1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the XCoreTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "XCoreISelLowering.h"
14 #include "XCore.h"
15 #include "XCoreMachineFunctionInfo.h"
16 #include "XCoreSubtarget.h"
17 #include "XCoreTargetMachine.h"
18 #include "XCoreTargetObjectFile.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/CallingConv.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/IntrinsicsXCore.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/KnownBits.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "xcore-lower"
43 
44 const char *XCoreTargetLowering::
45 getTargetNodeName(unsigned Opcode) const
46 {
47   switch ((XCoreISD::NodeType)Opcode)
48   {
49     case XCoreISD::FIRST_NUMBER      : break;
50     case XCoreISD::BL                : return "XCoreISD::BL";
51     case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
52     case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
53     case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
54     case XCoreISD::LDWSP             : return "XCoreISD::LDWSP";
55     case XCoreISD::STWSP             : return "XCoreISD::STWSP";
56     case XCoreISD::RETSP             : return "XCoreISD::RETSP";
57     case XCoreISD::LADD              : return "XCoreISD::LADD";
58     case XCoreISD::LSUB              : return "XCoreISD::LSUB";
59     case XCoreISD::LMUL              : return "XCoreISD::LMUL";
60     case XCoreISD::MACCU             : return "XCoreISD::MACCU";
61     case XCoreISD::MACCS             : return "XCoreISD::MACCS";
62     case XCoreISD::CRC8              : return "XCoreISD::CRC8";
63     case XCoreISD::BR_JT             : return "XCoreISD::BR_JT";
64     case XCoreISD::BR_JT32           : return "XCoreISD::BR_JT32";
65     case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
66     case XCoreISD::EH_RETURN         : return "XCoreISD::EH_RETURN";
67     case XCoreISD::MEMBARRIER        : return "XCoreISD::MEMBARRIER";
68   }
69   return nullptr;
70 }
71 
72 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
73                                          const XCoreSubtarget &Subtarget)
74     : TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
75 
76   // Set up the register classes.
77   addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
78 
79   // Compute derived properties from the register classes
80   computeRegisterProperties(Subtarget.getRegisterInfo());
81 
82   setStackPointerRegisterToSaveRestore(XCore::SP);
83 
84   setSchedulingPreference(Sched::Source);
85 
86   // Use i32 for setcc operations results (slt, sgt, ...).
87   setBooleanContents(ZeroOrOneBooleanContent);
88   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
89 
90   // XCore does not have the NodeTypes below.
91   setOperationAction({ISD::BR_CC, ISD::SELECT_CC}, MVT::i32, Expand);
92 
93   // 64bit
94   setOperationAction({ISD::ADD, ISD::SUB}, MVT::i64, Custom);
95   setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, MVT::i32, Custom);
96   setOperationAction(
97       {ISD::MULHS, ISD::MULHU, ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS},
98       MVT::i32, Expand);
99 
100   // Bit Manipulation
101   setOperationAction({ISD::CTPOP, ISD::ROTL, ISD::ROTR}, MVT::i32, Expand);
102   setOperationAction(ISD::BITREVERSE , MVT::i32, Legal);
103 
104   setOperationAction(ISD::TRAP, MVT::Other, Legal);
105 
106   // Jump tables.
107   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
108 
109   setOperationAction({ISD::GlobalAddress, ISD::BlockAddress}, MVT::i32, Custom);
110 
111   // Conversion of i64 -> double produces constantpool nodes
112   setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
113 
114   // Loads
115   for (MVT VT : MVT::integer_valuetypes()) {
116     setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, VT, MVT::i1,
117                      Promote);
118 
119     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
120     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
121   }
122 
123   // Custom expand misaligned loads / stores.
124   setOperationAction({ISD::LOAD, ISD::STORE}, MVT::i32, Custom);
125 
126   // Varargs
127   setOperationAction({ISD::VAEND, ISD::VACOPY}, MVT::Other, Expand);
128   setOperationAction({ISD::VAARG, ISD::VASTART}, MVT::Other, Custom);
129 
130   // Dynamic stack
131   setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand);
132   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
133 
134   // Exception handling
135   setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
136   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
137 
138   // Atomic operations
139   // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
140   // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
141   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
142   setOperationAction({ISD::ATOMIC_LOAD, ISD::ATOMIC_STORE}, MVT::i32, Custom);
143 
144   // TRAMPOLINE is custom lowered.
145   setOperationAction({ISD::INIT_TRAMPOLINE, ISD::ADJUST_TRAMPOLINE}, MVT::Other,
146                      Custom);
147 
148   // We want to custom lower some of our intrinsics.
149   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
150 
151   MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
152   MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
153     = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
154 
155   // We have target-specific dag combine patterns for the following nodes:
156   setTargetDAGCombine(
157       {ISD::STORE, ISD::ADD, ISD::INTRINSIC_VOID, ISD::INTRINSIC_W_CHAIN});
158 
159   setMinFunctionAlignment(Align(2));
160   setPrefFunctionAlignment(Align(4));
161 }
162 
163 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
164   if (Val.getOpcode() != ISD::LOAD)
165     return false;
166 
167   EVT VT1 = Val.getValueType();
168   if (!VT1.isSimple() || !VT1.isInteger() ||
169       !VT2.isSimple() || !VT2.isInteger())
170     return false;
171 
172   switch (VT1.getSimpleVT().SimpleTy) {
173   default: break;
174   case MVT::i8:
175     return true;
176   }
177 
178   return false;
179 }
180 
181 SDValue XCoreTargetLowering::
182 LowerOperation(SDValue Op, SelectionDAG &DAG) const {
183   switch (Op.getOpcode())
184   {
185   case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
186   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
187   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
188   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
189   case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
190   case ISD::LOAD:               return LowerLOAD(Op, DAG);
191   case ISD::STORE:              return LowerSTORE(Op, DAG);
192   case ISD::VAARG:              return LowerVAARG(Op, DAG);
193   case ISD::VASTART:            return LowerVASTART(Op, DAG);
194   case ISD::SMUL_LOHI:          return LowerSMUL_LOHI(Op, DAG);
195   case ISD::UMUL_LOHI:          return LowerUMUL_LOHI(Op, DAG);
196   // FIXME: Remove these when LegalizeDAGTypes lands.
197   case ISD::ADD:
198   case ISD::SUB:                return ExpandADDSUB(Op.getNode(), DAG);
199   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
200   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
201   case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
202   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
203   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
204   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
205   case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
206   case ISD::ATOMIC_LOAD:        return LowerATOMIC_LOAD(Op, DAG);
207   case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op, DAG);
208   default:
209     llvm_unreachable("unimplemented operand");
210   }
211 }
212 
213 /// ReplaceNodeResults - Replace the results of node with an illegal result
214 /// type with new values built out of custom code.
215 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
216                                              SmallVectorImpl<SDValue>&Results,
217                                              SelectionDAG &DAG) const {
218   switch (N->getOpcode()) {
219   default:
220     llvm_unreachable("Don't know how to custom expand this!");
221   case ISD::ADD:
222   case ISD::SUB:
223     Results.push_back(ExpandADDSUB(N, DAG));
224     return;
225   }
226 }
227 
228 //===----------------------------------------------------------------------===//
229 //  Misc Lower Operation implementation
230 //===----------------------------------------------------------------------===//
231 
232 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
233                                                      const GlobalValue *GV,
234                                                      SelectionDAG &DAG) const {
235   // FIXME there is no actual debug info here
236   SDLoc dl(GA);
237 
238   if (GV->getValueType()->isFunctionTy())
239     return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
240 
241   const auto *GVar = dyn_cast<GlobalVariable>(GV);
242   if ((GV->hasSection() && GV->getSection().startswith(".cp.")) ||
243       (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
244     return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
245 
246   return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
247 }
248 
249 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
250   if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
251     return true;
252 
253   Type *ObjType = GV->getValueType();
254   if (!ObjType->isSized())
255     return false;
256 
257   auto &DL = GV->getParent()->getDataLayout();
258   unsigned ObjSize = DL.getTypeAllocSize(ObjType);
259   return ObjSize < CodeModelLargeSize && ObjSize != 0;
260 }
261 
262 SDValue XCoreTargetLowering::
263 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
264 {
265   const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
266   const GlobalValue *GV = GN->getGlobal();
267   SDLoc DL(GN);
268   int64_t Offset = GN->getOffset();
269   if (IsSmallObject(GV, *this)) {
270     // We can only fold positive offsets that are a multiple of the word size.
271     int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
272     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
273     GA = getGlobalAddressWrapper(GA, GV, DAG);
274     // Handle the rest of the offset.
275     if (Offset != FoldedOffset) {
276       SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32);
277       GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
278     }
279     return GA;
280   } else {
281     // Ideally we would not fold in offset with an index <= 11.
282     Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
283     Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
284     Ty = Type::getInt32Ty(*DAG.getContext());
285     Constant *Idx = ConstantInt::get(Ty, Offset);
286     Constant *GAI = ConstantExpr::getGetElementPtr(
287         Type::getInt8Ty(*DAG.getContext()), GA, Idx);
288     SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
289     return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL,
290                        DAG.getEntryNode(), CP, MachinePointerInfo());
291   }
292 }
293 
294 SDValue XCoreTargetLowering::
295 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
296 {
297   SDLoc DL(Op);
298   auto PtrVT = getPointerTy(DAG.getDataLayout());
299   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
300   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
301 
302   return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result);
303 }
304 
305 SDValue XCoreTargetLowering::
306 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
307 {
308   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
309   // FIXME there isn't really debug info here
310   SDLoc dl(CP);
311   EVT PtrVT = Op.getValueType();
312   SDValue Res;
313   if (CP->isMachineConstantPoolEntry()) {
314     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
315                                     CP->getAlign(), CP->getOffset());
316   } else {
317     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
318                                     CP->getOffset());
319   }
320   return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
321 }
322 
323 unsigned XCoreTargetLowering::getJumpTableEncoding() const {
324   return MachineJumpTableInfo::EK_Inline;
325 }
326 
327 SDValue XCoreTargetLowering::
328 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
329 {
330   SDValue Chain = Op.getOperand(0);
331   SDValue Table = Op.getOperand(1);
332   SDValue Index = Op.getOperand(2);
333   SDLoc dl(Op);
334   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
335   unsigned JTI = JT->getIndex();
336   MachineFunction &MF = DAG.getMachineFunction();
337   const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
338   SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
339 
340   unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
341   if (NumEntries <= 32) {
342     return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
343   }
344   assert((NumEntries >> 31) == 0);
345   SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
346                                     DAG.getConstant(1, dl, MVT::i32));
347   return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
348                      ScaledIndex);
349 }
350 
351 SDValue XCoreTargetLowering::lowerLoadWordFromAlignedBasePlusOffset(
352     const SDLoc &DL, SDValue Chain, SDValue Base, int64_t Offset,
353     SelectionDAG &DAG) const {
354   auto PtrVT = getPointerTy(DAG.getDataLayout());
355   if ((Offset & 0x3) == 0) {
356     return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo());
357   }
358   // Lower to pair of consecutive word aligned loads plus some bit shifting.
359   int32_t HighOffset = alignTo(Offset, 4);
360   int32_t LowOffset = HighOffset - 4;
361   SDValue LowAddr, HighAddr;
362   if (GlobalAddressSDNode *GASD =
363         dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
364     LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
365                                    LowOffset);
366     HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
367                                     HighOffset);
368   } else {
369     LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
370                           DAG.getConstant(LowOffset, DL, MVT::i32));
371     HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
372                            DAG.getConstant(HighOffset, DL, MVT::i32));
373   }
374   SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32);
375   SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32);
376 
377   SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo());
378   SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo());
379   SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
380   SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
381   SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
382   Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
383                       High.getValue(1));
384   SDValue Ops[] = { Result, Chain };
385   return DAG.getMergeValues(Ops, DL);
386 }
387 
388 static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
389 {
390   KnownBits Known = DAG.computeKnownBits(Value);
391   return Known.countMinTrailingZeros() >= 2;
392 }
393 
394 SDValue XCoreTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
395   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
396   LLVMContext &Context = *DAG.getContext();
397   LoadSDNode *LD = cast<LoadSDNode>(Op);
398   assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
399          "Unexpected extension type");
400   assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
401 
402   if (allowsMemoryAccessForAlignment(Context, DAG.getDataLayout(),
403                                      LD->getMemoryVT(), *LD->getMemOperand()))
404     return SDValue();
405 
406   SDValue Chain = LD->getChain();
407   SDValue BasePtr = LD->getBasePtr();
408   SDLoc DL(Op);
409 
410   if (!LD->isVolatile()) {
411     const GlobalValue *GV;
412     int64_t Offset = 0;
413     if (DAG.isBaseWithConstantOffset(BasePtr) &&
414         isWordAligned(BasePtr->getOperand(0), DAG)) {
415       SDValue NewBasePtr = BasePtr->getOperand(0);
416       Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
417       return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
418                                                     Offset, DAG);
419     }
420     if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
421         GV->getPointerAlignment(DAG.getDataLayout()) >= 4) {
422       SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
423                                                 BasePtr->getValueType(0));
424       return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
425                                                     Offset, DAG);
426     }
427   }
428 
429   if (LD->getAlignment() == 2) {
430     SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, BasePtr,
431                                  LD->getPointerInfo(), MVT::i16, Align(2),
432                                  LD->getMemOperand()->getFlags());
433     SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
434                                    DAG.getConstant(2, DL, MVT::i32));
435     SDValue High =
436         DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, HighAddr,
437                        LD->getPointerInfo().getWithOffset(2), MVT::i16,
438                        Align(2), LD->getMemOperand()->getFlags());
439     SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
440                                       DAG.getConstant(16, DL, MVT::i32));
441     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
442     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
443                              High.getValue(1));
444     SDValue Ops[] = { Result, Chain };
445     return DAG.getMergeValues(Ops, DL);
446   }
447 
448   // Lower to a call to __misaligned_load(BasePtr).
449   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(Context);
450   TargetLowering::ArgListTy Args;
451   TargetLowering::ArgListEntry Entry;
452 
453   Entry.Ty = IntPtrTy;
454   Entry.Node = BasePtr;
455   Args.push_back(Entry);
456 
457   TargetLowering::CallLoweringInfo CLI(DAG);
458   CLI.setDebugLoc(DL).setChain(Chain).setLibCallee(
459       CallingConv::C, IntPtrTy,
460       DAG.getExternalSymbol("__misaligned_load",
461                             getPointerTy(DAG.getDataLayout())),
462       std::move(Args));
463 
464   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
465   SDValue Ops[] = { CallResult.first, CallResult.second };
466   return DAG.getMergeValues(Ops, DL);
467 }
468 
469 SDValue XCoreTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
470   LLVMContext &Context = *DAG.getContext();
471   StoreSDNode *ST = cast<StoreSDNode>(Op);
472   assert(!ST->isTruncatingStore() && "Unexpected store type");
473   assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
474 
475   if (allowsMemoryAccessForAlignment(Context, DAG.getDataLayout(),
476                                      ST->getMemoryVT(), *ST->getMemOperand()))
477     return SDValue();
478 
479   SDValue Chain = ST->getChain();
480   SDValue BasePtr = ST->getBasePtr();
481   SDValue Value = ST->getValue();
482   SDLoc dl(Op);
483 
484   if (ST->getAlignment() == 2) {
485     SDValue Low = Value;
486     SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
487                                DAG.getConstant(16, dl, MVT::i32));
488     SDValue StoreLow =
489         DAG.getTruncStore(Chain, dl, Low, BasePtr, ST->getPointerInfo(),
490                           MVT::i16, Align(2), ST->getMemOperand()->getFlags());
491     SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
492                                    DAG.getConstant(2, dl, MVT::i32));
493     SDValue StoreHigh = DAG.getTruncStore(
494         Chain, dl, High, HighAddr, ST->getPointerInfo().getWithOffset(2),
495         MVT::i16, Align(2), ST->getMemOperand()->getFlags());
496     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
497   }
498 
499   // Lower to a call to __misaligned_store(BasePtr, Value).
500   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(Context);
501   TargetLowering::ArgListTy Args;
502   TargetLowering::ArgListEntry Entry;
503 
504   Entry.Ty = IntPtrTy;
505   Entry.Node = BasePtr;
506   Args.push_back(Entry);
507 
508   Entry.Node = Value;
509   Args.push_back(Entry);
510 
511   TargetLowering::CallLoweringInfo CLI(DAG);
512   CLI.setDebugLoc(dl).setChain(Chain).setCallee(
513       CallingConv::C, Type::getVoidTy(Context),
514       DAG.getExternalSymbol("__misaligned_store",
515                             getPointerTy(DAG.getDataLayout())),
516       std::move(Args));
517 
518   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
519   return CallResult.second;
520 }
521 
522 SDValue XCoreTargetLowering::
523 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
524 {
525   assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
526          "Unexpected operand to lower!");
527   SDLoc dl(Op);
528   SDValue LHS = Op.getOperand(0);
529   SDValue RHS = Op.getOperand(1);
530   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
531   SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
532                            DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
533                            LHS, RHS);
534   SDValue Lo(Hi.getNode(), 1);
535   SDValue Ops[] = { Lo, Hi };
536   return DAG.getMergeValues(Ops, dl);
537 }
538 
539 SDValue XCoreTargetLowering::
540 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
541 {
542   assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
543          "Unexpected operand to lower!");
544   SDLoc dl(Op);
545   SDValue LHS = Op.getOperand(0);
546   SDValue RHS = Op.getOperand(1);
547   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
548   SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
549                            DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
550                            Zero, Zero);
551   SDValue Lo(Hi.getNode(), 1);
552   SDValue Ops[] = { Lo, Hi };
553   return DAG.getMergeValues(Ops, dl);
554 }
555 
556 /// isADDADDMUL - Return whether Op is in a form that is equivalent to
557 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
558 /// each intermediate result in the calculation must also have a single use.
559 /// If the Op is in the correct form the constituent parts are written to Mul0,
560 /// Mul1, Addend0 and Addend1.
561 static bool
562 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
563             SDValue &Addend1, bool requireIntermediatesHaveOneUse)
564 {
565   if (Op.getOpcode() != ISD::ADD)
566     return false;
567   SDValue N0 = Op.getOperand(0);
568   SDValue N1 = Op.getOperand(1);
569   SDValue AddOp;
570   SDValue OtherOp;
571   if (N0.getOpcode() == ISD::ADD) {
572     AddOp = N0;
573     OtherOp = N1;
574   } else if (N1.getOpcode() == ISD::ADD) {
575     AddOp = N1;
576     OtherOp = N0;
577   } else {
578     return false;
579   }
580   if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
581     return false;
582   if (OtherOp.getOpcode() == ISD::MUL) {
583     // add(add(a,b),mul(x,y))
584     if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
585       return false;
586     Mul0 = OtherOp.getOperand(0);
587     Mul1 = OtherOp.getOperand(1);
588     Addend0 = AddOp.getOperand(0);
589     Addend1 = AddOp.getOperand(1);
590     return true;
591   }
592   if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
593     // add(add(mul(x,y),a),b)
594     if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
595       return false;
596     Mul0 = AddOp.getOperand(0).getOperand(0);
597     Mul1 = AddOp.getOperand(0).getOperand(1);
598     Addend0 = AddOp.getOperand(1);
599     Addend1 = OtherOp;
600     return true;
601   }
602   if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
603     // add(add(a,mul(x,y)),b)
604     if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
605       return false;
606     Mul0 = AddOp.getOperand(1).getOperand(0);
607     Mul1 = AddOp.getOperand(1).getOperand(1);
608     Addend0 = AddOp.getOperand(0);
609     Addend1 = OtherOp;
610     return true;
611   }
612   return false;
613 }
614 
615 SDValue XCoreTargetLowering::
616 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
617 {
618   SDValue Mul;
619   SDValue Other;
620   if (N->getOperand(0).getOpcode() == ISD::MUL) {
621     Mul = N->getOperand(0);
622     Other = N->getOperand(1);
623   } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
624     Mul = N->getOperand(1);
625     Other = N->getOperand(0);
626   } else {
627     return SDValue();
628   }
629   SDLoc dl(N);
630   SDValue LL, RL, AddendL, AddendH;
631   LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
632                    Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32));
633   RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
634                    Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
635   AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
636                         Other, DAG.getConstant(0, dl, MVT::i32));
637   AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
638                         Other, DAG.getConstant(1, dl, MVT::i32));
639   APInt HighMask = APInt::getHighBitsSet(64, 32);
640   unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
641   unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
642   if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
643       DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
644     // The inputs are both zero-extended.
645     SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
646                              DAG.getVTList(MVT::i32, MVT::i32), AddendH,
647                              AddendL, LL, RL);
648     SDValue Lo(Hi.getNode(), 1);
649     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
650   }
651   if (LHSSB > 32 && RHSSB > 32) {
652     // The inputs are both sign-extended.
653     SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
654                              DAG.getVTList(MVT::i32, MVT::i32), AddendH,
655                              AddendL, LL, RL);
656     SDValue Lo(Hi.getNode(), 1);
657     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
658   }
659   SDValue LH, RH;
660   LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
661                    Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32));
662   RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
663                    Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32));
664   SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
665                            DAG.getVTList(MVT::i32, MVT::i32), AddendH,
666                            AddendL, LL, RL);
667   SDValue Lo(Hi.getNode(), 1);
668   RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
669   LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
670   Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
671   Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
672   return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
673 }
674 
675 SDValue XCoreTargetLowering::
676 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
677 {
678   assert(N->getValueType(0) == MVT::i64 &&
679          (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
680         "Unknown operand to lower!");
681 
682   if (N->getOpcode() == ISD::ADD)
683     if (SDValue Result = TryExpandADDWithMul(N, DAG))
684       return Result;
685 
686   SDLoc dl(N);
687 
688   // Extract components
689   SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
690                              N->getOperand(0),
691                              DAG.getConstant(0, dl, MVT::i32));
692   SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
693                              N->getOperand(0),
694                              DAG.getConstant(1, dl, MVT::i32));
695   SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
696                              N->getOperand(1),
697                              DAG.getConstant(0, dl, MVT::i32));
698   SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
699                              N->getOperand(1),
700                              DAG.getConstant(1, dl, MVT::i32));
701 
702   // Expand
703   unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
704                                                    XCoreISD::LSUB;
705   SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
706   SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
707                            LHSL, RHSL, Zero);
708   SDValue Carry(Lo.getNode(), 1);
709 
710   SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
711                            LHSH, RHSH, Carry);
712   SDValue Ignored(Hi.getNode(), 1);
713   // Merge the pieces
714   return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
715 }
716 
717 SDValue XCoreTargetLowering::
718 LowerVAARG(SDValue Op, SelectionDAG &DAG) const
719 {
720   // Whist llvm does not support aggregate varargs we can ignore
721   // the possibility of the ValueType being an implicit byVal vararg.
722   SDNode *Node = Op.getNode();
723   EVT VT = Node->getValueType(0); // not an aggregate
724   SDValue InChain = Node->getOperand(0);
725   SDValue VAListPtr = Node->getOperand(1);
726   EVT PtrVT = VAListPtr.getValueType();
727   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
728   SDLoc dl(Node);
729   SDValue VAList =
730       DAG.getLoad(PtrVT, dl, InChain, VAListPtr, MachinePointerInfo(SV));
731   // Increment the pointer, VAList, to the next vararg
732   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
733                                 DAG.getIntPtrConstant(VT.getSizeInBits() / 8,
734                                                       dl));
735   // Store the incremented VAList to the legalized pointer
736   InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
737                          MachinePointerInfo(SV));
738   // Load the actual argument out of the pointer VAList
739   return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo());
740 }
741 
742 SDValue XCoreTargetLowering::
743 LowerVASTART(SDValue Op, SelectionDAG &DAG) const
744 {
745   SDLoc dl(Op);
746   // vastart stores the address of the VarArgsFrameIndex slot into the
747   // memory location argument
748   MachineFunction &MF = DAG.getMachineFunction();
749   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
750   SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
751   return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
752                       MachinePointerInfo());
753 }
754 
755 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
756                                             SelectionDAG &DAG) const {
757   // This nodes represent llvm.frameaddress on the DAG.
758   // It takes one operand, the index of the frame address to return.
759   // An index of zero corresponds to the current function's frame address.
760   // An index of one to the parent's frame address, and so on.
761   // Depths > 0 not supported yet!
762   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
763     return SDValue();
764 
765   MachineFunction &MF = DAG.getMachineFunction();
766   const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
767   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
768                             RegInfo->getFrameRegister(MF), MVT::i32);
769 }
770 
771 SDValue XCoreTargetLowering::
772 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
773   // This nodes represent llvm.returnaddress on the DAG.
774   // It takes one operand, the index of the return address to return.
775   // An index of zero corresponds to the current function's return address.
776   // An index of one to the parent's return address, and so on.
777   // Depths > 0 not supported yet!
778   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
779     return SDValue();
780 
781   MachineFunction &MF = DAG.getMachineFunction();
782   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
783   int FI = XFI->createLRSpillSlot(MF);
784   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
785   return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
786                      DAG.getEntryNode(), FIN,
787                      MachinePointerInfo::getFixedStack(MF, FI));
788 }
789 
790 SDValue XCoreTargetLowering::
791 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
792   // This node represents offset from frame pointer to first on-stack argument.
793   // This is needed for correct stack adjustment during unwind.
794   // However, we don't know the offset until after the frame has be finalised.
795   // This is done during the XCoreFTAOElim pass.
796   return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
797 }
798 
799 SDValue XCoreTargetLowering::
800 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
801   // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
802   // This node represents 'eh_return' gcc dwarf builtin, which is used to
803   // return from exception. The general meaning is: adjust stack by OFFSET and
804   // pass execution to HANDLER.
805   MachineFunction &MF = DAG.getMachineFunction();
806   SDValue Chain     = Op.getOperand(0);
807   SDValue Offset    = Op.getOperand(1);
808   SDValue Handler   = Op.getOperand(2);
809   SDLoc dl(Op);
810 
811   // Absolute SP = (FP + FrameToArgs) + Offset
812   const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
813   SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
814                             RegInfo->getFrameRegister(MF), MVT::i32);
815   SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
816                                     MVT::i32);
817   Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
818   Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
819 
820   // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
821   // which leaves 2 caller saved registers, R2 & R3 for us to use.
822   unsigned StackReg = XCore::R2;
823   unsigned HandlerReg = XCore::R3;
824 
825   SDValue OutChains[] = {
826     DAG.getCopyToReg(Chain, dl, StackReg, Stack),
827     DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
828   };
829 
830   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
831 
832   return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
833                      DAG.getRegister(StackReg, MVT::i32),
834                      DAG.getRegister(HandlerReg, MVT::i32));
835 
836 }
837 
838 SDValue XCoreTargetLowering::
839 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
840   return Op.getOperand(0);
841 }
842 
843 SDValue XCoreTargetLowering::
844 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
845   SDValue Chain = Op.getOperand(0);
846   SDValue Trmp = Op.getOperand(1); // trampoline
847   SDValue FPtr = Op.getOperand(2); // nested function
848   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
849 
850   const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
851 
852   // .align 4
853   // LDAPF_u10 r11, nest
854   // LDW_2rus r11, r11[0]
855   // STWSP_ru6 r11, sp[0]
856   // LDAPF_u10 r11, fptr
857   // LDW_2rus r11, r11[0]
858   // BAU_1r r11
859   // nest:
860   // .word nest
861   // fptr:
862   // .word fptr
863   SDValue OutChains[5];
864 
865   SDValue Addr = Trmp;
866 
867   SDLoc dl(Op);
868   OutChains[0] =
869       DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr,
870                    MachinePointerInfo(TrmpAddr));
871 
872   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
873                      DAG.getConstant(4, dl, MVT::i32));
874   OutChains[1] =
875       DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr,
876                    MachinePointerInfo(TrmpAddr, 4));
877 
878   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
879                      DAG.getConstant(8, dl, MVT::i32));
880   OutChains[2] =
881       DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr,
882                    MachinePointerInfo(TrmpAddr, 8));
883 
884   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
885                      DAG.getConstant(12, dl, MVT::i32));
886   OutChains[3] =
887       DAG.getStore(Chain, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12));
888 
889   Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
890                      DAG.getConstant(16, dl, MVT::i32));
891   OutChains[4] =
892       DAG.getStore(Chain, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 16));
893 
894   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
895 }
896 
897 SDValue XCoreTargetLowering::
898 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
899   SDLoc DL(Op);
900   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
901   switch (IntNo) {
902     case Intrinsic::xcore_crc8:
903       EVT VT = Op.getValueType();
904       SDValue Data =
905         DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
906                     Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
907       SDValue Crc(Data.getNode(), 1);
908       SDValue Results[] = { Crc, Data };
909       return DAG.getMergeValues(Results, DL);
910   }
911   return SDValue();
912 }
913 
914 SDValue XCoreTargetLowering::
915 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
916   SDLoc DL(Op);
917   return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
918 }
919 
920 SDValue XCoreTargetLowering::
921 LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
922   AtomicSDNode *N = cast<AtomicSDNode>(Op);
923   assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
924   assert((N->getSuccessOrdering() == AtomicOrdering::Unordered ||
925           N->getSuccessOrdering() == AtomicOrdering::Monotonic) &&
926          "setInsertFencesForAtomic(true) expects unordered / monotonic");
927   if (N->getMemoryVT() == MVT::i32) {
928     if (N->getAlignment() < 4)
929       report_fatal_error("atomic load must be aligned");
930     return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
931                        N->getChain(), N->getBasePtr(), N->getPointerInfo(),
932                        N->getAlignment(), N->getMemOperand()->getFlags(),
933                        N->getAAInfo(), N->getRanges());
934   }
935   if (N->getMemoryVT() == MVT::i16) {
936     if (N->getAlignment() < 2)
937       report_fatal_error("atomic load must be aligned");
938     return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
939                           N->getBasePtr(), N->getPointerInfo(), MVT::i16,
940                           N->getAlignment(), N->getMemOperand()->getFlags(),
941                           N->getAAInfo());
942   }
943   if (N->getMemoryVT() == MVT::i8)
944     return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
945                           N->getBasePtr(), N->getPointerInfo(), MVT::i8,
946                           N->getAlignment(), N->getMemOperand()->getFlags(),
947                           N->getAAInfo());
948   return SDValue();
949 }
950 
951 SDValue XCoreTargetLowering::
952 LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
953   AtomicSDNode *N = cast<AtomicSDNode>(Op);
954   assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
955   assert((N->getSuccessOrdering() == AtomicOrdering::Unordered ||
956           N->getSuccessOrdering() == AtomicOrdering::Monotonic) &&
957          "setInsertFencesForAtomic(true) expects unordered / monotonic");
958   if (N->getMemoryVT() == MVT::i32) {
959     if (N->getAlignment() < 4)
960       report_fatal_error("atomic store must be aligned");
961     return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(), N->getBasePtr(),
962                         N->getPointerInfo(), N->getAlignment(),
963                         N->getMemOperand()->getFlags(), N->getAAInfo());
964   }
965   if (N->getMemoryVT() == MVT::i16) {
966     if (N->getAlignment() < 2)
967       report_fatal_error("atomic store must be aligned");
968     return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
969                              N->getBasePtr(), N->getPointerInfo(), MVT::i16,
970                              N->getAlignment(), N->getMemOperand()->getFlags(),
971                              N->getAAInfo());
972   }
973   if (N->getMemoryVT() == MVT::i8)
974     return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
975                              N->getBasePtr(), N->getPointerInfo(), MVT::i8,
976                              N->getAlignment(), N->getMemOperand()->getFlags(),
977                              N->getAAInfo());
978   return SDValue();
979 }
980 
981 MachineMemOperand::Flags
982 XCoreTargetLowering::getTargetMMOFlags(const Instruction &I) const {
983   // Because of how we convert atomic_load and atomic_store to normal loads and
984   // stores in the DAG, we need to ensure that the MMOs are marked volatile
985   // since DAGCombine hasn't been updated to account for atomic, but non
986   // volatile loads.  (See D57601)
987   if (auto *SI = dyn_cast<StoreInst>(&I))
988     if (SI->isAtomic())
989       return MachineMemOperand::MOVolatile;
990   if (auto *LI = dyn_cast<LoadInst>(&I))
991     if (LI->isAtomic())
992       return MachineMemOperand::MOVolatile;
993   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
994     if (AI->isAtomic())
995       return MachineMemOperand::MOVolatile;
996   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
997     if (AI->isAtomic())
998       return MachineMemOperand::MOVolatile;
999   return MachineMemOperand::MONone;
1000 }
1001 
1002 //===----------------------------------------------------------------------===//
1003 //                      Calling Convention Implementation
1004 //===----------------------------------------------------------------------===//
1005 
1006 #include "XCoreGenCallingConv.inc"
1007 
1008 //===----------------------------------------------------------------------===//
1009 //                  Call Calling Convention Implementation
1010 //===----------------------------------------------------------------------===//
1011 
1012 /// XCore call implementation
1013 SDValue
1014 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1015                                SmallVectorImpl<SDValue> &InVals) const {
1016   SelectionDAG &DAG                     = CLI.DAG;
1017   SDLoc &dl                             = CLI.DL;
1018   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1019   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1020   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1021   SDValue Chain                         = CLI.Chain;
1022   SDValue Callee                        = CLI.Callee;
1023   bool &isTailCall                      = CLI.IsTailCall;
1024   CallingConv::ID CallConv              = CLI.CallConv;
1025   bool isVarArg                         = CLI.IsVarArg;
1026 
1027   // XCore target does not yet support tail call optimization.
1028   isTailCall = false;
1029 
1030   // For now, only CallingConv::C implemented
1031   switch (CallConv)
1032   {
1033     default:
1034       report_fatal_error("Unsupported calling convention");
1035     case CallingConv::Fast:
1036     case CallingConv::C:
1037       return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
1038                             Outs, OutVals, Ins, dl, DAG, InVals);
1039   }
1040 }
1041 
1042 /// LowerCallResult - Lower the result values of a call into the
1043 /// appropriate copies out of appropriate physical registers / memory locations.
1044 static SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
1045                                const SmallVectorImpl<CCValAssign> &RVLocs,
1046                                const SDLoc &dl, SelectionDAG &DAG,
1047                                SmallVectorImpl<SDValue> &InVals) {
1048   SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
1049   // Copy results out of physical registers.
1050   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1051     const CCValAssign &VA = RVLocs[i];
1052     if (VA.isRegLoc()) {
1053       Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
1054                                  InFlag).getValue(1);
1055       InFlag = Chain.getValue(2);
1056       InVals.push_back(Chain.getValue(0));
1057     } else {
1058       assert(VA.isMemLoc());
1059       ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
1060                                              InVals.size()));
1061       // Reserve space for this result.
1062       InVals.push_back(SDValue());
1063     }
1064   }
1065 
1066   // Copy results out of memory.
1067   SmallVector<SDValue, 4> MemOpChains;
1068   for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
1069     int offset = ResultMemLocs[i].first;
1070     unsigned index = ResultMemLocs[i].second;
1071     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
1072     SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) };
1073     SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
1074     InVals[index] = load;
1075     MemOpChains.push_back(load.getValue(1));
1076   }
1077 
1078   // Transform all loads nodes into one single node because
1079   // all load nodes are independent of each other.
1080   if (!MemOpChains.empty())
1081     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1082 
1083   return Chain;
1084 }
1085 
1086 /// LowerCCCCallTo - functions arguments are copied from virtual
1087 /// regs to (physical regs)/(stack frame), CALLSEQ_START and
1088 /// CALLSEQ_END are emitted.
1089 /// TODO: isTailCall, sret.
1090 SDValue XCoreTargetLowering::LowerCCCCallTo(
1091     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
1092     bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
1093     const SmallVectorImpl<SDValue> &OutVals,
1094     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1095     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1096 
1097   // Analyze operands of the call, assigning locations to each operand.
1098   SmallVector<CCValAssign, 16> ArgLocs;
1099   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1100                  *DAG.getContext());
1101 
1102   // The ABI dictates there should be one stack slot available to the callee
1103   // on function entry (for saving lr).
1104   CCInfo.AllocateStack(4, Align(4));
1105 
1106   CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
1107 
1108   SmallVector<CCValAssign, 16> RVLocs;
1109   // Analyze return values to determine the number of bytes of stack required.
1110   CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1111                     *DAG.getContext());
1112   RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), Align(4));
1113   RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
1114 
1115   // Get a count of how many bytes are to be pushed on the stack.
1116   unsigned NumBytes = RetCCInfo.getNextStackOffset();
1117   auto PtrVT = getPointerTy(DAG.getDataLayout());
1118 
1119   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
1120 
1121   SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
1122   SmallVector<SDValue, 12> MemOpChains;
1123 
1124   // Walk the register/memloc assignments, inserting copies/loads.
1125   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1126     CCValAssign &VA = ArgLocs[i];
1127     SDValue Arg = OutVals[i];
1128 
1129     // Promote the value if needed.
1130     switch (VA.getLocInfo()) {
1131       default: llvm_unreachable("Unknown loc info!");
1132       case CCValAssign::Full: break;
1133       case CCValAssign::SExt:
1134         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1135         break;
1136       case CCValAssign::ZExt:
1137         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1138         break;
1139       case CCValAssign::AExt:
1140         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1141         break;
1142     }
1143 
1144     // Arguments that can be passed on register must be kept at
1145     // RegsToPass vector
1146     if (VA.isRegLoc()) {
1147       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1148     } else {
1149       assert(VA.isMemLoc());
1150 
1151       int Offset = VA.getLocMemOffset();
1152 
1153       MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
1154                                         Chain, Arg,
1155                                         DAG.getConstant(Offset/4, dl,
1156                                                         MVT::i32)));
1157     }
1158   }
1159 
1160   // Transform all store nodes into one single node because
1161   // all store nodes are independent of each other.
1162   if (!MemOpChains.empty())
1163     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1164 
1165   // Build a sequence of copy-to-reg nodes chained together with token
1166   // chain and flag operands which copy the outgoing args into registers.
1167   // The InFlag in necessary since all emitted instructions must be
1168   // stuck together.
1169   SDValue InFlag;
1170   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1171     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1172                              RegsToPass[i].second, InFlag);
1173     InFlag = Chain.getValue(1);
1174   }
1175 
1176   // If the callee is a GlobalAddress node (quite common, every direct call is)
1177   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1178   // Likewise ExternalSymbol -> TargetExternalSymbol.
1179   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1180     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
1181   else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1182     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
1183 
1184   // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1185   //             = Chain, Callee, Reg#1, Reg#2, ...
1186   //
1187   // Returns a chain & a flag for retval copy to use.
1188   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1189   SmallVector<SDValue, 8> Ops;
1190   Ops.push_back(Chain);
1191   Ops.push_back(Callee);
1192 
1193   // Add argument registers to the end of the list so that they are
1194   // known live into the call.
1195   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1196     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1197                                   RegsToPass[i].second.getValueType()));
1198 
1199   if (InFlag.getNode())
1200     Ops.push_back(InFlag);
1201 
1202   Chain  = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
1203   InFlag = Chain.getValue(1);
1204 
1205   // Create the CALLSEQ_END node.
1206   Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
1207                              DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
1208   InFlag = Chain.getValue(1);
1209 
1210   // Handle result values, copying them out of physregs into vregs that we
1211   // return.
1212   return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
1213 }
1214 
1215 //===----------------------------------------------------------------------===//
1216 //             Formal Arguments Calling Convention Implementation
1217 //===----------------------------------------------------------------------===//
1218 
1219 namespace {
1220   struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
1221 }
1222 
1223 /// XCore formal arguments implementation
1224 SDValue XCoreTargetLowering::LowerFormalArguments(
1225     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1226     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1227     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1228   switch (CallConv)
1229   {
1230     default:
1231       report_fatal_error("Unsupported calling convention");
1232     case CallingConv::C:
1233     case CallingConv::Fast:
1234       return LowerCCCArguments(Chain, CallConv, isVarArg,
1235                                Ins, dl, DAG, InVals);
1236   }
1237 }
1238 
1239 /// LowerCCCArguments - transform physical registers into
1240 /// virtual registers and generate load operations for
1241 /// arguments places on the stack.
1242 /// TODO: sret
1243 SDValue XCoreTargetLowering::LowerCCCArguments(
1244     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1245     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1246     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1247   MachineFunction &MF = DAG.getMachineFunction();
1248   MachineFrameInfo &MFI = MF.getFrameInfo();
1249   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1250   XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1251 
1252   // Assign locations to all of the incoming arguments.
1253   SmallVector<CCValAssign, 16> ArgLocs;
1254   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1255                  *DAG.getContext());
1256 
1257   CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
1258 
1259   unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
1260 
1261   unsigned LRSaveSize = StackSlotSize;
1262 
1263   if (!isVarArg)
1264     XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
1265 
1266   // All getCopyFromReg ops must precede any getMemcpys to prevent the
1267   // scheduler clobbering a register before it has been copied.
1268   // The stages are:
1269   // 1. CopyFromReg (and load) arg & vararg registers.
1270   // 2. Chain CopyFromReg nodes into a TokenFactor.
1271   // 3. Memcpy 'byVal' args & push final InVals.
1272   // 4. Chain mem ops nodes into a TokenFactor.
1273   SmallVector<SDValue, 4> CFRegNode;
1274   SmallVector<ArgDataPair, 4> ArgData;
1275   SmallVector<SDValue, 4> MemOps;
1276 
1277   // 1a. CopyFromReg (and load) arg registers.
1278   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1279 
1280     CCValAssign &VA = ArgLocs[i];
1281     SDValue ArgIn;
1282 
1283     if (VA.isRegLoc()) {
1284       // Arguments passed in registers
1285       EVT RegVT = VA.getLocVT();
1286       switch (RegVT.getSimpleVT().SimpleTy) {
1287       default:
1288         {
1289 #ifndef NDEBUG
1290           errs() << "LowerFormalArguments Unhandled argument type: "
1291                  << RegVT.getEVTString() << "\n";
1292 #endif
1293           llvm_unreachable(nullptr);
1294         }
1295       case MVT::i32:
1296         Register VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1297         RegInfo.addLiveIn(VA.getLocReg(), VReg);
1298         ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
1299         CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
1300       }
1301     } else {
1302       // Only arguments passed on the stack should make it here.
1303       assert(VA.isMemLoc());
1304       // Load the argument to a virtual register
1305       unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
1306       if (ObjSize > StackSlotSize) {
1307         errs() << "LowerFormalArguments Unhandled argument type: "
1308                << EVT(VA.getLocVT()).getEVTString()
1309                << "\n";
1310       }
1311       // Create the frame index object for this incoming parameter...
1312       int FI = MFI.CreateFixedObject(ObjSize,
1313                                      LRSaveSize + VA.getLocMemOffset(),
1314                                      true);
1315 
1316       // Create the SelectionDAG nodes corresponding to a load
1317       //from this parameter
1318       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1319       ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1320                           MachinePointerInfo::getFixedStack(MF, FI));
1321     }
1322     const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
1323     ArgData.push_back(ADP);
1324   }
1325 
1326   // 1b. CopyFromReg vararg registers.
1327   if (isVarArg) {
1328     // Argument registers
1329     static const MCPhysReg ArgRegs[] = {
1330       XCore::R0, XCore::R1, XCore::R2, XCore::R3
1331     };
1332     XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1333     unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
1334     if (FirstVAReg < array_lengthof(ArgRegs)) {
1335       int offset = 0;
1336       // Save remaining registers, storing higher register numbers at a higher
1337       // address
1338       for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
1339         // Create a stack slot
1340         int FI = MFI.CreateFixedObject(4, offset, true);
1341         if (i == (int)FirstVAReg) {
1342           XFI->setVarArgsFrameIndex(FI);
1343         }
1344         offset -= StackSlotSize;
1345         SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1346         // Move argument from phys reg -> virt reg
1347         Register VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1348         RegInfo.addLiveIn(ArgRegs[i], VReg);
1349         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1350         CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
1351         // Move argument from virt reg -> stack
1352         SDValue Store =
1353             DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
1354         MemOps.push_back(Store);
1355       }
1356     } else {
1357       // This will point to the next argument passed via stack.
1358       XFI->setVarArgsFrameIndex(
1359         MFI.CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
1360                               true));
1361     }
1362   }
1363 
1364   // 2. chain CopyFromReg nodes into a TokenFactor.
1365   if (!CFRegNode.empty())
1366     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
1367 
1368   // 3. Memcpy 'byVal' args & push final InVals.
1369   // Aggregates passed "byVal" need to be copied by the callee.
1370   // The callee will use a pointer to this copy, rather than the original
1371   // pointer.
1372   for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
1373                                                     ArgDE = ArgData.end();
1374        ArgDI != ArgDE; ++ArgDI) {
1375     if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
1376       unsigned Size = ArgDI->Flags.getByValSize();
1377       Align Alignment =
1378           std::max(Align(StackSlotSize), ArgDI->Flags.getNonZeroByValAlign());
1379       // Create a new object on the stack and copy the pointee into it.
1380       int FI = MFI.CreateStackObject(Size, Alignment, false);
1381       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1382       InVals.push_back(FIN);
1383       MemOps.push_back(DAG.getMemcpy(
1384           Chain, dl, FIN, ArgDI->SDV, DAG.getConstant(Size, dl, MVT::i32),
1385           Alignment, false, false, false, MachinePointerInfo(),
1386           MachinePointerInfo()));
1387     } else {
1388       InVals.push_back(ArgDI->SDV);
1389     }
1390   }
1391 
1392   // 4, chain mem ops nodes into a TokenFactor.
1393   if (!MemOps.empty()) {
1394     MemOps.push_back(Chain);
1395     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
1396   }
1397 
1398   return Chain;
1399 }
1400 
1401 //===----------------------------------------------------------------------===//
1402 //               Return Value Calling Convention Implementation
1403 //===----------------------------------------------------------------------===//
1404 
1405 bool XCoreTargetLowering::
1406 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1407                bool isVarArg,
1408                const SmallVectorImpl<ISD::OutputArg> &Outs,
1409                LLVMContext &Context) const {
1410   SmallVector<CCValAssign, 16> RVLocs;
1411   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1412   if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
1413     return false;
1414   if (CCInfo.getNextStackOffset() != 0 && isVarArg)
1415     return false;
1416   return true;
1417 }
1418 
1419 SDValue
1420 XCoreTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1421                                  bool isVarArg,
1422                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
1423                                  const SmallVectorImpl<SDValue> &OutVals,
1424                                  const SDLoc &dl, SelectionDAG &DAG) const {
1425 
1426   XCoreFunctionInfo *XFI =
1427     DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
1428   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1429 
1430   // CCValAssign - represent the assignment of
1431   // the return value to a location
1432   SmallVector<CCValAssign, 16> RVLocs;
1433 
1434   // CCState - Info about the registers and stack slot.
1435   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1436                  *DAG.getContext());
1437 
1438   // Analyze return values.
1439   if (!isVarArg)
1440     CCInfo.AllocateStack(XFI->getReturnStackOffset(), Align(4));
1441 
1442   CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
1443 
1444   SDValue Flag;
1445   SmallVector<SDValue, 4> RetOps(1, Chain);
1446 
1447   // Return on XCore is always a "retsp 0"
1448   RetOps.push_back(DAG.getConstant(0, dl, MVT::i32));
1449 
1450   SmallVector<SDValue, 4> MemOpChains;
1451   // Handle return values that must be copied to memory.
1452   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1453     CCValAssign &VA = RVLocs[i];
1454     if (VA.isRegLoc())
1455       continue;
1456     assert(VA.isMemLoc());
1457     if (isVarArg) {
1458       report_fatal_error("Can't return value from vararg function in memory");
1459     }
1460 
1461     int Offset = VA.getLocMemOffset();
1462     unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
1463     // Create the frame index object for the memory location.
1464     int FI = MFI.CreateFixedObject(ObjSize, Offset, false);
1465 
1466     // Create a SelectionDAG node corresponding to a store
1467     // to this memory location.
1468     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1469     MemOpChains.push_back(DAG.getStore(
1470         Chain, dl, OutVals[i], FIN,
1471         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
1472   }
1473 
1474   // Transform all store nodes into one single node because
1475   // all stores are independent of each other.
1476   if (!MemOpChains.empty())
1477     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1478 
1479   // Now handle return values copied to registers.
1480   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1481     CCValAssign &VA = RVLocs[i];
1482     if (!VA.isRegLoc())
1483       continue;
1484     // Copy the result values into the output registers.
1485     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1486 
1487     // guarantee that all emitted copies are
1488     // stuck together, avoiding something bad
1489     Flag = Chain.getValue(1);
1490     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1491   }
1492 
1493   RetOps[0] = Chain;  // Update chain.
1494 
1495   // Add the flag if we have it.
1496   if (Flag.getNode())
1497     RetOps.push_back(Flag);
1498 
1499   return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
1500 }
1501 
1502 //===----------------------------------------------------------------------===//
1503 //  Other Lowering Code
1504 //===----------------------------------------------------------------------===//
1505 
1506 MachineBasicBlock *
1507 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1508                                                  MachineBasicBlock *BB) const {
1509   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1510   DebugLoc dl = MI.getDebugLoc();
1511   assert((MI.getOpcode() == XCore::SELECT_CC) &&
1512          "Unexpected instr type to insert");
1513 
1514   // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1515   // control-flow pattern.  The incoming instruction knows the destination vreg
1516   // to set, the condition code register to branch on, the true/false values to
1517   // select between, and a branch opcode to use.
1518   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1519   MachineFunction::iterator It = ++BB->getIterator();
1520 
1521   //  thisMBB:
1522   //  ...
1523   //   TrueVal = ...
1524   //   cmpTY ccX, r1, r2
1525   //   bCC copy1MBB
1526   //   fallthrough --> copy0MBB
1527   MachineBasicBlock *thisMBB = BB;
1528   MachineFunction *F = BB->getParent();
1529   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1530   MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1531   F->insert(It, copy0MBB);
1532   F->insert(It, sinkMBB);
1533 
1534   // Transfer the remainder of BB and its successor edges to sinkMBB.
1535   sinkMBB->splice(sinkMBB->begin(), BB,
1536                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1537   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1538 
1539   // Next, add the true and fallthrough blocks as its successors.
1540   BB->addSuccessor(copy0MBB);
1541   BB->addSuccessor(sinkMBB);
1542 
1543   BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
1544       .addReg(MI.getOperand(1).getReg())
1545       .addMBB(sinkMBB);
1546 
1547   //  copy0MBB:
1548   //   %FalseValue = ...
1549   //   # fallthrough to sinkMBB
1550   BB = copy0MBB;
1551 
1552   // Update machine-CFG edges
1553   BB->addSuccessor(sinkMBB);
1554 
1555   //  sinkMBB:
1556   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1557   //  ...
1558   BB = sinkMBB;
1559   BuildMI(*BB, BB->begin(), dl, TII.get(XCore::PHI), MI.getOperand(0).getReg())
1560       .addReg(MI.getOperand(3).getReg())
1561       .addMBB(copy0MBB)
1562       .addReg(MI.getOperand(2).getReg())
1563       .addMBB(thisMBB);
1564 
1565   MI.eraseFromParent(); // The pseudo instruction is gone now.
1566   return BB;
1567 }
1568 
1569 //===----------------------------------------------------------------------===//
1570 // Target Optimization Hooks
1571 //===----------------------------------------------------------------------===//
1572 
1573 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
1574                                              DAGCombinerInfo &DCI) const {
1575   SelectionDAG &DAG = DCI.DAG;
1576   SDLoc dl(N);
1577   switch (N->getOpcode()) {
1578   default: break;
1579   case ISD::INTRINSIC_VOID:
1580     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
1581     case Intrinsic::xcore_outt:
1582     case Intrinsic::xcore_outct:
1583     case Intrinsic::xcore_chkct: {
1584       SDValue OutVal = N->getOperand(3);
1585       // These instructions ignore the high bits.
1586       if (OutVal.hasOneUse()) {
1587         unsigned BitWidth = OutVal.getValueSizeInBits();
1588         APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
1589         KnownBits Known;
1590         TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1591                                               !DCI.isBeforeLegalizeOps());
1592         const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1593         if (TLI.ShrinkDemandedConstant(OutVal, DemandedMask, TLO) ||
1594             TLI.SimplifyDemandedBits(OutVal, DemandedMask, Known, TLO))
1595           DCI.CommitTargetLoweringOpt(TLO);
1596       }
1597       break;
1598     }
1599     case Intrinsic::xcore_setpt: {
1600       SDValue Time = N->getOperand(3);
1601       // This instruction ignores the high bits.
1602       if (Time.hasOneUse()) {
1603         unsigned BitWidth = Time.getValueSizeInBits();
1604         APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
1605         KnownBits Known;
1606         TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1607                                               !DCI.isBeforeLegalizeOps());
1608         const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1609         if (TLI.ShrinkDemandedConstant(Time, DemandedMask, TLO) ||
1610             TLI.SimplifyDemandedBits(Time, DemandedMask, Known, TLO))
1611           DCI.CommitTargetLoweringOpt(TLO);
1612       }
1613       break;
1614     }
1615     }
1616     break;
1617   case XCoreISD::LADD: {
1618     SDValue N0 = N->getOperand(0);
1619     SDValue N1 = N->getOperand(1);
1620     SDValue N2 = N->getOperand(2);
1621     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1622     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1623     EVT VT = N0.getValueType();
1624 
1625     // canonicalize constant to RHS
1626     if (N0C && !N1C)
1627       return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
1628 
1629     // fold (ladd 0, 0, x) -> 0, x & 1
1630     if (N0C && N0C->isZero() && N1C && N1C->isZero()) {
1631       SDValue Carry = DAG.getConstant(0, dl, VT);
1632       SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
1633                                    DAG.getConstant(1, dl, VT));
1634       SDValue Ops[] = { Result, Carry };
1635       return DAG.getMergeValues(Ops, dl);
1636     }
1637 
1638     // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1639     // low bit set
1640     if (N1C && N1C->isZero() && N->hasNUsesOfValue(0, 1)) {
1641       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1642                                          VT.getSizeInBits() - 1);
1643       KnownBits Known = DAG.computeKnownBits(N2);
1644       if ((Known.Zero & Mask) == Mask) {
1645         SDValue Carry = DAG.getConstant(0, dl, VT);
1646         SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
1647         SDValue Ops[] = { Result, Carry };
1648         return DAG.getMergeValues(Ops, dl);
1649       }
1650     }
1651   }
1652   break;
1653   case XCoreISD::LSUB: {
1654     SDValue N0 = N->getOperand(0);
1655     SDValue N1 = N->getOperand(1);
1656     SDValue N2 = N->getOperand(2);
1657     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1658     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1659     EVT VT = N0.getValueType();
1660 
1661     // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1662     if (N0C && N0C->isZero() && N1C && N1C->isZero()) {
1663       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1664                                          VT.getSizeInBits() - 1);
1665       KnownBits Known = DAG.computeKnownBits(N2);
1666       if ((Known.Zero & Mask) == Mask) {
1667         SDValue Borrow = N2;
1668         SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
1669                                      DAG.getConstant(0, dl, VT), N2);
1670         SDValue Ops[] = { Result, Borrow };
1671         return DAG.getMergeValues(Ops, dl);
1672       }
1673     }
1674 
1675     // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1676     // low bit set
1677     if (N1C && N1C->isZero() && N->hasNUsesOfValue(0, 1)) {
1678       APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1679                                          VT.getSizeInBits() - 1);
1680       KnownBits Known = DAG.computeKnownBits(N2);
1681       if ((Known.Zero & Mask) == Mask) {
1682         SDValue Borrow = DAG.getConstant(0, dl, VT);
1683         SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
1684         SDValue Ops[] = { Result, Borrow };
1685         return DAG.getMergeValues(Ops, dl);
1686       }
1687     }
1688   }
1689   break;
1690   case XCoreISD::LMUL: {
1691     SDValue N0 = N->getOperand(0);
1692     SDValue N1 = N->getOperand(1);
1693     SDValue N2 = N->getOperand(2);
1694     SDValue N3 = N->getOperand(3);
1695     ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1696     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1697     EVT VT = N0.getValueType();
1698     // Canonicalize multiplicative constant to RHS. If both multiplicative
1699     // operands are constant canonicalize smallest to RHS.
1700     if ((N0C && !N1C) ||
1701         (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
1702       return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
1703                          N1, N0, N2, N3);
1704 
1705     // lmul(x, 0, a, b)
1706     if (N1C && N1C->isZero()) {
1707       // If the high result is unused fold to add(a, b)
1708       if (N->hasNUsesOfValue(0, 0)) {
1709         SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
1710         SDValue Ops[] = { Lo, Lo };
1711         return DAG.getMergeValues(Ops, dl);
1712       }
1713       // Otherwise fold to ladd(a, b, 0)
1714       SDValue Result =
1715         DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
1716       SDValue Carry(Result.getNode(), 1);
1717       SDValue Ops[] = { Carry, Result };
1718       return DAG.getMergeValues(Ops, dl);
1719     }
1720   }
1721   break;
1722   case ISD::ADD: {
1723     // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1724     // lmul(x, y, a, b). The high result of lmul will be ignored.
1725     // This is only profitable if the intermediate results are unused
1726     // elsewhere.
1727     SDValue Mul0, Mul1, Addend0, Addend1;
1728     if (N->getValueType(0) == MVT::i32 &&
1729         isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
1730       SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
1731                                     DAG.getVTList(MVT::i32, MVT::i32), Mul0,
1732                                     Mul1, Addend0, Addend1);
1733       SDValue Result(Ignored.getNode(), 1);
1734       return Result;
1735     }
1736     APInt HighMask = APInt::getHighBitsSet(64, 32);
1737     // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1738     // lmul(x, y, a, b) if all operands are zero-extended. We do this
1739     // before type legalization as it is messy to match the operands after
1740     // that.
1741     if (N->getValueType(0) == MVT::i64 &&
1742         isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
1743         DAG.MaskedValueIsZero(Mul0, HighMask) &&
1744         DAG.MaskedValueIsZero(Mul1, HighMask) &&
1745         DAG.MaskedValueIsZero(Addend0, HighMask) &&
1746         DAG.MaskedValueIsZero(Addend1, HighMask)) {
1747       SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1748                                   Mul0, DAG.getConstant(0, dl, MVT::i32));
1749       SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1750                                   Mul1, DAG.getConstant(0, dl, MVT::i32));
1751       SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1752                                      Addend0, DAG.getConstant(0, dl, MVT::i32));
1753       SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1754                                      Addend1, DAG.getConstant(0, dl, MVT::i32));
1755       SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
1756                                DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
1757                                Addend0L, Addend1L);
1758       SDValue Lo(Hi.getNode(), 1);
1759       return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1760     }
1761   }
1762   break;
1763   case ISD::STORE: {
1764     // Replace unaligned store of unaligned load with memmove.
1765     StoreSDNode *ST = cast<StoreSDNode>(N);
1766     if (!DCI.isBeforeLegalize() ||
1767         allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
1768                                        ST->getMemoryVT(),
1769                                        *ST->getMemOperand()) ||
1770         ST->isVolatile() || ST->isIndexed()) {
1771       break;
1772     }
1773     SDValue Chain = ST->getChain();
1774 
1775     unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
1776     assert((StoreBits % 8) == 0 &&
1777            "Store size in bits must be a multiple of 8");
1778     unsigned Alignment = ST->getAlignment();
1779 
1780     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
1781       if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
1782         LD->getAlignment() == Alignment &&
1783         !LD->isVolatile() && !LD->isIndexed() &&
1784         Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
1785         bool isTail = isInTailCallPosition(DAG, ST, Chain);
1786         return DAG.getMemmove(Chain, dl, ST->getBasePtr(), LD->getBasePtr(),
1787                               DAG.getConstant(StoreBits / 8, dl, MVT::i32),
1788                               Align(Alignment), false, isTail,
1789                               ST->getPointerInfo(), LD->getPointerInfo());
1790       }
1791     }
1792     break;
1793   }
1794   }
1795   return SDValue();
1796 }
1797 
1798 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1799                                                         KnownBits &Known,
1800                                                         const APInt &DemandedElts,
1801                                                         const SelectionDAG &DAG,
1802                                                         unsigned Depth) const {
1803   Known.resetAll();
1804   switch (Op.getOpcode()) {
1805   default: break;
1806   case XCoreISD::LADD:
1807   case XCoreISD::LSUB:
1808     if (Op.getResNo() == 1) {
1809       // Top bits of carry / borrow are clear.
1810       Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1811                                          Known.getBitWidth() - 1);
1812     }
1813     break;
1814   case ISD::INTRINSIC_W_CHAIN:
1815     {
1816       unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1817       switch (IntNo) {
1818       case Intrinsic::xcore_getts:
1819         // High bits are known to be zero.
1820         Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1821                                            Known.getBitWidth() - 16);
1822         break;
1823       case Intrinsic::xcore_int:
1824       case Intrinsic::xcore_inct:
1825         // High bits are known to be zero.
1826         Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1827                                            Known.getBitWidth() - 8);
1828         break;
1829       case Intrinsic::xcore_testct:
1830         // Result is either 0 or 1.
1831         Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1832                                            Known.getBitWidth() - 1);
1833         break;
1834       case Intrinsic::xcore_testwct:
1835         // Result is in the range 0 - 4.
1836         Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1837                                            Known.getBitWidth() - 3);
1838         break;
1839       }
1840     }
1841     break;
1842   }
1843 }
1844 
1845 //===----------------------------------------------------------------------===//
1846 //  Addressing mode description hooks
1847 //===----------------------------------------------------------------------===//
1848 
1849 static inline bool isImmUs(int64_t val)
1850 {
1851   return (val >= 0 && val <= 11);
1852 }
1853 
1854 static inline bool isImmUs2(int64_t val)
1855 {
1856   return (val%2 == 0 && isImmUs(val/2));
1857 }
1858 
1859 static inline bool isImmUs4(int64_t val)
1860 {
1861   return (val%4 == 0 && isImmUs(val/4));
1862 }
1863 
1864 /// isLegalAddressingMode - Return true if the addressing mode represented
1865 /// by AM is legal for this target, for a load/store of the specified type.
1866 bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1867                                                 const AddrMode &AM, Type *Ty,
1868                                                 unsigned AS,
1869                                                 Instruction *I) const {
1870   if (Ty->getTypeID() == Type::VoidTyID)
1871     return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
1872 
1873   unsigned Size = DL.getTypeAllocSize(Ty);
1874   if (AM.BaseGV) {
1875     return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
1876                  AM.BaseOffs%4 == 0;
1877   }
1878 
1879   switch (Size) {
1880   case 1:
1881     // reg + imm
1882     if (AM.Scale == 0) {
1883       return isImmUs(AM.BaseOffs);
1884     }
1885     // reg + reg
1886     return AM.Scale == 1 && AM.BaseOffs == 0;
1887   case 2:
1888   case 3:
1889     // reg + imm
1890     if (AM.Scale == 0) {
1891       return isImmUs2(AM.BaseOffs);
1892     }
1893     // reg + reg<<1
1894     return AM.Scale == 2 && AM.BaseOffs == 0;
1895   default:
1896     // reg + imm
1897     if (AM.Scale == 0) {
1898       return isImmUs4(AM.BaseOffs);
1899     }
1900     // reg + reg<<2
1901     return AM.Scale == 4 && AM.BaseOffs == 0;
1902   }
1903 }
1904 
1905 //===----------------------------------------------------------------------===//
1906 //                           XCore Inline Assembly Support
1907 //===----------------------------------------------------------------------===//
1908 
1909 std::pair<unsigned, const TargetRegisterClass *>
1910 XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1911                                                   StringRef Constraint,
1912                                                   MVT VT) const {
1913   if (Constraint.size() == 1) {
1914     switch (Constraint[0]) {
1915     default : break;
1916     case 'r':
1917       return std::make_pair(0U, &XCore::GRRegsRegClass);
1918     }
1919   }
1920   // Use the default implementation in TargetLowering to convert the register
1921   // constraint into a member of a register class.
1922   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1923 }
1924