1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the XCoreTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "XCoreISelLowering.h" 15 #include "XCore.h" 16 #include "XCoreMachineFunctionInfo.h" 17 #include "XCoreSubtarget.h" 18 #include "XCoreTargetMachine.h" 19 #include "XCoreTargetObjectFile.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAGISel.h" 27 #include "llvm/CodeGen/ValueTypes.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "xcore-lower" 43 44 const char *XCoreTargetLowering:: 45 getTargetNodeName(unsigned Opcode) const 46 { 47 switch ((XCoreISD::NodeType)Opcode) 48 { 49 case XCoreISD::FIRST_NUMBER : break; 50 case XCoreISD::BL : return "XCoreISD::BL"; 51 case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper"; 52 case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper"; 53 case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper"; 54 case XCoreISD::LDWSP : return "XCoreISD::LDWSP"; 55 case XCoreISD::STWSP : return "XCoreISD::STWSP"; 56 case XCoreISD::RETSP : return "XCoreISD::RETSP"; 57 case XCoreISD::LADD : return "XCoreISD::LADD"; 58 case XCoreISD::LSUB : return "XCoreISD::LSUB"; 59 case XCoreISD::LMUL : return "XCoreISD::LMUL"; 60 case XCoreISD::MACCU : return "XCoreISD::MACCU"; 61 case XCoreISD::MACCS : return "XCoreISD::MACCS"; 62 case XCoreISD::CRC8 : return "XCoreISD::CRC8"; 63 case XCoreISD::BR_JT : return "XCoreISD::BR_JT"; 64 case XCoreISD::BR_JT32 : return "XCoreISD::BR_JT32"; 65 case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET"; 66 case XCoreISD::EH_RETURN : return "XCoreISD::EH_RETURN"; 67 case XCoreISD::MEMBARRIER : return "XCoreISD::MEMBARRIER"; 68 } 69 return nullptr; 70 } 71 72 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM, 73 const XCoreSubtarget &Subtarget) 74 : TargetLowering(TM), TM(TM), Subtarget(Subtarget) { 75 76 // Set up the register classes. 77 addRegisterClass(MVT::i32, &XCore::GRRegsRegClass); 78 79 // Compute derived properties from the register classes 80 computeRegisterProperties(Subtarget.getRegisterInfo()); 81 82 // Division is expensive 83 setIntDivIsCheap(false); 84 85 setStackPointerRegisterToSaveRestore(XCore::SP); 86 87 setSchedulingPreference(Sched::Source); 88 89 // Use i32 for setcc operations results (slt, sgt, ...). 90 setBooleanContents(ZeroOrOneBooleanContent); 91 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 92 93 // XCore does not have the NodeTypes below. 94 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 95 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); 96 setOperationAction(ISD::ADDC, MVT::i32, Expand); 97 setOperationAction(ISD::ADDE, MVT::i32, Expand); 98 setOperationAction(ISD::SUBC, MVT::i32, Expand); 99 setOperationAction(ISD::SUBE, MVT::i32, Expand); 100 101 // 64bit 102 setOperationAction(ISD::ADD, MVT::i64, Custom); 103 setOperationAction(ISD::SUB, MVT::i64, Custom); 104 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom); 105 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom); 106 setOperationAction(ISD::MULHS, MVT::i32, Expand); 107 setOperationAction(ISD::MULHU, MVT::i32, Expand); 108 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); 109 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 110 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); 111 112 // Bit Manipulation 113 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 114 setOperationAction(ISD::ROTL , MVT::i32, Expand); 115 setOperationAction(ISD::ROTR , MVT::i32, Expand); 116 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 117 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 118 119 setOperationAction(ISD::TRAP, MVT::Other, Legal); 120 121 // Jump tables. 122 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 123 124 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 125 setOperationAction(ISD::BlockAddress, MVT::i32 , Custom); 126 127 // Conversion of i64 -> double produces constantpool nodes 128 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 129 130 // Loads 131 for (MVT VT : MVT::integer_valuetypes()) { 132 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 133 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 134 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 135 136 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 137 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand); 138 } 139 140 // Custom expand misaligned loads / stores. 141 setOperationAction(ISD::LOAD, MVT::i32, Custom); 142 setOperationAction(ISD::STORE, MVT::i32, Custom); 143 144 // Varargs 145 setOperationAction(ISD::VAEND, MVT::Other, Expand); 146 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 147 setOperationAction(ISD::VAARG, MVT::Other, Custom); 148 setOperationAction(ISD::VASTART, MVT::Other, Custom); 149 150 // Dynamic stack 151 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 152 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 153 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 154 155 // Exception handling 156 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); 157 setExceptionPointerRegister(XCore::R0); 158 setExceptionSelectorRegister(XCore::R1); 159 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); 160 161 // Atomic operations 162 // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic. 163 // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP. 164 setInsertFencesForAtomic(true); 165 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 166 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); 167 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); 168 169 // TRAMPOLINE is custom lowered. 170 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 171 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 172 173 // We want to custom lower some of our intrinsics. 174 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 175 176 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4; 177 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize 178 = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2; 179 180 // We have target-specific dag combine patterns for the following nodes: 181 setTargetDAGCombine(ISD::STORE); 182 setTargetDAGCombine(ISD::ADD); 183 setTargetDAGCombine(ISD::INTRINSIC_VOID); 184 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 185 186 setMinFunctionAlignment(1); 187 setPrefFunctionAlignment(2); 188 } 189 190 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 191 if (Val.getOpcode() != ISD::LOAD) 192 return false; 193 194 EVT VT1 = Val.getValueType(); 195 if (!VT1.isSimple() || !VT1.isInteger() || 196 !VT2.isSimple() || !VT2.isInteger()) 197 return false; 198 199 switch (VT1.getSimpleVT().SimpleTy) { 200 default: break; 201 case MVT::i8: 202 return true; 203 } 204 205 return false; 206 } 207 208 SDValue XCoreTargetLowering:: 209 LowerOperation(SDValue Op, SelectionDAG &DAG) const { 210 switch (Op.getOpcode()) 211 { 212 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); 213 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 214 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 215 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 216 case ISD::BR_JT: return LowerBR_JT(Op, DAG); 217 case ISD::LOAD: return LowerLOAD(Op, DAG); 218 case ISD::STORE: return LowerSTORE(Op, DAG); 219 case ISD::VAARG: return LowerVAARG(Op, DAG); 220 case ISD::VASTART: return LowerVASTART(Op, DAG); 221 case ISD::SMUL_LOHI: return LowerSMUL_LOHI(Op, DAG); 222 case ISD::UMUL_LOHI: return LowerUMUL_LOHI(Op, DAG); 223 // FIXME: Remove these when LegalizeDAGTypes lands. 224 case ISD::ADD: 225 case ISD::SUB: return ExpandADDSUB(Op.getNode(), DAG); 226 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 227 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 228 case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); 229 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 230 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 231 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 232 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG); 233 case ISD::ATOMIC_LOAD: return LowerATOMIC_LOAD(Op, DAG); 234 case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG); 235 default: 236 llvm_unreachable("unimplemented operand"); 237 } 238 } 239 240 /// ReplaceNodeResults - Replace the results of node with an illegal result 241 /// type with new values built out of custom code. 242 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N, 243 SmallVectorImpl<SDValue>&Results, 244 SelectionDAG &DAG) const { 245 switch (N->getOpcode()) { 246 default: 247 llvm_unreachable("Don't know how to custom expand this!"); 248 case ISD::ADD: 249 case ISD::SUB: 250 Results.push_back(ExpandADDSUB(N, DAG)); 251 return; 252 } 253 } 254 255 //===----------------------------------------------------------------------===// 256 // Misc Lower Operation implementation 257 //===----------------------------------------------------------------------===// 258 259 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA, 260 const GlobalValue *GV, 261 SelectionDAG &DAG) const { 262 // FIXME there is no actual debug info here 263 SDLoc dl(GA); 264 265 if (GV->getType()->getElementType()->isFunctionTy()) 266 return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA); 267 268 const auto *GVar = dyn_cast<GlobalVariable>(GV); 269 if ((GV->hasSection() && StringRef(GV->getSection()).startswith(".cp.")) || 270 (GVar && GVar->isConstant() && GV->hasLocalLinkage())) 271 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA); 272 273 return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA); 274 } 275 276 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) { 277 if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small) 278 return true; 279 280 Type *ObjType = GV->getType()->getPointerElementType(); 281 if (!ObjType->isSized()) 282 return false; 283 284 auto &DL = GV->getParent()->getDataLayout(); 285 unsigned ObjSize = DL.getTypeAllocSize(ObjType); 286 return ObjSize < CodeModelLargeSize && ObjSize != 0; 287 } 288 289 SDValue XCoreTargetLowering:: 290 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const 291 { 292 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op); 293 const GlobalValue *GV = GN->getGlobal(); 294 SDLoc DL(GN); 295 int64_t Offset = GN->getOffset(); 296 if (IsSmallObject(GV, *this)) { 297 // We can only fold positive offsets that are a multiple of the word size. 298 int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0); 299 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset); 300 GA = getGlobalAddressWrapper(GA, GV, DAG); 301 // Handle the rest of the offset. 302 if (Offset != FoldedOffset) { 303 SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32); 304 GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining); 305 } 306 return GA; 307 } else { 308 // Ideally we would not fold in offset with an index <= 11. 309 Type *Ty = Type::getInt8PtrTy(*DAG.getContext()); 310 Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty); 311 Ty = Type::getInt32Ty(*DAG.getContext()); 312 Constant *Idx = ConstantInt::get(Ty, Offset); 313 Constant *GAI = ConstantExpr::getGetElementPtr( 314 Type::getInt8Ty(*DAG.getContext()), GA, Idx); 315 SDValue CP = DAG.getConstantPool(GAI, MVT::i32); 316 return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, 317 DAG.getEntryNode(), CP, MachinePointerInfo(), false, 318 false, false, 0); 319 } 320 } 321 322 SDValue XCoreTargetLowering:: 323 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const 324 { 325 SDLoc DL(Op); 326 auto PtrVT = getPointerTy(DAG.getDataLayout()); 327 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 328 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT); 329 330 return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result); 331 } 332 333 SDValue XCoreTargetLowering:: 334 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const 335 { 336 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 337 // FIXME there isn't really debug info here 338 SDLoc dl(CP); 339 EVT PtrVT = Op.getValueType(); 340 SDValue Res; 341 if (CP->isMachineConstantPoolEntry()) { 342 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 343 CP->getAlignment(), CP->getOffset()); 344 } else { 345 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 346 CP->getAlignment(), CP->getOffset()); 347 } 348 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res); 349 } 350 351 unsigned XCoreTargetLowering::getJumpTableEncoding() const { 352 return MachineJumpTableInfo::EK_Inline; 353 } 354 355 SDValue XCoreTargetLowering:: 356 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const 357 { 358 SDValue Chain = Op.getOperand(0); 359 SDValue Table = Op.getOperand(1); 360 SDValue Index = Op.getOperand(2); 361 SDLoc dl(Op); 362 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table); 363 unsigned JTI = JT->getIndex(); 364 MachineFunction &MF = DAG.getMachineFunction(); 365 const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 366 SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32); 367 368 unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size(); 369 if (NumEntries <= 32) { 370 return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index); 371 } 372 assert((NumEntries >> 31) == 0); 373 SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index, 374 DAG.getConstant(1, dl, MVT::i32)); 375 return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT, 376 ScaledIndex); 377 } 378 379 SDValue XCoreTargetLowering:: 380 lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL, SDValue Chain, SDValue Base, 381 int64_t Offset, SelectionDAG &DAG) const 382 { 383 auto PtrVT = getPointerTy(DAG.getDataLayout()); 384 if ((Offset & 0x3) == 0) { 385 return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo(), false, 386 false, false, 0); 387 } 388 // Lower to pair of consecutive word aligned loads plus some bit shifting. 389 int32_t HighOffset = RoundUpToAlignment(Offset, 4); 390 int32_t LowOffset = HighOffset - 4; 391 SDValue LowAddr, HighAddr; 392 if (GlobalAddressSDNode *GASD = 393 dyn_cast<GlobalAddressSDNode>(Base.getNode())) { 394 LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(), 395 LowOffset); 396 HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(), 397 HighOffset); 398 } else { 399 LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base, 400 DAG.getConstant(LowOffset, DL, MVT::i32)); 401 HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base, 402 DAG.getConstant(HighOffset, DL, MVT::i32)); 403 } 404 SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32); 405 SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32); 406 407 SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo(), 408 false, false, false, 0); 409 SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo(), 410 false, false, false, 0); 411 SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift); 412 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift); 413 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted); 414 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1), 415 High.getValue(1)); 416 SDValue Ops[] = { Result, Chain }; 417 return DAG.getMergeValues(Ops, DL); 418 } 419 420 static bool isWordAligned(SDValue Value, SelectionDAG &DAG) 421 { 422 APInt KnownZero, KnownOne; 423 DAG.computeKnownBits(Value, KnownZero, KnownOne); 424 return KnownZero.countTrailingOnes() >= 2; 425 } 426 427 SDValue XCoreTargetLowering:: 428 LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 429 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 430 LoadSDNode *LD = cast<LoadSDNode>(Op); 431 assert(LD->getExtensionType() == ISD::NON_EXTLOAD && 432 "Unexpected extension type"); 433 assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT"); 434 if (allowsMisalignedMemoryAccesses(LD->getMemoryVT(), 435 LD->getAddressSpace(), 436 LD->getAlignment())) 437 return SDValue(); 438 439 auto &TD = DAG.getDataLayout(); 440 unsigned ABIAlignment = TD.getABITypeAlignment( 441 LD->getMemoryVT().getTypeForEVT(*DAG.getContext())); 442 // Leave aligned load alone. 443 if (LD->getAlignment() >= ABIAlignment) 444 return SDValue(); 445 446 SDValue Chain = LD->getChain(); 447 SDValue BasePtr = LD->getBasePtr(); 448 SDLoc DL(Op); 449 450 if (!LD->isVolatile()) { 451 const GlobalValue *GV; 452 int64_t Offset = 0; 453 if (DAG.isBaseWithConstantOffset(BasePtr) && 454 isWordAligned(BasePtr->getOperand(0), DAG)) { 455 SDValue NewBasePtr = BasePtr->getOperand(0); 456 Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue(); 457 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr, 458 Offset, DAG); 459 } 460 if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) && 461 MinAlign(GV->getAlignment(), 4) == 4) { 462 SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL, 463 BasePtr->getValueType(0)); 464 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr, 465 Offset, DAG); 466 } 467 } 468 469 if (LD->getAlignment() == 2) { 470 SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, 471 BasePtr, LD->getPointerInfo(), MVT::i16, 472 LD->isVolatile(), LD->isNonTemporal(), 473 LD->isInvariant(), 2); 474 SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, 475 DAG.getConstant(2, DL, MVT::i32)); 476 SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 477 HighAddr, 478 LD->getPointerInfo().getWithOffset(2), 479 MVT::i16, LD->isVolatile(), 480 LD->isNonTemporal(), LD->isInvariant(), 2); 481 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, 482 DAG.getConstant(16, DL, MVT::i32)); 483 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted); 484 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1), 485 High.getValue(1)); 486 SDValue Ops[] = { Result, Chain }; 487 return DAG.getMergeValues(Ops, DL); 488 } 489 490 // Lower to a call to __misaligned_load(BasePtr). 491 Type *IntPtrTy = TD.getIntPtrType(*DAG.getContext()); 492 TargetLowering::ArgListTy Args; 493 TargetLowering::ArgListEntry Entry; 494 495 Entry.Ty = IntPtrTy; 496 Entry.Node = BasePtr; 497 Args.push_back(Entry); 498 499 TargetLowering::CallLoweringInfo CLI(DAG); 500 CLI.setDebugLoc(DL).setChain(Chain).setCallee( 501 CallingConv::C, IntPtrTy, 502 DAG.getExternalSymbol("__misaligned_load", 503 getPointerTy(DAG.getDataLayout())), 504 std::move(Args), 0); 505 506 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 507 SDValue Ops[] = { CallResult.first, CallResult.second }; 508 return DAG.getMergeValues(Ops, DL); 509 } 510 511 SDValue XCoreTargetLowering:: 512 LowerSTORE(SDValue Op, SelectionDAG &DAG) const 513 { 514 StoreSDNode *ST = cast<StoreSDNode>(Op); 515 assert(!ST->isTruncatingStore() && "Unexpected store type"); 516 assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT"); 517 if (allowsMisalignedMemoryAccesses(ST->getMemoryVT(), 518 ST->getAddressSpace(), 519 ST->getAlignment())) { 520 return SDValue(); 521 } 522 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment( 523 ST->getMemoryVT().getTypeForEVT(*DAG.getContext())); 524 // Leave aligned store alone. 525 if (ST->getAlignment() >= ABIAlignment) { 526 return SDValue(); 527 } 528 SDValue Chain = ST->getChain(); 529 SDValue BasePtr = ST->getBasePtr(); 530 SDValue Value = ST->getValue(); 531 SDLoc dl(Op); 532 533 if (ST->getAlignment() == 2) { 534 SDValue Low = Value; 535 SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value, 536 DAG.getConstant(16, dl, MVT::i32)); 537 SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr, 538 ST->getPointerInfo(), MVT::i16, 539 ST->isVolatile(), ST->isNonTemporal(), 540 2); 541 SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr, 542 DAG.getConstant(2, dl, MVT::i32)); 543 SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr, 544 ST->getPointerInfo().getWithOffset(2), 545 MVT::i16, ST->isVolatile(), 546 ST->isNonTemporal(), 2); 547 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh); 548 } 549 550 // Lower to a call to __misaligned_store(BasePtr, Value). 551 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 552 TargetLowering::ArgListTy Args; 553 TargetLowering::ArgListEntry Entry; 554 555 Entry.Ty = IntPtrTy; 556 Entry.Node = BasePtr; 557 Args.push_back(Entry); 558 559 Entry.Node = Value; 560 Args.push_back(Entry); 561 562 TargetLowering::CallLoweringInfo CLI(DAG); 563 CLI.setDebugLoc(dl).setChain(Chain).setCallee( 564 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 565 DAG.getExternalSymbol("__misaligned_store", 566 getPointerTy(DAG.getDataLayout())), 567 std::move(Args), 0); 568 569 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 570 return CallResult.second; 571 } 572 573 SDValue XCoreTargetLowering:: 574 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const 575 { 576 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI && 577 "Unexpected operand to lower!"); 578 SDLoc dl(Op); 579 SDValue LHS = Op.getOperand(0); 580 SDValue RHS = Op.getOperand(1); 581 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 582 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl, 583 DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero, 584 LHS, RHS); 585 SDValue Lo(Hi.getNode(), 1); 586 SDValue Ops[] = { Lo, Hi }; 587 return DAG.getMergeValues(Ops, dl); 588 } 589 590 SDValue XCoreTargetLowering:: 591 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const 592 { 593 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI && 594 "Unexpected operand to lower!"); 595 SDLoc dl(Op); 596 SDValue LHS = Op.getOperand(0); 597 SDValue RHS = Op.getOperand(1); 598 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 599 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl, 600 DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS, 601 Zero, Zero); 602 SDValue Lo(Hi.getNode(), 1); 603 SDValue Ops[] = { Lo, Hi }; 604 return DAG.getMergeValues(Ops, dl); 605 } 606 607 /// isADDADDMUL - Return whether Op is in a form that is equivalent to 608 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then 609 /// each intermediate result in the calculation must also have a single use. 610 /// If the Op is in the correct form the constituent parts are written to Mul0, 611 /// Mul1, Addend0 and Addend1. 612 static bool 613 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0, 614 SDValue &Addend1, bool requireIntermediatesHaveOneUse) 615 { 616 if (Op.getOpcode() != ISD::ADD) 617 return false; 618 SDValue N0 = Op.getOperand(0); 619 SDValue N1 = Op.getOperand(1); 620 SDValue AddOp; 621 SDValue OtherOp; 622 if (N0.getOpcode() == ISD::ADD) { 623 AddOp = N0; 624 OtherOp = N1; 625 } else if (N1.getOpcode() == ISD::ADD) { 626 AddOp = N1; 627 OtherOp = N0; 628 } else { 629 return false; 630 } 631 if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse()) 632 return false; 633 if (OtherOp.getOpcode() == ISD::MUL) { 634 // add(add(a,b),mul(x,y)) 635 if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse()) 636 return false; 637 Mul0 = OtherOp.getOperand(0); 638 Mul1 = OtherOp.getOperand(1); 639 Addend0 = AddOp.getOperand(0); 640 Addend1 = AddOp.getOperand(1); 641 return true; 642 } 643 if (AddOp.getOperand(0).getOpcode() == ISD::MUL) { 644 // add(add(mul(x,y),a),b) 645 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse()) 646 return false; 647 Mul0 = AddOp.getOperand(0).getOperand(0); 648 Mul1 = AddOp.getOperand(0).getOperand(1); 649 Addend0 = AddOp.getOperand(1); 650 Addend1 = OtherOp; 651 return true; 652 } 653 if (AddOp.getOperand(1).getOpcode() == ISD::MUL) { 654 // add(add(a,mul(x,y)),b) 655 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse()) 656 return false; 657 Mul0 = AddOp.getOperand(1).getOperand(0); 658 Mul1 = AddOp.getOperand(1).getOperand(1); 659 Addend0 = AddOp.getOperand(0); 660 Addend1 = OtherOp; 661 return true; 662 } 663 return false; 664 } 665 666 SDValue XCoreTargetLowering:: 667 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const 668 { 669 SDValue Mul; 670 SDValue Other; 671 if (N->getOperand(0).getOpcode() == ISD::MUL) { 672 Mul = N->getOperand(0); 673 Other = N->getOperand(1); 674 } else if (N->getOperand(1).getOpcode() == ISD::MUL) { 675 Mul = N->getOperand(1); 676 Other = N->getOperand(0); 677 } else { 678 return SDValue(); 679 } 680 SDLoc dl(N); 681 SDValue LL, RL, AddendL, AddendH; 682 LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 683 Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32)); 684 RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 685 Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32)); 686 AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 687 Other, DAG.getConstant(0, dl, MVT::i32)); 688 AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 689 Other, DAG.getConstant(1, dl, MVT::i32)); 690 APInt HighMask = APInt::getHighBitsSet(64, 32); 691 unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0)); 692 unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1)); 693 if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) && 694 DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) { 695 // The inputs are both zero-extended. 696 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl, 697 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 698 AddendL, LL, RL); 699 SDValue Lo(Hi.getNode(), 1); 700 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 701 } 702 if (LHSSB > 32 && RHSSB > 32) { 703 // The inputs are both sign-extended. 704 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl, 705 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 706 AddendL, LL, RL); 707 SDValue Lo(Hi.getNode(), 1); 708 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 709 } 710 SDValue LH, RH; 711 LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 712 Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32)); 713 RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 714 Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32)); 715 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl, 716 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 717 AddendL, LL, RL); 718 SDValue Lo(Hi.getNode(), 1); 719 RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH); 720 LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL); 721 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH); 722 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH); 723 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 724 } 725 726 SDValue XCoreTargetLowering:: 727 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const 728 { 729 assert(N->getValueType(0) == MVT::i64 && 730 (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 731 "Unknown operand to lower!"); 732 733 if (N->getOpcode() == ISD::ADD) { 734 SDValue Result = TryExpandADDWithMul(N, DAG); 735 if (Result.getNode()) 736 return Result; 737 } 738 739 SDLoc dl(N); 740 741 // Extract components 742 SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 743 N->getOperand(0), 744 DAG.getConstant(0, dl, MVT::i32)); 745 SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 746 N->getOperand(0), 747 DAG.getConstant(1, dl, MVT::i32)); 748 SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 749 N->getOperand(1), 750 DAG.getConstant(0, dl, MVT::i32)); 751 SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 752 N->getOperand(1), 753 DAG.getConstant(1, dl, MVT::i32)); 754 755 // Expand 756 unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD : 757 XCoreISD::LSUB; 758 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 759 SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), 760 LHSL, RHSL, Zero); 761 SDValue Carry(Lo.getNode(), 1); 762 763 SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), 764 LHSH, RHSH, Carry); 765 SDValue Ignored(Hi.getNode(), 1); 766 // Merge the pieces 767 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 768 } 769 770 SDValue XCoreTargetLowering:: 771 LowerVAARG(SDValue Op, SelectionDAG &DAG) const 772 { 773 // Whist llvm does not support aggregate varargs we can ignore 774 // the possibility of the ValueType being an implicit byVal vararg. 775 SDNode *Node = Op.getNode(); 776 EVT VT = Node->getValueType(0); // not an aggregate 777 SDValue InChain = Node->getOperand(0); 778 SDValue VAListPtr = Node->getOperand(1); 779 EVT PtrVT = VAListPtr.getValueType(); 780 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 781 SDLoc dl(Node); 782 SDValue VAList = DAG.getLoad(PtrVT, dl, InChain, 783 VAListPtr, MachinePointerInfo(SV), 784 false, false, false, 0); 785 // Increment the pointer, VAList, to the next vararg 786 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList, 787 DAG.getIntPtrConstant(VT.getSizeInBits() / 8, 788 dl)); 789 // Store the incremented VAList to the legalized pointer 790 InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr, 791 MachinePointerInfo(SV), false, false, 0); 792 // Load the actual argument out of the pointer VAList 793 return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(), 794 false, false, false, 0); 795 } 796 797 SDValue XCoreTargetLowering:: 798 LowerVASTART(SDValue Op, SelectionDAG &DAG) const 799 { 800 SDLoc dl(Op); 801 // vastart stores the address of the VarArgsFrameIndex slot into the 802 // memory location argument 803 MachineFunction &MF = DAG.getMachineFunction(); 804 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 805 SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32); 806 return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1), 807 MachinePointerInfo(), false, false, 0); 808 } 809 810 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op, 811 SelectionDAG &DAG) const { 812 // This nodes represent llvm.frameaddress on the DAG. 813 // It takes one operand, the index of the frame address to return. 814 // An index of zero corresponds to the current function's frame address. 815 // An index of one to the parent's frame address, and so on. 816 // Depths > 0 not supported yet! 817 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0) 818 return SDValue(); 819 820 MachineFunction &MF = DAG.getMachineFunction(); 821 const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 822 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), 823 RegInfo->getFrameRegister(MF), MVT::i32); 824 } 825 826 SDValue XCoreTargetLowering:: 827 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { 828 // This nodes represent llvm.returnaddress on the DAG. 829 // It takes one operand, the index of the return address to return. 830 // An index of zero corresponds to the current function's return address. 831 // An index of one to the parent's return address, and so on. 832 // Depths > 0 not supported yet! 833 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0) 834 return SDValue(); 835 836 MachineFunction &MF = DAG.getMachineFunction(); 837 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 838 int FI = XFI->createLRSpillSlot(MF); 839 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 840 return DAG.getLoad( 841 getPointerTy(DAG.getDataLayout()), SDLoc(Op), DAG.getEntryNode(), FIN, 842 MachinePointerInfo::getFixedStack(FI), false, false, false, 0); 843 } 844 845 SDValue XCoreTargetLowering:: 846 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const { 847 // This node represents offset from frame pointer to first on-stack argument. 848 // This is needed for correct stack adjustment during unwind. 849 // However, we don't know the offset until after the frame has be finalised. 850 // This is done during the XCoreFTAOElim pass. 851 return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32); 852 } 853 854 SDValue XCoreTargetLowering:: 855 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { 856 // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) 857 // This node represents 'eh_return' gcc dwarf builtin, which is used to 858 // return from exception. The general meaning is: adjust stack by OFFSET and 859 // pass execution to HANDLER. 860 MachineFunction &MF = DAG.getMachineFunction(); 861 SDValue Chain = Op.getOperand(0); 862 SDValue Offset = Op.getOperand(1); 863 SDValue Handler = Op.getOperand(2); 864 SDLoc dl(Op); 865 866 // Absolute SP = (FP + FrameToArgs) + Offset 867 const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 868 SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl, 869 RegInfo->getFrameRegister(MF), MVT::i32); 870 SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl, 871 MVT::i32); 872 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs); 873 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset); 874 875 // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister 876 // which leaves 2 caller saved registers, R2 & R3 for us to use. 877 unsigned StackReg = XCore::R2; 878 unsigned HandlerReg = XCore::R3; 879 880 SDValue OutChains[] = { 881 DAG.getCopyToReg(Chain, dl, StackReg, Stack), 882 DAG.getCopyToReg(Chain, dl, HandlerReg, Handler) 883 }; 884 885 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 886 887 return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain, 888 DAG.getRegister(StackReg, MVT::i32), 889 DAG.getRegister(HandlerReg, MVT::i32)); 890 891 } 892 893 SDValue XCoreTargetLowering:: 894 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { 895 return Op.getOperand(0); 896 } 897 898 SDValue XCoreTargetLowering:: 899 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { 900 SDValue Chain = Op.getOperand(0); 901 SDValue Trmp = Op.getOperand(1); // trampoline 902 SDValue FPtr = Op.getOperand(2); // nested function 903 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 904 905 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 906 907 // .align 4 908 // LDAPF_u10 r11, nest 909 // LDW_2rus r11, r11[0] 910 // STWSP_ru6 r11, sp[0] 911 // LDAPF_u10 r11, fptr 912 // LDW_2rus r11, r11[0] 913 // BAU_1r r11 914 // nest: 915 // .word nest 916 // fptr: 917 // .word fptr 918 SDValue OutChains[5]; 919 920 SDValue Addr = Trmp; 921 922 SDLoc dl(Op); 923 OutChains[0] = DAG.getStore(Chain, dl, 924 DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr, 925 MachinePointerInfo(TrmpAddr), false, false, 0); 926 927 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 928 DAG.getConstant(4, dl, MVT::i32)); 929 OutChains[1] = DAG.getStore(Chain, dl, 930 DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr, 931 MachinePointerInfo(TrmpAddr, 4), false, false, 0); 932 933 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 934 DAG.getConstant(8, dl, MVT::i32)); 935 OutChains[2] = DAG.getStore(Chain, dl, 936 DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr, 937 MachinePointerInfo(TrmpAddr, 8), false, false, 0); 938 939 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 940 DAG.getConstant(12, dl, MVT::i32)); 941 OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr, 942 MachinePointerInfo(TrmpAddr, 12), false, false, 943 0); 944 945 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 946 DAG.getConstant(16, dl, MVT::i32)); 947 OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr, 948 MachinePointerInfo(TrmpAddr, 16), false, false, 949 0); 950 951 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 952 } 953 954 SDValue XCoreTargetLowering:: 955 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { 956 SDLoc DL(Op); 957 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 958 switch (IntNo) { 959 case Intrinsic::xcore_crc8: 960 EVT VT = Op.getValueType(); 961 SDValue Data = 962 DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT), 963 Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3)); 964 SDValue Crc(Data.getNode(), 1); 965 SDValue Results[] = { Crc, Data }; 966 return DAG.getMergeValues(Results, DL); 967 } 968 return SDValue(); 969 } 970 971 SDValue XCoreTargetLowering:: 972 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const { 973 SDLoc DL(Op); 974 return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 975 } 976 977 SDValue XCoreTargetLowering:: 978 LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const { 979 AtomicSDNode *N = cast<AtomicSDNode>(Op); 980 assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP"); 981 assert(N->getOrdering() <= Monotonic && 982 "setInsertFencesForAtomic(true) and yet greater than Monotonic"); 983 if (N->getMemoryVT() == MVT::i32) { 984 if (N->getAlignment() < 4) 985 report_fatal_error("atomic load must be aligned"); 986 return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op), 987 N->getChain(), N->getBasePtr(), N->getPointerInfo(), 988 N->isVolatile(), N->isNonTemporal(), N->isInvariant(), 989 N->getAlignment(), N->getAAInfo(), N->getRanges()); 990 } 991 if (N->getMemoryVT() == MVT::i16) { 992 if (N->getAlignment() < 2) 993 report_fatal_error("atomic load must be aligned"); 994 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(), 995 N->getBasePtr(), N->getPointerInfo(), MVT::i16, 996 N->isVolatile(), N->isNonTemporal(), 997 N->isInvariant(), N->getAlignment(), N->getAAInfo()); 998 } 999 if (N->getMemoryVT() == MVT::i8) 1000 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(), 1001 N->getBasePtr(), N->getPointerInfo(), MVT::i8, 1002 N->isVolatile(), N->isNonTemporal(), 1003 N->isInvariant(), N->getAlignment(), N->getAAInfo()); 1004 return SDValue(); 1005 } 1006 1007 SDValue XCoreTargetLowering:: 1008 LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const { 1009 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1010 assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP"); 1011 assert(N->getOrdering() <= Monotonic && 1012 "setInsertFencesForAtomic(true) and yet greater than Monotonic"); 1013 if (N->getMemoryVT() == MVT::i32) { 1014 if (N->getAlignment() < 4) 1015 report_fatal_error("atomic store must be aligned"); 1016 return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(), 1017 N->getBasePtr(), N->getPointerInfo(), 1018 N->isVolatile(), N->isNonTemporal(), 1019 N->getAlignment(), N->getAAInfo()); 1020 } 1021 if (N->getMemoryVT() == MVT::i16) { 1022 if (N->getAlignment() < 2) 1023 report_fatal_error("atomic store must be aligned"); 1024 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(), 1025 N->getBasePtr(), N->getPointerInfo(), MVT::i16, 1026 N->isVolatile(), N->isNonTemporal(), 1027 N->getAlignment(), N->getAAInfo()); 1028 } 1029 if (N->getMemoryVT() == MVT::i8) 1030 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(), 1031 N->getBasePtr(), N->getPointerInfo(), MVT::i8, 1032 N->isVolatile(), N->isNonTemporal(), 1033 N->getAlignment(), N->getAAInfo()); 1034 return SDValue(); 1035 } 1036 1037 //===----------------------------------------------------------------------===// 1038 // Calling Convention Implementation 1039 //===----------------------------------------------------------------------===// 1040 1041 #include "XCoreGenCallingConv.inc" 1042 1043 //===----------------------------------------------------------------------===// 1044 // Call Calling Convention Implementation 1045 //===----------------------------------------------------------------------===// 1046 1047 /// XCore call implementation 1048 SDValue 1049 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 1050 SmallVectorImpl<SDValue> &InVals) const { 1051 SelectionDAG &DAG = CLI.DAG; 1052 SDLoc &dl = CLI.DL; 1053 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1054 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1055 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1056 SDValue Chain = CLI.Chain; 1057 SDValue Callee = CLI.Callee; 1058 bool &isTailCall = CLI.IsTailCall; 1059 CallingConv::ID CallConv = CLI.CallConv; 1060 bool isVarArg = CLI.IsVarArg; 1061 1062 // XCore target does not yet support tail call optimization. 1063 isTailCall = false; 1064 1065 // For now, only CallingConv::C implemented 1066 switch (CallConv) 1067 { 1068 default: 1069 llvm_unreachable("Unsupported calling convention"); 1070 case CallingConv::Fast: 1071 case CallingConv::C: 1072 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall, 1073 Outs, OutVals, Ins, dl, DAG, InVals); 1074 } 1075 } 1076 1077 /// LowerCallResult - Lower the result values of a call into the 1078 /// appropriate copies out of appropriate physical registers / memory locations. 1079 static SDValue 1080 LowerCallResult(SDValue Chain, SDValue InFlag, 1081 const SmallVectorImpl<CCValAssign> &RVLocs, 1082 SDLoc dl, SelectionDAG &DAG, 1083 SmallVectorImpl<SDValue> &InVals) { 1084 SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs; 1085 // Copy results out of physical registers. 1086 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 1087 const CCValAssign &VA = RVLocs[i]; 1088 if (VA.isRegLoc()) { 1089 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(), 1090 InFlag).getValue(1); 1091 InFlag = Chain.getValue(2); 1092 InVals.push_back(Chain.getValue(0)); 1093 } else { 1094 assert(VA.isMemLoc()); 1095 ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(), 1096 InVals.size())); 1097 // Reserve space for this result. 1098 InVals.push_back(SDValue()); 1099 } 1100 } 1101 1102 // Copy results out of memory. 1103 SmallVector<SDValue, 4> MemOpChains; 1104 for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) { 1105 int offset = ResultMemLocs[i].first; 1106 unsigned index = ResultMemLocs[i].second; 1107 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 1108 SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) }; 1109 SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops); 1110 InVals[index] = load; 1111 MemOpChains.push_back(load.getValue(1)); 1112 } 1113 1114 // Transform all loads nodes into one single node because 1115 // all load nodes are independent of each other. 1116 if (!MemOpChains.empty()) 1117 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1118 1119 return Chain; 1120 } 1121 1122 /// LowerCCCCallTo - functions arguments are copied from virtual 1123 /// regs to (physical regs)/(stack frame), CALLSEQ_START and 1124 /// CALLSEQ_END are emitted. 1125 /// TODO: isTailCall, sret. 1126 SDValue 1127 XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee, 1128 CallingConv::ID CallConv, bool isVarArg, 1129 bool isTailCall, 1130 const SmallVectorImpl<ISD::OutputArg> &Outs, 1131 const SmallVectorImpl<SDValue> &OutVals, 1132 const SmallVectorImpl<ISD::InputArg> &Ins, 1133 SDLoc dl, SelectionDAG &DAG, 1134 SmallVectorImpl<SDValue> &InVals) const { 1135 1136 // Analyze operands of the call, assigning locations to each operand. 1137 SmallVector<CCValAssign, 16> ArgLocs; 1138 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 1139 *DAG.getContext()); 1140 1141 // The ABI dictates there should be one stack slot available to the callee 1142 // on function entry (for saving lr). 1143 CCInfo.AllocateStack(4, 4); 1144 1145 CCInfo.AnalyzeCallOperands(Outs, CC_XCore); 1146 1147 SmallVector<CCValAssign, 16> RVLocs; 1148 // Analyze return values to determine the number of bytes of stack required. 1149 CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 1150 *DAG.getContext()); 1151 RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4); 1152 RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore); 1153 1154 // Get a count of how many bytes are to be pushed on the stack. 1155 unsigned NumBytes = RetCCInfo.getNextStackOffset(); 1156 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1157 1158 Chain = DAG.getCALLSEQ_START(Chain, 1159 DAG.getConstant(NumBytes, dl, PtrVT, true), dl); 1160 1161 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass; 1162 SmallVector<SDValue, 12> MemOpChains; 1163 1164 // Walk the register/memloc assignments, inserting copies/loads. 1165 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1166 CCValAssign &VA = ArgLocs[i]; 1167 SDValue Arg = OutVals[i]; 1168 1169 // Promote the value if needed. 1170 switch (VA.getLocInfo()) { 1171 default: llvm_unreachable("Unknown loc info!"); 1172 case CCValAssign::Full: break; 1173 case CCValAssign::SExt: 1174 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 1175 break; 1176 case CCValAssign::ZExt: 1177 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 1178 break; 1179 case CCValAssign::AExt: 1180 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 1181 break; 1182 } 1183 1184 // Arguments that can be passed on register must be kept at 1185 // RegsToPass vector 1186 if (VA.isRegLoc()) { 1187 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 1188 } else { 1189 assert(VA.isMemLoc()); 1190 1191 int Offset = VA.getLocMemOffset(); 1192 1193 MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other, 1194 Chain, Arg, 1195 DAG.getConstant(Offset/4, dl, 1196 MVT::i32))); 1197 } 1198 } 1199 1200 // Transform all store nodes into one single node because 1201 // all store nodes are independent of each other. 1202 if (!MemOpChains.empty()) 1203 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1204 1205 // Build a sequence of copy-to-reg nodes chained together with token 1206 // chain and flag operands which copy the outgoing args into registers. 1207 // The InFlag in necessary since all emitted instructions must be 1208 // stuck together. 1209 SDValue InFlag; 1210 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1211 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 1212 RegsToPass[i].second, InFlag); 1213 InFlag = Chain.getValue(1); 1214 } 1215 1216 // If the callee is a GlobalAddress node (quite common, every direct call is) 1217 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1218 // Likewise ExternalSymbol -> TargetExternalSymbol. 1219 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1220 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32); 1221 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 1222 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32); 1223 1224 // XCoreBranchLink = #chain, #target_address, #opt_in_flags... 1225 // = Chain, Callee, Reg#1, Reg#2, ... 1226 // 1227 // Returns a chain & a flag for retval copy to use. 1228 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1229 SmallVector<SDValue, 8> Ops; 1230 Ops.push_back(Chain); 1231 Ops.push_back(Callee); 1232 1233 // Add argument registers to the end of the list so that they are 1234 // known live into the call. 1235 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1236 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1237 RegsToPass[i].second.getValueType())); 1238 1239 if (InFlag.getNode()) 1240 Ops.push_back(InFlag); 1241 1242 Chain = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops); 1243 InFlag = Chain.getValue(1); 1244 1245 // Create the CALLSEQ_END node. 1246 Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true), 1247 DAG.getConstant(0, dl, PtrVT, true), InFlag, dl); 1248 InFlag = Chain.getValue(1); 1249 1250 // Handle result values, copying them out of physregs into vregs that we 1251 // return. 1252 return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals); 1253 } 1254 1255 //===----------------------------------------------------------------------===// 1256 // Formal Arguments Calling Convention Implementation 1257 //===----------------------------------------------------------------------===// 1258 1259 namespace { 1260 struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; }; 1261 } 1262 1263 /// XCore formal arguments implementation 1264 SDValue 1265 XCoreTargetLowering::LowerFormalArguments(SDValue Chain, 1266 CallingConv::ID CallConv, 1267 bool isVarArg, 1268 const SmallVectorImpl<ISD::InputArg> &Ins, 1269 SDLoc dl, 1270 SelectionDAG &DAG, 1271 SmallVectorImpl<SDValue> &InVals) 1272 const { 1273 switch (CallConv) 1274 { 1275 default: 1276 llvm_unreachable("Unsupported calling convention"); 1277 case CallingConv::C: 1278 case CallingConv::Fast: 1279 return LowerCCCArguments(Chain, CallConv, isVarArg, 1280 Ins, dl, DAG, InVals); 1281 } 1282 } 1283 1284 /// LowerCCCArguments - transform physical registers into 1285 /// virtual registers and generate load operations for 1286 /// arguments places on the stack. 1287 /// TODO: sret 1288 SDValue 1289 XCoreTargetLowering::LowerCCCArguments(SDValue Chain, 1290 CallingConv::ID CallConv, 1291 bool isVarArg, 1292 const SmallVectorImpl<ISD::InputArg> 1293 &Ins, 1294 SDLoc dl, 1295 SelectionDAG &DAG, 1296 SmallVectorImpl<SDValue> &InVals) const { 1297 MachineFunction &MF = DAG.getMachineFunction(); 1298 MachineFrameInfo *MFI = MF.getFrameInfo(); 1299 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1300 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 1301 1302 // Assign locations to all of the incoming arguments. 1303 SmallVector<CCValAssign, 16> ArgLocs; 1304 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 1305 *DAG.getContext()); 1306 1307 CCInfo.AnalyzeFormalArguments(Ins, CC_XCore); 1308 1309 unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize(); 1310 1311 unsigned LRSaveSize = StackSlotSize; 1312 1313 if (!isVarArg) 1314 XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize); 1315 1316 // All getCopyFromReg ops must precede any getMemcpys to prevent the 1317 // scheduler clobbering a register before it has been copied. 1318 // The stages are: 1319 // 1. CopyFromReg (and load) arg & vararg registers. 1320 // 2. Chain CopyFromReg nodes into a TokenFactor. 1321 // 3. Memcpy 'byVal' args & push final InVals. 1322 // 4. Chain mem ops nodes into a TokenFactor. 1323 SmallVector<SDValue, 4> CFRegNode; 1324 SmallVector<ArgDataPair, 4> ArgData; 1325 SmallVector<SDValue, 4> MemOps; 1326 1327 // 1a. CopyFromReg (and load) arg registers. 1328 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1329 1330 CCValAssign &VA = ArgLocs[i]; 1331 SDValue ArgIn; 1332 1333 if (VA.isRegLoc()) { 1334 // Arguments passed in registers 1335 EVT RegVT = VA.getLocVT(); 1336 switch (RegVT.getSimpleVT().SimpleTy) { 1337 default: 1338 { 1339 #ifndef NDEBUG 1340 errs() << "LowerFormalArguments Unhandled argument type: " 1341 << RegVT.getSimpleVT().SimpleTy << "\n"; 1342 #endif 1343 llvm_unreachable(nullptr); 1344 } 1345 case MVT::i32: 1346 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass); 1347 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1348 ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); 1349 CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1)); 1350 } 1351 } else { 1352 // sanity check 1353 assert(VA.isMemLoc()); 1354 // Load the argument to a virtual register 1355 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8; 1356 if (ObjSize > StackSlotSize) { 1357 errs() << "LowerFormalArguments Unhandled argument type: " 1358 << EVT(VA.getLocVT()).getEVTString() 1359 << "\n"; 1360 } 1361 // Create the frame index object for this incoming parameter... 1362 int FI = MFI->CreateFixedObject(ObjSize, 1363 LRSaveSize + VA.getLocMemOffset(), 1364 true); 1365 1366 // Create the SelectionDAG nodes corresponding to a load 1367 //from this parameter 1368 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1369 ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, 1370 MachinePointerInfo::getFixedStack(FI), 1371 false, false, false, 0); 1372 } 1373 const ArgDataPair ADP = { ArgIn, Ins[i].Flags }; 1374 ArgData.push_back(ADP); 1375 } 1376 1377 // 1b. CopyFromReg vararg registers. 1378 if (isVarArg) { 1379 // Argument registers 1380 static const MCPhysReg ArgRegs[] = { 1381 XCore::R0, XCore::R1, XCore::R2, XCore::R3 1382 }; 1383 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 1384 unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs); 1385 if (FirstVAReg < array_lengthof(ArgRegs)) { 1386 int offset = 0; 1387 // Save remaining registers, storing higher register numbers at a higher 1388 // address 1389 for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) { 1390 // Create a stack slot 1391 int FI = MFI->CreateFixedObject(4, offset, true); 1392 if (i == (int)FirstVAReg) { 1393 XFI->setVarArgsFrameIndex(FI); 1394 } 1395 offset -= StackSlotSize; 1396 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1397 // Move argument from phys reg -> virt reg 1398 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass); 1399 RegInfo.addLiveIn(ArgRegs[i], VReg); 1400 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 1401 CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1)); 1402 // Move argument from virt reg -> stack 1403 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1404 MachinePointerInfo(), false, false, 0); 1405 MemOps.push_back(Store); 1406 } 1407 } else { 1408 // This will point to the next argument passed via stack. 1409 XFI->setVarArgsFrameIndex( 1410 MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(), 1411 true)); 1412 } 1413 } 1414 1415 // 2. chain CopyFromReg nodes into a TokenFactor. 1416 if (!CFRegNode.empty()) 1417 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode); 1418 1419 // 3. Memcpy 'byVal' args & push final InVals. 1420 // Aggregates passed "byVal" need to be copied by the callee. 1421 // The callee will use a pointer to this copy, rather than the original 1422 // pointer. 1423 for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(), 1424 ArgDE = ArgData.end(); 1425 ArgDI != ArgDE; ++ArgDI) { 1426 if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) { 1427 unsigned Size = ArgDI->Flags.getByValSize(); 1428 unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign()); 1429 // Create a new object on the stack and copy the pointee into it. 1430 int FI = MFI->CreateStackObject(Size, Align, false); 1431 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1432 InVals.push_back(FIN); 1433 MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV, 1434 DAG.getConstant(Size, dl, MVT::i32), 1435 Align, false, false, false, 1436 MachinePointerInfo(), 1437 MachinePointerInfo())); 1438 } else { 1439 InVals.push_back(ArgDI->SDV); 1440 } 1441 } 1442 1443 // 4, chain mem ops nodes into a TokenFactor. 1444 if (!MemOps.empty()) { 1445 MemOps.push_back(Chain); 1446 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 1447 } 1448 1449 return Chain; 1450 } 1451 1452 //===----------------------------------------------------------------------===// 1453 // Return Value Calling Convention Implementation 1454 //===----------------------------------------------------------------------===// 1455 1456 bool XCoreTargetLowering:: 1457 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, 1458 bool isVarArg, 1459 const SmallVectorImpl<ISD::OutputArg> &Outs, 1460 LLVMContext &Context) const { 1461 SmallVector<CCValAssign, 16> RVLocs; 1462 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 1463 if (!CCInfo.CheckReturn(Outs, RetCC_XCore)) 1464 return false; 1465 if (CCInfo.getNextStackOffset() != 0 && isVarArg) 1466 return false; 1467 return true; 1468 } 1469 1470 SDValue 1471 XCoreTargetLowering::LowerReturn(SDValue Chain, 1472 CallingConv::ID CallConv, bool isVarArg, 1473 const SmallVectorImpl<ISD::OutputArg> &Outs, 1474 const SmallVectorImpl<SDValue> &OutVals, 1475 SDLoc dl, SelectionDAG &DAG) const { 1476 1477 XCoreFunctionInfo *XFI = 1478 DAG.getMachineFunction().getInfo<XCoreFunctionInfo>(); 1479 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 1480 1481 // CCValAssign - represent the assignment of 1482 // the return value to a location 1483 SmallVector<CCValAssign, 16> RVLocs; 1484 1485 // CCState - Info about the registers and stack slot. 1486 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 1487 *DAG.getContext()); 1488 1489 // Analyze return values. 1490 if (!isVarArg) 1491 CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4); 1492 1493 CCInfo.AnalyzeReturn(Outs, RetCC_XCore); 1494 1495 SDValue Flag; 1496 SmallVector<SDValue, 4> RetOps(1, Chain); 1497 1498 // Return on XCore is always a "retsp 0" 1499 RetOps.push_back(DAG.getConstant(0, dl, MVT::i32)); 1500 1501 SmallVector<SDValue, 4> MemOpChains; 1502 // Handle return values that must be copied to memory. 1503 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 1504 CCValAssign &VA = RVLocs[i]; 1505 if (VA.isRegLoc()) 1506 continue; 1507 assert(VA.isMemLoc()); 1508 if (isVarArg) { 1509 report_fatal_error("Can't return value from vararg function in memory"); 1510 } 1511 1512 int Offset = VA.getLocMemOffset(); 1513 unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8; 1514 // Create the frame index object for the memory location. 1515 int FI = MFI->CreateFixedObject(ObjSize, Offset, false); 1516 1517 // Create a SelectionDAG node corresponding to a store 1518 // to this memory location. 1519 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1520 MemOpChains.push_back(DAG.getStore(Chain, dl, OutVals[i], FIN, 1521 MachinePointerInfo::getFixedStack(FI), false, false, 1522 0)); 1523 } 1524 1525 // Transform all store nodes into one single node because 1526 // all stores are independent of each other. 1527 if (!MemOpChains.empty()) 1528 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1529 1530 // Now handle return values copied to registers. 1531 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 1532 CCValAssign &VA = RVLocs[i]; 1533 if (!VA.isRegLoc()) 1534 continue; 1535 // Copy the result values into the output registers. 1536 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); 1537 1538 // guarantee that all emitted copies are 1539 // stuck together, avoiding something bad 1540 Flag = Chain.getValue(1); 1541 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 1542 } 1543 1544 RetOps[0] = Chain; // Update chain. 1545 1546 // Add the flag if we have it. 1547 if (Flag.getNode()) 1548 RetOps.push_back(Flag); 1549 1550 return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps); 1551 } 1552 1553 //===----------------------------------------------------------------------===// 1554 // Other Lowering Code 1555 //===----------------------------------------------------------------------===// 1556 1557 MachineBasicBlock * 1558 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 1559 MachineBasicBlock *BB) const { 1560 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1561 DebugLoc dl = MI->getDebugLoc(); 1562 assert((MI->getOpcode() == XCore::SELECT_CC) && 1563 "Unexpected instr type to insert"); 1564 1565 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond 1566 // control-flow pattern. The incoming instruction knows the destination vreg 1567 // to set, the condition code register to branch on, the true/false values to 1568 // select between, and a branch opcode to use. 1569 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1570 MachineFunction::iterator It = BB; 1571 ++It; 1572 1573 // thisMBB: 1574 // ... 1575 // TrueVal = ... 1576 // cmpTY ccX, r1, r2 1577 // bCC copy1MBB 1578 // fallthrough --> copy0MBB 1579 MachineBasicBlock *thisMBB = BB; 1580 MachineFunction *F = BB->getParent(); 1581 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 1582 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 1583 F->insert(It, copy0MBB); 1584 F->insert(It, sinkMBB); 1585 1586 // Transfer the remainder of BB and its successor edges to sinkMBB. 1587 sinkMBB->splice(sinkMBB->begin(), BB, 1588 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1589 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 1590 1591 // Next, add the true and fallthrough blocks as its successors. 1592 BB->addSuccessor(copy0MBB); 1593 BB->addSuccessor(sinkMBB); 1594 1595 BuildMI(BB, dl, TII.get(XCore::BRFT_lru6)) 1596 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 1597 1598 // copy0MBB: 1599 // %FalseValue = ... 1600 // # fallthrough to sinkMBB 1601 BB = copy0MBB; 1602 1603 // Update machine-CFG edges 1604 BB->addSuccessor(sinkMBB); 1605 1606 // sinkMBB: 1607 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 1608 // ... 1609 BB = sinkMBB; 1610 BuildMI(*BB, BB->begin(), dl, 1611 TII.get(XCore::PHI), MI->getOperand(0).getReg()) 1612 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 1613 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 1614 1615 MI->eraseFromParent(); // The pseudo instruction is gone now. 1616 return BB; 1617 } 1618 1619 //===----------------------------------------------------------------------===// 1620 // Target Optimization Hooks 1621 //===----------------------------------------------------------------------===// 1622 1623 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N, 1624 DAGCombinerInfo &DCI) const { 1625 SelectionDAG &DAG = DCI.DAG; 1626 SDLoc dl(N); 1627 switch (N->getOpcode()) { 1628 default: break; 1629 case ISD::INTRINSIC_VOID: 1630 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 1631 case Intrinsic::xcore_outt: 1632 case Intrinsic::xcore_outct: 1633 case Intrinsic::xcore_chkct: { 1634 SDValue OutVal = N->getOperand(3); 1635 // These instructions ignore the high bits. 1636 if (OutVal.hasOneUse()) { 1637 unsigned BitWidth = OutVal.getValueSizeInBits(); 1638 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8); 1639 APInt KnownZero, KnownOne; 1640 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1641 !DCI.isBeforeLegalizeOps()); 1642 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1643 if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) || 1644 TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne, 1645 TLO)) 1646 DCI.CommitTargetLoweringOpt(TLO); 1647 } 1648 break; 1649 } 1650 case Intrinsic::xcore_setpt: { 1651 SDValue Time = N->getOperand(3); 1652 // This instruction ignores the high bits. 1653 if (Time.hasOneUse()) { 1654 unsigned BitWidth = Time.getValueSizeInBits(); 1655 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16); 1656 APInt KnownZero, KnownOne; 1657 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1658 !DCI.isBeforeLegalizeOps()); 1659 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1660 if (TLO.ShrinkDemandedConstant(Time, DemandedMask) || 1661 TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne, 1662 TLO)) 1663 DCI.CommitTargetLoweringOpt(TLO); 1664 } 1665 break; 1666 } 1667 } 1668 break; 1669 case XCoreISD::LADD: { 1670 SDValue N0 = N->getOperand(0); 1671 SDValue N1 = N->getOperand(1); 1672 SDValue N2 = N->getOperand(2); 1673 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1674 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1675 EVT VT = N0.getValueType(); 1676 1677 // canonicalize constant to RHS 1678 if (N0C && !N1C) 1679 return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2); 1680 1681 // fold (ladd 0, 0, x) -> 0, x & 1 1682 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) { 1683 SDValue Carry = DAG.getConstant(0, dl, VT); 1684 SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2, 1685 DAG.getConstant(1, dl, VT)); 1686 SDValue Ops[] = { Result, Carry }; 1687 return DAG.getMergeValues(Ops, dl); 1688 } 1689 1690 // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the 1691 // low bit set 1692 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) { 1693 APInt KnownZero, KnownOne; 1694 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1695 VT.getSizeInBits() - 1); 1696 DAG.computeKnownBits(N2, KnownZero, KnownOne); 1697 if ((KnownZero & Mask) == Mask) { 1698 SDValue Carry = DAG.getConstant(0, dl, VT); 1699 SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2); 1700 SDValue Ops[] = { Result, Carry }; 1701 return DAG.getMergeValues(Ops, dl); 1702 } 1703 } 1704 } 1705 break; 1706 case XCoreISD::LSUB: { 1707 SDValue N0 = N->getOperand(0); 1708 SDValue N1 = N->getOperand(1); 1709 SDValue N2 = N->getOperand(2); 1710 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1711 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1712 EVT VT = N0.getValueType(); 1713 1714 // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set 1715 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) { 1716 APInt KnownZero, KnownOne; 1717 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1718 VT.getSizeInBits() - 1); 1719 DAG.computeKnownBits(N2, KnownZero, KnownOne); 1720 if ((KnownZero & Mask) == Mask) { 1721 SDValue Borrow = N2; 1722 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, 1723 DAG.getConstant(0, dl, VT), N2); 1724 SDValue Ops[] = { Result, Borrow }; 1725 return DAG.getMergeValues(Ops, dl); 1726 } 1727 } 1728 1729 // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the 1730 // low bit set 1731 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) { 1732 APInt KnownZero, KnownOne; 1733 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1734 VT.getSizeInBits() - 1); 1735 DAG.computeKnownBits(N2, KnownZero, KnownOne); 1736 if ((KnownZero & Mask) == Mask) { 1737 SDValue Borrow = DAG.getConstant(0, dl, VT); 1738 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2); 1739 SDValue Ops[] = { Result, Borrow }; 1740 return DAG.getMergeValues(Ops, dl); 1741 } 1742 } 1743 } 1744 break; 1745 case XCoreISD::LMUL: { 1746 SDValue N0 = N->getOperand(0); 1747 SDValue N1 = N->getOperand(1); 1748 SDValue N2 = N->getOperand(2); 1749 SDValue N3 = N->getOperand(3); 1750 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1751 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1752 EVT VT = N0.getValueType(); 1753 // Canonicalize multiplicative constant to RHS. If both multiplicative 1754 // operands are constant canonicalize smallest to RHS. 1755 if ((N0C && !N1C) || 1756 (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue())) 1757 return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT), 1758 N1, N0, N2, N3); 1759 1760 // lmul(x, 0, a, b) 1761 if (N1C && N1C->isNullValue()) { 1762 // If the high result is unused fold to add(a, b) 1763 if (N->hasNUsesOfValue(0, 0)) { 1764 SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3); 1765 SDValue Ops[] = { Lo, Lo }; 1766 return DAG.getMergeValues(Ops, dl); 1767 } 1768 // Otherwise fold to ladd(a, b, 0) 1769 SDValue Result = 1770 DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1); 1771 SDValue Carry(Result.getNode(), 1); 1772 SDValue Ops[] = { Carry, Result }; 1773 return DAG.getMergeValues(Ops, dl); 1774 } 1775 } 1776 break; 1777 case ISD::ADD: { 1778 // Fold 32 bit expressions such as add(add(mul(x,y),a),b) -> 1779 // lmul(x, y, a, b). The high result of lmul will be ignored. 1780 // This is only profitable if the intermediate results are unused 1781 // elsewhere. 1782 SDValue Mul0, Mul1, Addend0, Addend1; 1783 if (N->getValueType(0) == MVT::i32 && 1784 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) { 1785 SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl, 1786 DAG.getVTList(MVT::i32, MVT::i32), Mul0, 1787 Mul1, Addend0, Addend1); 1788 SDValue Result(Ignored.getNode(), 1); 1789 return Result; 1790 } 1791 APInt HighMask = APInt::getHighBitsSet(64, 32); 1792 // Fold 64 bit expression such as add(add(mul(x,y),a),b) -> 1793 // lmul(x, y, a, b) if all operands are zero-extended. We do this 1794 // before type legalization as it is messy to match the operands after 1795 // that. 1796 if (N->getValueType(0) == MVT::i64 && 1797 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) && 1798 DAG.MaskedValueIsZero(Mul0, HighMask) && 1799 DAG.MaskedValueIsZero(Mul1, HighMask) && 1800 DAG.MaskedValueIsZero(Addend0, HighMask) && 1801 DAG.MaskedValueIsZero(Addend1, HighMask)) { 1802 SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1803 Mul0, DAG.getConstant(0, dl, MVT::i32)); 1804 SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1805 Mul1, DAG.getConstant(0, dl, MVT::i32)); 1806 SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1807 Addend0, DAG.getConstant(0, dl, MVT::i32)); 1808 SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1809 Addend1, DAG.getConstant(0, dl, MVT::i32)); 1810 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl, 1811 DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L, 1812 Addend0L, Addend1L); 1813 SDValue Lo(Hi.getNode(), 1); 1814 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 1815 } 1816 } 1817 break; 1818 case ISD::STORE: { 1819 // Replace unaligned store of unaligned load with memmove. 1820 StoreSDNode *ST = cast<StoreSDNode>(N); 1821 if (!DCI.isBeforeLegalize() || 1822 allowsMisalignedMemoryAccesses(ST->getMemoryVT(), 1823 ST->getAddressSpace(), 1824 ST->getAlignment()) || 1825 ST->isVolatile() || ST->isIndexed()) { 1826 break; 1827 } 1828 SDValue Chain = ST->getChain(); 1829 1830 unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits(); 1831 if (StoreBits % 8) { 1832 break; 1833 } 1834 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment( 1835 ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext())); 1836 unsigned Alignment = ST->getAlignment(); 1837 if (Alignment >= ABIAlignment) { 1838 break; 1839 } 1840 1841 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) { 1842 if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() && 1843 LD->getAlignment() == Alignment && 1844 !LD->isVolatile() && !LD->isIndexed() && 1845 Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) { 1846 bool isTail = isInTailCallPosition(DAG, ST, Chain); 1847 return DAG.getMemmove(Chain, dl, ST->getBasePtr(), 1848 LD->getBasePtr(), 1849 DAG.getConstant(StoreBits/8, dl, MVT::i32), 1850 Alignment, false, isTail, ST->getPointerInfo(), 1851 LD->getPointerInfo()); 1852 } 1853 } 1854 break; 1855 } 1856 } 1857 return SDValue(); 1858 } 1859 1860 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1861 APInt &KnownZero, 1862 APInt &KnownOne, 1863 const SelectionDAG &DAG, 1864 unsigned Depth) const { 1865 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 1866 switch (Op.getOpcode()) { 1867 default: break; 1868 case XCoreISD::LADD: 1869 case XCoreISD::LSUB: 1870 if (Op.getResNo() == 1) { 1871 // Top bits of carry / borrow are clear. 1872 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1873 KnownZero.getBitWidth() - 1); 1874 } 1875 break; 1876 case ISD::INTRINSIC_W_CHAIN: 1877 { 1878 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1879 switch (IntNo) { 1880 case Intrinsic::xcore_getts: 1881 // High bits are known to be zero. 1882 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1883 KnownZero.getBitWidth() - 16); 1884 break; 1885 case Intrinsic::xcore_int: 1886 case Intrinsic::xcore_inct: 1887 // High bits are known to be zero. 1888 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1889 KnownZero.getBitWidth() - 8); 1890 break; 1891 case Intrinsic::xcore_testct: 1892 // Result is either 0 or 1. 1893 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1894 KnownZero.getBitWidth() - 1); 1895 break; 1896 case Intrinsic::xcore_testwct: 1897 // Result is in the range 0 - 4. 1898 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1899 KnownZero.getBitWidth() - 3); 1900 break; 1901 } 1902 } 1903 break; 1904 } 1905 } 1906 1907 //===----------------------------------------------------------------------===// 1908 // Addressing mode description hooks 1909 //===----------------------------------------------------------------------===// 1910 1911 static inline bool isImmUs(int64_t val) 1912 { 1913 return (val >= 0 && val <= 11); 1914 } 1915 1916 static inline bool isImmUs2(int64_t val) 1917 { 1918 return (val%2 == 0 && isImmUs(val/2)); 1919 } 1920 1921 static inline bool isImmUs4(int64_t val) 1922 { 1923 return (val%4 == 0 && isImmUs(val/4)); 1924 } 1925 1926 /// isLegalAddressingMode - Return true if the addressing mode represented 1927 /// by AM is legal for this target, for a load/store of the specified type. 1928 bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1929 const AddrMode &AM, Type *Ty, 1930 unsigned AS) const { 1931 if (Ty->getTypeID() == Type::VoidTyID) 1932 return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs); 1933 1934 unsigned Size = DL.getTypeAllocSize(Ty); 1935 if (AM.BaseGV) { 1936 return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 && 1937 AM.BaseOffs%4 == 0; 1938 } 1939 1940 switch (Size) { 1941 case 1: 1942 // reg + imm 1943 if (AM.Scale == 0) { 1944 return isImmUs(AM.BaseOffs); 1945 } 1946 // reg + reg 1947 return AM.Scale == 1 && AM.BaseOffs == 0; 1948 case 2: 1949 case 3: 1950 // reg + imm 1951 if (AM.Scale == 0) { 1952 return isImmUs2(AM.BaseOffs); 1953 } 1954 // reg + reg<<1 1955 return AM.Scale == 2 && AM.BaseOffs == 0; 1956 default: 1957 // reg + imm 1958 if (AM.Scale == 0) { 1959 return isImmUs4(AM.BaseOffs); 1960 } 1961 // reg + reg<<2 1962 return AM.Scale == 4 && AM.BaseOffs == 0; 1963 } 1964 } 1965 1966 //===----------------------------------------------------------------------===// 1967 // XCore Inline Assembly Support 1968 //===----------------------------------------------------------------------===// 1969 1970 std::pair<unsigned, const TargetRegisterClass *> 1971 XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 1972 StringRef Constraint, 1973 MVT VT) const { 1974 if (Constraint.size() == 1) { 1975 switch (Constraint[0]) { 1976 default : break; 1977 case 'r': 1978 return std::make_pair(0U, &XCore::GRRegsRegClass); 1979 } 1980 } 1981 // Use the default implementation in TargetLowering to convert the register 1982 // constraint into a member of a register class. 1983 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1984 } 1985