1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the XCoreTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "XCoreISelLowering.h" 15 #include "XCore.h" 16 #include "XCoreMachineFunctionInfo.h" 17 #include "XCoreSubtarget.h" 18 #include "XCoreTargetMachine.h" 19 #include "XCoreTargetObjectFile.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAGISel.h" 27 #include "llvm/CodeGen/ValueTypes.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "xcore-lower" 43 44 const char *XCoreTargetLowering:: 45 getTargetNodeName(unsigned Opcode) const 46 { 47 switch ((XCoreISD::NodeType)Opcode) 48 { 49 case XCoreISD::FIRST_NUMBER : break; 50 case XCoreISD::BL : return "XCoreISD::BL"; 51 case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper"; 52 case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper"; 53 case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper"; 54 case XCoreISD::LDWSP : return "XCoreISD::LDWSP"; 55 case XCoreISD::STWSP : return "XCoreISD::STWSP"; 56 case XCoreISD::RETSP : return "XCoreISD::RETSP"; 57 case XCoreISD::LADD : return "XCoreISD::LADD"; 58 case XCoreISD::LSUB : return "XCoreISD::LSUB"; 59 case XCoreISD::LMUL : return "XCoreISD::LMUL"; 60 case XCoreISD::MACCU : return "XCoreISD::MACCU"; 61 case XCoreISD::MACCS : return "XCoreISD::MACCS"; 62 case XCoreISD::CRC8 : return "XCoreISD::CRC8"; 63 case XCoreISD::BR_JT : return "XCoreISD::BR_JT"; 64 case XCoreISD::BR_JT32 : return "XCoreISD::BR_JT32"; 65 case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET"; 66 case XCoreISD::EH_RETURN : return "XCoreISD::EH_RETURN"; 67 case XCoreISD::MEMBARRIER : return "XCoreISD::MEMBARRIER"; 68 } 69 return nullptr; 70 } 71 72 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM, 73 const XCoreSubtarget &Subtarget) 74 : TargetLowering(TM), TM(TM), Subtarget(Subtarget) { 75 76 // Set up the register classes. 77 addRegisterClass(MVT::i32, &XCore::GRRegsRegClass); 78 79 // Compute derived properties from the register classes 80 computeRegisterProperties(Subtarget.getRegisterInfo()); 81 82 setStackPointerRegisterToSaveRestore(XCore::SP); 83 84 setSchedulingPreference(Sched::Source); 85 86 // Use i32 for setcc operations results (slt, sgt, ...). 87 setBooleanContents(ZeroOrOneBooleanContent); 88 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 89 90 // XCore does not have the NodeTypes below. 91 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 92 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); 93 setOperationAction(ISD::ADDC, MVT::i32, Expand); 94 setOperationAction(ISD::ADDE, MVT::i32, Expand); 95 setOperationAction(ISD::SUBC, MVT::i32, Expand); 96 setOperationAction(ISD::SUBE, MVT::i32, Expand); 97 98 // 64bit 99 setOperationAction(ISD::ADD, MVT::i64, Custom); 100 setOperationAction(ISD::SUB, MVT::i64, Custom); 101 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom); 102 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom); 103 setOperationAction(ISD::MULHS, MVT::i32, Expand); 104 setOperationAction(ISD::MULHU, MVT::i32, Expand); 105 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); 106 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 107 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); 108 109 // Bit Manipulation 110 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 111 setOperationAction(ISD::ROTL , MVT::i32, Expand); 112 setOperationAction(ISD::ROTR , MVT::i32, Expand); 113 114 setOperationAction(ISD::TRAP, MVT::Other, Legal); 115 116 // Jump tables. 117 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 118 119 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 120 setOperationAction(ISD::BlockAddress, MVT::i32 , Custom); 121 122 // Conversion of i64 -> double produces constantpool nodes 123 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 124 125 // Loads 126 for (MVT VT : MVT::integer_valuetypes()) { 127 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 128 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 129 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 130 131 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 132 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand); 133 } 134 135 // Custom expand misaligned loads / stores. 136 setOperationAction(ISD::LOAD, MVT::i32, Custom); 137 setOperationAction(ISD::STORE, MVT::i32, Custom); 138 139 // Varargs 140 setOperationAction(ISD::VAEND, MVT::Other, Expand); 141 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 142 setOperationAction(ISD::VAARG, MVT::Other, Custom); 143 setOperationAction(ISD::VASTART, MVT::Other, Custom); 144 145 // Dynamic stack 146 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 147 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 148 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 149 150 // Exception handling 151 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); 152 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); 153 154 // Atomic operations 155 // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic. 156 // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP. 157 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 158 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); 159 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); 160 161 // TRAMPOLINE is custom lowered. 162 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 163 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 164 165 // We want to custom lower some of our intrinsics. 166 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 167 168 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4; 169 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize 170 = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2; 171 172 // We have target-specific dag combine patterns for the following nodes: 173 setTargetDAGCombine(ISD::STORE); 174 setTargetDAGCombine(ISD::ADD); 175 setTargetDAGCombine(ISD::INTRINSIC_VOID); 176 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 177 178 setMinFunctionAlignment(1); 179 setPrefFunctionAlignment(2); 180 } 181 182 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 183 if (Val.getOpcode() != ISD::LOAD) 184 return false; 185 186 EVT VT1 = Val.getValueType(); 187 if (!VT1.isSimple() || !VT1.isInteger() || 188 !VT2.isSimple() || !VT2.isInteger()) 189 return false; 190 191 switch (VT1.getSimpleVT().SimpleTy) { 192 default: break; 193 case MVT::i8: 194 return true; 195 } 196 197 return false; 198 } 199 200 SDValue XCoreTargetLowering:: 201 LowerOperation(SDValue Op, SelectionDAG &DAG) const { 202 switch (Op.getOpcode()) 203 { 204 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); 205 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 206 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 207 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 208 case ISD::BR_JT: return LowerBR_JT(Op, DAG); 209 case ISD::LOAD: return LowerLOAD(Op, DAG); 210 case ISD::STORE: return LowerSTORE(Op, DAG); 211 case ISD::VAARG: return LowerVAARG(Op, DAG); 212 case ISD::VASTART: return LowerVASTART(Op, DAG); 213 case ISD::SMUL_LOHI: return LowerSMUL_LOHI(Op, DAG); 214 case ISD::UMUL_LOHI: return LowerUMUL_LOHI(Op, DAG); 215 // FIXME: Remove these when LegalizeDAGTypes lands. 216 case ISD::ADD: 217 case ISD::SUB: return ExpandADDSUB(Op.getNode(), DAG); 218 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 219 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 220 case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); 221 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 222 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 223 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 224 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG); 225 case ISD::ATOMIC_LOAD: return LowerATOMIC_LOAD(Op, DAG); 226 case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG); 227 default: 228 llvm_unreachable("unimplemented operand"); 229 } 230 } 231 232 /// ReplaceNodeResults - Replace the results of node with an illegal result 233 /// type with new values built out of custom code. 234 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N, 235 SmallVectorImpl<SDValue>&Results, 236 SelectionDAG &DAG) const { 237 switch (N->getOpcode()) { 238 default: 239 llvm_unreachable("Don't know how to custom expand this!"); 240 case ISD::ADD: 241 case ISD::SUB: 242 Results.push_back(ExpandADDSUB(N, DAG)); 243 return; 244 } 245 } 246 247 //===----------------------------------------------------------------------===// 248 // Misc Lower Operation implementation 249 //===----------------------------------------------------------------------===// 250 251 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA, 252 const GlobalValue *GV, 253 SelectionDAG &DAG) const { 254 // FIXME there is no actual debug info here 255 SDLoc dl(GA); 256 257 if (GV->getValueType()->isFunctionTy()) 258 return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA); 259 260 const auto *GVar = dyn_cast<GlobalVariable>(GV); 261 if ((GV->hasSection() && GV->getSection().startswith(".cp.")) || 262 (GVar && GVar->isConstant() && GV->hasLocalLinkage())) 263 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA); 264 265 return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA); 266 } 267 268 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) { 269 if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small) 270 return true; 271 272 Type *ObjType = GV->getValueType(); 273 if (!ObjType->isSized()) 274 return false; 275 276 auto &DL = GV->getParent()->getDataLayout(); 277 unsigned ObjSize = DL.getTypeAllocSize(ObjType); 278 return ObjSize < CodeModelLargeSize && ObjSize != 0; 279 } 280 281 SDValue XCoreTargetLowering:: 282 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const 283 { 284 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op); 285 const GlobalValue *GV = GN->getGlobal(); 286 SDLoc DL(GN); 287 int64_t Offset = GN->getOffset(); 288 if (IsSmallObject(GV, *this)) { 289 // We can only fold positive offsets that are a multiple of the word size. 290 int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0); 291 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset); 292 GA = getGlobalAddressWrapper(GA, GV, DAG); 293 // Handle the rest of the offset. 294 if (Offset != FoldedOffset) { 295 SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32); 296 GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining); 297 } 298 return GA; 299 } else { 300 // Ideally we would not fold in offset with an index <= 11. 301 Type *Ty = Type::getInt8PtrTy(*DAG.getContext()); 302 Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty); 303 Ty = Type::getInt32Ty(*DAG.getContext()); 304 Constant *Idx = ConstantInt::get(Ty, Offset); 305 Constant *GAI = ConstantExpr::getGetElementPtr( 306 Type::getInt8Ty(*DAG.getContext()), GA, Idx); 307 SDValue CP = DAG.getConstantPool(GAI, MVT::i32); 308 return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, 309 DAG.getEntryNode(), CP, MachinePointerInfo(), false, 310 false, false, 0); 311 } 312 } 313 314 SDValue XCoreTargetLowering:: 315 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const 316 { 317 SDLoc DL(Op); 318 auto PtrVT = getPointerTy(DAG.getDataLayout()); 319 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 320 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT); 321 322 return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result); 323 } 324 325 SDValue XCoreTargetLowering:: 326 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const 327 { 328 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 329 // FIXME there isn't really debug info here 330 SDLoc dl(CP); 331 EVT PtrVT = Op.getValueType(); 332 SDValue Res; 333 if (CP->isMachineConstantPoolEntry()) { 334 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 335 CP->getAlignment(), CP->getOffset()); 336 } else { 337 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 338 CP->getAlignment(), CP->getOffset()); 339 } 340 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res); 341 } 342 343 unsigned XCoreTargetLowering::getJumpTableEncoding() const { 344 return MachineJumpTableInfo::EK_Inline; 345 } 346 347 SDValue XCoreTargetLowering:: 348 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const 349 { 350 SDValue Chain = Op.getOperand(0); 351 SDValue Table = Op.getOperand(1); 352 SDValue Index = Op.getOperand(2); 353 SDLoc dl(Op); 354 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table); 355 unsigned JTI = JT->getIndex(); 356 MachineFunction &MF = DAG.getMachineFunction(); 357 const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 358 SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32); 359 360 unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size(); 361 if (NumEntries <= 32) { 362 return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index); 363 } 364 assert((NumEntries >> 31) == 0); 365 SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index, 366 DAG.getConstant(1, dl, MVT::i32)); 367 return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT, 368 ScaledIndex); 369 } 370 371 SDValue XCoreTargetLowering:: 372 lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL, SDValue Chain, SDValue Base, 373 int64_t Offset, SelectionDAG &DAG) const 374 { 375 auto PtrVT = getPointerTy(DAG.getDataLayout()); 376 if ((Offset & 0x3) == 0) { 377 return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo(), false, 378 false, false, 0); 379 } 380 // Lower to pair of consecutive word aligned loads plus some bit shifting. 381 int32_t HighOffset = alignTo(Offset, 4); 382 int32_t LowOffset = HighOffset - 4; 383 SDValue LowAddr, HighAddr; 384 if (GlobalAddressSDNode *GASD = 385 dyn_cast<GlobalAddressSDNode>(Base.getNode())) { 386 LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(), 387 LowOffset); 388 HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(), 389 HighOffset); 390 } else { 391 LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base, 392 DAG.getConstant(LowOffset, DL, MVT::i32)); 393 HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base, 394 DAG.getConstant(HighOffset, DL, MVT::i32)); 395 } 396 SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32); 397 SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32); 398 399 SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo(), 400 false, false, false, 0); 401 SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo(), 402 false, false, false, 0); 403 SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift); 404 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift); 405 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted); 406 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1), 407 High.getValue(1)); 408 SDValue Ops[] = { Result, Chain }; 409 return DAG.getMergeValues(Ops, DL); 410 } 411 412 static bool isWordAligned(SDValue Value, SelectionDAG &DAG) 413 { 414 APInt KnownZero, KnownOne; 415 DAG.computeKnownBits(Value, KnownZero, KnownOne); 416 return KnownZero.countTrailingOnes() >= 2; 417 } 418 419 SDValue XCoreTargetLowering:: 420 LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 421 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 422 LoadSDNode *LD = cast<LoadSDNode>(Op); 423 assert(LD->getExtensionType() == ISD::NON_EXTLOAD && 424 "Unexpected extension type"); 425 assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT"); 426 if (allowsMisalignedMemoryAccesses(LD->getMemoryVT(), 427 LD->getAddressSpace(), 428 LD->getAlignment())) 429 return SDValue(); 430 431 auto &TD = DAG.getDataLayout(); 432 unsigned ABIAlignment = TD.getABITypeAlignment( 433 LD->getMemoryVT().getTypeForEVT(*DAG.getContext())); 434 // Leave aligned load alone. 435 if (LD->getAlignment() >= ABIAlignment) 436 return SDValue(); 437 438 SDValue Chain = LD->getChain(); 439 SDValue BasePtr = LD->getBasePtr(); 440 SDLoc DL(Op); 441 442 if (!LD->isVolatile()) { 443 const GlobalValue *GV; 444 int64_t Offset = 0; 445 if (DAG.isBaseWithConstantOffset(BasePtr) && 446 isWordAligned(BasePtr->getOperand(0), DAG)) { 447 SDValue NewBasePtr = BasePtr->getOperand(0); 448 Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue(); 449 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr, 450 Offset, DAG); 451 } 452 if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) && 453 MinAlign(GV->getAlignment(), 4) == 4) { 454 SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL, 455 BasePtr->getValueType(0)); 456 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr, 457 Offset, DAG); 458 } 459 } 460 461 if (LD->getAlignment() == 2) { 462 SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, 463 BasePtr, LD->getPointerInfo(), MVT::i16, 464 LD->isVolatile(), LD->isNonTemporal(), 465 LD->isInvariant(), 2); 466 SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, 467 DAG.getConstant(2, DL, MVT::i32)); 468 SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 469 HighAddr, 470 LD->getPointerInfo().getWithOffset(2), 471 MVT::i16, LD->isVolatile(), 472 LD->isNonTemporal(), LD->isInvariant(), 2); 473 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, 474 DAG.getConstant(16, DL, MVT::i32)); 475 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted); 476 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1), 477 High.getValue(1)); 478 SDValue Ops[] = { Result, Chain }; 479 return DAG.getMergeValues(Ops, DL); 480 } 481 482 // Lower to a call to __misaligned_load(BasePtr). 483 Type *IntPtrTy = TD.getIntPtrType(*DAG.getContext()); 484 TargetLowering::ArgListTy Args; 485 TargetLowering::ArgListEntry Entry; 486 487 Entry.Ty = IntPtrTy; 488 Entry.Node = BasePtr; 489 Args.push_back(Entry); 490 491 TargetLowering::CallLoweringInfo CLI(DAG); 492 CLI.setDebugLoc(DL).setChain(Chain).setCallee( 493 CallingConv::C, IntPtrTy, 494 DAG.getExternalSymbol("__misaligned_load", 495 getPointerTy(DAG.getDataLayout())), 496 std::move(Args), 0); 497 498 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 499 SDValue Ops[] = { CallResult.first, CallResult.second }; 500 return DAG.getMergeValues(Ops, DL); 501 } 502 503 SDValue XCoreTargetLowering:: 504 LowerSTORE(SDValue Op, SelectionDAG &DAG) const 505 { 506 StoreSDNode *ST = cast<StoreSDNode>(Op); 507 assert(!ST->isTruncatingStore() && "Unexpected store type"); 508 assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT"); 509 if (allowsMisalignedMemoryAccesses(ST->getMemoryVT(), 510 ST->getAddressSpace(), 511 ST->getAlignment())) { 512 return SDValue(); 513 } 514 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment( 515 ST->getMemoryVT().getTypeForEVT(*DAG.getContext())); 516 // Leave aligned store alone. 517 if (ST->getAlignment() >= ABIAlignment) { 518 return SDValue(); 519 } 520 SDValue Chain = ST->getChain(); 521 SDValue BasePtr = ST->getBasePtr(); 522 SDValue Value = ST->getValue(); 523 SDLoc dl(Op); 524 525 if (ST->getAlignment() == 2) { 526 SDValue Low = Value; 527 SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value, 528 DAG.getConstant(16, dl, MVT::i32)); 529 SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr, 530 ST->getPointerInfo(), MVT::i16, 531 ST->isVolatile(), ST->isNonTemporal(), 532 2); 533 SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr, 534 DAG.getConstant(2, dl, MVT::i32)); 535 SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr, 536 ST->getPointerInfo().getWithOffset(2), 537 MVT::i16, ST->isVolatile(), 538 ST->isNonTemporal(), 2); 539 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh); 540 } 541 542 // Lower to a call to __misaligned_store(BasePtr, Value). 543 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 544 TargetLowering::ArgListTy Args; 545 TargetLowering::ArgListEntry Entry; 546 547 Entry.Ty = IntPtrTy; 548 Entry.Node = BasePtr; 549 Args.push_back(Entry); 550 551 Entry.Node = Value; 552 Args.push_back(Entry); 553 554 TargetLowering::CallLoweringInfo CLI(DAG); 555 CLI.setDebugLoc(dl).setChain(Chain).setCallee( 556 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 557 DAG.getExternalSymbol("__misaligned_store", 558 getPointerTy(DAG.getDataLayout())), 559 std::move(Args), 0); 560 561 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 562 return CallResult.second; 563 } 564 565 SDValue XCoreTargetLowering:: 566 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const 567 { 568 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI && 569 "Unexpected operand to lower!"); 570 SDLoc dl(Op); 571 SDValue LHS = Op.getOperand(0); 572 SDValue RHS = Op.getOperand(1); 573 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 574 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl, 575 DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero, 576 LHS, RHS); 577 SDValue Lo(Hi.getNode(), 1); 578 SDValue Ops[] = { Lo, Hi }; 579 return DAG.getMergeValues(Ops, dl); 580 } 581 582 SDValue XCoreTargetLowering:: 583 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const 584 { 585 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI && 586 "Unexpected operand to lower!"); 587 SDLoc dl(Op); 588 SDValue LHS = Op.getOperand(0); 589 SDValue RHS = Op.getOperand(1); 590 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 591 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl, 592 DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS, 593 Zero, Zero); 594 SDValue Lo(Hi.getNode(), 1); 595 SDValue Ops[] = { Lo, Hi }; 596 return DAG.getMergeValues(Ops, dl); 597 } 598 599 /// isADDADDMUL - Return whether Op is in a form that is equivalent to 600 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then 601 /// each intermediate result in the calculation must also have a single use. 602 /// If the Op is in the correct form the constituent parts are written to Mul0, 603 /// Mul1, Addend0 and Addend1. 604 static bool 605 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0, 606 SDValue &Addend1, bool requireIntermediatesHaveOneUse) 607 { 608 if (Op.getOpcode() != ISD::ADD) 609 return false; 610 SDValue N0 = Op.getOperand(0); 611 SDValue N1 = Op.getOperand(1); 612 SDValue AddOp; 613 SDValue OtherOp; 614 if (N0.getOpcode() == ISD::ADD) { 615 AddOp = N0; 616 OtherOp = N1; 617 } else if (N1.getOpcode() == ISD::ADD) { 618 AddOp = N1; 619 OtherOp = N0; 620 } else { 621 return false; 622 } 623 if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse()) 624 return false; 625 if (OtherOp.getOpcode() == ISD::MUL) { 626 // add(add(a,b),mul(x,y)) 627 if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse()) 628 return false; 629 Mul0 = OtherOp.getOperand(0); 630 Mul1 = OtherOp.getOperand(1); 631 Addend0 = AddOp.getOperand(0); 632 Addend1 = AddOp.getOperand(1); 633 return true; 634 } 635 if (AddOp.getOperand(0).getOpcode() == ISD::MUL) { 636 // add(add(mul(x,y),a),b) 637 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse()) 638 return false; 639 Mul0 = AddOp.getOperand(0).getOperand(0); 640 Mul1 = AddOp.getOperand(0).getOperand(1); 641 Addend0 = AddOp.getOperand(1); 642 Addend1 = OtherOp; 643 return true; 644 } 645 if (AddOp.getOperand(1).getOpcode() == ISD::MUL) { 646 // add(add(a,mul(x,y)),b) 647 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse()) 648 return false; 649 Mul0 = AddOp.getOperand(1).getOperand(0); 650 Mul1 = AddOp.getOperand(1).getOperand(1); 651 Addend0 = AddOp.getOperand(0); 652 Addend1 = OtherOp; 653 return true; 654 } 655 return false; 656 } 657 658 SDValue XCoreTargetLowering:: 659 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const 660 { 661 SDValue Mul; 662 SDValue Other; 663 if (N->getOperand(0).getOpcode() == ISD::MUL) { 664 Mul = N->getOperand(0); 665 Other = N->getOperand(1); 666 } else if (N->getOperand(1).getOpcode() == ISD::MUL) { 667 Mul = N->getOperand(1); 668 Other = N->getOperand(0); 669 } else { 670 return SDValue(); 671 } 672 SDLoc dl(N); 673 SDValue LL, RL, AddendL, AddendH; 674 LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 675 Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32)); 676 RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 677 Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32)); 678 AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 679 Other, DAG.getConstant(0, dl, MVT::i32)); 680 AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 681 Other, DAG.getConstant(1, dl, MVT::i32)); 682 APInt HighMask = APInt::getHighBitsSet(64, 32); 683 unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0)); 684 unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1)); 685 if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) && 686 DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) { 687 // The inputs are both zero-extended. 688 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl, 689 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 690 AddendL, LL, RL); 691 SDValue Lo(Hi.getNode(), 1); 692 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 693 } 694 if (LHSSB > 32 && RHSSB > 32) { 695 // The inputs are both sign-extended. 696 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl, 697 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 698 AddendL, LL, RL); 699 SDValue Lo(Hi.getNode(), 1); 700 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 701 } 702 SDValue LH, RH; 703 LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 704 Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32)); 705 RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 706 Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32)); 707 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl, 708 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 709 AddendL, LL, RL); 710 SDValue Lo(Hi.getNode(), 1); 711 RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH); 712 LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL); 713 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH); 714 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH); 715 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 716 } 717 718 SDValue XCoreTargetLowering:: 719 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const 720 { 721 assert(N->getValueType(0) == MVT::i64 && 722 (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 723 "Unknown operand to lower!"); 724 725 if (N->getOpcode() == ISD::ADD) 726 if (SDValue Result = TryExpandADDWithMul(N, DAG)) 727 return Result; 728 729 SDLoc dl(N); 730 731 // Extract components 732 SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 733 N->getOperand(0), 734 DAG.getConstant(0, dl, MVT::i32)); 735 SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 736 N->getOperand(0), 737 DAG.getConstant(1, dl, MVT::i32)); 738 SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 739 N->getOperand(1), 740 DAG.getConstant(0, dl, MVT::i32)); 741 SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 742 N->getOperand(1), 743 DAG.getConstant(1, dl, MVT::i32)); 744 745 // Expand 746 unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD : 747 XCoreISD::LSUB; 748 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 749 SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), 750 LHSL, RHSL, Zero); 751 SDValue Carry(Lo.getNode(), 1); 752 753 SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), 754 LHSH, RHSH, Carry); 755 SDValue Ignored(Hi.getNode(), 1); 756 // Merge the pieces 757 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 758 } 759 760 SDValue XCoreTargetLowering:: 761 LowerVAARG(SDValue Op, SelectionDAG &DAG) const 762 { 763 // Whist llvm does not support aggregate varargs we can ignore 764 // the possibility of the ValueType being an implicit byVal vararg. 765 SDNode *Node = Op.getNode(); 766 EVT VT = Node->getValueType(0); // not an aggregate 767 SDValue InChain = Node->getOperand(0); 768 SDValue VAListPtr = Node->getOperand(1); 769 EVT PtrVT = VAListPtr.getValueType(); 770 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 771 SDLoc dl(Node); 772 SDValue VAList = DAG.getLoad(PtrVT, dl, InChain, 773 VAListPtr, MachinePointerInfo(SV), 774 false, false, false, 0); 775 // Increment the pointer, VAList, to the next vararg 776 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList, 777 DAG.getIntPtrConstant(VT.getSizeInBits() / 8, 778 dl)); 779 // Store the incremented VAList to the legalized pointer 780 InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr, 781 MachinePointerInfo(SV), false, false, 0); 782 // Load the actual argument out of the pointer VAList 783 return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(), 784 false, false, false, 0); 785 } 786 787 SDValue XCoreTargetLowering:: 788 LowerVASTART(SDValue Op, SelectionDAG &DAG) const 789 { 790 SDLoc dl(Op); 791 // vastart stores the address of the VarArgsFrameIndex slot into the 792 // memory location argument 793 MachineFunction &MF = DAG.getMachineFunction(); 794 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 795 SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32); 796 return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1), 797 MachinePointerInfo(), false, false, 0); 798 } 799 800 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op, 801 SelectionDAG &DAG) const { 802 // This nodes represent llvm.frameaddress on the DAG. 803 // It takes one operand, the index of the frame address to return. 804 // An index of zero corresponds to the current function's frame address. 805 // An index of one to the parent's frame address, and so on. 806 // Depths > 0 not supported yet! 807 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0) 808 return SDValue(); 809 810 MachineFunction &MF = DAG.getMachineFunction(); 811 const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 812 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), 813 RegInfo->getFrameRegister(MF), MVT::i32); 814 } 815 816 SDValue XCoreTargetLowering:: 817 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { 818 // This nodes represent llvm.returnaddress on the DAG. 819 // It takes one operand, the index of the return address to return. 820 // An index of zero corresponds to the current function's return address. 821 // An index of one to the parent's return address, and so on. 822 // Depths > 0 not supported yet! 823 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0) 824 return SDValue(); 825 826 MachineFunction &MF = DAG.getMachineFunction(); 827 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 828 int FI = XFI->createLRSpillSlot(MF); 829 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 830 return DAG.getLoad( 831 getPointerTy(DAG.getDataLayout()), SDLoc(Op), DAG.getEntryNode(), FIN, 832 MachinePointerInfo::getFixedStack(MF, FI), false, false, false, 0); 833 } 834 835 SDValue XCoreTargetLowering:: 836 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const { 837 // This node represents offset from frame pointer to first on-stack argument. 838 // This is needed for correct stack adjustment during unwind. 839 // However, we don't know the offset until after the frame has be finalised. 840 // This is done during the XCoreFTAOElim pass. 841 return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32); 842 } 843 844 SDValue XCoreTargetLowering:: 845 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { 846 // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) 847 // This node represents 'eh_return' gcc dwarf builtin, which is used to 848 // return from exception. The general meaning is: adjust stack by OFFSET and 849 // pass execution to HANDLER. 850 MachineFunction &MF = DAG.getMachineFunction(); 851 SDValue Chain = Op.getOperand(0); 852 SDValue Offset = Op.getOperand(1); 853 SDValue Handler = Op.getOperand(2); 854 SDLoc dl(Op); 855 856 // Absolute SP = (FP + FrameToArgs) + Offset 857 const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 858 SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl, 859 RegInfo->getFrameRegister(MF), MVT::i32); 860 SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl, 861 MVT::i32); 862 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs); 863 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset); 864 865 // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister 866 // which leaves 2 caller saved registers, R2 & R3 for us to use. 867 unsigned StackReg = XCore::R2; 868 unsigned HandlerReg = XCore::R3; 869 870 SDValue OutChains[] = { 871 DAG.getCopyToReg(Chain, dl, StackReg, Stack), 872 DAG.getCopyToReg(Chain, dl, HandlerReg, Handler) 873 }; 874 875 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 876 877 return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain, 878 DAG.getRegister(StackReg, MVT::i32), 879 DAG.getRegister(HandlerReg, MVT::i32)); 880 881 } 882 883 SDValue XCoreTargetLowering:: 884 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { 885 return Op.getOperand(0); 886 } 887 888 SDValue XCoreTargetLowering:: 889 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { 890 SDValue Chain = Op.getOperand(0); 891 SDValue Trmp = Op.getOperand(1); // trampoline 892 SDValue FPtr = Op.getOperand(2); // nested function 893 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 894 895 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 896 897 // .align 4 898 // LDAPF_u10 r11, nest 899 // LDW_2rus r11, r11[0] 900 // STWSP_ru6 r11, sp[0] 901 // LDAPF_u10 r11, fptr 902 // LDW_2rus r11, r11[0] 903 // BAU_1r r11 904 // nest: 905 // .word nest 906 // fptr: 907 // .word fptr 908 SDValue OutChains[5]; 909 910 SDValue Addr = Trmp; 911 912 SDLoc dl(Op); 913 OutChains[0] = DAG.getStore(Chain, dl, 914 DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr, 915 MachinePointerInfo(TrmpAddr), false, false, 0); 916 917 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 918 DAG.getConstant(4, dl, MVT::i32)); 919 OutChains[1] = DAG.getStore(Chain, dl, 920 DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr, 921 MachinePointerInfo(TrmpAddr, 4), false, false, 0); 922 923 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 924 DAG.getConstant(8, dl, MVT::i32)); 925 OutChains[2] = DAG.getStore(Chain, dl, 926 DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr, 927 MachinePointerInfo(TrmpAddr, 8), false, false, 0); 928 929 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 930 DAG.getConstant(12, dl, MVT::i32)); 931 OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr, 932 MachinePointerInfo(TrmpAddr, 12), false, false, 933 0); 934 935 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 936 DAG.getConstant(16, dl, MVT::i32)); 937 OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr, 938 MachinePointerInfo(TrmpAddr, 16), false, false, 939 0); 940 941 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 942 } 943 944 SDValue XCoreTargetLowering:: 945 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { 946 SDLoc DL(Op); 947 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 948 switch (IntNo) { 949 case Intrinsic::xcore_crc8: 950 EVT VT = Op.getValueType(); 951 SDValue Data = 952 DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT), 953 Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3)); 954 SDValue Crc(Data.getNode(), 1); 955 SDValue Results[] = { Crc, Data }; 956 return DAG.getMergeValues(Results, DL); 957 } 958 return SDValue(); 959 } 960 961 SDValue XCoreTargetLowering:: 962 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const { 963 SDLoc DL(Op); 964 return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 965 } 966 967 SDValue XCoreTargetLowering:: 968 LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const { 969 AtomicSDNode *N = cast<AtomicSDNode>(Op); 970 assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP"); 971 assert((N->getOrdering() == AtomicOrdering::Unordered || 972 N->getOrdering() == AtomicOrdering::Monotonic) && 973 "setInsertFencesForAtomic(true) expects unordered / monotonic"); 974 if (N->getMemoryVT() == MVT::i32) { 975 if (N->getAlignment() < 4) 976 report_fatal_error("atomic load must be aligned"); 977 return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op), 978 N->getChain(), N->getBasePtr(), N->getPointerInfo(), 979 N->isVolatile(), N->isNonTemporal(), N->isInvariant(), 980 N->getAlignment(), N->getAAInfo(), N->getRanges()); 981 } 982 if (N->getMemoryVT() == MVT::i16) { 983 if (N->getAlignment() < 2) 984 report_fatal_error("atomic load must be aligned"); 985 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(), 986 N->getBasePtr(), N->getPointerInfo(), MVT::i16, 987 N->isVolatile(), N->isNonTemporal(), 988 N->isInvariant(), N->getAlignment(), N->getAAInfo()); 989 } 990 if (N->getMemoryVT() == MVT::i8) 991 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(), 992 N->getBasePtr(), N->getPointerInfo(), MVT::i8, 993 N->isVolatile(), N->isNonTemporal(), 994 N->isInvariant(), N->getAlignment(), N->getAAInfo()); 995 return SDValue(); 996 } 997 998 SDValue XCoreTargetLowering:: 999 LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const { 1000 AtomicSDNode *N = cast<AtomicSDNode>(Op); 1001 assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP"); 1002 assert((N->getOrdering() == AtomicOrdering::Unordered || 1003 N->getOrdering() == AtomicOrdering::Monotonic) && 1004 "setInsertFencesForAtomic(true) expects unordered / monotonic"); 1005 if (N->getMemoryVT() == MVT::i32) { 1006 if (N->getAlignment() < 4) 1007 report_fatal_error("atomic store must be aligned"); 1008 return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(), 1009 N->getBasePtr(), N->getPointerInfo(), 1010 N->isVolatile(), N->isNonTemporal(), 1011 N->getAlignment(), N->getAAInfo()); 1012 } 1013 if (N->getMemoryVT() == MVT::i16) { 1014 if (N->getAlignment() < 2) 1015 report_fatal_error("atomic store must be aligned"); 1016 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(), 1017 N->getBasePtr(), N->getPointerInfo(), MVT::i16, 1018 N->isVolatile(), N->isNonTemporal(), 1019 N->getAlignment(), N->getAAInfo()); 1020 } 1021 if (N->getMemoryVT() == MVT::i8) 1022 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(), 1023 N->getBasePtr(), N->getPointerInfo(), MVT::i8, 1024 N->isVolatile(), N->isNonTemporal(), 1025 N->getAlignment(), N->getAAInfo()); 1026 return SDValue(); 1027 } 1028 1029 //===----------------------------------------------------------------------===// 1030 // Calling Convention Implementation 1031 //===----------------------------------------------------------------------===// 1032 1033 #include "XCoreGenCallingConv.inc" 1034 1035 //===----------------------------------------------------------------------===// 1036 // Call Calling Convention Implementation 1037 //===----------------------------------------------------------------------===// 1038 1039 /// XCore call implementation 1040 SDValue 1041 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 1042 SmallVectorImpl<SDValue> &InVals) const { 1043 SelectionDAG &DAG = CLI.DAG; 1044 SDLoc &dl = CLI.DL; 1045 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1046 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1047 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1048 SDValue Chain = CLI.Chain; 1049 SDValue Callee = CLI.Callee; 1050 bool &isTailCall = CLI.IsTailCall; 1051 CallingConv::ID CallConv = CLI.CallConv; 1052 bool isVarArg = CLI.IsVarArg; 1053 1054 // XCore target does not yet support tail call optimization. 1055 isTailCall = false; 1056 1057 // For now, only CallingConv::C implemented 1058 switch (CallConv) 1059 { 1060 default: 1061 llvm_unreachable("Unsupported calling convention"); 1062 case CallingConv::Fast: 1063 case CallingConv::C: 1064 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall, 1065 Outs, OutVals, Ins, dl, DAG, InVals); 1066 } 1067 } 1068 1069 /// LowerCallResult - Lower the result values of a call into the 1070 /// appropriate copies out of appropriate physical registers / memory locations. 1071 static SDValue 1072 LowerCallResult(SDValue Chain, SDValue InFlag, 1073 const SmallVectorImpl<CCValAssign> &RVLocs, 1074 SDLoc dl, SelectionDAG &DAG, 1075 SmallVectorImpl<SDValue> &InVals) { 1076 SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs; 1077 // Copy results out of physical registers. 1078 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 1079 const CCValAssign &VA = RVLocs[i]; 1080 if (VA.isRegLoc()) { 1081 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(), 1082 InFlag).getValue(1); 1083 InFlag = Chain.getValue(2); 1084 InVals.push_back(Chain.getValue(0)); 1085 } else { 1086 assert(VA.isMemLoc()); 1087 ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(), 1088 InVals.size())); 1089 // Reserve space for this result. 1090 InVals.push_back(SDValue()); 1091 } 1092 } 1093 1094 // Copy results out of memory. 1095 SmallVector<SDValue, 4> MemOpChains; 1096 for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) { 1097 int offset = ResultMemLocs[i].first; 1098 unsigned index = ResultMemLocs[i].second; 1099 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 1100 SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) }; 1101 SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops); 1102 InVals[index] = load; 1103 MemOpChains.push_back(load.getValue(1)); 1104 } 1105 1106 // Transform all loads nodes into one single node because 1107 // all load nodes are independent of each other. 1108 if (!MemOpChains.empty()) 1109 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1110 1111 return Chain; 1112 } 1113 1114 /// LowerCCCCallTo - functions arguments are copied from virtual 1115 /// regs to (physical regs)/(stack frame), CALLSEQ_START and 1116 /// CALLSEQ_END are emitted. 1117 /// TODO: isTailCall, sret. 1118 SDValue 1119 XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee, 1120 CallingConv::ID CallConv, bool isVarArg, 1121 bool isTailCall, 1122 const SmallVectorImpl<ISD::OutputArg> &Outs, 1123 const SmallVectorImpl<SDValue> &OutVals, 1124 const SmallVectorImpl<ISD::InputArg> &Ins, 1125 SDLoc dl, SelectionDAG &DAG, 1126 SmallVectorImpl<SDValue> &InVals) const { 1127 1128 // Analyze operands of the call, assigning locations to each operand. 1129 SmallVector<CCValAssign, 16> ArgLocs; 1130 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 1131 *DAG.getContext()); 1132 1133 // The ABI dictates there should be one stack slot available to the callee 1134 // on function entry (for saving lr). 1135 CCInfo.AllocateStack(4, 4); 1136 1137 CCInfo.AnalyzeCallOperands(Outs, CC_XCore); 1138 1139 SmallVector<CCValAssign, 16> RVLocs; 1140 // Analyze return values to determine the number of bytes of stack required. 1141 CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 1142 *DAG.getContext()); 1143 RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4); 1144 RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore); 1145 1146 // Get a count of how many bytes are to be pushed on the stack. 1147 unsigned NumBytes = RetCCInfo.getNextStackOffset(); 1148 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1149 1150 Chain = DAG.getCALLSEQ_START(Chain, 1151 DAG.getConstant(NumBytes, dl, PtrVT, true), dl); 1152 1153 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass; 1154 SmallVector<SDValue, 12> MemOpChains; 1155 1156 // Walk the register/memloc assignments, inserting copies/loads. 1157 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1158 CCValAssign &VA = ArgLocs[i]; 1159 SDValue Arg = OutVals[i]; 1160 1161 // Promote the value if needed. 1162 switch (VA.getLocInfo()) { 1163 default: llvm_unreachable("Unknown loc info!"); 1164 case CCValAssign::Full: break; 1165 case CCValAssign::SExt: 1166 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 1167 break; 1168 case CCValAssign::ZExt: 1169 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 1170 break; 1171 case CCValAssign::AExt: 1172 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 1173 break; 1174 } 1175 1176 // Arguments that can be passed on register must be kept at 1177 // RegsToPass vector 1178 if (VA.isRegLoc()) { 1179 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 1180 } else { 1181 assert(VA.isMemLoc()); 1182 1183 int Offset = VA.getLocMemOffset(); 1184 1185 MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other, 1186 Chain, Arg, 1187 DAG.getConstant(Offset/4, dl, 1188 MVT::i32))); 1189 } 1190 } 1191 1192 // Transform all store nodes into one single node because 1193 // all store nodes are independent of each other. 1194 if (!MemOpChains.empty()) 1195 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1196 1197 // Build a sequence of copy-to-reg nodes chained together with token 1198 // chain and flag operands which copy the outgoing args into registers. 1199 // The InFlag in necessary since all emitted instructions must be 1200 // stuck together. 1201 SDValue InFlag; 1202 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1203 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 1204 RegsToPass[i].second, InFlag); 1205 InFlag = Chain.getValue(1); 1206 } 1207 1208 // If the callee is a GlobalAddress node (quite common, every direct call is) 1209 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1210 // Likewise ExternalSymbol -> TargetExternalSymbol. 1211 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1212 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32); 1213 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 1214 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32); 1215 1216 // XCoreBranchLink = #chain, #target_address, #opt_in_flags... 1217 // = Chain, Callee, Reg#1, Reg#2, ... 1218 // 1219 // Returns a chain & a flag for retval copy to use. 1220 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1221 SmallVector<SDValue, 8> Ops; 1222 Ops.push_back(Chain); 1223 Ops.push_back(Callee); 1224 1225 // Add argument registers to the end of the list so that they are 1226 // known live into the call. 1227 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1228 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1229 RegsToPass[i].second.getValueType())); 1230 1231 if (InFlag.getNode()) 1232 Ops.push_back(InFlag); 1233 1234 Chain = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops); 1235 InFlag = Chain.getValue(1); 1236 1237 // Create the CALLSEQ_END node. 1238 Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true), 1239 DAG.getConstant(0, dl, PtrVT, true), InFlag, dl); 1240 InFlag = Chain.getValue(1); 1241 1242 // Handle result values, copying them out of physregs into vregs that we 1243 // return. 1244 return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals); 1245 } 1246 1247 //===----------------------------------------------------------------------===// 1248 // Formal Arguments Calling Convention Implementation 1249 //===----------------------------------------------------------------------===// 1250 1251 namespace { 1252 struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; }; 1253 } 1254 1255 /// XCore formal arguments implementation 1256 SDValue 1257 XCoreTargetLowering::LowerFormalArguments(SDValue Chain, 1258 CallingConv::ID CallConv, 1259 bool isVarArg, 1260 const SmallVectorImpl<ISD::InputArg> &Ins, 1261 SDLoc dl, 1262 SelectionDAG &DAG, 1263 SmallVectorImpl<SDValue> &InVals) 1264 const { 1265 switch (CallConv) 1266 { 1267 default: 1268 llvm_unreachable("Unsupported calling convention"); 1269 case CallingConv::C: 1270 case CallingConv::Fast: 1271 return LowerCCCArguments(Chain, CallConv, isVarArg, 1272 Ins, dl, DAG, InVals); 1273 } 1274 } 1275 1276 /// LowerCCCArguments - transform physical registers into 1277 /// virtual registers and generate load operations for 1278 /// arguments places on the stack. 1279 /// TODO: sret 1280 SDValue 1281 XCoreTargetLowering::LowerCCCArguments(SDValue Chain, 1282 CallingConv::ID CallConv, 1283 bool isVarArg, 1284 const SmallVectorImpl<ISD::InputArg> 1285 &Ins, 1286 SDLoc dl, 1287 SelectionDAG &DAG, 1288 SmallVectorImpl<SDValue> &InVals) const { 1289 MachineFunction &MF = DAG.getMachineFunction(); 1290 MachineFrameInfo *MFI = MF.getFrameInfo(); 1291 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1292 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 1293 1294 // Assign locations to all of the incoming arguments. 1295 SmallVector<CCValAssign, 16> ArgLocs; 1296 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 1297 *DAG.getContext()); 1298 1299 CCInfo.AnalyzeFormalArguments(Ins, CC_XCore); 1300 1301 unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize(); 1302 1303 unsigned LRSaveSize = StackSlotSize; 1304 1305 if (!isVarArg) 1306 XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize); 1307 1308 // All getCopyFromReg ops must precede any getMemcpys to prevent the 1309 // scheduler clobbering a register before it has been copied. 1310 // The stages are: 1311 // 1. CopyFromReg (and load) arg & vararg registers. 1312 // 2. Chain CopyFromReg nodes into a TokenFactor. 1313 // 3. Memcpy 'byVal' args & push final InVals. 1314 // 4. Chain mem ops nodes into a TokenFactor. 1315 SmallVector<SDValue, 4> CFRegNode; 1316 SmallVector<ArgDataPair, 4> ArgData; 1317 SmallVector<SDValue, 4> MemOps; 1318 1319 // 1a. CopyFromReg (and load) arg registers. 1320 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1321 1322 CCValAssign &VA = ArgLocs[i]; 1323 SDValue ArgIn; 1324 1325 if (VA.isRegLoc()) { 1326 // Arguments passed in registers 1327 EVT RegVT = VA.getLocVT(); 1328 switch (RegVT.getSimpleVT().SimpleTy) { 1329 default: 1330 { 1331 #ifndef NDEBUG 1332 errs() << "LowerFormalArguments Unhandled argument type: " 1333 << RegVT.getEVTString() << "\n"; 1334 #endif 1335 llvm_unreachable(nullptr); 1336 } 1337 case MVT::i32: 1338 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass); 1339 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1340 ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); 1341 CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1)); 1342 } 1343 } else { 1344 // sanity check 1345 assert(VA.isMemLoc()); 1346 // Load the argument to a virtual register 1347 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8; 1348 if (ObjSize > StackSlotSize) { 1349 errs() << "LowerFormalArguments Unhandled argument type: " 1350 << EVT(VA.getLocVT()).getEVTString() 1351 << "\n"; 1352 } 1353 // Create the frame index object for this incoming parameter... 1354 int FI = MFI->CreateFixedObject(ObjSize, 1355 LRSaveSize + VA.getLocMemOffset(), 1356 true); 1357 1358 // Create the SelectionDAG nodes corresponding to a load 1359 //from this parameter 1360 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1361 ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, 1362 MachinePointerInfo::getFixedStack(MF, FI), false, 1363 false, false, 0); 1364 } 1365 const ArgDataPair ADP = { ArgIn, Ins[i].Flags }; 1366 ArgData.push_back(ADP); 1367 } 1368 1369 // 1b. CopyFromReg vararg registers. 1370 if (isVarArg) { 1371 // Argument registers 1372 static const MCPhysReg ArgRegs[] = { 1373 XCore::R0, XCore::R1, XCore::R2, XCore::R3 1374 }; 1375 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 1376 unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs); 1377 if (FirstVAReg < array_lengthof(ArgRegs)) { 1378 int offset = 0; 1379 // Save remaining registers, storing higher register numbers at a higher 1380 // address 1381 for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) { 1382 // Create a stack slot 1383 int FI = MFI->CreateFixedObject(4, offset, true); 1384 if (i == (int)FirstVAReg) { 1385 XFI->setVarArgsFrameIndex(FI); 1386 } 1387 offset -= StackSlotSize; 1388 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1389 // Move argument from phys reg -> virt reg 1390 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass); 1391 RegInfo.addLiveIn(ArgRegs[i], VReg); 1392 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 1393 CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1)); 1394 // Move argument from virt reg -> stack 1395 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 1396 MachinePointerInfo(), false, false, 0); 1397 MemOps.push_back(Store); 1398 } 1399 } else { 1400 // This will point to the next argument passed via stack. 1401 XFI->setVarArgsFrameIndex( 1402 MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(), 1403 true)); 1404 } 1405 } 1406 1407 // 2. chain CopyFromReg nodes into a TokenFactor. 1408 if (!CFRegNode.empty()) 1409 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode); 1410 1411 // 3. Memcpy 'byVal' args & push final InVals. 1412 // Aggregates passed "byVal" need to be copied by the callee. 1413 // The callee will use a pointer to this copy, rather than the original 1414 // pointer. 1415 for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(), 1416 ArgDE = ArgData.end(); 1417 ArgDI != ArgDE; ++ArgDI) { 1418 if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) { 1419 unsigned Size = ArgDI->Flags.getByValSize(); 1420 unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign()); 1421 // Create a new object on the stack and copy the pointee into it. 1422 int FI = MFI->CreateStackObject(Size, Align, false); 1423 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1424 InVals.push_back(FIN); 1425 MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV, 1426 DAG.getConstant(Size, dl, MVT::i32), 1427 Align, false, false, false, 1428 MachinePointerInfo(), 1429 MachinePointerInfo())); 1430 } else { 1431 InVals.push_back(ArgDI->SDV); 1432 } 1433 } 1434 1435 // 4, chain mem ops nodes into a TokenFactor. 1436 if (!MemOps.empty()) { 1437 MemOps.push_back(Chain); 1438 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 1439 } 1440 1441 return Chain; 1442 } 1443 1444 //===----------------------------------------------------------------------===// 1445 // Return Value Calling Convention Implementation 1446 //===----------------------------------------------------------------------===// 1447 1448 bool XCoreTargetLowering:: 1449 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, 1450 bool isVarArg, 1451 const SmallVectorImpl<ISD::OutputArg> &Outs, 1452 LLVMContext &Context) const { 1453 SmallVector<CCValAssign, 16> RVLocs; 1454 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 1455 if (!CCInfo.CheckReturn(Outs, RetCC_XCore)) 1456 return false; 1457 if (CCInfo.getNextStackOffset() != 0 && isVarArg) 1458 return false; 1459 return true; 1460 } 1461 1462 SDValue 1463 XCoreTargetLowering::LowerReturn(SDValue Chain, 1464 CallingConv::ID CallConv, bool isVarArg, 1465 const SmallVectorImpl<ISD::OutputArg> &Outs, 1466 const SmallVectorImpl<SDValue> &OutVals, 1467 SDLoc dl, SelectionDAG &DAG) const { 1468 1469 XCoreFunctionInfo *XFI = 1470 DAG.getMachineFunction().getInfo<XCoreFunctionInfo>(); 1471 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 1472 1473 // CCValAssign - represent the assignment of 1474 // the return value to a location 1475 SmallVector<CCValAssign, 16> RVLocs; 1476 1477 // CCState - Info about the registers and stack slot. 1478 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 1479 *DAG.getContext()); 1480 1481 // Analyze return values. 1482 if (!isVarArg) 1483 CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4); 1484 1485 CCInfo.AnalyzeReturn(Outs, RetCC_XCore); 1486 1487 SDValue Flag; 1488 SmallVector<SDValue, 4> RetOps(1, Chain); 1489 1490 // Return on XCore is always a "retsp 0" 1491 RetOps.push_back(DAG.getConstant(0, dl, MVT::i32)); 1492 1493 SmallVector<SDValue, 4> MemOpChains; 1494 // Handle return values that must be copied to memory. 1495 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 1496 CCValAssign &VA = RVLocs[i]; 1497 if (VA.isRegLoc()) 1498 continue; 1499 assert(VA.isMemLoc()); 1500 if (isVarArg) { 1501 report_fatal_error("Can't return value from vararg function in memory"); 1502 } 1503 1504 int Offset = VA.getLocMemOffset(); 1505 unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8; 1506 // Create the frame index object for the memory location. 1507 int FI = MFI->CreateFixedObject(ObjSize, Offset, false); 1508 1509 // Create a SelectionDAG node corresponding to a store 1510 // to this memory location. 1511 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1512 MemOpChains.push_back(DAG.getStore( 1513 Chain, dl, OutVals[i], FIN, 1514 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false, 1515 false, 0)); 1516 } 1517 1518 // Transform all store nodes into one single node because 1519 // all stores are independent of each other. 1520 if (!MemOpChains.empty()) 1521 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1522 1523 // Now handle return values copied to registers. 1524 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 1525 CCValAssign &VA = RVLocs[i]; 1526 if (!VA.isRegLoc()) 1527 continue; 1528 // Copy the result values into the output registers. 1529 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); 1530 1531 // guarantee that all emitted copies are 1532 // stuck together, avoiding something bad 1533 Flag = Chain.getValue(1); 1534 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 1535 } 1536 1537 RetOps[0] = Chain; // Update chain. 1538 1539 // Add the flag if we have it. 1540 if (Flag.getNode()) 1541 RetOps.push_back(Flag); 1542 1543 return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps); 1544 } 1545 1546 //===----------------------------------------------------------------------===// 1547 // Other Lowering Code 1548 //===----------------------------------------------------------------------===// 1549 1550 MachineBasicBlock * 1551 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 1552 MachineBasicBlock *BB) const { 1553 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1554 DebugLoc dl = MI->getDebugLoc(); 1555 assert((MI->getOpcode() == XCore::SELECT_CC) && 1556 "Unexpected instr type to insert"); 1557 1558 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond 1559 // control-flow pattern. The incoming instruction knows the destination vreg 1560 // to set, the condition code register to branch on, the true/false values to 1561 // select between, and a branch opcode to use. 1562 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1563 MachineFunction::iterator It = ++BB->getIterator(); 1564 1565 // thisMBB: 1566 // ... 1567 // TrueVal = ... 1568 // cmpTY ccX, r1, r2 1569 // bCC copy1MBB 1570 // fallthrough --> copy0MBB 1571 MachineBasicBlock *thisMBB = BB; 1572 MachineFunction *F = BB->getParent(); 1573 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 1574 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 1575 F->insert(It, copy0MBB); 1576 F->insert(It, sinkMBB); 1577 1578 // Transfer the remainder of BB and its successor edges to sinkMBB. 1579 sinkMBB->splice(sinkMBB->begin(), BB, 1580 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1581 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 1582 1583 // Next, add the true and fallthrough blocks as its successors. 1584 BB->addSuccessor(copy0MBB); 1585 BB->addSuccessor(sinkMBB); 1586 1587 BuildMI(BB, dl, TII.get(XCore::BRFT_lru6)) 1588 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 1589 1590 // copy0MBB: 1591 // %FalseValue = ... 1592 // # fallthrough to sinkMBB 1593 BB = copy0MBB; 1594 1595 // Update machine-CFG edges 1596 BB->addSuccessor(sinkMBB); 1597 1598 // sinkMBB: 1599 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 1600 // ... 1601 BB = sinkMBB; 1602 BuildMI(*BB, BB->begin(), dl, 1603 TII.get(XCore::PHI), MI->getOperand(0).getReg()) 1604 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 1605 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 1606 1607 MI->eraseFromParent(); // The pseudo instruction is gone now. 1608 return BB; 1609 } 1610 1611 //===----------------------------------------------------------------------===// 1612 // Target Optimization Hooks 1613 //===----------------------------------------------------------------------===// 1614 1615 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N, 1616 DAGCombinerInfo &DCI) const { 1617 SelectionDAG &DAG = DCI.DAG; 1618 SDLoc dl(N); 1619 switch (N->getOpcode()) { 1620 default: break; 1621 case ISD::INTRINSIC_VOID: 1622 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 1623 case Intrinsic::xcore_outt: 1624 case Intrinsic::xcore_outct: 1625 case Intrinsic::xcore_chkct: { 1626 SDValue OutVal = N->getOperand(3); 1627 // These instructions ignore the high bits. 1628 if (OutVal.hasOneUse()) { 1629 unsigned BitWidth = OutVal.getValueSizeInBits(); 1630 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8); 1631 APInt KnownZero, KnownOne; 1632 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1633 !DCI.isBeforeLegalizeOps()); 1634 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1635 if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) || 1636 TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne, 1637 TLO)) 1638 DCI.CommitTargetLoweringOpt(TLO); 1639 } 1640 break; 1641 } 1642 case Intrinsic::xcore_setpt: { 1643 SDValue Time = N->getOperand(3); 1644 // This instruction ignores the high bits. 1645 if (Time.hasOneUse()) { 1646 unsigned BitWidth = Time.getValueSizeInBits(); 1647 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16); 1648 APInt KnownZero, KnownOne; 1649 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1650 !DCI.isBeforeLegalizeOps()); 1651 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1652 if (TLO.ShrinkDemandedConstant(Time, DemandedMask) || 1653 TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne, 1654 TLO)) 1655 DCI.CommitTargetLoweringOpt(TLO); 1656 } 1657 break; 1658 } 1659 } 1660 break; 1661 case XCoreISD::LADD: { 1662 SDValue N0 = N->getOperand(0); 1663 SDValue N1 = N->getOperand(1); 1664 SDValue N2 = N->getOperand(2); 1665 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1666 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1667 EVT VT = N0.getValueType(); 1668 1669 // canonicalize constant to RHS 1670 if (N0C && !N1C) 1671 return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2); 1672 1673 // fold (ladd 0, 0, x) -> 0, x & 1 1674 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) { 1675 SDValue Carry = DAG.getConstant(0, dl, VT); 1676 SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2, 1677 DAG.getConstant(1, dl, VT)); 1678 SDValue Ops[] = { Result, Carry }; 1679 return DAG.getMergeValues(Ops, dl); 1680 } 1681 1682 // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the 1683 // low bit set 1684 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) { 1685 APInt KnownZero, KnownOne; 1686 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1687 VT.getSizeInBits() - 1); 1688 DAG.computeKnownBits(N2, KnownZero, KnownOne); 1689 if ((KnownZero & Mask) == Mask) { 1690 SDValue Carry = DAG.getConstant(0, dl, VT); 1691 SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2); 1692 SDValue Ops[] = { Result, Carry }; 1693 return DAG.getMergeValues(Ops, dl); 1694 } 1695 } 1696 } 1697 break; 1698 case XCoreISD::LSUB: { 1699 SDValue N0 = N->getOperand(0); 1700 SDValue N1 = N->getOperand(1); 1701 SDValue N2 = N->getOperand(2); 1702 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1703 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1704 EVT VT = N0.getValueType(); 1705 1706 // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set 1707 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) { 1708 APInt KnownZero, KnownOne; 1709 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1710 VT.getSizeInBits() - 1); 1711 DAG.computeKnownBits(N2, KnownZero, KnownOne); 1712 if ((KnownZero & Mask) == Mask) { 1713 SDValue Borrow = N2; 1714 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, 1715 DAG.getConstant(0, dl, VT), N2); 1716 SDValue Ops[] = { Result, Borrow }; 1717 return DAG.getMergeValues(Ops, dl); 1718 } 1719 } 1720 1721 // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the 1722 // low bit set 1723 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) { 1724 APInt KnownZero, KnownOne; 1725 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 1726 VT.getSizeInBits() - 1); 1727 DAG.computeKnownBits(N2, KnownZero, KnownOne); 1728 if ((KnownZero & Mask) == Mask) { 1729 SDValue Borrow = DAG.getConstant(0, dl, VT); 1730 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2); 1731 SDValue Ops[] = { Result, Borrow }; 1732 return DAG.getMergeValues(Ops, dl); 1733 } 1734 } 1735 } 1736 break; 1737 case XCoreISD::LMUL: { 1738 SDValue N0 = N->getOperand(0); 1739 SDValue N1 = N->getOperand(1); 1740 SDValue N2 = N->getOperand(2); 1741 SDValue N3 = N->getOperand(3); 1742 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 1743 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 1744 EVT VT = N0.getValueType(); 1745 // Canonicalize multiplicative constant to RHS. If both multiplicative 1746 // operands are constant canonicalize smallest to RHS. 1747 if ((N0C && !N1C) || 1748 (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue())) 1749 return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT), 1750 N1, N0, N2, N3); 1751 1752 // lmul(x, 0, a, b) 1753 if (N1C && N1C->isNullValue()) { 1754 // If the high result is unused fold to add(a, b) 1755 if (N->hasNUsesOfValue(0, 0)) { 1756 SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3); 1757 SDValue Ops[] = { Lo, Lo }; 1758 return DAG.getMergeValues(Ops, dl); 1759 } 1760 // Otherwise fold to ladd(a, b, 0) 1761 SDValue Result = 1762 DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1); 1763 SDValue Carry(Result.getNode(), 1); 1764 SDValue Ops[] = { Carry, Result }; 1765 return DAG.getMergeValues(Ops, dl); 1766 } 1767 } 1768 break; 1769 case ISD::ADD: { 1770 // Fold 32 bit expressions such as add(add(mul(x,y),a),b) -> 1771 // lmul(x, y, a, b). The high result of lmul will be ignored. 1772 // This is only profitable if the intermediate results are unused 1773 // elsewhere. 1774 SDValue Mul0, Mul1, Addend0, Addend1; 1775 if (N->getValueType(0) == MVT::i32 && 1776 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) { 1777 SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl, 1778 DAG.getVTList(MVT::i32, MVT::i32), Mul0, 1779 Mul1, Addend0, Addend1); 1780 SDValue Result(Ignored.getNode(), 1); 1781 return Result; 1782 } 1783 APInt HighMask = APInt::getHighBitsSet(64, 32); 1784 // Fold 64 bit expression such as add(add(mul(x,y),a),b) -> 1785 // lmul(x, y, a, b) if all operands are zero-extended. We do this 1786 // before type legalization as it is messy to match the operands after 1787 // that. 1788 if (N->getValueType(0) == MVT::i64 && 1789 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) && 1790 DAG.MaskedValueIsZero(Mul0, HighMask) && 1791 DAG.MaskedValueIsZero(Mul1, HighMask) && 1792 DAG.MaskedValueIsZero(Addend0, HighMask) && 1793 DAG.MaskedValueIsZero(Addend1, HighMask)) { 1794 SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1795 Mul0, DAG.getConstant(0, dl, MVT::i32)); 1796 SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1797 Mul1, DAG.getConstant(0, dl, MVT::i32)); 1798 SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1799 Addend0, DAG.getConstant(0, dl, MVT::i32)); 1800 SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 1801 Addend1, DAG.getConstant(0, dl, MVT::i32)); 1802 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl, 1803 DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L, 1804 Addend0L, Addend1L); 1805 SDValue Lo(Hi.getNode(), 1); 1806 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 1807 } 1808 } 1809 break; 1810 case ISD::STORE: { 1811 // Replace unaligned store of unaligned load with memmove. 1812 StoreSDNode *ST = cast<StoreSDNode>(N); 1813 if (!DCI.isBeforeLegalize() || 1814 allowsMisalignedMemoryAccesses(ST->getMemoryVT(), 1815 ST->getAddressSpace(), 1816 ST->getAlignment()) || 1817 ST->isVolatile() || ST->isIndexed()) { 1818 break; 1819 } 1820 SDValue Chain = ST->getChain(); 1821 1822 unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits(); 1823 assert((StoreBits % 8) == 0 && 1824 "Store size in bits must be a multiple of 8"); 1825 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment( 1826 ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext())); 1827 unsigned Alignment = ST->getAlignment(); 1828 if (Alignment >= ABIAlignment) { 1829 break; 1830 } 1831 1832 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) { 1833 if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() && 1834 LD->getAlignment() == Alignment && 1835 !LD->isVolatile() && !LD->isIndexed() && 1836 Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) { 1837 bool isTail = isInTailCallPosition(DAG, ST, Chain); 1838 return DAG.getMemmove(Chain, dl, ST->getBasePtr(), 1839 LD->getBasePtr(), 1840 DAG.getConstant(StoreBits/8, dl, MVT::i32), 1841 Alignment, false, isTail, ST->getPointerInfo(), 1842 LD->getPointerInfo()); 1843 } 1844 } 1845 break; 1846 } 1847 } 1848 return SDValue(); 1849 } 1850 1851 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1852 APInt &KnownZero, 1853 APInt &KnownOne, 1854 const SelectionDAG &DAG, 1855 unsigned Depth) const { 1856 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 1857 switch (Op.getOpcode()) { 1858 default: break; 1859 case XCoreISD::LADD: 1860 case XCoreISD::LSUB: 1861 if (Op.getResNo() == 1) { 1862 // Top bits of carry / borrow are clear. 1863 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1864 KnownZero.getBitWidth() - 1); 1865 } 1866 break; 1867 case ISD::INTRINSIC_W_CHAIN: 1868 { 1869 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1870 switch (IntNo) { 1871 case Intrinsic::xcore_getts: 1872 // High bits are known to be zero. 1873 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1874 KnownZero.getBitWidth() - 16); 1875 break; 1876 case Intrinsic::xcore_int: 1877 case Intrinsic::xcore_inct: 1878 // High bits are known to be zero. 1879 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1880 KnownZero.getBitWidth() - 8); 1881 break; 1882 case Intrinsic::xcore_testct: 1883 // Result is either 0 or 1. 1884 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1885 KnownZero.getBitWidth() - 1); 1886 break; 1887 case Intrinsic::xcore_testwct: 1888 // Result is in the range 0 - 4. 1889 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 1890 KnownZero.getBitWidth() - 3); 1891 break; 1892 } 1893 } 1894 break; 1895 } 1896 } 1897 1898 //===----------------------------------------------------------------------===// 1899 // Addressing mode description hooks 1900 //===----------------------------------------------------------------------===// 1901 1902 static inline bool isImmUs(int64_t val) 1903 { 1904 return (val >= 0 && val <= 11); 1905 } 1906 1907 static inline bool isImmUs2(int64_t val) 1908 { 1909 return (val%2 == 0 && isImmUs(val/2)); 1910 } 1911 1912 static inline bool isImmUs4(int64_t val) 1913 { 1914 return (val%4 == 0 && isImmUs(val/4)); 1915 } 1916 1917 /// isLegalAddressingMode - Return true if the addressing mode represented 1918 /// by AM is legal for this target, for a load/store of the specified type. 1919 bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1920 const AddrMode &AM, Type *Ty, 1921 unsigned AS) const { 1922 if (Ty->getTypeID() == Type::VoidTyID) 1923 return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs); 1924 1925 unsigned Size = DL.getTypeAllocSize(Ty); 1926 if (AM.BaseGV) { 1927 return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 && 1928 AM.BaseOffs%4 == 0; 1929 } 1930 1931 switch (Size) { 1932 case 1: 1933 // reg + imm 1934 if (AM.Scale == 0) { 1935 return isImmUs(AM.BaseOffs); 1936 } 1937 // reg + reg 1938 return AM.Scale == 1 && AM.BaseOffs == 0; 1939 case 2: 1940 case 3: 1941 // reg + imm 1942 if (AM.Scale == 0) { 1943 return isImmUs2(AM.BaseOffs); 1944 } 1945 // reg + reg<<1 1946 return AM.Scale == 2 && AM.BaseOffs == 0; 1947 default: 1948 // reg + imm 1949 if (AM.Scale == 0) { 1950 return isImmUs4(AM.BaseOffs); 1951 } 1952 // reg + reg<<2 1953 return AM.Scale == 4 && AM.BaseOffs == 0; 1954 } 1955 } 1956 1957 //===----------------------------------------------------------------------===// 1958 // XCore Inline Assembly Support 1959 //===----------------------------------------------------------------------===// 1960 1961 std::pair<unsigned, const TargetRegisterClass *> 1962 XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 1963 StringRef Constraint, 1964 MVT VT) const { 1965 if (Constraint.size() == 1) { 1966 switch (Constraint[0]) { 1967 default : break; 1968 case 'r': 1969 return std::make_pair(0U, &XCore::GRRegsRegClass); 1970 } 1971 } 1972 // Use the default implementation in TargetLowering to convert the register 1973 // constraint into a member of a register class. 1974 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1975 } 1976