back(Callee); 1228 1229 // Add argument registers to the end of the list so that they are 1230 // known live into the call. 1231 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1232 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1233 RegsToPass[i].second.getValueType())); 1234 1235 if (InFlag.getNode()) 1236 Ops.push_back(InFlag); 1237 1238 Chain = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops); 1239 InFlag = Chain.getValue(1); 1240 1241 // Create the CALLSEQ_END node. 1242 Chain = DAG.getCALLSEQ_END(Chain, 1243 DAG.getConstant(NumBytes, dl, getPointerTy(), 1244 true), 1245 DAG.getConstant(0, dl, getPointerTy(), true), 1246 InFlag, dl); 1247 InFlag = Chain.getValue(1); 1248 1249 // Handle result values, copying them out of physregs into vregs that we 1250 // return. 1251 return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals); 1252 } 1253 1254 //===----------------------------------------------------------------------===// 1255 // Formal Arguments Calling Convention Implementation 1256 //===----------------------------------------------------------------------===// 1257 1258 namespace { 1259 struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; }; 1260 } 1261 1262 /// XCore formal arguments implementation 1263 SDValue 1264 XCoreTargetLowering::LowerFormalArguments(SDValue Chain, 1265 CallingConv::ID CallConv, 1266 bool isVarArg, 1267 const SmallVectorImpl<ISD::InputArg> &Ins, 1268 SDLoc dl, 1269 SelectionDAG &DAG, 1270 SmallVectorImpl<SDValue> &InVals) 1271 const { 1272 switch (CallConv) 1273 { 1274 default: 1275 llvm_unreachable("Unsupported calling convention"); 1276 case CallingConv::C: 1277 case CallingConv::Fast: 1278 return LowerCCCArguments(Chain, CallConv, isVarArg, 1279 Ins, dl, DAG, InVals); 1280 } 1281 } 1282 1283 /// LowerCCCArguments - transform physical registers into 1284 /// virtual registers and generate load operations for 1285 /// arguments places on the stack. 1286 /// TODO: sret 1287 SDValue 1288 XCoreTargetLowering::LowerCCCArguments(SDValue Chain, 1289 CallingConv::ID CallConv, 1290 bool isVarArg, 1291 const SmallVectorImpl<ISD::InputArg> 1292 &Ins, 1293 SDLoc dl, 1294 SelectionDAG &DAG, 1295 SmallVectorImpl<SDValue> &InVals) const { 1296 MachineFunction &MF = DAG.getMachineFunction(); 1297 MachineFrameInfo *MFI = MF.getFrameInfo(); 1298 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1299 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 1300 1301 // Assign locations to all of the incoming arguments. 1302 SmallVector<CCValAssign, 16> ArgLocs; 1303 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 1304 *DAG.getContext()); 1305 1306 CCInfo.AnalyzeFormalArguments(Ins, CC_XCore); 1307 1308 unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize(); 1309 1310 unsigned LRSaveSize = StackSlotSize; 1311 1312 if (!isVarArg) 1313 XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize); 1314 1315 // All getCopyFromReg ops must precede any getMemcpys to prevent the 1316 // scheduler clobbering a register before it has been copied. 1317 // The stages are: 1318 // 1. CopyFromReg (and load) arg & vararg registers. 1319 // 2. Chain CopyFromReg nodes into a TokenFactor. 1320 // 3. Memcpy 'byVal' args & push final InVals. 1321 // 4. Chain mem ops nodes into a TokenFactor. 1322 SmallVector<SDValue, 4> CFRegNode; 1323 SmallVector<ArgDataPair, 4> ArgData; 1324 SmallVector<SDValue, 4> MemOps; 1325 1326 // 1a. CopyFromReg (and load) arg registers. 1327 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1328 1329 CCValAssign &VA = ArgLocs[i]; 1330 SDValue ArgIn; 1331 1332 if (VA.isRegLoc()) { 1333 // Arguments passed in registers 1334 EVT RegVT = VA.getLocVT(); 1335 switch (RegVT.getSimpleVT().SimpleTy) { 1336 default: 1337 { 1338 #ifndef NDEBUG 1339 errs() << "LowerFormalArguments Unhandled argument type: " 1340 << RegVT.getSimpleVT().SimpleTy << "\n"; 1341 #endif 1342 llvm_unreachable(nullptr); 1343 } 1344 case MVT::i32: 1345 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass); 1346 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1347 ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); 1348 CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1)); 1349 } 1350 } else { 1351 // sanity check 1352 assert(VA.isMemLoc()); 1353 // Load the argument to a virtual register 1354 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8; 1355 if (ObjSize > StackSlotSize) { 1356 errs() << "LowerFormalArguments Unhandled argument type: " 1357 << EVT(VA.getLocVT()).getEVTString() 1358 << "\n"; 1359 } 1360 // Create the frame index object for this incoming parameter... 1361 int FI = MFI->CreateFixedObject(ObjSize, 1362 LRSaveSize + VA.getLocMemOffset(), 1363 true); 1364 1365 // Create the SelectionDAG nodes corresponding to a load 1366 //from this parameter 1367 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1368 ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, 1369 MachinePointerInfo::getFixedStack(FI), 1370 false, false, false, 0); 1371 } 1372 const ArgDataPair ADP = { ArgIn, Ins[i].Flags }; 1373 ArgData.push_back(ADP); 1374 } 1375 1376 // 1b. CopyFromReg vararg registers. 1377 if (isVarArg) { 1378 // Argument registers 1379 static const MCPhysReg ArgRegs[] = { 1380 XCore::R0, XCore::R1, XCore::R2, XCore::R3 1381 }; 1382 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 1383 unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs); 1384 if (FirstVAReg < array_lengthof(ArgRegs)) { 1385 int offset = 0; 1386 // Save remaining registers, storing higher register numbers at a higher 1387 // address 1388 for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) { 1389 // Create a stack slot 1390 int FI = MFI->CreateFixedObject(4, offset, true); 1391 if (i == (int)FirstVAReg) { 1392 XFI->setVarArgsFrameIndex(FI); 1393 } 1394 offset -= StackSlotSize; 1395 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1396 // Move argument from phys reg -> virt reg 1397 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass); 1398 RegInfo.addLiveIn(ArgRegs[i], VReg); 1399 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 1400 CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1)); 1401 // Move argument from virt reg -> stack 1402 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1403 MachinePointerInfo(), false, false, 0); 1404 MemOps.push_back(Store); 1405 } 1406 } else { 1407 // This will point to the next argument passed via stack. 1408 XFI->setVarArgsFrameIndex( 1409 MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(), 1410 true)); 1411 } 1412 } 1413 1414 // 2. chain CopyFromReg nodes into a TokenFactor. 1415 if (!CFRegNode.empty()) 1416 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode); 1417 1418 // 3. Memcpy 'byVal' args & push final InVals. 1419 // Aggregates passed "byVal" need to be copied by the callee. 1420 // The callee will use a pointer to this copy, rather than the original 1421 // pointer. 1422 for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(), 1423 ArgDE = ArgData.end(); 1424 ArgDI != ArgDE; ++ArgDI) { 1425 if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) { 1426 unsigned Size = ArgDI->Flags.getByValSize(); 1427 unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign()); 1428 // Create a new object on the stack and copy the pointee into it. 1429 int FI = MFI->CreateStackObject(Size, Align, false); 1430 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1431 InVals.push_back(FIN); 1432 MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV, 1433 DAG.getConstant(Size, dl, MVT::i32), 1434 Align, false, false, false, 1435 MachinePointerInfo(), 1436 MachinePointerInfo())); 1437 } else { 1438 InVals.push_back(ArgDI->SDV); 1439 } 1440 } 1441 1442 // 4, chain mem ops nodes into a TokenFactor. 1443 if (!MemOps.empty()) { 1444 MemOps.push_back(Chain); 1445 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 1446 } 1447 1448 return Chain; 1449 } 1450 1451 //===----------------------------------------------------------------------===// 1452 // Return Value Calling Convention Implementation 1453 //===----------------------------------------------------------------------===// 1454 1455 bool XCoreTargetLowering:: 1456 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, 1457 bool isVarArg, 1458 const SmallVectorImpl<ISD::OutputArg> &Outs, 1459 LLVMContext &Context) const { 1460 SmallVector<CCValAssign, 16> RVLocs; 1461 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 1462 if (!CCInfo.CheckReturn(Outs, RetCC_XCore)) 1463 return false; 1464 if (CCInfo.getNextStackOffset() != 0 && isVarArg) 1465 return false; 1466 return true; 1467 } 1468 1469 SDValue 1470 XCoreTargetLowering::LowerReturn(SDValue Chain, 1471 CallingConv::ID CallConv, bool isVarArg, 1472 const SmallVectorImpl<ISD::OutputArg> &Outs, 1473 const SmallVectorImpl<SDValue> &OutVals, 1474 SDLoc dl, SelectionDAG &DAG) const { 1475 1476 XCoreFunctionInfo *XFI = 1477 DAG.getMachineFunction().getInfo<XCoreFunctionInfo>(); 1478 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 1479 1480 // CCValAssign - represent the assignment of 1481 // the return value to a location 1482 SmallVector<CCValAssign, 16> RVLocs; 1483 1484 // CCState - Info about the registers and stack slot. 1485 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 1486 *DAG.getContext()); 1487 1488 // Analyze return values. 1489 if (!isVarArg) 1490 CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4); 1491 1492 CCInfo.AnalyzeReturn(Outs, RetCC_XCore); 1493 1494 SDValue Flag; 1495 SmallVector<SDValue, 4> RetOps(1, Chain); 1496 1497 // Return on XCore is always a "retsp 0" 1498 RetOps.push_back(DAG.getConstant(0, dl, MVT::i32)); 1499 1500 SmallVector<SDValue, 4> MemOpChains; 1501 // Handle return values that must be copied to memory. 1502 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 1503 CCValAssign &VA = RVLocs[i]; 1504 if (VA.isRegLoc()) 1505 continue; 1506 assert(VA.isMemLoc()); 1507 if (isVarArg) { 1508 report_fatal_error("Can't return value from vararg function in memory"); 1509 } 1510 1511 int Offset = VA.getLocMemOffset(); 1512 unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8; 1513 // Create the frame index object for the memory location. 1514 int FI = MFI->CreateFixedObject(ObjSize, Offset, false); 1515 1516 // Create a SelectionDAG node corresponding to a store 1517 // to this memory location. 1518 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1519 MemOpChains.push_back(DAG.getStore(Chain, dl, OutVals[i], FIN, 1520 MachinePointerInfo::getFixedStack(FI), false, false, 1521 0)); 1522 } 1523 1524 // Transform all store nodes into one single node because 1525 // all stores are independent of each other. 1526 if (!MemOpChains.empty()) 1527 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1528 1529 // Now handle return values copied to registers. 1530 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 1531 CCValAssign &VA = RVLocs[i]; 1532 if (!VA.isRegLoc()) 1533 continue; 1534 // Copy the result values into the output registers. 1535 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); 1536 1537 // guarantee that all emitted copies are 1538 // stuck together, avoiding something bad 1539 Flag = Chain.getValue(1); 1540 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 1541 } 1542 1543 RetOps[0] = Chain; // Update chain. 1544 1545 // Add the flag if we have it. 1546 if (Flag.getNode()) 1547 RetOps.push_back(Flag); 1548 1549 return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps); 1550 } 1551 1552 //===----------------------------------------------------------------------===// 1553 // Other Lowering Code 1554 //===----------------------------------------------------------------------===// 1555 1556 MachineBasicBlock * 1557 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 1558 MachineBasicBlock *BB) const { 1559 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1560 DebugLoc dl = MI->getDebugLoc(); 1561 assert((MI->getOpcode() == XCore::SELECT_CC) && 1562 "Unexpected instr type to insert"); 1563 1564 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond 1565 // control-flow pattern. The incoming instruction knows the destination vreg 1566 // to set, the condition code register to branch on, the true/false values to 1567 // select between, and a branch opcode to use. 1568 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1569 MachineFunction::iterator It = BB; 1570 ++It; 1571 1572 // thisMBB: 1573 // ... 1574 // TrueVal = ... 1575 // cmpTY ccX, r1, r2 1576 // bCC copy1MBB 1577 // fallthrough --> copy0MBB 1578 MachineBasicBlock *thisMBB = BB; 1579 MachineFunction *F = BB->getParent(); 1580 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 1581 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 1582 F->insert(It, copy0MBB); 1583 F->insert(It, sinkMBB); 1584 1585 // Transfer the remainder of BB and its successor edges to sinkMBB. 1586 sinkMBB->splice(sinkMBB->begin(), BB, 1587 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1588 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 1589 1590 // Next, add the true and fallthrough blocks as its successors. 1591 BB->addSuccessor(copy0MBB); 1592 BB->addSuccessor(sinkMBB); 1593 1594 BuildMI(BB, dl, TII.get(XCore::BRFT_lru6)) 1595 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 1596 1597 // copy0MBB: 1598 // %FalseValue = ... 1599 // # fallthrough to sinkMBB 1600 BB = copy0MBB; 1601 1602 // Update machine-CFG edges 1603 BB->addSuccessor(sinkMBB); 1604 1605 // sinkMBB: 1606 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 1607 // ... 1608 BB = sinkMBB; 1609 BuildMI(*BB, BB->begin(), dl, 1610 TII.get(XCore::PHI), MI->getOperand(0).getReg()) 1611 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 1612 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 1613 1614 MI->eraseFromParent(); // The pseudo instruction is gone now. 1615 return BB; 1616 } 1617 1618 //===----------------------------------------------------------------------===// 1619 // Target Optimization Hooks 1620 //===----------------------------------------------------------------------===// 1621 1622 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N, 1623 DAGCombinerInfo &DCI) const { 1624 SelectionDAG &DAG = DCI.DAG; 1625 SDLoc dl(N); 1626 switch (N->getOpcode()) { 1627 default: break; 1628 case ISD::INTRINSIC_VOID: 1629 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 1630 case Intrinsic::xcore_outt: 1631 case Intrinsic::xcore_outct: 1632 case Intrinsic::xcore_chkct: { 1633 SDValue OutVal = N->getOperand(3); 1634 // These instructions ignore the high bits. 1635 if (OutVal.hasOneUse()) { 1636 unsigned BitWidth = OutVal.getValueSizeInBits(); 1637 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8); 1638 APInt KnownZero, KnownOne; 1639 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1640 !DCI.isBeforeLegalizeOps()); 1641 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1642 if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) || 1643 TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne, 1644 TLO)) 1645 DCI.CommitTargetLoweringOpt(TLO); 1646 } 1647 break; 1648 } 1649 case Intrinsic::xcore_setpt: { 1650 SDValue Time = N->getOperand(3); 1651 // This instruction ignores the high bits. 1652 if (Time.hasOneUse()) { 1653 unsigned BitWidth = Time.getValueSizeInBits(); 1654 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16); 1655 APInt KnownZero, KnownOne; 1656 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1657 !DCI.isBeforeLegalizeOps()); 1658 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1659 if (TLO.ShrinkDemandedConstant(Time, DemandedMask) || 1660 TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne, 1661 TLO)) 1662 DCI.CommitTargetLoweringOpt(TLO); 1663 } 1664 break; 1665 } 1666 } 1667 break; 1668 case XCoreISD::LADD: { 1669 SDValue N0 = N->getOperand(0); 1670 SDValue N1 = N->getOperand(1); 1671 SDValue N2 = N->getOperand(2); 1672 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1673 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1674 EVT VT = N0.getValueType(); 1675 1676 // canonicalize constant to RHS 1677 if (N0C && !N1C) 1678 return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2); 1679 1680 // fold (ladd 0, 0, x) -> 0, x & 1 1681 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) { 1682 SDValue Carry = DAG.getConstant(0, dl, VT); 1683 SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2, 1684 DAG.getConstant(1, dl, VT)); 1685 SDValue Ops[] = { Result, Carry }; 1686 return DAG.getMergeValues(Ops, dl); 1687 } 1688 1689 // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the 1690 // low bit set 1691 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) { 1692 APInt KnownZero, KnownOne; 1693 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1694 VT.getSizeInBits() - 1); 1695 DAG.computeKnownBits(N2, KnownZero, KnownOne); 1696 if ((KnownZero & Mask) == Mask) { 1697 SDValue Carry = DAG.getConstant(0, dl, VT); 1698 SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2); 1699 SDValue Ops[] = { Result, Carry }; 1700 return DAG.getMergeValues(Ops, dl); 1701 } 1702 } 1703 } 1704 break; 1705 case XCoreISD::LSUB: { 1706 SDValue N0 = N->getOperand(0); 1707 SDValue N1 = N->getOperand(1); 1708 SDValue N2 = N->getOperand(2); 1709 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1710 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1711 EVT VT = N0.getValueType(); 1712 1713 // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set 1714 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) { 1715 APInt KnownZero, KnownOne; 1716 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1717 VT.getSizeInBits() - 1); 1718 DAG.computeKnownBits(N2, KnownZero, KnownOne); 1719 if ((KnownZero & Mask) == Mask) { 1720 SDValue Borrow = N2; 1721 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, 1722 DAG.getConstant(0, dl, VT), N2); 1723 SDValue Ops[] = { Result, Borrow }; 1724 return DAG.getMergeValues(Ops, dl); 1725 } 1726 } 1727 1728 // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the 1729 // low bit set 1730 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) { 1731 APInt KnownZero, KnownOne; 1732 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1733 VT.getSizeInBits() - 1); 1734 DAG.computeKnownBits(N2, KnownZero, KnownOne); 1735 if ((KnownZero & Mask) == Mask) { 1736 SDValue Borrow = DAG.getConstant(0, dl, VT); 1737 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2); 1738 SDValue Ops[] = { Result, Borrow }; 1739 return DAG.getMergeValues(Ops, dl); 1740 } 1741 } 1742 } 1743 break; 1744 case XCoreISD::LMUL: { 1745 SDValue N0 = N->getOperand(0); 1746 SDValue N1 = N->getOperand(1); 1747 SDValue N2 = N->getOperand(2); 1748 SDValue N3 = N->getOperand(3); 1749 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1750 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1751 EVT VT = N0.getValueType(); 1752 // Canonicalize multiplicative constant to RHS. If both multiplicative 1753 // operands are constant canonicalize smallest to RHS. 1754 if ((N0C && !N1C) || 1755 (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue())) 1756 return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT), 1757 N1, N0, N2, N3); 1758 1759 // lmul(x, 0, a, b) 1760 if (N1C && N1C->isNullValue()) { 1761 // If the high result is unused fold to add(a, b) 1762 if (N->hasNUsesOfValue(0, 0)) { 1763 SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3); 1764 SDValue Ops[] = { Lo, Lo }; 1765 return DAG.getMergeValues(Ops, dl); 1766 } 1767 // Otherwise fold to ladd(a, b, 0) 1768 SDValue Result = 1769 DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1); 1770 SDValue Carry(Result.getNode(), 1); 1771 SDValue Ops[] = { Carry, Result }; 1772 return DAG.getMergeValues(Ops, dl); 1773 } 1774 } 1775 break; 1776 case ISD::ADD: { 1777 // Fold 32 bit expressions such as add(add(mul(x,y),a),b) -> 1778 // lmul(x, y, a, b). The high result of lmul will be ignored. 1779 // This is only profitable if the intermediate results are unused 1780 // elsewhere. 1781 SDValue Mul0, Mul1, Addend0, Addend1; 1782 if (N->getValueType(0) == MVT::i32 && 1783 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) { 1784 SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl, 1785 DAG.getVTList(MVT::i32, MVT::i32), Mul0, 1786 Mul1, Addend0, Addend1); 1787 SDValue Result(Ignored.getNode(), 1); 1788 return Result; 1789 } 1790 APInt HighMask = APInt::getHighBitsSet(64, 32); 1791 // Fold 64 bit expression such as add(add(mul(x,y),a),b) -> 1792 // lmul(x, y, a, b) if all operands are zero-extended. We do this 1793 // before type legalization as it is messy to match the operands after 1794 // that. 1795 if (N->getValueType(0) == MVT::i64 && 1796 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) && 1797 DAG.MaskedValueIsZero(Mul0, HighMask) && 1798 DAG.MaskedValueIsZero(Mul1, HighMask) && 1799 DAG.MaskedValueIsZero(Addend0, HighMask) && 1800 DAG.MaskedValueIsZero(Addend1, HighMask)) { 1801 SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1802 Mul0, DAG.getConstant(0, dl, MVT::i32)); 1803 SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1804 Mul1, DAG.getConstant(0, dl, MVT::i32)); 1805 SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1806 Addend0, DAG.getConstant(0, dl, MVT::i32)); 1807 SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1808 Addend1, DAG.getConstant(0, dl, MVT::i32)); 1809 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl, 1810 DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L, 1811 Addend0L, Addend1L); 1812 SDValue Lo(Hi.getNode(), 1); 1813 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 1814 } 1815 } 1816 break; 1817 case ISD::STORE: { 1818 // Replace unaligned store of unaligned load with memmove. 1819 StoreSDNode *ST = cast<StoreSDNode>(N); 1820 if (!DCI.isBeforeLegalize() || 1821 allowsMisalignedMemoryAccesses(ST->getMemoryVT(), 1822 ST->getAddressSpace(), 1823 ST->getAlignment()) || 1824 ST->isVolatile() || ST->isIndexed()) { 1825 break; 1826 } 1827 SDValue Chain = ST->getChain(); 1828 1829 unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits(); 1830 if (StoreBits % 8) { 1831 break; 1832 } 1833 unsigned ABIAlignment = getDataLayout()->getABITypeAlignment( 1834 ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext())); 1835 unsigned Alignment = ST->getAlignment(); 1836 if (Alignment >= ABIAlignment) { 1837 break; 1838 } 1839 1840 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) { 1841 if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() && 1842 LD->getAlignment() == Alignment && 1843 !LD->isVolatile() && !LD->isIndexed() && 1844 Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) { 1845 bool isTail = isInTailCallPosition(DAG, ST, Chain); 1846 return DAG.getMemmove(Chain, dl, ST->getBasePtr(), 1847 LD->getBasePtr(), 1848 DAG.getConstant(StoreBits/8, dl, MVT::i32), 1849 Alignment, false, isTail, ST->getPointerInfo(), 1850 LD->getPointerInfo()); 1851 } 1852 } 1853 break; 1854 } 1855 } 1856 return SDValue(); 1857 } 1858 1859 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1860 APInt &KnownZero, 1861 APInt &KnownOne, 1862 const SelectionDAG &DAG, 1863 unsigned Depth) const { 1864 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 1865 switch (Op.getOpcode()) { 1866 default: break; 1867 case XCoreISD::LADD: 1868 case XCoreISD::LSUB: 1869 if (Op.getResNo() == 1) { 1870 // Top bits of carry / borrow are clear. 1871 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1872 KnownZero.getBitWidth() - 1); 1873 } 1874 break; 1875 case ISD::INTRINSIC_W_CHAIN: 1876 { 1877 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1878 switch (IntNo) { 1879 case Intrinsic::xcore_getts: 1880 // High bits are known to be zero. 1881 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1882 KnownZero.getBitWidth() - 16); 1883 break; 1884 case Intrinsic::xcore_int: 1885 case Intrinsic::xcore_inct: 1886 // High bits are known to be zero. 1887 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1888 KnownZero.getBitWidth() - 8); 1889 break; 1890 case Intrinsic::xcore_testct: 1891 // Result is either 0 or 1. 1892 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1893 KnownZero.getBitWidth() - 1); 1894 break; 1895 case Intrinsic::xcore_testwct: 1896 // Result is in the range 0 - 4. 1897 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1898 KnownZero.getBitWidth() - 3); 1899 break; 1900 } 1901 } 1902 break; 1903 } 1904 } 1905 1906 //===----------------------------------------------------------------------===// 1907 // Addressing mode description hooks 1908 //===----------------------------------------------------------------------===// 1909 1910 static inline bool isImmUs(int64_t val) 1911 { 1912 return (val >= 0 && val <= 11); 1913 } 1914 1915 static inline bool isImmUs2(int64_t val) 1916 { 1917 return (val%2 == 0 && isImmUs(val/2)); 1918 } 1919 1920 static inline bool isImmUs4(int64_t val) 1921 { 1922 return (val%4 == 0 && isImmUs(val/4)); 1923 } 1924 1925 /// isLegalAddressingMode - Return true if the addressing mode represented 1926 /// by AM is legal for this target, for a load/store of the specified type. 1927 bool 1928 XCoreTargetLowering::isLegalAddressingMode(const AddrMode &AM, 1929 Type *Ty, 1930 unsigned AS) const { 1931 if (Ty->getTypeID() == Type::VoidTyID) 1932 return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs); 1933 1934 const DataLayout *TD = TM.getDataLayout(); 1935 unsigned Size = TD->getTypeAllocSize(Ty); 1936 if (AM.BaseGV) { 1937 return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 && 1938 AM.BaseOffs%4 == 0; 1939 } 1940 1941 switch (Size) { 1942 case 1: 1943 // reg + imm 1944 if (AM.Scale == 0) { 1945 return isImmUs(AM.BaseOffs); 1946 } 1947 // reg + reg 1948 return AM.Scale == 1 && AM.BaseOffs == 0; 1949 case 2: 1950 case 3: 1951 // reg + imm 1952 if (AM.Scale == 0) { 1953 return isImmUs2(AM.BaseOffs); 1954 } 1955 // reg + reg<<1 1956 return AM.Scale == 2 && AM.BaseOffs == 0; 1957 default: 1958 // reg + imm 1959 if (AM.Scale == 0) { 1960 return isImmUs4(AM.BaseOffs); 1961 } 1962 // reg + reg<<2 1963 return AM.Scale == 4 && AM.BaseOffs == 0; 1964 } 1965 } 1966 1967 //===----------------------------------------------------------------------===// 1968 // XCore Inline Assembly Support 1969 //===----------------------------------------------------------------------===// 1970 1971 std::pair<unsigned, const TargetRegisterClass *> 1972 XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 1973 const std::string &Constraint, 1974 MVT VT) const { 1975 if (Constraint.size() == 1) { 1976 switch (Constraint[0]) { 1977 default : break; 1978 case 'r': 1979 return std::make_pair(0U, &XCore::GRRegsRegClass); 1980 } 1981 } 1982 // Use the default implementation in TargetLowering to convert the register 1983 // constraint into a member of a register class. 1984 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1985 } 1986