1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the XCoreTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "XCoreISelLowering.h" 15 #include "XCore.h" 16 #include "XCoreMachineFunctionInfo.h" 17 #include "XCoreSubtarget.h" 18 #include "XCoreTargetMachine.h" 19 #include "XCoreTargetObjectFile.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAGISel.h" 27 #include "llvm/CodeGen/ValueTypes.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "xcore-lower" 43 44 const char *XCoreTargetLowering:: 45 getTargetNodeName(unsigned Opcode) const 46 { 47 switch (Opcode) 48 { 49 case XCoreISD::BL : return "XCoreISD::BL"; 50 case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper"; 51 case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper"; 52 case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper"; 53 case XCoreISD::LDWSP : return "XCoreISD::LDWSP"; 54 case XCoreISD::STWSP : return "XCoreISD::STWSP"; 55 case XCoreISD::RETSP : return "XCoreISD::RETSP"; 56 case XCoreISD::LADD : return "XCoreISD::LADD"; 57 case XCoreISD::LSUB : return "XCoreISD::LSUB"; 58 case XCoreISD::LMUL : return "XCoreISD::LMUL"; 59 case XCoreISD::MACCU : return "XCoreISD::MACCU"; 60 case XCoreISD::MACCS : return "XCoreISD::MACCS"; 61 case XCoreISD::CRC8 : return "XCoreISD::CRC8"; 62 case XCoreISD::BR_JT : return "XCoreISD::BR_JT"; 63 case XCoreISD::BR_JT32 : return "XCoreISD::BR_JT32"; 64 case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET"; 65 case XCoreISD::EH_RETURN : return "XCoreISD::EH_RETURN"; 66 case XCoreISD::MEMBARRIER : return "XCoreISD::MEMBARRIER"; 67 default : return nullptr; 68 } 69 } 70 71 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM) 72 : TargetLowering(TM, new XCoreTargetObjectFile()), TM(TM), 73 Subtarget(TM.getSubtarget<XCoreSubtarget>()) { 74 75 // Set up the register classes. 76 addRegisterClass(MVT::i32, &XCore::GRRegsRegClass); 77 78 // Compute derived properties from the register classes 79 computeRegisterProperties(); 80 81 // Division is expensive 82 setIntDivIsCheap(false); 83 84 setStackPointerRegisterToSaveRestore(XCore::SP); 85 86 setSchedulingPreference(Sched::Source); 87 88 // Use i32 for setcc operations results (slt, sgt, ...). 89 setBooleanContents(ZeroOrOneBooleanContent); 90 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 91 92 // XCore does not have the NodeTypes below. 93 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 94 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); 95 setOperationAction(ISD::ADDC, MVT::i32, Expand); 96 setOperationAction(ISD::ADDE, MVT::i32, Expand); 97 setOperationAction(ISD::SUBC, MVT::i32, Expand); 98 setOperationAction(ISD::SUBE, MVT::i32, Expand); 99 100 // 64bit 101 setOperationAction(ISD::ADD, MVT::i64, Custom); 102 setOperationAction(ISD::SUB, MVT::i64, Custom); 103 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom); 104 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom); 105 setOperationAction(ISD::MULHS, MVT::i32, Expand); 106 setOperationAction(ISD::MULHU, MVT::i32, Expand); 107 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); 108 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 109 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); 110 111 // Bit Manipulation 112 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 113 setOperationAction(ISD::ROTL , MVT::i32, Expand); 114 setOperationAction(ISD::ROTR , MVT::i32, Expand); 115 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 116 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 117 118 setOperationAction(ISD::TRAP, MVT::Other, Legal); 119 120 // Jump tables. 121 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 122 123 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 124 setOperationAction(ISD::BlockAddress, MVT::i32 , Custom); 125 126 // Conversion of i64 -> double produces constantpool nodes 127 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 128 129 // Loads 130 setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); 131 setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); 132 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 133 134 setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand); 135 setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Expand); 136 137 // Custom expand misaligned loads / stores. 138 setOperationAction(ISD::LOAD, MVT::i32, Custom); 139 setOperationAction(ISD::STORE, MVT::i32, Custom); 140 141 // Varargs 142 setOperationAction(ISD::VAEND, MVT::Other, Expand); 143 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 144 setOperationAction(ISD::VAARG, MVT::Other, Custom); 145 setOperationAction(ISD::VASTART, MVT::Other, Custom); 146 147 // Dynamic stack 148 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 149 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 150 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 151 152 // Exception handling 153 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); 154 setExceptionPointerRegister(XCore::R0); 155 setExceptionSelectorRegister(XCore::R1); 156 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); 157 158 // Atomic operations 159 // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic. 160 // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP. 161 setInsertFencesForAtomic(true); 162 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 163 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); 164 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); 165 166 // TRAMPOLINE is custom lowered. 167 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 168 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 169 170 // We want to custom lower some of our intrinsics. 171 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 172 173 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4; 174 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize 175 = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2; 176 177 // We have target-specific dag combine patterns for the following nodes: 178 setTargetDAGCombine(ISD::STORE); 179 setTargetDAGCombine(ISD::ADD); 180 setTargetDAGCombine(ISD::INTRINSIC_VOID); 181 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 182 183 setMinFunctionAlignment(1); 184 setPrefFunctionAlignment(2); 185 } 186 187 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 188 if (Val.getOpcode() != ISD::LOAD) 189 return false; 190 191 EVT VT1 = Val.getValueType(); 192 if (!VT1.isSimple() || !VT1.isInteger() || 193 !VT2.isSimple() || !VT2.isInteger()) 194 return false; 195 196 switch (VT1.getSimpleVT().SimpleTy) { 197 default: break; 198 case MVT::i8: 199 return true; 200 } 201 202 return false; 203 } 204 205 SDValue XCoreTargetLowering:: 206 LowerOperation(SDValue Op, SelectionDAG &DAG) const { 207 switch (Op.getOpcode()) 208 { 209 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); 210 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 211 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 212 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 213 case ISD::BR_JT: return LowerBR_JT(Op, DAG); 214 case ISD::LOAD: return LowerLOAD(Op, DAG); 215 case ISD::STORE: return LowerSTORE(Op, DAG); 216 case ISD::VAARG: return LowerVAARG(Op, DAG); 217 case ISD::VASTART: return LowerVASTART(Op, DAG); 218 case ISD::SMUL_LOHI: return LowerSMUL_LOHI(Op, DAG); 219 case ISD::UMUL_LOHI: return LowerUMUL_LOHI(Op, DAG); 220 // FIXME: Remove these when LegalizeDAGTypes lands. 221 case ISD::ADD: 222 case ISD::SUB: return ExpandADDSUB(Op.getNode(), DAG); 223 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 224 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 225 case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); 226 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 227 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 228 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 229 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG); 230 case ISD::ATOMIC_LOAD: return LowerATOMIC_LOAD(Op, DAG); 231 case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG); 232 default: 233 llvm_unreachable("unimplemented operand"); 234 } 235 } 236 237 /// ReplaceNodeResults - Replace the results of node with an illegal result 238 /// type with new values built out of custom code. 239 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N, 240 SmallVectorImpl<SDValue>&Results, 241 SelectionDAG &DAG) const { 242 switch (N->getOpcode()) { 243 default: 244 llvm_unreachable("Don't know how to custom expand this!"); 245 case ISD::ADD: 246 case ISD::SUB: 247 Results.push_back(ExpandADDSUB(N, DAG)); 248 return; 249 } 250 } 251 252 //===----------------------------------------------------------------------===// 253 // Misc Lower Operation implementation 254 //===----------------------------------------------------------------------===// 255 256 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA, 257 const GlobalValue *GV, 258 SelectionDAG &DAG) const { 259 // FIXME there is no actual debug info here 260 SDLoc dl(GA); 261 262 if (GV->getType()->getElementType()->isFunctionTy()) 263 return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA); 264 265 const auto *GVar = dyn_cast<GlobalVariable>(GV); 266 if ((GV->hasSection() && StringRef(GV->getSection()).startswith(".cp.")) || 267 (GVar && GVar->isConstant() && GV->hasLocalLinkage())) 268 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA); 269 270 return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA); 271 } 272 273 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) { 274 if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small) 275 return true; 276 277 Type *ObjType = GV->getType()->getPointerElementType(); 278 if (!ObjType->isSized()) 279 return false; 280 281 unsigned ObjSize = XTL.getDataLayout()->getTypeAllocSize(ObjType); 282 return ObjSize < CodeModelLargeSize && ObjSize != 0; 283 } 284 285 SDValue XCoreTargetLowering:: 286 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const 287 { 288 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op); 289 const GlobalValue *GV = GN->getGlobal(); 290 SDLoc DL(GN); 291 int64_t Offset = GN->getOffset(); 292 if (IsSmallObject(GV, *this)) { 293 // We can only fold positive offsets that are a multiple of the word size. 294 int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0); 295 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset); 296 GA = getGlobalAddressWrapper(GA, GV, DAG); 297 // Handle the rest of the offset. 298 if (Offset != FoldedOffset) { 299 SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, MVT::i32); 300 GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining); 301 } 302 return GA; 303 } else { 304 // Ideally we would not fold in offset with an index <= 11. 305 Type *Ty = Type::getInt8PtrTy(*DAG.getContext()); 306 Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty); 307 Ty = Type::getInt32Ty(*DAG.getContext()); 308 Constant *Idx = ConstantInt::get(Ty, Offset); 309 Constant *GAI = ConstantExpr::getGetElementPtr(GA, Idx); 310 SDValue CP = DAG.getConstantPool(GAI, MVT::i32); 311 return DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), CP, 312 MachinePointerInfo(), false, false, false, 0); 313 } 314 } 315 316 SDValue XCoreTargetLowering:: 317 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const 318 { 319 SDLoc DL(Op); 320 321 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 322 SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy()); 323 324 return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, getPointerTy(), Result); 325 } 326 327 SDValue XCoreTargetLowering:: 328 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const 329 { 330 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 331 // FIXME there isn't really debug info here 332 SDLoc dl(CP); 333 EVT PtrVT = Op.getValueType(); 334 SDValue Res; 335 if (CP->isMachineConstantPoolEntry()) { 336 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 337 CP->getAlignment(), CP->getOffset()); 338 } else { 339 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 340 CP->getAlignment(), CP->getOffset()); 341 } 342 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res); 343 } 344 345 unsigned XCoreTargetLowering::getJumpTableEncoding() const { 346 return MachineJumpTableInfo::EK_Inline; 347 } 348 349 SDValue XCoreTargetLowering:: 350 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const 351 { 352 SDValue Chain = Op.getOperand(0); 353 SDValue Table = Op.getOperand(1); 354 SDValue Index = Op.getOperand(2); 355 SDLoc dl(Op); 356 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table); 357 unsigned JTI = JT->getIndex(); 358 MachineFunction &MF = DAG.getMachineFunction(); 359 const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 360 SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32); 361 362 unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size(); 363 if (NumEntries <= 32) { 364 return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index); 365 } 366 assert((NumEntries >> 31) == 0); 367 SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index, 368 DAG.getConstant(1, MVT::i32)); 369 return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT, 370 ScaledIndex); 371 } 372 373 SDValue XCoreTargetLowering:: 374 lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL, SDValue Chain, SDValue Base, 375 int64_t Offset, SelectionDAG &DAG) const 376 { 377 if ((Offset & 0x3) == 0) { 378 return DAG.getLoad(getPointerTy(), DL, Chain, Base, MachinePointerInfo(), 379 false, false, false, 0); 380 } 381 // Lower to pair of consecutive word aligned loads plus some bit shifting. 382 int32_t HighOffset = RoundUpToAlignment(Offset, 4); 383 int32_t LowOffset = HighOffset - 4; 384 SDValue LowAddr, HighAddr; 385 if (GlobalAddressSDNode *GASD = 386 dyn_cast<GlobalAddressSDNode>(Base.getNode())) { 387 LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(), 388 LowOffset); 389 HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(), 390 HighOffset); 391 } else { 392 LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base, 393 DAG.getConstant(LowOffset, MVT::i32)); 394 HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base, 395 DAG.getConstant(HighOffset, MVT::i32)); 396 } 397 SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, MVT::i32); 398 SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, MVT::i32); 399 400 SDValue Low = DAG.getLoad(getPointerTy(), DL, Chain, 401 LowAddr, MachinePointerInfo(), 402 false, false, false, 0); 403 SDValue High = DAG.getLoad(getPointerTy(), DL, Chain, 404 HighAddr, MachinePointerInfo(), 405 false, false, false, 0); 406 SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift); 407 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift); 408 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted); 409 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1), 410 High.getValue(1)); 411 SDValue Ops[] = { Result, Chain }; 412 return DAG.getMergeValues(Ops, DL); 413 } 414 415 static bool isWordAligned(SDValue Value, SelectionDAG &DAG) 416 { 417 APInt KnownZero, KnownOne; 418 DAG.computeKnownBits(Value, KnownZero, KnownOne); 419 return KnownZero.countTrailingOnes() >= 2; 420 } 421 422 SDValue XCoreTargetLowering:: 423 LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 424 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 425 LoadSDNode *LD = cast<LoadSDNode>(Op); 426 assert(LD->getExtensionType() == ISD::NON_EXTLOAD && 427 "Unexpected extension type"); 428 assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT"); 429 if (allowsMisalignedMemoryAccesses(LD->getMemoryVT(), 430 LD->getAddressSpace(), 431 LD->getAlignment())) 432 return SDValue(); 433 434 unsigned ABIAlignment = getDataLayout()-> 435 getABITypeAlignment(LD->getMemoryVT().getTypeForEVT(*DAG.getContext())); 436 // Leave aligned load alone. 437 if (LD->getAlignment() >= ABIAlignment) 438 return SDValue(); 439 440 SDValue Chain = LD->getChain(); 441 SDValue BasePtr = LD->getBasePtr(); 442 SDLoc DL(Op); 443 444 if (!LD->isVolatile()) { 445 const GlobalValue *GV; 446 int64_t Offset = 0; 447 if (DAG.isBaseWithConstantOffset(BasePtr) && 448 isWordAligned(BasePtr->getOperand(0), DAG)) { 449 SDValue NewBasePtr = BasePtr->getOperand(0); 450 Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue(); 451 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr, 452 Offset, DAG); 453 } 454 if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) && 455 MinAlign(GV->getAlignment(), 4) == 4) { 456 SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL, 457 BasePtr->getValueType(0)); 458 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr, 459 Offset, DAG); 460 } 461 } 462 463 if (LD->getAlignment() == 2) { 464 SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, 465 BasePtr, LD->getPointerInfo(), MVT::i16, 466 LD->isVolatile(), LD->isNonTemporal(), 467 LD->isInvariant(), 2); 468 SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, 469 DAG.getConstant(2, MVT::i32)); 470 SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 471 HighAddr, 472 LD->getPointerInfo().getWithOffset(2), 473 MVT::i16, LD->isVolatile(), 474 LD->isNonTemporal(), LD->isInvariant(), 2); 475 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, 476 DAG.getConstant(16, MVT::i32)); 477 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted); 478 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1), 479 High.getValue(1)); 480 SDValue Ops[] = { Result, Chain }; 481 return DAG.getMergeValues(Ops, DL); 482 } 483 484 // Lower to a call to __misaligned_load(BasePtr). 485 Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext()); 486 TargetLowering::ArgListTy Args; 487 TargetLowering::ArgListEntry Entry; 488 489 Entry.Ty = IntPtrTy; 490 Entry.Node = BasePtr; 491 Args.push_back(Entry); 492 493 TargetLowering::CallLoweringInfo CLI(DAG); 494 CLI.setDebugLoc(DL).setChain(Chain) 495 .setCallee(CallingConv::C, IntPtrTy, 496 DAG.getExternalSymbol("__misaligned_load", getPointerTy()), 497 std::move(Args), 0); 498 499 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 500 SDValue Ops[] = { CallResult.first, CallResult.second }; 501 return DAG.getMergeValues(Ops, DL); 502 } 503 504 SDValue XCoreTargetLowering:: 505 LowerSTORE(SDValue Op, SelectionDAG &DAG) const 506 { 507 StoreSDNode *ST = cast<StoreSDNode>(Op); 508 assert(!ST->isTruncatingStore() && "Unexpected store type"); 509 assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT"); 510 if (allowsMisalignedMemoryAccesses(ST->getMemoryVT(), 511 ST->getAddressSpace(), 512 ST->getAlignment())) { 513 return SDValue(); 514 } 515 unsigned ABIAlignment = getDataLayout()-> 516 getABITypeAlignment(ST->getMemoryVT().getTypeForEVT(*DAG.getContext())); 517 // Leave aligned store alone. 518 if (ST->getAlignment() >= ABIAlignment) { 519 return SDValue(); 520 } 521 SDValue Chain = ST->getChain(); 522 SDValue BasePtr = ST->getBasePtr(); 523 SDValue Value = ST->getValue(); 524 SDLoc dl(Op); 525 526 if (ST->getAlignment() == 2) { 527 SDValue Low = Value; 528 SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value, 529 DAG.getConstant(16, MVT::i32)); 530 SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr, 531 ST->getPointerInfo(), MVT::i16, 532 ST->isVolatile(), ST->isNonTemporal(), 533 2); 534 SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr, 535 DAG.getConstant(2, MVT::i32)); 536 SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr, 537 ST->getPointerInfo().getWithOffset(2), 538 MVT::i16, ST->isVolatile(), 539 ST->isNonTemporal(), 2); 540 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh); 541 } 542 543 // Lower to a call to __misaligned_store(BasePtr, Value). 544 Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext()); 545 TargetLowering::ArgListTy Args; 546 TargetLowering::ArgListEntry Entry; 547 548 Entry.Ty = IntPtrTy; 549 Entry.Node = BasePtr; 550 Args.push_back(Entry); 551 552 Entry.Node = Value; 553 Args.push_back(Entry); 554 555 TargetLowering::CallLoweringInfo CLI(DAG); 556 CLI.setDebugLoc(dl).setChain(Chain) 557 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 558 DAG.getExternalSymbol("__misaligned_store", getPointerTy()), 559 std::move(Args), 0); 560 561 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 562 return CallResult.second; 563 } 564 565 SDValue XCoreTargetLowering:: 566 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const 567 { 568 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI && 569 "Unexpected operand to lower!"); 570 SDLoc dl(Op); 571 SDValue LHS = Op.getOperand(0); 572 SDValue RHS = Op.getOperand(1); 573 SDValue Zero = DAG.getConstant(0, MVT::i32); 574 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl, 575 DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero, 576 LHS, RHS); 577 SDValue Lo(Hi.getNode(), 1); 578 SDValue Ops[] = { Lo, Hi }; 579 return DAG.getMergeValues(Ops, dl); 580 } 581 582 SDValue XCoreTargetLowering:: 583 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const 584 { 585 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI && 586 "Unexpected operand to lower!"); 587 SDLoc dl(Op); 588 SDValue LHS = Op.getOperand(0); 589 SDValue RHS = Op.getOperand(1); 590 SDValue Zero = DAG.getConstant(0, MVT::i32); 591 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl, 592 DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS, 593 Zero, Zero); 594 SDValue Lo(Hi.getNode(), 1); 595 SDValue Ops[] = { Lo, Hi }; 596 return DAG.getMergeValues(Ops, dl); 597 } 598 599 /// isADDADDMUL - Return whether Op is in a form that is equivalent to 600 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then 601 /// each intermediate result in the calculation must also have a single use. 602 /// If the Op is in the correct form the constituent parts are written to Mul0, 603 /// Mul1, Addend0 and Addend1. 604 static bool 605 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0, 606 SDValue &Addend1, bool requireIntermediatesHaveOneUse) 607 { 608 if (Op.getOpcode() != ISD::ADD) 609 return false; 610 SDValue N0 = Op.getOperand(0); 611 SDValue N1 = Op.getOperand(1); 612 SDValue AddOp; 613 SDValue OtherOp; 614 if (N0.getOpcode() == ISD::ADD) { 615 AddOp = N0; 616 OtherOp = N1; 617 } else if (N1.getOpcode() == ISD::ADD) { 618 AddOp = N1; 619 OtherOp = N0; 620 } else { 621 return false; 622 } 623 if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse()) 624 return false; 625 if (OtherOp.getOpcode() == ISD::MUL) { 626 // add(add(a,b),mul(x,y)) 627 if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse()) 628 return false; 629 Mul0 = OtherOp.getOperand(0); 630 Mul1 = OtherOp.getOperand(1); 631 Addend0 = AddOp.getOperand(0); 632 Addend1 = AddOp.getOperand(1); 633 return true; 634 } 635 if (AddOp.getOperand(0).getOpcode() == ISD::MUL) { 636 // add(add(mul(x,y),a),b) 637 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse()) 638 return false; 639 Mul0 = AddOp.getOperand(0).getOperand(0); 640 Mul1 = AddOp.getOperand(0).getOperand(1); 641 Addend0 = AddOp.getOperand(1); 642 Addend1 = OtherOp; 643 return true; 644 } 645 if (AddOp.getOperand(1).getOpcode() == ISD::MUL) { 646 // add(add(a,mul(x,y)),b) 647 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse()) 648 return false; 649 Mul0 = AddOp.getOperand(1).getOperand(0); 650 Mul1 = AddOp.getOperand(1).getOperand(1); 651 Addend0 = AddOp.getOperand(0); 652 Addend1 = OtherOp; 653 return true; 654 } 655 return false; 656 } 657 658 SDValue XCoreTargetLowering:: 659 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const 660 { 661 SDValue Mul; 662 SDValue Other; 663 if (N->getOperand(0).getOpcode() == ISD::MUL) { 664 Mul = N->getOperand(0); 665 Other = N->getOperand(1); 666 } else if (N->getOperand(1).getOpcode() == ISD::MUL) { 667 Mul = N->getOperand(1); 668 Other = N->getOperand(0); 669 } else { 670 return SDValue(); 671 } 672 SDLoc dl(N); 673 SDValue LL, RL, AddendL, AddendH; 674 LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 675 Mul.getOperand(0), DAG.getConstant(0, MVT::i32)); 676 RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 677 Mul.getOperand(1), DAG.getConstant(0, MVT::i32)); 678 AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 679 Other, DAG.getConstant(0, MVT::i32)); 680 AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 681 Other, DAG.getConstant(1, MVT::i32)); 682 APInt HighMask = APInt::getHighBitsSet(64, 32); 683 unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0)); 684 unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1)); 685 if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) && 686 DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) { 687 // The inputs are both zero-extended. 688 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl, 689 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 690 AddendL, LL, RL); 691 SDValue Lo(Hi.getNode(), 1); 692 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 693 } 694 if (LHSSB > 32 && RHSSB > 32) { 695 // The inputs are both sign-extended. 696 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl, 697 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 698 AddendL, LL, RL); 699 SDValue Lo(Hi.getNode(), 1); 700 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 701 } 702 SDValue LH, RH; 703 LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 704 Mul.getOperand(0), DAG.getConstant(1, MVT::i32)); 705 RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 706 Mul.getOperand(1), DAG.getConstant(1, MVT::i32)); 707 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl, 708 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 709 AddendL, LL, RL); 710 SDValue Lo(Hi.getNode(), 1); 711 RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH); 712 LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL); 713 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH); 714 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH); 715 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 716 } 717 718 SDValue XCoreTargetLowering:: 719 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const 720 { 721 assert(N->getValueType(0) == MVT::i64 && 722 (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 723 "Unknown operand to lower!"); 724 725 if (N->getOpcode() == ISD::ADD) { 726 SDValue Result = TryExpandADDWithMul(N, DAG); 727 if (Result.getNode()) 728 return Result; 729 } 730 731 SDLoc dl(N); 732 733 // Extract components 734 SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 735 N->getOperand(0), DAG.getConstant(0, MVT::i32)); 736 SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 737 N->getOperand(0), DAG.getConstant(1, MVT::i32)); 738 SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 739 N->getOperand(1), DAG.getConstant(0, MVT::i32)); 740 SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 741 N->getOperand(1), DAG.getConstant(1, MVT::i32)); 742 743 // Expand 744 unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD : 745 XCoreISD::LSUB; 746 SDValue Zero = DAG.getConstant(0, MVT::i32); 747 SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), 748 LHSL, RHSL, Zero); 749 SDValue Carry(Lo.getNode(), 1); 750 751 SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), 752 LHSH, RHSH, Carry); 753 SDValue Ignored(Hi.getNode(), 1); 754 // Merge the pieces 755 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 756 } 757 758 SDValue XCoreTargetLowering:: 759 LowerVAARG(SDValue Op, SelectionDAG &DAG) const 760 { 761 // Whist llvm does not support aggregate varargs we can ignore 762 // the possibility of the ValueType being an implicit byVal vararg. 763 SDNode *Node = Op.getNode(); 764 EVT VT = Node->getValueType(0); // not an aggregate 765 SDValue InChain = Node->getOperand(0); 766 SDValue VAListPtr = Node->getOperand(1); 767 EVT PtrVT = VAListPtr.getValueType(); 768 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 769 SDLoc dl(Node); 770 SDValue VAList = DAG.getLoad(PtrVT, dl, InChain, 771 VAListPtr, MachinePointerInfo(SV), 772 false, false, false, 0); 773 // Increment the pointer, VAList, to the next vararg 774 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList, 775 DAG.getIntPtrConstant(VT.getSizeInBits() / 8)); 776 // Store the incremented VAList to the legalized pointer 777 InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr, 778 MachinePointerInfo(SV), false, false, 0); 779 // Load the actual argument out of the pointer VAList 780 return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(), 781 false, false, false, 0); 782 } 783 784 SDValue XCoreTargetLowering:: 785 LowerVASTART(SDValue Op, SelectionDAG &DAG) const 786 { 787 SDLoc dl(Op); 788 // vastart stores the address of the VarArgsFrameIndex slot into the 789 // memory location argument 790 MachineFunction &MF = DAG.getMachineFunction(); 791 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 792 SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32); 793 return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1), 794 MachinePointerInfo(), false, false, 0); 795 } 796 797 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op, 798 SelectionDAG &DAG) const { 799 // This nodes represent llvm.frameaddress on the DAG. 800 // It takes one operand, the index of the frame address to return. 801 // An index of zero corresponds to the current function's frame address. 802 // An index of one to the parent's frame address, and so on. 803 // Depths > 0 not supported yet! 804 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0) 805 return SDValue(); 806 807 MachineFunction &MF = DAG.getMachineFunction(); 808 const TargetRegisterInfo *RegInfo = 809 getTargetMachine().getSubtargetImpl()->getRegisterInfo(); 810 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), 811 RegInfo->getFrameRegister(MF), MVT::i32); 812 } 813 814 SDValue XCoreTargetLowering:: 815 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { 816 // This nodes represent llvm.returnaddress on the DAG. 817 // It takes one operand, the index of the return address to return. 818 // An index of zero corresponds to the current function's return address. 819 // An index of one to the parent's return address, and so on. 820 // Depths > 0 not supported yet! 821 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0) 822 return SDValue(); 823 824 MachineFunction &MF = DAG.getMachineFunction(); 825 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 826 int FI = XFI->createLRSpillSlot(MF); 827 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 828 return DAG.getLoad(getPointerTy(), SDLoc(Op), DAG.getEntryNode(), FIN, 829 MachinePointerInfo::getFixedStack(FI), false, false, 830 false, 0); 831 } 832 833 SDValue XCoreTargetLowering:: 834 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const { 835 // This node represents offset from frame pointer to first on-stack argument. 836 // This is needed for correct stack adjustment during unwind. 837 // However, we don't know the offset until after the frame has be finalised. 838 // This is done during the XCoreFTAOElim pass. 839 return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32); 840 } 841 842 SDValue XCoreTargetLowering:: 843 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { 844 // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) 845 // This node represents 'eh_return' gcc dwarf builtin, which is used to 846 // return from exception. The general meaning is: adjust stack by OFFSET and 847 // pass execution to HANDLER. 848 MachineFunction &MF = DAG.getMachineFunction(); 849 SDValue Chain = Op.getOperand(0); 850 SDValue Offset = Op.getOperand(1); 851 SDValue Handler = Op.getOperand(2); 852 SDLoc dl(Op); 853 854 // Absolute SP = (FP + FrameToArgs) + Offset 855 const TargetRegisterInfo *RegInfo = 856 getTargetMachine().getSubtargetImpl()->getRegisterInfo(); 857 SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl, 858 RegInfo->getFrameRegister(MF), MVT::i32); 859 SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl, 860 MVT::i32); 861 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs); 862 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset); 863 864 // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister 865 // which leaves 2 caller saved registers, R2 & R3 for us to use. 866 unsigned StackReg = XCore::R2; 867 unsigned HandlerReg = XCore::R3; 868 869 SDValue OutChains[] = { 870 DAG.getCopyToReg(Chain, dl, StackReg, Stack), 871 DAG.getCopyToReg(Chain, dl, HandlerReg, Handler) 872 }; 873 874 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 875 876 return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain, 877 DAG.getRegister(StackReg, MVT::i32), 878 DAG.getRegister(HandlerReg, MVT::i32)); 879 880 } 881 882 SDValue XCoreTargetLowering:: 883 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { 884 return Op.getOperand(0); 885 } 886 887 SDValue XCoreTargetLowering:: 888 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { 889 SDValue Chain = Op.getOperand(0); 890 SDValue Trmp = Op.getOperand(1); // trampoline 891 SDValue FPtr = Op.getOperand(2); // nested function 892 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 893 894 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 895 896 // .align 4 897 // LDAPF_u10 r11, nest 898 // LDW_2rus r11, r11[0] 899 // STWSP_ru6 r11, sp[0] 900 // LDAPF_u10 r11, fptr 901 // LDW_2rus r11, r11[0] 902 // BAU_1r r11 903 // nest: 904 // .word nest 905 // fptr: 906 // .word fptr 907 SDValue OutChains[5]; 908 909 SDValue Addr = Trmp; 910 911 SDLoc dl(Op); 912 OutChains[0] = DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, MVT::i32), 913 Addr, MachinePointerInfo(TrmpAddr), false, false, 914 0); 915 916 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 917 DAG.getConstant(4, MVT::i32)); 918 OutChains[1] = DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, MVT::i32), 919 Addr, MachinePointerInfo(TrmpAddr, 4), false, 920 false, 0); 921 922 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 923 DAG.getConstant(8, MVT::i32)); 924 OutChains[2] = DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, MVT::i32), 925 Addr, MachinePointerInfo(TrmpAddr, 8), false, 926 false, 0); 927 928 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 929 DAG.getConstant(12, MVT::i32)); 930 OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr, 931 MachinePointerInfo(TrmpAddr, 12), false, false, 932 0); 933 934 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 935 DAG.getConstant(16, MVT::i32)); 936 OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr, 937 MachinePointerInfo(TrmpAddr, 16), false, false, 938 0); 939 940 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 941 } 942 943 SDValue XCoreTargetLowering:: 944 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { 945 SDLoc DL(Op); 946 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 947 switch (IntNo) { 948 case Intrinsic::xcore_crc8: 949 EVT VT = Op.getValueType(); 950 SDValue Data = 951 DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT), 952 Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3)); 953 SDValue Crc(Data.getNode(), 1); 954 SDValue Results[] = { Crc, Data }; 955 return DAG.getMergeValues(Results, DL); 956 } 957 return SDValue(); 958 } 959 960 SDValue XCoreTargetLowering:: 961 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const { 962 SDLoc DL(Op); 963 return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 964 } 965 966 SDValue XCoreTargetLowering:: 967 LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const { 968 AtomicSDNode *N = cast<AtomicSDNode>(Op); 969 assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP"); 970 assert(N->getOrdering() <= Monotonic && 971 "setInsertFencesForAtomic(true) and yet greater than Monotonic"); 972 if (N->getMemoryVT() == MVT::i32) { 973 if (N->getAlignment() < 4) 974 report_fatal_error("atomic load must be aligned"); 975 return DAG.getLoad(getPointerTy(), SDLoc(Op), N->getChain(), 976 N->getBasePtr(), N->getPointerInfo(), 977 N->isVolatile(), N->isNonTemporal(), 978 N->isInvariant(), N->getAlignment(), 979 N->getAAInfo(), N->getRanges()); 980 } 981 if (N->getMemoryVT() == MVT::i16) { 982 if (N->getAlignment() < 2) 983 report_fatal_error("atomic load must be aligned"); 984 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(), 985 N->getBasePtr(), N->getPointerInfo(), MVT::i16, 986 N->isVolatile(), N->isNonTemporal(), 987 N->isInvariant(), N->getAlignment(), N->getAAInfo()); 988 } 989 if (N->getMemoryVT() == MVT::i8) 990 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(), 991 N->getBasePtr(), N->getPointerInfo(), MVT::i8, 992 N->isVolatile(), N->isNonTemporal(), 993 N->isInvariant(), N->getAlignment(), N->getAAInfo()); 994 return SDValue(); 995 } 996 997 SDValue XCoreTargetLowering:: 998 LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const { 999 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1000 assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP"); 1001 assert(N->getOrdering() <= Monotonic && 1002 "setInsertFencesForAtomic(true) and yet greater than Monotonic"); 1003 if (N->getMemoryVT() == MVT::i32) { 1004 if (N->getAlignment() < 4) 1005 report_fatal_error("atomic store must be aligned"); 1006 return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(), 1007 N->getBasePtr(), N->getPointerInfo(), 1008 N->isVolatile(), N->isNonTemporal(), 1009 N->getAlignment(), N->getAAInfo()); 1010 } 1011 if (N->getMemoryVT() == MVT::i16) { 1012 if (N->getAlignment() < 2) 1013 report_fatal_error("atomic store must be aligned"); 1014 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(), 1015 N->getBasePtr(), N->getPointerInfo(), MVT::i16, 1016 N->isVolatile(), N->isNonTemporal(), 1017 N->getAlignment(), N->getAAInfo()); 1018 } 1019 if (N->getMemoryVT() == MVT::i8) 1020 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(), 1021 N->getBasePtr(), N->getPointerInfo(), MVT::i8, 1022 N->isVolatile(), N->isNonTemporal(), 1023 N->getAlignment(), N->getAAInfo()); 1024 return SDValue(); 1025 } 1026 1027 //===----------------------------------------------------------------------===// 1028 // Calling Convention Implementation 1029 //===----------------------------------------------------------------------===// 1030 1031 #include "XCoreGenCallingConv.inc" 1032 1033 //===----------------------------------------------------------------------===// 1034 // Call Calling Convention Implementation 1035 //===----------------------------------------------------------------------===// 1036 1037 /// XCore call implementation 1038 SDValue 1039 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 1040 SmallVectorImpl<SDValue> &InVals) const { 1041 SelectionDAG &DAG = CLI.DAG; 1042 SDLoc &dl = CLI.DL; 1043 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1044 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1045 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1046 SDValue Chain = CLI.Chain; 1047 SDValue Callee = CLI.Callee; 1048 bool &isTailCall = CLI.IsTailCall; 1049 CallingConv::ID CallConv = CLI.CallConv; 1050 bool isVarArg = CLI.IsVarArg; 1051 1052 // XCore target does not yet support tail call optimization. 1053 isTailCall = false; 1054 1055 // For now, only CallingConv::C implemented 1056 switch (CallConv) 1057 { 1058 default: 1059 llvm_unreachable("Unsupported calling convention"); 1060 case CallingConv::Fast: 1061 case CallingConv::C: 1062 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall, 1063 Outs, OutVals, Ins, dl, DAG, InVals); 1064 } 1065 } 1066 1067 /// LowerCallResult - Lower the result values of a call into the 1068 /// appropriate copies out of appropriate physical registers / memory locations. 1069 static SDValue 1070 LowerCallResult(SDValue Chain, SDValue InFlag, 1071 const SmallVectorImpl<CCValAssign> &RVLocs, 1072 SDLoc dl, SelectionDAG &DAG, 1073 SmallVectorImpl<SDValue> &InVals) { 1074 SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs; 1075 // Copy results out of physical registers. 1076 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 1077 const CCValAssign &VA = RVLocs[i]; 1078 if (VA.isRegLoc()) { 1079 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(), 1080 InFlag).getValue(1); 1081 InFlag = Chain.getValue(2); 1082 InVals.push_back(Chain.getValue(0)); 1083 } else { 1084 assert(VA.isMemLoc()); 1085 ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(), 1086 InVals.size())); 1087 // Reserve space for this result. 1088 InVals.push_back(SDValue()); 1089 } 1090 } 1091 1092 // Copy results out of memory. 1093 SmallVector<SDValue, 4> MemOpChains; 1094 for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) { 1095 int offset = ResultMemLocs[i].first; 1096 unsigned index = ResultMemLocs[i].second; 1097 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 1098 SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, MVT::i32) }; 1099 SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops); 1100 InVals[index] = load; 1101 MemOpChains.push_back(load.getValue(1)); 1102 } 1103 1104 // Transform all loads nodes into one single node because 1105 // all load nodes are independent of each other. 1106 if (!MemOpChains.empty()) 1107 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1108 1109 return Chain; 1110 } 1111 1112 /// LowerCCCCallTo - functions arguments are copied from virtual 1113 /// regs to (physical regs)/(stack frame), CALLSEQ_START and 1114 /// CALLSEQ_END are emitted. 1115 /// TODO: isTailCall, sret. 1116 SDValue 1117 XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee, 1118 CallingConv::ID CallConv, bool isVarArg, 1119 bool isTailCall, 1120 const SmallVectorImpl<ISD::OutputArg> &Outs, 1121 const SmallVectorImpl<SDValue> &OutVals, 1122 const SmallVectorImpl<ISD::InputArg> &Ins, 1123 SDLoc dl, SelectionDAG &DAG, 1124 SmallVectorImpl<SDValue> &InVals) const { 1125 1126 // Analyze operands of the call, assigning locations to each operand. 1127 SmallVector<CCValAssign, 16> ArgLocs; 1128 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 1129 *DAG.getContext()); 1130 1131 // The ABI dictates there should be one stack slot available to the callee 1132 // on function entry (for saving lr). 1133 CCInfo.AllocateStack(4, 4); 1134 1135 CCInfo.AnalyzeCallOperands(Outs, CC_XCore); 1136 1137 SmallVector<CCValAssign, 16> RVLocs; 1138 // Analyze return values to determine the number of bytes of stack required. 1139 CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 1140 *DAG.getContext()); 1141 RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4); 1142 RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore); 1143 1144 // Get a count of how many bytes are to be pushed on the stack. 1145 unsigned NumBytes = RetCCInfo.getNextStackOffset(); 1146 1147 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, 1148 getPointerTy(), true), dl); 1149 1150 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass; 1151 SmallVector<SDValue, 12> MemOpChains; 1152 1153 // Walk the register/memloc assignments, inserting copies/loads. 1154 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1155 CCValAssign &VA = ArgLocs[i]; 1156 SDValue Arg = OutVals[i]; 1157 1158 // Promote the value if needed. 1159 switch (VA.getLocInfo()) { 1160 default: llvm_unreachable("Unknown loc info!"); 1161 case CCValAssign::Full: break; 1162 case CCValAssign::SExt: 1163 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 1164 break; 1165 case CCValAssign::ZExt: 1166 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 1167 break; 1168 case CCValAssign::AExt: 1169 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 1170 break; 1171 } 1172 1173 // Arguments that can be passed on register must be kept at 1174 // RegsToPass vector 1175 if (VA.isRegLoc()) { 1176 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 1177 } else { 1178 assert(VA.isMemLoc()); 1179 1180 int Offset = VA.getLocMemOffset(); 1181 1182 MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other, 1183 Chain, Arg, 1184 DAG.getConstant(Offset/4, MVT::i32))); 1185 } 1186 } 1187 1188 // Transform all store nodes into one single node because 1189 // all store nodes are independent of each other. 1190 if (!MemOpChains.empty()) 1191 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1192 1193 // Build a sequence of copy-to-reg nodes chained together with token 1194 // chain and flag operands which copy the outgoing args into registers. 1195 // The InFlag in necessary since all emitted instructions must be 1196 // stuck together. 1197 SDValue InFlag; 1198 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1199 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 1200 RegsToPass[i].second, InFlag); 1201 InFlag = Chain.getValue(1); 1202 } 1203 1204 // If the callee is a GlobalAddress node (quite common, every direct call is) 1205 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1206 // Likewise ExternalSymbol -> TargetExternalSymbol. 1207 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1208 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32); 1209 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 1210 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32); 1211 1212 // XCoreBranchLink = #chain, #target_address, #opt_in_flags... 1213 // = Chain, Callee, Reg#1, Reg#2, ... 1214 // 1215 // Returns a chain & a flag for retval copy to use. 1216 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1217 SmallVector<SDValue, 8> Ops; 1218 Ops.push_back(Chain); 1219 Ops.push_back(Callee); 1220 1221 // Add argument registers to the end of the list so that they are 1222 // known live into the call. 1223 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1224 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1225 RegsToPass[i].second.getValueType())); 1226 1227 if (InFlag.getNode()) 1228 Ops.push_back(InFlag); 1229 1230 Chain = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops); 1231 InFlag = Chain.getValue(1); 1232 1233 // Create the CALLSEQ_END node. 1234 Chain = DAG.getCALLSEQ_END(Chain, 1235 DAG.getConstant(NumBytes, getPointerTy(), true), 1236 DAG.getConstant(0, getPointerTy(), true), 1237 InFlag, dl); 1238 InFlag = Chain.getValue(1); 1239 1240 // Handle result values, copying them out of physregs into vregs that we 1241 // return. 1242 return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals); 1243 } 1244 1245 //===----------------------------------------------------------------------===// 1246 // Formal Arguments Calling Convention Implementation 1247 //===----------------------------------------------------------------------===// 1248 1249 namespace { 1250 struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; }; 1251 } 1252 1253 /// XCore formal arguments implementation 1254 SDValue 1255 XCoreTargetLowering::LowerFormalArguments(SDValue Chain, 1256 CallingConv::ID CallConv, 1257 bool isVarArg, 1258 const SmallVectorImpl<ISD::InputArg> &Ins, 1259 SDLoc dl, 1260 SelectionDAG &DAG, 1261 SmallVectorImpl<SDValue> &InVals) 1262 const { 1263 switch (CallConv) 1264 { 1265 default: 1266 llvm_unreachable("Unsupported calling convention"); 1267 case CallingConv::C: 1268 case CallingConv::Fast: 1269 return LowerCCCArguments(Chain, CallConv, isVarArg, 1270 Ins, dl, DAG, InVals); 1271 } 1272 } 1273 1274 /// LowerCCCArguments - transform physical registers into 1275 /// virtual registers and generate load operations for 1276 /// arguments places on the stack. 1277 /// TODO: sret 1278 SDValue 1279 XCoreTargetLowering::LowerCCCArguments(SDValue Chain, 1280 CallingConv::ID CallConv, 1281 bool isVarArg, 1282 const SmallVectorImpl<ISD::InputArg> 1283 &Ins, 1284 SDLoc dl, 1285 SelectionDAG &DAG, 1286 SmallVectorImpl<SDValue> &InVals) const { 1287 MachineFunction &MF = DAG.getMachineFunction(); 1288 MachineFrameInfo *MFI = MF.getFrameInfo(); 1289 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1290 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 1291 1292 // Assign locations to all of the incoming arguments. 1293 SmallVector<CCValAssign, 16> ArgLocs; 1294 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 1295 *DAG.getContext()); 1296 1297 CCInfo.AnalyzeFormalArguments(Ins, CC_XCore); 1298 1299 unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize(); 1300 1301 unsigned LRSaveSize = StackSlotSize; 1302 1303 if (!isVarArg) 1304 XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize); 1305 1306 // All getCopyFromReg ops must precede any getMemcpys to prevent the 1307 // scheduler clobbering a register before it has been copied. 1308 // The stages are: 1309 // 1. CopyFromReg (and load) arg & vararg registers. 1310 // 2. Chain CopyFromReg nodes into a TokenFactor. 1311 // 3. Memcpy 'byVal' args & push final InVals. 1312 // 4. Chain mem ops nodes into a TokenFactor. 1313 SmallVector<SDValue, 4> CFRegNode; 1314 SmallVector<ArgDataPair, 4> ArgData; 1315 SmallVector<SDValue, 4> MemOps; 1316 1317 // 1a. CopyFromReg (and load) arg registers. 1318 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1319 1320 CCValAssign &VA = ArgLocs[i]; 1321 SDValue ArgIn; 1322 1323 if (VA.isRegLoc()) { 1324 // Arguments passed in registers 1325 EVT RegVT = VA.getLocVT(); 1326 switch (RegVT.getSimpleVT().SimpleTy) { 1327 default: 1328 { 1329 #ifndef NDEBUG 1330 errs() << "LowerFormalArguments Unhandled argument type: " 1331 << RegVT.getSimpleVT().SimpleTy << "\n"; 1332 #endif 1333 llvm_unreachable(nullptr); 1334 } 1335 case MVT::i32: 1336 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass); 1337 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1338 ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); 1339 CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1)); 1340 } 1341 } else { 1342 // sanity check 1343 assert(VA.isMemLoc()); 1344 // Load the argument to a virtual register 1345 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8; 1346 if (ObjSize > StackSlotSize) { 1347 errs() << "LowerFormalArguments Unhandled argument type: " 1348 << EVT(VA.getLocVT()).getEVTString() 1349 << "\n"; 1350 } 1351 // Create the frame index object for this incoming parameter... 1352 int FI = MFI->CreateFixedObject(ObjSize, 1353 LRSaveSize + VA.getLocMemOffset(), 1354 true); 1355 1356 // Create the SelectionDAG nodes corresponding to a load 1357 //from this parameter 1358 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1359 ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, 1360 MachinePointerInfo::getFixedStack(FI), 1361 false, false, false, 0); 1362 } 1363 const ArgDataPair ADP = { ArgIn, Ins[i].Flags }; 1364 ArgData.push_back(ADP); 1365 } 1366 1367 // 1b. CopyFromReg vararg registers. 1368 if (isVarArg) { 1369 // Argument registers 1370 static const MCPhysReg ArgRegs[] = { 1371 XCore::R0, XCore::R1, XCore::R2, XCore::R3 1372 }; 1373 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 1374 unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs, 1375 array_lengthof(ArgRegs)); 1376 if (FirstVAReg < array_lengthof(ArgRegs)) { 1377 int offset = 0; 1378 // Save remaining registers, storing higher register numbers at a higher 1379 // address 1380 for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) { 1381 // Create a stack slot 1382 int FI = MFI->CreateFixedObject(4, offset, true); 1383 if (i == (int)FirstVAReg) { 1384 XFI->setVarArgsFrameIndex(FI); 1385 } 1386 offset -= StackSlotSize; 1387 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1388 // Move argument from phys reg -> virt reg 1389 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass); 1390 RegInfo.addLiveIn(ArgRegs[i], VReg); 1391 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 1392 CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1)); 1393 // Move argument from virt reg -> stack 1394 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1395 MachinePointerInfo(), false, false, 0); 1396 MemOps.push_back(Store); 1397 } 1398 } else { 1399 // This will point to the next argument passed via stack. 1400 XFI->setVarArgsFrameIndex( 1401 MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(), 1402 true)); 1403 } 1404 } 1405 1406 // 2. chain CopyFromReg nodes into a TokenFactor. 1407 if (!CFRegNode.empty()) 1408 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode); 1409 1410 // 3. Memcpy 'byVal' args & push final InVals. 1411 // Aggregates passed "byVal" need to be copied by the callee. 1412 // The callee will use a pointer to this copy, rather than the original 1413 // pointer. 1414 for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(), 1415 ArgDE = ArgData.end(); 1416 ArgDI != ArgDE; ++ArgDI) { 1417 if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) { 1418 unsigned Size = ArgDI->Flags.getByValSize(); 1419 unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign()); 1420 // Create a new object on the stack and copy the pointee into it. 1421 int FI = MFI->CreateStackObject(Size, Align, false); 1422 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1423 InVals.push_back(FIN); 1424 MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV, 1425 DAG.getConstant(Size, MVT::i32), 1426 Align, false, false, 1427 MachinePointerInfo(), 1428 MachinePointerInfo())); 1429 } else { 1430 InVals.push_back(ArgDI->SDV); 1431 } 1432 } 1433 1434 // 4, chain mem ops nodes into a TokenFactor. 1435 if (!MemOps.empty()) { 1436 MemOps.push_back(Chain); 1437 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 1438 } 1439 1440 return Chain; 1441 } 1442 1443 //===----------------------------------------------------------------------===// 1444 // Return Value Calling Convention Implementation 1445 //===----------------------------------------------------------------------===// 1446 1447 bool XCoreTargetLowering:: 1448 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, 1449 bool isVarArg, 1450 const SmallVectorImpl<ISD::OutputArg> &Outs, 1451 LLVMContext &Context) const { 1452 SmallVector<CCValAssign, 16> RVLocs; 1453 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 1454 if (!CCInfo.CheckReturn(Outs, RetCC_XCore)) 1455 return false; 1456 if (CCInfo.getNextStackOffset() != 0 && isVarArg) 1457 return false; 1458 return true; 1459 } 1460 1461 SDValue 1462 XCoreTargetLowering::LowerReturn(SDValue Chain, 1463 CallingConv::ID CallConv, bool isVarArg, 1464 const SmallVectorImpl<ISD::OutputArg> &Outs, 1465 const SmallVectorImpl<SDValue> &OutVals, 1466 SDLoc dl, SelectionDAG &DAG) const { 1467 1468 XCoreFunctionInfo *XFI = 1469 DAG.getMachineFunction().getInfo<XCoreFunctionInfo>(); 1470 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 1471 1472 // CCValAssign - represent the assignment of 1473 // the return value to a location 1474 SmallVector<CCValAssign, 16> RVLocs; 1475 1476 // CCState - Info about the registers and stack slot. 1477 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 1478 *DAG.getContext()); 1479 1480 // Analyze return values. 1481 if (!isVarArg) 1482 CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4); 1483 1484 CCInfo.AnalyzeReturn(Outs, RetCC_XCore); 1485 1486 SDValue Flag; 1487 SmallVector<SDValue, 4> RetOps(1, Chain); 1488 1489 // Return on XCore is always a "retsp 0" 1490 RetOps.push_back(DAG.getConstant(0, MVT::i32)); 1491 1492 SmallVector<SDValue, 4> MemOpChains; 1493 // Handle return values that must be copied to memory. 1494 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 1495 CCValAssign &VA = RVLocs[i]; 1496 if (VA.isRegLoc()) 1497 continue; 1498 assert(VA.isMemLoc()); 1499 if (isVarArg) { 1500 report_fatal_error("Can't return value from vararg function in memory"); 1501 } 1502 1503 int Offset = VA.getLocMemOffset(); 1504 unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8; 1505 // Create the frame index object for the memory location. 1506 int FI = MFI->CreateFixedObject(ObjSize, Offset, false); 1507 1508 // Create a SelectionDAG node corresponding to a store 1509 // to this memory location. 1510 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1511 MemOpChains.push_back(DAG.getStore(Chain, dl, OutVals[i], FIN, 1512 MachinePointerInfo::getFixedStack(FI), false, false, 1513 0)); 1514 } 1515 1516 // Transform all store nodes into one single node because 1517 // all stores are independent of each other. 1518 if (!MemOpChains.empty()) 1519 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1520 1521 // Now handle return values copied to registers. 1522 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 1523 CCValAssign &VA = RVLocs[i]; 1524 if (!VA.isRegLoc()) 1525 continue; 1526 // Copy the result values into the output registers. 1527 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); 1528 1529 // guarantee that all emitted copies are 1530 // stuck together, avoiding something bad 1531 Flag = Chain.getValue(1); 1532 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 1533 } 1534 1535 RetOps[0] = Chain; // Update chain. 1536 1537 // Add the flag if we have it. 1538 if (Flag.getNode()) 1539 RetOps.push_back(Flag); 1540 1541 return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps); 1542 } 1543 1544 //===----------------------------------------------------------------------===// 1545 // Other Lowering Code 1546 //===----------------------------------------------------------------------===// 1547 1548 MachineBasicBlock * 1549 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 1550 MachineBasicBlock *BB) const { 1551 const TargetInstrInfo &TII = 1552 *getTargetMachine().getSubtargetImpl()->getInstrInfo(); 1553 DebugLoc dl = MI->getDebugLoc(); 1554 assert((MI->getOpcode() == XCore::SELECT_CC) && 1555 "Unexpected instr type to insert"); 1556 1557 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond 1558 // control-flow pattern. The incoming instruction knows the destination vreg 1559 // to set, the condition code register to branch on, the true/false values to 1560 // select between, and a branch opcode to use. 1561 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1562 MachineFunction::iterator It = BB; 1563 ++It; 1564 1565 // thisMBB: 1566 // ... 1567 // TrueVal = ... 1568 // cmpTY ccX, r1, r2 1569 // bCC copy1MBB 1570 // fallthrough --> copy0MBB 1571 MachineBasicBlock *thisMBB = BB; 1572 MachineFunction *F = BB->getParent(); 1573 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 1574 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 1575 F->insert(It, copy0MBB); 1576 F->insert(It, sinkMBB); 1577 1578 // Transfer the remainder of BB and its successor edges to sinkMBB. 1579 sinkMBB->splice(sinkMBB->begin(), BB, 1580 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1581 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 1582 1583 // Next, add the true and fallthrough blocks as its successors. 1584 BB->addSuccessor(copy0MBB); 1585 BB->addSuccessor(sinkMBB); 1586 1587 BuildMI(BB, dl, TII.get(XCore::BRFT_lru6)) 1588 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 1589 1590 // copy0MBB: 1591 // %FalseValue = ... 1592 // # fallthrough to sinkMBB 1593 BB = copy0MBB; 1594 1595 // Update machine-CFG edges 1596 BB->addSuccessor(sinkMBB); 1597 1598 // sinkMBB: 1599 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 1600 // ... 1601 BB = sinkMBB; 1602 BuildMI(*BB, BB->begin(), dl, 1603 TII.get(XCore::PHI), MI->getOperand(0).getReg()) 1604 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 1605 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 1606 1607 MI->eraseFromParent(); // The pseudo instruction is gone now. 1608 return BB; 1609 } 1610 1611 //===----------------------------------------------------------------------===// 1612 // Target Optimization Hooks 1613 //===----------------------------------------------------------------------===// 1614 1615 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N, 1616 DAGCombinerInfo &DCI) const { 1617 SelectionDAG &DAG = DCI.DAG; 1618 SDLoc dl(N); 1619 switch (N->getOpcode()) { 1620 default: break; 1621 case ISD::INTRINSIC_VOID: 1622 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 1623 case Intrinsic::xcore_outt: 1624 case Intrinsic::xcore_outct: 1625 case Intrinsic::xcore_chkct: { 1626 SDValue OutVal = N->getOperand(3); 1627 // These instructions ignore the high bits. 1628 if (OutVal.hasOneUse()) { 1629 unsigned BitWidth = OutVal.getValueSizeInBits(); 1630 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8); 1631 APInt KnownZero, KnownOne; 1632 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1633 !DCI.isBeforeLegalizeOps()); 1634 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1635 if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) || 1636 TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne, 1637 TLO)) 1638 DCI.CommitTargetLoweringOpt(TLO); 1639 } 1640 break; 1641 } 1642 case Intrinsic::xcore_setpt: { 1643 SDValue Time = N->getOperand(3); 1644 // This instruction ignores the high bits. 1645 if (Time.hasOneUse()) { 1646 unsigned BitWidth = Time.getValueSizeInBits(); 1647 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16); 1648 APInt KnownZero, KnownOne; 1649 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1650 !DCI.isBeforeLegalizeOps()); 1651 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1652 if (TLO.ShrinkDemandedConstant(Time, DemandedMask) || 1653 TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne, 1654 TLO)) 1655 DCI.CommitTargetLoweringOpt(TLO); 1656 } 1657 break; 1658 } 1659 } 1660 break; 1661 case XCoreISD::LADD: { 1662 SDValue N0 = N->getOperand(0); 1663 SDValue N1 = N->getOperand(1); 1664 SDValue N2 = N->getOperand(2); 1665 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1666 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1667 EVT VT = N0.getValueType(); 1668 1669 // canonicalize constant to RHS 1670 if (N0C && !N1C) 1671 return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2); 1672 1673 // fold (ladd 0, 0, x) -> 0, x & 1 1674 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) { 1675 SDValue Carry = DAG.getConstant(0, VT); 1676 SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2, 1677 DAG.getConstant(1, VT)); 1678 SDValue Ops[] = { Result, Carry }; 1679 return DAG.getMergeValues(Ops, dl); 1680 } 1681 1682 // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the 1683 // low bit set 1684 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) { 1685 APInt KnownZero, KnownOne; 1686 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1687 VT.getSizeInBits() - 1); 1688 DAG.computeKnownBits(N2, KnownZero, KnownOne); 1689 if ((KnownZero & Mask) == Mask) { 1690 SDValue Carry = DAG.getConstant(0, VT); 1691 SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2); 1692 SDValue Ops[] = { Result, Carry }; 1693 return DAG.getMergeValues(Ops, dl); 1694 } 1695 } 1696 } 1697 break; 1698 case XCoreISD::LSUB: { 1699 SDValue N0 = N->getOperand(0); 1700 SDValue N1 = N->getOperand(1); 1701 SDValue N2 = N->getOperand(2); 1702 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1703 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1704 EVT VT = N0.getValueType(); 1705 1706 // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set 1707 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) { 1708 APInt KnownZero, KnownOne; 1709 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1710 VT.getSizeInBits() - 1); 1711 DAG.computeKnownBits(N2, KnownZero, KnownOne); 1712 if ((KnownZero & Mask) == Mask) { 1713 SDValue Borrow = N2; 1714 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, 1715 DAG.getConstant(0, VT), N2); 1716 SDValue Ops[] = { Result, Borrow }; 1717 return DAG.getMergeValues(Ops, dl); 1718 } 1719 } 1720 1721 // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the 1722 // low bit set 1723 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) { 1724 APInt KnownZero, KnownOne; 1725 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1726 VT.getSizeInBits() - 1); 1727 DAG.computeKnownBits(N2, KnownZero, KnownOne); 1728 if ((KnownZero & Mask) == Mask) { 1729 SDValue Borrow = DAG.getConstant(0, VT); 1730 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2); 1731 SDValue Ops[] = { Result, Borrow }; 1732 return DAG.getMergeValues(Ops, dl); 1733 } 1734 } 1735 } 1736 break; 1737 case XCoreISD::LMUL: { 1738 SDValue N0 = N->getOperand(0); 1739 SDValue N1 = N->getOperand(1); 1740 SDValue N2 = N->getOperand(2); 1741 SDValue N3 = N->getOperand(3); 1742 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1743 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1744 EVT VT = N0.getValueType(); 1745 // Canonicalize multiplicative constant to RHS. If both multiplicative 1746 // operands are constant canonicalize smallest to RHS. 1747 if ((N0C && !N1C) || 1748 (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue())) 1749 return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT), 1750 N1, N0, N2, N3); 1751 1752 // lmul(x, 0, a, b) 1753 if (N1C && N1C->isNullValue()) { 1754 // If the high result is unused fold to add(a, b) 1755 if (N->hasNUsesOfValue(0, 0)) { 1756 SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3); 1757 SDValue Ops[] = { Lo, Lo }; 1758 return DAG.getMergeValues(Ops, dl); 1759 } 1760 // Otherwise fold to ladd(a, b, 0) 1761 SDValue Result = 1762 DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1); 1763 SDValue Carry(Result.getNode(), 1); 1764 SDValue Ops[] = { Carry, Result }; 1765 return DAG.getMergeValues(Ops, dl); 1766 } 1767 } 1768 break; 1769 case ISD::ADD: { 1770 // Fold 32 bit expressions such as add(add(mul(x,y),a),b) -> 1771 // lmul(x, y, a, b). The high result of lmul will be ignored. 1772 // This is only profitable if the intermediate results are unused 1773 // elsewhere. 1774 SDValue Mul0, Mul1, Addend0, Addend1; 1775 if (N->getValueType(0) == MVT::i32 && 1776 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) { 1777 SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl, 1778 DAG.getVTList(MVT::i32, MVT::i32), Mul0, 1779 Mul1, Addend0, Addend1); 1780 SDValue Result(Ignored.getNode(), 1); 1781 return Result; 1782 } 1783 APInt HighMask = APInt::getHighBitsSet(64, 32); 1784 // Fold 64 bit expression such as add(add(mul(x,y),a),b) -> 1785 // lmul(x, y, a, b) if all operands are zero-extended. We do this 1786 // before type legalization as it is messy to match the operands after 1787 // that. 1788 if (N->getValueType(0) == MVT::i64 && 1789 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) && 1790 DAG.MaskedValueIsZero(Mul0, HighMask) && 1791 DAG.MaskedValueIsZero(Mul1, HighMask) && 1792 DAG.MaskedValueIsZero(Addend0, HighMask) && 1793 DAG.MaskedValueIsZero(Addend1, HighMask)) { 1794 SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1795 Mul0, DAG.getConstant(0, MVT::i32)); 1796 SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1797 Mul1, DAG.getConstant(0, MVT::i32)); 1798 SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1799 Addend0, DAG.getConstant(0, MVT::i32)); 1800 SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1801 Addend1, DAG.getConstant(0, MVT::i32)); 1802 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl, 1803 DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L, 1804 Addend0L, Addend1L); 1805 SDValue Lo(Hi.getNode(), 1); 1806 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 1807 } 1808 } 1809 break; 1810 case ISD::STORE: { 1811 // Replace unaligned store of unaligned load with memmove. 1812 StoreSDNode *ST = cast<StoreSDNode>(N); 1813 if (!DCI.isBeforeLegalize() || 1814 allowsMisalignedMemoryAccesses(ST->getMemoryVT(), 1815 ST->getAddressSpace(), 1816 ST->getAlignment()) || 1817 ST->isVolatile() || ST->isIndexed()) { 1818 break; 1819 } 1820 SDValue Chain = ST->getChain(); 1821 1822 unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits(); 1823 if (StoreBits % 8) { 1824 break; 1825 } 1826 unsigned ABIAlignment = getDataLayout()->getABITypeAlignment( 1827 ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext())); 1828 unsigned Alignment = ST->getAlignment(); 1829 if (Alignment >= ABIAlignment) { 1830 break; 1831 } 1832 1833 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) { 1834 if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() && 1835 LD->getAlignment() == Alignment && 1836 !LD->isVolatile() && !LD->isIndexed() && 1837 Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) { 1838 return DAG.getMemmove(Chain, dl, ST->getBasePtr(), 1839 LD->getBasePtr(), 1840 DAG.getConstant(StoreBits/8, MVT::i32), 1841 Alignment, false, ST->getPointerInfo(), 1842 LD->getPointerInfo()); 1843 } 1844 } 1845 break; 1846 } 1847 } 1848 return SDValue(); 1849 } 1850 1851 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1852 APInt &KnownZero, 1853 APInt &KnownOne, 1854 const SelectionDAG &DAG, 1855 unsigned Depth) const { 1856 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 1857 switch (Op.getOpcode()) { 1858 default: break; 1859 case XCoreISD::LADD: 1860 case XCoreISD::LSUB: 1861 if (Op.getResNo() == 1) { 1862 // Top bits of carry / borrow are clear. 1863 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1864 KnownZero.getBitWidth() - 1); 1865 } 1866 break; 1867 case ISD::INTRINSIC_W_CHAIN: 1868 { 1869 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1870 switch (IntNo) { 1871 case Intrinsic::xcore_getts: 1872 // High bits are known to be zero. 1873 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1874 KnownZero.getBitWidth() - 16); 1875 break; 1876 case Intrinsic::xcore_int: 1877 case Intrinsic::xcore_inct: 1878 // High bits are known to be zero. 1879 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1880 KnownZero.getBitWidth() - 8); 1881 break; 1882 case Intrinsic::xcore_testct: 1883 // Result is either 0 or 1. 1884 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1885 KnownZero.getBitWidth() - 1); 1886 break; 1887 case Intrinsic::xcore_testwct: 1888 // Result is in the range 0 - 4. 1889 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1890 KnownZero.getBitWidth() - 3); 1891 break; 1892 } 1893 } 1894 break; 1895 } 1896 } 1897 1898 //===----------------------------------------------------------------------===// 1899 // Addressing mode description hooks 1900 //===----------------------------------------------------------------------===// 1901 1902 static inline bool isImmUs(int64_t val) 1903 { 1904 return (val >= 0 && val <= 11); 1905 } 1906 1907 static inline bool isImmUs2(int64_t val) 1908 { 1909 return (val%2 == 0 && isImmUs(val/2)); 1910 } 1911 1912 static inline bool isImmUs4(int64_t val) 1913 { 1914 return (val%4 == 0 && isImmUs(val/4)); 1915 } 1916 1917 /// isLegalAddressingMode - Return true if the addressing mode represented 1918 /// by AM is legal for this target, for a load/store of the specified type. 1919 bool 1920 XCoreTargetLowering::isLegalAddressingMode(const AddrMode &AM, 1921 Type *Ty) const { 1922 if (Ty->getTypeID() == Type::VoidTyID) 1923 return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs); 1924 1925 const DataLayout *TD = TM.getSubtargetImpl()->getDataLayout(); 1926 unsigned Size = TD->getTypeAllocSize(Ty); 1927 if (AM.BaseGV) { 1928 return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 && 1929 AM.BaseOffs%4 == 0; 1930 } 1931 1932 switch (Size) { 1933 case 1: 1934 // reg + imm 1935 if (AM.Scale == 0) { 1936 return isImmUs(AM.BaseOffs); 1937 } 1938 // reg + reg 1939 return AM.Scale == 1 && AM.BaseOffs == 0; 1940 case 2: 1941 case 3: 1942 // reg + imm 1943 if (AM.Scale == 0) { 1944 return isImmUs2(AM.BaseOffs); 1945 } 1946 // reg + reg<<1 1947 return AM.Scale == 2 && AM.BaseOffs == 0; 1948 default: 1949 // reg + imm 1950 if (AM.Scale == 0) { 1951 return isImmUs4(AM.BaseOffs); 1952 } 1953 // reg + reg<<2 1954 return AM.Scale == 4 && AM.BaseOffs == 0; 1955 } 1956 } 1957 1958 //===----------------------------------------------------------------------===// 1959 // XCore Inline Assembly Support 1960 //===----------------------------------------------------------------------===// 1961 1962 std::pair<unsigned, const TargetRegisterClass*> 1963 XCoreTargetLowering:: 1964 getRegForInlineAsmConstraint(const std::string &Constraint, 1965 MVT VT) const { 1966 if (Constraint.size() == 1) { 1967 switch (Constraint[0]) { 1968 default : break; 1969 case 'r': 1970 return std::make_pair(0U, &XCore::GRRegsRegClass); 1971 } 1972 } 1973 // Use the default implementation in TargetLowering to convert the register 1974 // constraint into a member of a register class. 1975 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 1976 } 1977