1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the XCoreTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "xcore-lower" 15 16 #include "XCoreISelLowering.h" 17 #include "XCore.h" 18 #include "XCoreMachineFunctionInfo.h" 19 #include "XCoreSubtarget.h" 20 #include "XCoreTargetMachine.h" 21 #include "XCoreTargetObjectFile.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAGISel.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <algorithm> 40 41 using namespace llvm; 42 43 const char *XCoreTargetLowering:: 44 getTargetNodeName(unsigned Opcode) const 45 { 46 switch (Opcode) 47 { 48 case XCoreISD::BL : return "XCoreISD::BL"; 49 case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper"; 50 case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper"; 51 case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper"; 52 case XCoreISD::STWSP : return "XCoreISD::STWSP"; 53 case XCoreISD::RETSP : return "XCoreISD::RETSP"; 54 case XCoreISD::LADD : return "XCoreISD::LADD"; 55 case XCoreISD::LSUB : return "XCoreISD::LSUB"; 56 case XCoreISD::LMUL : return "XCoreISD::LMUL"; 57 case XCoreISD::MACCU : return "XCoreISD::MACCU"; 58 case XCoreISD::MACCS : return "XCoreISD::MACCS"; 59 case XCoreISD::CRC8 : return "XCoreISD::CRC8"; 60 case XCoreISD::BR_JT : return "XCoreISD::BR_JT"; 61 case XCoreISD::BR_JT32 : return "XCoreISD::BR_JT32"; 62 default : return NULL; 63 } 64 } 65 66 XCoreTargetLowering::XCoreTargetLowering(XCoreTargetMachine &XTM) 67 : TargetLowering(XTM, new XCoreTargetObjectFile()), 68 TM(XTM), 69 Subtarget(*XTM.getSubtargetImpl()) { 70 71 // Set up the register classes. 72 addRegisterClass(MVT::i32, &XCore::GRRegsRegClass); 73 74 // Compute derived properties from the register classes 75 computeRegisterProperties(); 76 77 // Division is expensive 78 setIntDivIsCheap(false); 79 80 setStackPointerRegisterToSaveRestore(XCore::SP); 81 82 setSchedulingPreference(Sched::Source); 83 84 // Use i32 for setcc operations results (slt, sgt, ...). 85 setBooleanContents(ZeroOrOneBooleanContent); 86 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 87 88 // XCore does not have the NodeTypes below. 89 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 90 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 91 setOperationAction(ISD::ADDC, MVT::i32, Expand); 92 setOperationAction(ISD::ADDE, MVT::i32, Expand); 93 setOperationAction(ISD::SUBC, MVT::i32, Expand); 94 setOperationAction(ISD::SUBE, MVT::i32, Expand); 95 96 // Stop the combiner recombining select and set_cc 97 setOperationAction(ISD::SELECT_CC, MVT::Other, Expand); 98 99 // 64bit 100 setOperationAction(ISD::ADD, MVT::i64, Custom); 101 setOperationAction(ISD::SUB, MVT::i64, Custom); 102 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom); 103 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom); 104 setOperationAction(ISD::MULHS, MVT::i32, Expand); 105 setOperationAction(ISD::MULHU, MVT::i32, Expand); 106 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); 107 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 108 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); 109 110 // Bit Manipulation 111 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 112 setOperationAction(ISD::ROTL , MVT::i32, Expand); 113 setOperationAction(ISD::ROTR , MVT::i32, Expand); 114 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 115 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 116 117 setOperationAction(ISD::TRAP, MVT::Other, Legal); 118 119 // Jump tables. 120 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 121 122 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 123 setOperationAction(ISD::BlockAddress, MVT::i32 , Custom); 124 125 // Conversion of i64 -> double produces constantpool nodes 126 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 127 128 // Loads 129 setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); 130 setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); 131 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 132 133 setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand); 134 setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Expand); 135 136 // Custom expand misaligned loads / stores. 137 setOperationAction(ISD::LOAD, MVT::i32, Custom); 138 setOperationAction(ISD::STORE, MVT::i32, Custom); 139 140 // Varargs 141 setOperationAction(ISD::VAEND, MVT::Other, Expand); 142 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 143 setOperationAction(ISD::VAARG, MVT::Other, Custom); 144 setOperationAction(ISD::VASTART, MVT::Other, Custom); 145 146 // Dynamic stack 147 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 148 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 149 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 150 151 // TRAMPOLINE is custom lowered. 152 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 153 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 154 155 // We want to custom lower some of our intrinsics. 156 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 157 158 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4; 159 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize 160 = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2; 161 162 // We have target-specific dag combine patterns for the following nodes: 163 setTargetDAGCombine(ISD::STORE); 164 setTargetDAGCombine(ISD::ADD); 165 166 setMinFunctionAlignment(1); 167 } 168 169 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 170 if (Val.getOpcode() != ISD::LOAD) 171 return false; 172 173 EVT VT1 = Val.getValueType(); 174 if (!VT1.isSimple() || !VT1.isInteger() || 175 !VT2.isSimple() || !VT2.isInteger()) 176 return false; 177 178 switch (VT1.getSimpleVT().SimpleTy) { 179 default: break; 180 case MVT::i8: 181 return true; 182 } 183 184 return false; 185 } 186 187 SDValue XCoreTargetLowering:: 188 LowerOperation(SDValue Op, SelectionDAG &DAG) const { 189 switch (Op.getOpcode()) 190 { 191 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 192 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 193 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 194 case ISD::BR_JT: return LowerBR_JT(Op, DAG); 195 case ISD::LOAD: return LowerLOAD(Op, DAG); 196 case ISD::STORE: return LowerSTORE(Op, DAG); 197 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 198 case ISD::VAARG: return LowerVAARG(Op, DAG); 199 case ISD::VASTART: return LowerVASTART(Op, DAG); 200 case ISD::SMUL_LOHI: return LowerSMUL_LOHI(Op, DAG); 201 case ISD::UMUL_LOHI: return LowerUMUL_LOHI(Op, DAG); 202 // FIXME: Remove these when LegalizeDAGTypes lands. 203 case ISD::ADD: 204 case ISD::SUB: return ExpandADDSUB(Op.getNode(), DAG); 205 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 206 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 207 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 208 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 209 default: 210 llvm_unreachable("unimplemented operand"); 211 } 212 } 213 214 /// ReplaceNodeResults - Replace the results of node with an illegal result 215 /// type with new values built out of custom code. 216 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N, 217 SmallVectorImpl<SDValue>&Results, 218 SelectionDAG &DAG) const { 219 switch (N->getOpcode()) { 220 default: 221 llvm_unreachable("Don't know how to custom expand this!"); 222 case ISD::ADD: 223 case ISD::SUB: 224 Results.push_back(ExpandADDSUB(N, DAG)); 225 return; 226 } 227 } 228 229 //===----------------------------------------------------------------------===// 230 // Misc Lower Operation implementation 231 //===----------------------------------------------------------------------===// 232 233 SDValue XCoreTargetLowering:: 234 LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const 235 { 236 SDLoc dl(Op); 237 SDValue Cond = DAG.getNode(ISD::SETCC, dl, MVT::i32, Op.getOperand(2), 238 Op.getOperand(3), Op.getOperand(4)); 239 return DAG.getNode(ISD::SELECT, dl, MVT::i32, Cond, Op.getOperand(0), 240 Op.getOperand(1)); 241 } 242 243 SDValue XCoreTargetLowering:: 244 getGlobalAddressWrapper(SDValue GA, const GlobalValue *GV, 245 SelectionDAG &DAG) const 246 { 247 // FIXME there is no actual debug info here 248 SDLoc dl(GA); 249 const GlobalValue *UnderlyingGV = GV; 250 // If GV is an alias then use the aliasee to determine the wrapper type 251 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) 252 UnderlyingGV = GA->resolveAliasedGlobal(); 253 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(UnderlyingGV)) { 254 if (GVar->isConstant()) 255 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA); 256 return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA); 257 } 258 return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA); 259 } 260 261 SDValue XCoreTargetLowering:: 262 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const 263 { 264 SDLoc DL(Op); 265 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op); 266 const GlobalValue *GV = GN->getGlobal(); 267 int64_t Offset = GN->getOffset(); 268 // We can only fold positive offsets that are a multiple of the word size. 269 int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0); 270 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset); 271 GA = getGlobalAddressWrapper(GA, GV, DAG); 272 // Handle the rest of the offset. 273 if (Offset != FoldedOffset) { 274 SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, MVT::i32); 275 GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining); 276 } 277 return GA; 278 } 279 280 SDValue XCoreTargetLowering:: 281 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const 282 { 283 SDLoc DL(Op); 284 285 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 286 SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy()); 287 288 return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, getPointerTy(), Result); 289 } 290 291 SDValue XCoreTargetLowering:: 292 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const 293 { 294 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 295 // FIXME there isn't really debug info here 296 SDLoc dl(CP); 297 EVT PtrVT = Op.getValueType(); 298 SDValue Res; 299 if (CP->isMachineConstantPoolEntry()) { 300 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 301 CP->getAlignment()); 302 } else { 303 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 304 CP->getAlignment()); 305 } 306 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res); 307 } 308 309 unsigned XCoreTargetLowering::getJumpTableEncoding() const { 310 return MachineJumpTableInfo::EK_Inline; 311 } 312 313 SDValue XCoreTargetLowering:: 314 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const 315 { 316 SDValue Chain = Op.getOperand(0); 317 SDValue Table = Op.getOperand(1); 318 SDValue Index = Op.getOperand(2); 319 SDLoc dl(Op); 320 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table); 321 unsigned JTI = JT->getIndex(); 322 MachineFunction &MF = DAG.getMachineFunction(); 323 const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 324 SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32); 325 326 unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size(); 327 if (NumEntries <= 32) { 328 return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index); 329 } 330 assert((NumEntries >> 31) == 0); 331 SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index, 332 DAG.getConstant(1, MVT::i32)); 333 return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT, 334 ScaledIndex); 335 } 336 337 SDValue XCoreTargetLowering:: 338 lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL, SDValue Chain, SDValue Base, 339 int64_t Offset, SelectionDAG &DAG) const 340 { 341 if ((Offset & 0x3) == 0) { 342 return DAG.getLoad(getPointerTy(), DL, Chain, Base, MachinePointerInfo(), 343 false, false, false, 0); 344 } 345 // Lower to pair of consecutive word aligned loads plus some bit shifting. 346 int32_t HighOffset = RoundUpToAlignment(Offset, 4); 347 int32_t LowOffset = HighOffset - 4; 348 SDValue LowAddr, HighAddr; 349 if (GlobalAddressSDNode *GASD = 350 dyn_cast<GlobalAddressSDNode>(Base.getNode())) { 351 LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(), 352 LowOffset); 353 HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(), 354 HighOffset); 355 } else { 356 LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base, 357 DAG.getConstant(LowOffset, MVT::i32)); 358 HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base, 359 DAG.getConstant(HighOffset, MVT::i32)); 360 } 361 SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, MVT::i32); 362 SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, MVT::i32); 363 364 SDValue Low = DAG.getLoad(getPointerTy(), DL, Chain, 365 LowAddr, MachinePointerInfo(), 366 false, false, false, 0); 367 SDValue High = DAG.getLoad(getPointerTy(), DL, Chain, 368 HighAddr, MachinePointerInfo(), 369 false, false, false, 0); 370 SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift); 371 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift); 372 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted); 373 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1), 374 High.getValue(1)); 375 SDValue Ops[] = { Result, Chain }; 376 return DAG.getMergeValues(Ops, 2, DL); 377 } 378 379 static bool isWordAligned(SDValue Value, SelectionDAG &DAG) 380 { 381 APInt KnownZero, KnownOne; 382 DAG.ComputeMaskedBits(Value, KnownZero, KnownOne); 383 return KnownZero.countTrailingOnes() >= 2; 384 } 385 386 SDValue XCoreTargetLowering:: 387 LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 388 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 389 LoadSDNode *LD = cast<LoadSDNode>(Op); 390 assert(LD->getExtensionType() == ISD::NON_EXTLOAD && 391 "Unexpected extension type"); 392 assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT"); 393 if (allowsUnalignedMemoryAccesses(LD->getMemoryVT())) 394 return SDValue(); 395 396 unsigned ABIAlignment = getDataLayout()-> 397 getABITypeAlignment(LD->getMemoryVT().getTypeForEVT(*DAG.getContext())); 398 // Leave aligned load alone. 399 if (LD->getAlignment() >= ABIAlignment) 400 return SDValue(); 401 402 SDValue Chain = LD->getChain(); 403 SDValue BasePtr = LD->getBasePtr(); 404 SDLoc DL(Op); 405 406 if (!LD->isVolatile()) { 407 const GlobalValue *GV; 408 int64_t Offset = 0; 409 if (DAG.isBaseWithConstantOffset(BasePtr) && 410 isWordAligned(BasePtr->getOperand(0), DAG)) { 411 SDValue NewBasePtr = BasePtr->getOperand(0); 412 Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue(); 413 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr, 414 Offset, DAG); 415 } 416 if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) && 417 MinAlign(GV->getAlignment(), 4) == 4) { 418 SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL, 419 BasePtr->getValueType(0)); 420 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr, 421 Offset, DAG); 422 } 423 } 424 425 if (LD->getAlignment() == 2) { 426 SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, 427 BasePtr, LD->getPointerInfo(), MVT::i16, 428 LD->isVolatile(), LD->isNonTemporal(), 2); 429 SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, 430 DAG.getConstant(2, MVT::i32)); 431 SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 432 HighAddr, 433 LD->getPointerInfo().getWithOffset(2), 434 MVT::i16, LD->isVolatile(), 435 LD->isNonTemporal(), 2); 436 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, 437 DAG.getConstant(16, MVT::i32)); 438 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted); 439 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1), 440 High.getValue(1)); 441 SDValue Ops[] = { Result, Chain }; 442 return DAG.getMergeValues(Ops, 2, DL); 443 } 444 445 // Lower to a call to __misaligned_load(BasePtr). 446 Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext()); 447 TargetLowering::ArgListTy Args; 448 TargetLowering::ArgListEntry Entry; 449 450 Entry.Ty = IntPtrTy; 451 Entry.Node = BasePtr; 452 Args.push_back(Entry); 453 454 TargetLowering::CallLoweringInfo CLI(Chain, IntPtrTy, false, false, 455 false, false, 0, CallingConv::C, /*isTailCall=*/false, 456 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 457 DAG.getExternalSymbol("__misaligned_load", getPointerTy()), 458 Args, DAG, DL); 459 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 460 461 SDValue Ops[] = 462 { CallResult.first, CallResult.second }; 463 464 return DAG.getMergeValues(Ops, 2, DL); 465 } 466 467 SDValue XCoreTargetLowering:: 468 LowerSTORE(SDValue Op, SelectionDAG &DAG) const 469 { 470 StoreSDNode *ST = cast<StoreSDNode>(Op); 471 assert(!ST->isTruncatingStore() && "Unexpected store type"); 472 assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT"); 473 if (allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { 474 return SDValue(); 475 } 476 unsigned ABIAlignment = getDataLayout()-> 477 getABITypeAlignment(ST->getMemoryVT().getTypeForEVT(*DAG.getContext())); 478 // Leave aligned store alone. 479 if (ST->getAlignment() >= ABIAlignment) { 480 return SDValue(); 481 } 482 SDValue Chain = ST->getChain(); 483 SDValue BasePtr = ST->getBasePtr(); 484 SDValue Value = ST->getValue(); 485 SDLoc dl(Op); 486 487 if (ST->getAlignment() == 2) { 488 SDValue Low = Value; 489 SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value, 490 DAG.getConstant(16, MVT::i32)); 491 SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr, 492 ST->getPointerInfo(), MVT::i16, 493 ST->isVolatile(), ST->isNonTemporal(), 494 2); 495 SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr, 496 DAG.getConstant(2, MVT::i32)); 497 SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr, 498 ST->getPointerInfo().getWithOffset(2), 499 MVT::i16, ST->isVolatile(), 500 ST->isNonTemporal(), 2); 501 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh); 502 } 503 504 // Lower to a call to __misaligned_store(BasePtr, Value). 505 Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext()); 506 TargetLowering::ArgListTy Args; 507 TargetLowering::ArgListEntry Entry; 508 509 Entry.Ty = IntPtrTy; 510 Entry.Node = BasePtr; 511 Args.push_back(Entry); 512 513 Entry.Node = Value; 514 Args.push_back(Entry); 515 516 TargetLowering::CallLoweringInfo CLI(Chain, 517 Type::getVoidTy(*DAG.getContext()), false, false, 518 false, false, 0, CallingConv::C, /*isTailCall=*/false, 519 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 520 DAG.getExternalSymbol("__misaligned_store", getPointerTy()), 521 Args, DAG, dl); 522 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 523 524 return CallResult.second; 525 } 526 527 SDValue XCoreTargetLowering:: 528 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const 529 { 530 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI && 531 "Unexpected operand to lower!"); 532 SDLoc dl(Op); 533 SDValue LHS = Op.getOperand(0); 534 SDValue RHS = Op.getOperand(1); 535 SDValue Zero = DAG.getConstant(0, MVT::i32); 536 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl, 537 DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero, 538 LHS, RHS); 539 SDValue Lo(Hi.getNode(), 1); 540 SDValue Ops[] = { Lo, Hi }; 541 return DAG.getMergeValues(Ops, 2, dl); 542 } 543 544 SDValue XCoreTargetLowering:: 545 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const 546 { 547 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI && 548 "Unexpected operand to lower!"); 549 SDLoc dl(Op); 550 SDValue LHS = Op.getOperand(0); 551 SDValue RHS = Op.getOperand(1); 552 SDValue Zero = DAG.getConstant(0, MVT::i32); 553 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl, 554 DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS, 555 Zero, Zero); 556 SDValue Lo(Hi.getNode(), 1); 557 SDValue Ops[] = { Lo, Hi }; 558 return DAG.getMergeValues(Ops, 2, dl); 559 } 560 561 /// isADDADDMUL - Return whether Op is in a form that is equivalent to 562 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then 563 /// each intermediate result in the calculation must also have a single use. 564 /// If the Op is in the correct form the constituent parts are written to Mul0, 565 /// Mul1, Addend0 and Addend1. 566 static bool 567 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0, 568 SDValue &Addend1, bool requireIntermediatesHaveOneUse) 569 { 570 if (Op.getOpcode() != ISD::ADD) 571 return false; 572 SDValue N0 = Op.getOperand(0); 573 SDValue N1 = Op.getOperand(1); 574 SDValue AddOp; 575 SDValue OtherOp; 576 if (N0.getOpcode() == ISD::ADD) { 577 AddOp = N0; 578 OtherOp = N1; 579 } else if (N1.getOpcode() == ISD::ADD) { 580 AddOp = N1; 581 OtherOp = N0; 582 } else { 583 return false; 584 } 585 if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse()) 586 return false; 587 if (OtherOp.getOpcode() == ISD::MUL) { 588 // add(add(a,b),mul(x,y)) 589 if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse()) 590 return false; 591 Mul0 = OtherOp.getOperand(0); 592 Mul1 = OtherOp.getOperand(1); 593 Addend0 = AddOp.getOperand(0); 594 Addend1 = AddOp.getOperand(1); 595 return true; 596 } 597 if (AddOp.getOperand(0).getOpcode() == ISD::MUL) { 598 // add(add(mul(x,y),a),b) 599 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse()) 600 return false; 601 Mul0 = AddOp.getOperand(0).getOperand(0); 602 Mul1 = AddOp.getOperand(0).getOperand(1); 603 Addend0 = AddOp.getOperand(1); 604 Addend1 = OtherOp; 605 return true; 606 } 607 if (AddOp.getOperand(1).getOpcode() == ISD::MUL) { 608 // add(add(a,mul(x,y)),b) 609 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse()) 610 return false; 611 Mul0 = AddOp.getOperand(1).getOperand(0); 612 Mul1 = AddOp.getOperand(1).getOperand(1); 613 Addend0 = AddOp.getOperand(0); 614 Addend1 = OtherOp; 615 return true; 616 } 617 return false; 618 } 619 620 SDValue XCoreTargetLowering:: 621 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const 622 { 623 SDValue Mul; 624 SDValue Other; 625 if (N->getOperand(0).getOpcode() == ISD::MUL) { 626 Mul = N->getOperand(0); 627 Other = N->getOperand(1); 628 } else if (N->getOperand(1).getOpcode() == ISD::MUL) { 629 Mul = N->getOperand(1); 630 Other = N->getOperand(0); 631 } else { 632 return SDValue(); 633 } 634 SDLoc dl(N); 635 SDValue LL, RL, AddendL, AddendH; 636 LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 637 Mul.getOperand(0), DAG.getConstant(0, MVT::i32)); 638 RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 639 Mul.getOperand(1), DAG.getConstant(0, MVT::i32)); 640 AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 641 Other, DAG.getConstant(0, MVT::i32)); 642 AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 643 Other, DAG.getConstant(1, MVT::i32)); 644 APInt HighMask = APInt::getHighBitsSet(64, 32); 645 unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0)); 646 unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1)); 647 if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) && 648 DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) { 649 // The inputs are both zero-extended. 650 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl, 651 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 652 AddendL, LL, RL); 653 SDValue Lo(Hi.getNode(), 1); 654 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 655 } 656 if (LHSSB > 32 && RHSSB > 32) { 657 // The inputs are both sign-extended. 658 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl, 659 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 660 AddendL, LL, RL); 661 SDValue Lo(Hi.getNode(), 1); 662 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 663 } 664 SDValue LH, RH; 665 LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 666 Mul.getOperand(0), DAG.getConstant(1, MVT::i32)); 667 RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 668 Mul.getOperand(1), DAG.getConstant(1, MVT::i32)); 669 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl, 670 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 671 AddendL, LL, RL); 672 SDValue Lo(Hi.getNode(), 1); 673 RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH); 674 LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL); 675 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH); 676 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH); 677 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 678 } 679 680 SDValue XCoreTargetLowering:: 681 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const 682 { 683 assert(N->getValueType(0) == MVT::i64 && 684 (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 685 "Unknown operand to lower!"); 686 687 if (N->getOpcode() == ISD::ADD) { 688 SDValue Result = TryExpandADDWithMul(N, DAG); 689 if (Result.getNode() != 0) 690 return Result; 691 } 692 693 SDLoc dl(N); 694 695 // Extract components 696 SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 697 N->getOperand(0), DAG.getConstant(0, MVT::i32)); 698 SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 699 N->getOperand(0), DAG.getConstant(1, MVT::i32)); 700 SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 701 N->getOperand(1), DAG.getConstant(0, MVT::i32)); 702 SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 703 N->getOperand(1), DAG.getConstant(1, MVT::i32)); 704 705 // Expand 706 unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD : 707 XCoreISD::LSUB; 708 SDValue Zero = DAG.getConstant(0, MVT::i32); 709 SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), 710 LHSL, RHSL, Zero); 711 SDValue Carry(Lo.getNode(), 1); 712 713 SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), 714 LHSH, RHSH, Carry); 715 SDValue Ignored(Hi.getNode(), 1); 716 // Merge the pieces 717 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 718 } 719 720 SDValue XCoreTargetLowering:: 721 LowerVAARG(SDValue Op, SelectionDAG &DAG) const 722 { 723 // Whist llvm does not support aggregate varargs we can ignore 724 // the possibility of the ValueType being an implicit byVal vararg. 725 SDNode *Node = Op.getNode(); 726 EVT VT = Node->getValueType(0); // not an aggregate 727 SDValue InChain = Node->getOperand(0); 728 SDValue VAListPtr = Node->getOperand(1); 729 EVT PtrVT = VAListPtr.getValueType(); 730 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 731 SDLoc dl(Node); 732 SDValue VAList = DAG.getLoad(PtrVT, dl, InChain, 733 VAListPtr, MachinePointerInfo(SV), 734 false, false, false, 0); 735 // Increment the pointer, VAList, to the next vararg 736 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList, 737 DAG.getIntPtrConstant(VT.getSizeInBits() / 8)); 738 // Store the incremented VAList to the legalized pointer 739 InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr, 740 MachinePointerInfo(SV), false, false, 0); 741 // Load the actual argument out of the pointer VAList 742 return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(), 743 false, false, false, 0); 744 } 745 746 SDValue XCoreTargetLowering:: 747 LowerVASTART(SDValue Op, SelectionDAG &DAG) const 748 { 749 SDLoc dl(Op); 750 // vastart stores the address of the VarArgsFrameIndex slot into the 751 // memory location argument 752 MachineFunction &MF = DAG.getMachineFunction(); 753 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 754 SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32); 755 return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1), 756 MachinePointerInfo(), false, false, 0); 757 } 758 759 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op, 760 SelectionDAG &DAG) const { 761 SDLoc dl(Op); 762 // Depths > 0 not supported yet! 763 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0) 764 return SDValue(); 765 766 MachineFunction &MF = DAG.getMachineFunction(); 767 const TargetRegisterInfo *RegInfo = getTargetMachine().getRegisterInfo(); 768 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, 769 RegInfo->getFrameRegister(MF), MVT::i32); 770 } 771 772 SDValue XCoreTargetLowering:: 773 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { 774 return Op.getOperand(0); 775 } 776 777 SDValue XCoreTargetLowering:: 778 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { 779 SDValue Chain = Op.getOperand(0); 780 SDValue Trmp = Op.getOperand(1); // trampoline 781 SDValue FPtr = Op.getOperand(2); // nested function 782 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 783 784 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 785 786 // .align 4 787 // LDAPF_u10 r11, nest 788 // LDW_2rus r11, r11[0] 789 // STWSP_ru6 r11, sp[0] 790 // LDAPF_u10 r11, fptr 791 // LDW_2rus r11, r11[0] 792 // BAU_1r r11 793 // nest: 794 // .word nest 795 // fptr: 796 // .word fptr 797 SDValue OutChains[5]; 798 799 SDValue Addr = Trmp; 800 801 SDLoc dl(Op); 802 OutChains[0] = DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, MVT::i32), 803 Addr, MachinePointerInfo(TrmpAddr), false, false, 804 0); 805 806 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 807 DAG.getConstant(4, MVT::i32)); 808 OutChains[1] = DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, MVT::i32), 809 Addr, MachinePointerInfo(TrmpAddr, 4), false, 810 false, 0); 811 812 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 813 DAG.getConstant(8, MVT::i32)); 814 OutChains[2] = DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, MVT::i32), 815 Addr, MachinePointerInfo(TrmpAddr, 8), false, 816 false, 0); 817 818 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 819 DAG.getConstant(12, MVT::i32)); 820 OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr, 821 MachinePointerInfo(TrmpAddr, 12), false, false, 822 0); 823 824 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 825 DAG.getConstant(16, MVT::i32)); 826 OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr, 827 MachinePointerInfo(TrmpAddr, 16), false, false, 828 0); 829 830 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 5); 831 } 832 833 SDValue XCoreTargetLowering:: 834 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { 835 SDLoc DL(Op); 836 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 837 switch (IntNo) { 838 case Intrinsic::xcore_crc8: 839 EVT VT = Op.getValueType(); 840 SDValue Data = 841 DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT), 842 Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3)); 843 SDValue Crc(Data.getNode(), 1); 844 SDValue Results[] = { Crc, Data }; 845 return DAG.getMergeValues(Results, 2, DL); 846 } 847 return SDValue(); 848 } 849 850 //===----------------------------------------------------------------------===// 851 // Calling Convention Implementation 852 //===----------------------------------------------------------------------===// 853 854 #include "XCoreGenCallingConv.inc" 855 856 //===----------------------------------------------------------------------===// 857 // Call Calling Convention Implementation 858 //===----------------------------------------------------------------------===// 859 860 /// XCore call implementation 861 SDValue 862 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 863 SmallVectorImpl<SDValue> &InVals) const { 864 SelectionDAG &DAG = CLI.DAG; 865 SDLoc &dl = CLI.DL; 866 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 867 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 868 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 869 SDValue Chain = CLI.Chain; 870 SDValue Callee = CLI.Callee; 871 bool &isTailCall = CLI.IsTailCall; 872 CallingConv::ID CallConv = CLI.CallConv; 873 bool isVarArg = CLI.IsVarArg; 874 875 // XCore target does not yet support tail call optimization. 876 isTailCall = false; 877 878 // For now, only CallingConv::C implemented 879 switch (CallConv) 880 { 881 default: 882 llvm_unreachable("Unsupported calling convention"); 883 case CallingConv::Fast: 884 case CallingConv::C: 885 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall, 886 Outs, OutVals, Ins, dl, DAG, InVals); 887 } 888 } 889 890 /// LowerCCCCallTo - functions arguments are copied from virtual 891 /// regs to (physical regs)/(stack frame), CALLSEQ_START and 892 /// CALLSEQ_END are emitted. 893 /// TODO: isTailCall, sret. 894 SDValue 895 XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee, 896 CallingConv::ID CallConv, bool isVarArg, 897 bool isTailCall, 898 const SmallVectorImpl<ISD::OutputArg> &Outs, 899 const SmallVectorImpl<SDValue> &OutVals, 900 const SmallVectorImpl<ISD::InputArg> &Ins, 901 SDLoc dl, SelectionDAG &DAG, 902 SmallVectorImpl<SDValue> &InVals) const { 903 904 // Analyze operands of the call, assigning locations to each operand. 905 SmallVector<CCValAssign, 16> ArgLocs; 906 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 907 getTargetMachine(), ArgLocs, *DAG.getContext()); 908 909 // The ABI dictates there should be one stack slot available to the callee 910 // on function entry (for saving lr). 911 CCInfo.AllocateStack(4, 4); 912 913 CCInfo.AnalyzeCallOperands(Outs, CC_XCore); 914 915 // Get a count of how many bytes are to be pushed on the stack. 916 unsigned NumBytes = CCInfo.getNextStackOffset(); 917 918 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, 919 getPointerTy(), true), dl); 920 921 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass; 922 SmallVector<SDValue, 12> MemOpChains; 923 924 // Walk the register/memloc assignments, inserting copies/loads. 925 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 926 CCValAssign &VA = ArgLocs[i]; 927 SDValue Arg = OutVals[i]; 928 929 // Promote the value if needed. 930 switch (VA.getLocInfo()) { 931 default: llvm_unreachable("Unknown loc info!"); 932 case CCValAssign::Full: break; 933 case CCValAssign::SExt: 934 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 935 break; 936 case CCValAssign::ZExt: 937 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 938 break; 939 case CCValAssign::AExt: 940 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 941 break; 942 } 943 944 // Arguments that can be passed on register must be kept at 945 // RegsToPass vector 946 if (VA.isRegLoc()) { 947 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 948 } else { 949 assert(VA.isMemLoc()); 950 951 int Offset = VA.getLocMemOffset(); 952 953 MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other, 954 Chain, Arg, 955 DAG.getConstant(Offset/4, MVT::i32))); 956 } 957 } 958 959 // Transform all store nodes into one single node because 960 // all store nodes are independent of each other. 961 if (!MemOpChains.empty()) 962 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 963 &MemOpChains[0], MemOpChains.size()); 964 965 // Build a sequence of copy-to-reg nodes chained together with token 966 // chain and flag operands which copy the outgoing args into registers. 967 // The InFlag in necessary since all emitted instructions must be 968 // stuck together. 969 SDValue InFlag; 970 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 971 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 972 RegsToPass[i].second, InFlag); 973 InFlag = Chain.getValue(1); 974 } 975 976 // If the callee is a GlobalAddress node (quite common, every direct call is) 977 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 978 // Likewise ExternalSymbol -> TargetExternalSymbol. 979 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 980 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32); 981 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 982 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32); 983 984 // XCoreBranchLink = #chain, #target_address, #opt_in_flags... 985 // = Chain, Callee, Reg#1, Reg#2, ... 986 // 987 // Returns a chain & a flag for retval copy to use. 988 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 989 SmallVector<SDValue, 8> Ops; 990 Ops.push_back(Chain); 991 Ops.push_back(Callee); 992 993 // Add argument registers to the end of the list so that they are 994 // known live into the call. 995 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 996 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 997 RegsToPass[i].second.getValueType())); 998 999 if (InFlag.getNode()) 1000 Ops.push_back(InFlag); 1001 1002 Chain = DAG.getNode(XCoreISD::BL, dl, NodeTys, &Ops[0], Ops.size()); 1003 InFlag = Chain.getValue(1); 1004 1005 // Create the CALLSEQ_END node. 1006 Chain = DAG.getCALLSEQ_END(Chain, 1007 DAG.getConstant(NumBytes, getPointerTy(), true), 1008 DAG.getConstant(0, getPointerTy(), true), 1009 InFlag, dl); 1010 InFlag = Chain.getValue(1); 1011 1012 // Handle result values, copying them out of physregs into vregs that we 1013 // return. 1014 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 1015 Ins, dl, DAG, InVals); 1016 } 1017 1018 /// LowerCallResult - Lower the result values of a call into the 1019 /// appropriate copies out of appropriate physical registers. 1020 SDValue 1021 XCoreTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 1022 CallingConv::ID CallConv, bool isVarArg, 1023 const SmallVectorImpl<ISD::InputArg> &Ins, 1024 SDLoc dl, SelectionDAG &DAG, 1025 SmallVectorImpl<SDValue> &InVals) const { 1026 1027 // Assign locations to each value returned by this call. 1028 SmallVector<CCValAssign, 16> RVLocs; 1029 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1030 getTargetMachine(), RVLocs, *DAG.getContext()); 1031 1032 CCInfo.AnalyzeCallResult(Ins, RetCC_XCore); 1033 1034 // Copy all of the result registers out of their specified physreg. 1035 for (unsigned i = 0; i != RVLocs.size(); ++i) { 1036 Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), 1037 RVLocs[i].getValVT(), InFlag).getValue(1); 1038 InFlag = Chain.getValue(2); 1039 InVals.push_back(Chain.getValue(0)); 1040 } 1041 1042 return Chain; 1043 } 1044 1045 //===----------------------------------------------------------------------===// 1046 // Formal Arguments Calling Convention Implementation 1047 //===----------------------------------------------------------------------===// 1048 1049 namespace { 1050 struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; }; 1051 } 1052 1053 /// XCore formal arguments implementation 1054 SDValue 1055 XCoreTargetLowering::LowerFormalArguments(SDValue Chain, 1056 CallingConv::ID CallConv, 1057 bool isVarArg, 1058 const SmallVectorImpl<ISD::InputArg> &Ins, 1059 SDLoc dl, 1060 SelectionDAG &DAG, 1061 SmallVectorImpl<SDValue> &InVals) 1062 const { 1063 switch (CallConv) 1064 { 1065 default: 1066 llvm_unreachable("Unsupported calling convention"); 1067 case CallingConv::C: 1068 case CallingConv::Fast: 1069 return LowerCCCArguments(Chain, CallConv, isVarArg, 1070 Ins, dl, DAG, InVals); 1071 } 1072 } 1073 1074 /// LowerCCCArguments - transform physical registers into 1075 /// virtual registers and generate load operations for 1076 /// arguments places on the stack. 1077 /// TODO: sret 1078 SDValue 1079 XCoreTargetLowering::LowerCCCArguments(SDValue Chain, 1080 CallingConv::ID CallConv, 1081 bool isVarArg, 1082 const SmallVectorImpl<ISD::InputArg> 1083 &Ins, 1084 SDLoc dl, 1085 SelectionDAG &DAG, 1086 SmallVectorImpl<SDValue> &InVals) const { 1087 MachineFunction &MF = DAG.getMachineFunction(); 1088 MachineFrameInfo *MFI = MF.getFrameInfo(); 1089 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1090 1091 // Assign locations to all of the incoming arguments. 1092 SmallVector<CCValAssign, 16> ArgLocs; 1093 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1094 getTargetMachine(), ArgLocs, *DAG.getContext()); 1095 1096 CCInfo.AnalyzeFormalArguments(Ins, CC_XCore); 1097 1098 unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize(); 1099 1100 unsigned LRSaveSize = StackSlotSize; 1101 1102 // All getCopyFromReg ops must precede any getMemcpys to prevent the 1103 // scheduler clobbering a register before it has been copied. 1104 // The stages are: 1105 // 1. CopyFromReg (and load) arg & vararg registers. 1106 // 2. Chain CopyFromReg nodes into a TokenFactor. 1107 // 3. Memcpy 'byVal' args & push final InVals. 1108 // 4. Chain mem ops nodes into a TokenFactor. 1109 SmallVector<SDValue, 4> CFRegNode; 1110 SmallVector<ArgDataPair, 4> ArgData; 1111 SmallVector<SDValue, 4> MemOps; 1112 1113 // 1a. CopyFromReg (and load) arg registers. 1114 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1115 1116 CCValAssign &VA = ArgLocs[i]; 1117 SDValue ArgIn; 1118 1119 if (VA.isRegLoc()) { 1120 // Arguments passed in registers 1121 EVT RegVT = VA.getLocVT(); 1122 switch (RegVT.getSimpleVT().SimpleTy) { 1123 default: 1124 { 1125 #ifndef NDEBUG 1126 errs() << "LowerFormalArguments Unhandled argument type: " 1127 << RegVT.getSimpleVT().SimpleTy << "\n"; 1128 #endif 1129 llvm_unreachable(0); 1130 } 1131 case MVT::i32: 1132 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass); 1133 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1134 ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); 1135 CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1)); 1136 } 1137 } else { 1138 // sanity check 1139 assert(VA.isMemLoc()); 1140 // Load the argument to a virtual register 1141 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8; 1142 if (ObjSize > StackSlotSize) { 1143 errs() << "LowerFormalArguments Unhandled argument type: " 1144 << EVT(VA.getLocVT()).getEVTString() 1145 << "\n"; 1146 } 1147 // Create the frame index object for this incoming parameter... 1148 int FI = MFI->CreateFixedObject(ObjSize, 1149 LRSaveSize + VA.getLocMemOffset(), 1150 true); 1151 1152 // Create the SelectionDAG nodes corresponding to a load 1153 //from this parameter 1154 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1155 ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, 1156 MachinePointerInfo::getFixedStack(FI), 1157 false, false, false, 0); 1158 } 1159 const ArgDataPair ADP = { ArgIn, Ins[i].Flags }; 1160 ArgData.push_back(ADP); 1161 } 1162 1163 // 1b. CopyFromReg vararg registers. 1164 if (isVarArg) { 1165 // Argument registers 1166 static const uint16_t ArgRegs[] = { 1167 XCore::R0, XCore::R1, XCore::R2, XCore::R3 1168 }; 1169 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 1170 unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs, 1171 array_lengthof(ArgRegs)); 1172 if (FirstVAReg < array_lengthof(ArgRegs)) { 1173 int offset = 0; 1174 // Save remaining registers, storing higher register numbers at a higher 1175 // address 1176 for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) { 1177 // Create a stack slot 1178 int FI = MFI->CreateFixedObject(4, offset, true); 1179 if (i == (int)FirstVAReg) { 1180 XFI->setVarArgsFrameIndex(FI); 1181 } 1182 offset -= StackSlotSize; 1183 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1184 // Move argument from phys reg -> virt reg 1185 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass); 1186 RegInfo.addLiveIn(ArgRegs[i], VReg); 1187 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 1188 CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1)); 1189 // Move argument from virt reg -> stack 1190 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1191 MachinePointerInfo(), false, false, 0); 1192 MemOps.push_back(Store); 1193 } 1194 } else { 1195 // This will point to the next argument passed via stack. 1196 XFI->setVarArgsFrameIndex( 1197 MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(), 1198 true)); 1199 } 1200 } 1201 1202 // 2. chain CopyFromReg nodes into a TokenFactor. 1203 if (!CFRegNode.empty()) 1204 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &CFRegNode[0], 1205 CFRegNode.size()); 1206 1207 // 3. Memcpy 'byVal' args & push final InVals. 1208 // Aggregates passed "byVal" need to be copied by the callee. 1209 // The callee will use a pointer to this copy, rather than the original 1210 // pointer. 1211 for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(), 1212 ArgDE = ArgData.end(); 1213 ArgDI != ArgDE; ++ArgDI) { 1214 if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) { 1215 unsigned Size = ArgDI->Flags.getByValSize(); 1216 unsigned Align = ArgDI->Flags.getByValAlign(); 1217 // Create a new object on the stack and copy the pointee into it. 1218 int FI = MFI->CreateStackObject(Size, Align, false, false); 1219 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1220 InVals.push_back(FIN); 1221 MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV, 1222 DAG.getConstant(Size, MVT::i32), 1223 Align, false, false, 1224 MachinePointerInfo(), 1225 MachinePointerInfo())); 1226 } else { 1227 InVals.push_back(ArgDI->SDV); 1228 } 1229 } 1230 1231 // 4, chain mem ops nodes into a TokenFactor. 1232 if (!MemOps.empty()) { 1233 MemOps.push_back(Chain); 1234 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOps[0], 1235 MemOps.size()); 1236 } 1237 1238 return Chain; 1239 } 1240 1241 //===----------------------------------------------------------------------===// 1242 // Return Value Calling Convention Implementation 1243 //===----------------------------------------------------------------------===// 1244 1245 bool XCoreTargetLowering:: 1246 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, 1247 bool isVarArg, 1248 const SmallVectorImpl<ISD::OutputArg> &Outs, 1249 LLVMContext &Context) const { 1250 SmallVector<CCValAssign, 16> RVLocs; 1251 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context); 1252 return CCInfo.CheckReturn(Outs, RetCC_XCore); 1253 } 1254 1255 SDValue 1256 XCoreTargetLowering::LowerReturn(SDValue Chain, 1257 CallingConv::ID CallConv, bool isVarArg, 1258 const SmallVectorImpl<ISD::OutputArg> &Outs, 1259 const SmallVectorImpl<SDValue> &OutVals, 1260 SDLoc dl, SelectionDAG &DAG) const { 1261 1262 // CCValAssign - represent the assignment of 1263 // the return value to a location 1264 SmallVector<CCValAssign, 16> RVLocs; 1265 1266 // CCState - Info about the registers and stack slot. 1267 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1268 getTargetMachine(), RVLocs, *DAG.getContext()); 1269 1270 // Analyze return values. 1271 CCInfo.AnalyzeReturn(Outs, RetCC_XCore); 1272 1273 SDValue Flag; 1274 SmallVector<SDValue, 4> RetOps(1, Chain); 1275 1276 // Return on XCore is always a "retsp 0" 1277 RetOps.push_back(DAG.getConstant(0, MVT::i32)); 1278 1279 // Copy the result values into the output registers. 1280 for (unsigned i = 0; i != RVLocs.size(); ++i) { 1281 CCValAssign &VA = RVLocs[i]; 1282 assert(VA.isRegLoc() && "Can only return in registers!"); 1283 1284 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 1285 OutVals[i], Flag); 1286 1287 // guarantee that all emitted copies are 1288 // stuck together, avoiding something bad 1289 Flag = Chain.getValue(1); 1290 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 1291 } 1292 1293 RetOps[0] = Chain; // Update chain. 1294 1295 // Add the flag if we have it. 1296 if (Flag.getNode()) 1297 RetOps.push_back(Flag); 1298 1299 return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, 1300 &RetOps[0], RetOps.size()); 1301 } 1302 1303 //===----------------------------------------------------------------------===// 1304 // Other Lowering Code 1305 //===----------------------------------------------------------------------===// 1306 1307 MachineBasicBlock * 1308 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 1309 MachineBasicBlock *BB) const { 1310 const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo(); 1311 DebugLoc dl = MI->getDebugLoc(); 1312 assert((MI->getOpcode() == XCore::SELECT_CC) && 1313 "Unexpected instr type to insert"); 1314 1315 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond 1316 // control-flow pattern. The incoming instruction knows the destination vreg 1317 // to set, the condition code register to branch on, the true/false values to 1318 // select between, and a branch opcode to use. 1319 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1320 MachineFunction::iterator It = BB; 1321 ++It; 1322 1323 // thisMBB: 1324 // ... 1325 // TrueVal = ... 1326 // cmpTY ccX, r1, r2 1327 // bCC copy1MBB 1328 // fallthrough --> copy0MBB 1329 MachineBasicBlock *thisMBB = BB; 1330 MachineFunction *F = BB->getParent(); 1331 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 1332 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 1333 F->insert(It, copy0MBB); 1334 F->insert(It, sinkMBB); 1335 1336 // Transfer the remainder of BB and its successor edges to sinkMBB. 1337 sinkMBB->splice(sinkMBB->begin(), BB, 1338 llvm::next(MachineBasicBlock::iterator(MI)), 1339 BB->end()); 1340 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 1341 1342 // Next, add the true and fallthrough blocks as its successors. 1343 BB->addSuccessor(copy0MBB); 1344 BB->addSuccessor(sinkMBB); 1345 1346 BuildMI(BB, dl, TII.get(XCore::BRFT_lru6)) 1347 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 1348 1349 // copy0MBB: 1350 // %FalseValue = ... 1351 // # fallthrough to sinkMBB 1352 BB = copy0MBB; 1353 1354 // Update machine-CFG edges 1355 BB->addSuccessor(sinkMBB); 1356 1357 // sinkMBB: 1358 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 1359 // ... 1360 BB = sinkMBB; 1361 BuildMI(*BB, BB->begin(), dl, 1362 TII.get(XCore::PHI), MI->getOperand(0).getReg()) 1363 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 1364 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 1365 1366 MI->eraseFromParent(); // The pseudo instruction is gone now. 1367 return BB; 1368 } 1369 1370 //===----------------------------------------------------------------------===// 1371 // Target Optimization Hooks 1372 //===----------------------------------------------------------------------===// 1373 1374 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N, 1375 DAGCombinerInfo &DCI) const { 1376 SelectionDAG &DAG = DCI.DAG; 1377 SDLoc dl(N); 1378 switch (N->getOpcode()) { 1379 default: break; 1380 case XCoreISD::LADD: { 1381 SDValue N0 = N->getOperand(0); 1382 SDValue N1 = N->getOperand(1); 1383 SDValue N2 = N->getOperand(2); 1384 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1385 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1386 EVT VT = N0.getValueType(); 1387 1388 // canonicalize constant to RHS 1389 if (N0C && !N1C) 1390 return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2); 1391 1392 // fold (ladd 0, 0, x) -> 0, x & 1 1393 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) { 1394 SDValue Carry = DAG.getConstant(0, VT); 1395 SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2, 1396 DAG.getConstant(1, VT)); 1397 SDValue Ops[] = { Result, Carry }; 1398 return DAG.getMergeValues(Ops, 2, dl); 1399 } 1400 1401 // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the 1402 // low bit set 1403 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) { 1404 APInt KnownZero, KnownOne; 1405 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1406 VT.getSizeInBits() - 1); 1407 DAG.ComputeMaskedBits(N2, KnownZero, KnownOne); 1408 if ((KnownZero & Mask) == Mask) { 1409 SDValue Carry = DAG.getConstant(0, VT); 1410 SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2); 1411 SDValue Ops[] = { Result, Carry }; 1412 return DAG.getMergeValues(Ops, 2, dl); 1413 } 1414 } 1415 } 1416 break; 1417 case XCoreISD::LSUB: { 1418 SDValue N0 = N->getOperand(0); 1419 SDValue N1 = N->getOperand(1); 1420 SDValue N2 = N->getOperand(2); 1421 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1422 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1423 EVT VT = N0.getValueType(); 1424 1425 // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set 1426 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) { 1427 APInt KnownZero, KnownOne; 1428 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1429 VT.getSizeInBits() - 1); 1430 DAG.ComputeMaskedBits(N2, KnownZero, KnownOne); 1431 if ((KnownZero & Mask) == Mask) { 1432 SDValue Borrow = N2; 1433 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, 1434 DAG.getConstant(0, VT), N2); 1435 SDValue Ops[] = { Result, Borrow }; 1436 return DAG.getMergeValues(Ops, 2, dl); 1437 } 1438 } 1439 1440 // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the 1441 // low bit set 1442 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) { 1443 APInt KnownZero, KnownOne; 1444 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1445 VT.getSizeInBits() - 1); 1446 DAG.ComputeMaskedBits(N2, KnownZero, KnownOne); 1447 if ((KnownZero & Mask) == Mask) { 1448 SDValue Borrow = DAG.getConstant(0, VT); 1449 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2); 1450 SDValue Ops[] = { Result, Borrow }; 1451 return DAG.getMergeValues(Ops, 2, dl); 1452 } 1453 } 1454 } 1455 break; 1456 case XCoreISD::LMUL: { 1457 SDValue N0 = N->getOperand(0); 1458 SDValue N1 = N->getOperand(1); 1459 SDValue N2 = N->getOperand(2); 1460 SDValue N3 = N->getOperand(3); 1461 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1462 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1463 EVT VT = N0.getValueType(); 1464 // Canonicalize multiplicative constant to RHS. If both multiplicative 1465 // operands are constant canonicalize smallest to RHS. 1466 if ((N0C && !N1C) || 1467 (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue())) 1468 return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT), 1469 N1, N0, N2, N3); 1470 1471 // lmul(x, 0, a, b) 1472 if (N1C && N1C->isNullValue()) { 1473 // If the high result is unused fold to add(a, b) 1474 if (N->hasNUsesOfValue(0, 0)) { 1475 SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3); 1476 SDValue Ops[] = { Lo, Lo }; 1477 return DAG.getMergeValues(Ops, 2, dl); 1478 } 1479 // Otherwise fold to ladd(a, b, 0) 1480 SDValue Result = 1481 DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1); 1482 SDValue Carry(Result.getNode(), 1); 1483 SDValue Ops[] = { Carry, Result }; 1484 return DAG.getMergeValues(Ops, 2, dl); 1485 } 1486 } 1487 break; 1488 case ISD::ADD: { 1489 // Fold 32 bit expressions such as add(add(mul(x,y),a),b) -> 1490 // lmul(x, y, a, b). The high result of lmul will be ignored. 1491 // This is only profitable if the intermediate results are unused 1492 // elsewhere. 1493 SDValue Mul0, Mul1, Addend0, Addend1; 1494 if (N->getValueType(0) == MVT::i32 && 1495 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) { 1496 SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl, 1497 DAG.getVTList(MVT::i32, MVT::i32), Mul0, 1498 Mul1, Addend0, Addend1); 1499 SDValue Result(Ignored.getNode(), 1); 1500 return Result; 1501 } 1502 APInt HighMask = APInt::getHighBitsSet(64, 32); 1503 // Fold 64 bit expression such as add(add(mul(x,y),a),b) -> 1504 // lmul(x, y, a, b) if all operands are zero-extended. We do this 1505 // before type legalization as it is messy to match the operands after 1506 // that. 1507 if (N->getValueType(0) == MVT::i64 && 1508 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) && 1509 DAG.MaskedValueIsZero(Mul0, HighMask) && 1510 DAG.MaskedValueIsZero(Mul1, HighMask) && 1511 DAG.MaskedValueIsZero(Addend0, HighMask) && 1512 DAG.MaskedValueIsZero(Addend1, HighMask)) { 1513 SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1514 Mul0, DAG.getConstant(0, MVT::i32)); 1515 SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1516 Mul1, DAG.getConstant(0, MVT::i32)); 1517 SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1518 Addend0, DAG.getConstant(0, MVT::i32)); 1519 SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1520 Addend1, DAG.getConstant(0, MVT::i32)); 1521 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl, 1522 DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L, 1523 Addend0L, Addend1L); 1524 SDValue Lo(Hi.getNode(), 1); 1525 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 1526 } 1527 } 1528 break; 1529 case ISD::STORE: { 1530 // Replace unaligned store of unaligned load with memmove. 1531 StoreSDNode *ST = cast<StoreSDNode>(N); 1532 if (!DCI.isBeforeLegalize() || 1533 allowsUnalignedMemoryAccesses(ST->getMemoryVT()) || 1534 ST->isVolatile() || ST->isIndexed()) { 1535 break; 1536 } 1537 SDValue Chain = ST->getChain(); 1538 1539 unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits(); 1540 if (StoreBits % 8) { 1541 break; 1542 } 1543 unsigned ABIAlignment = getDataLayout()->getABITypeAlignment( 1544 ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext())); 1545 unsigned Alignment = ST->getAlignment(); 1546 if (Alignment >= ABIAlignment) { 1547 break; 1548 } 1549 1550 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) { 1551 if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() && 1552 LD->getAlignment() == Alignment && 1553 !LD->isVolatile() && !LD->isIndexed() && 1554 Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) { 1555 return DAG.getMemmove(Chain, dl, ST->getBasePtr(), 1556 LD->getBasePtr(), 1557 DAG.getConstant(StoreBits/8, MVT::i32), 1558 Alignment, false, ST->getPointerInfo(), 1559 LD->getPointerInfo()); 1560 } 1561 } 1562 break; 1563 } 1564 } 1565 return SDValue(); 1566 } 1567 1568 void XCoreTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 1569 APInt &KnownZero, 1570 APInt &KnownOne, 1571 const SelectionDAG &DAG, 1572 unsigned Depth) const { 1573 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 1574 switch (Op.getOpcode()) { 1575 default: break; 1576 case XCoreISD::LADD: 1577 case XCoreISD::LSUB: 1578 if (Op.getResNo() == 1) { 1579 // Top bits of carry / borrow are clear. 1580 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1581 KnownZero.getBitWidth() - 1); 1582 } 1583 break; 1584 } 1585 } 1586 1587 //===----------------------------------------------------------------------===// 1588 // Addressing mode description hooks 1589 //===----------------------------------------------------------------------===// 1590 1591 static inline bool isImmUs(int64_t val) 1592 { 1593 return (val >= 0 && val <= 11); 1594 } 1595 1596 static inline bool isImmUs2(int64_t val) 1597 { 1598 return (val%2 == 0 && isImmUs(val/2)); 1599 } 1600 1601 static inline bool isImmUs4(int64_t val) 1602 { 1603 return (val%4 == 0 && isImmUs(val/4)); 1604 } 1605 1606 /// isLegalAddressingMode - Return true if the addressing mode represented 1607 /// by AM is legal for this target, for a load/store of the specified type. 1608 bool 1609 XCoreTargetLowering::isLegalAddressingMode(const AddrMode &AM, 1610 Type *Ty) const { 1611 if (Ty->getTypeID() == Type::VoidTyID) 1612 return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs); 1613 1614 const DataLayout *TD = TM.getDataLayout(); 1615 unsigned Size = TD->getTypeAllocSize(Ty); 1616 if (AM.BaseGV) { 1617 return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 && 1618 AM.BaseOffs%4 == 0; 1619 } 1620 1621 switch (Size) { 1622 case 1: 1623 // reg + imm 1624 if (AM.Scale == 0) { 1625 return isImmUs(AM.BaseOffs); 1626 } 1627 // reg + reg 1628 return AM.Scale == 1 && AM.BaseOffs == 0; 1629 case 2: 1630 case 3: 1631 // reg + imm 1632 if (AM.Scale == 0) { 1633 return isImmUs2(AM.BaseOffs); 1634 } 1635 // reg + reg<<1 1636 return AM.Scale == 2 && AM.BaseOffs == 0; 1637 default: 1638 // reg + imm 1639 if (AM.Scale == 0) { 1640 return isImmUs4(AM.BaseOffs); 1641 } 1642 // reg + reg<<2 1643 return AM.Scale == 4 && AM.BaseOffs == 0; 1644 } 1645 } 1646 1647 //===----------------------------------------------------------------------===// 1648 // XCore Inline Assembly Support 1649 //===----------------------------------------------------------------------===// 1650 1651 std::pair<unsigned, const TargetRegisterClass*> 1652 XCoreTargetLowering:: 1653 getRegForInlineAsmConstraint(const std::string &Constraint, 1654 MVT VT) const { 1655 if (Constraint.size() == 1) { 1656 switch (Constraint[0]) { 1657 default : break; 1658 case 'r': 1659 return std::make_pair(0U, &XCore::GRRegsRegClass); 1660 } 1661 } 1662 // Use the default implementation in TargetLowering to convert the register 1663 // constraint into a member of a register class. 1664 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 1665 } 1666