1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the XCoreTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "XCoreISelLowering.h"
14 #include "XCore.h"
15 #include "XCoreMachineFunctionInfo.h"
16 #include "XCoreSubtarget.h"
17 #include "XCoreTargetMachine.h"
18 #include "XCoreTargetObjectFile.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAGISel.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/KnownBits.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "xcore-lower"
43 
44 const char *XCoreTargetLowering::
45 getTargetNodeName(unsigned Opcode) const
46 {
47   switch ((XCoreISD::NodeType)Opcode)
48   {
49     case XCoreISD::FIRST_NUMBER      : break;
50     case XCoreISD::BL                : return "XCoreISD::BL";
51     case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
52     case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
53     case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
54     case XCoreISD::LDWSP             : return "XCoreISD::LDWSP";
55     case XCoreISD::STWSP             : return "XCoreISD::STWSP";
56     case XCoreISD::RETSP             : return "XCoreISD::RETSP";
57     case XCoreISD::LADD              : return "XCoreISD::LADD";
58     case XCoreISD::LSUB              : return "XCoreISD::LSUB";
59     case XCoreISD::LMUL              : return "XCoreISD::LMUL";
60     case XCoreISD::MACCU             : return "XCoreISD::MACCU";
61     case XCoreISD::MACCS             : return "XCoreISD::MACCS";
62     case XCoreISD::CRC8              : return "XCoreISD::CRC8";
63     case XCoreISD::BR_JT             : return "XCoreISD::BR_JT";
64     case XCoreISD::BR_JT32           : return "XCoreISD::BR_JT32";
65     case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
66     case XCoreISD::EH_RETURN         : return "XCoreISD::EH_RETURN";
67     case XCoreISD::MEMBARRIER        : return "XCoreISD::MEMBARRIER";
68   }
69   return nullptr;
70 }
71 
72 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
73                                          const XCoreSubtarget &Subtarget)
74     : TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
75 
76   // Set up the register classes.
77   addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
78 
79   // Compute derived properties from the register classes
80   computeRegisterProperties(Subtarget.getRegisterInfo());
81 
82   setStackPointerRegisterToSaveRestore(XCore::SP);
83 
84   setSchedulingPreference(Sched::Source);
85 
86   // Use i32 for setcc operations results (slt, sgt, ...).
87   setBooleanContents(ZeroOrOneBooleanContent);
88   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
89 
90   // XCore does not have the NodeTypes below.
91   setOperationAction(ISD::BR_CC,     MVT::i32,   Expand);
92   setOperationAction(ISD::SELECT_CC, MVT::i32,   Expand);
93 
94   // 64bit
95   setOperationAction(ISD::ADD, MVT::i64, Custom);
96   setOperationAction(ISD::SUB, MVT::i64, Custom);
97   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
98   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
99   setOperationAction(ISD::MULHS, MVT::i32, Expand);
100   setOperationAction(ISD::MULHU, MVT::i32, Expand);
101   setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
102   setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
103   setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
104 
105   // Bit Manipulation
106   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
107   setOperationAction(ISD::ROTL , MVT::i32, Expand);
108   setOperationAction(ISD::ROTR , MVT::i32, Expand);
109 
110   setOperationAction(ISD::TRAP, MVT::Other, Legal);
111 
112   // Jump tables.
113   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
114 
115   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
116   setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
117 
118   // Conversion of i64 -> double produces constantpool nodes
119   setOperationAction(ISD::ConstantPool, MVT::i32,   Custom);
120 
121   // Loads
122   for (MVT VT : MVT::integer_valuetypes()) {
123     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
124     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
125     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
126 
127     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
128     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
129   }
130 
131   // Custom expand misaligned loads / stores.
132   setOperationAction(ISD::LOAD, MVT::i32, Custom);
133   setOperationAction(ISD::STORE, MVT::i32, Custom);
134 
135   // Varargs
136   setOperationAction(ISD::VAEND, MVT::Other, Expand);
137   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
138   setOperationAction(ISD::VAARG, MVT::Other, Custom);
139   setOperationAction(ISD::VASTART, MVT::Other, Custom);
140 
141   // Dynamic stack
142   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
143   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
144   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
145 
146   // Exception handling
147   setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
148   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
149 
150   // Atomic operations
151   // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
152   // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
153   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
154   setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
155   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
156 
157   // TRAMPOLINE is custom lowered.
158   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
159   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
160 
161   // We want to custom lower some of our intrinsics.
162   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
163 
164   MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
165   MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
166     = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
167 
168   // We have target-specific dag combine patterns for the following nodes:
169   setTargetDAGCombine(ISD::STORE);
170   setTargetDAGCombine(ISD::ADD);
171   setTargetDAGCombine(ISD::INTRINSIC_VOID);
172   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
173 
174   setMinFunctionAlignment(1);
175   setPrefFunctionAlignment(2);
176 }
177 
178 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
179   if (Val.getOpcode() != ISD::LOAD)
180     return false;
181 
182   EVT VT1 = Val.getValueType();
183   if (!VT1.isSimple() || !VT1.isInteger() ||
184       !VT2.isSimple() || !VT2.isInteger())
185     return false;
186 
187   switch (VT1.getSimpleVT().SimpleTy) {
188   default: break;
189   case MVT::i8:
190     return true;
191   }
192 
193   return false;
194 }
195 
196 SDValue XCoreTargetLowering::
197 LowerOperation(SDValue Op, SelectionDAG &DAG) const {
198   switch (Op.getOpcode())
199   {
200   case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
201   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
202   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
203   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
204   case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
205   case ISD::LOAD:               return LowerLOAD(Op, DAG);
206   case ISD::STORE:              return LowerSTORE(Op, DAG);
207   case ISD::VAARG:              return LowerVAARG(Op, DAG);
208   case ISD::VASTART:            return LowerVASTART(Op, DAG);
209   case ISD::SMUL_LOHI:          return LowerSMUL_LOHI(Op, DAG);
210   case ISD::UMUL_LOHI:          return LowerUMUL_LOHI(Op, DAG);
211   // FIXME: Remove these when LegalizeDAGTypes lands.
212   case ISD::ADD:
213   case ISD::SUB:                return ExpandADDSUB(Op.getNode(), DAG);
214   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
215   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
216   case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
217   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
218   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
219   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
220   case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
221   case ISD::ATOMIC_LOAD:        return LowerATOMIC_LOAD(Op, DAG);
222   case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op, DAG);
223   default:
224     llvm_unreachable("unimplemented operand");
225   }
226 }
227 
228 /// ReplaceNodeResults - Replace the results of node with an illegal result
229 /// type with new values built out of custom code.
230 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
231                                              SmallVectorImpl<SDValue>&Results,
232                                              SelectionDAG &DAG) const {
233   switch (N->getOpcode()) {
234   default:
235     llvm_unreachable("Don't know how to custom expand this!");
236   case ISD::ADD:
237   case ISD::SUB:
238     Results.push_back(ExpandADDSUB(N, DAG));
239     return;
240   }
241 }
242 
243 //===----------------------------------------------------------------------===//
244 //  Misc Lower Operation implementation
245 //===----------------------------------------------------------------------===//
246 
247 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
248                                                      const GlobalValue *GV,
249                                                      SelectionDAG &DAG) const {
250   // FIXME there is no actual debug info here
251   SDLoc dl(GA);
252 
253   if (GV->getValueType()->isFunctionTy())
254     return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
255 
256   const auto *GVar = dyn_cast<GlobalVariable>(GV);
257   if ((GV->hasSection() && GV->getSection().startswith(".cp.")) ||
258       (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
259     return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
260 
261   return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
262 }
263 
264 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
265   if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
266     return true;
267 
268   Type *ObjType = GV->getValueType();
269   if (!ObjType->isSized())
270     return false;
271 
272   auto &DL = GV->getParent()->getDataLayout();
273   unsigned ObjSize = DL.getTypeAllocSize(ObjType);
274   return ObjSize < CodeModelLargeSize && ObjSize != 0;
275 }
276 
277 SDValue XCoreTargetLowering::
278 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
279 {
280   const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
281   const GlobalValue *GV = GN->getGlobal();
282   SDLoc DL(GN);
283   int64_t Offset = GN->getOffset();
284   if (IsSmallObject(GV, *this)) {
285     // We can only fold positive offsets that are a multiple of the word size.
286     int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
287     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
288     GA = getGlobalAddressWrapper(GA, GV, DAG);
289     // Handle the rest of the offset.
290     if (Offset != FoldedOffset) {
291       SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32);
292       GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
293     }
294     return GA;
295   } else {
296     // Ideally we would not fold in offset with an index <= 11.
297     Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
298     Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
299     Ty = Type::getInt32Ty(*DAG.getContext());
300     Constant *Idx = ConstantInt::get(Ty, Offset);
301     Constant *GAI = ConstantExpr::getGetElementPtr(
302         Type::getInt8Ty(*DAG.getContext()), GA, Idx);
303     SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
304     return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL,
305                        DAG.getEntryNode(), CP, MachinePointerInfo());
306   }
307 }
308 
309 SDValue XCoreTargetLowering::
310 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
311 {
312   SDLoc DL(Op);
313   auto PtrVT = getPointerTy(DAG.getDataLayout());
314   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
315   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
316 
317   return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result);
318 }
319 
320 SDValue XCoreTargetLowering::
321 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
322 {
323   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
324   // FIXME there isn't really debug info here
325   SDLoc dl(CP);
326   EVT PtrVT = Op.getValueType();
327   SDValue Res;
328   if (CP->isMachineConstantPoolEntry()) {
329     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
330                                     CP->getAlignment(), CP->getOffset());
331   } else {
332     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
333                                     CP->getAlignment(), CP->getOffset());
334   }
335   return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
336 }
337 
338 unsigned XCoreTargetLowering::getJumpTableEncoding() const {
339   return MachineJumpTableInfo::EK_Inline;
340 }
341 
342 SDValue XCoreTargetLowering::
343 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
344 {
345   SDValue Chain = Op.getOperand(0);
346   SDValue Table = Op.getOperand(1);
347   SDValue Index = Op.getOperand(2);
348   SDLoc dl(Op);
349   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
350   unsigned JTI = JT->getIndex();
351   MachineFunction &MF = DAG.getMachineFunction();
352   const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
353   SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
354 
355   unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
356   if (NumEntries <= 32) {
357     return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
358   }
359   assert((NumEntries >> 31) == 0);
360   SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
361                                     DAG.getConstant(1, dl, MVT::i32));
362   return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
363                      ScaledIndex);
364 }
365 
366 SDValue XCoreTargetLowering::lowerLoadWordFromAlignedBasePlusOffset(
367     const SDLoc &DL, SDValue Chain, SDValue Base, int64_t Offset,
368     SelectionDAG &DAG) const {
369   auto PtrVT = getPointerTy(DAG.getDataLayout());
370   if ((Offset & 0x3) == 0) {
371     return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo());
372   }
373   // Lower to pair of consecutive word aligned loads plus some bit shifting.
374   int32_t HighOffset = alignTo(Offset, 4);
375   int32_t LowOffset = HighOffset - 4;
376   SDValue LowAddr, HighAddr;
377   if (GlobalAddressSDNode *GASD =
378         dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
379     LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
380                                    LowOffset);
381     HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
382                                     HighOffset);
383   } else {
384     LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
385                           DAG.getConstant(LowOffset, DL, MVT::i32));
386     HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
387                            DAG.getConstant(HighOffset, DL, MVT::i32));
388   }
389   SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32);
390   SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32);
391 
392   SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo());
393   SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo());
394   SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
395   SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
396   SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
397   Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
398                       High.getValue(1));
399   SDValue Ops[] = { Result, Chain };
400   return DAG.getMergeValues(Ops, DL);
401 }
402 
403 static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
404 {
405   KnownBits Known = DAG.computeKnownBits(Value);
406   return Known.countMinTrailingZeros() >= 2;
407 }
408 
409 SDValue XCoreTargetLowering::
410 LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
411   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
412   LoadSDNode *LD = cast<LoadSDNode>(Op);
413   assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
414          "Unexpected extension type");
415   assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
416   if (allowsMisalignedMemoryAccesses(LD->getMemoryVT(),
417                                      LD->getAddressSpace(),
418                                      LD->getAlignment()))
419     return SDValue();
420 
421   auto &TD = DAG.getDataLayout();
422   unsigned ABIAlignment = TD.getABITypeAlignment(
423       LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
424   // Leave aligned load alone.
425   if (LD->getAlignment() >= ABIAlignment)
426     return SDValue();
427 
428   SDValue Chain = LD->getChain();
429   SDValue BasePtr = LD->getBasePtr();
430   SDLoc DL(Op);
431 
432   if (!LD->isVolatile()) {
433     const GlobalValue *GV;
434     int64_t Offset = 0;
435     if (DAG.isBaseWithConstantOffset(BasePtr) &&
436         isWordAligned(BasePtr->getOperand(0), DAG)) {
437       SDValue NewBasePtr = BasePtr->getOperand(0);
438       Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
439       return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
440                                                     Offset, DAG);
441     }
442     if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
443         MinAlign(GV->getAlignment(), 4) == 4) {
444       SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
445                                                 BasePtr->getValueType(0));
446       return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
447                                                     Offset, DAG);
448     }
449   }
450 
451   if (LD->getAlignment() == 2) {
452     SDValue Low =
453         DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, BasePtr,
454                        LD->getPointerInfo(), MVT::i16,
455                        /* Alignment = */ 2, LD->getMemOperand()->getFlags());
456     SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
457                                    DAG.getConstant(2, DL, MVT::i32));
458     SDValue High =
459         DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, HighAddr,
460                        LD->getPointerInfo().getWithOffset(2), MVT::i16,
461                        /* Alignment = */ 2, LD->getMemOperand()->getFlags());
462     SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
463                                       DAG.getConstant(16, DL, MVT::i32));
464     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
465     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
466                              High.getValue(1));
467     SDValue Ops[] = { Result, Chain };
468     return DAG.getMergeValues(Ops, DL);
469   }
470 
471   // Lower to a call to __misaligned_load(BasePtr).
472   Type *IntPtrTy = TD.getIntPtrType(*DAG.getContext());
473   TargetLowering::ArgListTy Args;
474   TargetLowering::ArgListEntry Entry;
475 
476   Entry.Ty = IntPtrTy;
477   Entry.Node = BasePtr;
478   Args.push_back(Entry);
479 
480   TargetLowering::CallLoweringInfo CLI(DAG);
481   CLI.setDebugLoc(DL).setChain(Chain).setLibCallee(
482       CallingConv::C, IntPtrTy,
483       DAG.getExternalSymbol("__misaligned_load",
484                             getPointerTy(DAG.getDataLayout())),
485       std::move(Args));
486 
487   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
488   SDValue Ops[] = { CallResult.first, CallResult.second };
489   return DAG.getMergeValues(Ops, DL);
490 }
491 
492 SDValue XCoreTargetLowering::
493 LowerSTORE(SDValue Op, SelectionDAG &DAG) const
494 {
495   StoreSDNode *ST = cast<StoreSDNode>(Op);
496   assert(!ST->isTruncatingStore() && "Unexpected store type");
497   assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
498   if (allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
499                                      ST->getAddressSpace(),
500                                      ST->getAlignment())) {
501     return SDValue();
502   }
503   unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(
504       ST->getMemoryVT().getTypeForEVT(*DAG.getContext()));
505   // Leave aligned store alone.
506   if (ST->getAlignment() >= ABIAlignment) {
507     return SDValue();
508   }
509   SDValue Chain = ST->getChain();
510   SDValue BasePtr = ST->getBasePtr();
511   SDValue Value = ST->getValue();
512   SDLoc dl(Op);
513 
514   if (ST->getAlignment() == 2) {
515     SDValue Low = Value;
516     SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
517                                       DAG.getConstant(16, dl, MVT::i32));
518     SDValue StoreLow = DAG.getTruncStore(
519         Chain, dl, Low, BasePtr, ST->getPointerInfo(), MVT::i16,
520         /* Alignment = */ 2, ST->getMemOperand()->getFlags());
521     SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
522                                    DAG.getConstant(2, dl, MVT::i32));
523     SDValue StoreHigh = DAG.getTruncStore(
524         Chain, dl, High, HighAddr, ST->getPointerInfo().getWithOffset(2),
525         MVT::i16, /* Alignment = */ 2, ST->getMemOperand()->getFlags());
526     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
527   }
528 
529   // Lower to a call to __misaligned_store(BasePtr, Value).
530   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
531   TargetLowering::ArgListTy Args;
532   TargetLowering::ArgListEntry Entry;
533 
534   Entry.Ty = IntPtrTy;
535   Entry.Node = BasePtr;
536   Args.push_back(Entry);
537 
538   Entry.Node = Value;
539   Args.push_back(Entry);
540 
541   TargetLowering::CallLoweringInfo CLI(DAG);
542   CLI.setDebugLoc(dl).setChain(Chain).setCallee(
543       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
544       DAG.getExternalSymbol("__misaligned_store",
545                             getPointerTy(DAG.getDataLayout())),
546       std::move(Args));
547 
548   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
549   return CallResult.second;
550 }
551 
552 SDValue XCoreTargetLowering::
553 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
554 {
555   assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
556          "Unexpected operand to lower!");
557   SDLoc dl(Op);
558   SDValue LHS = Op.getOperand(0);
559   SDValue RHS = Op.getOperand(1);
560   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
561   SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
562                            DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
563                            LHS, RHS);
564   SDValue Lo(Hi.getNode(), 1);
565   SDValue Ops[] = { Lo, Hi };
566   return DAG.getMergeValues(Ops, dl);
567 }
568 
569 SDValue XCoreTargetLowering::
570 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
571 {
572   assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
573          "Unexpected operand to lower!");
574   SDLoc dl(Op);
575   SDValue LHS = Op.getOperand(0);
576   SDValue RHS = Op.getOperand(1);
577   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
578   SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
579                            DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
580                            Zero, Zero);
581   SDValue Lo(Hi.getNode(), 1);
582   SDValue Ops[] = { Lo, Hi };
583   return DAG.getMergeValues(Ops, dl);
584 }
585 
586 /// isADDADDMUL - Return whether Op is in a form that is equivalent to
587 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
588 /// each intermediate result in the calculation must also have a single use.
589 /// If the Op is in the correct form the constituent parts are written to Mul0,
590 /// Mul1, Addend0 and Addend1.
591 static bool
592 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
593             SDValue &Addend1, bool requireIntermediatesHaveOneUse)
594 {
595   if (Op.getOpcode() != ISD::ADD)
596     return false;
597   SDValue N0 = Op.getOperand(0);
598   SDValue N1 = Op.getOperand(1);
599   SDValue AddOp;
600   SDValue OtherOp;
601   if (N0.getOpcode() == ISD::ADD) {
602     AddOp = N0;
603     OtherOp = N1;
604   } else if (N1.getOpcode() == ISD::ADD) {
605     AddOp = N1;
606     OtherOp = N0;
607   } else {
608     return false;
609   }
610   if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
611     return false;
612   if (OtherOp.getOpcode() == ISD::MUL) {
613     // add(add(a,b),mul(x,y))
614     if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
615       return false;
616     Mul0 = OtherOp.getOperand(0);
617     Mul1 = OtherOp.getOperand(1);
618     Addend0 = AddOp.getOperand(0);
619     Addend1 = AddOp.getOperand(1);
620     return true;
621   }
622   if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
623     // add(add(mul(x,y),a),b)
624     if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
625       return false;
626     Mul0 = AddOp.getOperand(0).getOperand(0);
627     Mul1 = AddOp.getOperand(0).getOperand(1);
628     Addend0 = AddOp.getOperand(1);
629     Addend1 = OtherOp;
630     return true;
631   }
632   if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
633     // add(add(a,mul(x,y)),b)
634     if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
635       return false;
636     Mul0 = AddOp.getOperand(1).getOperand(0);
637     Mul1 = AddOp.getOperand(1).getOperand(1);
638     Addend0 = AddOp.getOperand(0);
639     Addend1 = OtherOp;
640     return true;
641   }
642   return false;
643 }
644 
645 SDValue XCoreTargetLowering::
646 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
647 {
648   SDValue Mul;
649   SDValue Other;
650   if (N->getOperand(0).getOpcode() == ISD::MUL) {
651     Mul = N->getOperand(0);
652     Other = N->getOperand(1);
653   } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
654     Mul = N->getOperand(1);
655     Other = N->getOperand(0);
656   } else {
657     return SDValue();
658   }
659   SDLoc dl(N);
660   SDValue LL, RL, AddendL, AddendH;
661   LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
662                    Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32));
663   RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
664                    Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
665   AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
666                         Other, DAG.getConstant(0, dl, MVT::i32));
667   AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
668                         Other, DAG.getConstant(1, dl, MVT::i32));
669   APInt HighMask = APInt::getHighBitsSet(64, 32);
670   unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
671   unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
672   if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
673       DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
674     // The inputs are both zero-extended.
675     SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
676                              DAG.getVTList(MVT::i32, MVT::i32), AddendH,
677                              AddendL, LL, RL);
678     SDValue Lo(Hi.getNode(), 1);
679     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
680   }
681   if (LHSSB > 32 && RHSSB > 32) {
682     // The inputs are both sign-extended.
683     SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
684                              DAG.getVTList(MVT::i32, MVT::i32), AddendH,
685                              AddendL, LL, RL);
686     SDValue Lo(Hi.getNode(), 1);
687     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
688   }
689   SDValue LH, RH;
690   LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
691                    Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32));
692   RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
693                    Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32));
694   SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
695                            DAG.getVTList(MVT::i32, MVT::i32), AddendH,
696                            AddendL, LL, RL);
697   SDValue Lo(Hi.getNode(), 1);
698   RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
699   LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
700   Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
701   Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
702   return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
703 }
704 
705 SDValue XCoreTargetLowering::
706 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
707 {
708   assert(N->getValueType(0) == MVT::i64 &&
709          (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
710         "Unknown operand to lower!");
711 
712   if (N->getOpcode() == ISD::ADD)
713     if (SDValue Result = TryExpandADDWithMul(N, DAG))
714       return Result;
715 
716   SDLoc dl(N);
717 
718   // Extract components
719   SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
720                              N->getOperand(0),
721                              DAG.getConstant(0, dl, MVT::i32));
722   SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
723                              N->getOperand(0),
724                              DAG.getConstant(1, dl, MVT::i32));
725   SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
726                              N->getOperand(1),
727                              DAG.getConstant(0, dl, MVT::i32));
728   SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
729                              N->getOperand(1),
730                              DAG.getConstant(1, dl, MVT::i32));
731 
732   // Expand
733   unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
734                                                    XCoreISD::LSUB;
735   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
736   SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
737                            LHSL, RHSL, Zero);
738   SDValue Carry(Lo.getNode(), 1);
739 
740   SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
741                            LHSH, RHSH, Carry);
742   SDValue Ignored(Hi.getNode(), 1);
743   // Merge the pieces
744   return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
745 }
746 
747 SDValue XCoreTargetLowering::
748 LowerVAARG(SDValue Op, SelectionDAG &DAG) const
749 {
750   // Whist llvm does not support aggregate varargs we can ignore
751   // the possibility of the ValueType being an implicit byVal vararg.
752   SDNode *Node = Op.getNode();
753   EVT VT = Node->getValueType(0); // not an aggregate
754   SDValue InChain = Node->getOperand(0);
755   SDValue VAListPtr = Node->getOperand(1);
756   EVT PtrVT = VAListPtr.getValueType();
757   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
758   SDLoc dl(Node);
759   SDValue VAList =
760       DAG.getLoad(PtrVT, dl, InChain, VAListPtr, MachinePointerInfo(SV));
761   // Increment the pointer, VAList, to the next vararg
762   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
763                                 DAG.getIntPtrConstant(VT.getSizeInBits() / 8,
764                                                       dl));
765   // Store the incremented VAList to the legalized pointer
766   InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
767                          MachinePointerInfo(SV));
768   // Load the actual argument out of the pointer VAList
769   return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo());
770 }
771 
772 SDValue XCoreTargetLowering::
773 LowerVASTART(SDValue Op, SelectionDAG &DAG) const
774 {
775   SDLoc dl(Op);
776   // vastart stores the address of the VarArgsFrameIndex slot into the
777   // memory location argument
778   MachineFunction &MF = DAG.getMachineFunction();
779   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
780   SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
781   return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
782                       MachinePointerInfo());
783 }
784 
785 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
786                                             SelectionDAG &DAG) const {
787   // This nodes represent llvm.frameaddress on the DAG.
788   // It takes one operand, the index of the frame address to return.
789   // An index of zero corresponds to the current function's frame address.
790   // An index of one to the parent's frame address, and so on.
791   // Depths > 0 not supported yet!
792   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
793     return SDValue();
794 
795   MachineFunction &MF = DAG.getMachineFunction();
796   const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
797   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
798                             RegInfo->getFrameRegister(MF), MVT::i32);
799 }
800 
801 SDValue XCoreTargetLowering::
802 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
803   // This nodes represent llvm.returnaddress on the DAG.
804   // It takes one operand, the index of the return address to return.
805   // An index of zero corresponds to the current function's return address.
806   // An index of one to the parent's return address, and so on.
807   // Depths > 0 not supported yet!
808   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
809     return SDValue();
810 
811   MachineFunction &MF = DAG.getMachineFunction();
812   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
813   int FI = XFI->createLRSpillSlot(MF);
814   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
815   return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
816                      DAG.getEntryNode(), FIN,
817                      MachinePointerInfo::getFixedStack(MF, FI));
818 }
819 
820 SDValue XCoreTargetLowering::
821 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
822   // This node represents offset from frame pointer to first on-stack argument.
823   // This is needed for correct stack adjustment during unwind.
824   // However, we don't know the offset until after the frame has be finalised.
825   // This is done during the XCoreFTAOElim pass.
826   return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
827 }
828 
829 SDValue XCoreTargetLowering::
830 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
831   // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
832   // This node represents 'eh_return' gcc dwarf builtin, which is used to
833   // return from exception. The general meaning is: adjust stack by OFFSET and
834   // pass execution to HANDLER.
835   MachineFunction &MF = DAG.getMachineFunction();
836   SDValue Chain     = Op.getOperand(0);
837   SDValue Offset    = Op.getOperand(1);
838   SDValue Handler   = Op.getOperand(2);
839   SDLoc dl(Op);
840 
841   // Absolute SP = (FP + FrameToArgs) + Offset
842   const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
843   SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
844                             RegInfo->getFrameRegister(MF), MVT::i32);
845   SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
846                                     MVT::i32);
847   Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
848   Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
849 
850   // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
851   // which leaves 2 caller saved registers, R2 & R3 for us to use.
852   unsigned StackReg = XCore::R2;
853   unsigned HandlerReg = XCore::R3;
854 
855   SDValue OutChains[] = {
856     DAG.getCopyToReg(Chain, dl, StackReg, Stack),
857     DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
858   };
859 
860   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
861 
862   return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
863                      DAG.getRegister(StackReg, MVT::i32),
864                      DAG.getRegister(HandlerReg, MVT::i32));
865 
866 }
867 
868 SDValue XCoreTargetLowering::
869 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
870   return Op.getOperand(0);
871 }
872 
873 SDValue XCoreTargetLowering::
874 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
875   SDValue Chain = Op.getOperand(0);
876   SDValue Trmp = Op.getOperand(1); // trampoline
877   SDValue FPtr = Op.getOperand(2); // nested function
878   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
879 
880   const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
881 
882   // .align 4
883   // LDAPF_u10 r11, nest
884   // LDW_2rus r11, r11[0]
885   // STWSP_ru6 r11, sp[0]
886   // LDAPF_u10 r11, fptr
887   // LDW_2rus r11, r11[0]
888   // BAU_1r r11
889   // nest:
890   // .word nest
891   // fptr:
892   // .word fptr
893   SDValue OutChains[5];
894 
895   SDValue Addr = Trmp;
896 
897   SDLoc dl(Op);
898   OutChains[0] =
899       DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr,
900                    MachinePointerInfo(TrmpAddr));
901 
902   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
903                      DAG.getConstant(4, dl, MVT::i32));
904   OutChains[1] =
905       DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr,
906                    MachinePointerInfo(TrmpAddr, 4));
907 
908   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
909                      DAG.getConstant(8, dl, MVT::i32));
910   OutChains[2] =
911       DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr,
912                    MachinePointerInfo(TrmpAddr, 8));
913 
914   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
915                      DAG.getConstant(12, dl, MVT::i32));
916   OutChains[3] =
917       DAG.getStore(Chain, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12));
918 
919   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
920                      DAG.getConstant(16, dl, MVT::i32));
921   OutChains[4] =
922       DAG.getStore(Chain, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 16));
923 
924   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
925 }
926 
927 SDValue XCoreTargetLowering::
928 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
929   SDLoc DL(Op);
930   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
931   switch (IntNo) {
932     case Intrinsic::xcore_crc8:
933       EVT VT = Op.getValueType();
934       SDValue Data =
935         DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
936                     Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
937       SDValue Crc(Data.getNode(), 1);
938       SDValue Results[] = { Crc, Data };
939       return DAG.getMergeValues(Results, DL);
940   }
941   return SDValue();
942 }
943 
944 SDValue XCoreTargetLowering::
945 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
946   SDLoc DL(Op);
947   return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
948 }
949 
950 SDValue XCoreTargetLowering::
951 LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
952   AtomicSDNode *N = cast<AtomicSDNode>(Op);
953   assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
954   assert((N->getOrdering() == AtomicOrdering::Unordered ||
955           N->getOrdering() == AtomicOrdering::Monotonic) &&
956          "setInsertFencesForAtomic(true) expects unordered / monotonic");
957   if (N->getMemoryVT() == MVT::i32) {
958     if (N->getAlignment() < 4)
959       report_fatal_error("atomic load must be aligned");
960     return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
961                        N->getChain(), N->getBasePtr(), N->getPointerInfo(),
962                        N->getAlignment(), N->getMemOperand()->getFlags(),
963                        N->getAAInfo(), N->getRanges());
964   }
965   if (N->getMemoryVT() == MVT::i16) {
966     if (N->getAlignment() < 2)
967       report_fatal_error("atomic load must be aligned");
968     return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
969                           N->getBasePtr(), N->getPointerInfo(), MVT::i16,
970                           N->getAlignment(), N->getMemOperand()->getFlags(),
971                           N->getAAInfo());
972   }
973   if (N->getMemoryVT() == MVT::i8)
974     return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
975                           N->getBasePtr(), N->getPointerInfo(), MVT::i8,
976                           N->getAlignment(), N->getMemOperand()->getFlags(),
977                           N->getAAInfo());
978   return SDValue();
979 }
980 
981 SDValue XCoreTargetLowering::
982 LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
983   AtomicSDNode *N = cast<AtomicSDNode>(Op);
984   assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
985   assert((N->getOrdering() == AtomicOrdering::Unordered ||
986           N->getOrdering() == AtomicOrdering::Monotonic) &&
987          "setInsertFencesForAtomic(true) expects unordered / monotonic");
988   if (N->getMemoryVT() == MVT::i32) {
989     if (N->getAlignment() < 4)
990       report_fatal_error("atomic store must be aligned");
991     return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(), N->getBasePtr(),
992                         N->getPointerInfo(), N->getAlignment(),
993                         N->getMemOperand()->getFlags(), N->getAAInfo());
994   }
995   if (N->getMemoryVT() == MVT::i16) {
996     if (N->getAlignment() < 2)
997       report_fatal_error("atomic store must be aligned");
998     return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
999                              N->getBasePtr(), N->getPointerInfo(), MVT::i16,
1000                              N->getAlignment(), N->getMemOperand()->getFlags(),
1001                              N->getAAInfo());
1002   }
1003   if (N->getMemoryVT() == MVT::i8)
1004     return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
1005                              N->getBasePtr(), N->getPointerInfo(), MVT::i8,
1006                              N->getAlignment(), N->getMemOperand()->getFlags(),
1007                              N->getAAInfo());
1008   return SDValue();
1009 }
1010 
1011 MachineMemOperand::Flags
1012 XCoreTargetLowering::getMMOFlags(const Instruction &I) const {
1013   // Because of how we convert atomic_load and atomic_store to normal loads and
1014   // stores in the DAG, we need to ensure that the MMOs are marked volatile
1015   // since DAGCombine hasn't been updated to account for atomic, but non
1016   // volatile loads.  (See D57601)
1017   if (auto *SI = dyn_cast<StoreInst>(&I))
1018     if (SI->isAtomic())
1019       return MachineMemOperand::MOVolatile;
1020   if (auto *LI = dyn_cast<LoadInst>(&I))
1021     if (LI->isAtomic())
1022       return MachineMemOperand::MOVolatile;
1023   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
1024     if (AI->isAtomic())
1025       return MachineMemOperand::MOVolatile;
1026   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
1027     if (AI->isAtomic())
1028       return MachineMemOperand::MOVolatile;
1029   return MachineMemOperand::MONone;
1030 }
1031 
1032 //===----------------------------------------------------------------------===//
1033 //                      Calling Convention Implementation
1034 //===----------------------------------------------------------------------===//
1035 
1036 #include "XCoreGenCallingConv.inc"
1037 
1038 //===----------------------------------------------------------------------===//
1039 //                  Call Calling Convention Implementation
1040 //===----------------------------------------------------------------------===//
1041 
1042 /// XCore call implementation
1043 SDValue
1044 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1045                                SmallVectorImpl<SDValue> &InVals) const {
1046   SelectionDAG &DAG                     = CLI.DAG;
1047   SDLoc &dl                             = CLI.DL;
1048   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1049   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1050   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1051   SDValue Chain                         = CLI.Chain;
1052   SDValue Callee                        = CLI.Callee;
1053   bool &isTailCall                      = CLI.IsTailCall;
1054   CallingConv::ID CallConv              = CLI.CallConv;
1055   bool isVarArg                         = CLI.IsVarArg;
1056 
1057   // XCore target does not yet support tail call optimization.
1058   isTailCall = false;
1059 
1060   // For now, only CallingConv::C implemented
1061   switch (CallConv)
1062   {
1063     default:
1064       report_fatal_error("Unsupported calling convention");
1065     case CallingConv::Fast:
1066     case CallingConv::C:
1067       return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
1068                             Outs, OutVals, Ins, dl, DAG, InVals);
1069   }
1070 }
1071 
1072 /// LowerCallResult - Lower the result values of a call into the
1073 /// appropriate copies out of appropriate physical registers / memory locations.
1074 static SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
1075                                const SmallVectorImpl<CCValAssign> &RVLocs,
1076                                const SDLoc &dl, SelectionDAG &DAG,
1077                                SmallVectorImpl<SDValue> &InVals) {
1078   SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
1079   // Copy results out of physical registers.
1080   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1081     const CCValAssign &VA = RVLocs[i];
1082     if (VA.isRegLoc()) {
1083       Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
1084                                  InFlag).getValue(1);
1085       InFlag = Chain.getValue(2);
1086       InVals.push_back(Chain.getValue(0));
1087     } else {
1088       assert(VA.isMemLoc());
1089       ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
1090                                              InVals.size()));
1091       // Reserve space for this result.
1092       InVals.push_back(SDValue());
1093     }
1094   }
1095 
1096   // Copy results out of memory.
1097   SmallVector<SDValue, 4> MemOpChains;
1098   for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
1099     int offset = ResultMemLocs[i].first;
1100     unsigned index = ResultMemLocs[i].second;
1101     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
1102     SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) };
1103     SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
1104     InVals[index] = load;
1105     MemOpChains.push_back(load.getValue(1));
1106   }
1107 
1108   // Transform all loads nodes into one single node because
1109   // all load nodes are independent of each other.
1110   if (!MemOpChains.empty())
1111     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1112 
1113   return Chain;
1114 }
1115 
1116 /// LowerCCCCallTo - functions arguments are copied from virtual
1117 /// regs to (physical regs)/(stack frame), CALLSEQ_START and
1118 /// CALLSEQ_END are emitted.
1119 /// TODO: isTailCall, sret.
1120 SDValue XCoreTargetLowering::LowerCCCCallTo(
1121     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
1122     bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
1123     const SmallVectorImpl<SDValue> &OutVals,
1124     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1125     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1126 
1127   // Analyze operands of the call, assigning locations to each operand.
1128   SmallVector<CCValAssign, 16> ArgLocs;
1129   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1130                  *DAG.getContext());
1131 
1132   // The ABI dictates there should be one stack slot available to the callee
1133   // on function entry (for saving lr).
1134   CCInfo.AllocateStack(4, 4);
1135 
1136   CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
1137 
1138   SmallVector<CCValAssign, 16> RVLocs;
1139   // Analyze return values to determine the number of bytes of stack required.
1140   CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1141                     *DAG.getContext());
1142   RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4);
1143   RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
1144 
1145   // Get a count of how many bytes are to be pushed on the stack.
1146   unsigned NumBytes = RetCCInfo.getNextStackOffset();
1147   auto PtrVT = getPointerTy(DAG.getDataLayout());
1148 
1149   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
1150 
1151   SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
1152   SmallVector<SDValue, 12> MemOpChains;
1153 
1154   // Walk the register/memloc assignments, inserting copies/loads.
1155   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1156     CCValAssign &VA = ArgLocs[i];
1157     SDValue Arg = OutVals[i];
1158 
1159     // Promote the value if needed.
1160     switch (VA.getLocInfo()) {
1161       default: llvm_unreachable("Unknown loc info!");
1162       case CCValAssign::Full: break;
1163       case CCValAssign::SExt:
1164         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1165         break;
1166       case CCValAssign::ZExt:
1167         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1168         break;
1169       case CCValAssign::AExt:
1170         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1171         break;
1172     }
1173 
1174     // Arguments that can be passed on register must be kept at
1175     // RegsToPass vector
1176     if (VA.isRegLoc()) {
1177       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1178     } else {
1179       assert(VA.isMemLoc());
1180 
1181       int Offset = VA.getLocMemOffset();
1182 
1183       MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
1184                                         Chain, Arg,
1185                                         DAG.getConstant(Offset/4, dl,
1186                                                         MVT::i32)));
1187     }
1188   }
1189 
1190   // Transform all store nodes into one single node because
1191   // all store nodes are independent of each other.
1192   if (!MemOpChains.empty())
1193     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1194 
1195   // Build a sequence of copy-to-reg nodes chained together with token
1196   // chain and flag operands which copy the outgoing args into registers.
1197   // The InFlag in necessary since all emitted instructions must be
1198   // stuck together.
1199   SDValue InFlag;
1200   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1201     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1202                              RegsToPass[i].second, InFlag);
1203     InFlag = Chain.getValue(1);
1204   }
1205 
1206   // If the callee is a GlobalAddress node (quite common, every direct call is)
1207   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1208   // Likewise ExternalSymbol -> TargetExternalSymbol.
1209   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1210     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
1211   else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1212     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
1213 
1214   // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1215   //             = Chain, Callee, Reg#1, Reg#2, ...
1216   //
1217   // Returns a chain & a flag for retval copy to use.
1218   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1219   SmallVector<SDValue, 8> Ops;
1220   Ops.push_back(Chain);
1221   Ops.push_back(Callee);
1222 
1223   // Add argument registers to the end of the list so that they are
1224   // known live into the call.
1225   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1226     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1227                                   RegsToPass[i].second.getValueType()));
1228 
1229   if (InFlag.getNode())
1230     Ops.push_back(InFlag);
1231 
1232   Chain  = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
1233   InFlag = Chain.getValue(1);
1234 
1235   // Create the CALLSEQ_END node.
1236   Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
1237                              DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
1238   InFlag = Chain.getValue(1);
1239 
1240   // Handle result values, copying them out of physregs into vregs that we
1241   // return.
1242   return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
1243 }
1244 
1245 //===----------------------------------------------------------------------===//
1246 //             Formal Arguments Calling Convention Implementation
1247 //===----------------------------------------------------------------------===//
1248 
1249 namespace {
1250   struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
1251 }
1252 
1253 /// XCore formal arguments implementation
1254 SDValue XCoreTargetLowering::LowerFormalArguments(
1255     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1256     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1257     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1258   switch (CallConv)
1259   {
1260     default:
1261       report_fatal_error("Unsupported calling convention");
1262     case CallingConv::C:
1263     case CallingConv::Fast:
1264       return LowerCCCArguments(Chain, CallConv, isVarArg,
1265                                Ins, dl, DAG, InVals);
1266   }
1267 }
1268 
1269 /// LowerCCCArguments - transform physical registers into
1270 /// virtual registers and generate load operations for
1271 /// arguments places on the stack.
1272 /// TODO: sret
1273 SDValue XCoreTargetLowering::LowerCCCArguments(
1274     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1275     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1276     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1277   MachineFunction &MF = DAG.getMachineFunction();
1278   MachineFrameInfo &MFI = MF.getFrameInfo();
1279   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1280   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1281 
1282   // Assign locations to all of the incoming arguments.
1283   SmallVector<CCValAssign, 16> ArgLocs;
1284   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1285                  *DAG.getContext());
1286 
1287   CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
1288 
1289   unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
1290 
1291   unsigned LRSaveSize = StackSlotSize;
1292 
1293   if (!isVarArg)
1294     XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
1295 
1296   // All getCopyFromReg ops must precede any getMemcpys to prevent the
1297   // scheduler clobbering a register before it has been copied.
1298   // The stages are:
1299   // 1. CopyFromReg (and load) arg & vararg registers.
1300   // 2. Chain CopyFromReg nodes into a TokenFactor.
1301   // 3. Memcpy 'byVal' args & push final InVals.
1302   // 4. Chain mem ops nodes into a TokenFactor.
1303   SmallVector<SDValue, 4> CFRegNode;
1304   SmallVector<ArgDataPair, 4> ArgData;
1305   SmallVector<SDValue, 4> MemOps;
1306 
1307   // 1a. CopyFromReg (and load) arg registers.
1308   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1309 
1310     CCValAssign &VA = ArgLocs[i];
1311     SDValue ArgIn;
1312 
1313     if (VA.isRegLoc()) {
1314       // Arguments passed in registers
1315       EVT RegVT = VA.getLocVT();
1316       switch (RegVT.getSimpleVT().SimpleTy) {
1317       default:
1318         {
1319 #ifndef NDEBUG
1320           errs() << "LowerFormalArguments Unhandled argument type: "
1321                  << RegVT.getEVTString() << "\n";
1322 #endif
1323           llvm_unreachable(nullptr);
1324         }
1325       case MVT::i32:
1326         unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1327         RegInfo.addLiveIn(VA.getLocReg(), VReg);
1328         ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
1329         CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
1330       }
1331     } else {
1332       // sanity check
1333       assert(VA.isMemLoc());
1334       // Load the argument to a virtual register
1335       unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
1336       if (ObjSize > StackSlotSize) {
1337         errs() << "LowerFormalArguments Unhandled argument type: "
1338                << EVT(VA.getLocVT()).getEVTString()
1339                << "\n";
1340       }
1341       // Create the frame index object for this incoming parameter...
1342       int FI = MFI.CreateFixedObject(ObjSize,
1343                                      LRSaveSize + VA.getLocMemOffset(),
1344                                      true);
1345 
1346       // Create the SelectionDAG nodes corresponding to a load
1347       //from this parameter
1348       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1349       ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1350                           MachinePointerInfo::getFixedStack(MF, FI));
1351     }
1352     const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
1353     ArgData.push_back(ADP);
1354   }
1355 
1356   // 1b. CopyFromReg vararg registers.
1357   if (isVarArg) {
1358     // Argument registers
1359     static const MCPhysReg ArgRegs[] = {
1360       XCore::R0, XCore::R1, XCore::R2, XCore::R3
1361     };
1362     XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1363     unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
1364     if (FirstVAReg < array_lengthof(ArgRegs)) {
1365       int offset = 0;
1366       // Save remaining registers, storing higher register numbers at a higher
1367       // address
1368       for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
1369         // Create a stack slot
1370         int FI = MFI.CreateFixedObject(4, offset, true);
1371         if (i == (int)FirstVAReg) {
1372           XFI->setVarArgsFrameIndex(FI);
1373         }
1374         offset -= StackSlotSize;
1375         SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1376         // Move argument from phys reg -> virt reg
1377         unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1378         RegInfo.addLiveIn(ArgRegs[i], VReg);
1379         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1380         CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
1381         // Move argument from virt reg -> stack
1382         SDValue Store =
1383             DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
1384         MemOps.push_back(Store);
1385       }
1386     } else {
1387       // This will point to the next argument passed via stack.
1388       XFI->setVarArgsFrameIndex(
1389         MFI.CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
1390                               true));
1391     }
1392   }
1393 
1394   // 2. chain CopyFromReg nodes into a TokenFactor.
1395   if (!CFRegNode.empty())
1396     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
1397 
1398   // 3. Memcpy 'byVal' args & push final InVals.
1399   // Aggregates passed "byVal" need to be copied by the callee.
1400   // The callee will use a pointer to this copy, rather than the original
1401   // pointer.
1402   for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
1403                                                     ArgDE = ArgData.end();
1404        ArgDI != ArgDE; ++ArgDI) {
1405     if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
1406       unsigned Size = ArgDI->Flags.getByValSize();
1407       unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign());
1408       // Create a new object on the stack and copy the pointee into it.
1409       int FI = MFI.CreateStackObject(Size, Align, false);
1410       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1411       InVals.push_back(FIN);
1412       MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV,
1413                                      DAG.getConstant(Size, dl, MVT::i32),
1414                                      Align, false, false, false,
1415                                      MachinePointerInfo(),
1416                                      MachinePointerInfo()));
1417     } else {
1418       InVals.push_back(ArgDI->SDV);
1419     }
1420   }
1421 
1422   // 4, chain mem ops nodes into a TokenFactor.
1423   if (!MemOps.empty()) {
1424     MemOps.push_back(Chain);
1425     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
1426   }
1427 
1428   return Chain;
1429 }
1430 
1431 //===----------------------------------------------------------------------===//
1432 //               Return Value Calling Convention Implementation
1433 //===----------------------------------------------------------------------===//
1434 
1435 bool XCoreTargetLowering::
1436 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1437                bool isVarArg,
1438                const SmallVectorImpl<ISD::OutputArg> &Outs,
1439                LLVMContext &Context) const {
1440   SmallVector<CCValAssign, 16> RVLocs;
1441   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1442   if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
1443     return false;
1444   if (CCInfo.getNextStackOffset() != 0 && isVarArg)
1445     return false;
1446   return true;
1447 }
1448 
1449 SDValue
1450 XCoreTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1451                                  bool isVarArg,
1452                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
1453                                  const SmallVectorImpl<SDValue> &OutVals,
1454                                  const SDLoc &dl, SelectionDAG &DAG) const {
1455 
1456   XCoreFunctionInfo *XFI =
1457     DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
1458   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1459 
1460   // CCValAssign - represent the assignment of
1461   // the return value to a location
1462   SmallVector<CCValAssign, 16> RVLocs;
1463 
1464   // CCState - Info about the registers and stack slot.
1465   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1466                  *DAG.getContext());
1467 
1468   // Analyze return values.
1469   if (!isVarArg)
1470     CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4);
1471 
1472   CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
1473 
1474   SDValue Flag;
1475   SmallVector<SDValue, 4> RetOps(1, Chain);
1476 
1477   // Return on XCore is always a "retsp 0"
1478   RetOps.push_back(DAG.getConstant(0, dl, MVT::i32));
1479 
1480   SmallVector<SDValue, 4> MemOpChains;
1481   // Handle return values that must be copied to memory.
1482   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1483     CCValAssign &VA = RVLocs[i];
1484     if (VA.isRegLoc())
1485       continue;
1486     assert(VA.isMemLoc());
1487     if (isVarArg) {
1488       report_fatal_error("Can't return value from vararg function in memory");
1489     }
1490 
1491     int Offset = VA.getLocMemOffset();
1492     unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
1493     // Create the frame index object for the memory location.
1494     int FI = MFI.CreateFixedObject(ObjSize, Offset, false);
1495 
1496     // Create a SelectionDAG node corresponding to a store
1497     // to this memory location.
1498     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1499     MemOpChains.push_back(DAG.getStore(
1500         Chain, dl, OutVals[i], FIN,
1501         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
1502   }
1503 
1504   // Transform all store nodes into one single node because
1505   // all stores are independent of each other.
1506   if (!MemOpChains.empty())
1507     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1508 
1509   // Now handle return values copied to registers.
1510   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1511     CCValAssign &VA = RVLocs[i];
1512     if (!VA.isRegLoc())
1513       continue;
1514     // Copy the result values into the output registers.
1515     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1516 
1517     // guarantee that all emitted copies are
1518     // stuck together, avoiding something bad
1519     Flag = Chain.getValue(1);
1520     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1521   }
1522 
1523   RetOps[0] = Chain;  // Update chain.
1524 
1525   // Add the flag if we have it.
1526   if (Flag.getNode())
1527     RetOps.push_back(Flag);
1528 
1529   return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
1530 }
1531 
1532 //===----------------------------------------------------------------------===//
1533 //  Other Lowering Code
1534 //===----------------------------------------------------------------------===//
1535 
1536 MachineBasicBlock *
1537 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1538                                                  MachineBasicBlock *BB) const {
1539   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1540   DebugLoc dl = MI.getDebugLoc();
1541   assert((MI.getOpcode() == XCore::SELECT_CC) &&
1542          "Unexpected instr type to insert");
1543 
1544   // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1545   // control-flow pattern.  The incoming instruction knows the destination vreg
1546   // to set, the condition code register to branch on, the true/false values to
1547   // select between, and a branch opcode to use.
1548   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1549   MachineFunction::iterator It = ++BB->getIterator();
1550 
1551   //  thisMBB:
1552   //  ...
1553   //   TrueVal = ...
1554   //   cmpTY ccX, r1, r2
1555   //   bCC copy1MBB
1556   //   fallthrough --> copy0MBB
1557   MachineBasicBlock *thisMBB = BB;
1558   MachineFunction *F = BB->getParent();
1559   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1560   MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1561   F->insert(It, copy0MBB);
1562   F->insert(It, sinkMBB);
1563 
1564   // Transfer the remainder of BB and its successor edges to sinkMBB.
1565   sinkMBB->splice(sinkMBB->begin(), BB,
1566                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1567   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1568 
1569   // Next, add the true and fallthrough blocks as its successors.
1570   BB->addSuccessor(copy0MBB);
1571   BB->addSuccessor(sinkMBB);
1572 
1573   BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
1574       .addReg(MI.getOperand(1).getReg())
1575       .addMBB(sinkMBB);
1576 
1577   //  copy0MBB:
1578   //   %FalseValue = ...
1579   //   # fallthrough to sinkMBB
1580   BB = copy0MBB;
1581 
1582   // Update machine-CFG edges
1583   BB->addSuccessor(sinkMBB);
1584 
1585   //  sinkMBB:
1586   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1587   //  ...
1588   BB = sinkMBB;
1589   BuildMI(*BB, BB->begin(), dl, TII.get(XCore::PHI), MI.getOperand(0).getReg())
1590       .addReg(MI.getOperand(3).getReg())
1591       .addMBB(copy0MBB)
1592       .addReg(MI.getOperand(2).getReg())
1593       .addMBB(thisMBB);
1594 
1595   MI.eraseFromParent(); // The pseudo instruction is gone now.
1596   return BB;
1597 }
1598 
1599 //===----------------------------------------------------------------------===//
1600 // Target Optimization Hooks
1601 //===----------------------------------------------------------------------===//
1602 
1603 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
1604                                              DAGCombinerInfo &DCI) const {
1605   SelectionDAG &DAG = DCI.DAG;
1606   SDLoc dl(N);
1607   switch (N->getOpcode()) {
1608   default: break;
1609   case ISD::INTRINSIC_VOID:
1610     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
1611     case Intrinsic::xcore_outt:
1612     case Intrinsic::xcore_outct:
1613     case Intrinsic::xcore_chkct: {
1614       SDValue OutVal = N->getOperand(3);
1615       // These instructions ignore the high bits.
1616       if (OutVal.hasOneUse()) {
1617         unsigned BitWidth = OutVal.getValueSizeInBits();
1618         APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
1619         KnownBits Known;
1620         TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1621                                               !DCI.isBeforeLegalizeOps());
1622         const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1623         if (TLI.ShrinkDemandedConstant(OutVal, DemandedMask, TLO) ||
1624             TLI.SimplifyDemandedBits(OutVal, DemandedMask, Known, TLO))
1625           DCI.CommitTargetLoweringOpt(TLO);
1626       }
1627       break;
1628     }
1629     case Intrinsic::xcore_setpt: {
1630       SDValue Time = N->getOperand(3);
1631       // This instruction ignores the high bits.
1632       if (Time.hasOneUse()) {
1633         unsigned BitWidth = Time.getValueSizeInBits();
1634         APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
1635         KnownBits Known;
1636         TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1637                                               !DCI.isBeforeLegalizeOps());
1638         const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1639         if (TLI.ShrinkDemandedConstant(Time, DemandedMask, TLO) ||
1640             TLI.SimplifyDemandedBits(Time, DemandedMask, Known, TLO))
1641           DCI.CommitTargetLoweringOpt(TLO);
1642       }
1643       break;
1644     }
1645     }
1646     break;
1647   case XCoreISD::LADD: {
1648     SDValue N0 = N->getOperand(0);
1649     SDValue N1 = N->getOperand(1);
1650     SDValue N2 = N->getOperand(2);
1651     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1652     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1653     EVT VT = N0.getValueType();
1654 
1655     // canonicalize constant to RHS
1656     if (N0C && !N1C)
1657       return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
1658 
1659     // fold (ladd 0, 0, x) -> 0, x & 1
1660     if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1661       SDValue Carry = DAG.getConstant(0, dl, VT);
1662       SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
1663                                    DAG.getConstant(1, dl, VT));
1664       SDValue Ops[] = { Result, Carry };
1665       return DAG.getMergeValues(Ops, dl);
1666     }
1667 
1668     // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1669     // low bit set
1670     if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1671       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1672                                          VT.getSizeInBits() - 1);
1673       KnownBits Known = DAG.computeKnownBits(N2);
1674       if ((Known.Zero & Mask) == Mask) {
1675         SDValue Carry = DAG.getConstant(0, dl, VT);
1676         SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
1677         SDValue Ops[] = { Result, Carry };
1678         return DAG.getMergeValues(Ops, dl);
1679       }
1680     }
1681   }
1682   break;
1683   case XCoreISD::LSUB: {
1684     SDValue N0 = N->getOperand(0);
1685     SDValue N1 = N->getOperand(1);
1686     SDValue N2 = N->getOperand(2);
1687     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1688     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1689     EVT VT = N0.getValueType();
1690 
1691     // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1692     if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1693       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1694                                          VT.getSizeInBits() - 1);
1695       KnownBits Known = DAG.computeKnownBits(N2);
1696       if ((Known.Zero & Mask) == Mask) {
1697         SDValue Borrow = N2;
1698         SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
1699                                      DAG.getConstant(0, dl, VT), N2);
1700         SDValue Ops[] = { Result, Borrow };
1701         return DAG.getMergeValues(Ops, dl);
1702       }
1703     }
1704 
1705     // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1706     // low bit set
1707     if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1708       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1709                                          VT.getSizeInBits() - 1);
1710       KnownBits Known = DAG.computeKnownBits(N2);
1711       if ((Known.Zero & Mask) == Mask) {
1712         SDValue Borrow = DAG.getConstant(0, dl, VT);
1713         SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
1714         SDValue Ops[] = { Result, Borrow };
1715         return DAG.getMergeValues(Ops, dl);
1716       }
1717     }
1718   }
1719   break;
1720   case XCoreISD::LMUL: {
1721     SDValue N0 = N->getOperand(0);
1722     SDValue N1 = N->getOperand(1);
1723     SDValue N2 = N->getOperand(2);
1724     SDValue N3 = N->getOperand(3);
1725     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1726     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1727     EVT VT = N0.getValueType();
1728     // Canonicalize multiplicative constant to RHS. If both multiplicative
1729     // operands are constant canonicalize smallest to RHS.
1730     if ((N0C && !N1C) ||
1731         (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
1732       return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
1733                          N1, N0, N2, N3);
1734 
1735     // lmul(x, 0, a, b)
1736     if (N1C && N1C->isNullValue()) {
1737       // If the high result is unused fold to add(a, b)
1738       if (N->hasNUsesOfValue(0, 0)) {
1739         SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
1740         SDValue Ops[] = { Lo, Lo };
1741         return DAG.getMergeValues(Ops, dl);
1742       }
1743       // Otherwise fold to ladd(a, b, 0)
1744       SDValue Result =
1745         DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
1746       SDValue Carry(Result.getNode(), 1);
1747       SDValue Ops[] = { Carry, Result };
1748       return DAG.getMergeValues(Ops, dl);
1749     }
1750   }
1751   break;
1752   case ISD::ADD: {
1753     // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1754     // lmul(x, y, a, b). The high result of lmul will be ignored.
1755     // This is only profitable if the intermediate results are unused
1756     // elsewhere.
1757     SDValue Mul0, Mul1, Addend0, Addend1;
1758     if (N->getValueType(0) == MVT::i32 &&
1759         isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
1760       SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
1761                                     DAG.getVTList(MVT::i32, MVT::i32), Mul0,
1762                                     Mul1, Addend0, Addend1);
1763       SDValue Result(Ignored.getNode(), 1);
1764       return Result;
1765     }
1766     APInt HighMask = APInt::getHighBitsSet(64, 32);
1767     // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1768     // lmul(x, y, a, b) if all operands are zero-extended. We do this
1769     // before type legalization as it is messy to match the operands after
1770     // that.
1771     if (N->getValueType(0) == MVT::i64 &&
1772         isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
1773         DAG.MaskedValueIsZero(Mul0, HighMask) &&
1774         DAG.MaskedValueIsZero(Mul1, HighMask) &&
1775         DAG.MaskedValueIsZero(Addend0, HighMask) &&
1776         DAG.MaskedValueIsZero(Addend1, HighMask)) {
1777       SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1778                                   Mul0, DAG.getConstant(0, dl, MVT::i32));
1779       SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1780                                   Mul1, DAG.getConstant(0, dl, MVT::i32));
1781       SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1782                                      Addend0, DAG.getConstant(0, dl, MVT::i32));
1783       SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1784                                      Addend1, DAG.getConstant(0, dl, MVT::i32));
1785       SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
1786                                DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
1787                                Addend0L, Addend1L);
1788       SDValue Lo(Hi.getNode(), 1);
1789       return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1790     }
1791   }
1792   break;
1793   case ISD::STORE: {
1794     // Replace unaligned store of unaligned load with memmove.
1795     StoreSDNode *ST  = cast<StoreSDNode>(N);
1796     if (!DCI.isBeforeLegalize() ||
1797         allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
1798                                        ST->getAddressSpace(),
1799                                        ST->getAlignment()) ||
1800         ST->isVolatile() || ST->isIndexed()) {
1801       break;
1802     }
1803     SDValue Chain = ST->getChain();
1804 
1805     unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
1806     assert((StoreBits % 8) == 0 &&
1807            "Store size in bits must be a multiple of 8");
1808     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(
1809         ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext()));
1810     unsigned Alignment = ST->getAlignment();
1811     if (Alignment >= ABIAlignment) {
1812       break;
1813     }
1814 
1815     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
1816       if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
1817         LD->getAlignment() == Alignment &&
1818         !LD->isVolatile() && !LD->isIndexed() &&
1819         Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
1820         bool isTail = isInTailCallPosition(DAG, ST, Chain);
1821         return DAG.getMemmove(Chain, dl, ST->getBasePtr(),
1822                               LD->getBasePtr(),
1823                               DAG.getConstant(StoreBits/8, dl, MVT::i32),
1824                               Alignment, false, isTail, ST->getPointerInfo(),
1825                               LD->getPointerInfo());
1826       }
1827     }
1828     break;
1829   }
1830   }
1831   return SDValue();
1832 }
1833 
1834 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1835                                                         KnownBits &Known,
1836                                                         const APInt &DemandedElts,
1837                                                         const SelectionDAG &DAG,
1838                                                         unsigned Depth) const {
1839   Known.resetAll();
1840   switch (Op.getOpcode()) {
1841   default: break;
1842   case XCoreISD::LADD:
1843   case XCoreISD::LSUB:
1844     if (Op.getResNo() == 1) {
1845       // Top bits of carry / borrow are clear.
1846       Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1847                                          Known.getBitWidth() - 1);
1848     }
1849     break;
1850   case ISD::INTRINSIC_W_CHAIN:
1851     {
1852       unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1853       switch (IntNo) {
1854       case Intrinsic::xcore_getts:
1855         // High bits are known to be zero.
1856         Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1857                                            Known.getBitWidth() - 16);
1858         break;
1859       case Intrinsic::xcore_int:
1860       case Intrinsic::xcore_inct:
1861         // High bits are known to be zero.
1862         Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1863                                            Known.getBitWidth() - 8);
1864         break;
1865       case Intrinsic::xcore_testct:
1866         // Result is either 0 or 1.
1867         Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1868                                            Known.getBitWidth() - 1);
1869         break;
1870       case Intrinsic::xcore_testwct:
1871         // Result is in the range 0 - 4.
1872         Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1873                                            Known.getBitWidth() - 3);
1874         break;
1875       }
1876     }
1877     break;
1878   }
1879 }
1880 
1881 //===----------------------------------------------------------------------===//
1882 //  Addressing mode description hooks
1883 //===----------------------------------------------------------------------===//
1884 
1885 static inline bool isImmUs(int64_t val)
1886 {
1887   return (val >= 0 && val <= 11);
1888 }
1889 
1890 static inline bool isImmUs2(int64_t val)
1891 {
1892   return (val%2 == 0 && isImmUs(val/2));
1893 }
1894 
1895 static inline bool isImmUs4(int64_t val)
1896 {
1897   return (val%4 == 0 && isImmUs(val/4));
1898 }
1899 
1900 /// isLegalAddressingMode - Return true if the addressing mode represented
1901 /// by AM is legal for this target, for a load/store of the specified type.
1902 bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1903                                                 const AddrMode &AM, Type *Ty,
1904                                                 unsigned AS,
1905                                                 Instruction *I) const {
1906   if (Ty->getTypeID() == Type::VoidTyID)
1907     return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
1908 
1909   unsigned Size = DL.getTypeAllocSize(Ty);
1910   if (AM.BaseGV) {
1911     return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
1912                  AM.BaseOffs%4 == 0;
1913   }
1914 
1915   switch (Size) {
1916   case 1:
1917     // reg + imm
1918     if (AM.Scale == 0) {
1919       return isImmUs(AM.BaseOffs);
1920     }
1921     // reg + reg
1922     return AM.Scale == 1 && AM.BaseOffs == 0;
1923   case 2:
1924   case 3:
1925     // reg + imm
1926     if (AM.Scale == 0) {
1927       return isImmUs2(AM.BaseOffs);
1928     }
1929     // reg + reg<<1
1930     return AM.Scale == 2 && AM.BaseOffs == 0;
1931   default:
1932     // reg + imm
1933     if (AM.Scale == 0) {
1934       return isImmUs4(AM.BaseOffs);
1935     }
1936     // reg + reg<<2
1937     return AM.Scale == 4 && AM.BaseOffs == 0;
1938   }
1939 }
1940 
1941 //===----------------------------------------------------------------------===//
1942 //                           XCore Inline Assembly Support
1943 //===----------------------------------------------------------------------===//
1944 
1945 std::pair<unsigned, const TargetRegisterClass *>
1946 XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1947                                                   StringRef Constraint,
1948                                                   MVT VT) const {
1949   if (Constraint.size() == 1) {
1950     switch (Constraint[0]) {
1951     default : break;
1952     case 'r':
1953       return std::make_pair(0U, &XCore::GRRegsRegClass);
1954     }
1955   }
1956   // Use the default implementation in TargetLowering to convert the register
1957   // constraint into a member of a register class.
1958   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1959 }
1960