1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86InstrInfo.h" 14 #include "X86.h" 15 #include "X86InstrBuilder.h" 16 #include "X86InstrFoldTables.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Sequence.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/LivePhysRegs.h" 24 #include "llvm/CodeGen/LiveVariables.h" 25 #include "llvm/CodeGen/MachineConstantPool.h" 26 #include "llvm/CodeGen/MachineDominators.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineModuleInfo.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/StackMaps.h" 34 #include "llvm/IR/DebugInfoMetadata.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/MCExpr.h" 40 #include "llvm/MC/MCInst.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetOptions.h" 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "x86-instr-info" 50 51 #define GET_INSTRINFO_CTOR_DTOR 52 #include "X86GenInstrInfo.inc" 53 54 static cl::opt<bool> 55 NoFusing("disable-spill-fusing", 56 cl::desc("Disable fusing of spill code into instructions"), 57 cl::Hidden); 58 static cl::opt<bool> 59 PrintFailedFusing("print-failed-fuse-candidates", 60 cl::desc("Print instructions that the allocator wants to" 61 " fuse, but the X86 backend currently can't"), 62 cl::Hidden); 63 static cl::opt<bool> 64 ReMatPICStubLoad("remat-pic-stub-load", 65 cl::desc("Re-materialize load from stub in PIC mode"), 66 cl::init(false), cl::Hidden); 67 static cl::opt<unsigned> 68 PartialRegUpdateClearance("partial-reg-update-clearance", 69 cl::desc("Clearance between two register writes " 70 "for inserting XOR to avoid partial " 71 "register update"), 72 cl::init(64), cl::Hidden); 73 static cl::opt<unsigned> 74 UndefRegClearance("undef-reg-clearance", 75 cl::desc("How many idle instructions we would like before " 76 "certain undef register reads"), 77 cl::init(128), cl::Hidden); 78 79 80 // Pin the vtable to this file. 81 void X86InstrInfo::anchor() {} 82 83 X86InstrInfo::X86InstrInfo(X86Subtarget &STI) 84 : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 85 : X86::ADJCALLSTACKDOWN32), 86 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 87 : X86::ADJCALLSTACKUP32), 88 X86::CATCHRET, 89 (STI.is64Bit() ? X86::RET64 : X86::RET32)), 90 Subtarget(STI), RI(STI.getTargetTriple()) { 91 } 92 93 bool 94 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 95 Register &SrcReg, Register &DstReg, 96 unsigned &SubIdx) const { 97 switch (MI.getOpcode()) { 98 default: break; 99 case X86::MOVSX16rr8: 100 case X86::MOVZX16rr8: 101 case X86::MOVSX32rr8: 102 case X86::MOVZX32rr8: 103 case X86::MOVSX64rr8: 104 if (!Subtarget.is64Bit()) 105 // It's not always legal to reference the low 8-bit of the larger 106 // register in 32-bit mode. 107 return false; 108 LLVM_FALLTHROUGH; 109 case X86::MOVSX32rr16: 110 case X86::MOVZX32rr16: 111 case X86::MOVSX64rr16: 112 case X86::MOVSX64rr32: { 113 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) 114 // Be conservative. 115 return false; 116 SrcReg = MI.getOperand(1).getReg(); 117 DstReg = MI.getOperand(0).getReg(); 118 switch (MI.getOpcode()) { 119 default: llvm_unreachable("Unreachable!"); 120 case X86::MOVSX16rr8: 121 case X86::MOVZX16rr8: 122 case X86::MOVSX32rr8: 123 case X86::MOVZX32rr8: 124 case X86::MOVSX64rr8: 125 SubIdx = X86::sub_8bit; 126 break; 127 case X86::MOVSX32rr16: 128 case X86::MOVZX32rr16: 129 case X86::MOVSX64rr16: 130 SubIdx = X86::sub_16bit; 131 break; 132 case X86::MOVSX64rr32: 133 SubIdx = X86::sub_32bit; 134 break; 135 } 136 return true; 137 } 138 } 139 return false; 140 } 141 142 bool X86InstrInfo::isDataInvariant(MachineInstr &MI) { 143 if (MI.mayLoad() || MI.mayStore()) 144 return false; 145 146 // Some target-independent operations that trivially lower to data-invariant 147 // instructions. 148 if (MI.isCopyLike() || MI.isInsertSubreg()) 149 return true; 150 151 unsigned Opcode = MI.getOpcode(); 152 using namespace X86; 153 // On x86 it is believed that imul is constant time w.r.t. the loaded data. 154 // However, they set flags and are perhaps the most surprisingly constant 155 // time operations so we call them out here separately. 156 if (isIMUL(Opcode)) 157 return true; 158 // Bit scanning and counting instructions that are somewhat surprisingly 159 // constant time as they scan across bits and do other fairly complex 160 // operations like popcnt, but are believed to be constant time on x86. 161 // However, these set flags. 162 if (isBSF(Opcode) || isBSR(Opcode) || isLZCNT(Opcode) || isPOPCNT(Opcode) || 163 isTZCNT(Opcode)) 164 return true; 165 // Bit manipulation instructions are effectively combinations of basic 166 // arithmetic ops, and should still execute in constant time. These also 167 // set flags. 168 if (isBLCFILL(Opcode) || isBLCI(Opcode) || isBLCIC(Opcode) || 169 isBLCMSK(Opcode) || isBLCS(Opcode) || isBLSFILL(Opcode) || 170 isBLSI(Opcode) || isBLSIC(Opcode) || isBLSMSK(Opcode) || isBLSR(Opcode) || 171 isTZMSK(Opcode)) 172 return true; 173 // Bit extracting and clearing instructions should execute in constant time, 174 // and set flags. 175 if (isBEXTR(Opcode) || isBZHI(Opcode)) 176 return true; 177 // Shift and rotate. 178 if (isROL(Opcode) || isROR(Opcode) || isSAR(Opcode) || isSHL(Opcode) || 179 isSHR(Opcode) || isSHLD(Opcode) || isSHRD(Opcode)) 180 return true; 181 // Basic arithmetic is constant time on the input but does set flags. 182 if (isADC(Opcode) || isADD(Opcode) || isAND(Opcode) || isOR(Opcode) || 183 isSBB(Opcode) || isSUB(Opcode) || isXOR(Opcode)) 184 return true; 185 // Arithmetic with just 32-bit and 64-bit variants and no immediates. 186 if (isADCX(Opcode) || isADOX(Opcode) || isANDN(Opcode)) 187 return true; 188 // Unary arithmetic operations. 189 if (isDEC(Opcode) || isINC(Opcode) || isNEG(Opcode)) 190 return true; 191 // Unlike other arithmetic, NOT doesn't set EFLAGS. 192 if (isNOT(Opcode)) 193 return true; 194 // Various move instructions used to zero or sign extend things. Note that we 195 // intentionally don't support the _NOREX variants as we can't handle that 196 // register constraint anyways. 197 if (isMOVSX(Opcode) || isMOVZX(Opcode) || isMOVSXD(Opcode) || isMOV(Opcode)) 198 return true; 199 // Arithmetic instructions that are both constant time and don't set flags. 200 if (isRORX(Opcode) || isSARX(Opcode) || isSHLX(Opcode) || isSHRX(Opcode)) 201 return true; 202 // LEA doesn't actually access memory, and its arithmetic is constant time. 203 if (isLEA(Opcode)) 204 return true; 205 // By default, assume that the instruction is not data invariant. 206 return false; 207 } 208 209 bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) { 210 switch (MI.getOpcode()) { 211 default: 212 // By default, assume that the load will immediately leak. 213 return false; 214 215 // On x86 it is believed that imul is constant time w.r.t. the loaded data. 216 // However, they set flags and are perhaps the most surprisingly constant 217 // time operations so we call them out here separately. 218 case X86::IMUL16rm: 219 case X86::IMUL16rmi8: 220 case X86::IMUL16rmi: 221 case X86::IMUL32rm: 222 case X86::IMUL32rmi8: 223 case X86::IMUL32rmi: 224 case X86::IMUL64rm: 225 case X86::IMUL64rmi32: 226 case X86::IMUL64rmi8: 227 228 // Bit scanning and counting instructions that are somewhat surprisingly 229 // constant time as they scan across bits and do other fairly complex 230 // operations like popcnt, but are believed to be constant time on x86. 231 // However, these set flags. 232 case X86::BSF16rm: 233 case X86::BSF32rm: 234 case X86::BSF64rm: 235 case X86::BSR16rm: 236 case X86::BSR32rm: 237 case X86::BSR64rm: 238 case X86::LZCNT16rm: 239 case X86::LZCNT32rm: 240 case X86::LZCNT64rm: 241 case X86::POPCNT16rm: 242 case X86::POPCNT32rm: 243 case X86::POPCNT64rm: 244 case X86::TZCNT16rm: 245 case X86::TZCNT32rm: 246 case X86::TZCNT64rm: 247 248 // Bit manipulation instructions are effectively combinations of basic 249 // arithmetic ops, and should still execute in constant time. These also 250 // set flags. 251 case X86::BLCFILL32rm: 252 case X86::BLCFILL64rm: 253 case X86::BLCI32rm: 254 case X86::BLCI64rm: 255 case X86::BLCIC32rm: 256 case X86::BLCIC64rm: 257 case X86::BLCMSK32rm: 258 case X86::BLCMSK64rm: 259 case X86::BLCS32rm: 260 case X86::BLCS64rm: 261 case X86::BLSFILL32rm: 262 case X86::BLSFILL64rm: 263 case X86::BLSI32rm: 264 case X86::BLSI64rm: 265 case X86::BLSIC32rm: 266 case X86::BLSIC64rm: 267 case X86::BLSMSK32rm: 268 case X86::BLSMSK64rm: 269 case X86::BLSR32rm: 270 case X86::BLSR64rm: 271 case X86::TZMSK32rm: 272 case X86::TZMSK64rm: 273 274 // Bit extracting and clearing instructions should execute in constant time, 275 // and set flags. 276 case X86::BEXTR32rm: 277 case X86::BEXTR64rm: 278 case X86::BEXTRI32mi: 279 case X86::BEXTRI64mi: 280 case X86::BZHI32rm: 281 case X86::BZHI64rm: 282 283 // Basic arithmetic is constant time on the input but does set flags. 284 case X86::ADC8rm: 285 case X86::ADC16rm: 286 case X86::ADC32rm: 287 case X86::ADC64rm: 288 case X86::ADCX32rm: 289 case X86::ADCX64rm: 290 case X86::ADD8rm: 291 case X86::ADD16rm: 292 case X86::ADD32rm: 293 case X86::ADD64rm: 294 case X86::ADOX32rm: 295 case X86::ADOX64rm: 296 case X86::AND8rm: 297 case X86::AND16rm: 298 case X86::AND32rm: 299 case X86::AND64rm: 300 case X86::ANDN32rm: 301 case X86::ANDN64rm: 302 case X86::OR8rm: 303 case X86::OR16rm: 304 case X86::OR32rm: 305 case X86::OR64rm: 306 case X86::SBB8rm: 307 case X86::SBB16rm: 308 case X86::SBB32rm: 309 case X86::SBB64rm: 310 case X86::SUB8rm: 311 case X86::SUB16rm: 312 case X86::SUB32rm: 313 case X86::SUB64rm: 314 case X86::XOR8rm: 315 case X86::XOR16rm: 316 case X86::XOR32rm: 317 case X86::XOR64rm: 318 319 // Integer multiply w/o affecting flags is still believed to be constant 320 // time on x86. Called out separately as this is among the most surprising 321 // instructions to exhibit that behavior. 322 case X86::MULX32rm: 323 case X86::MULX64rm: 324 325 // Arithmetic instructions that are both constant time and don't set flags. 326 case X86::RORX32mi: 327 case X86::RORX64mi: 328 case X86::SARX32rm: 329 case X86::SARX64rm: 330 case X86::SHLX32rm: 331 case X86::SHLX64rm: 332 case X86::SHRX32rm: 333 case X86::SHRX64rm: 334 335 // Conversions are believed to be constant time and don't set flags. 336 case X86::CVTTSD2SI64rm: 337 case X86::VCVTTSD2SI64rm: 338 case X86::VCVTTSD2SI64Zrm: 339 case X86::CVTTSD2SIrm: 340 case X86::VCVTTSD2SIrm: 341 case X86::VCVTTSD2SIZrm: 342 case X86::CVTTSS2SI64rm: 343 case X86::VCVTTSS2SI64rm: 344 case X86::VCVTTSS2SI64Zrm: 345 case X86::CVTTSS2SIrm: 346 case X86::VCVTTSS2SIrm: 347 case X86::VCVTTSS2SIZrm: 348 case X86::CVTSI2SDrm: 349 case X86::VCVTSI2SDrm: 350 case X86::VCVTSI2SDZrm: 351 case X86::CVTSI2SSrm: 352 case X86::VCVTSI2SSrm: 353 case X86::VCVTSI2SSZrm: 354 case X86::CVTSI642SDrm: 355 case X86::VCVTSI642SDrm: 356 case X86::VCVTSI642SDZrm: 357 case X86::CVTSI642SSrm: 358 case X86::VCVTSI642SSrm: 359 case X86::VCVTSI642SSZrm: 360 case X86::CVTSS2SDrm: 361 case X86::VCVTSS2SDrm: 362 case X86::VCVTSS2SDZrm: 363 case X86::CVTSD2SSrm: 364 case X86::VCVTSD2SSrm: 365 case X86::VCVTSD2SSZrm: 366 // AVX512 added unsigned integer conversions. 367 case X86::VCVTTSD2USI64Zrm: 368 case X86::VCVTTSD2USIZrm: 369 case X86::VCVTTSS2USI64Zrm: 370 case X86::VCVTTSS2USIZrm: 371 case X86::VCVTUSI2SDZrm: 372 case X86::VCVTUSI642SDZrm: 373 case X86::VCVTUSI2SSZrm: 374 case X86::VCVTUSI642SSZrm: 375 376 // Loads to register don't set flags. 377 case X86::MOV8rm: 378 case X86::MOV8rm_NOREX: 379 case X86::MOV16rm: 380 case X86::MOV32rm: 381 case X86::MOV64rm: 382 case X86::MOVSX16rm8: 383 case X86::MOVSX32rm16: 384 case X86::MOVSX32rm8: 385 case X86::MOVSX32rm8_NOREX: 386 case X86::MOVSX64rm16: 387 case X86::MOVSX64rm32: 388 case X86::MOVSX64rm8: 389 case X86::MOVZX16rm8: 390 case X86::MOVZX32rm16: 391 case X86::MOVZX32rm8: 392 case X86::MOVZX32rm8_NOREX: 393 case X86::MOVZX64rm16: 394 case X86::MOVZX64rm8: 395 return true; 396 } 397 } 398 399 int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const { 400 const MachineFunction *MF = MI.getParent()->getParent(); 401 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 402 403 if (isFrameInstr(MI)) { 404 int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign()); 405 SPAdj -= getFrameAdjustment(MI); 406 if (!isFrameSetup(MI)) 407 SPAdj = -SPAdj; 408 return SPAdj; 409 } 410 411 // To know whether a call adjusts the stack, we need information 412 // that is bound to the following ADJCALLSTACKUP pseudo. 413 // Look for the next ADJCALLSTACKUP that follows the call. 414 if (MI.isCall()) { 415 const MachineBasicBlock *MBB = MI.getParent(); 416 auto I = ++MachineBasicBlock::const_iterator(MI); 417 for (auto E = MBB->end(); I != E; ++I) { 418 if (I->getOpcode() == getCallFrameDestroyOpcode() || 419 I->isCall()) 420 break; 421 } 422 423 // If we could not find a frame destroy opcode, then it has already 424 // been simplified, so we don't care. 425 if (I->getOpcode() != getCallFrameDestroyOpcode()) 426 return 0; 427 428 return -(I->getOperand(1).getImm()); 429 } 430 431 // Currently handle only PUSHes we can reasonably expect to see 432 // in call sequences 433 switch (MI.getOpcode()) { 434 default: 435 return 0; 436 case X86::PUSH32i8: 437 case X86::PUSH32r: 438 case X86::PUSH32rmm: 439 case X86::PUSH32rmr: 440 case X86::PUSHi32: 441 return 4; 442 case X86::PUSH64i8: 443 case X86::PUSH64r: 444 case X86::PUSH64rmm: 445 case X86::PUSH64rmr: 446 case X86::PUSH64i32: 447 return 8; 448 } 449 } 450 451 /// Return true and the FrameIndex if the specified 452 /// operand and follow operands form a reference to the stack frame. 453 bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op, 454 int &FrameIndex) const { 455 if (MI.getOperand(Op + X86::AddrBaseReg).isFI() && 456 MI.getOperand(Op + X86::AddrScaleAmt).isImm() && 457 MI.getOperand(Op + X86::AddrIndexReg).isReg() && 458 MI.getOperand(Op + X86::AddrDisp).isImm() && 459 MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 && 460 MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 && 461 MI.getOperand(Op + X86::AddrDisp).getImm() == 0) { 462 FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex(); 463 return true; 464 } 465 return false; 466 } 467 468 static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) { 469 switch (Opcode) { 470 default: 471 return false; 472 case X86::MOV8rm: 473 case X86::KMOVBkm: 474 MemBytes = 1; 475 return true; 476 case X86::MOV16rm: 477 case X86::KMOVWkm: 478 case X86::VMOVSHZrm: 479 case X86::VMOVSHZrm_alt: 480 MemBytes = 2; 481 return true; 482 case X86::MOV32rm: 483 case X86::MOVSSrm: 484 case X86::MOVSSrm_alt: 485 case X86::VMOVSSrm: 486 case X86::VMOVSSrm_alt: 487 case X86::VMOVSSZrm: 488 case X86::VMOVSSZrm_alt: 489 case X86::KMOVDkm: 490 MemBytes = 4; 491 return true; 492 case X86::MOV64rm: 493 case X86::LD_Fp64m: 494 case X86::MOVSDrm: 495 case X86::MOVSDrm_alt: 496 case X86::VMOVSDrm: 497 case X86::VMOVSDrm_alt: 498 case X86::VMOVSDZrm: 499 case X86::VMOVSDZrm_alt: 500 case X86::MMX_MOVD64rm: 501 case X86::MMX_MOVQ64rm: 502 case X86::KMOVQkm: 503 MemBytes = 8; 504 return true; 505 case X86::MOVAPSrm: 506 case X86::MOVUPSrm: 507 case X86::MOVAPDrm: 508 case X86::MOVUPDrm: 509 case X86::MOVDQArm: 510 case X86::MOVDQUrm: 511 case X86::VMOVAPSrm: 512 case X86::VMOVUPSrm: 513 case X86::VMOVAPDrm: 514 case X86::VMOVUPDrm: 515 case X86::VMOVDQArm: 516 case X86::VMOVDQUrm: 517 case X86::VMOVAPSZ128rm: 518 case X86::VMOVUPSZ128rm: 519 case X86::VMOVAPSZ128rm_NOVLX: 520 case X86::VMOVUPSZ128rm_NOVLX: 521 case X86::VMOVAPDZ128rm: 522 case X86::VMOVUPDZ128rm: 523 case X86::VMOVDQU8Z128rm: 524 case X86::VMOVDQU16Z128rm: 525 case X86::VMOVDQA32Z128rm: 526 case X86::VMOVDQU32Z128rm: 527 case X86::VMOVDQA64Z128rm: 528 case X86::VMOVDQU64Z128rm: 529 MemBytes = 16; 530 return true; 531 case X86::VMOVAPSYrm: 532 case X86::VMOVUPSYrm: 533 case X86::VMOVAPDYrm: 534 case X86::VMOVUPDYrm: 535 case X86::VMOVDQAYrm: 536 case X86::VMOVDQUYrm: 537 case X86::VMOVAPSZ256rm: 538 case X86::VMOVUPSZ256rm: 539 case X86::VMOVAPSZ256rm_NOVLX: 540 case X86::VMOVUPSZ256rm_NOVLX: 541 case X86::VMOVAPDZ256rm: 542 case X86::VMOVUPDZ256rm: 543 case X86::VMOVDQU8Z256rm: 544 case X86::VMOVDQU16Z256rm: 545 case X86::VMOVDQA32Z256rm: 546 case X86::VMOVDQU32Z256rm: 547 case X86::VMOVDQA64Z256rm: 548 case X86::VMOVDQU64Z256rm: 549 MemBytes = 32; 550 return true; 551 case X86::VMOVAPSZrm: 552 case X86::VMOVUPSZrm: 553 case X86::VMOVAPDZrm: 554 case X86::VMOVUPDZrm: 555 case X86::VMOVDQU8Zrm: 556 case X86::VMOVDQU16Zrm: 557 case X86::VMOVDQA32Zrm: 558 case X86::VMOVDQU32Zrm: 559 case X86::VMOVDQA64Zrm: 560 case X86::VMOVDQU64Zrm: 561 MemBytes = 64; 562 return true; 563 } 564 } 565 566 static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) { 567 switch (Opcode) { 568 default: 569 return false; 570 case X86::MOV8mr: 571 case X86::KMOVBmk: 572 MemBytes = 1; 573 return true; 574 case X86::MOV16mr: 575 case X86::KMOVWmk: 576 case X86::VMOVSHZmr: 577 MemBytes = 2; 578 return true; 579 case X86::MOV32mr: 580 case X86::MOVSSmr: 581 case X86::VMOVSSmr: 582 case X86::VMOVSSZmr: 583 case X86::KMOVDmk: 584 MemBytes = 4; 585 return true; 586 case X86::MOV64mr: 587 case X86::ST_FpP64m: 588 case X86::MOVSDmr: 589 case X86::VMOVSDmr: 590 case X86::VMOVSDZmr: 591 case X86::MMX_MOVD64mr: 592 case X86::MMX_MOVQ64mr: 593 case X86::MMX_MOVNTQmr: 594 case X86::KMOVQmk: 595 MemBytes = 8; 596 return true; 597 case X86::MOVAPSmr: 598 case X86::MOVUPSmr: 599 case X86::MOVAPDmr: 600 case X86::MOVUPDmr: 601 case X86::MOVDQAmr: 602 case X86::MOVDQUmr: 603 case X86::VMOVAPSmr: 604 case X86::VMOVUPSmr: 605 case X86::VMOVAPDmr: 606 case X86::VMOVUPDmr: 607 case X86::VMOVDQAmr: 608 case X86::VMOVDQUmr: 609 case X86::VMOVUPSZ128mr: 610 case X86::VMOVAPSZ128mr: 611 case X86::VMOVUPSZ128mr_NOVLX: 612 case X86::VMOVAPSZ128mr_NOVLX: 613 case X86::VMOVUPDZ128mr: 614 case X86::VMOVAPDZ128mr: 615 case X86::VMOVDQA32Z128mr: 616 case X86::VMOVDQU32Z128mr: 617 case X86::VMOVDQA64Z128mr: 618 case X86::VMOVDQU64Z128mr: 619 case X86::VMOVDQU8Z128mr: 620 case X86::VMOVDQU16Z128mr: 621 MemBytes = 16; 622 return true; 623 case X86::VMOVUPSYmr: 624 case X86::VMOVAPSYmr: 625 case X86::VMOVUPDYmr: 626 case X86::VMOVAPDYmr: 627 case X86::VMOVDQUYmr: 628 case X86::VMOVDQAYmr: 629 case X86::VMOVUPSZ256mr: 630 case X86::VMOVAPSZ256mr: 631 case X86::VMOVUPSZ256mr_NOVLX: 632 case X86::VMOVAPSZ256mr_NOVLX: 633 case X86::VMOVUPDZ256mr: 634 case X86::VMOVAPDZ256mr: 635 case X86::VMOVDQU8Z256mr: 636 case X86::VMOVDQU16Z256mr: 637 case X86::VMOVDQA32Z256mr: 638 case X86::VMOVDQU32Z256mr: 639 case X86::VMOVDQA64Z256mr: 640 case X86::VMOVDQU64Z256mr: 641 MemBytes = 32; 642 return true; 643 case X86::VMOVUPSZmr: 644 case X86::VMOVAPSZmr: 645 case X86::VMOVUPDZmr: 646 case X86::VMOVAPDZmr: 647 case X86::VMOVDQU8Zmr: 648 case X86::VMOVDQU16Zmr: 649 case X86::VMOVDQA32Zmr: 650 case X86::VMOVDQU32Zmr: 651 case X86::VMOVDQA64Zmr: 652 case X86::VMOVDQU64Zmr: 653 MemBytes = 64; 654 return true; 655 } 656 return false; 657 } 658 659 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 660 int &FrameIndex) const { 661 unsigned Dummy; 662 return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy); 663 } 664 665 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 666 int &FrameIndex, 667 unsigned &MemBytes) const { 668 if (isFrameLoadOpcode(MI.getOpcode(), MemBytes)) 669 if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) 670 return MI.getOperand(0).getReg(); 671 return 0; 672 } 673 674 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, 675 int &FrameIndex) const { 676 unsigned Dummy; 677 if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) { 678 unsigned Reg; 679 if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) 680 return Reg; 681 // Check for post-frame index elimination operations 682 SmallVector<const MachineMemOperand *, 1> Accesses; 683 if (hasLoadFromStackSlot(MI, Accesses)) { 684 FrameIndex = 685 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 686 ->getFrameIndex(); 687 return MI.getOperand(0).getReg(); 688 } 689 } 690 return 0; 691 } 692 693 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, 694 int &FrameIndex) const { 695 unsigned Dummy; 696 return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy); 697 } 698 699 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, 700 int &FrameIndex, 701 unsigned &MemBytes) const { 702 if (isFrameStoreOpcode(MI.getOpcode(), MemBytes)) 703 if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 && 704 isFrameOperand(MI, 0, FrameIndex)) 705 return MI.getOperand(X86::AddrNumOperands).getReg(); 706 return 0; 707 } 708 709 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, 710 int &FrameIndex) const { 711 unsigned Dummy; 712 if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) { 713 unsigned Reg; 714 if ((Reg = isStoreToStackSlot(MI, FrameIndex))) 715 return Reg; 716 // Check for post-frame index elimination operations 717 SmallVector<const MachineMemOperand *, 1> Accesses; 718 if (hasStoreToStackSlot(MI, Accesses)) { 719 FrameIndex = 720 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 721 ->getFrameIndex(); 722 return MI.getOperand(X86::AddrNumOperands).getReg(); 723 } 724 } 725 return 0; 726 } 727 728 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r. 729 static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) { 730 // Don't waste compile time scanning use-def chains of physregs. 731 if (!BaseReg.isVirtual()) 732 return false; 733 bool isPICBase = false; 734 for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg), 735 E = MRI.def_instr_end(); I != E; ++I) { 736 MachineInstr *DefMI = &*I; 737 if (DefMI->getOpcode() != X86::MOVPC32r) 738 return false; 739 assert(!isPICBase && "More than one PIC base?"); 740 isPICBase = true; 741 } 742 return isPICBase; 743 } 744 745 bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 746 AAResults *AA) const { 747 switch (MI.getOpcode()) { 748 default: 749 // This function should only be called for opcodes with the ReMaterializable 750 // flag set. 751 llvm_unreachable("Unknown rematerializable operation!"); 752 break; 753 754 case X86::LOAD_STACK_GUARD: 755 case X86::AVX1_SETALLONES: 756 case X86::AVX2_SETALLONES: 757 case X86::AVX512_128_SET0: 758 case X86::AVX512_256_SET0: 759 case X86::AVX512_512_SET0: 760 case X86::AVX512_512_SETALLONES: 761 case X86::AVX512_FsFLD0SD: 762 case X86::AVX512_FsFLD0SH: 763 case X86::AVX512_FsFLD0SS: 764 case X86::AVX512_FsFLD0F128: 765 case X86::AVX_SET0: 766 case X86::FsFLD0SD: 767 case X86::FsFLD0SS: 768 case X86::FsFLD0F128: 769 case X86::KSET0D: 770 case X86::KSET0Q: 771 case X86::KSET0W: 772 case X86::KSET1D: 773 case X86::KSET1Q: 774 case X86::KSET1W: 775 case X86::MMX_SET0: 776 case X86::MOV32ImmSExti8: 777 case X86::MOV32r0: 778 case X86::MOV32r1: 779 case X86::MOV32r_1: 780 case X86::MOV32ri64: 781 case X86::MOV64ImmSExti8: 782 case X86::V_SET0: 783 case X86::V_SETALLONES: 784 case X86::MOV16ri: 785 case X86::MOV32ri: 786 case X86::MOV64ri: 787 case X86::MOV64ri32: 788 case X86::MOV8ri: 789 case X86::PTILEZEROV: 790 return true; 791 792 case X86::MOV8rm: 793 case X86::MOV8rm_NOREX: 794 case X86::MOV16rm: 795 case X86::MOV32rm: 796 case X86::MOV64rm: 797 case X86::MOVSSrm: 798 case X86::MOVSSrm_alt: 799 case X86::MOVSDrm: 800 case X86::MOVSDrm_alt: 801 case X86::MOVAPSrm: 802 case X86::MOVUPSrm: 803 case X86::MOVAPDrm: 804 case X86::MOVUPDrm: 805 case X86::MOVDQArm: 806 case X86::MOVDQUrm: 807 case X86::VMOVSSrm: 808 case X86::VMOVSSrm_alt: 809 case X86::VMOVSDrm: 810 case X86::VMOVSDrm_alt: 811 case X86::VMOVAPSrm: 812 case X86::VMOVUPSrm: 813 case X86::VMOVAPDrm: 814 case X86::VMOVUPDrm: 815 case X86::VMOVDQArm: 816 case X86::VMOVDQUrm: 817 case X86::VMOVAPSYrm: 818 case X86::VMOVUPSYrm: 819 case X86::VMOVAPDYrm: 820 case X86::VMOVUPDYrm: 821 case X86::VMOVDQAYrm: 822 case X86::VMOVDQUYrm: 823 case X86::MMX_MOVD64rm: 824 case X86::MMX_MOVQ64rm: 825 // AVX-512 826 case X86::VMOVSSZrm: 827 case X86::VMOVSSZrm_alt: 828 case X86::VMOVSDZrm: 829 case X86::VMOVSDZrm_alt: 830 case X86::VMOVSHZrm: 831 case X86::VMOVSHZrm_alt: 832 case X86::VMOVAPDZ128rm: 833 case X86::VMOVAPDZ256rm: 834 case X86::VMOVAPDZrm: 835 case X86::VMOVAPSZ128rm: 836 case X86::VMOVAPSZ256rm: 837 case X86::VMOVAPSZ128rm_NOVLX: 838 case X86::VMOVAPSZ256rm_NOVLX: 839 case X86::VMOVAPSZrm: 840 case X86::VMOVDQA32Z128rm: 841 case X86::VMOVDQA32Z256rm: 842 case X86::VMOVDQA32Zrm: 843 case X86::VMOVDQA64Z128rm: 844 case X86::VMOVDQA64Z256rm: 845 case X86::VMOVDQA64Zrm: 846 case X86::VMOVDQU16Z128rm: 847 case X86::VMOVDQU16Z256rm: 848 case X86::VMOVDQU16Zrm: 849 case X86::VMOVDQU32Z128rm: 850 case X86::VMOVDQU32Z256rm: 851 case X86::VMOVDQU32Zrm: 852 case X86::VMOVDQU64Z128rm: 853 case X86::VMOVDQU64Z256rm: 854 case X86::VMOVDQU64Zrm: 855 case X86::VMOVDQU8Z128rm: 856 case X86::VMOVDQU8Z256rm: 857 case X86::VMOVDQU8Zrm: 858 case X86::VMOVUPDZ128rm: 859 case X86::VMOVUPDZ256rm: 860 case X86::VMOVUPDZrm: 861 case X86::VMOVUPSZ128rm: 862 case X86::VMOVUPSZ256rm: 863 case X86::VMOVUPSZ128rm_NOVLX: 864 case X86::VMOVUPSZ256rm_NOVLX: 865 case X86::VMOVUPSZrm: { 866 // Loads from constant pools are trivially rematerializable. 867 if (MI.getOperand(1 + X86::AddrBaseReg).isReg() && 868 MI.getOperand(1 + X86::AddrScaleAmt).isImm() && 869 MI.getOperand(1 + X86::AddrIndexReg).isReg() && 870 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && 871 MI.isDereferenceableInvariantLoad(AA)) { 872 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); 873 if (BaseReg == 0 || BaseReg == X86::RIP) 874 return true; 875 // Allow re-materialization of PIC load. 876 if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal()) 877 return false; 878 const MachineFunction &MF = *MI.getParent()->getParent(); 879 const MachineRegisterInfo &MRI = MF.getRegInfo(); 880 return regIsPICBase(BaseReg, MRI); 881 } 882 return false; 883 } 884 885 case X86::LEA32r: 886 case X86::LEA64r: { 887 if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() && 888 MI.getOperand(1 + X86::AddrIndexReg).isReg() && 889 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && 890 !MI.getOperand(1 + X86::AddrDisp).isReg()) { 891 // lea fi#, lea GV, etc. are all rematerializable. 892 if (!MI.getOperand(1 + X86::AddrBaseReg).isReg()) 893 return true; 894 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); 895 if (BaseReg == 0) 896 return true; 897 // Allow re-materialization of lea PICBase + x. 898 const MachineFunction &MF = *MI.getParent()->getParent(); 899 const MachineRegisterInfo &MRI = MF.getRegInfo(); 900 return regIsPICBase(BaseReg, MRI); 901 } 902 return false; 903 } 904 } 905 } 906 907 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, 908 MachineBasicBlock::iterator I, 909 Register DestReg, unsigned SubIdx, 910 const MachineInstr &Orig, 911 const TargetRegisterInfo &TRI) const { 912 bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI); 913 if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) != 914 MachineBasicBlock::LQR_Dead) { 915 // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side 916 // effects. 917 int Value; 918 switch (Orig.getOpcode()) { 919 case X86::MOV32r0: Value = 0; break; 920 case X86::MOV32r1: Value = 1; break; 921 case X86::MOV32r_1: Value = -1; break; 922 default: 923 llvm_unreachable("Unexpected instruction!"); 924 } 925 926 const DebugLoc &DL = Orig.getDebugLoc(); 927 BuildMI(MBB, I, DL, get(X86::MOV32ri)) 928 .add(Orig.getOperand(0)) 929 .addImm(Value); 930 } else { 931 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 932 MBB.insert(I, MI); 933 } 934 935 MachineInstr &NewMI = *std::prev(I); 936 NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); 937 } 938 939 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead. 940 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const { 941 for (const MachineOperand &MO : MI.operands()) { 942 if (MO.isReg() && MO.isDef() && 943 MO.getReg() == X86::EFLAGS && !MO.isDead()) { 944 return true; 945 } 946 } 947 return false; 948 } 949 950 /// Check whether the shift count for a machine operand is non-zero. 951 inline static unsigned getTruncatedShiftCount(const MachineInstr &MI, 952 unsigned ShiftAmtOperandIdx) { 953 // The shift count is six bits with the REX.W prefix and five bits without. 954 unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31; 955 unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm(); 956 return Imm & ShiftCountMask; 957 } 958 959 /// Check whether the given shift count is appropriate 960 /// can be represented by a LEA instruction. 961 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) { 962 // Left shift instructions can be transformed into load-effective-address 963 // instructions if we can encode them appropriately. 964 // A LEA instruction utilizes a SIB byte to encode its scale factor. 965 // The SIB.scale field is two bits wide which means that we can encode any 966 // shift amount less than 4. 967 return ShAmt < 4 && ShAmt > 0; 968 } 969 970 static bool findRedundantFlagInstr(MachineInstr &CmpInstr, 971 MachineInstr &CmpValDefInstr, 972 const MachineRegisterInfo *MRI, 973 MachineInstr **AndInstr, 974 const TargetRegisterInfo *TRI, 975 bool &NoSignFlag, bool &ClearsOverflowFlag) { 976 if (CmpValDefInstr.getOpcode() != X86::SUBREG_TO_REG) 977 return false; 978 979 if (CmpInstr.getOpcode() != X86::TEST64rr) 980 return false; 981 982 // CmpInstr is a TEST64rr instruction, and `X86InstrInfo::analyzeCompare` 983 // guarantees that it's analyzable only if two registers are identical. 984 assert( 985 (CmpInstr.getOperand(0).getReg() == CmpInstr.getOperand(1).getReg()) && 986 "CmpInstr is an analyzable TEST64rr, and `X86InstrInfo::analyzeCompare` " 987 "requires two reg operands are the same."); 988 989 // Caller (`X86InstrInfo::optimizeCompareInstr`) guarantees that 990 // `CmpValDefInstr` defines the value that's used by `CmpInstr`; in this case 991 // if `CmpValDefInstr` sets the EFLAGS, it is likely that `CmpInstr` is 992 // redundant. 993 assert( 994 (MRI->getVRegDef(CmpInstr.getOperand(0).getReg()) == &CmpValDefInstr) && 995 "Caller guarantees that TEST64rr is a user of SUBREG_TO_REG."); 996 997 // As seen in X86 td files, CmpValDefInstr.getOperand(1).getImm() is typically 998 // 0. 999 if (CmpValDefInstr.getOperand(1).getImm() != 0) 1000 return false; 1001 1002 // As seen in X86 td files, CmpValDefInstr.getOperand(3) is typically 1003 // sub_32bit or sub_xmm. 1004 if (CmpValDefInstr.getOperand(3).getImm() != X86::sub_32bit) 1005 return false; 1006 1007 MachineInstr *VregDefInstr = 1008 MRI->getVRegDef(CmpValDefInstr.getOperand(2).getReg()); 1009 1010 assert(VregDefInstr && "Must have a definition (SSA)"); 1011 1012 // Requires `CmpValDefInstr` and `VregDefInstr` are from the same MBB 1013 // to simplify the subsequent analysis. 1014 // 1015 // FIXME: If `VregDefInstr->getParent()` is the only predecessor of 1016 // `CmpValDefInstr.getParent()`, this could be handled. 1017 if (VregDefInstr->getParent() != CmpValDefInstr.getParent()) 1018 return false; 1019 1020 if (X86::isAND(VregDefInstr->getOpcode())) { 1021 // Get a sequence of instructions like 1022 // %reg = and* ... // Set EFLAGS 1023 // ... // EFLAGS not changed 1024 // %extended_reg = subreg_to_reg 0, %reg, %subreg.sub_32bit 1025 // test64rr %extended_reg, %extended_reg, implicit-def $eflags 1026 // 1027 // If subsequent readers use a subset of bits that don't change 1028 // after `and*` instructions, it's likely that the test64rr could 1029 // be optimized away. 1030 for (const MachineInstr &Instr : 1031 make_range(std::next(MachineBasicBlock::iterator(VregDefInstr)), 1032 MachineBasicBlock::iterator(CmpValDefInstr))) { 1033 // There are instructions between 'VregDefInstr' and 1034 // 'CmpValDefInstr' that modifies EFLAGS. 1035 if (Instr.modifiesRegister(X86::EFLAGS, TRI)) 1036 return false; 1037 } 1038 1039 *AndInstr = VregDefInstr; 1040 1041 // AND instruction will essentially update SF and clear OF, so 1042 // NoSignFlag should be false in the sense that SF is modified by `AND`. 1043 // 1044 // However, the implementation artifically sets `NoSignFlag` to true 1045 // to poison the SF bit; that is to say, if SF is looked at later, the 1046 // optimization (to erase TEST64rr) will be disabled. 1047 // 1048 // The reason to poison SF bit is that SF bit value could be different 1049 // in the `AND` and `TEST` operation; signed bit is not known for `AND`, 1050 // and is known to be 0 as a result of `TEST64rr`. 1051 // 1052 // FIXME: As opposed to poisoning the SF bit directly, consider peeking into 1053 // the AND instruction and using the static information to guide peephole 1054 // optimization if possible. For example, it's possible to fold a 1055 // conditional move into a copy if the relevant EFLAG bits could be deduced 1056 // from an immediate operand of and operation. 1057 // 1058 NoSignFlag = true; 1059 // ClearsOverflowFlag is true for AND operation (no surprise). 1060 ClearsOverflowFlag = true; 1061 return true; 1062 } 1063 return false; 1064 } 1065 1066 bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src, 1067 unsigned Opc, bool AllowSP, Register &NewSrc, 1068 bool &isKill, MachineOperand &ImplicitOp, 1069 LiveVariables *LV, LiveIntervals *LIS) const { 1070 MachineFunction &MF = *MI.getParent()->getParent(); 1071 const TargetRegisterClass *RC; 1072 if (AllowSP) { 1073 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass; 1074 } else { 1075 RC = Opc != X86::LEA32r ? 1076 &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass; 1077 } 1078 Register SrcReg = Src.getReg(); 1079 isKill = MI.killsRegister(SrcReg); 1080 1081 // For both LEA64 and LEA32 the register already has essentially the right 1082 // type (32-bit or 64-bit) we may just need to forbid SP. 1083 if (Opc != X86::LEA64_32r) { 1084 NewSrc = SrcReg; 1085 assert(!Src.isUndef() && "Undef op doesn't need optimization"); 1086 1087 if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC)) 1088 return false; 1089 1090 return true; 1091 } 1092 1093 // This is for an LEA64_32r and incoming registers are 32-bit. One way or 1094 // another we need to add 64-bit registers to the final MI. 1095 if (SrcReg.isPhysical()) { 1096 ImplicitOp = Src; 1097 ImplicitOp.setImplicit(); 1098 1099 NewSrc = getX86SubSuperRegister(SrcReg, 64); 1100 assert(!Src.isUndef() && "Undef op doesn't need optimization"); 1101 } else { 1102 // Virtual register of the wrong class, we have to create a temporary 64-bit 1103 // vreg to feed into the LEA. 1104 NewSrc = MF.getRegInfo().createVirtualRegister(RC); 1105 MachineInstr *Copy = 1106 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY)) 1107 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit) 1108 .addReg(SrcReg, getKillRegState(isKill)); 1109 1110 // Which is obviously going to be dead after we're done with it. 1111 isKill = true; 1112 1113 if (LV) 1114 LV->replaceKillInstruction(SrcReg, MI, *Copy); 1115 1116 if (LIS) { 1117 SlotIndex CopyIdx = LIS->InsertMachineInstrInMaps(*Copy); 1118 SlotIndex Idx = LIS->getInstructionIndex(MI); 1119 LiveInterval &LI = LIS->getInterval(SrcReg); 1120 LiveRange::Segment *S = LI.getSegmentContaining(Idx); 1121 if (S->end.getBaseIndex() == Idx) 1122 S->end = CopyIdx.getRegSlot(); 1123 } 1124 } 1125 1126 // We've set all the parameters without issue. 1127 return true; 1128 } 1129 1130 MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, 1131 MachineInstr &MI, 1132 LiveVariables *LV, 1133 LiveIntervals *LIS, 1134 bool Is8BitOp) const { 1135 // We handle 8-bit adds and various 16-bit opcodes in the switch below. 1136 MachineBasicBlock &MBB = *MI.getParent(); 1137 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo(); 1138 assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits( 1139 *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) && 1140 "Unexpected type for LEA transform"); 1141 1142 // TODO: For a 32-bit target, we need to adjust the LEA variables with 1143 // something like this: 1144 // Opcode = X86::LEA32r; 1145 // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 1146 // OutRegLEA = 1147 // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass) 1148 // : RegInfo.createVirtualRegister(&X86::GR32RegClass); 1149 if (!Subtarget.is64Bit()) 1150 return nullptr; 1151 1152 unsigned Opcode = X86::LEA64_32r; 1153 Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 1154 Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass); 1155 Register InRegLEA2; 1156 1157 // Build and insert into an implicit UNDEF value. This is OK because 1158 // we will be shifting and then extracting the lower 8/16-bits. 1159 // This has the potential to cause partial register stall. e.g. 1160 // movw (%rbp,%rcx,2), %dx 1161 // leal -65(%rdx), %esi 1162 // But testing has shown this *does* help performance in 64-bit mode (at 1163 // least on modern x86 machines). 1164 MachineBasicBlock::iterator MBBI = MI.getIterator(); 1165 Register Dest = MI.getOperand(0).getReg(); 1166 Register Src = MI.getOperand(1).getReg(); 1167 Register Src2; 1168 bool IsDead = MI.getOperand(0).isDead(); 1169 bool IsKill = MI.getOperand(1).isKill(); 1170 unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit; 1171 assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization"); 1172 MachineInstr *ImpDef = 1173 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA); 1174 MachineInstr *InsMI = 1175 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) 1176 .addReg(InRegLEA, RegState::Define, SubReg) 1177 .addReg(Src, getKillRegState(IsKill)); 1178 MachineInstr *ImpDef2 = nullptr; 1179 MachineInstr *InsMI2 = nullptr; 1180 1181 MachineInstrBuilder MIB = 1182 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA); 1183 switch (MIOpc) { 1184 default: llvm_unreachable("Unreachable!"); 1185 case X86::SHL8ri: 1186 case X86::SHL16ri: { 1187 unsigned ShAmt = MI.getOperand(2).getImm(); 1188 MIB.addReg(0).addImm(1ULL << ShAmt) 1189 .addReg(InRegLEA, RegState::Kill).addImm(0).addReg(0); 1190 break; 1191 } 1192 case X86::INC8r: 1193 case X86::INC16r: 1194 addRegOffset(MIB, InRegLEA, true, 1); 1195 break; 1196 case X86::DEC8r: 1197 case X86::DEC16r: 1198 addRegOffset(MIB, InRegLEA, true, -1); 1199 break; 1200 case X86::ADD8ri: 1201 case X86::ADD8ri_DB: 1202 case X86::ADD16ri: 1203 case X86::ADD16ri8: 1204 case X86::ADD16ri_DB: 1205 case X86::ADD16ri8_DB: 1206 addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm()); 1207 break; 1208 case X86::ADD8rr: 1209 case X86::ADD8rr_DB: 1210 case X86::ADD16rr: 1211 case X86::ADD16rr_DB: { 1212 Src2 = MI.getOperand(2).getReg(); 1213 bool IsKill2 = MI.getOperand(2).isKill(); 1214 assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization"); 1215 if (Src == Src2) { 1216 // ADD8rr/ADD16rr killed %reg1028, %reg1028 1217 // just a single insert_subreg. 1218 addRegReg(MIB, InRegLEA, true, InRegLEA, false); 1219 } else { 1220 if (Subtarget.is64Bit()) 1221 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 1222 else 1223 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 1224 // Build and insert into an implicit UNDEF value. This is OK because 1225 // we will be shifting and then extracting the lower 8/16-bits. 1226 ImpDef2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), 1227 InRegLEA2); 1228 InsMI2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY)) 1229 .addReg(InRegLEA2, RegState::Define, SubReg) 1230 .addReg(Src2, getKillRegState(IsKill2)); 1231 addRegReg(MIB, InRegLEA, true, InRegLEA2, true); 1232 } 1233 if (LV && IsKill2 && InsMI2) 1234 LV->replaceKillInstruction(Src2, MI, *InsMI2); 1235 break; 1236 } 1237 } 1238 1239 MachineInstr *NewMI = MIB; 1240 MachineInstr *ExtMI = 1241 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) 1242 .addReg(Dest, RegState::Define | getDeadRegState(IsDead)) 1243 .addReg(OutRegLEA, RegState::Kill, SubReg); 1244 1245 if (LV) { 1246 // Update live variables. 1247 LV->getVarInfo(InRegLEA).Kills.push_back(NewMI); 1248 LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI); 1249 if (IsKill) 1250 LV->replaceKillInstruction(Src, MI, *InsMI); 1251 if (IsDead) 1252 LV->replaceKillInstruction(Dest, MI, *ExtMI); 1253 } 1254 1255 if (LIS) { 1256 LIS->InsertMachineInstrInMaps(*ImpDef); 1257 SlotIndex InsIdx = LIS->InsertMachineInstrInMaps(*InsMI); 1258 if (ImpDef2) 1259 LIS->InsertMachineInstrInMaps(*ImpDef2); 1260 SlotIndex Ins2Idx; 1261 if (InsMI2) 1262 Ins2Idx = LIS->InsertMachineInstrInMaps(*InsMI2); 1263 SlotIndex NewIdx = LIS->ReplaceMachineInstrInMaps(MI, *NewMI); 1264 SlotIndex ExtIdx = LIS->InsertMachineInstrInMaps(*ExtMI); 1265 LIS->getInterval(InRegLEA); 1266 LIS->getInterval(OutRegLEA); 1267 if (InRegLEA2) 1268 LIS->getInterval(InRegLEA2); 1269 1270 // Move the use of Src up to InsMI. 1271 LiveInterval &SrcLI = LIS->getInterval(Src); 1272 LiveRange::Segment *SrcSeg = SrcLI.getSegmentContaining(NewIdx); 1273 if (SrcSeg->end == NewIdx.getRegSlot()) 1274 SrcSeg->end = InsIdx.getRegSlot(); 1275 1276 if (InsMI2) { 1277 // Move the use of Src2 up to InsMI2. 1278 LiveInterval &Src2LI = LIS->getInterval(Src2); 1279 LiveRange::Segment *Src2Seg = Src2LI.getSegmentContaining(NewIdx); 1280 if (Src2Seg->end == NewIdx.getRegSlot()) 1281 Src2Seg->end = Ins2Idx.getRegSlot(); 1282 } 1283 1284 // Move the definition of Dest down to ExtMI. 1285 LiveInterval &DestLI = LIS->getInterval(Dest); 1286 LiveRange::Segment *DestSeg = 1287 DestLI.getSegmentContaining(NewIdx.getRegSlot()); 1288 assert(DestSeg->start == NewIdx.getRegSlot() && 1289 DestSeg->valno->def == NewIdx.getRegSlot()); 1290 DestSeg->start = ExtIdx.getRegSlot(); 1291 DestSeg->valno->def = ExtIdx.getRegSlot(); 1292 } 1293 1294 return ExtMI; 1295 } 1296 1297 /// This method must be implemented by targets that 1298 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target 1299 /// may be able to convert a two-address instruction into a true 1300 /// three-address instruction on demand. This allows the X86 target (for 1301 /// example) to convert ADD and SHL instructions into LEA instructions if they 1302 /// would require register copies due to two-addressness. 1303 /// 1304 /// This method returns a null pointer if the transformation cannot be 1305 /// performed, otherwise it returns the new instruction. 1306 /// 1307 MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr &MI, 1308 LiveVariables *LV, 1309 LiveIntervals *LIS) const { 1310 // The following opcodes also sets the condition code register(s). Only 1311 // convert them to equivalent lea if the condition code register def's 1312 // are dead! 1313 if (hasLiveCondCodeDef(MI)) 1314 return nullptr; 1315 1316 MachineFunction &MF = *MI.getParent()->getParent(); 1317 // All instructions input are two-addr instructions. Get the known operands. 1318 const MachineOperand &Dest = MI.getOperand(0); 1319 const MachineOperand &Src = MI.getOperand(1); 1320 1321 // Ideally, operations with undef should be folded before we get here, but we 1322 // can't guarantee it. Bail out because optimizing undefs is a waste of time. 1323 // Without this, we have to forward undef state to new register operands to 1324 // avoid machine verifier errors. 1325 if (Src.isUndef()) 1326 return nullptr; 1327 if (MI.getNumOperands() > 2) 1328 if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef()) 1329 return nullptr; 1330 1331 MachineInstr *NewMI = nullptr; 1332 Register SrcReg, SrcReg2; 1333 bool Is64Bit = Subtarget.is64Bit(); 1334 1335 bool Is8BitOp = false; 1336 unsigned MIOpc = MI.getOpcode(); 1337 switch (MIOpc) { 1338 default: llvm_unreachable("Unreachable!"); 1339 case X86::SHL64ri: { 1340 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); 1341 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 1342 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; 1343 1344 // LEA can't handle RSP. 1345 if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass( 1346 Src.getReg(), &X86::GR64_NOSPRegClass)) 1347 return nullptr; 1348 1349 NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)) 1350 .add(Dest) 1351 .addReg(0) 1352 .addImm(1ULL << ShAmt) 1353 .add(Src) 1354 .addImm(0) 1355 .addReg(0); 1356 break; 1357 } 1358 case X86::SHL32ri: { 1359 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); 1360 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 1361 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; 1362 1363 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 1364 1365 // LEA can't handle ESP. 1366 bool isKill; 1367 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1368 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill, 1369 ImplicitOp, LV, LIS)) 1370 return nullptr; 1371 1372 MachineInstrBuilder MIB = 1373 BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1374 .add(Dest) 1375 .addReg(0) 1376 .addImm(1ULL << ShAmt) 1377 .addReg(SrcReg, getKillRegState(isKill)) 1378 .addImm(0) 1379 .addReg(0); 1380 if (ImplicitOp.getReg() != 0) 1381 MIB.add(ImplicitOp); 1382 NewMI = MIB; 1383 1384 break; 1385 } 1386 case X86::SHL8ri: 1387 Is8BitOp = true; 1388 LLVM_FALLTHROUGH; 1389 case X86::SHL16ri: { 1390 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); 1391 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 1392 if (!isTruncatedShiftCountForLEA(ShAmt)) 1393 return nullptr; 1394 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); 1395 } 1396 case X86::INC64r: 1397 case X86::INC32r: { 1398 assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!"); 1399 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r : 1400 (Is64Bit ? X86::LEA64_32r : X86::LEA32r); 1401 bool isKill; 1402 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1403 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill, 1404 ImplicitOp, LV, LIS)) 1405 return nullptr; 1406 1407 MachineInstrBuilder MIB = 1408 BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1409 .add(Dest) 1410 .addReg(SrcReg, getKillRegState(isKill)); 1411 if (ImplicitOp.getReg() != 0) 1412 MIB.add(ImplicitOp); 1413 1414 NewMI = addOffset(MIB, 1); 1415 break; 1416 } 1417 case X86::DEC64r: 1418 case X86::DEC32r: { 1419 assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!"); 1420 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r 1421 : (Is64Bit ? X86::LEA64_32r : X86::LEA32r); 1422 1423 bool isKill; 1424 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1425 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill, 1426 ImplicitOp, LV, LIS)) 1427 return nullptr; 1428 1429 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1430 .add(Dest) 1431 .addReg(SrcReg, getKillRegState(isKill)); 1432 if (ImplicitOp.getReg() != 0) 1433 MIB.add(ImplicitOp); 1434 1435 NewMI = addOffset(MIB, -1); 1436 1437 break; 1438 } 1439 case X86::DEC8r: 1440 case X86::INC8r: 1441 Is8BitOp = true; 1442 LLVM_FALLTHROUGH; 1443 case X86::DEC16r: 1444 case X86::INC16r: 1445 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); 1446 case X86::ADD64rr: 1447 case X86::ADD64rr_DB: 1448 case X86::ADD32rr: 1449 case X86::ADD32rr_DB: { 1450 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1451 unsigned Opc; 1452 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) 1453 Opc = X86::LEA64r; 1454 else 1455 Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 1456 1457 const MachineOperand &Src2 = MI.getOperand(2); 1458 bool isKill2; 1459 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false); 1460 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/false, SrcReg2, isKill2, 1461 ImplicitOp2, LV, LIS)) 1462 return nullptr; 1463 1464 bool isKill; 1465 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1466 if (Src.getReg() == Src2.getReg()) { 1467 // Don't call classify LEAReg a second time on the same register, in case 1468 // the first call inserted a COPY from Src2 and marked it as killed. 1469 isKill = isKill2; 1470 SrcReg = SrcReg2; 1471 } else { 1472 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill, 1473 ImplicitOp, LV, LIS)) 1474 return nullptr; 1475 } 1476 1477 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest); 1478 if (ImplicitOp.getReg() != 0) 1479 MIB.add(ImplicitOp); 1480 if (ImplicitOp2.getReg() != 0) 1481 MIB.add(ImplicitOp2); 1482 1483 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2); 1484 if (LV && Src2.isKill()) 1485 LV->replaceKillInstruction(SrcReg2, MI, *NewMI); 1486 break; 1487 } 1488 case X86::ADD8rr: 1489 case X86::ADD8rr_DB: 1490 Is8BitOp = true; 1491 LLVM_FALLTHROUGH; 1492 case X86::ADD16rr: 1493 case X86::ADD16rr_DB: 1494 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); 1495 case X86::ADD64ri32: 1496 case X86::ADD64ri8: 1497 case X86::ADD64ri32_DB: 1498 case X86::ADD64ri8_DB: 1499 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1500 NewMI = addOffset( 1501 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src), 1502 MI.getOperand(2)); 1503 break; 1504 case X86::ADD32ri: 1505 case X86::ADD32ri8: 1506 case X86::ADD32ri_DB: 1507 case X86::ADD32ri8_DB: { 1508 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1509 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 1510 1511 bool isKill; 1512 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1513 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill, 1514 ImplicitOp, LV, LIS)) 1515 return nullptr; 1516 1517 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1518 .add(Dest) 1519 .addReg(SrcReg, getKillRegState(isKill)); 1520 if (ImplicitOp.getReg() != 0) 1521 MIB.add(ImplicitOp); 1522 1523 NewMI = addOffset(MIB, MI.getOperand(2)); 1524 break; 1525 } 1526 case X86::ADD8ri: 1527 case X86::ADD8ri_DB: 1528 Is8BitOp = true; 1529 LLVM_FALLTHROUGH; 1530 case X86::ADD16ri: 1531 case X86::ADD16ri8: 1532 case X86::ADD16ri_DB: 1533 case X86::ADD16ri8_DB: 1534 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); 1535 case X86::SUB8ri: 1536 case X86::SUB16ri8: 1537 case X86::SUB16ri: 1538 /// FIXME: Support these similar to ADD8ri/ADD16ri*. 1539 return nullptr; 1540 case X86::SUB32ri8: 1541 case X86::SUB32ri: { 1542 if (!MI.getOperand(2).isImm()) 1543 return nullptr; 1544 int64_t Imm = MI.getOperand(2).getImm(); 1545 if (!isInt<32>(-Imm)) 1546 return nullptr; 1547 1548 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1549 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 1550 1551 bool isKill; 1552 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1553 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill, 1554 ImplicitOp, LV, LIS)) 1555 return nullptr; 1556 1557 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1558 .add(Dest) 1559 .addReg(SrcReg, getKillRegState(isKill)); 1560 if (ImplicitOp.getReg() != 0) 1561 MIB.add(ImplicitOp); 1562 1563 NewMI = addOffset(MIB, -Imm); 1564 break; 1565 } 1566 1567 case X86::SUB64ri8: 1568 case X86::SUB64ri32: { 1569 if (!MI.getOperand(2).isImm()) 1570 return nullptr; 1571 int64_t Imm = MI.getOperand(2).getImm(); 1572 if (!isInt<32>(-Imm)) 1573 return nullptr; 1574 1575 assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!"); 1576 1577 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), 1578 get(X86::LEA64r)).add(Dest).add(Src); 1579 NewMI = addOffset(MIB, -Imm); 1580 break; 1581 } 1582 1583 case X86::VMOVDQU8Z128rmk: 1584 case X86::VMOVDQU8Z256rmk: 1585 case X86::VMOVDQU8Zrmk: 1586 case X86::VMOVDQU16Z128rmk: 1587 case X86::VMOVDQU16Z256rmk: 1588 case X86::VMOVDQU16Zrmk: 1589 case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk: 1590 case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk: 1591 case X86::VMOVDQU32Zrmk: case X86::VMOVDQA32Zrmk: 1592 case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk: 1593 case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk: 1594 case X86::VMOVDQU64Zrmk: case X86::VMOVDQA64Zrmk: 1595 case X86::VMOVUPDZ128rmk: case X86::VMOVAPDZ128rmk: 1596 case X86::VMOVUPDZ256rmk: case X86::VMOVAPDZ256rmk: 1597 case X86::VMOVUPDZrmk: case X86::VMOVAPDZrmk: 1598 case X86::VMOVUPSZ128rmk: case X86::VMOVAPSZ128rmk: 1599 case X86::VMOVUPSZ256rmk: case X86::VMOVAPSZ256rmk: 1600 case X86::VMOVUPSZrmk: case X86::VMOVAPSZrmk: 1601 case X86::VBROADCASTSDZ256rmk: 1602 case X86::VBROADCASTSDZrmk: 1603 case X86::VBROADCASTSSZ128rmk: 1604 case X86::VBROADCASTSSZ256rmk: 1605 case X86::VBROADCASTSSZrmk: 1606 case X86::VPBROADCASTDZ128rmk: 1607 case X86::VPBROADCASTDZ256rmk: 1608 case X86::VPBROADCASTDZrmk: 1609 case X86::VPBROADCASTQZ128rmk: 1610 case X86::VPBROADCASTQZ256rmk: 1611 case X86::VPBROADCASTQZrmk: { 1612 unsigned Opc; 1613 switch (MIOpc) { 1614 default: llvm_unreachable("Unreachable!"); 1615 case X86::VMOVDQU8Z128rmk: Opc = X86::VPBLENDMBZ128rmk; break; 1616 case X86::VMOVDQU8Z256rmk: Opc = X86::VPBLENDMBZ256rmk; break; 1617 case X86::VMOVDQU8Zrmk: Opc = X86::VPBLENDMBZrmk; break; 1618 case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break; 1619 case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break; 1620 case X86::VMOVDQU16Zrmk: Opc = X86::VPBLENDMWZrmk; break; 1621 case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break; 1622 case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break; 1623 case X86::VMOVDQU32Zrmk: Opc = X86::VPBLENDMDZrmk; break; 1624 case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break; 1625 case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break; 1626 case X86::VMOVDQU64Zrmk: Opc = X86::VPBLENDMQZrmk; break; 1627 case X86::VMOVUPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break; 1628 case X86::VMOVUPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break; 1629 case X86::VMOVUPDZrmk: Opc = X86::VBLENDMPDZrmk; break; 1630 case X86::VMOVUPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break; 1631 case X86::VMOVUPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break; 1632 case X86::VMOVUPSZrmk: Opc = X86::VBLENDMPSZrmk; break; 1633 case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break; 1634 case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break; 1635 case X86::VMOVDQA32Zrmk: Opc = X86::VPBLENDMDZrmk; break; 1636 case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break; 1637 case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break; 1638 case X86::VMOVDQA64Zrmk: Opc = X86::VPBLENDMQZrmk; break; 1639 case X86::VMOVAPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break; 1640 case X86::VMOVAPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break; 1641 case X86::VMOVAPDZrmk: Opc = X86::VBLENDMPDZrmk; break; 1642 case X86::VMOVAPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break; 1643 case X86::VMOVAPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break; 1644 case X86::VMOVAPSZrmk: Opc = X86::VBLENDMPSZrmk; break; 1645 case X86::VBROADCASTSDZ256rmk: Opc = X86::VBLENDMPDZ256rmbk; break; 1646 case X86::VBROADCASTSDZrmk: Opc = X86::VBLENDMPDZrmbk; break; 1647 case X86::VBROADCASTSSZ128rmk: Opc = X86::VBLENDMPSZ128rmbk; break; 1648 case X86::VBROADCASTSSZ256rmk: Opc = X86::VBLENDMPSZ256rmbk; break; 1649 case X86::VBROADCASTSSZrmk: Opc = X86::VBLENDMPSZrmbk; break; 1650 case X86::VPBROADCASTDZ128rmk: Opc = X86::VPBLENDMDZ128rmbk; break; 1651 case X86::VPBROADCASTDZ256rmk: Opc = X86::VPBLENDMDZ256rmbk; break; 1652 case X86::VPBROADCASTDZrmk: Opc = X86::VPBLENDMDZrmbk; break; 1653 case X86::VPBROADCASTQZ128rmk: Opc = X86::VPBLENDMQZ128rmbk; break; 1654 case X86::VPBROADCASTQZ256rmk: Opc = X86::VPBLENDMQZ256rmbk; break; 1655 case X86::VPBROADCASTQZrmk: Opc = X86::VPBLENDMQZrmbk; break; 1656 } 1657 1658 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1659 .add(Dest) 1660 .add(MI.getOperand(2)) 1661 .add(Src) 1662 .add(MI.getOperand(3)) 1663 .add(MI.getOperand(4)) 1664 .add(MI.getOperand(5)) 1665 .add(MI.getOperand(6)) 1666 .add(MI.getOperand(7)); 1667 break; 1668 } 1669 1670 case X86::VMOVDQU8Z128rrk: 1671 case X86::VMOVDQU8Z256rrk: 1672 case X86::VMOVDQU8Zrrk: 1673 case X86::VMOVDQU16Z128rrk: 1674 case X86::VMOVDQU16Z256rrk: 1675 case X86::VMOVDQU16Zrrk: 1676 case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk: 1677 case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk: 1678 case X86::VMOVDQU32Zrrk: case X86::VMOVDQA32Zrrk: 1679 case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk: 1680 case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk: 1681 case X86::VMOVDQU64Zrrk: case X86::VMOVDQA64Zrrk: 1682 case X86::VMOVUPDZ128rrk: case X86::VMOVAPDZ128rrk: 1683 case X86::VMOVUPDZ256rrk: case X86::VMOVAPDZ256rrk: 1684 case X86::VMOVUPDZrrk: case X86::VMOVAPDZrrk: 1685 case X86::VMOVUPSZ128rrk: case X86::VMOVAPSZ128rrk: 1686 case X86::VMOVUPSZ256rrk: case X86::VMOVAPSZ256rrk: 1687 case X86::VMOVUPSZrrk: case X86::VMOVAPSZrrk: { 1688 unsigned Opc; 1689 switch (MIOpc) { 1690 default: llvm_unreachable("Unreachable!"); 1691 case X86::VMOVDQU8Z128rrk: Opc = X86::VPBLENDMBZ128rrk; break; 1692 case X86::VMOVDQU8Z256rrk: Opc = X86::VPBLENDMBZ256rrk; break; 1693 case X86::VMOVDQU8Zrrk: Opc = X86::VPBLENDMBZrrk; break; 1694 case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break; 1695 case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break; 1696 case X86::VMOVDQU16Zrrk: Opc = X86::VPBLENDMWZrrk; break; 1697 case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break; 1698 case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break; 1699 case X86::VMOVDQU32Zrrk: Opc = X86::VPBLENDMDZrrk; break; 1700 case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break; 1701 case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break; 1702 case X86::VMOVDQU64Zrrk: Opc = X86::VPBLENDMQZrrk; break; 1703 case X86::VMOVUPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break; 1704 case X86::VMOVUPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break; 1705 case X86::VMOVUPDZrrk: Opc = X86::VBLENDMPDZrrk; break; 1706 case X86::VMOVUPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break; 1707 case X86::VMOVUPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break; 1708 case X86::VMOVUPSZrrk: Opc = X86::VBLENDMPSZrrk; break; 1709 case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break; 1710 case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break; 1711 case X86::VMOVDQA32Zrrk: Opc = X86::VPBLENDMDZrrk; break; 1712 case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break; 1713 case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break; 1714 case X86::VMOVDQA64Zrrk: Opc = X86::VPBLENDMQZrrk; break; 1715 case X86::VMOVAPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break; 1716 case X86::VMOVAPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break; 1717 case X86::VMOVAPDZrrk: Opc = X86::VBLENDMPDZrrk; break; 1718 case X86::VMOVAPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break; 1719 case X86::VMOVAPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break; 1720 case X86::VMOVAPSZrrk: Opc = X86::VBLENDMPSZrrk; break; 1721 } 1722 1723 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1724 .add(Dest) 1725 .add(MI.getOperand(2)) 1726 .add(Src) 1727 .add(MI.getOperand(3)); 1728 break; 1729 } 1730 } 1731 1732 if (!NewMI) return nullptr; 1733 1734 if (LV) { // Update live variables 1735 if (Src.isKill()) 1736 LV->replaceKillInstruction(Src.getReg(), MI, *NewMI); 1737 if (Dest.isDead()) 1738 LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI); 1739 } 1740 1741 MachineBasicBlock &MBB = *MI.getParent(); 1742 MBB.insert(MI.getIterator(), NewMI); // Insert the new inst 1743 1744 if (LIS) { 1745 LIS->ReplaceMachineInstrInMaps(MI, *NewMI); 1746 if (SrcReg) 1747 LIS->getInterval(SrcReg); 1748 if (SrcReg2) 1749 LIS->getInterval(SrcReg2); 1750 } 1751 1752 return NewMI; 1753 } 1754 1755 /// This determines which of three possible cases of a three source commute 1756 /// the source indexes correspond to taking into account any mask operands. 1757 /// All prevents commuting a passthru operand. Returns -1 if the commute isn't 1758 /// possible. 1759 /// Case 0 - Possible to commute the first and second operands. 1760 /// Case 1 - Possible to commute the first and third operands. 1761 /// Case 2 - Possible to commute the second and third operands. 1762 static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1, 1763 unsigned SrcOpIdx2) { 1764 // Put the lowest index to SrcOpIdx1 to simplify the checks below. 1765 if (SrcOpIdx1 > SrcOpIdx2) 1766 std::swap(SrcOpIdx1, SrcOpIdx2); 1767 1768 unsigned Op1 = 1, Op2 = 2, Op3 = 3; 1769 if (X86II::isKMasked(TSFlags)) { 1770 Op2++; 1771 Op3++; 1772 } 1773 1774 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2) 1775 return 0; 1776 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3) 1777 return 1; 1778 if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3) 1779 return 2; 1780 llvm_unreachable("Unknown three src commute case."); 1781 } 1782 1783 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands( 1784 const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2, 1785 const X86InstrFMA3Group &FMA3Group) const { 1786 1787 unsigned Opc = MI.getOpcode(); 1788 1789 // TODO: Commuting the 1st operand of FMA*_Int requires some additional 1790 // analysis. The commute optimization is legal only if all users of FMA*_Int 1791 // use only the lowest element of the FMA*_Int instruction. Such analysis are 1792 // not implemented yet. So, just return 0 in that case. 1793 // When such analysis are available this place will be the right place for 1794 // calling it. 1795 assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) && 1796 "Intrinsic instructions can't commute operand 1"); 1797 1798 // Determine which case this commute is or if it can't be done. 1799 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, 1800 SrcOpIdx2); 1801 assert(Case < 3 && "Unexpected case number!"); 1802 1803 // Define the FMA forms mapping array that helps to map input FMA form 1804 // to output FMA form to preserve the operation semantics after 1805 // commuting the operands. 1806 const unsigned Form132Index = 0; 1807 const unsigned Form213Index = 1; 1808 const unsigned Form231Index = 2; 1809 static const unsigned FormMapping[][3] = { 1810 // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2; 1811 // FMA132 A, C, b; ==> FMA231 C, A, b; 1812 // FMA213 B, A, c; ==> FMA213 A, B, c; 1813 // FMA231 C, A, b; ==> FMA132 A, C, b; 1814 { Form231Index, Form213Index, Form132Index }, 1815 // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3; 1816 // FMA132 A, c, B; ==> FMA132 B, c, A; 1817 // FMA213 B, a, C; ==> FMA231 C, a, B; 1818 // FMA231 C, a, B; ==> FMA213 B, a, C; 1819 { Form132Index, Form231Index, Form213Index }, 1820 // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3; 1821 // FMA132 a, C, B; ==> FMA213 a, B, C; 1822 // FMA213 b, A, C; ==> FMA132 b, C, A; 1823 // FMA231 c, A, B; ==> FMA231 c, B, A; 1824 { Form213Index, Form132Index, Form231Index } 1825 }; 1826 1827 unsigned FMAForms[3]; 1828 FMAForms[0] = FMA3Group.get132Opcode(); 1829 FMAForms[1] = FMA3Group.get213Opcode(); 1830 FMAForms[2] = FMA3Group.get231Opcode(); 1831 1832 // Everything is ready, just adjust the FMA opcode and return it. 1833 for (unsigned FormIndex = 0; FormIndex < 3; FormIndex++) 1834 if (Opc == FMAForms[FormIndex]) 1835 return FMAForms[FormMapping[Case][FormIndex]]; 1836 1837 llvm_unreachable("Illegal FMA3 format"); 1838 } 1839 1840 static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1, 1841 unsigned SrcOpIdx2) { 1842 // Determine which case this commute is or if it can't be done. 1843 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, 1844 SrcOpIdx2); 1845 assert(Case < 3 && "Unexpected case value!"); 1846 1847 // For each case we need to swap two pairs of bits in the final immediate. 1848 static const uint8_t SwapMasks[3][4] = { 1849 { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5. 1850 { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6. 1851 { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6. 1852 }; 1853 1854 uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm(); 1855 // Clear out the bits we are swapping. 1856 uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] | 1857 SwapMasks[Case][2] | SwapMasks[Case][3]); 1858 // If the immediate had a bit of the pair set, then set the opposite bit. 1859 if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1]; 1860 if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0]; 1861 if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3]; 1862 if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2]; 1863 MI.getOperand(MI.getNumOperands()-1).setImm(NewImm); 1864 } 1865 1866 // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be 1867 // commuted. 1868 static bool isCommutableVPERMV3Instruction(unsigned Opcode) { 1869 #define VPERM_CASES(Suffix) \ 1870 case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \ 1871 case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \ 1872 case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \ 1873 case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \ 1874 case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \ 1875 case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \ 1876 case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \ 1877 case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \ 1878 case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \ 1879 case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \ 1880 case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \ 1881 case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz: 1882 1883 #define VPERM_CASES_BROADCAST(Suffix) \ 1884 VPERM_CASES(Suffix) \ 1885 case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \ 1886 case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \ 1887 case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \ 1888 case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \ 1889 case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \ 1890 case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz: 1891 1892 switch (Opcode) { 1893 default: return false; 1894 VPERM_CASES(B) 1895 VPERM_CASES_BROADCAST(D) 1896 VPERM_CASES_BROADCAST(PD) 1897 VPERM_CASES_BROADCAST(PS) 1898 VPERM_CASES_BROADCAST(Q) 1899 VPERM_CASES(W) 1900 return true; 1901 } 1902 #undef VPERM_CASES_BROADCAST 1903 #undef VPERM_CASES 1904 } 1905 1906 // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching 1907 // from the I opcode to the T opcode and vice versa. 1908 static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) { 1909 #define VPERM_CASES(Orig, New) \ 1910 case X86::Orig##128rr: return X86::New##128rr; \ 1911 case X86::Orig##128rrkz: return X86::New##128rrkz; \ 1912 case X86::Orig##128rm: return X86::New##128rm; \ 1913 case X86::Orig##128rmkz: return X86::New##128rmkz; \ 1914 case X86::Orig##256rr: return X86::New##256rr; \ 1915 case X86::Orig##256rrkz: return X86::New##256rrkz; \ 1916 case X86::Orig##256rm: return X86::New##256rm; \ 1917 case X86::Orig##256rmkz: return X86::New##256rmkz; \ 1918 case X86::Orig##rr: return X86::New##rr; \ 1919 case X86::Orig##rrkz: return X86::New##rrkz; \ 1920 case X86::Orig##rm: return X86::New##rm; \ 1921 case X86::Orig##rmkz: return X86::New##rmkz; 1922 1923 #define VPERM_CASES_BROADCAST(Orig, New) \ 1924 VPERM_CASES(Orig, New) \ 1925 case X86::Orig##128rmb: return X86::New##128rmb; \ 1926 case X86::Orig##128rmbkz: return X86::New##128rmbkz; \ 1927 case X86::Orig##256rmb: return X86::New##256rmb; \ 1928 case X86::Orig##256rmbkz: return X86::New##256rmbkz; \ 1929 case X86::Orig##rmb: return X86::New##rmb; \ 1930 case X86::Orig##rmbkz: return X86::New##rmbkz; 1931 1932 switch (Opcode) { 1933 VPERM_CASES(VPERMI2B, VPERMT2B) 1934 VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D) 1935 VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD) 1936 VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS) 1937 VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q) 1938 VPERM_CASES(VPERMI2W, VPERMT2W) 1939 VPERM_CASES(VPERMT2B, VPERMI2B) 1940 VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D) 1941 VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD) 1942 VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS) 1943 VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q) 1944 VPERM_CASES(VPERMT2W, VPERMI2W) 1945 } 1946 1947 llvm_unreachable("Unreachable!"); 1948 #undef VPERM_CASES_BROADCAST 1949 #undef VPERM_CASES 1950 } 1951 1952 MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 1953 unsigned OpIdx1, 1954 unsigned OpIdx2) const { 1955 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & { 1956 if (NewMI) 1957 return *MI.getParent()->getParent()->CloneMachineInstr(&MI); 1958 return MI; 1959 }; 1960 1961 switch (MI.getOpcode()) { 1962 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) 1963 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) 1964 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) 1965 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) 1966 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I) 1967 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I) 1968 unsigned Opc; 1969 unsigned Size; 1970 switch (MI.getOpcode()) { 1971 default: llvm_unreachable("Unreachable!"); 1972 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; 1973 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; 1974 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; 1975 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; 1976 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break; 1977 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break; 1978 } 1979 unsigned Amt = MI.getOperand(3).getImm(); 1980 auto &WorkingMI = cloneIfNew(MI); 1981 WorkingMI.setDesc(get(Opc)); 1982 WorkingMI.getOperand(3).setImm(Size - Amt); 1983 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 1984 OpIdx1, OpIdx2); 1985 } 1986 case X86::PFSUBrr: 1987 case X86::PFSUBRrr: { 1988 // PFSUB x, y: x = x - y 1989 // PFSUBR x, y: x = y - x 1990 unsigned Opc = 1991 (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr); 1992 auto &WorkingMI = cloneIfNew(MI); 1993 WorkingMI.setDesc(get(Opc)); 1994 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 1995 OpIdx1, OpIdx2); 1996 } 1997 case X86::BLENDPDrri: 1998 case X86::BLENDPSrri: 1999 case X86::VBLENDPDrri: 2000 case X86::VBLENDPSrri: 2001 // If we're optimizing for size, try to use MOVSD/MOVSS. 2002 if (MI.getParent()->getParent()->getFunction().hasOptSize()) { 2003 unsigned Mask, Opc; 2004 switch (MI.getOpcode()) { 2005 default: llvm_unreachable("Unreachable!"); 2006 case X86::BLENDPDrri: Opc = X86::MOVSDrr; Mask = 0x03; break; 2007 case X86::BLENDPSrri: Opc = X86::MOVSSrr; Mask = 0x0F; break; 2008 case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break; 2009 case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break; 2010 } 2011 if ((MI.getOperand(3).getImm() ^ Mask) == 1) { 2012 auto &WorkingMI = cloneIfNew(MI); 2013 WorkingMI.setDesc(get(Opc)); 2014 WorkingMI.removeOperand(3); 2015 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, 2016 /*NewMI=*/false, 2017 OpIdx1, OpIdx2); 2018 } 2019 } 2020 LLVM_FALLTHROUGH; 2021 case X86::PBLENDWrri: 2022 case X86::VBLENDPDYrri: 2023 case X86::VBLENDPSYrri: 2024 case X86::VPBLENDDrri: 2025 case X86::VPBLENDWrri: 2026 case X86::VPBLENDDYrri: 2027 case X86::VPBLENDWYrri:{ 2028 int8_t Mask; 2029 switch (MI.getOpcode()) { 2030 default: llvm_unreachable("Unreachable!"); 2031 case X86::BLENDPDrri: Mask = (int8_t)0x03; break; 2032 case X86::BLENDPSrri: Mask = (int8_t)0x0F; break; 2033 case X86::PBLENDWrri: Mask = (int8_t)0xFF; break; 2034 case X86::VBLENDPDrri: Mask = (int8_t)0x03; break; 2035 case X86::VBLENDPSrri: Mask = (int8_t)0x0F; break; 2036 case X86::VBLENDPDYrri: Mask = (int8_t)0x0F; break; 2037 case X86::VBLENDPSYrri: Mask = (int8_t)0xFF; break; 2038 case X86::VPBLENDDrri: Mask = (int8_t)0x0F; break; 2039 case X86::VPBLENDWrri: Mask = (int8_t)0xFF; break; 2040 case X86::VPBLENDDYrri: Mask = (int8_t)0xFF; break; 2041 case X86::VPBLENDWYrri: Mask = (int8_t)0xFF; break; 2042 } 2043 // Only the least significant bits of Imm are used. 2044 // Using int8_t to ensure it will be sign extended to the int64_t that 2045 // setImm takes in order to match isel behavior. 2046 int8_t Imm = MI.getOperand(3).getImm() & Mask; 2047 auto &WorkingMI = cloneIfNew(MI); 2048 WorkingMI.getOperand(3).setImm(Mask ^ Imm); 2049 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2050 OpIdx1, OpIdx2); 2051 } 2052 case X86::INSERTPSrr: 2053 case X86::VINSERTPSrr: 2054 case X86::VINSERTPSZrr: { 2055 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); 2056 unsigned ZMask = Imm & 15; 2057 unsigned DstIdx = (Imm >> 4) & 3; 2058 unsigned SrcIdx = (Imm >> 6) & 3; 2059 2060 // We can commute insertps if we zero 2 of the elements, the insertion is 2061 // "inline" and we don't override the insertion with a zero. 2062 if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 && 2063 countPopulation(ZMask) == 2) { 2064 unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15); 2065 assert(AltIdx < 4 && "Illegal insertion index"); 2066 unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask; 2067 auto &WorkingMI = cloneIfNew(MI); 2068 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm); 2069 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2070 OpIdx1, OpIdx2); 2071 } 2072 return nullptr; 2073 } 2074 case X86::MOVSDrr: 2075 case X86::MOVSSrr: 2076 case X86::VMOVSDrr: 2077 case X86::VMOVSSrr:{ 2078 // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD. 2079 if (Subtarget.hasSSE41()) { 2080 unsigned Mask, Opc; 2081 switch (MI.getOpcode()) { 2082 default: llvm_unreachable("Unreachable!"); 2083 case X86::MOVSDrr: Opc = X86::BLENDPDrri; Mask = 0x02; break; 2084 case X86::MOVSSrr: Opc = X86::BLENDPSrri; Mask = 0x0E; break; 2085 case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break; 2086 case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break; 2087 } 2088 2089 auto &WorkingMI = cloneIfNew(MI); 2090 WorkingMI.setDesc(get(Opc)); 2091 WorkingMI.addOperand(MachineOperand::CreateImm(Mask)); 2092 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2093 OpIdx1, OpIdx2); 2094 } 2095 2096 // Convert to SHUFPD. 2097 assert(MI.getOpcode() == X86::MOVSDrr && 2098 "Can only commute MOVSDrr without SSE4.1"); 2099 2100 auto &WorkingMI = cloneIfNew(MI); 2101 WorkingMI.setDesc(get(X86::SHUFPDrri)); 2102 WorkingMI.addOperand(MachineOperand::CreateImm(0x02)); 2103 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2104 OpIdx1, OpIdx2); 2105 } 2106 case X86::SHUFPDrri: { 2107 // Commute to MOVSD. 2108 assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!"); 2109 auto &WorkingMI = cloneIfNew(MI); 2110 WorkingMI.setDesc(get(X86::MOVSDrr)); 2111 WorkingMI.removeOperand(3); 2112 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2113 OpIdx1, OpIdx2); 2114 } 2115 case X86::PCLMULQDQrr: 2116 case X86::VPCLMULQDQrr: 2117 case X86::VPCLMULQDQYrr: 2118 case X86::VPCLMULQDQZrr: 2119 case X86::VPCLMULQDQZ128rr: 2120 case X86::VPCLMULQDQZ256rr: { 2121 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0] 2122 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0] 2123 unsigned Imm = MI.getOperand(3).getImm(); 2124 unsigned Src1Hi = Imm & 0x01; 2125 unsigned Src2Hi = Imm & 0x10; 2126 auto &WorkingMI = cloneIfNew(MI); 2127 WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4)); 2128 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2129 OpIdx1, OpIdx2); 2130 } 2131 case X86::VPCMPBZ128rri: case X86::VPCMPUBZ128rri: 2132 case X86::VPCMPBZ256rri: case X86::VPCMPUBZ256rri: 2133 case X86::VPCMPBZrri: case X86::VPCMPUBZrri: 2134 case X86::VPCMPDZ128rri: case X86::VPCMPUDZ128rri: 2135 case X86::VPCMPDZ256rri: case X86::VPCMPUDZ256rri: 2136 case X86::VPCMPDZrri: case X86::VPCMPUDZrri: 2137 case X86::VPCMPQZ128rri: case X86::VPCMPUQZ128rri: 2138 case X86::VPCMPQZ256rri: case X86::VPCMPUQZ256rri: 2139 case X86::VPCMPQZrri: case X86::VPCMPUQZrri: 2140 case X86::VPCMPWZ128rri: case X86::VPCMPUWZ128rri: 2141 case X86::VPCMPWZ256rri: case X86::VPCMPUWZ256rri: 2142 case X86::VPCMPWZrri: case X86::VPCMPUWZrri: 2143 case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik: 2144 case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik: 2145 case X86::VPCMPBZrrik: case X86::VPCMPUBZrrik: 2146 case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik: 2147 case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik: 2148 case X86::VPCMPDZrrik: case X86::VPCMPUDZrrik: 2149 case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik: 2150 case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik: 2151 case X86::VPCMPQZrrik: case X86::VPCMPUQZrrik: 2152 case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik: 2153 case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik: 2154 case X86::VPCMPWZrrik: case X86::VPCMPUWZrrik: { 2155 // Flip comparison mode immediate (if necessary). 2156 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7; 2157 Imm = X86::getSwappedVPCMPImm(Imm); 2158 auto &WorkingMI = cloneIfNew(MI); 2159 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm); 2160 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2161 OpIdx1, OpIdx2); 2162 } 2163 case X86::VPCOMBri: case X86::VPCOMUBri: 2164 case X86::VPCOMDri: case X86::VPCOMUDri: 2165 case X86::VPCOMQri: case X86::VPCOMUQri: 2166 case X86::VPCOMWri: case X86::VPCOMUWri: { 2167 // Flip comparison mode immediate (if necessary). 2168 unsigned Imm = MI.getOperand(3).getImm() & 0x7; 2169 Imm = X86::getSwappedVPCOMImm(Imm); 2170 auto &WorkingMI = cloneIfNew(MI); 2171 WorkingMI.getOperand(3).setImm(Imm); 2172 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2173 OpIdx1, OpIdx2); 2174 } 2175 case X86::VCMPSDZrr: 2176 case X86::VCMPSSZrr: 2177 case X86::VCMPPDZrri: 2178 case X86::VCMPPSZrri: 2179 case X86::VCMPSHZrr: 2180 case X86::VCMPPHZrri: 2181 case X86::VCMPPHZ128rri: 2182 case X86::VCMPPHZ256rri: 2183 case X86::VCMPPDZ128rri: 2184 case X86::VCMPPSZ128rri: 2185 case X86::VCMPPDZ256rri: 2186 case X86::VCMPPSZ256rri: 2187 case X86::VCMPPDZrrik: 2188 case X86::VCMPPSZrrik: 2189 case X86::VCMPPDZ128rrik: 2190 case X86::VCMPPSZ128rrik: 2191 case X86::VCMPPDZ256rrik: 2192 case X86::VCMPPSZ256rrik: { 2193 unsigned Imm = 2194 MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f; 2195 Imm = X86::getSwappedVCMPImm(Imm); 2196 auto &WorkingMI = cloneIfNew(MI); 2197 WorkingMI.getOperand(MI.getNumExplicitOperands() - 1).setImm(Imm); 2198 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2199 OpIdx1, OpIdx2); 2200 } 2201 case X86::VPERM2F128rr: 2202 case X86::VPERM2I128rr: { 2203 // Flip permute source immediate. 2204 // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi. 2205 // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi. 2206 int8_t Imm = MI.getOperand(3).getImm() & 0xFF; 2207 auto &WorkingMI = cloneIfNew(MI); 2208 WorkingMI.getOperand(3).setImm(Imm ^ 0x22); 2209 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2210 OpIdx1, OpIdx2); 2211 } 2212 case X86::MOVHLPSrr: 2213 case X86::UNPCKHPDrr: 2214 case X86::VMOVHLPSrr: 2215 case X86::VUNPCKHPDrr: 2216 case X86::VMOVHLPSZrr: 2217 case X86::VUNPCKHPDZ128rr: { 2218 assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!"); 2219 2220 unsigned Opc = MI.getOpcode(); 2221 switch (Opc) { 2222 default: llvm_unreachable("Unreachable!"); 2223 case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break; 2224 case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break; 2225 case X86::VMOVHLPSrr: Opc = X86::VUNPCKHPDrr; break; 2226 case X86::VUNPCKHPDrr: Opc = X86::VMOVHLPSrr; break; 2227 case X86::VMOVHLPSZrr: Opc = X86::VUNPCKHPDZ128rr; break; 2228 case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr; break; 2229 } 2230 auto &WorkingMI = cloneIfNew(MI); 2231 WorkingMI.setDesc(get(Opc)); 2232 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2233 OpIdx1, OpIdx2); 2234 } 2235 case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr: { 2236 auto &WorkingMI = cloneIfNew(MI); 2237 unsigned OpNo = MI.getDesc().getNumOperands() - 1; 2238 X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm()); 2239 WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC)); 2240 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2241 OpIdx1, OpIdx2); 2242 } 2243 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi: 2244 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi: 2245 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi: 2246 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi: 2247 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi: 2248 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi: 2249 case X86::VPTERNLOGDZrrik: 2250 case X86::VPTERNLOGDZ128rrik: 2251 case X86::VPTERNLOGDZ256rrik: 2252 case X86::VPTERNLOGQZrrik: 2253 case X86::VPTERNLOGQZ128rrik: 2254 case X86::VPTERNLOGQZ256rrik: 2255 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz: 2256 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz: 2257 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz: 2258 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz: 2259 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz: 2260 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz: 2261 case X86::VPTERNLOGDZ128rmbi: 2262 case X86::VPTERNLOGDZ256rmbi: 2263 case X86::VPTERNLOGDZrmbi: 2264 case X86::VPTERNLOGQZ128rmbi: 2265 case X86::VPTERNLOGQZ256rmbi: 2266 case X86::VPTERNLOGQZrmbi: 2267 case X86::VPTERNLOGDZ128rmbikz: 2268 case X86::VPTERNLOGDZ256rmbikz: 2269 case X86::VPTERNLOGDZrmbikz: 2270 case X86::VPTERNLOGQZ128rmbikz: 2271 case X86::VPTERNLOGQZ256rmbikz: 2272 case X86::VPTERNLOGQZrmbikz: { 2273 auto &WorkingMI = cloneIfNew(MI); 2274 commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2); 2275 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2276 OpIdx1, OpIdx2); 2277 } 2278 default: { 2279 if (isCommutableVPERMV3Instruction(MI.getOpcode())) { 2280 unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode()); 2281 auto &WorkingMI = cloneIfNew(MI); 2282 WorkingMI.setDesc(get(Opc)); 2283 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2284 OpIdx1, OpIdx2); 2285 } 2286 2287 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(), 2288 MI.getDesc().TSFlags); 2289 if (FMA3Group) { 2290 unsigned Opc = 2291 getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group); 2292 auto &WorkingMI = cloneIfNew(MI); 2293 WorkingMI.setDesc(get(Opc)); 2294 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 2295 OpIdx1, OpIdx2); 2296 } 2297 2298 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2299 } 2300 } 2301 } 2302 2303 bool 2304 X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI, 2305 unsigned &SrcOpIdx1, 2306 unsigned &SrcOpIdx2, 2307 bool IsIntrinsic) const { 2308 uint64_t TSFlags = MI.getDesc().TSFlags; 2309 2310 unsigned FirstCommutableVecOp = 1; 2311 unsigned LastCommutableVecOp = 3; 2312 unsigned KMaskOp = -1U; 2313 if (X86II::isKMasked(TSFlags)) { 2314 // For k-zero-masked operations it is Ok to commute the first vector 2315 // operand. Unless this is an intrinsic instruction. 2316 // For regular k-masked operations a conservative choice is done as the 2317 // elements of the first vector operand, for which the corresponding bit 2318 // in the k-mask operand is set to 0, are copied to the result of the 2319 // instruction. 2320 // TODO/FIXME: The commute still may be legal if it is known that the 2321 // k-mask operand is set to either all ones or all zeroes. 2322 // It is also Ok to commute the 1st operand if all users of MI use only 2323 // the elements enabled by the k-mask operand. For example, 2324 // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i] 2325 // : v1[i]; 2326 // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 -> 2327 // // Ok, to commute v1 in FMADD213PSZrk. 2328 2329 // The k-mask operand has index = 2 for masked and zero-masked operations. 2330 KMaskOp = 2; 2331 2332 // The operand with index = 1 is used as a source for those elements for 2333 // which the corresponding bit in the k-mask is set to 0. 2334 if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic) 2335 FirstCommutableVecOp = 3; 2336 2337 LastCommutableVecOp++; 2338 } else if (IsIntrinsic) { 2339 // Commuting the first operand of an intrinsic instruction isn't possible 2340 // unless we can prove that only the lowest element of the result is used. 2341 FirstCommutableVecOp = 2; 2342 } 2343 2344 if (isMem(MI, LastCommutableVecOp)) 2345 LastCommutableVecOp--; 2346 2347 // Only the first RegOpsNum operands are commutable. 2348 // Also, the value 'CommuteAnyOperandIndex' is valid here as it means 2349 // that the operand is not specified/fixed. 2350 if (SrcOpIdx1 != CommuteAnyOperandIndex && 2351 (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp || 2352 SrcOpIdx1 == KMaskOp)) 2353 return false; 2354 if (SrcOpIdx2 != CommuteAnyOperandIndex && 2355 (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp || 2356 SrcOpIdx2 == KMaskOp)) 2357 return false; 2358 2359 // Look for two different register operands assumed to be commutable 2360 // regardless of the FMA opcode. The FMA opcode is adjusted later. 2361 if (SrcOpIdx1 == CommuteAnyOperandIndex || 2362 SrcOpIdx2 == CommuteAnyOperandIndex) { 2363 unsigned CommutableOpIdx2 = SrcOpIdx2; 2364 2365 // At least one of operands to be commuted is not specified and 2366 // this method is free to choose appropriate commutable operands. 2367 if (SrcOpIdx1 == SrcOpIdx2) 2368 // Both of operands are not fixed. By default set one of commutable 2369 // operands to the last register operand of the instruction. 2370 CommutableOpIdx2 = LastCommutableVecOp; 2371 else if (SrcOpIdx2 == CommuteAnyOperandIndex) 2372 // Only one of operands is not fixed. 2373 CommutableOpIdx2 = SrcOpIdx1; 2374 2375 // CommutableOpIdx2 is well defined now. Let's choose another commutable 2376 // operand and assign its index to CommutableOpIdx1. 2377 Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg(); 2378 2379 unsigned CommutableOpIdx1; 2380 for (CommutableOpIdx1 = LastCommutableVecOp; 2381 CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) { 2382 // Just ignore and skip the k-mask operand. 2383 if (CommutableOpIdx1 == KMaskOp) 2384 continue; 2385 2386 // The commuted operands must have different registers. 2387 // Otherwise, the commute transformation does not change anything and 2388 // is useless then. 2389 if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg()) 2390 break; 2391 } 2392 2393 // No appropriate commutable operands were found. 2394 if (CommutableOpIdx1 < FirstCommutableVecOp) 2395 return false; 2396 2397 // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2 2398 // to return those values. 2399 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2400 CommutableOpIdx1, CommutableOpIdx2)) 2401 return false; 2402 } 2403 2404 return true; 2405 } 2406 2407 bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI, 2408 unsigned &SrcOpIdx1, 2409 unsigned &SrcOpIdx2) const { 2410 const MCInstrDesc &Desc = MI.getDesc(); 2411 if (!Desc.isCommutable()) 2412 return false; 2413 2414 switch (MI.getOpcode()) { 2415 case X86::CMPSDrr: 2416 case X86::CMPSSrr: 2417 case X86::CMPPDrri: 2418 case X86::CMPPSrri: 2419 case X86::VCMPSDrr: 2420 case X86::VCMPSSrr: 2421 case X86::VCMPPDrri: 2422 case X86::VCMPPSrri: 2423 case X86::VCMPPDYrri: 2424 case X86::VCMPPSYrri: 2425 case X86::VCMPSDZrr: 2426 case X86::VCMPSSZrr: 2427 case X86::VCMPPDZrri: 2428 case X86::VCMPPSZrri: 2429 case X86::VCMPSHZrr: 2430 case X86::VCMPPHZrri: 2431 case X86::VCMPPHZ128rri: 2432 case X86::VCMPPHZ256rri: 2433 case X86::VCMPPDZ128rri: 2434 case X86::VCMPPSZ128rri: 2435 case X86::VCMPPDZ256rri: 2436 case X86::VCMPPSZ256rri: 2437 case X86::VCMPPDZrrik: 2438 case X86::VCMPPSZrrik: 2439 case X86::VCMPPDZ128rrik: 2440 case X86::VCMPPSZ128rrik: 2441 case X86::VCMPPDZ256rrik: 2442 case X86::VCMPPSZ256rrik: { 2443 unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0; 2444 2445 // Float comparison can be safely commuted for 2446 // Ordered/Unordered/Equal/NotEqual tests 2447 unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7; 2448 switch (Imm) { 2449 default: 2450 // EVEX versions can be commuted. 2451 if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX) 2452 break; 2453 return false; 2454 case 0x00: // EQUAL 2455 case 0x03: // UNORDERED 2456 case 0x04: // NOT EQUAL 2457 case 0x07: // ORDERED 2458 break; 2459 } 2460 2461 // The indices of the commutable operands are 1 and 2 (or 2 and 3 2462 // when masked). 2463 // Assign them to the returned operand indices here. 2464 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset, 2465 2 + OpOffset); 2466 } 2467 case X86::MOVSSrr: 2468 // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can 2469 // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since 2470 // AVX implies sse4.1. 2471 if (Subtarget.hasSSE41()) 2472 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2473 return false; 2474 case X86::SHUFPDrri: 2475 // We can commute this to MOVSD. 2476 if (MI.getOperand(3).getImm() == 0x02) 2477 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2478 return false; 2479 case X86::MOVHLPSrr: 2480 case X86::UNPCKHPDrr: 2481 case X86::VMOVHLPSrr: 2482 case X86::VUNPCKHPDrr: 2483 case X86::VMOVHLPSZrr: 2484 case X86::VUNPCKHPDZ128rr: 2485 if (Subtarget.hasSSE2()) 2486 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2487 return false; 2488 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi: 2489 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi: 2490 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi: 2491 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi: 2492 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi: 2493 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi: 2494 case X86::VPTERNLOGDZrrik: 2495 case X86::VPTERNLOGDZ128rrik: 2496 case X86::VPTERNLOGDZ256rrik: 2497 case X86::VPTERNLOGQZrrik: 2498 case X86::VPTERNLOGQZ128rrik: 2499 case X86::VPTERNLOGQZ256rrik: 2500 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz: 2501 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz: 2502 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz: 2503 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz: 2504 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz: 2505 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz: 2506 case X86::VPTERNLOGDZ128rmbi: 2507 case X86::VPTERNLOGDZ256rmbi: 2508 case X86::VPTERNLOGDZrmbi: 2509 case X86::VPTERNLOGQZ128rmbi: 2510 case X86::VPTERNLOGQZ256rmbi: 2511 case X86::VPTERNLOGQZrmbi: 2512 case X86::VPTERNLOGDZ128rmbikz: 2513 case X86::VPTERNLOGDZ256rmbikz: 2514 case X86::VPTERNLOGDZrmbikz: 2515 case X86::VPTERNLOGQZ128rmbikz: 2516 case X86::VPTERNLOGQZ256rmbikz: 2517 case X86::VPTERNLOGQZrmbikz: 2518 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2519 case X86::VPDPWSSDYrr: 2520 case X86::VPDPWSSDrr: 2521 case X86::VPDPWSSDSYrr: 2522 case X86::VPDPWSSDSrr: 2523 case X86::VPDPWSSDZ128r: 2524 case X86::VPDPWSSDZ128rk: 2525 case X86::VPDPWSSDZ128rkz: 2526 case X86::VPDPWSSDZ256r: 2527 case X86::VPDPWSSDZ256rk: 2528 case X86::VPDPWSSDZ256rkz: 2529 case X86::VPDPWSSDZr: 2530 case X86::VPDPWSSDZrk: 2531 case X86::VPDPWSSDZrkz: 2532 case X86::VPDPWSSDSZ128r: 2533 case X86::VPDPWSSDSZ128rk: 2534 case X86::VPDPWSSDSZ128rkz: 2535 case X86::VPDPWSSDSZ256r: 2536 case X86::VPDPWSSDSZ256rk: 2537 case X86::VPDPWSSDSZ256rkz: 2538 case X86::VPDPWSSDSZr: 2539 case X86::VPDPWSSDSZrk: 2540 case X86::VPDPWSSDSZrkz: 2541 case X86::VPMADD52HUQZ128r: 2542 case X86::VPMADD52HUQZ128rk: 2543 case X86::VPMADD52HUQZ128rkz: 2544 case X86::VPMADD52HUQZ256r: 2545 case X86::VPMADD52HUQZ256rk: 2546 case X86::VPMADD52HUQZ256rkz: 2547 case X86::VPMADD52HUQZr: 2548 case X86::VPMADD52HUQZrk: 2549 case X86::VPMADD52HUQZrkz: 2550 case X86::VPMADD52LUQZ128r: 2551 case X86::VPMADD52LUQZ128rk: 2552 case X86::VPMADD52LUQZ128rkz: 2553 case X86::VPMADD52LUQZ256r: 2554 case X86::VPMADD52LUQZ256rk: 2555 case X86::VPMADD52LUQZ256rkz: 2556 case X86::VPMADD52LUQZr: 2557 case X86::VPMADD52LUQZrk: 2558 case X86::VPMADD52LUQZrkz: 2559 case X86::VFMADDCPHZr: 2560 case X86::VFMADDCPHZrk: 2561 case X86::VFMADDCPHZrkz: 2562 case X86::VFMADDCPHZ128r: 2563 case X86::VFMADDCPHZ128rk: 2564 case X86::VFMADDCPHZ128rkz: 2565 case X86::VFMADDCPHZ256r: 2566 case X86::VFMADDCPHZ256rk: 2567 case X86::VFMADDCPHZ256rkz: 2568 case X86::VFMADDCSHZr: 2569 case X86::VFMADDCSHZrk: 2570 case X86::VFMADDCSHZrkz: { 2571 unsigned CommutableOpIdx1 = 2; 2572 unsigned CommutableOpIdx2 = 3; 2573 if (X86II::isKMasked(Desc.TSFlags)) { 2574 // Skip the mask register. 2575 ++CommutableOpIdx1; 2576 ++CommutableOpIdx2; 2577 } 2578 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2579 CommutableOpIdx1, CommutableOpIdx2)) 2580 return false; 2581 if (!MI.getOperand(SrcOpIdx1).isReg() || 2582 !MI.getOperand(SrcOpIdx2).isReg()) 2583 // No idea. 2584 return false; 2585 return true; 2586 } 2587 2588 default: 2589 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(), 2590 MI.getDesc().TSFlags); 2591 if (FMA3Group) 2592 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2, 2593 FMA3Group->isIntrinsic()); 2594 2595 // Handled masked instructions since we need to skip over the mask input 2596 // and the preserved input. 2597 if (X86II::isKMasked(Desc.TSFlags)) { 2598 // First assume that the first input is the mask operand and skip past it. 2599 unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1; 2600 unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2; 2601 // Check if the first input is tied. If there isn't one then we only 2602 // need to skip the mask operand which we did above. 2603 if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(), 2604 MCOI::TIED_TO) != -1)) { 2605 // If this is zero masking instruction with a tied operand, we need to 2606 // move the first index back to the first input since this must 2607 // be a 3 input instruction and we want the first two non-mask inputs. 2608 // Otherwise this is a 2 input instruction with a preserved input and 2609 // mask, so we need to move the indices to skip one more input. 2610 if (X86II::isKMergeMasked(Desc.TSFlags)) { 2611 ++CommutableOpIdx1; 2612 ++CommutableOpIdx2; 2613 } else { 2614 --CommutableOpIdx1; 2615 } 2616 } 2617 2618 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2619 CommutableOpIdx1, CommutableOpIdx2)) 2620 return false; 2621 2622 if (!MI.getOperand(SrcOpIdx1).isReg() || 2623 !MI.getOperand(SrcOpIdx2).isReg()) 2624 // No idea. 2625 return false; 2626 return true; 2627 } 2628 2629 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2630 } 2631 return false; 2632 } 2633 2634 static bool isConvertibleLEA(MachineInstr *MI) { 2635 unsigned Opcode = MI->getOpcode(); 2636 if (Opcode != X86::LEA32r && Opcode != X86::LEA64r && 2637 Opcode != X86::LEA64_32r) 2638 return false; 2639 2640 const MachineOperand &Scale = MI->getOperand(1 + X86::AddrScaleAmt); 2641 const MachineOperand &Disp = MI->getOperand(1 + X86::AddrDisp); 2642 const MachineOperand &Segment = MI->getOperand(1 + X86::AddrSegmentReg); 2643 2644 if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 || 2645 Scale.getImm() > 1) 2646 return false; 2647 2648 return true; 2649 } 2650 2651 bool X86InstrInfo::hasCommutePreference(MachineInstr &MI, bool &Commute) const { 2652 // Currently we're interested in following sequence only. 2653 // r3 = lea r1, r2 2654 // r5 = add r3, r4 2655 // Both r3 and r4 are killed in add, we hope the add instruction has the 2656 // operand order 2657 // r5 = add r4, r3 2658 // So later in X86FixupLEAs the lea instruction can be rewritten as add. 2659 unsigned Opcode = MI.getOpcode(); 2660 if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr) 2661 return false; 2662 2663 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2664 Register Reg1 = MI.getOperand(1).getReg(); 2665 Register Reg2 = MI.getOperand(2).getReg(); 2666 2667 // Check if Reg1 comes from LEA in the same MBB. 2668 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg1)) { 2669 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) { 2670 Commute = true; 2671 return true; 2672 } 2673 } 2674 2675 // Check if Reg2 comes from LEA in the same MBB. 2676 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg2)) { 2677 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) { 2678 Commute = false; 2679 return true; 2680 } 2681 } 2682 2683 return false; 2684 } 2685 2686 int X86::getCondSrcNoFromDesc(const MCInstrDesc &MCID) { 2687 unsigned Opcode = MCID.getOpcode(); 2688 if (!(X86::isJCC(Opcode) || X86::isSETCC(Opcode) || X86::isCMOVCC(Opcode))) 2689 return -1; 2690 // Assume that condition code is always the last use operand. 2691 unsigned NumUses = MCID.getNumOperands() - MCID.getNumDefs(); 2692 return NumUses - 1; 2693 } 2694 2695 X86::CondCode X86::getCondFromMI(const MachineInstr &MI) { 2696 const MCInstrDesc &MCID = MI.getDesc(); 2697 int CondNo = getCondSrcNoFromDesc(MCID); 2698 if (CondNo < 0) 2699 return X86::COND_INVALID; 2700 CondNo += MCID.getNumDefs(); 2701 return static_cast<X86::CondCode>(MI.getOperand(CondNo).getImm()); 2702 } 2703 2704 X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) { 2705 return X86::isJCC(MI.getOpcode()) ? X86::getCondFromMI(MI) 2706 : X86::COND_INVALID; 2707 } 2708 2709 X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) { 2710 return X86::isSETCC(MI.getOpcode()) ? X86::getCondFromMI(MI) 2711 : X86::COND_INVALID; 2712 } 2713 2714 X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) { 2715 return X86::isCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI) 2716 : X86::COND_INVALID; 2717 } 2718 2719 /// Return the inverse of the specified condition, 2720 /// e.g. turning COND_E to COND_NE. 2721 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { 2722 switch (CC) { 2723 default: llvm_unreachable("Illegal condition code!"); 2724 case X86::COND_E: return X86::COND_NE; 2725 case X86::COND_NE: return X86::COND_E; 2726 case X86::COND_L: return X86::COND_GE; 2727 case X86::COND_LE: return X86::COND_G; 2728 case X86::COND_G: return X86::COND_LE; 2729 case X86::COND_GE: return X86::COND_L; 2730 case X86::COND_B: return X86::COND_AE; 2731 case X86::COND_BE: return X86::COND_A; 2732 case X86::COND_A: return X86::COND_BE; 2733 case X86::COND_AE: return X86::COND_B; 2734 case X86::COND_S: return X86::COND_NS; 2735 case X86::COND_NS: return X86::COND_S; 2736 case X86::COND_P: return X86::COND_NP; 2737 case X86::COND_NP: return X86::COND_P; 2738 case X86::COND_O: return X86::COND_NO; 2739 case X86::COND_NO: return X86::COND_O; 2740 case X86::COND_NE_OR_P: return X86::COND_E_AND_NP; 2741 case X86::COND_E_AND_NP: return X86::COND_NE_OR_P; 2742 } 2743 } 2744 2745 /// Assuming the flags are set by MI(a,b), return the condition code if we 2746 /// modify the instructions such that flags are set by MI(b,a). 2747 static X86::CondCode getSwappedCondition(X86::CondCode CC) { 2748 switch (CC) { 2749 default: return X86::COND_INVALID; 2750 case X86::COND_E: return X86::COND_E; 2751 case X86::COND_NE: return X86::COND_NE; 2752 case X86::COND_L: return X86::COND_G; 2753 case X86::COND_LE: return X86::COND_GE; 2754 case X86::COND_G: return X86::COND_L; 2755 case X86::COND_GE: return X86::COND_LE; 2756 case X86::COND_B: return X86::COND_A; 2757 case X86::COND_BE: return X86::COND_AE; 2758 case X86::COND_A: return X86::COND_B; 2759 case X86::COND_AE: return X86::COND_BE; 2760 } 2761 } 2762 2763 std::pair<X86::CondCode, bool> 2764 X86::getX86ConditionCode(CmpInst::Predicate Predicate) { 2765 X86::CondCode CC = X86::COND_INVALID; 2766 bool NeedSwap = false; 2767 switch (Predicate) { 2768 default: break; 2769 // Floating-point Predicates 2770 case CmpInst::FCMP_UEQ: CC = X86::COND_E; break; 2771 case CmpInst::FCMP_OLT: NeedSwap = true; LLVM_FALLTHROUGH; 2772 case CmpInst::FCMP_OGT: CC = X86::COND_A; break; 2773 case CmpInst::FCMP_OLE: NeedSwap = true; LLVM_FALLTHROUGH; 2774 case CmpInst::FCMP_OGE: CC = X86::COND_AE; break; 2775 case CmpInst::FCMP_UGT: NeedSwap = true; LLVM_FALLTHROUGH; 2776 case CmpInst::FCMP_ULT: CC = X86::COND_B; break; 2777 case CmpInst::FCMP_UGE: NeedSwap = true; LLVM_FALLTHROUGH; 2778 case CmpInst::FCMP_ULE: CC = X86::COND_BE; break; 2779 case CmpInst::FCMP_ONE: CC = X86::COND_NE; break; 2780 case CmpInst::FCMP_UNO: CC = X86::COND_P; break; 2781 case CmpInst::FCMP_ORD: CC = X86::COND_NP; break; 2782 case CmpInst::FCMP_OEQ: LLVM_FALLTHROUGH; 2783 case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break; 2784 2785 // Integer Predicates 2786 case CmpInst::ICMP_EQ: CC = X86::COND_E; break; 2787 case CmpInst::ICMP_NE: CC = X86::COND_NE; break; 2788 case CmpInst::ICMP_UGT: CC = X86::COND_A; break; 2789 case CmpInst::ICMP_UGE: CC = X86::COND_AE; break; 2790 case CmpInst::ICMP_ULT: CC = X86::COND_B; break; 2791 case CmpInst::ICMP_ULE: CC = X86::COND_BE; break; 2792 case CmpInst::ICMP_SGT: CC = X86::COND_G; break; 2793 case CmpInst::ICMP_SGE: CC = X86::COND_GE; break; 2794 case CmpInst::ICMP_SLT: CC = X86::COND_L; break; 2795 case CmpInst::ICMP_SLE: CC = X86::COND_LE; break; 2796 } 2797 2798 return std::make_pair(CC, NeedSwap); 2799 } 2800 2801 /// Return a cmov opcode for the given register size in bytes, and operand type. 2802 unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) { 2803 switch(RegBytes) { 2804 default: llvm_unreachable("Illegal register size!"); 2805 case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr; 2806 case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr; 2807 case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr; 2808 } 2809 } 2810 2811 /// Get the VPCMP immediate for the given condition. 2812 unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) { 2813 switch (CC) { 2814 default: llvm_unreachable("Unexpected SETCC condition"); 2815 case ISD::SETNE: return 4; 2816 case ISD::SETEQ: return 0; 2817 case ISD::SETULT: 2818 case ISD::SETLT: return 1; 2819 case ISD::SETUGT: 2820 case ISD::SETGT: return 6; 2821 case ISD::SETUGE: 2822 case ISD::SETGE: return 5; 2823 case ISD::SETULE: 2824 case ISD::SETLE: return 2; 2825 } 2826 } 2827 2828 /// Get the VPCMP immediate if the operands are swapped. 2829 unsigned X86::getSwappedVPCMPImm(unsigned Imm) { 2830 switch (Imm) { 2831 default: llvm_unreachable("Unreachable!"); 2832 case 0x01: Imm = 0x06; break; // LT -> NLE 2833 case 0x02: Imm = 0x05; break; // LE -> NLT 2834 case 0x05: Imm = 0x02; break; // NLT -> LE 2835 case 0x06: Imm = 0x01; break; // NLE -> LT 2836 case 0x00: // EQ 2837 case 0x03: // FALSE 2838 case 0x04: // NE 2839 case 0x07: // TRUE 2840 break; 2841 } 2842 2843 return Imm; 2844 } 2845 2846 /// Get the VPCOM immediate if the operands are swapped. 2847 unsigned X86::getSwappedVPCOMImm(unsigned Imm) { 2848 switch (Imm) { 2849 default: llvm_unreachable("Unreachable!"); 2850 case 0x00: Imm = 0x02; break; // LT -> GT 2851 case 0x01: Imm = 0x03; break; // LE -> GE 2852 case 0x02: Imm = 0x00; break; // GT -> LT 2853 case 0x03: Imm = 0x01; break; // GE -> LE 2854 case 0x04: // EQ 2855 case 0x05: // NE 2856 case 0x06: // FALSE 2857 case 0x07: // TRUE 2858 break; 2859 } 2860 2861 return Imm; 2862 } 2863 2864 /// Get the VCMP immediate if the operands are swapped. 2865 unsigned X86::getSwappedVCMPImm(unsigned Imm) { 2866 // Only need the lower 2 bits to distinquish. 2867 switch (Imm & 0x3) { 2868 default: llvm_unreachable("Unreachable!"); 2869 case 0x00: case 0x03: 2870 // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted. 2871 break; 2872 case 0x01: case 0x02: 2873 // Need to toggle bits 3:0. Bit 4 stays the same. 2874 Imm ^= 0xf; 2875 break; 2876 } 2877 2878 return Imm; 2879 } 2880 2881 /// Return true if the Reg is X87 register. 2882 static bool isX87Reg(unsigned Reg) { 2883 return (Reg == X86::FPCW || Reg == X86::FPSW || 2884 (Reg >= X86::ST0 && Reg <= X86::ST7)); 2885 } 2886 2887 /// check if the instruction is X87 instruction 2888 bool X86::isX87Instruction(MachineInstr &MI) { 2889 for (const MachineOperand &MO : MI.operands()) { 2890 if (!MO.isReg()) 2891 continue; 2892 if (isX87Reg(MO.getReg())) 2893 return true; 2894 } 2895 return false; 2896 } 2897 2898 bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const { 2899 switch (MI.getOpcode()) { 2900 case X86::TCRETURNdi: 2901 case X86::TCRETURNri: 2902 case X86::TCRETURNmi: 2903 case X86::TCRETURNdi64: 2904 case X86::TCRETURNri64: 2905 case X86::TCRETURNmi64: 2906 return true; 2907 default: 2908 return false; 2909 } 2910 } 2911 2912 bool X86InstrInfo::canMakeTailCallConditional( 2913 SmallVectorImpl<MachineOperand> &BranchCond, 2914 const MachineInstr &TailCall) const { 2915 if (TailCall.getOpcode() != X86::TCRETURNdi && 2916 TailCall.getOpcode() != X86::TCRETURNdi64) { 2917 // Only direct calls can be done with a conditional branch. 2918 return false; 2919 } 2920 2921 const MachineFunction *MF = TailCall.getParent()->getParent(); 2922 if (Subtarget.isTargetWin64() && MF->hasWinCFI()) { 2923 // Conditional tail calls confuse the Win64 unwinder. 2924 return false; 2925 } 2926 2927 assert(BranchCond.size() == 1); 2928 if (BranchCond[0].getImm() > X86::LAST_VALID_COND) { 2929 // Can't make a conditional tail call with this condition. 2930 return false; 2931 } 2932 2933 const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); 2934 if (X86FI->getTCReturnAddrDelta() != 0 || 2935 TailCall.getOperand(1).getImm() != 0) { 2936 // A conditional tail call cannot do any stack adjustment. 2937 return false; 2938 } 2939 2940 return true; 2941 } 2942 2943 void X86InstrInfo::replaceBranchWithTailCall( 2944 MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond, 2945 const MachineInstr &TailCall) const { 2946 assert(canMakeTailCallConditional(BranchCond, TailCall)); 2947 2948 MachineBasicBlock::iterator I = MBB.end(); 2949 while (I != MBB.begin()) { 2950 --I; 2951 if (I->isDebugInstr()) 2952 continue; 2953 if (!I->isBranch()) 2954 assert(0 && "Can't find the branch to replace!"); 2955 2956 X86::CondCode CC = X86::getCondFromBranch(*I); 2957 assert(BranchCond.size() == 1); 2958 if (CC != BranchCond[0].getImm()) 2959 continue; 2960 2961 break; 2962 } 2963 2964 unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc 2965 : X86::TCRETURNdi64cc; 2966 2967 auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc)); 2968 MIB->addOperand(TailCall.getOperand(0)); // Destination. 2969 MIB.addImm(0); // Stack offset (not used). 2970 MIB->addOperand(BranchCond[0]); // Condition. 2971 MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters. 2972 2973 // Add implicit uses and defs of all live regs potentially clobbered by the 2974 // call. This way they still appear live across the call. 2975 LivePhysRegs LiveRegs(getRegisterInfo()); 2976 LiveRegs.addLiveOuts(MBB); 2977 SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers; 2978 LiveRegs.stepForward(*MIB, Clobbers); 2979 for (const auto &C : Clobbers) { 2980 MIB.addReg(C.first, RegState::Implicit); 2981 MIB.addReg(C.first, RegState::Implicit | RegState::Define); 2982 } 2983 2984 I->eraseFromParent(); 2985 } 2986 2987 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may 2988 // not be a fallthrough MBB now due to layout changes). Return nullptr if the 2989 // fallthrough MBB cannot be identified. 2990 static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB, 2991 MachineBasicBlock *TBB) { 2992 // Look for non-EHPad successors other than TBB. If we find exactly one, it 2993 // is the fallthrough MBB. If we find zero, then TBB is both the target MBB 2994 // and fallthrough MBB. If we find more than one, we cannot identify the 2995 // fallthrough MBB and should return nullptr. 2996 MachineBasicBlock *FallthroughBB = nullptr; 2997 for (MachineBasicBlock *Succ : MBB->successors()) { 2998 if (Succ->isEHPad() || (Succ == TBB && FallthroughBB)) 2999 continue; 3000 // Return a nullptr if we found more than one fallthrough successor. 3001 if (FallthroughBB && FallthroughBB != TBB) 3002 return nullptr; 3003 FallthroughBB = Succ; 3004 } 3005 return FallthroughBB; 3006 } 3007 3008 bool X86InstrInfo::AnalyzeBranchImpl( 3009 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, 3010 SmallVectorImpl<MachineOperand> &Cond, 3011 SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const { 3012 3013 // Start from the bottom of the block and work up, examining the 3014 // terminator instructions. 3015 MachineBasicBlock::iterator I = MBB.end(); 3016 MachineBasicBlock::iterator UnCondBrIter = MBB.end(); 3017 while (I != MBB.begin()) { 3018 --I; 3019 if (I->isDebugInstr()) 3020 continue; 3021 3022 // Working from the bottom, when we see a non-terminator instruction, we're 3023 // done. 3024 if (!isUnpredicatedTerminator(*I)) 3025 break; 3026 3027 // A terminator that isn't a branch can't easily be handled by this 3028 // analysis. 3029 if (!I->isBranch()) 3030 return true; 3031 3032 // Handle unconditional branches. 3033 if (I->getOpcode() == X86::JMP_1) { 3034 UnCondBrIter = I; 3035 3036 if (!AllowModify) { 3037 TBB = I->getOperand(0).getMBB(); 3038 continue; 3039 } 3040 3041 // If the block has any instructions after a JMP, delete them. 3042 MBB.erase(std::next(I), MBB.end()); 3043 3044 Cond.clear(); 3045 FBB = nullptr; 3046 3047 // Delete the JMP if it's equivalent to a fall-through. 3048 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 3049 TBB = nullptr; 3050 I->eraseFromParent(); 3051 I = MBB.end(); 3052 UnCondBrIter = MBB.end(); 3053 continue; 3054 } 3055 3056 // TBB is used to indicate the unconditional destination. 3057 TBB = I->getOperand(0).getMBB(); 3058 continue; 3059 } 3060 3061 // Handle conditional branches. 3062 X86::CondCode BranchCode = X86::getCondFromBranch(*I); 3063 if (BranchCode == X86::COND_INVALID) 3064 return true; // Can't handle indirect branch. 3065 3066 // In practice we should never have an undef eflags operand, if we do 3067 // abort here as we are not prepared to preserve the flag. 3068 if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef()) 3069 return true; 3070 3071 // Working from the bottom, handle the first conditional branch. 3072 if (Cond.empty()) { 3073 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB(); 3074 if (AllowModify && UnCondBrIter != MBB.end() && 3075 MBB.isLayoutSuccessor(TargetBB)) { 3076 // If we can modify the code and it ends in something like: 3077 // 3078 // jCC L1 3079 // jmp L2 3080 // L1: 3081 // ... 3082 // L2: 3083 // 3084 // Then we can change this to: 3085 // 3086 // jnCC L2 3087 // L1: 3088 // ... 3089 // L2: 3090 // 3091 // Which is a bit more efficient. 3092 // We conditionally jump to the fall-through block. 3093 BranchCode = GetOppositeBranchCondition(BranchCode); 3094 MachineBasicBlock::iterator OldInst = I; 3095 3096 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JCC_1)) 3097 .addMBB(UnCondBrIter->getOperand(0).getMBB()) 3098 .addImm(BranchCode); 3099 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1)) 3100 .addMBB(TargetBB); 3101 3102 OldInst->eraseFromParent(); 3103 UnCondBrIter->eraseFromParent(); 3104 3105 // Restart the analysis. 3106 UnCondBrIter = MBB.end(); 3107 I = MBB.end(); 3108 continue; 3109 } 3110 3111 FBB = TBB; 3112 TBB = I->getOperand(0).getMBB(); 3113 Cond.push_back(MachineOperand::CreateImm(BranchCode)); 3114 CondBranches.push_back(&*I); 3115 continue; 3116 } 3117 3118 // Handle subsequent conditional branches. Only handle the case where all 3119 // conditional branches branch to the same destination and their condition 3120 // opcodes fit one of the special multi-branch idioms. 3121 assert(Cond.size() == 1); 3122 assert(TBB); 3123 3124 // If the conditions are the same, we can leave them alone. 3125 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); 3126 auto NewTBB = I->getOperand(0).getMBB(); 3127 if (OldBranchCode == BranchCode && TBB == NewTBB) 3128 continue; 3129 3130 // If they differ, see if they fit one of the known patterns. Theoretically, 3131 // we could handle more patterns here, but we shouldn't expect to see them 3132 // if instruction selection has done a reasonable job. 3133 if (TBB == NewTBB && 3134 ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) || 3135 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) { 3136 BranchCode = X86::COND_NE_OR_P; 3137 } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) || 3138 (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) { 3139 if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB))) 3140 return true; 3141 3142 // X86::COND_E_AND_NP usually has two different branch destinations. 3143 // 3144 // JP B1 3145 // JE B2 3146 // JMP B1 3147 // B1: 3148 // B2: 3149 // 3150 // Here this condition branches to B2 only if NP && E. It has another 3151 // equivalent form: 3152 // 3153 // JNE B1 3154 // JNP B2 3155 // JMP B1 3156 // B1: 3157 // B2: 3158 // 3159 // Similarly it branches to B2 only if E && NP. That is why this condition 3160 // is named with COND_E_AND_NP. 3161 BranchCode = X86::COND_E_AND_NP; 3162 } else 3163 return true; 3164 3165 // Update the MachineOperand. 3166 Cond[0].setImm(BranchCode); 3167 CondBranches.push_back(&*I); 3168 } 3169 3170 return false; 3171 } 3172 3173 bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB, 3174 MachineBasicBlock *&TBB, 3175 MachineBasicBlock *&FBB, 3176 SmallVectorImpl<MachineOperand> &Cond, 3177 bool AllowModify) const { 3178 SmallVector<MachineInstr *, 4> CondBranches; 3179 return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify); 3180 } 3181 3182 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB, 3183 MachineBranchPredicate &MBP, 3184 bool AllowModify) const { 3185 using namespace std::placeholders; 3186 3187 SmallVector<MachineOperand, 4> Cond; 3188 SmallVector<MachineInstr *, 4> CondBranches; 3189 if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches, 3190 AllowModify)) 3191 return true; 3192 3193 if (Cond.size() != 1) 3194 return true; 3195 3196 assert(MBP.TrueDest && "expected!"); 3197 3198 if (!MBP.FalseDest) 3199 MBP.FalseDest = MBB.getNextNode(); 3200 3201 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3202 3203 MachineInstr *ConditionDef = nullptr; 3204 bool SingleUseCondition = true; 3205 3206 for (MachineInstr &MI : llvm::drop_begin(llvm::reverse(MBB))) { 3207 if (MI.modifiesRegister(X86::EFLAGS, TRI)) { 3208 ConditionDef = &MI; 3209 break; 3210 } 3211 3212 if (MI.readsRegister(X86::EFLAGS, TRI)) 3213 SingleUseCondition = false; 3214 } 3215 3216 if (!ConditionDef) 3217 return true; 3218 3219 if (SingleUseCondition) { 3220 for (auto *Succ : MBB.successors()) 3221 if (Succ->isLiveIn(X86::EFLAGS)) 3222 SingleUseCondition = false; 3223 } 3224 3225 MBP.ConditionDef = ConditionDef; 3226 MBP.SingleUseCondition = SingleUseCondition; 3227 3228 // Currently we only recognize the simple pattern: 3229 // 3230 // test %reg, %reg 3231 // je %label 3232 // 3233 const unsigned TestOpcode = 3234 Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr; 3235 3236 if (ConditionDef->getOpcode() == TestOpcode && 3237 ConditionDef->getNumOperands() == 3 && 3238 ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) && 3239 (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) { 3240 MBP.LHS = ConditionDef->getOperand(0); 3241 MBP.RHS = MachineOperand::CreateImm(0); 3242 MBP.Predicate = Cond[0].getImm() == X86::COND_NE 3243 ? MachineBranchPredicate::PRED_NE 3244 : MachineBranchPredicate::PRED_EQ; 3245 return false; 3246 } 3247 3248 return true; 3249 } 3250 3251 unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB, 3252 int *BytesRemoved) const { 3253 assert(!BytesRemoved && "code size not handled"); 3254 3255 MachineBasicBlock::iterator I = MBB.end(); 3256 unsigned Count = 0; 3257 3258 while (I != MBB.begin()) { 3259 --I; 3260 if (I->isDebugInstr()) 3261 continue; 3262 if (I->getOpcode() != X86::JMP_1 && 3263 X86::getCondFromBranch(*I) == X86::COND_INVALID) 3264 break; 3265 // Remove the branch. 3266 I->eraseFromParent(); 3267 I = MBB.end(); 3268 ++Count; 3269 } 3270 3271 return Count; 3272 } 3273 3274 unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB, 3275 MachineBasicBlock *TBB, 3276 MachineBasicBlock *FBB, 3277 ArrayRef<MachineOperand> Cond, 3278 const DebugLoc &DL, 3279 int *BytesAdded) const { 3280 // Shouldn't be a fall through. 3281 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 3282 assert((Cond.size() == 1 || Cond.size() == 0) && 3283 "X86 branch conditions have one component!"); 3284 assert(!BytesAdded && "code size not handled"); 3285 3286 if (Cond.empty()) { 3287 // Unconditional branch? 3288 assert(!FBB && "Unconditional branch with multiple successors!"); 3289 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB); 3290 return 1; 3291 } 3292 3293 // If FBB is null, it is implied to be a fall-through block. 3294 bool FallThru = FBB == nullptr; 3295 3296 // Conditional branch. 3297 unsigned Count = 0; 3298 X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); 3299 switch (CC) { 3300 case X86::COND_NE_OR_P: 3301 // Synthesize NE_OR_P with two branches. 3302 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE); 3303 ++Count; 3304 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P); 3305 ++Count; 3306 break; 3307 case X86::COND_E_AND_NP: 3308 // Use the next block of MBB as FBB if it is null. 3309 if (FBB == nullptr) { 3310 FBB = getFallThroughMBB(&MBB, TBB); 3311 assert(FBB && "MBB cannot be the last block in function when the false " 3312 "body is a fall-through."); 3313 } 3314 // Synthesize COND_E_AND_NP with two branches. 3315 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE); 3316 ++Count; 3317 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP); 3318 ++Count; 3319 break; 3320 default: { 3321 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC); 3322 ++Count; 3323 } 3324 } 3325 if (!FallThru) { 3326 // Two-way Conditional branch. Insert the second branch. 3327 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB); 3328 ++Count; 3329 } 3330 return Count; 3331 } 3332 3333 bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 3334 ArrayRef<MachineOperand> Cond, 3335 Register DstReg, Register TrueReg, 3336 Register FalseReg, int &CondCycles, 3337 int &TrueCycles, int &FalseCycles) const { 3338 // Not all subtargets have cmov instructions. 3339 if (!Subtarget.canUseCMOV()) 3340 return false; 3341 if (Cond.size() != 1) 3342 return false; 3343 // We cannot do the composite conditions, at least not in SSA form. 3344 if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND) 3345 return false; 3346 3347 // Check register classes. 3348 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3349 const TargetRegisterClass *RC = 3350 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 3351 if (!RC) 3352 return false; 3353 3354 // We have cmov instructions for 16, 32, and 64 bit general purpose registers. 3355 if (X86::GR16RegClass.hasSubClassEq(RC) || 3356 X86::GR32RegClass.hasSubClassEq(RC) || 3357 X86::GR64RegClass.hasSubClassEq(RC)) { 3358 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy 3359 // Bridge. Probably Ivy Bridge as well. 3360 CondCycles = 2; 3361 TrueCycles = 2; 3362 FalseCycles = 2; 3363 return true; 3364 } 3365 3366 // Can't do vectors. 3367 return false; 3368 } 3369 3370 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB, 3371 MachineBasicBlock::iterator I, 3372 const DebugLoc &DL, Register DstReg, 3373 ArrayRef<MachineOperand> Cond, Register TrueReg, 3374 Register FalseReg) const { 3375 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3376 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 3377 const TargetRegisterClass &RC = *MRI.getRegClass(DstReg); 3378 assert(Cond.size() == 1 && "Invalid Cond array"); 3379 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8, 3380 false /*HasMemoryOperand*/); 3381 BuildMI(MBB, I, DL, get(Opc), DstReg) 3382 .addReg(FalseReg) 3383 .addReg(TrueReg) 3384 .addImm(Cond[0].getImm()); 3385 } 3386 3387 /// Test if the given register is a physical h register. 3388 static bool isHReg(unsigned Reg) { 3389 return X86::GR8_ABCD_HRegClass.contains(Reg); 3390 } 3391 3392 // Try and copy between VR128/VR64 and GR64 registers. 3393 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg, 3394 const X86Subtarget &Subtarget) { 3395 bool HasAVX = Subtarget.hasAVX(); 3396 bool HasAVX512 = Subtarget.hasAVX512(); 3397 3398 // SrcReg(MaskReg) -> DestReg(GR64) 3399 // SrcReg(MaskReg) -> DestReg(GR32) 3400 3401 // All KMASK RegClasses hold the same k registers, can be tested against anyone. 3402 if (X86::VK16RegClass.contains(SrcReg)) { 3403 if (X86::GR64RegClass.contains(DestReg)) { 3404 assert(Subtarget.hasBWI()); 3405 return X86::KMOVQrk; 3406 } 3407 if (X86::GR32RegClass.contains(DestReg)) 3408 return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk; 3409 } 3410 3411 // SrcReg(GR64) -> DestReg(MaskReg) 3412 // SrcReg(GR32) -> DestReg(MaskReg) 3413 3414 // All KMASK RegClasses hold the same k registers, can be tested against anyone. 3415 if (X86::VK16RegClass.contains(DestReg)) { 3416 if (X86::GR64RegClass.contains(SrcReg)) { 3417 assert(Subtarget.hasBWI()); 3418 return X86::KMOVQkr; 3419 } 3420 if (X86::GR32RegClass.contains(SrcReg)) 3421 return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr; 3422 } 3423 3424 3425 // SrcReg(VR128) -> DestReg(GR64) 3426 // SrcReg(VR64) -> DestReg(GR64) 3427 // SrcReg(GR64) -> DestReg(VR128) 3428 // SrcReg(GR64) -> DestReg(VR64) 3429 3430 if (X86::GR64RegClass.contains(DestReg)) { 3431 if (X86::VR128XRegClass.contains(SrcReg)) 3432 // Copy from a VR128 register to a GR64 register. 3433 return HasAVX512 ? X86::VMOVPQIto64Zrr : 3434 HasAVX ? X86::VMOVPQIto64rr : 3435 X86::MOVPQIto64rr; 3436 if (X86::VR64RegClass.contains(SrcReg)) 3437 // Copy from a VR64 register to a GR64 register. 3438 return X86::MMX_MOVD64from64rr; 3439 } else if (X86::GR64RegClass.contains(SrcReg)) { 3440 // Copy from a GR64 register to a VR128 register. 3441 if (X86::VR128XRegClass.contains(DestReg)) 3442 return HasAVX512 ? X86::VMOV64toPQIZrr : 3443 HasAVX ? X86::VMOV64toPQIrr : 3444 X86::MOV64toPQIrr; 3445 // Copy from a GR64 register to a VR64 register. 3446 if (X86::VR64RegClass.contains(DestReg)) 3447 return X86::MMX_MOVD64to64rr; 3448 } 3449 3450 // SrcReg(VR128) -> DestReg(GR32) 3451 // SrcReg(GR32) -> DestReg(VR128) 3452 3453 if (X86::GR32RegClass.contains(DestReg) && 3454 X86::VR128XRegClass.contains(SrcReg)) 3455 // Copy from a VR128 register to a GR32 register. 3456 return HasAVX512 ? X86::VMOVPDI2DIZrr : 3457 HasAVX ? X86::VMOVPDI2DIrr : 3458 X86::MOVPDI2DIrr; 3459 3460 if (X86::VR128XRegClass.contains(DestReg) && 3461 X86::GR32RegClass.contains(SrcReg)) 3462 // Copy from a VR128 register to a VR128 register. 3463 return HasAVX512 ? X86::VMOVDI2PDIZrr : 3464 HasAVX ? X86::VMOVDI2PDIrr : 3465 X86::MOVDI2PDIrr; 3466 return 0; 3467 } 3468 3469 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, 3470 MachineBasicBlock::iterator MI, 3471 const DebugLoc &DL, MCRegister DestReg, 3472 MCRegister SrcReg, bool KillSrc) const { 3473 // First deal with the normal symmetric copies. 3474 bool HasAVX = Subtarget.hasAVX(); 3475 bool HasVLX = Subtarget.hasVLX(); 3476 unsigned Opc = 0; 3477 if (X86::GR64RegClass.contains(DestReg, SrcReg)) 3478 Opc = X86::MOV64rr; 3479 else if (X86::GR32RegClass.contains(DestReg, SrcReg)) 3480 Opc = X86::MOV32rr; 3481 else if (X86::GR16RegClass.contains(DestReg, SrcReg)) 3482 Opc = X86::MOV16rr; 3483 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { 3484 // Copying to or from a physical H register on x86-64 requires a NOREX 3485 // move. Otherwise use a normal move. 3486 if ((isHReg(DestReg) || isHReg(SrcReg)) && 3487 Subtarget.is64Bit()) { 3488 Opc = X86::MOV8rr_NOREX; 3489 // Both operands must be encodable without an REX prefix. 3490 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && 3491 "8-bit H register can not be copied outside GR8_NOREX"); 3492 } else 3493 Opc = X86::MOV8rr; 3494 } 3495 else if (X86::VR64RegClass.contains(DestReg, SrcReg)) 3496 Opc = X86::MMX_MOVQ64rr; 3497 else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) { 3498 if (HasVLX) 3499 Opc = X86::VMOVAPSZ128rr; 3500 else if (X86::VR128RegClass.contains(DestReg, SrcReg)) 3501 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr; 3502 else { 3503 // If this an extended register and we don't have VLX we need to use a 3504 // 512-bit move. 3505 Opc = X86::VMOVAPSZrr; 3506 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3507 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm, 3508 &X86::VR512RegClass); 3509 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, 3510 &X86::VR512RegClass); 3511 } 3512 } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) { 3513 if (HasVLX) 3514 Opc = X86::VMOVAPSZ256rr; 3515 else if (X86::VR256RegClass.contains(DestReg, SrcReg)) 3516 Opc = X86::VMOVAPSYrr; 3517 else { 3518 // If this an extended register and we don't have VLX we need to use a 3519 // 512-bit move. 3520 Opc = X86::VMOVAPSZrr; 3521 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3522 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm, 3523 &X86::VR512RegClass); 3524 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, 3525 &X86::VR512RegClass); 3526 } 3527 } else if (X86::VR512RegClass.contains(DestReg, SrcReg)) 3528 Opc = X86::VMOVAPSZrr; 3529 // All KMASK RegClasses hold the same k registers, can be tested against anyone. 3530 else if (X86::VK16RegClass.contains(DestReg, SrcReg)) 3531 Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk; 3532 if (!Opc) 3533 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget); 3534 3535 if (Opc) { 3536 BuildMI(MBB, MI, DL, get(Opc), DestReg) 3537 .addReg(SrcReg, getKillRegState(KillSrc)); 3538 return; 3539 } 3540 3541 if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) { 3542 // FIXME: We use a fatal error here because historically LLVM has tried 3543 // lower some of these physreg copies and we want to ensure we get 3544 // reasonable bug reports if someone encounters a case no other testing 3545 // found. This path should be removed after the LLVM 7 release. 3546 report_fatal_error("Unable to copy EFLAGS physical register!"); 3547 } 3548 3549 LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to " 3550 << RI.getName(DestReg) << '\n'); 3551 report_fatal_error("Cannot emit physreg copy instruction"); 3552 } 3553 3554 Optional<DestSourcePair> 3555 X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { 3556 if (MI.isMoveReg()) 3557 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; 3558 return None; 3559 } 3560 3561 static unsigned getLoadStoreRegOpcode(Register Reg, 3562 const TargetRegisterClass *RC, 3563 bool IsStackAligned, 3564 const X86Subtarget &STI, bool load) { 3565 bool HasAVX = STI.hasAVX(); 3566 bool HasAVX512 = STI.hasAVX512(); 3567 bool HasVLX = STI.hasVLX(); 3568 3569 switch (STI.getRegisterInfo()->getSpillSize(*RC)) { 3570 default: 3571 llvm_unreachable("Unknown spill size"); 3572 case 1: 3573 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); 3574 if (STI.is64Bit()) 3575 // Copying to or from a physical H register on x86-64 requires a NOREX 3576 // move. Otherwise use a normal move. 3577 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) 3578 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; 3579 return load ? X86::MOV8rm : X86::MOV8mr; 3580 case 2: 3581 if (X86::VK16RegClass.hasSubClassEq(RC)) 3582 return load ? X86::KMOVWkm : X86::KMOVWmk; 3583 if (X86::FR16XRegClass.hasSubClassEq(RC)) { 3584 assert(STI.hasFP16()); 3585 return load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr; 3586 } 3587 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); 3588 return load ? X86::MOV16rm : X86::MOV16mr; 3589 case 4: 3590 if (X86::GR32RegClass.hasSubClassEq(RC)) 3591 return load ? X86::MOV32rm : X86::MOV32mr; 3592 if (X86::FR32XRegClass.hasSubClassEq(RC)) 3593 return load ? 3594 (HasAVX512 ? X86::VMOVSSZrm_alt : 3595 HasAVX ? X86::VMOVSSrm_alt : 3596 X86::MOVSSrm_alt) : 3597 (HasAVX512 ? X86::VMOVSSZmr : 3598 HasAVX ? X86::VMOVSSmr : 3599 X86::MOVSSmr); 3600 if (X86::RFP32RegClass.hasSubClassEq(RC)) 3601 return load ? X86::LD_Fp32m : X86::ST_Fp32m; 3602 if (X86::VK32RegClass.hasSubClassEq(RC)) { 3603 assert(STI.hasBWI() && "KMOVD requires BWI"); 3604 return load ? X86::KMOVDkm : X86::KMOVDmk; 3605 } 3606 // All of these mask pair classes have the same spill size, the same kind 3607 // of kmov instructions can be used with all of them. 3608 if (X86::VK1PAIRRegClass.hasSubClassEq(RC) || 3609 X86::VK2PAIRRegClass.hasSubClassEq(RC) || 3610 X86::VK4PAIRRegClass.hasSubClassEq(RC) || 3611 X86::VK8PAIRRegClass.hasSubClassEq(RC) || 3612 X86::VK16PAIRRegClass.hasSubClassEq(RC)) 3613 return load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE; 3614 llvm_unreachable("Unknown 4-byte regclass"); 3615 case 8: 3616 if (X86::GR64RegClass.hasSubClassEq(RC)) 3617 return load ? X86::MOV64rm : X86::MOV64mr; 3618 if (X86::FR64XRegClass.hasSubClassEq(RC)) 3619 return load ? 3620 (HasAVX512 ? X86::VMOVSDZrm_alt : 3621 HasAVX ? X86::VMOVSDrm_alt : 3622 X86::MOVSDrm_alt) : 3623 (HasAVX512 ? X86::VMOVSDZmr : 3624 HasAVX ? X86::VMOVSDmr : 3625 X86::MOVSDmr); 3626 if (X86::VR64RegClass.hasSubClassEq(RC)) 3627 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; 3628 if (X86::RFP64RegClass.hasSubClassEq(RC)) 3629 return load ? X86::LD_Fp64m : X86::ST_Fp64m; 3630 if (X86::VK64RegClass.hasSubClassEq(RC)) { 3631 assert(STI.hasBWI() && "KMOVQ requires BWI"); 3632 return load ? X86::KMOVQkm : X86::KMOVQmk; 3633 } 3634 llvm_unreachable("Unknown 8-byte regclass"); 3635 case 10: 3636 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); 3637 return load ? X86::LD_Fp80m : X86::ST_FpP80m; 3638 case 16: { 3639 if (X86::VR128XRegClass.hasSubClassEq(RC)) { 3640 // If stack is realigned we can use aligned stores. 3641 if (IsStackAligned) 3642 return load ? 3643 (HasVLX ? X86::VMOVAPSZ128rm : 3644 HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX : 3645 HasAVX ? X86::VMOVAPSrm : 3646 X86::MOVAPSrm): 3647 (HasVLX ? X86::VMOVAPSZ128mr : 3648 HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX : 3649 HasAVX ? X86::VMOVAPSmr : 3650 X86::MOVAPSmr); 3651 else 3652 return load ? 3653 (HasVLX ? X86::VMOVUPSZ128rm : 3654 HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX : 3655 HasAVX ? X86::VMOVUPSrm : 3656 X86::MOVUPSrm): 3657 (HasVLX ? X86::VMOVUPSZ128mr : 3658 HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX : 3659 HasAVX ? X86::VMOVUPSmr : 3660 X86::MOVUPSmr); 3661 } 3662 llvm_unreachable("Unknown 16-byte regclass"); 3663 } 3664 case 32: 3665 assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass"); 3666 // If stack is realigned we can use aligned stores. 3667 if (IsStackAligned) 3668 return load ? 3669 (HasVLX ? X86::VMOVAPSZ256rm : 3670 HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX : 3671 X86::VMOVAPSYrm) : 3672 (HasVLX ? X86::VMOVAPSZ256mr : 3673 HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX : 3674 X86::VMOVAPSYmr); 3675 else 3676 return load ? 3677 (HasVLX ? X86::VMOVUPSZ256rm : 3678 HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX : 3679 X86::VMOVUPSYrm) : 3680 (HasVLX ? X86::VMOVUPSZ256mr : 3681 HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX : 3682 X86::VMOVUPSYmr); 3683 case 64: 3684 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass"); 3685 assert(STI.hasAVX512() && "Using 512-bit register requires AVX512"); 3686 if (IsStackAligned) 3687 return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr; 3688 else 3689 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; 3690 } 3691 } 3692 3693 Optional<ExtAddrMode> 3694 X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI, 3695 const TargetRegisterInfo *TRI) const { 3696 const MCInstrDesc &Desc = MemI.getDesc(); 3697 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags); 3698 if (MemRefBegin < 0) 3699 return None; 3700 3701 MemRefBegin += X86II::getOperandBias(Desc); 3702 3703 auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg); 3704 if (!BaseOp.isReg()) // Can be an MO_FrameIndex 3705 return None; 3706 3707 const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp); 3708 // Displacement can be symbolic 3709 if (!DispMO.isImm()) 3710 return None; 3711 3712 ExtAddrMode AM; 3713 AM.BaseReg = BaseOp.getReg(); 3714 AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg(); 3715 AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm(); 3716 AM.Displacement = DispMO.getImm(); 3717 return AM; 3718 } 3719 3720 bool X86InstrInfo::verifyInstruction(const MachineInstr &MI, 3721 StringRef &ErrInfo) const { 3722 Optional<ExtAddrMode> AMOrNone = getAddrModeFromMemoryOp(MI, nullptr); 3723 if (!AMOrNone) 3724 return true; 3725 3726 ExtAddrMode AM = *AMOrNone; 3727 3728 if (AM.ScaledReg != X86::NoRegister) { 3729 switch (AM.Scale) { 3730 case 1: 3731 case 2: 3732 case 4: 3733 case 8: 3734 break; 3735 default: 3736 ErrInfo = "Scale factor in address must be 1, 2, 4 or 8"; 3737 return false; 3738 } 3739 } 3740 if (!isInt<32>(AM.Displacement)) { 3741 ErrInfo = "Displacement in address must fit into 32-bit signed " 3742 "integer"; 3743 return false; 3744 } 3745 3746 return true; 3747 } 3748 3749 bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI, 3750 const Register Reg, 3751 int64_t &ImmVal) const { 3752 if (MI.getOpcode() != X86::MOV32ri && MI.getOpcode() != X86::MOV64ri) 3753 return false; 3754 // Mov Src can be a global address. 3755 if (!MI.getOperand(1).isImm() || MI.getOperand(0).getReg() != Reg) 3756 return false; 3757 ImmVal = MI.getOperand(1).getImm(); 3758 return true; 3759 } 3760 3761 bool X86InstrInfo::preservesZeroValueInReg( 3762 const MachineInstr *MI, const Register NullValueReg, 3763 const TargetRegisterInfo *TRI) const { 3764 if (!MI->modifiesRegister(NullValueReg, TRI)) 3765 return true; 3766 switch (MI->getOpcode()) { 3767 // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax 3768 // X. 3769 case X86::SHR64ri: 3770 case X86::SHR32ri: 3771 case X86::SHL64ri: 3772 case X86::SHL32ri: 3773 assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() && 3774 "expected for shift opcode!"); 3775 return MI->getOperand(0).getReg() == NullValueReg && 3776 MI->getOperand(1).getReg() == NullValueReg; 3777 // Zero extend of a sub-reg of NullValueReg into itself does not change the 3778 // null value. 3779 case X86::MOV32rr: 3780 return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) { 3781 return TRI->isSubRegisterEq(NullValueReg, MO.getReg()); 3782 }); 3783 default: 3784 return false; 3785 } 3786 llvm_unreachable("Should be handled above!"); 3787 } 3788 3789 bool X86InstrInfo::getMemOperandsWithOffsetWidth( 3790 const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps, 3791 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 3792 const TargetRegisterInfo *TRI) const { 3793 const MCInstrDesc &Desc = MemOp.getDesc(); 3794 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags); 3795 if (MemRefBegin < 0) 3796 return false; 3797 3798 MemRefBegin += X86II::getOperandBias(Desc); 3799 3800 const MachineOperand *BaseOp = 3801 &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg); 3802 if (!BaseOp->isReg()) // Can be an MO_FrameIndex 3803 return false; 3804 3805 if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1) 3806 return false; 3807 3808 if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() != 3809 X86::NoRegister) 3810 return false; 3811 3812 const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp); 3813 3814 // Displacement can be symbolic 3815 if (!DispMO.isImm()) 3816 return false; 3817 3818 Offset = DispMO.getImm(); 3819 3820 if (!BaseOp->isReg()) 3821 return false; 3822 3823 OffsetIsScalable = false; 3824 // FIXME: Relying on memoperands() may not be right thing to do here. Check 3825 // with X86 maintainers, and fix it accordingly. For now, it is ok, since 3826 // there is no use of `Width` for X86 back-end at the moment. 3827 Width = 3828 !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0; 3829 BaseOps.push_back(BaseOp); 3830 return true; 3831 } 3832 3833 static unsigned getStoreRegOpcode(Register SrcReg, 3834 const TargetRegisterClass *RC, 3835 bool IsStackAligned, 3836 const X86Subtarget &STI) { 3837 return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false); 3838 } 3839 3840 static unsigned getLoadRegOpcode(Register DestReg, 3841 const TargetRegisterClass *RC, 3842 bool IsStackAligned, const X86Subtarget &STI) { 3843 return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true); 3844 } 3845 3846 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 3847 MachineBasicBlock::iterator MI, 3848 Register SrcReg, bool isKill, int FrameIdx, 3849 const TargetRegisterClass *RC, 3850 const TargetRegisterInfo *TRI) const { 3851 const MachineFunction &MF = *MBB.getParent(); 3852 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3853 assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && 3854 "Stack slot too small for store"); 3855 if (RC->getID() == X86::TILERegClassID) { 3856 unsigned Opc = X86::TILESTORED; 3857 // tilestored %tmm, (%sp, %idx) 3858 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo(); 3859 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 3860 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64); 3861 MachineInstr *NewMI = 3862 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx) 3863 .addReg(SrcReg, getKillRegState(isKill)); 3864 MachineOperand &MO = NewMI->getOperand(2); 3865 MO.setReg(VirtReg); 3866 MO.setIsKill(true); 3867 } else { 3868 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16); 3869 bool isAligned = 3870 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) || 3871 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx)); 3872 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); 3873 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx) 3874 .addReg(SrcReg, getKillRegState(isKill)); 3875 } 3876 } 3877 3878 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 3879 MachineBasicBlock::iterator MI, 3880 Register DestReg, int FrameIdx, 3881 const TargetRegisterClass *RC, 3882 const TargetRegisterInfo *TRI) const { 3883 if (RC->getID() == X86::TILERegClassID) { 3884 unsigned Opc = X86::TILELOADD; 3885 // tileloadd (%sp, %idx), %tmm 3886 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo(); 3887 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 3888 MachineInstr *NewMI = 3889 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64); 3890 NewMI = addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg), 3891 FrameIdx); 3892 MachineOperand &MO = NewMI->getOperand(3); 3893 MO.setReg(VirtReg); 3894 MO.setIsKill(true); 3895 } else { 3896 const MachineFunction &MF = *MBB.getParent(); 3897 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3898 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16); 3899 bool isAligned = 3900 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) || 3901 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx)); 3902 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); 3903 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg), 3904 FrameIdx); 3905 } 3906 } 3907 3908 bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 3909 Register &SrcReg2, int64_t &CmpMask, 3910 int64_t &CmpValue) const { 3911 switch (MI.getOpcode()) { 3912 default: break; 3913 case X86::CMP64ri32: 3914 case X86::CMP64ri8: 3915 case X86::CMP32ri: 3916 case X86::CMP32ri8: 3917 case X86::CMP16ri: 3918 case X86::CMP16ri8: 3919 case X86::CMP8ri: 3920 SrcReg = MI.getOperand(0).getReg(); 3921 SrcReg2 = 0; 3922 if (MI.getOperand(1).isImm()) { 3923 CmpMask = ~0; 3924 CmpValue = MI.getOperand(1).getImm(); 3925 } else { 3926 CmpMask = CmpValue = 0; 3927 } 3928 return true; 3929 // A SUB can be used to perform comparison. 3930 case X86::SUB64rm: 3931 case X86::SUB32rm: 3932 case X86::SUB16rm: 3933 case X86::SUB8rm: 3934 SrcReg = MI.getOperand(1).getReg(); 3935 SrcReg2 = 0; 3936 CmpMask = 0; 3937 CmpValue = 0; 3938 return true; 3939 case X86::SUB64rr: 3940 case X86::SUB32rr: 3941 case X86::SUB16rr: 3942 case X86::SUB8rr: 3943 SrcReg = MI.getOperand(1).getReg(); 3944 SrcReg2 = MI.getOperand(2).getReg(); 3945 CmpMask = 0; 3946 CmpValue = 0; 3947 return true; 3948 case X86::SUB64ri32: 3949 case X86::SUB64ri8: 3950 case X86::SUB32ri: 3951 case X86::SUB32ri8: 3952 case X86::SUB16ri: 3953 case X86::SUB16ri8: 3954 case X86::SUB8ri: 3955 SrcReg = MI.getOperand(1).getReg(); 3956 SrcReg2 = 0; 3957 if (MI.getOperand(2).isImm()) { 3958 CmpMask = ~0; 3959 CmpValue = MI.getOperand(2).getImm(); 3960 } else { 3961 CmpMask = CmpValue = 0; 3962 } 3963 return true; 3964 case X86::CMP64rr: 3965 case X86::CMP32rr: 3966 case X86::CMP16rr: 3967 case X86::CMP8rr: 3968 SrcReg = MI.getOperand(0).getReg(); 3969 SrcReg2 = MI.getOperand(1).getReg(); 3970 CmpMask = 0; 3971 CmpValue = 0; 3972 return true; 3973 case X86::TEST8rr: 3974 case X86::TEST16rr: 3975 case X86::TEST32rr: 3976 case X86::TEST64rr: 3977 SrcReg = MI.getOperand(0).getReg(); 3978 if (MI.getOperand(1).getReg() != SrcReg) 3979 return false; 3980 // Compare against zero. 3981 SrcReg2 = 0; 3982 CmpMask = ~0; 3983 CmpValue = 0; 3984 return true; 3985 } 3986 return false; 3987 } 3988 3989 bool X86InstrInfo::isRedundantFlagInstr(const MachineInstr &FlagI, 3990 Register SrcReg, Register SrcReg2, 3991 int64_t ImmMask, int64_t ImmValue, 3992 const MachineInstr &OI, bool *IsSwapped, 3993 int64_t *ImmDelta) const { 3994 switch (OI.getOpcode()) { 3995 case X86::CMP64rr: 3996 case X86::CMP32rr: 3997 case X86::CMP16rr: 3998 case X86::CMP8rr: 3999 case X86::SUB64rr: 4000 case X86::SUB32rr: 4001 case X86::SUB16rr: 4002 case X86::SUB8rr: { 4003 Register OISrcReg; 4004 Register OISrcReg2; 4005 int64_t OIMask; 4006 int64_t OIValue; 4007 if (!analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) || 4008 OIMask != ImmMask || OIValue != ImmValue) 4009 return false; 4010 if (SrcReg == OISrcReg && SrcReg2 == OISrcReg2) { 4011 *IsSwapped = false; 4012 return true; 4013 } 4014 if (SrcReg == OISrcReg2 && SrcReg2 == OISrcReg) { 4015 *IsSwapped = true; 4016 return true; 4017 } 4018 return false; 4019 } 4020 case X86::CMP64ri32: 4021 case X86::CMP64ri8: 4022 case X86::CMP32ri: 4023 case X86::CMP32ri8: 4024 case X86::CMP16ri: 4025 case X86::CMP16ri8: 4026 case X86::CMP8ri: 4027 case X86::SUB64ri32: 4028 case X86::SUB64ri8: 4029 case X86::SUB32ri: 4030 case X86::SUB32ri8: 4031 case X86::SUB16ri: 4032 case X86::SUB16ri8: 4033 case X86::SUB8ri: 4034 case X86::TEST64rr: 4035 case X86::TEST32rr: 4036 case X86::TEST16rr: 4037 case X86::TEST8rr: { 4038 if (ImmMask != 0) { 4039 Register OISrcReg; 4040 Register OISrcReg2; 4041 int64_t OIMask; 4042 int64_t OIValue; 4043 if (analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) && 4044 SrcReg == OISrcReg && ImmMask == OIMask) { 4045 if (OIValue == ImmValue) { 4046 *ImmDelta = 0; 4047 return true; 4048 } else if (static_cast<uint64_t>(ImmValue) == 4049 static_cast<uint64_t>(OIValue) - 1) { 4050 *ImmDelta = -1; 4051 return true; 4052 } else if (static_cast<uint64_t>(ImmValue) == 4053 static_cast<uint64_t>(OIValue) + 1) { 4054 *ImmDelta = 1; 4055 return true; 4056 } else { 4057 return false; 4058 } 4059 } 4060 } 4061 return FlagI.isIdenticalTo(OI); 4062 } 4063 default: 4064 return false; 4065 } 4066 } 4067 4068 /// Check whether the definition can be converted 4069 /// to remove a comparison against zero. 4070 inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag, 4071 bool &ClearsOverflowFlag) { 4072 NoSignFlag = false; 4073 ClearsOverflowFlag = false; 4074 4075 switch (MI.getOpcode()) { 4076 default: return false; 4077 4078 // The shift instructions only modify ZF if their shift count is non-zero. 4079 // N.B.: The processor truncates the shift count depending on the encoding. 4080 case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri: 4081 case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri: 4082 return getTruncatedShiftCount(MI, 2) != 0; 4083 4084 // Some left shift instructions can be turned into LEA instructions but only 4085 // if their flags aren't used. Avoid transforming such instructions. 4086 case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{ 4087 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 4088 if (isTruncatedShiftCountForLEA(ShAmt)) return false; 4089 return ShAmt != 0; 4090 } 4091 4092 case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8: 4093 case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8: 4094 return getTruncatedShiftCount(MI, 3) != 0; 4095 4096 case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri: 4097 case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8: 4098 case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr: 4099 case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm: 4100 case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm: 4101 case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r: 4102 case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri: 4103 case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8: 4104 case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr: 4105 case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm: 4106 case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm: 4107 case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r: 4108 case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri: 4109 case X86::ADC32ri8: case X86::ADC16ri: case X86::ADC16ri8: 4110 case X86::ADC8ri: case X86::ADC64rr: case X86::ADC32rr: 4111 case X86::ADC16rr: case X86::ADC8rr: case X86::ADC64rm: 4112 case X86::ADC32rm: case X86::ADC16rm: case X86::ADC8rm: 4113 case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri: 4114 case X86::SBB32ri8: case X86::SBB16ri: case X86::SBB16ri8: 4115 case X86::SBB8ri: case X86::SBB64rr: case X86::SBB32rr: 4116 case X86::SBB16rr: case X86::SBB8rr: case X86::SBB64rm: 4117 case X86::SBB32rm: case X86::SBB16rm: case X86::SBB8rm: 4118 case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r: 4119 case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1: 4120 case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1: 4121 case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1: 4122 case X86::LZCNT16rr: case X86::LZCNT16rm: 4123 case X86::LZCNT32rr: case X86::LZCNT32rm: 4124 case X86::LZCNT64rr: case X86::LZCNT64rm: 4125 case X86::POPCNT16rr:case X86::POPCNT16rm: 4126 case X86::POPCNT32rr:case X86::POPCNT32rm: 4127 case X86::POPCNT64rr:case X86::POPCNT64rm: 4128 case X86::TZCNT16rr: case X86::TZCNT16rm: 4129 case X86::TZCNT32rr: case X86::TZCNT32rm: 4130 case X86::TZCNT64rr: case X86::TZCNT64rm: 4131 return true; 4132 case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri: 4133 case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8: 4134 case X86::AND8ri: case X86::AND64rr: case X86::AND32rr: 4135 case X86::AND16rr: case X86::AND8rr: case X86::AND64rm: 4136 case X86::AND32rm: case X86::AND16rm: case X86::AND8rm: 4137 case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri: 4138 case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8: 4139 case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr: 4140 case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm: 4141 case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm: 4142 case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri: 4143 case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8: 4144 case X86::OR8ri: case X86::OR64rr: case X86::OR32rr: 4145 case X86::OR16rr: case X86::OR8rr: case X86::OR64rm: 4146 case X86::OR32rm: case X86::OR16rm: case X86::OR8rm: 4147 case X86::ANDN32rr: case X86::ANDN32rm: 4148 case X86::ANDN64rr: case X86::ANDN64rm: 4149 case X86::BLSI32rr: case X86::BLSI32rm: 4150 case X86::BLSI64rr: case X86::BLSI64rm: 4151 case X86::BLSMSK32rr: case X86::BLSMSK32rm: 4152 case X86::BLSMSK64rr: case X86::BLSMSK64rm: 4153 case X86::BLSR32rr: case X86::BLSR32rm: 4154 case X86::BLSR64rr: case X86::BLSR64rm: 4155 case X86::BLCFILL32rr: case X86::BLCFILL32rm: 4156 case X86::BLCFILL64rr: case X86::BLCFILL64rm: 4157 case X86::BLCI32rr: case X86::BLCI32rm: 4158 case X86::BLCI64rr: case X86::BLCI64rm: 4159 case X86::BLCIC32rr: case X86::BLCIC32rm: 4160 case X86::BLCIC64rr: case X86::BLCIC64rm: 4161 case X86::BLCMSK32rr: case X86::BLCMSK32rm: 4162 case X86::BLCMSK64rr: case X86::BLCMSK64rm: 4163 case X86::BLCS32rr: case X86::BLCS32rm: 4164 case X86::BLCS64rr: case X86::BLCS64rm: 4165 case X86::BLSFILL32rr: case X86::BLSFILL32rm: 4166 case X86::BLSFILL64rr: case X86::BLSFILL64rm: 4167 case X86::BLSIC32rr: case X86::BLSIC32rm: 4168 case X86::BLSIC64rr: case X86::BLSIC64rm: 4169 case X86::BZHI32rr: case X86::BZHI32rm: 4170 case X86::BZHI64rr: case X86::BZHI64rm: 4171 case X86::T1MSKC32rr: case X86::T1MSKC32rm: 4172 case X86::T1MSKC64rr: case X86::T1MSKC64rm: 4173 case X86::TZMSK32rr: case X86::TZMSK32rm: 4174 case X86::TZMSK64rr: case X86::TZMSK64rm: 4175 // These instructions clear the overflow flag just like TEST. 4176 // FIXME: These are not the only instructions in this switch that clear the 4177 // overflow flag. 4178 ClearsOverflowFlag = true; 4179 return true; 4180 case X86::BEXTR32rr: case X86::BEXTR64rr: 4181 case X86::BEXTR32rm: case X86::BEXTR64rm: 4182 case X86::BEXTRI32ri: case X86::BEXTRI32mi: 4183 case X86::BEXTRI64ri: case X86::BEXTRI64mi: 4184 // BEXTR doesn't update the sign flag so we can't use it. It does clear 4185 // the overflow flag, but that's not useful without the sign flag. 4186 NoSignFlag = true; 4187 return true; 4188 } 4189 } 4190 4191 /// Check whether the use can be converted to remove a comparison against zero. 4192 static X86::CondCode isUseDefConvertible(const MachineInstr &MI) { 4193 switch (MI.getOpcode()) { 4194 default: return X86::COND_INVALID; 4195 case X86::NEG8r: 4196 case X86::NEG16r: 4197 case X86::NEG32r: 4198 case X86::NEG64r: 4199 return X86::COND_AE; 4200 case X86::LZCNT16rr: 4201 case X86::LZCNT32rr: 4202 case X86::LZCNT64rr: 4203 return X86::COND_B; 4204 case X86::POPCNT16rr: 4205 case X86::POPCNT32rr: 4206 case X86::POPCNT64rr: 4207 return X86::COND_E; 4208 case X86::TZCNT16rr: 4209 case X86::TZCNT32rr: 4210 case X86::TZCNT64rr: 4211 return X86::COND_B; 4212 case X86::BSF16rr: 4213 case X86::BSF32rr: 4214 case X86::BSF64rr: 4215 case X86::BSR16rr: 4216 case X86::BSR32rr: 4217 case X86::BSR64rr: 4218 return X86::COND_E; 4219 case X86::BLSI32rr: 4220 case X86::BLSI64rr: 4221 return X86::COND_AE; 4222 case X86::BLSR32rr: 4223 case X86::BLSR64rr: 4224 case X86::BLSMSK32rr: 4225 case X86::BLSMSK64rr: 4226 return X86::COND_B; 4227 // TODO: TBM instructions. 4228 } 4229 } 4230 4231 /// Check if there exists an earlier instruction that 4232 /// operates on the same source operands and sets flags in the same way as 4233 /// Compare; remove Compare if possible. 4234 bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 4235 Register SrcReg2, int64_t CmpMask, 4236 int64_t CmpValue, 4237 const MachineRegisterInfo *MRI) const { 4238 // Check whether we can replace SUB with CMP. 4239 switch (CmpInstr.getOpcode()) { 4240 default: break; 4241 case X86::SUB64ri32: 4242 case X86::SUB64ri8: 4243 case X86::SUB32ri: 4244 case X86::SUB32ri8: 4245 case X86::SUB16ri: 4246 case X86::SUB16ri8: 4247 case X86::SUB8ri: 4248 case X86::SUB64rm: 4249 case X86::SUB32rm: 4250 case X86::SUB16rm: 4251 case X86::SUB8rm: 4252 case X86::SUB64rr: 4253 case X86::SUB32rr: 4254 case X86::SUB16rr: 4255 case X86::SUB8rr: { 4256 if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg())) 4257 return false; 4258 // There is no use of the destination register, we can replace SUB with CMP. 4259 unsigned NewOpcode = 0; 4260 switch (CmpInstr.getOpcode()) { 4261 default: llvm_unreachable("Unreachable!"); 4262 case X86::SUB64rm: NewOpcode = X86::CMP64rm; break; 4263 case X86::SUB32rm: NewOpcode = X86::CMP32rm; break; 4264 case X86::SUB16rm: NewOpcode = X86::CMP16rm; break; 4265 case X86::SUB8rm: NewOpcode = X86::CMP8rm; break; 4266 case X86::SUB64rr: NewOpcode = X86::CMP64rr; break; 4267 case X86::SUB32rr: NewOpcode = X86::CMP32rr; break; 4268 case X86::SUB16rr: NewOpcode = X86::CMP16rr; break; 4269 case X86::SUB8rr: NewOpcode = X86::CMP8rr; break; 4270 case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break; 4271 case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break; 4272 case X86::SUB32ri: NewOpcode = X86::CMP32ri; break; 4273 case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break; 4274 case X86::SUB16ri: NewOpcode = X86::CMP16ri; break; 4275 case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break; 4276 case X86::SUB8ri: NewOpcode = X86::CMP8ri; break; 4277 } 4278 CmpInstr.setDesc(get(NewOpcode)); 4279 CmpInstr.removeOperand(0); 4280 // Mutating this instruction invalidates any debug data associated with it. 4281 CmpInstr.dropDebugNumber(); 4282 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri. 4283 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm || 4284 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm) 4285 return false; 4286 } 4287 } 4288 4289 // The following code tries to remove the comparison by re-using EFLAGS 4290 // from earlier instructions. 4291 4292 bool IsCmpZero = (CmpMask != 0 && CmpValue == 0); 4293 4294 // Transformation currently requires SSA values. 4295 if (SrcReg2.isPhysical()) 4296 return false; 4297 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg); 4298 assert(SrcRegDef && "Must have a definition (SSA)"); 4299 4300 MachineInstr *MI = nullptr; 4301 MachineInstr *Sub = nullptr; 4302 MachineInstr *Movr0Inst = nullptr; 4303 bool NoSignFlag = false; 4304 bool ClearsOverflowFlag = false; 4305 bool ShouldUpdateCC = false; 4306 bool IsSwapped = false; 4307 X86::CondCode NewCC = X86::COND_INVALID; 4308 int64_t ImmDelta = 0; 4309 4310 // Search backward from CmpInstr for the next instruction defining EFLAGS. 4311 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4312 MachineBasicBlock &CmpMBB = *CmpInstr.getParent(); 4313 MachineBasicBlock::reverse_iterator From = 4314 std::next(MachineBasicBlock::reverse_iterator(CmpInstr)); 4315 for (MachineBasicBlock *MBB = &CmpMBB;;) { 4316 for (MachineInstr &Inst : make_range(From, MBB->rend())) { 4317 // Try to use EFLAGS from the instruction defining %SrcReg. Example: 4318 // %eax = addl ... 4319 // ... // EFLAGS not changed 4320 // testl %eax, %eax // <-- can be removed 4321 if (&Inst == SrcRegDef) { 4322 if (IsCmpZero && 4323 isDefConvertible(Inst, NoSignFlag, ClearsOverflowFlag)) { 4324 MI = &Inst; 4325 break; 4326 } 4327 4328 // Look back for the following pattern, in which case the test64rr 4329 // instruction could be erased. 4330 // 4331 // Example: 4332 // %reg = and32ri %in_reg, 5 4333 // ... // EFLAGS not changed. 4334 // %src_reg = subreg_to_reg 0, %reg, %subreg.sub_index 4335 // test64rr %src_reg, %src_reg, implicit-def $eflags 4336 MachineInstr *AndInstr = nullptr; 4337 if (IsCmpZero && 4338 findRedundantFlagInstr(CmpInstr, Inst, MRI, &AndInstr, TRI, 4339 NoSignFlag, ClearsOverflowFlag)) { 4340 assert(AndInstr != nullptr && X86::isAND(AndInstr->getOpcode())); 4341 MI = AndInstr; 4342 break; 4343 } 4344 // Cannot find other candidates before definition of SrcReg. 4345 return false; 4346 } 4347 4348 if (Inst.modifiesRegister(X86::EFLAGS, TRI)) { 4349 // Try to use EFLAGS produced by an instruction reading %SrcReg. 4350 // Example: 4351 // %eax = ... 4352 // ... 4353 // popcntl %eax 4354 // ... // EFLAGS not changed 4355 // testl %eax, %eax // <-- can be removed 4356 if (IsCmpZero) { 4357 NewCC = isUseDefConvertible(Inst); 4358 if (NewCC != X86::COND_INVALID && Inst.getOperand(1).isReg() && 4359 Inst.getOperand(1).getReg() == SrcReg) { 4360 ShouldUpdateCC = true; 4361 MI = &Inst; 4362 break; 4363 } 4364 } 4365 4366 // Try to use EFLAGS from an instruction with similar flag results. 4367 // Example: 4368 // sub x, y or cmp x, y 4369 // ... // EFLAGS not changed 4370 // cmp x, y // <-- can be removed 4371 if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, CmpValue, 4372 Inst, &IsSwapped, &ImmDelta)) { 4373 Sub = &Inst; 4374 break; 4375 } 4376 4377 // MOV32r0 is implemented with xor which clobbers condition code. It is 4378 // safe to move up, if the definition to EFLAGS is dead and earlier 4379 // instructions do not read or write EFLAGS. 4380 if (!Movr0Inst && Inst.getOpcode() == X86::MOV32r0 && 4381 Inst.registerDefIsDead(X86::EFLAGS, TRI)) { 4382 Movr0Inst = &Inst; 4383 continue; 4384 } 4385 4386 // Cannot do anything for any other EFLAG changes. 4387 return false; 4388 } 4389 } 4390 4391 if (MI || Sub) 4392 break; 4393 4394 // Reached begin of basic block. Continue in predecessor if there is 4395 // exactly one. 4396 if (MBB->pred_size() != 1) 4397 return false; 4398 MBB = *MBB->pred_begin(); 4399 From = MBB->rbegin(); 4400 } 4401 4402 // Scan forward from the instruction after CmpInstr for uses of EFLAGS. 4403 // It is safe to remove CmpInstr if EFLAGS is redefined or killed. 4404 // If we are done with the basic block, we need to check whether EFLAGS is 4405 // live-out. 4406 bool FlagsMayLiveOut = true; 4407 SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate; 4408 MachineBasicBlock::iterator AfterCmpInstr = 4409 std::next(MachineBasicBlock::iterator(CmpInstr)); 4410 for (MachineInstr &Instr : make_range(AfterCmpInstr, CmpMBB.end())) { 4411 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI); 4412 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI); 4413 // We should check the usage if this instruction uses and updates EFLAGS. 4414 if (!UseEFLAGS && ModifyEFLAGS) { 4415 // It is safe to remove CmpInstr if EFLAGS is updated again. 4416 FlagsMayLiveOut = false; 4417 break; 4418 } 4419 if (!UseEFLAGS && !ModifyEFLAGS) 4420 continue; 4421 4422 // EFLAGS is used by this instruction. 4423 X86::CondCode OldCC = X86::COND_INVALID; 4424 if (MI || IsSwapped || ImmDelta != 0) { 4425 // We decode the condition code from opcode. 4426 if (Instr.isBranch()) 4427 OldCC = X86::getCondFromBranch(Instr); 4428 else { 4429 OldCC = X86::getCondFromSETCC(Instr); 4430 if (OldCC == X86::COND_INVALID) 4431 OldCC = X86::getCondFromCMov(Instr); 4432 } 4433 if (OldCC == X86::COND_INVALID) return false; 4434 } 4435 X86::CondCode ReplacementCC = X86::COND_INVALID; 4436 if (MI) { 4437 switch (OldCC) { 4438 default: break; 4439 case X86::COND_A: case X86::COND_AE: 4440 case X86::COND_B: case X86::COND_BE: 4441 // CF is used, we can't perform this optimization. 4442 return false; 4443 case X86::COND_G: case X86::COND_GE: 4444 case X86::COND_L: case X86::COND_LE: 4445 case X86::COND_O: case X86::COND_NO: 4446 // If OF is used, the instruction needs to clear it like CmpZero does. 4447 if (!ClearsOverflowFlag) 4448 return false; 4449 break; 4450 case X86::COND_S: case X86::COND_NS: 4451 // If SF is used, but the instruction doesn't update the SF, then we 4452 // can't do the optimization. 4453 if (NoSignFlag) 4454 return false; 4455 break; 4456 } 4457 4458 // If we're updating the condition code check if we have to reverse the 4459 // condition. 4460 if (ShouldUpdateCC) 4461 switch (OldCC) { 4462 default: 4463 return false; 4464 case X86::COND_E: 4465 ReplacementCC = NewCC; 4466 break; 4467 case X86::COND_NE: 4468 ReplacementCC = GetOppositeBranchCondition(NewCC); 4469 break; 4470 } 4471 } else if (IsSwapped) { 4472 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs 4473 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 4474 // We swap the condition code and synthesize the new opcode. 4475 ReplacementCC = getSwappedCondition(OldCC); 4476 if (ReplacementCC == X86::COND_INVALID) 4477 return false; 4478 ShouldUpdateCC = true; 4479 } else if (ImmDelta != 0) { 4480 unsigned BitWidth = TRI->getRegSizeInBits(*MRI->getRegClass(SrcReg)); 4481 // Shift amount for min/max constants to adjust for 8/16/32 instruction 4482 // sizes. 4483 switch (OldCC) { 4484 case X86::COND_L: // x <s (C + 1) --> x <=s C 4485 if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue) 4486 return false; 4487 ReplacementCC = X86::COND_LE; 4488 break; 4489 case X86::COND_B: // x <u (C + 1) --> x <=u C 4490 if (ImmDelta != 1 || CmpValue == 0) 4491 return false; 4492 ReplacementCC = X86::COND_BE; 4493 break; 4494 case X86::COND_GE: // x >=s (C + 1) --> x >s C 4495 if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue) 4496 return false; 4497 ReplacementCC = X86::COND_G; 4498 break; 4499 case X86::COND_AE: // x >=u (C + 1) --> x >u C 4500 if (ImmDelta != 1 || CmpValue == 0) 4501 return false; 4502 ReplacementCC = X86::COND_A; 4503 break; 4504 case X86::COND_G: // x >s (C - 1) --> x >=s C 4505 if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue) 4506 return false; 4507 ReplacementCC = X86::COND_GE; 4508 break; 4509 case X86::COND_A: // x >u (C - 1) --> x >=u C 4510 if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue) 4511 return false; 4512 ReplacementCC = X86::COND_AE; 4513 break; 4514 case X86::COND_LE: // x <=s (C - 1) --> x <s C 4515 if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue) 4516 return false; 4517 ReplacementCC = X86::COND_L; 4518 break; 4519 case X86::COND_BE: // x <=u (C - 1) --> x <u C 4520 if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue) 4521 return false; 4522 ReplacementCC = X86::COND_B; 4523 break; 4524 default: 4525 return false; 4526 } 4527 ShouldUpdateCC = true; 4528 } 4529 4530 if (ShouldUpdateCC && ReplacementCC != OldCC) { 4531 // Push the MachineInstr to OpsToUpdate. 4532 // If it is safe to remove CmpInstr, the condition code of these 4533 // instructions will be modified. 4534 OpsToUpdate.push_back(std::make_pair(&Instr, ReplacementCC)); 4535 } 4536 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) { 4537 // It is safe to remove CmpInstr if EFLAGS is updated again or killed. 4538 FlagsMayLiveOut = false; 4539 break; 4540 } 4541 } 4542 4543 // If we have to update users but EFLAGS is live-out abort, since we cannot 4544 // easily find all of the users. 4545 if ((MI != nullptr || ShouldUpdateCC) && FlagsMayLiveOut) { 4546 for (MachineBasicBlock *Successor : CmpMBB.successors()) 4547 if (Successor->isLiveIn(X86::EFLAGS)) 4548 return false; 4549 } 4550 4551 // The instruction to be updated is either Sub or MI. 4552 assert((MI == nullptr || Sub == nullptr) && "Should not have Sub and MI set"); 4553 Sub = MI != nullptr ? MI : Sub; 4554 MachineBasicBlock *SubBB = Sub->getParent(); 4555 // Move Movr0Inst to the appropriate place before Sub. 4556 if (Movr0Inst) { 4557 // Only move within the same block so we don't accidentally move to a 4558 // block with higher execution frequency. 4559 if (&CmpMBB != SubBB) 4560 return false; 4561 // Look backwards until we find a def that doesn't use the current EFLAGS. 4562 MachineBasicBlock::reverse_iterator InsertI = Sub, 4563 InsertE = Sub->getParent()->rend(); 4564 for (; InsertI != InsertE; ++InsertI) { 4565 MachineInstr *Instr = &*InsertI; 4566 if (!Instr->readsRegister(X86::EFLAGS, TRI) && 4567 Instr->modifiesRegister(X86::EFLAGS, TRI)) { 4568 Movr0Inst->getParent()->remove(Movr0Inst); 4569 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr), 4570 Movr0Inst); 4571 break; 4572 } 4573 } 4574 if (InsertI == InsertE) 4575 return false; 4576 } 4577 4578 // Make sure Sub instruction defines EFLAGS and mark the def live. 4579 MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS); 4580 assert(FlagDef && "Unable to locate a def EFLAGS operand"); 4581 FlagDef->setIsDead(false); 4582 4583 CmpInstr.eraseFromParent(); 4584 4585 // Modify the condition code of instructions in OpsToUpdate. 4586 for (auto &Op : OpsToUpdate) { 4587 Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1) 4588 .setImm(Op.second); 4589 } 4590 // Add EFLAGS to block live-ins between CmpBB and block of flags producer. 4591 for (MachineBasicBlock *MBB = &CmpMBB; MBB != SubBB; 4592 MBB = *MBB->pred_begin()) { 4593 assert(MBB->pred_size() == 1 && "Expected exactly one predecessor"); 4594 if (!MBB->isLiveIn(X86::EFLAGS)) 4595 MBB->addLiveIn(X86::EFLAGS); 4596 } 4597 return true; 4598 } 4599 4600 /// Try to remove the load by folding it to a register 4601 /// operand at the use. We fold the load instructions if load defines a virtual 4602 /// register, the virtual register is used once in the same BB, and the 4603 /// instructions in-between do not load or store, and have no side effects. 4604 MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI, 4605 const MachineRegisterInfo *MRI, 4606 Register &FoldAsLoadDefReg, 4607 MachineInstr *&DefMI) const { 4608 // Check whether we can move DefMI here. 4609 DefMI = MRI->getVRegDef(FoldAsLoadDefReg); 4610 assert(DefMI); 4611 bool SawStore = false; 4612 if (!DefMI->isSafeToMove(nullptr, SawStore)) 4613 return nullptr; 4614 4615 // Collect information about virtual register operands of MI. 4616 SmallVector<unsigned, 1> SrcOperandIds; 4617 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 4618 MachineOperand &MO = MI.getOperand(i); 4619 if (!MO.isReg()) 4620 continue; 4621 Register Reg = MO.getReg(); 4622 if (Reg != FoldAsLoadDefReg) 4623 continue; 4624 // Do not fold if we have a subreg use or a def. 4625 if (MO.getSubReg() || MO.isDef()) 4626 return nullptr; 4627 SrcOperandIds.push_back(i); 4628 } 4629 if (SrcOperandIds.empty()) 4630 return nullptr; 4631 4632 // Check whether we can fold the def into SrcOperandId. 4633 if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) { 4634 FoldAsLoadDefReg = 0; 4635 return FoldMI; 4636 } 4637 4638 return nullptr; 4639 } 4640 4641 /// Expand a single-def pseudo instruction to a two-addr 4642 /// instruction with two undef reads of the register being defined. 4643 /// This is used for mapping: 4644 /// %xmm4 = V_SET0 4645 /// to: 4646 /// %xmm4 = PXORrr undef %xmm4, undef %xmm4 4647 /// 4648 static bool Expand2AddrUndef(MachineInstrBuilder &MIB, 4649 const MCInstrDesc &Desc) { 4650 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); 4651 Register Reg = MIB.getReg(0); 4652 MIB->setDesc(Desc); 4653 4654 // MachineInstr::addOperand() will insert explicit operands before any 4655 // implicit operands. 4656 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); 4657 // But we don't trust that. 4658 assert(MIB.getReg(1) == Reg && 4659 MIB.getReg(2) == Reg && "Misplaced operand"); 4660 return true; 4661 } 4662 4663 /// Expand a single-def pseudo instruction to a two-addr 4664 /// instruction with two %k0 reads. 4665 /// This is used for mapping: 4666 /// %k4 = K_SET1 4667 /// to: 4668 /// %k4 = KXNORrr %k0, %k0 4669 static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc, 4670 Register Reg) { 4671 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); 4672 MIB->setDesc(Desc); 4673 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); 4674 return true; 4675 } 4676 4677 static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, 4678 bool MinusOne) { 4679 MachineBasicBlock &MBB = *MIB->getParent(); 4680 const DebugLoc &DL = MIB->getDebugLoc(); 4681 Register Reg = MIB.getReg(0); 4682 4683 // Insert the XOR. 4684 BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg) 4685 .addReg(Reg, RegState::Undef) 4686 .addReg(Reg, RegState::Undef); 4687 4688 // Turn the pseudo into an INC or DEC. 4689 MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r)); 4690 MIB.addReg(Reg); 4691 4692 return true; 4693 } 4694 4695 static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB, 4696 const TargetInstrInfo &TII, 4697 const X86Subtarget &Subtarget) { 4698 MachineBasicBlock &MBB = *MIB->getParent(); 4699 const DebugLoc &DL = MIB->getDebugLoc(); 4700 int64_t Imm = MIB->getOperand(1).getImm(); 4701 assert(Imm != 0 && "Using push/pop for 0 is not efficient."); 4702 MachineBasicBlock::iterator I = MIB.getInstr(); 4703 4704 int StackAdjustment; 4705 4706 if (Subtarget.is64Bit()) { 4707 assert(MIB->getOpcode() == X86::MOV64ImmSExti8 || 4708 MIB->getOpcode() == X86::MOV32ImmSExti8); 4709 4710 // Can't use push/pop lowering if the function might write to the red zone. 4711 X86MachineFunctionInfo *X86FI = 4712 MBB.getParent()->getInfo<X86MachineFunctionInfo>(); 4713 if (X86FI->getUsesRedZone()) { 4714 MIB->setDesc(TII.get(MIB->getOpcode() == 4715 X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri)); 4716 return true; 4717 } 4718 4719 // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and 4720 // widen the register if necessary. 4721 StackAdjustment = 8; 4722 BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm); 4723 MIB->setDesc(TII.get(X86::POP64r)); 4724 MIB->getOperand(0) 4725 .setReg(getX86SubSuperRegister(MIB.getReg(0), 64)); 4726 } else { 4727 assert(MIB->getOpcode() == X86::MOV32ImmSExti8); 4728 StackAdjustment = 4; 4729 BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm); 4730 MIB->setDesc(TII.get(X86::POP32r)); 4731 } 4732 MIB->removeOperand(1); 4733 MIB->addImplicitDefUseOperands(*MBB.getParent()); 4734 4735 // Build CFI if necessary. 4736 MachineFunction &MF = *MBB.getParent(); 4737 const X86FrameLowering *TFL = Subtarget.getFrameLowering(); 4738 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 4739 bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves(); 4740 bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI; 4741 if (EmitCFI) { 4742 TFL->BuildCFI(MBB, I, DL, 4743 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment)); 4744 TFL->BuildCFI(MBB, std::next(I), DL, 4745 MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment)); 4746 } 4747 4748 return true; 4749 } 4750 4751 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different 4752 // code sequence is needed for other targets. 4753 static void expandLoadStackGuard(MachineInstrBuilder &MIB, 4754 const TargetInstrInfo &TII) { 4755 MachineBasicBlock &MBB = *MIB->getParent(); 4756 const DebugLoc &DL = MIB->getDebugLoc(); 4757 Register Reg = MIB.getReg(0); 4758 const GlobalValue *GV = 4759 cast<GlobalValue>((*MIB->memoperands_begin())->getValue()); 4760 auto Flags = MachineMemOperand::MOLoad | 4761 MachineMemOperand::MODereferenceable | 4762 MachineMemOperand::MOInvariant; 4763 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 4764 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8)); 4765 MachineBasicBlock::iterator I = MIB.getInstr(); 4766 4767 BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1) 4768 .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0) 4769 .addMemOperand(MMO); 4770 MIB->setDebugLoc(DL); 4771 MIB->setDesc(TII.get(X86::MOV64rm)); 4772 MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0); 4773 } 4774 4775 static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) { 4776 MachineBasicBlock &MBB = *MIB->getParent(); 4777 MachineFunction &MF = *MBB.getParent(); 4778 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>(); 4779 const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); 4780 unsigned XorOp = 4781 MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr; 4782 MIB->setDesc(TII.get(XorOp)); 4783 MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef); 4784 return true; 4785 } 4786 4787 // This is used to handle spills for 128/256-bit registers when we have AVX512, 4788 // but not VLX. If it uses an extended register we need to use an instruction 4789 // that loads the lower 128/256-bit, but is available with only AVX512F. 4790 static bool expandNOVLXLoad(MachineInstrBuilder &MIB, 4791 const TargetRegisterInfo *TRI, 4792 const MCInstrDesc &LoadDesc, 4793 const MCInstrDesc &BroadcastDesc, 4794 unsigned SubIdx) { 4795 Register DestReg = MIB.getReg(0); 4796 // Check if DestReg is XMM16-31 or YMM16-31. 4797 if (TRI->getEncodingValue(DestReg) < 16) { 4798 // We can use a normal VEX encoded load. 4799 MIB->setDesc(LoadDesc); 4800 } else { 4801 // Use a 128/256-bit VBROADCAST instruction. 4802 MIB->setDesc(BroadcastDesc); 4803 // Change the destination to a 512-bit register. 4804 DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass); 4805 MIB->getOperand(0).setReg(DestReg); 4806 } 4807 return true; 4808 } 4809 4810 // This is used to handle spills for 128/256-bit registers when we have AVX512, 4811 // but not VLX. If it uses an extended register we need to use an instruction 4812 // that stores the lower 128/256-bit, but is available with only AVX512F. 4813 static bool expandNOVLXStore(MachineInstrBuilder &MIB, 4814 const TargetRegisterInfo *TRI, 4815 const MCInstrDesc &StoreDesc, 4816 const MCInstrDesc &ExtractDesc, 4817 unsigned SubIdx) { 4818 Register SrcReg = MIB.getReg(X86::AddrNumOperands); 4819 // Check if DestReg is XMM16-31 or YMM16-31. 4820 if (TRI->getEncodingValue(SrcReg) < 16) { 4821 // We can use a normal VEX encoded store. 4822 MIB->setDesc(StoreDesc); 4823 } else { 4824 // Use a VEXTRACTF instruction. 4825 MIB->setDesc(ExtractDesc); 4826 // Change the destination to a 512-bit register. 4827 SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass); 4828 MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg); 4829 MIB.addImm(0x0); // Append immediate to extract from the lower bits. 4830 } 4831 4832 return true; 4833 } 4834 4835 static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) { 4836 MIB->setDesc(Desc); 4837 int64_t ShiftAmt = MIB->getOperand(2).getImm(); 4838 // Temporarily remove the immediate so we can add another source register. 4839 MIB->removeOperand(2); 4840 // Add the register. Don't copy the kill flag if there is one. 4841 MIB.addReg(MIB.getReg(1), 4842 getUndefRegState(MIB->getOperand(1).isUndef())); 4843 // Add back the immediate. 4844 MIB.addImm(ShiftAmt); 4845 return true; 4846 } 4847 4848 bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 4849 bool HasAVX = Subtarget.hasAVX(); 4850 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 4851 switch (MI.getOpcode()) { 4852 case X86::MOV32r0: 4853 return Expand2AddrUndef(MIB, get(X86::XOR32rr)); 4854 case X86::MOV32r1: 4855 return expandMOV32r1(MIB, *this, /*MinusOne=*/ false); 4856 case X86::MOV32r_1: 4857 return expandMOV32r1(MIB, *this, /*MinusOne=*/ true); 4858 case X86::MOV32ImmSExti8: 4859 case X86::MOV64ImmSExti8: 4860 return ExpandMOVImmSExti8(MIB, *this, Subtarget); 4861 case X86::SETB_C32r: 4862 return Expand2AddrUndef(MIB, get(X86::SBB32rr)); 4863 case X86::SETB_C64r: 4864 return Expand2AddrUndef(MIB, get(X86::SBB64rr)); 4865 case X86::MMX_SET0: 4866 return Expand2AddrUndef(MIB, get(X86::MMX_PXORrr)); 4867 case X86::V_SET0: 4868 case X86::FsFLD0SS: 4869 case X86::FsFLD0SD: 4870 case X86::FsFLD0F128: 4871 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr)); 4872 case X86::AVX_SET0: { 4873 assert(HasAVX && "AVX not supported"); 4874 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4875 Register SrcReg = MIB.getReg(0); 4876 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm); 4877 MIB->getOperand(0).setReg(XReg); 4878 Expand2AddrUndef(MIB, get(X86::VXORPSrr)); 4879 MIB.addReg(SrcReg, RegState::ImplicitDefine); 4880 return true; 4881 } 4882 case X86::AVX512_128_SET0: 4883 case X86::AVX512_FsFLD0SH: 4884 case X86::AVX512_FsFLD0SS: 4885 case X86::AVX512_FsFLD0SD: 4886 case X86::AVX512_FsFLD0F128: { 4887 bool HasVLX = Subtarget.hasVLX(); 4888 Register SrcReg = MIB.getReg(0); 4889 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4890 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) 4891 return Expand2AddrUndef(MIB, 4892 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); 4893 // Extended register without VLX. Use a larger XOR. 4894 SrcReg = 4895 TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass); 4896 MIB->getOperand(0).setReg(SrcReg); 4897 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); 4898 } 4899 case X86::AVX512_256_SET0: 4900 case X86::AVX512_512_SET0: { 4901 bool HasVLX = Subtarget.hasVLX(); 4902 Register SrcReg = MIB.getReg(0); 4903 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4904 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) { 4905 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm); 4906 MIB->getOperand(0).setReg(XReg); 4907 Expand2AddrUndef(MIB, 4908 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); 4909 MIB.addReg(SrcReg, RegState::ImplicitDefine); 4910 return true; 4911 } 4912 if (MI.getOpcode() == X86::AVX512_256_SET0) { 4913 // No VLX so we must reference a zmm. 4914 unsigned ZReg = 4915 TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass); 4916 MIB->getOperand(0).setReg(ZReg); 4917 } 4918 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); 4919 } 4920 case X86::V_SETALLONES: 4921 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr)); 4922 case X86::AVX2_SETALLONES: 4923 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr)); 4924 case X86::AVX1_SETALLONES: { 4925 Register Reg = MIB.getReg(0); 4926 // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS. 4927 MIB->setDesc(get(X86::VCMPPSYrri)); 4928 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf); 4929 return true; 4930 } 4931 case X86::AVX512_512_SETALLONES: { 4932 Register Reg = MIB.getReg(0); 4933 MIB->setDesc(get(X86::VPTERNLOGDZrri)); 4934 // VPTERNLOGD needs 3 register inputs and an immediate. 4935 // 0xff will return 1s for any input. 4936 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef) 4937 .addReg(Reg, RegState::Undef).addImm(0xff); 4938 return true; 4939 } 4940 case X86::AVX512_512_SEXT_MASK_32: 4941 case X86::AVX512_512_SEXT_MASK_64: { 4942 Register Reg = MIB.getReg(0); 4943 Register MaskReg = MIB.getReg(1); 4944 unsigned MaskState = getRegState(MIB->getOperand(1)); 4945 unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ? 4946 X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz; 4947 MI.removeOperand(1); 4948 MIB->setDesc(get(Opc)); 4949 // VPTERNLOG needs 3 register inputs and an immediate. 4950 // 0xff will return 1s for any input. 4951 MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState) 4952 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff); 4953 return true; 4954 } 4955 case X86::VMOVAPSZ128rm_NOVLX: 4956 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm), 4957 get(X86::VBROADCASTF32X4rm), X86::sub_xmm); 4958 case X86::VMOVUPSZ128rm_NOVLX: 4959 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm), 4960 get(X86::VBROADCASTF32X4rm), X86::sub_xmm); 4961 case X86::VMOVAPSZ256rm_NOVLX: 4962 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm), 4963 get(X86::VBROADCASTF64X4rm), X86::sub_ymm); 4964 case X86::VMOVUPSZ256rm_NOVLX: 4965 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm), 4966 get(X86::VBROADCASTF64X4rm), X86::sub_ymm); 4967 case X86::VMOVAPSZ128mr_NOVLX: 4968 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr), 4969 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm); 4970 case X86::VMOVUPSZ128mr_NOVLX: 4971 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr), 4972 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm); 4973 case X86::VMOVAPSZ256mr_NOVLX: 4974 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr), 4975 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm); 4976 case X86::VMOVUPSZ256mr_NOVLX: 4977 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr), 4978 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm); 4979 case X86::MOV32ri64: { 4980 Register Reg = MIB.getReg(0); 4981 Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit); 4982 MI.setDesc(get(X86::MOV32ri)); 4983 MIB->getOperand(0).setReg(Reg32); 4984 MIB.addReg(Reg, RegState::ImplicitDefine); 4985 return true; 4986 } 4987 4988 // KNL does not recognize dependency-breaking idioms for mask registers, 4989 // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1. 4990 // Using %k0 as the undef input register is a performance heuristic based 4991 // on the assumption that %k0 is used less frequently than the other mask 4992 // registers, since it is not usable as a write mask. 4993 // FIXME: A more advanced approach would be to choose the best input mask 4994 // register based on context. 4995 case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0); 4996 case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0); 4997 case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0); 4998 case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0); 4999 case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0); 5000 case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0); 5001 case TargetOpcode::LOAD_STACK_GUARD: 5002 expandLoadStackGuard(MIB, *this); 5003 return true; 5004 case X86::XOR64_FP: 5005 case X86::XOR32_FP: 5006 return expandXorFP(MIB, *this); 5007 case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8)); 5008 case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8)); 5009 case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8)); 5010 case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8)); 5011 case X86::ADD8rr_DB: MIB->setDesc(get(X86::OR8rr)); break; 5012 case X86::ADD16rr_DB: MIB->setDesc(get(X86::OR16rr)); break; 5013 case X86::ADD32rr_DB: MIB->setDesc(get(X86::OR32rr)); break; 5014 case X86::ADD64rr_DB: MIB->setDesc(get(X86::OR64rr)); break; 5015 case X86::ADD8ri_DB: MIB->setDesc(get(X86::OR8ri)); break; 5016 case X86::ADD16ri_DB: MIB->setDesc(get(X86::OR16ri)); break; 5017 case X86::ADD32ri_DB: MIB->setDesc(get(X86::OR32ri)); break; 5018 case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break; 5019 case X86::ADD16ri8_DB: MIB->setDesc(get(X86::OR16ri8)); break; 5020 case X86::ADD32ri8_DB: MIB->setDesc(get(X86::OR32ri8)); break; 5021 case X86::ADD64ri8_DB: MIB->setDesc(get(X86::OR64ri8)); break; 5022 } 5023 return false; 5024 } 5025 5026 /// Return true for all instructions that only update 5027 /// the first 32 or 64-bits of the destination register and leave the rest 5028 /// unmodified. This can be used to avoid folding loads if the instructions 5029 /// only update part of the destination register, and the non-updated part is 5030 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these 5031 /// instructions breaks the partial register dependency and it can improve 5032 /// performance. e.g.: 5033 /// 5034 /// movss (%rdi), %xmm0 5035 /// cvtss2sd %xmm0, %xmm0 5036 /// 5037 /// Instead of 5038 /// cvtss2sd (%rdi), %xmm0 5039 /// 5040 /// FIXME: This should be turned into a TSFlags. 5041 /// 5042 static bool hasPartialRegUpdate(unsigned Opcode, 5043 const X86Subtarget &Subtarget, 5044 bool ForLoadFold = false) { 5045 switch (Opcode) { 5046 case X86::CVTSI2SSrr: 5047 case X86::CVTSI2SSrm: 5048 case X86::CVTSI642SSrr: 5049 case X86::CVTSI642SSrm: 5050 case X86::CVTSI2SDrr: 5051 case X86::CVTSI2SDrm: 5052 case X86::CVTSI642SDrr: 5053 case X86::CVTSI642SDrm: 5054 // Load folding won't effect the undef register update since the input is 5055 // a GPR. 5056 return !ForLoadFold; 5057 case X86::CVTSD2SSrr: 5058 case X86::CVTSD2SSrm: 5059 case X86::CVTSS2SDrr: 5060 case X86::CVTSS2SDrm: 5061 case X86::MOVHPDrm: 5062 case X86::MOVHPSrm: 5063 case X86::MOVLPDrm: 5064 case X86::MOVLPSrm: 5065 case X86::RCPSSr: 5066 case X86::RCPSSm: 5067 case X86::RCPSSr_Int: 5068 case X86::RCPSSm_Int: 5069 case X86::ROUNDSDr: 5070 case X86::ROUNDSDm: 5071 case X86::ROUNDSSr: 5072 case X86::ROUNDSSm: 5073 case X86::RSQRTSSr: 5074 case X86::RSQRTSSm: 5075 case X86::RSQRTSSr_Int: 5076 case X86::RSQRTSSm_Int: 5077 case X86::SQRTSSr: 5078 case X86::SQRTSSm: 5079 case X86::SQRTSSr_Int: 5080 case X86::SQRTSSm_Int: 5081 case X86::SQRTSDr: 5082 case X86::SQRTSDm: 5083 case X86::SQRTSDr_Int: 5084 case X86::SQRTSDm_Int: 5085 return true; 5086 case X86::VFCMULCPHZ128rm: 5087 case X86::VFCMULCPHZ128rmb: 5088 case X86::VFCMULCPHZ128rmbkz: 5089 case X86::VFCMULCPHZ128rmkz: 5090 case X86::VFCMULCPHZ128rr: 5091 case X86::VFCMULCPHZ128rrkz: 5092 case X86::VFCMULCPHZ256rm: 5093 case X86::VFCMULCPHZ256rmb: 5094 case X86::VFCMULCPHZ256rmbkz: 5095 case X86::VFCMULCPHZ256rmkz: 5096 case X86::VFCMULCPHZ256rr: 5097 case X86::VFCMULCPHZ256rrkz: 5098 case X86::VFCMULCPHZrm: 5099 case X86::VFCMULCPHZrmb: 5100 case X86::VFCMULCPHZrmbkz: 5101 case X86::VFCMULCPHZrmkz: 5102 case X86::VFCMULCPHZrr: 5103 case X86::VFCMULCPHZrrb: 5104 case X86::VFCMULCPHZrrbkz: 5105 case X86::VFCMULCPHZrrkz: 5106 case X86::VFMULCPHZ128rm: 5107 case X86::VFMULCPHZ128rmb: 5108 case X86::VFMULCPHZ128rmbkz: 5109 case X86::VFMULCPHZ128rmkz: 5110 case X86::VFMULCPHZ128rr: 5111 case X86::VFMULCPHZ128rrkz: 5112 case X86::VFMULCPHZ256rm: 5113 case X86::VFMULCPHZ256rmb: 5114 case X86::VFMULCPHZ256rmbkz: 5115 case X86::VFMULCPHZ256rmkz: 5116 case X86::VFMULCPHZ256rr: 5117 case X86::VFMULCPHZ256rrkz: 5118 case X86::VFMULCPHZrm: 5119 case X86::VFMULCPHZrmb: 5120 case X86::VFMULCPHZrmbkz: 5121 case X86::VFMULCPHZrmkz: 5122 case X86::VFMULCPHZrr: 5123 case X86::VFMULCPHZrrb: 5124 case X86::VFMULCPHZrrbkz: 5125 case X86::VFMULCPHZrrkz: 5126 case X86::VFCMULCSHZrm: 5127 case X86::VFCMULCSHZrmkz: 5128 case X86::VFCMULCSHZrr: 5129 case X86::VFCMULCSHZrrb: 5130 case X86::VFCMULCSHZrrbkz: 5131 case X86::VFCMULCSHZrrkz: 5132 case X86::VFMULCSHZrm: 5133 case X86::VFMULCSHZrmkz: 5134 case X86::VFMULCSHZrr: 5135 case X86::VFMULCSHZrrb: 5136 case X86::VFMULCSHZrrbkz: 5137 case X86::VFMULCSHZrrkz: 5138 return Subtarget.hasMULCFalseDeps(); 5139 case X86::VPERMDYrm: 5140 case X86::VPERMDYrr: 5141 case X86::VPERMQYmi: 5142 case X86::VPERMQYri: 5143 case X86::VPERMPSYrm: 5144 case X86::VPERMPSYrr: 5145 case X86::VPERMPDYmi: 5146 case X86::VPERMPDYri: 5147 case X86::VPERMDZ256rm: 5148 case X86::VPERMDZ256rmb: 5149 case X86::VPERMDZ256rmbkz: 5150 case X86::VPERMDZ256rmkz: 5151 case X86::VPERMDZ256rr: 5152 case X86::VPERMDZ256rrkz: 5153 case X86::VPERMDZrm: 5154 case X86::VPERMDZrmb: 5155 case X86::VPERMDZrmbkz: 5156 case X86::VPERMDZrmkz: 5157 case X86::VPERMDZrr: 5158 case X86::VPERMDZrrkz: 5159 case X86::VPERMQZ256mbi: 5160 case X86::VPERMQZ256mbikz: 5161 case X86::VPERMQZ256mi: 5162 case X86::VPERMQZ256mikz: 5163 case X86::VPERMQZ256ri: 5164 case X86::VPERMQZ256rikz: 5165 case X86::VPERMQZ256rm: 5166 case X86::VPERMQZ256rmb: 5167 case X86::VPERMQZ256rmbkz: 5168 case X86::VPERMQZ256rmkz: 5169 case X86::VPERMQZ256rr: 5170 case X86::VPERMQZ256rrkz: 5171 case X86::VPERMQZmbi: 5172 case X86::VPERMQZmbikz: 5173 case X86::VPERMQZmi: 5174 case X86::VPERMQZmikz: 5175 case X86::VPERMQZri: 5176 case X86::VPERMQZrikz: 5177 case X86::VPERMQZrm: 5178 case X86::VPERMQZrmb: 5179 case X86::VPERMQZrmbkz: 5180 case X86::VPERMQZrmkz: 5181 case X86::VPERMQZrr: 5182 case X86::VPERMQZrrkz: 5183 case X86::VPERMPSZ256rm: 5184 case X86::VPERMPSZ256rmb: 5185 case X86::VPERMPSZ256rmbkz: 5186 case X86::VPERMPSZ256rmkz: 5187 case X86::VPERMPSZ256rr: 5188 case X86::VPERMPSZ256rrkz: 5189 case X86::VPERMPSZrm: 5190 case X86::VPERMPSZrmb: 5191 case X86::VPERMPSZrmbkz: 5192 case X86::VPERMPSZrmkz: 5193 case X86::VPERMPSZrr: 5194 case X86::VPERMPSZrrkz: 5195 case X86::VPERMPDZ256mbi: 5196 case X86::VPERMPDZ256mbikz: 5197 case X86::VPERMPDZ256mi: 5198 case X86::VPERMPDZ256mikz: 5199 case X86::VPERMPDZ256ri: 5200 case X86::VPERMPDZ256rikz: 5201 case X86::VPERMPDZ256rm: 5202 case X86::VPERMPDZ256rmb: 5203 case X86::VPERMPDZ256rmbkz: 5204 case X86::VPERMPDZ256rmkz: 5205 case X86::VPERMPDZ256rr: 5206 case X86::VPERMPDZ256rrkz: 5207 case X86::VPERMPDZmbi: 5208 case X86::VPERMPDZmbikz: 5209 case X86::VPERMPDZmi: 5210 case X86::VPERMPDZmikz: 5211 case X86::VPERMPDZri: 5212 case X86::VPERMPDZrikz: 5213 case X86::VPERMPDZrm: 5214 case X86::VPERMPDZrmb: 5215 case X86::VPERMPDZrmbkz: 5216 case X86::VPERMPDZrmkz: 5217 case X86::VPERMPDZrr: 5218 case X86::VPERMPDZrrkz: 5219 return Subtarget.hasPERMFalseDeps(); 5220 case X86::VRANGEPDZ128rmbi: 5221 case X86::VRANGEPDZ128rmbikz: 5222 case X86::VRANGEPDZ128rmi: 5223 case X86::VRANGEPDZ128rmikz: 5224 case X86::VRANGEPDZ128rri: 5225 case X86::VRANGEPDZ128rrikz: 5226 case X86::VRANGEPDZ256rmbi: 5227 case X86::VRANGEPDZ256rmbikz: 5228 case X86::VRANGEPDZ256rmi: 5229 case X86::VRANGEPDZ256rmikz: 5230 case X86::VRANGEPDZ256rri: 5231 case X86::VRANGEPDZ256rrikz: 5232 case X86::VRANGEPDZrmbi: 5233 case X86::VRANGEPDZrmbikz: 5234 case X86::VRANGEPDZrmi: 5235 case X86::VRANGEPDZrmikz: 5236 case X86::VRANGEPDZrri: 5237 case X86::VRANGEPDZrrib: 5238 case X86::VRANGEPDZrribkz: 5239 case X86::VRANGEPDZrrikz: 5240 case X86::VRANGEPSZ128rmbi: 5241 case X86::VRANGEPSZ128rmbikz: 5242 case X86::VRANGEPSZ128rmi: 5243 case X86::VRANGEPSZ128rmikz: 5244 case X86::VRANGEPSZ128rri: 5245 case X86::VRANGEPSZ128rrikz: 5246 case X86::VRANGEPSZ256rmbi: 5247 case X86::VRANGEPSZ256rmbikz: 5248 case X86::VRANGEPSZ256rmi: 5249 case X86::VRANGEPSZ256rmikz: 5250 case X86::VRANGEPSZ256rri: 5251 case X86::VRANGEPSZ256rrikz: 5252 case X86::VRANGEPSZrmbi: 5253 case X86::VRANGEPSZrmbikz: 5254 case X86::VRANGEPSZrmi: 5255 case X86::VRANGEPSZrmikz: 5256 case X86::VRANGEPSZrri: 5257 case X86::VRANGEPSZrrib: 5258 case X86::VRANGEPSZrribkz: 5259 case X86::VRANGEPSZrrikz: 5260 case X86::VRANGESDZrmi: 5261 case X86::VRANGESDZrmikz: 5262 case X86::VRANGESDZrri: 5263 case X86::VRANGESDZrrib: 5264 case X86::VRANGESDZrribkz: 5265 case X86::VRANGESDZrrikz: 5266 case X86::VRANGESSZrmi: 5267 case X86::VRANGESSZrmikz: 5268 case X86::VRANGESSZrri: 5269 case X86::VRANGESSZrrib: 5270 case X86::VRANGESSZrribkz: 5271 case X86::VRANGESSZrrikz: 5272 return Subtarget.hasRANGEFalseDeps(); 5273 case X86::VGETMANTSSZrmi: 5274 case X86::VGETMANTSSZrmikz: 5275 case X86::VGETMANTSSZrri: 5276 case X86::VGETMANTSSZrrib: 5277 case X86::VGETMANTSSZrribkz: 5278 case X86::VGETMANTSSZrrikz: 5279 case X86::VGETMANTSDZrmi: 5280 case X86::VGETMANTSDZrmikz: 5281 case X86::VGETMANTSDZrri: 5282 case X86::VGETMANTSDZrrib: 5283 case X86::VGETMANTSDZrribkz: 5284 case X86::VGETMANTSDZrrikz: 5285 case X86::VGETMANTSHZrmi: 5286 case X86::VGETMANTSHZrmikz: 5287 case X86::VGETMANTSHZrri: 5288 case X86::VGETMANTSHZrrib: 5289 case X86::VGETMANTSHZrribkz: 5290 case X86::VGETMANTSHZrrikz: 5291 case X86::VGETMANTPSZ128rmbi: 5292 case X86::VGETMANTPSZ128rmbikz: 5293 case X86::VGETMANTPSZ128rmi: 5294 case X86::VGETMANTPSZ128rmikz: 5295 case X86::VGETMANTPSZ256rmbi: 5296 case X86::VGETMANTPSZ256rmbikz: 5297 case X86::VGETMANTPSZ256rmi: 5298 case X86::VGETMANTPSZ256rmikz: 5299 case X86::VGETMANTPSZrmbi: 5300 case X86::VGETMANTPSZrmbikz: 5301 case X86::VGETMANTPSZrmi: 5302 case X86::VGETMANTPSZrmikz: 5303 case X86::VGETMANTPDZ128rmbi: 5304 case X86::VGETMANTPDZ128rmbikz: 5305 case X86::VGETMANTPDZ128rmi: 5306 case X86::VGETMANTPDZ128rmikz: 5307 case X86::VGETMANTPDZ256rmbi: 5308 case X86::VGETMANTPDZ256rmbikz: 5309 case X86::VGETMANTPDZ256rmi: 5310 case X86::VGETMANTPDZ256rmikz: 5311 case X86::VGETMANTPDZrmbi: 5312 case X86::VGETMANTPDZrmbikz: 5313 case X86::VGETMANTPDZrmi: 5314 case X86::VGETMANTPDZrmikz: 5315 return Subtarget.hasGETMANTFalseDeps(); 5316 case X86::VPMULLQZ128rm: 5317 case X86::VPMULLQZ128rmb: 5318 case X86::VPMULLQZ128rmbkz: 5319 case X86::VPMULLQZ128rmkz: 5320 case X86::VPMULLQZ128rr: 5321 case X86::VPMULLQZ128rrkz: 5322 case X86::VPMULLQZ256rm: 5323 case X86::VPMULLQZ256rmb: 5324 case X86::VPMULLQZ256rmbkz: 5325 case X86::VPMULLQZ256rmkz: 5326 case X86::VPMULLQZ256rr: 5327 case X86::VPMULLQZ256rrkz: 5328 case X86::VPMULLQZrm: 5329 case X86::VPMULLQZrmb: 5330 case X86::VPMULLQZrmbkz: 5331 case X86::VPMULLQZrmkz: 5332 case X86::VPMULLQZrr: 5333 case X86::VPMULLQZrrkz: 5334 return Subtarget.hasMULLQFalseDeps(); 5335 // GPR 5336 case X86::POPCNT32rm: 5337 case X86::POPCNT32rr: 5338 case X86::POPCNT64rm: 5339 case X86::POPCNT64rr: 5340 return Subtarget.hasPOPCNTFalseDeps(); 5341 case X86::LZCNT32rm: 5342 case X86::LZCNT32rr: 5343 case X86::LZCNT64rm: 5344 case X86::LZCNT64rr: 5345 case X86::TZCNT32rm: 5346 case X86::TZCNT32rr: 5347 case X86::TZCNT64rm: 5348 case X86::TZCNT64rr: 5349 return Subtarget.hasLZCNTFalseDeps(); 5350 } 5351 5352 return false; 5353 } 5354 5355 /// Inform the BreakFalseDeps pass how many idle 5356 /// instructions we would like before a partial register update. 5357 unsigned X86InstrInfo::getPartialRegUpdateClearance( 5358 const MachineInstr &MI, unsigned OpNum, 5359 const TargetRegisterInfo *TRI) const { 5360 if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget)) 5361 return 0; 5362 5363 // If MI is marked as reading Reg, the partial register update is wanted. 5364 const MachineOperand &MO = MI.getOperand(0); 5365 Register Reg = MO.getReg(); 5366 if (Reg.isVirtual()) { 5367 if (MO.readsReg() || MI.readsVirtualRegister(Reg)) 5368 return 0; 5369 } else { 5370 if (MI.readsRegister(Reg, TRI)) 5371 return 0; 5372 } 5373 5374 // If any instructions in the clearance range are reading Reg, insert a 5375 // dependency breaking instruction, which is inexpensive and is likely to 5376 // be hidden in other instruction's cycles. 5377 return PartialRegUpdateClearance; 5378 } 5379 5380 // Return true for any instruction the copies the high bits of the first source 5381 // operand into the unused high bits of the destination operand. 5382 // Also returns true for instructions that have two inputs where one may 5383 // be undef and we want it to use the same register as the other input. 5384 static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum, 5385 bool ForLoadFold = false) { 5386 // Set the OpNum parameter to the first source operand. 5387 switch (Opcode) { 5388 case X86::MMX_PUNPCKHBWrr: 5389 case X86::MMX_PUNPCKHWDrr: 5390 case X86::MMX_PUNPCKHDQrr: 5391 case X86::MMX_PUNPCKLBWrr: 5392 case X86::MMX_PUNPCKLWDrr: 5393 case X86::MMX_PUNPCKLDQrr: 5394 case X86::MOVHLPSrr: 5395 case X86::PACKSSWBrr: 5396 case X86::PACKUSWBrr: 5397 case X86::PACKSSDWrr: 5398 case X86::PACKUSDWrr: 5399 case X86::PUNPCKHBWrr: 5400 case X86::PUNPCKLBWrr: 5401 case X86::PUNPCKHWDrr: 5402 case X86::PUNPCKLWDrr: 5403 case X86::PUNPCKHDQrr: 5404 case X86::PUNPCKLDQrr: 5405 case X86::PUNPCKHQDQrr: 5406 case X86::PUNPCKLQDQrr: 5407 case X86::SHUFPDrri: 5408 case X86::SHUFPSrri: 5409 // These instructions are sometimes used with an undef first or second 5410 // source. Return true here so BreakFalseDeps will assign this source to the 5411 // same register as the first source to avoid a false dependency. 5412 // Operand 1 of these instructions is tied so they're separate from their 5413 // VEX counterparts. 5414 return OpNum == 2 && !ForLoadFold; 5415 5416 case X86::VMOVLHPSrr: 5417 case X86::VMOVLHPSZrr: 5418 case X86::VPACKSSWBrr: 5419 case X86::VPACKUSWBrr: 5420 case X86::VPACKSSDWrr: 5421 case X86::VPACKUSDWrr: 5422 case X86::VPACKSSWBZ128rr: 5423 case X86::VPACKUSWBZ128rr: 5424 case X86::VPACKSSDWZ128rr: 5425 case X86::VPACKUSDWZ128rr: 5426 case X86::VPERM2F128rr: 5427 case X86::VPERM2I128rr: 5428 case X86::VSHUFF32X4Z256rri: 5429 case X86::VSHUFF32X4Zrri: 5430 case X86::VSHUFF64X2Z256rri: 5431 case X86::VSHUFF64X2Zrri: 5432 case X86::VSHUFI32X4Z256rri: 5433 case X86::VSHUFI32X4Zrri: 5434 case X86::VSHUFI64X2Z256rri: 5435 case X86::VSHUFI64X2Zrri: 5436 case X86::VPUNPCKHBWrr: 5437 case X86::VPUNPCKLBWrr: 5438 case X86::VPUNPCKHBWYrr: 5439 case X86::VPUNPCKLBWYrr: 5440 case X86::VPUNPCKHBWZ128rr: 5441 case X86::VPUNPCKLBWZ128rr: 5442 case X86::VPUNPCKHBWZ256rr: 5443 case X86::VPUNPCKLBWZ256rr: 5444 case X86::VPUNPCKHBWZrr: 5445 case X86::VPUNPCKLBWZrr: 5446 case X86::VPUNPCKHWDrr: 5447 case X86::VPUNPCKLWDrr: 5448 case X86::VPUNPCKHWDYrr: 5449 case X86::VPUNPCKLWDYrr: 5450 case X86::VPUNPCKHWDZ128rr: 5451 case X86::VPUNPCKLWDZ128rr: 5452 case X86::VPUNPCKHWDZ256rr: 5453 case X86::VPUNPCKLWDZ256rr: 5454 case X86::VPUNPCKHWDZrr: 5455 case X86::VPUNPCKLWDZrr: 5456 case X86::VPUNPCKHDQrr: 5457 case X86::VPUNPCKLDQrr: 5458 case X86::VPUNPCKHDQYrr: 5459 case X86::VPUNPCKLDQYrr: 5460 case X86::VPUNPCKHDQZ128rr: 5461 case X86::VPUNPCKLDQZ128rr: 5462 case X86::VPUNPCKHDQZ256rr: 5463 case X86::VPUNPCKLDQZ256rr: 5464 case X86::VPUNPCKHDQZrr: 5465 case X86::VPUNPCKLDQZrr: 5466 case X86::VPUNPCKHQDQrr: 5467 case X86::VPUNPCKLQDQrr: 5468 case X86::VPUNPCKHQDQYrr: 5469 case X86::VPUNPCKLQDQYrr: 5470 case X86::VPUNPCKHQDQZ128rr: 5471 case X86::VPUNPCKLQDQZ128rr: 5472 case X86::VPUNPCKHQDQZ256rr: 5473 case X86::VPUNPCKLQDQZ256rr: 5474 case X86::VPUNPCKHQDQZrr: 5475 case X86::VPUNPCKLQDQZrr: 5476 // These instructions are sometimes used with an undef first or second 5477 // source. Return true here so BreakFalseDeps will assign this source to the 5478 // same register as the first source to avoid a false dependency. 5479 return (OpNum == 1 || OpNum == 2) && !ForLoadFold; 5480 5481 case X86::VCVTSI2SSrr: 5482 case X86::VCVTSI2SSrm: 5483 case X86::VCVTSI2SSrr_Int: 5484 case X86::VCVTSI2SSrm_Int: 5485 case X86::VCVTSI642SSrr: 5486 case X86::VCVTSI642SSrm: 5487 case X86::VCVTSI642SSrr_Int: 5488 case X86::VCVTSI642SSrm_Int: 5489 case X86::VCVTSI2SDrr: 5490 case X86::VCVTSI2SDrm: 5491 case X86::VCVTSI2SDrr_Int: 5492 case X86::VCVTSI2SDrm_Int: 5493 case X86::VCVTSI642SDrr: 5494 case X86::VCVTSI642SDrm: 5495 case X86::VCVTSI642SDrr_Int: 5496 case X86::VCVTSI642SDrm_Int: 5497 // AVX-512 5498 case X86::VCVTSI2SSZrr: 5499 case X86::VCVTSI2SSZrm: 5500 case X86::VCVTSI2SSZrr_Int: 5501 case X86::VCVTSI2SSZrrb_Int: 5502 case X86::VCVTSI2SSZrm_Int: 5503 case X86::VCVTSI642SSZrr: 5504 case X86::VCVTSI642SSZrm: 5505 case X86::VCVTSI642SSZrr_Int: 5506 case X86::VCVTSI642SSZrrb_Int: 5507 case X86::VCVTSI642SSZrm_Int: 5508 case X86::VCVTSI2SDZrr: 5509 case X86::VCVTSI2SDZrm: 5510 case X86::VCVTSI2SDZrr_Int: 5511 case X86::VCVTSI2SDZrm_Int: 5512 case X86::VCVTSI642SDZrr: 5513 case X86::VCVTSI642SDZrm: 5514 case X86::VCVTSI642SDZrr_Int: 5515 case X86::VCVTSI642SDZrrb_Int: 5516 case X86::VCVTSI642SDZrm_Int: 5517 case X86::VCVTUSI2SSZrr: 5518 case X86::VCVTUSI2SSZrm: 5519 case X86::VCVTUSI2SSZrr_Int: 5520 case X86::VCVTUSI2SSZrrb_Int: 5521 case X86::VCVTUSI2SSZrm_Int: 5522 case X86::VCVTUSI642SSZrr: 5523 case X86::VCVTUSI642SSZrm: 5524 case X86::VCVTUSI642SSZrr_Int: 5525 case X86::VCVTUSI642SSZrrb_Int: 5526 case X86::VCVTUSI642SSZrm_Int: 5527 case X86::VCVTUSI2SDZrr: 5528 case X86::VCVTUSI2SDZrm: 5529 case X86::VCVTUSI2SDZrr_Int: 5530 case X86::VCVTUSI2SDZrm_Int: 5531 case X86::VCVTUSI642SDZrr: 5532 case X86::VCVTUSI642SDZrm: 5533 case X86::VCVTUSI642SDZrr_Int: 5534 case X86::VCVTUSI642SDZrrb_Int: 5535 case X86::VCVTUSI642SDZrm_Int: 5536 case X86::VCVTSI2SHZrr: 5537 case X86::VCVTSI2SHZrm: 5538 case X86::VCVTSI2SHZrr_Int: 5539 case X86::VCVTSI2SHZrrb_Int: 5540 case X86::VCVTSI2SHZrm_Int: 5541 case X86::VCVTSI642SHZrr: 5542 case X86::VCVTSI642SHZrm: 5543 case X86::VCVTSI642SHZrr_Int: 5544 case X86::VCVTSI642SHZrrb_Int: 5545 case X86::VCVTSI642SHZrm_Int: 5546 case X86::VCVTUSI2SHZrr: 5547 case X86::VCVTUSI2SHZrm: 5548 case X86::VCVTUSI2SHZrr_Int: 5549 case X86::VCVTUSI2SHZrrb_Int: 5550 case X86::VCVTUSI2SHZrm_Int: 5551 case X86::VCVTUSI642SHZrr: 5552 case X86::VCVTUSI642SHZrm: 5553 case X86::VCVTUSI642SHZrr_Int: 5554 case X86::VCVTUSI642SHZrrb_Int: 5555 case X86::VCVTUSI642SHZrm_Int: 5556 // Load folding won't effect the undef register update since the input is 5557 // a GPR. 5558 return OpNum == 1 && !ForLoadFold; 5559 case X86::VCVTSD2SSrr: 5560 case X86::VCVTSD2SSrm: 5561 case X86::VCVTSD2SSrr_Int: 5562 case X86::VCVTSD2SSrm_Int: 5563 case X86::VCVTSS2SDrr: 5564 case X86::VCVTSS2SDrm: 5565 case X86::VCVTSS2SDrr_Int: 5566 case X86::VCVTSS2SDrm_Int: 5567 case X86::VRCPSSr: 5568 case X86::VRCPSSr_Int: 5569 case X86::VRCPSSm: 5570 case X86::VRCPSSm_Int: 5571 case X86::VROUNDSDr: 5572 case X86::VROUNDSDm: 5573 case X86::VROUNDSDr_Int: 5574 case X86::VROUNDSDm_Int: 5575 case X86::VROUNDSSr: 5576 case X86::VROUNDSSm: 5577 case X86::VROUNDSSr_Int: 5578 case X86::VROUNDSSm_Int: 5579 case X86::VRSQRTSSr: 5580 case X86::VRSQRTSSr_Int: 5581 case X86::VRSQRTSSm: 5582 case X86::VRSQRTSSm_Int: 5583 case X86::VSQRTSSr: 5584 case X86::VSQRTSSr_Int: 5585 case X86::VSQRTSSm: 5586 case X86::VSQRTSSm_Int: 5587 case X86::VSQRTSDr: 5588 case X86::VSQRTSDr_Int: 5589 case X86::VSQRTSDm: 5590 case X86::VSQRTSDm_Int: 5591 // AVX-512 5592 case X86::VCVTSD2SSZrr: 5593 case X86::VCVTSD2SSZrr_Int: 5594 case X86::VCVTSD2SSZrrb_Int: 5595 case X86::VCVTSD2SSZrm: 5596 case X86::VCVTSD2SSZrm_Int: 5597 case X86::VCVTSS2SDZrr: 5598 case X86::VCVTSS2SDZrr_Int: 5599 case X86::VCVTSS2SDZrrb_Int: 5600 case X86::VCVTSS2SDZrm: 5601 case X86::VCVTSS2SDZrm_Int: 5602 case X86::VGETEXPSDZr: 5603 case X86::VGETEXPSDZrb: 5604 case X86::VGETEXPSDZm: 5605 case X86::VGETEXPSSZr: 5606 case X86::VGETEXPSSZrb: 5607 case X86::VGETEXPSSZm: 5608 case X86::VGETMANTSDZrri: 5609 case X86::VGETMANTSDZrrib: 5610 case X86::VGETMANTSDZrmi: 5611 case X86::VGETMANTSSZrri: 5612 case X86::VGETMANTSSZrrib: 5613 case X86::VGETMANTSSZrmi: 5614 case X86::VRNDSCALESDZr: 5615 case X86::VRNDSCALESDZr_Int: 5616 case X86::VRNDSCALESDZrb_Int: 5617 case X86::VRNDSCALESDZm: 5618 case X86::VRNDSCALESDZm_Int: 5619 case X86::VRNDSCALESSZr: 5620 case X86::VRNDSCALESSZr_Int: 5621 case X86::VRNDSCALESSZrb_Int: 5622 case X86::VRNDSCALESSZm: 5623 case X86::VRNDSCALESSZm_Int: 5624 case X86::VRCP14SDZrr: 5625 case X86::VRCP14SDZrm: 5626 case X86::VRCP14SSZrr: 5627 case X86::VRCP14SSZrm: 5628 case X86::VRCPSHZrr: 5629 case X86::VRCPSHZrm: 5630 case X86::VRSQRTSHZrr: 5631 case X86::VRSQRTSHZrm: 5632 case X86::VREDUCESHZrmi: 5633 case X86::VREDUCESHZrri: 5634 case X86::VREDUCESHZrrib: 5635 case X86::VGETEXPSHZr: 5636 case X86::VGETEXPSHZrb: 5637 case X86::VGETEXPSHZm: 5638 case X86::VGETMANTSHZrri: 5639 case X86::VGETMANTSHZrrib: 5640 case X86::VGETMANTSHZrmi: 5641 case X86::VRNDSCALESHZr: 5642 case X86::VRNDSCALESHZr_Int: 5643 case X86::VRNDSCALESHZrb_Int: 5644 case X86::VRNDSCALESHZm: 5645 case X86::VRNDSCALESHZm_Int: 5646 case X86::VSQRTSHZr: 5647 case X86::VSQRTSHZr_Int: 5648 case X86::VSQRTSHZrb_Int: 5649 case X86::VSQRTSHZm: 5650 case X86::VSQRTSHZm_Int: 5651 case X86::VRCP28SDZr: 5652 case X86::VRCP28SDZrb: 5653 case X86::VRCP28SDZm: 5654 case X86::VRCP28SSZr: 5655 case X86::VRCP28SSZrb: 5656 case X86::VRCP28SSZm: 5657 case X86::VREDUCESSZrmi: 5658 case X86::VREDUCESSZrri: 5659 case X86::VREDUCESSZrrib: 5660 case X86::VRSQRT14SDZrr: 5661 case X86::VRSQRT14SDZrm: 5662 case X86::VRSQRT14SSZrr: 5663 case X86::VRSQRT14SSZrm: 5664 case X86::VRSQRT28SDZr: 5665 case X86::VRSQRT28SDZrb: 5666 case X86::VRSQRT28SDZm: 5667 case X86::VRSQRT28SSZr: 5668 case X86::VRSQRT28SSZrb: 5669 case X86::VRSQRT28SSZm: 5670 case X86::VSQRTSSZr: 5671 case X86::VSQRTSSZr_Int: 5672 case X86::VSQRTSSZrb_Int: 5673 case X86::VSQRTSSZm: 5674 case X86::VSQRTSSZm_Int: 5675 case X86::VSQRTSDZr: 5676 case X86::VSQRTSDZr_Int: 5677 case X86::VSQRTSDZrb_Int: 5678 case X86::VSQRTSDZm: 5679 case X86::VSQRTSDZm_Int: 5680 case X86::VCVTSD2SHZrr: 5681 case X86::VCVTSD2SHZrr_Int: 5682 case X86::VCVTSD2SHZrrb_Int: 5683 case X86::VCVTSD2SHZrm: 5684 case X86::VCVTSD2SHZrm_Int: 5685 case X86::VCVTSS2SHZrr: 5686 case X86::VCVTSS2SHZrr_Int: 5687 case X86::VCVTSS2SHZrrb_Int: 5688 case X86::VCVTSS2SHZrm: 5689 case X86::VCVTSS2SHZrm_Int: 5690 case X86::VCVTSH2SDZrr: 5691 case X86::VCVTSH2SDZrr_Int: 5692 case X86::VCVTSH2SDZrrb_Int: 5693 case X86::VCVTSH2SDZrm: 5694 case X86::VCVTSH2SDZrm_Int: 5695 case X86::VCVTSH2SSZrr: 5696 case X86::VCVTSH2SSZrr_Int: 5697 case X86::VCVTSH2SSZrrb_Int: 5698 case X86::VCVTSH2SSZrm: 5699 case X86::VCVTSH2SSZrm_Int: 5700 return OpNum == 1; 5701 case X86::VMOVSSZrrk: 5702 case X86::VMOVSDZrrk: 5703 return OpNum == 3 && !ForLoadFold; 5704 case X86::VMOVSSZrrkz: 5705 case X86::VMOVSDZrrkz: 5706 return OpNum == 2 && !ForLoadFold; 5707 } 5708 5709 return false; 5710 } 5711 5712 /// Inform the BreakFalseDeps pass how many idle instructions we would like 5713 /// before certain undef register reads. 5714 /// 5715 /// This catches the VCVTSI2SD family of instructions: 5716 /// 5717 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14 5718 /// 5719 /// We should to be careful *not* to catch VXOR idioms which are presumably 5720 /// handled specially in the pipeline: 5721 /// 5722 /// vxorps undef %xmm1, undef %xmm1, %xmm1 5723 /// 5724 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the 5725 /// high bits that are passed-through are not live. 5726 unsigned 5727 X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum, 5728 const TargetRegisterInfo *TRI) const { 5729 const MachineOperand &MO = MI.getOperand(OpNum); 5730 if (Register::isPhysicalRegister(MO.getReg()) && 5731 hasUndefRegUpdate(MI.getOpcode(), OpNum)) 5732 return UndefRegClearance; 5733 5734 return 0; 5735 } 5736 5737 void X86InstrInfo::breakPartialRegDependency( 5738 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { 5739 Register Reg = MI.getOperand(OpNum).getReg(); 5740 // If MI kills this register, the false dependence is already broken. 5741 if (MI.killsRegister(Reg, TRI)) 5742 return; 5743 5744 if (X86::VR128RegClass.contains(Reg)) { 5745 // These instructions are all floating point domain, so xorps is the best 5746 // choice. 5747 unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr; 5748 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg) 5749 .addReg(Reg, RegState::Undef) 5750 .addReg(Reg, RegState::Undef); 5751 MI.addRegisterKilled(Reg, TRI, true); 5752 } else if (X86::VR256RegClass.contains(Reg)) { 5753 // Use vxorps to clear the full ymm register. 5754 // It wants to read and write the xmm sub-register. 5755 Register XReg = TRI->getSubReg(Reg, X86::sub_xmm); 5756 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg) 5757 .addReg(XReg, RegState::Undef) 5758 .addReg(XReg, RegState::Undef) 5759 .addReg(Reg, RegState::ImplicitDefine); 5760 MI.addRegisterKilled(Reg, TRI, true); 5761 } else if (X86::VR128XRegClass.contains(Reg)) { 5762 // Only handle VLX targets. 5763 if (!Subtarget.hasVLX()) 5764 return; 5765 // Since vxorps requires AVX512DQ, vpxord should be the best choice. 5766 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), Reg) 5767 .addReg(Reg, RegState::Undef) 5768 .addReg(Reg, RegState::Undef); 5769 MI.addRegisterKilled(Reg, TRI, true); 5770 } else if (X86::VR256XRegClass.contains(Reg) || 5771 X86::VR512RegClass.contains(Reg)) { 5772 // Only handle VLX targets. 5773 if (!Subtarget.hasVLX()) 5774 return; 5775 // Use vpxord to clear the full ymm/zmm register. 5776 // It wants to read and write the xmm sub-register. 5777 Register XReg = TRI->getSubReg(Reg, X86::sub_xmm); 5778 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), XReg) 5779 .addReg(XReg, RegState::Undef) 5780 .addReg(XReg, RegState::Undef) 5781 .addReg(Reg, RegState::ImplicitDefine); 5782 MI.addRegisterKilled(Reg, TRI, true); 5783 } else if (X86::GR64RegClass.contains(Reg)) { 5784 // Using XOR32rr because it has shorter encoding and zeros up the upper bits 5785 // as well. 5786 Register XReg = TRI->getSubReg(Reg, X86::sub_32bit); 5787 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg) 5788 .addReg(XReg, RegState::Undef) 5789 .addReg(XReg, RegState::Undef) 5790 .addReg(Reg, RegState::ImplicitDefine); 5791 MI.addRegisterKilled(Reg, TRI, true); 5792 } else if (X86::GR32RegClass.contains(Reg)) { 5793 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg) 5794 .addReg(Reg, RegState::Undef) 5795 .addReg(Reg, RegState::Undef); 5796 MI.addRegisterKilled(Reg, TRI, true); 5797 } 5798 } 5799 5800 static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs, 5801 int PtrOffset = 0) { 5802 unsigned NumAddrOps = MOs.size(); 5803 5804 if (NumAddrOps < 4) { 5805 // FrameIndex only - add an immediate offset (whether its zero or not). 5806 for (unsigned i = 0; i != NumAddrOps; ++i) 5807 MIB.add(MOs[i]); 5808 addOffset(MIB, PtrOffset); 5809 } else { 5810 // General Memory Addressing - we need to add any offset to an existing 5811 // offset. 5812 assert(MOs.size() == 5 && "Unexpected memory operand list length"); 5813 for (unsigned i = 0; i != NumAddrOps; ++i) { 5814 const MachineOperand &MO = MOs[i]; 5815 if (i == 3 && PtrOffset != 0) { 5816 MIB.addDisp(MO, PtrOffset); 5817 } else { 5818 MIB.add(MO); 5819 } 5820 } 5821 } 5822 } 5823 5824 static void updateOperandRegConstraints(MachineFunction &MF, 5825 MachineInstr &NewMI, 5826 const TargetInstrInfo &TII) { 5827 MachineRegisterInfo &MRI = MF.getRegInfo(); 5828 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 5829 5830 for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) { 5831 MachineOperand &MO = NewMI.getOperand(Idx); 5832 // We only need to update constraints on virtual register operands. 5833 if (!MO.isReg()) 5834 continue; 5835 Register Reg = MO.getReg(); 5836 if (!Reg.isVirtual()) 5837 continue; 5838 5839 auto *NewRC = MRI.constrainRegClass( 5840 Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF)); 5841 if (!NewRC) { 5842 LLVM_DEBUG( 5843 dbgs() << "WARNING: Unable to update register constraint for operand " 5844 << Idx << " of instruction:\n"; 5845 NewMI.dump(); dbgs() << "\n"); 5846 } 5847 } 5848 } 5849 5850 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, 5851 ArrayRef<MachineOperand> MOs, 5852 MachineBasicBlock::iterator InsertPt, 5853 MachineInstr &MI, 5854 const TargetInstrInfo &TII) { 5855 // Create the base instruction with the memory operand as the first part. 5856 // Omit the implicit operands, something BuildMI can't do. 5857 MachineInstr *NewMI = 5858 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); 5859 MachineInstrBuilder MIB(MF, NewMI); 5860 addOperands(MIB, MOs); 5861 5862 // Loop over the rest of the ri operands, converting them over. 5863 unsigned NumOps = MI.getDesc().getNumOperands() - 2; 5864 for (unsigned i = 0; i != NumOps; ++i) { 5865 MachineOperand &MO = MI.getOperand(i + 2); 5866 MIB.add(MO); 5867 } 5868 for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), NumOps + 2)) 5869 MIB.add(MO); 5870 5871 updateOperandRegConstraints(MF, *NewMI, TII); 5872 5873 MachineBasicBlock *MBB = InsertPt->getParent(); 5874 MBB->insert(InsertPt, NewMI); 5875 5876 return MIB; 5877 } 5878 5879 static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode, 5880 unsigned OpNo, ArrayRef<MachineOperand> MOs, 5881 MachineBasicBlock::iterator InsertPt, 5882 MachineInstr &MI, const TargetInstrInfo &TII, 5883 int PtrOffset = 0) { 5884 // Omit the implicit operands, something BuildMI can't do. 5885 MachineInstr *NewMI = 5886 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); 5887 MachineInstrBuilder MIB(MF, NewMI); 5888 5889 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 5890 MachineOperand &MO = MI.getOperand(i); 5891 if (i == OpNo) { 5892 assert(MO.isReg() && "Expected to fold into reg operand!"); 5893 addOperands(MIB, MOs, PtrOffset); 5894 } else { 5895 MIB.add(MO); 5896 } 5897 } 5898 5899 updateOperandRegConstraints(MF, *NewMI, TII); 5900 5901 // Copy the NoFPExcept flag from the instruction we're fusing. 5902 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 5903 NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept); 5904 5905 MachineBasicBlock *MBB = InsertPt->getParent(); 5906 MBB->insert(InsertPt, NewMI); 5907 5908 return MIB; 5909 } 5910 5911 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, 5912 ArrayRef<MachineOperand> MOs, 5913 MachineBasicBlock::iterator InsertPt, 5914 MachineInstr &MI) { 5915 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, 5916 MI.getDebugLoc(), TII.get(Opcode)); 5917 addOperands(MIB, MOs); 5918 return MIB.addImm(0); 5919 } 5920 5921 MachineInstr *X86InstrInfo::foldMemoryOperandCustom( 5922 MachineFunction &MF, MachineInstr &MI, unsigned OpNum, 5923 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, 5924 unsigned Size, Align Alignment) const { 5925 switch (MI.getOpcode()) { 5926 case X86::INSERTPSrr: 5927 case X86::VINSERTPSrr: 5928 case X86::VINSERTPSZrr: 5929 // Attempt to convert the load of inserted vector into a fold load 5930 // of a single float. 5931 if (OpNum == 2) { 5932 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); 5933 unsigned ZMask = Imm & 15; 5934 unsigned DstIdx = (Imm >> 4) & 3; 5935 unsigned SrcIdx = (Imm >> 6) & 3; 5936 5937 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 5938 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); 5939 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 5940 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(4)) { 5941 int PtrOffset = SrcIdx * 4; 5942 unsigned NewImm = (DstIdx << 4) | ZMask; 5943 unsigned NewOpCode = 5944 (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm : 5945 (MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm : 5946 X86::INSERTPSrm; 5947 MachineInstr *NewMI = 5948 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset); 5949 NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm); 5950 return NewMI; 5951 } 5952 } 5953 break; 5954 case X86::MOVHLPSrr: 5955 case X86::VMOVHLPSrr: 5956 case X86::VMOVHLPSZrr: 5957 // Move the upper 64-bits of the second operand to the lower 64-bits. 5958 // To fold the load, adjust the pointer to the upper and use (V)MOVLPS. 5959 // TODO: In most cases AVX doesn't have a 8-byte alignment requirement. 5960 if (OpNum == 2) { 5961 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 5962 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); 5963 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 5964 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) { 5965 unsigned NewOpCode = 5966 (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm : 5967 (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm : 5968 X86::MOVLPSrm; 5969 MachineInstr *NewMI = 5970 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8); 5971 return NewMI; 5972 } 5973 } 5974 break; 5975 case X86::UNPCKLPDrr: 5976 // If we won't be able to fold this to the memory form of UNPCKL, use 5977 // MOVHPD instead. Done as custom because we can't have this in the load 5978 // table twice. 5979 if (OpNum == 2) { 5980 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 5981 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); 5982 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 5983 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) { 5984 MachineInstr *NewMI = 5985 FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this); 5986 return NewMI; 5987 } 5988 } 5989 break; 5990 } 5991 5992 return nullptr; 5993 } 5994 5995 static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF, 5996 MachineInstr &MI) { 5997 if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/true) || 5998 !MI.getOperand(1).isReg()) 5999 return false; 6000 6001 // The are two cases we need to handle depending on where in the pipeline 6002 // the folding attempt is being made. 6003 // -Register has the undef flag set. 6004 // -Register is produced by the IMPLICIT_DEF instruction. 6005 6006 if (MI.getOperand(1).isUndef()) 6007 return true; 6008 6009 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6010 MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg()); 6011 return VRegDef && VRegDef->isImplicitDef(); 6012 } 6013 6014 MachineInstr *X86InstrInfo::foldMemoryOperandImpl( 6015 MachineFunction &MF, MachineInstr &MI, unsigned OpNum, 6016 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, 6017 unsigned Size, Align Alignment, bool AllowCommute) const { 6018 bool isSlowTwoMemOps = Subtarget.slowTwoMemOps(); 6019 bool isTwoAddrFold = false; 6020 6021 // For CPUs that favor the register form of a call or push, 6022 // do not fold loads into calls or pushes, unless optimizing for size 6023 // aggressively. 6024 if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() && 6025 (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r || 6026 MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r || 6027 MI.getOpcode() == X86::PUSH64r)) 6028 return nullptr; 6029 6030 // Avoid partial and undef register update stalls unless optimizing for size. 6031 if (!MF.getFunction().hasOptSize() && 6032 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) || 6033 shouldPreventUndefRegUpdateMemFold(MF, MI))) 6034 return nullptr; 6035 6036 unsigned NumOps = MI.getDesc().getNumOperands(); 6037 bool isTwoAddr = 6038 NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; 6039 6040 // FIXME: AsmPrinter doesn't know how to handle 6041 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. 6042 if (MI.getOpcode() == X86::ADD32ri && 6043 MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) 6044 return nullptr; 6045 6046 // GOTTPOFF relocation loads can only be folded into add instructions. 6047 // FIXME: Need to exclude other relocations that only support specific 6048 // instructions. 6049 if (MOs.size() == X86::AddrNumOperands && 6050 MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF && 6051 MI.getOpcode() != X86::ADD64rr) 6052 return nullptr; 6053 6054 MachineInstr *NewMI = nullptr; 6055 6056 // Attempt to fold any custom cases we have. 6057 if (MachineInstr *CustomMI = foldMemoryOperandCustom( 6058 MF, MI, OpNum, MOs, InsertPt, Size, Alignment)) 6059 return CustomMI; 6060 6061 const X86MemoryFoldTableEntry *I = nullptr; 6062 6063 // Folding a memory location into the two-address part of a two-address 6064 // instruction is different than folding it other places. It requires 6065 // replacing the *two* registers with the memory location. 6066 if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() && 6067 MI.getOperand(1).isReg() && 6068 MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) { 6069 I = lookupTwoAddrFoldTable(MI.getOpcode()); 6070 isTwoAddrFold = true; 6071 } else { 6072 if (OpNum == 0) { 6073 if (MI.getOpcode() == X86::MOV32r0) { 6074 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI); 6075 if (NewMI) 6076 return NewMI; 6077 } 6078 } 6079 6080 I = lookupFoldTable(MI.getOpcode(), OpNum); 6081 } 6082 6083 if (I != nullptr) { 6084 unsigned Opcode = I->DstOp; 6085 bool FoldedLoad = 6086 isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_LOAD) || OpNum > 0; 6087 bool FoldedStore = 6088 isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_STORE); 6089 MaybeAlign MinAlign = 6090 decodeMaybeAlign((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT); 6091 if (MinAlign && Alignment < *MinAlign) 6092 return nullptr; 6093 bool NarrowToMOV32rm = false; 6094 if (Size) { 6095 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 6096 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, 6097 &RI, MF); 6098 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 6099 // Check if it's safe to fold the load. If the size of the object is 6100 // narrower than the load width, then it's not. 6101 // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int. 6102 if (FoldedLoad && Size < RCSize) { 6103 // If this is a 64-bit load, but the spill slot is 32, then we can do 6104 // a 32-bit load which is implicitly zero-extended. This likely is 6105 // due to live interval analysis remat'ing a load from stack slot. 6106 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) 6107 return nullptr; 6108 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) 6109 return nullptr; 6110 Opcode = X86::MOV32rm; 6111 NarrowToMOV32rm = true; 6112 } 6113 // For stores, make sure the size of the object is equal to the size of 6114 // the store. If the object is larger, the extra bits would be garbage. If 6115 // the object is smaller we might overwrite another object or fault. 6116 if (FoldedStore && Size != RCSize) 6117 return nullptr; 6118 } 6119 6120 if (isTwoAddrFold) 6121 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this); 6122 else 6123 NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this); 6124 6125 if (NarrowToMOV32rm) { 6126 // If this is the special case where we use a MOV32rm to load a 32-bit 6127 // value and zero-extend the top bits. Change the destination register 6128 // to a 32-bit one. 6129 Register DstReg = NewMI->getOperand(0).getReg(); 6130 if (DstReg.isPhysical()) 6131 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit)); 6132 else 6133 NewMI->getOperand(0).setSubReg(X86::sub_32bit); 6134 } 6135 return NewMI; 6136 } 6137 6138 // If the instruction and target operand are commutable, commute the 6139 // instruction and try again. 6140 if (AllowCommute) { 6141 unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex; 6142 if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) { 6143 bool HasDef = MI.getDesc().getNumDefs(); 6144 Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register(); 6145 Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg(); 6146 Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg(); 6147 bool Tied1 = 6148 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO); 6149 bool Tied2 = 6150 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO); 6151 6152 // If either of the commutable operands are tied to the destination 6153 // then we can not commute + fold. 6154 if ((HasDef && Reg0 == Reg1 && Tied1) || 6155 (HasDef && Reg0 == Reg2 && Tied2)) 6156 return nullptr; 6157 6158 MachineInstr *CommutedMI = 6159 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); 6160 if (!CommutedMI) { 6161 // Unable to commute. 6162 return nullptr; 6163 } 6164 if (CommutedMI != &MI) { 6165 // New instruction. We can't fold from this. 6166 CommutedMI->eraseFromParent(); 6167 return nullptr; 6168 } 6169 6170 // Attempt to fold with the commuted version of the instruction. 6171 NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size, 6172 Alignment, /*AllowCommute=*/false); 6173 if (NewMI) 6174 return NewMI; 6175 6176 // Folding failed again - undo the commute before returning. 6177 MachineInstr *UncommutedMI = 6178 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); 6179 if (!UncommutedMI) { 6180 // Unable to commute. 6181 return nullptr; 6182 } 6183 if (UncommutedMI != &MI) { 6184 // New instruction. It doesn't need to be kept. 6185 UncommutedMI->eraseFromParent(); 6186 return nullptr; 6187 } 6188 6189 // Return here to prevent duplicate fuse failure report. 6190 return nullptr; 6191 } 6192 } 6193 6194 // No fusion 6195 if (PrintFailedFusing && !MI.isCopy()) 6196 dbgs() << "We failed to fuse operand " << OpNum << " in " << MI; 6197 return nullptr; 6198 } 6199 6200 MachineInstr * 6201 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, 6202 ArrayRef<unsigned> Ops, 6203 MachineBasicBlock::iterator InsertPt, 6204 int FrameIndex, LiveIntervals *LIS, 6205 VirtRegMap *VRM) const { 6206 // Check switch flag 6207 if (NoFusing) 6208 return nullptr; 6209 6210 // Avoid partial and undef register update stalls unless optimizing for size. 6211 if (!MF.getFunction().hasOptSize() && 6212 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) || 6213 shouldPreventUndefRegUpdateMemFold(MF, MI))) 6214 return nullptr; 6215 6216 // Don't fold subreg spills, or reloads that use a high subreg. 6217 for (auto Op : Ops) { 6218 MachineOperand &MO = MI.getOperand(Op); 6219 auto SubReg = MO.getSubReg(); 6220 if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi)) 6221 return nullptr; 6222 } 6223 6224 const MachineFrameInfo &MFI = MF.getFrameInfo(); 6225 unsigned Size = MFI.getObjectSize(FrameIndex); 6226 Align Alignment = MFI.getObjectAlign(FrameIndex); 6227 // If the function stack isn't realigned we don't want to fold instructions 6228 // that need increased alignment. 6229 if (!RI.hasStackRealignment(MF)) 6230 Alignment = 6231 std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign()); 6232 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 6233 unsigned NewOpc = 0; 6234 unsigned RCSize = 0; 6235 switch (MI.getOpcode()) { 6236 default: return nullptr; 6237 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break; 6238 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break; 6239 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break; 6240 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break; 6241 } 6242 // Check if it's safe to fold the load. If the size of the object is 6243 // narrower than the load width, then it's not. 6244 if (Size < RCSize) 6245 return nullptr; 6246 // Change to CMPXXri r, 0 first. 6247 MI.setDesc(get(NewOpc)); 6248 MI.getOperand(1).ChangeToImmediate(0); 6249 } else if (Ops.size() != 1) 6250 return nullptr; 6251 6252 return foldMemoryOperandImpl(MF, MI, Ops[0], 6253 MachineOperand::CreateFI(FrameIndex), InsertPt, 6254 Size, Alignment, /*AllowCommute=*/true); 6255 } 6256 6257 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI 6258 /// because the latter uses contents that wouldn't be defined in the folded 6259 /// version. For instance, this transformation isn't legal: 6260 /// movss (%rdi), %xmm0 6261 /// addps %xmm0, %xmm0 6262 /// -> 6263 /// addps (%rdi), %xmm0 6264 /// 6265 /// But this one is: 6266 /// movss (%rdi), %xmm0 6267 /// addss %xmm0, %xmm0 6268 /// -> 6269 /// addss (%rdi), %xmm0 6270 /// 6271 static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI, 6272 const MachineInstr &UserMI, 6273 const MachineFunction &MF) { 6274 unsigned Opc = LoadMI.getOpcode(); 6275 unsigned UserOpc = UserMI.getOpcode(); 6276 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 6277 const TargetRegisterClass *RC = 6278 MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg()); 6279 unsigned RegSize = TRI.getRegSizeInBits(*RC); 6280 6281 if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm || 6282 Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt || 6283 Opc == X86::VMOVSSZrm_alt) && 6284 RegSize > 32) { 6285 // These instructions only load 32 bits, we can't fold them if the 6286 // destination register is wider than 32 bits (4 bytes), and its user 6287 // instruction isn't scalar (SS). 6288 switch (UserOpc) { 6289 case X86::CVTSS2SDrr_Int: 6290 case X86::VCVTSS2SDrr_Int: 6291 case X86::VCVTSS2SDZrr_Int: 6292 case X86::VCVTSS2SDZrr_Intk: 6293 case X86::VCVTSS2SDZrr_Intkz: 6294 case X86::CVTSS2SIrr_Int: case X86::CVTSS2SI64rr_Int: 6295 case X86::VCVTSS2SIrr_Int: case X86::VCVTSS2SI64rr_Int: 6296 case X86::VCVTSS2SIZrr_Int: case X86::VCVTSS2SI64Zrr_Int: 6297 case X86::CVTTSS2SIrr_Int: case X86::CVTTSS2SI64rr_Int: 6298 case X86::VCVTTSS2SIrr_Int: case X86::VCVTTSS2SI64rr_Int: 6299 case X86::VCVTTSS2SIZrr_Int: case X86::VCVTTSS2SI64Zrr_Int: 6300 case X86::VCVTSS2USIZrr_Int: case X86::VCVTSS2USI64Zrr_Int: 6301 case X86::VCVTTSS2USIZrr_Int: case X86::VCVTTSS2USI64Zrr_Int: 6302 case X86::RCPSSr_Int: case X86::VRCPSSr_Int: 6303 case X86::RSQRTSSr_Int: case X86::VRSQRTSSr_Int: 6304 case X86::ROUNDSSr_Int: case X86::VROUNDSSr_Int: 6305 case X86::COMISSrr_Int: case X86::VCOMISSrr_Int: case X86::VCOMISSZrr_Int: 6306 case X86::UCOMISSrr_Int:case X86::VUCOMISSrr_Int:case X86::VUCOMISSZrr_Int: 6307 case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int: 6308 case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int: 6309 case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int: 6310 case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int: 6311 case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int: 6312 case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int: 6313 case X86::SQRTSSr_Int: case X86::VSQRTSSr_Int: case X86::VSQRTSSZr_Int: 6314 case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int: 6315 case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz: 6316 case X86::VCMPSSZrr_Intk: 6317 case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz: 6318 case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz: 6319 case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz: 6320 case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz: 6321 case X86::VSQRTSSZr_Intk: case X86::VSQRTSSZr_Intkz: 6322 case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz: 6323 case X86::VFMADDSS4rr_Int: case X86::VFNMADDSS4rr_Int: 6324 case X86::VFMSUBSS4rr_Int: case X86::VFNMSUBSS4rr_Int: 6325 case X86::VFMADD132SSr_Int: case X86::VFNMADD132SSr_Int: 6326 case X86::VFMADD213SSr_Int: case X86::VFNMADD213SSr_Int: 6327 case X86::VFMADD231SSr_Int: case X86::VFNMADD231SSr_Int: 6328 case X86::VFMSUB132SSr_Int: case X86::VFNMSUB132SSr_Int: 6329 case X86::VFMSUB213SSr_Int: case X86::VFNMSUB213SSr_Int: 6330 case X86::VFMSUB231SSr_Int: case X86::VFNMSUB231SSr_Int: 6331 case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int: 6332 case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int: 6333 case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int: 6334 case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int: 6335 case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int: 6336 case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int: 6337 case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk: 6338 case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk: 6339 case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk: 6340 case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk: 6341 case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk: 6342 case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk: 6343 case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz: 6344 case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz: 6345 case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz: 6346 case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz: 6347 case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz: 6348 case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz: 6349 case X86::VFIXUPIMMSSZrri: 6350 case X86::VFIXUPIMMSSZrrik: 6351 case X86::VFIXUPIMMSSZrrikz: 6352 case X86::VFPCLASSSSZrr: 6353 case X86::VFPCLASSSSZrrk: 6354 case X86::VGETEXPSSZr: 6355 case X86::VGETEXPSSZrk: 6356 case X86::VGETEXPSSZrkz: 6357 case X86::VGETMANTSSZrri: 6358 case X86::VGETMANTSSZrrik: 6359 case X86::VGETMANTSSZrrikz: 6360 case X86::VRANGESSZrri: 6361 case X86::VRANGESSZrrik: 6362 case X86::VRANGESSZrrikz: 6363 case X86::VRCP14SSZrr: 6364 case X86::VRCP14SSZrrk: 6365 case X86::VRCP14SSZrrkz: 6366 case X86::VRCP28SSZr: 6367 case X86::VRCP28SSZrk: 6368 case X86::VRCP28SSZrkz: 6369 case X86::VREDUCESSZrri: 6370 case X86::VREDUCESSZrrik: 6371 case X86::VREDUCESSZrrikz: 6372 case X86::VRNDSCALESSZr_Int: 6373 case X86::VRNDSCALESSZr_Intk: 6374 case X86::VRNDSCALESSZr_Intkz: 6375 case X86::VRSQRT14SSZrr: 6376 case X86::VRSQRT14SSZrrk: 6377 case X86::VRSQRT14SSZrrkz: 6378 case X86::VRSQRT28SSZr: 6379 case X86::VRSQRT28SSZrk: 6380 case X86::VRSQRT28SSZrkz: 6381 case X86::VSCALEFSSZrr: 6382 case X86::VSCALEFSSZrrk: 6383 case X86::VSCALEFSSZrrkz: 6384 return false; 6385 default: 6386 return true; 6387 } 6388 } 6389 6390 if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm || 6391 Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt || 6392 Opc == X86::VMOVSDZrm_alt) && 6393 RegSize > 64) { 6394 // These instructions only load 64 bits, we can't fold them if the 6395 // destination register is wider than 64 bits (8 bytes), and its user 6396 // instruction isn't scalar (SD). 6397 switch (UserOpc) { 6398 case X86::CVTSD2SSrr_Int: 6399 case X86::VCVTSD2SSrr_Int: 6400 case X86::VCVTSD2SSZrr_Int: 6401 case X86::VCVTSD2SSZrr_Intk: 6402 case X86::VCVTSD2SSZrr_Intkz: 6403 case X86::CVTSD2SIrr_Int: case X86::CVTSD2SI64rr_Int: 6404 case X86::VCVTSD2SIrr_Int: case X86::VCVTSD2SI64rr_Int: 6405 case X86::VCVTSD2SIZrr_Int: case X86::VCVTSD2SI64Zrr_Int: 6406 case X86::CVTTSD2SIrr_Int: case X86::CVTTSD2SI64rr_Int: 6407 case X86::VCVTTSD2SIrr_Int: case X86::VCVTTSD2SI64rr_Int: 6408 case X86::VCVTTSD2SIZrr_Int: case X86::VCVTTSD2SI64Zrr_Int: 6409 case X86::VCVTSD2USIZrr_Int: case X86::VCVTSD2USI64Zrr_Int: 6410 case X86::VCVTTSD2USIZrr_Int: case X86::VCVTTSD2USI64Zrr_Int: 6411 case X86::ROUNDSDr_Int: case X86::VROUNDSDr_Int: 6412 case X86::COMISDrr_Int: case X86::VCOMISDrr_Int: case X86::VCOMISDZrr_Int: 6413 case X86::UCOMISDrr_Int:case X86::VUCOMISDrr_Int:case X86::VUCOMISDZrr_Int: 6414 case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int: 6415 case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int: 6416 case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int: 6417 case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int: 6418 case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int: 6419 case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int: 6420 case X86::SQRTSDr_Int: case X86::VSQRTSDr_Int: case X86::VSQRTSDZr_Int: 6421 case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int: 6422 case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz: 6423 case X86::VCMPSDZrr_Intk: 6424 case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz: 6425 case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz: 6426 case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz: 6427 case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz: 6428 case X86::VSQRTSDZr_Intk: case X86::VSQRTSDZr_Intkz: 6429 case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz: 6430 case X86::VFMADDSD4rr_Int: case X86::VFNMADDSD4rr_Int: 6431 case X86::VFMSUBSD4rr_Int: case X86::VFNMSUBSD4rr_Int: 6432 case X86::VFMADD132SDr_Int: case X86::VFNMADD132SDr_Int: 6433 case X86::VFMADD213SDr_Int: case X86::VFNMADD213SDr_Int: 6434 case X86::VFMADD231SDr_Int: case X86::VFNMADD231SDr_Int: 6435 case X86::VFMSUB132SDr_Int: case X86::VFNMSUB132SDr_Int: 6436 case X86::VFMSUB213SDr_Int: case X86::VFNMSUB213SDr_Int: 6437 case X86::VFMSUB231SDr_Int: case X86::VFNMSUB231SDr_Int: 6438 case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int: 6439 case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int: 6440 case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int: 6441 case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int: 6442 case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int: 6443 case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int: 6444 case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk: 6445 case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk: 6446 case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk: 6447 case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk: 6448 case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk: 6449 case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk: 6450 case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz: 6451 case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz: 6452 case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz: 6453 case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz: 6454 case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz: 6455 case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz: 6456 case X86::VFIXUPIMMSDZrri: 6457 case X86::VFIXUPIMMSDZrrik: 6458 case X86::VFIXUPIMMSDZrrikz: 6459 case X86::VFPCLASSSDZrr: 6460 case X86::VFPCLASSSDZrrk: 6461 case X86::VGETEXPSDZr: 6462 case X86::VGETEXPSDZrk: 6463 case X86::VGETEXPSDZrkz: 6464 case X86::VGETMANTSDZrri: 6465 case X86::VGETMANTSDZrrik: 6466 case X86::VGETMANTSDZrrikz: 6467 case X86::VRANGESDZrri: 6468 case X86::VRANGESDZrrik: 6469 case X86::VRANGESDZrrikz: 6470 case X86::VRCP14SDZrr: 6471 case X86::VRCP14SDZrrk: 6472 case X86::VRCP14SDZrrkz: 6473 case X86::VRCP28SDZr: 6474 case X86::VRCP28SDZrk: 6475 case X86::VRCP28SDZrkz: 6476 case X86::VREDUCESDZrri: 6477 case X86::VREDUCESDZrrik: 6478 case X86::VREDUCESDZrrikz: 6479 case X86::VRNDSCALESDZr_Int: 6480 case X86::VRNDSCALESDZr_Intk: 6481 case X86::VRNDSCALESDZr_Intkz: 6482 case X86::VRSQRT14SDZrr: 6483 case X86::VRSQRT14SDZrrk: 6484 case X86::VRSQRT14SDZrrkz: 6485 case X86::VRSQRT28SDZr: 6486 case X86::VRSQRT28SDZrk: 6487 case X86::VRSQRT28SDZrkz: 6488 case X86::VSCALEFSDZrr: 6489 case X86::VSCALEFSDZrrk: 6490 case X86::VSCALEFSDZrrkz: 6491 return false; 6492 default: 6493 return true; 6494 } 6495 } 6496 6497 if ((Opc == X86::VMOVSHZrm || Opc == X86::VMOVSHZrm_alt) && RegSize > 16) { 6498 // These instructions only load 16 bits, we can't fold them if the 6499 // destination register is wider than 16 bits (2 bytes), and its user 6500 // instruction isn't scalar (SH). 6501 switch (UserOpc) { 6502 case X86::VADDSHZrr_Int: 6503 case X86::VCMPSHZrr_Int: 6504 case X86::VDIVSHZrr_Int: 6505 case X86::VMAXSHZrr_Int: 6506 case X86::VMINSHZrr_Int: 6507 case X86::VMULSHZrr_Int: 6508 case X86::VSUBSHZrr_Int: 6509 case X86::VADDSHZrr_Intk: case X86::VADDSHZrr_Intkz: 6510 case X86::VCMPSHZrr_Intk: 6511 case X86::VDIVSHZrr_Intk: case X86::VDIVSHZrr_Intkz: 6512 case X86::VMAXSHZrr_Intk: case X86::VMAXSHZrr_Intkz: 6513 case X86::VMINSHZrr_Intk: case X86::VMINSHZrr_Intkz: 6514 case X86::VMULSHZrr_Intk: case X86::VMULSHZrr_Intkz: 6515 case X86::VSUBSHZrr_Intk: case X86::VSUBSHZrr_Intkz: 6516 case X86::VFMADD132SHZr_Int: case X86::VFNMADD132SHZr_Int: 6517 case X86::VFMADD213SHZr_Int: case X86::VFNMADD213SHZr_Int: 6518 case X86::VFMADD231SHZr_Int: case X86::VFNMADD231SHZr_Int: 6519 case X86::VFMSUB132SHZr_Int: case X86::VFNMSUB132SHZr_Int: 6520 case X86::VFMSUB213SHZr_Int: case X86::VFNMSUB213SHZr_Int: 6521 case X86::VFMSUB231SHZr_Int: case X86::VFNMSUB231SHZr_Int: 6522 case X86::VFMADD132SHZr_Intk: case X86::VFNMADD132SHZr_Intk: 6523 case X86::VFMADD213SHZr_Intk: case X86::VFNMADD213SHZr_Intk: 6524 case X86::VFMADD231SHZr_Intk: case X86::VFNMADD231SHZr_Intk: 6525 case X86::VFMSUB132SHZr_Intk: case X86::VFNMSUB132SHZr_Intk: 6526 case X86::VFMSUB213SHZr_Intk: case X86::VFNMSUB213SHZr_Intk: 6527 case X86::VFMSUB231SHZr_Intk: case X86::VFNMSUB231SHZr_Intk: 6528 case X86::VFMADD132SHZr_Intkz: case X86::VFNMADD132SHZr_Intkz: 6529 case X86::VFMADD213SHZr_Intkz: case X86::VFNMADD213SHZr_Intkz: 6530 case X86::VFMADD231SHZr_Intkz: case X86::VFNMADD231SHZr_Intkz: 6531 case X86::VFMSUB132SHZr_Intkz: case X86::VFNMSUB132SHZr_Intkz: 6532 case X86::VFMSUB213SHZr_Intkz: case X86::VFNMSUB213SHZr_Intkz: 6533 case X86::VFMSUB231SHZr_Intkz: case X86::VFNMSUB231SHZr_Intkz: 6534 return false; 6535 default: 6536 return true; 6537 } 6538 } 6539 6540 return false; 6541 } 6542 6543 MachineInstr *X86InstrInfo::foldMemoryOperandImpl( 6544 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 6545 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, 6546 LiveIntervals *LIS) const { 6547 6548 // TODO: Support the case where LoadMI loads a wide register, but MI 6549 // only uses a subreg. 6550 for (auto Op : Ops) { 6551 if (MI.getOperand(Op).getSubReg()) 6552 return nullptr; 6553 } 6554 6555 // If loading from a FrameIndex, fold directly from the FrameIndex. 6556 unsigned NumOps = LoadMI.getDesc().getNumOperands(); 6557 int FrameIndex; 6558 if (isLoadFromStackSlot(LoadMI, FrameIndex)) { 6559 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) 6560 return nullptr; 6561 return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS); 6562 } 6563 6564 // Check switch flag 6565 if (NoFusing) return nullptr; 6566 6567 // Avoid partial and undef register update stalls unless optimizing for size. 6568 if (!MF.getFunction().hasOptSize() && 6569 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) || 6570 shouldPreventUndefRegUpdateMemFold(MF, MI))) 6571 return nullptr; 6572 6573 // Determine the alignment of the load. 6574 Align Alignment; 6575 if (LoadMI.hasOneMemOperand()) 6576 Alignment = (*LoadMI.memoperands_begin())->getAlign(); 6577 else 6578 switch (LoadMI.getOpcode()) { 6579 case X86::AVX512_512_SET0: 6580 case X86::AVX512_512_SETALLONES: 6581 Alignment = Align(64); 6582 break; 6583 case X86::AVX2_SETALLONES: 6584 case X86::AVX1_SETALLONES: 6585 case X86::AVX_SET0: 6586 case X86::AVX512_256_SET0: 6587 Alignment = Align(32); 6588 break; 6589 case X86::V_SET0: 6590 case X86::V_SETALLONES: 6591 case X86::AVX512_128_SET0: 6592 case X86::FsFLD0F128: 6593 case X86::AVX512_FsFLD0F128: 6594 Alignment = Align(16); 6595 break; 6596 case X86::MMX_SET0: 6597 case X86::FsFLD0SD: 6598 case X86::AVX512_FsFLD0SD: 6599 Alignment = Align(8); 6600 break; 6601 case X86::FsFLD0SS: 6602 case X86::AVX512_FsFLD0SS: 6603 Alignment = Align(4); 6604 break; 6605 case X86::AVX512_FsFLD0SH: 6606 Alignment = Align(2); 6607 break; 6608 default: 6609 return nullptr; 6610 } 6611 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 6612 unsigned NewOpc = 0; 6613 switch (MI.getOpcode()) { 6614 default: return nullptr; 6615 case X86::TEST8rr: NewOpc = X86::CMP8ri; break; 6616 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break; 6617 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break; 6618 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break; 6619 } 6620 // Change to CMPXXri r, 0 first. 6621 MI.setDesc(get(NewOpc)); 6622 MI.getOperand(1).ChangeToImmediate(0); 6623 } else if (Ops.size() != 1) 6624 return nullptr; 6625 6626 // Make sure the subregisters match. 6627 // Otherwise we risk changing the size of the load. 6628 if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg()) 6629 return nullptr; 6630 6631 SmallVector<MachineOperand,X86::AddrNumOperands> MOs; 6632 switch (LoadMI.getOpcode()) { 6633 case X86::MMX_SET0: 6634 case X86::V_SET0: 6635 case X86::V_SETALLONES: 6636 case X86::AVX2_SETALLONES: 6637 case X86::AVX1_SETALLONES: 6638 case X86::AVX_SET0: 6639 case X86::AVX512_128_SET0: 6640 case X86::AVX512_256_SET0: 6641 case X86::AVX512_512_SET0: 6642 case X86::AVX512_512_SETALLONES: 6643 case X86::AVX512_FsFLD0SH: 6644 case X86::FsFLD0SD: 6645 case X86::AVX512_FsFLD0SD: 6646 case X86::FsFLD0SS: 6647 case X86::AVX512_FsFLD0SS: 6648 case X86::FsFLD0F128: 6649 case X86::AVX512_FsFLD0F128: { 6650 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure. 6651 // Create a constant-pool entry and operands to load from it. 6652 6653 // Medium and large mode can't fold loads this way. 6654 if (MF.getTarget().getCodeModel() != CodeModel::Small && 6655 MF.getTarget().getCodeModel() != CodeModel::Kernel) 6656 return nullptr; 6657 6658 // x86-32 PIC requires a PIC base register for constant pools. 6659 unsigned PICBase = 0; 6660 // Since we're using Small or Kernel code model, we can always use 6661 // RIP-relative addressing for a smaller encoding. 6662 if (Subtarget.is64Bit()) { 6663 PICBase = X86::RIP; 6664 } else if (MF.getTarget().isPositionIndependent()) { 6665 // FIXME: PICBase = getGlobalBaseReg(&MF); 6666 // This doesn't work for several reasons. 6667 // 1. GlobalBaseReg may have been spilled. 6668 // 2. It may not be live at MI. 6669 return nullptr; 6670 } 6671 6672 // Create a constant-pool entry. 6673 MachineConstantPool &MCP = *MF.getConstantPool(); 6674 Type *Ty; 6675 unsigned Opc = LoadMI.getOpcode(); 6676 if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS) 6677 Ty = Type::getFloatTy(MF.getFunction().getContext()); 6678 else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD) 6679 Ty = Type::getDoubleTy(MF.getFunction().getContext()); 6680 else if (Opc == X86::FsFLD0F128 || Opc == X86::AVX512_FsFLD0F128) 6681 Ty = Type::getFP128Ty(MF.getFunction().getContext()); 6682 else if (Opc == X86::AVX512_FsFLD0SH) 6683 Ty = Type::getHalfTy(MF.getFunction().getContext()); 6684 else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES) 6685 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 6686 16); 6687 else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 || 6688 Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES) 6689 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 6690 8); 6691 else if (Opc == X86::MMX_SET0) 6692 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 6693 2); 6694 else 6695 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 6696 4); 6697 6698 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES || 6699 Opc == X86::AVX512_512_SETALLONES || 6700 Opc == X86::AVX1_SETALLONES); 6701 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) : 6702 Constant::getNullValue(Ty); 6703 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); 6704 6705 // Create operands to load from the constant pool entry. 6706 MOs.push_back(MachineOperand::CreateReg(PICBase, false)); 6707 MOs.push_back(MachineOperand::CreateImm(1)); 6708 MOs.push_back(MachineOperand::CreateReg(0, false)); 6709 MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); 6710 MOs.push_back(MachineOperand::CreateReg(0, false)); 6711 break; 6712 } 6713 default: { 6714 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) 6715 return nullptr; 6716 6717 // Folding a normal load. Just copy the load's address operands. 6718 MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands, 6719 LoadMI.operands_begin() + NumOps); 6720 break; 6721 } 6722 } 6723 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt, 6724 /*Size=*/0, Alignment, /*AllowCommute=*/true); 6725 } 6726 6727 static SmallVector<MachineMemOperand *, 2> 6728 extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) { 6729 SmallVector<MachineMemOperand *, 2> LoadMMOs; 6730 6731 for (MachineMemOperand *MMO : MMOs) { 6732 if (!MMO->isLoad()) 6733 continue; 6734 6735 if (!MMO->isStore()) { 6736 // Reuse the MMO. 6737 LoadMMOs.push_back(MMO); 6738 } else { 6739 // Clone the MMO and unset the store flag. 6740 LoadMMOs.push_back(MF.getMachineMemOperand( 6741 MMO, MMO->getFlags() & ~MachineMemOperand::MOStore)); 6742 } 6743 } 6744 6745 return LoadMMOs; 6746 } 6747 6748 static SmallVector<MachineMemOperand *, 2> 6749 extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) { 6750 SmallVector<MachineMemOperand *, 2> StoreMMOs; 6751 6752 for (MachineMemOperand *MMO : MMOs) { 6753 if (!MMO->isStore()) 6754 continue; 6755 6756 if (!MMO->isLoad()) { 6757 // Reuse the MMO. 6758 StoreMMOs.push_back(MMO); 6759 } else { 6760 // Clone the MMO and unset the load flag. 6761 StoreMMOs.push_back(MF.getMachineMemOperand( 6762 MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad)); 6763 } 6764 } 6765 6766 return StoreMMOs; 6767 } 6768 6769 static unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry *I, 6770 const TargetRegisterClass *RC, 6771 const X86Subtarget &STI) { 6772 assert(STI.hasAVX512() && "Expected at least AVX512!"); 6773 unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC); 6774 assert((SpillSize == 64 || STI.hasVLX()) && 6775 "Can't broadcast less than 64 bytes without AVX512VL!"); 6776 6777 switch (I->Flags & TB_BCAST_MASK) { 6778 default: llvm_unreachable("Unexpected broadcast type!"); 6779 case TB_BCAST_D: 6780 switch (SpillSize) { 6781 default: llvm_unreachable("Unknown spill size"); 6782 case 16: return X86::VPBROADCASTDZ128rm; 6783 case 32: return X86::VPBROADCASTDZ256rm; 6784 case 64: return X86::VPBROADCASTDZrm; 6785 } 6786 break; 6787 case TB_BCAST_Q: 6788 switch (SpillSize) { 6789 default: llvm_unreachable("Unknown spill size"); 6790 case 16: return X86::VPBROADCASTQZ128rm; 6791 case 32: return X86::VPBROADCASTQZ256rm; 6792 case 64: return X86::VPBROADCASTQZrm; 6793 } 6794 break; 6795 case TB_BCAST_SS: 6796 switch (SpillSize) { 6797 default: llvm_unreachable("Unknown spill size"); 6798 case 16: return X86::VBROADCASTSSZ128rm; 6799 case 32: return X86::VBROADCASTSSZ256rm; 6800 case 64: return X86::VBROADCASTSSZrm; 6801 } 6802 break; 6803 case TB_BCAST_SD: 6804 switch (SpillSize) { 6805 default: llvm_unreachable("Unknown spill size"); 6806 case 16: return X86::VMOVDDUPZ128rm; 6807 case 32: return X86::VBROADCASTSDZ256rm; 6808 case 64: return X86::VBROADCASTSDZrm; 6809 } 6810 break; 6811 } 6812 } 6813 6814 bool X86InstrInfo::unfoldMemoryOperand( 6815 MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad, 6816 bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const { 6817 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode()); 6818 if (I == nullptr) 6819 return false; 6820 unsigned Opc = I->DstOp; 6821 unsigned Index = I->Flags & TB_INDEX_MASK; 6822 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; 6823 bool FoldedStore = I->Flags & TB_FOLDED_STORE; 6824 bool FoldedBCast = I->Flags & TB_FOLDED_BCAST; 6825 if (UnfoldLoad && !FoldedLoad) 6826 return false; 6827 UnfoldLoad &= FoldedLoad; 6828 if (UnfoldStore && !FoldedStore) 6829 return false; 6830 UnfoldStore &= FoldedStore; 6831 6832 const MCInstrDesc &MCID = get(Opc); 6833 6834 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); 6835 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 6836 // TODO: Check if 32-byte or greater accesses are slow too? 6837 if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass && 6838 Subtarget.isUnalignedMem16Slow()) 6839 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will 6840 // conservatively assume the address is unaligned. That's bad for 6841 // performance. 6842 return false; 6843 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps; 6844 SmallVector<MachineOperand,2> BeforeOps; 6845 SmallVector<MachineOperand,2> AfterOps; 6846 SmallVector<MachineOperand,4> ImpOps; 6847 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 6848 MachineOperand &Op = MI.getOperand(i); 6849 if (i >= Index && i < Index + X86::AddrNumOperands) 6850 AddrOps.push_back(Op); 6851 else if (Op.isReg() && Op.isImplicit()) 6852 ImpOps.push_back(Op); 6853 else if (i < Index) 6854 BeforeOps.push_back(Op); 6855 else if (i > Index) 6856 AfterOps.push_back(Op); 6857 } 6858 6859 // Emit the load or broadcast instruction. 6860 if (UnfoldLoad) { 6861 auto MMOs = extractLoadMMOs(MI.memoperands(), MF); 6862 6863 unsigned Opc; 6864 if (FoldedBCast) { 6865 Opc = getBroadcastOpcode(I, RC, Subtarget); 6866 } else { 6867 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); 6868 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; 6869 Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget); 6870 } 6871 6872 DebugLoc DL; 6873 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg); 6874 for (unsigned i = 0, e = AddrOps.size(); i != e; ++i) 6875 MIB.add(AddrOps[i]); 6876 MIB.setMemRefs(MMOs); 6877 NewMIs.push_back(MIB); 6878 6879 if (UnfoldStore) { 6880 // Address operands cannot be marked isKill. 6881 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { 6882 MachineOperand &MO = NewMIs[0]->getOperand(i); 6883 if (MO.isReg()) 6884 MO.setIsKill(false); 6885 } 6886 } 6887 } 6888 6889 // Emit the data processing instruction. 6890 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true); 6891 MachineInstrBuilder MIB(MF, DataMI); 6892 6893 if (FoldedStore) 6894 MIB.addReg(Reg, RegState::Define); 6895 for (MachineOperand &BeforeOp : BeforeOps) 6896 MIB.add(BeforeOp); 6897 if (FoldedLoad) 6898 MIB.addReg(Reg); 6899 for (MachineOperand &AfterOp : AfterOps) 6900 MIB.add(AfterOp); 6901 for (MachineOperand &ImpOp : ImpOps) { 6902 MIB.addReg(ImpOp.getReg(), 6903 getDefRegState(ImpOp.isDef()) | 6904 RegState::Implicit | 6905 getKillRegState(ImpOp.isKill()) | 6906 getDeadRegState(ImpOp.isDead()) | 6907 getUndefRegState(ImpOp.isUndef())); 6908 } 6909 // Change CMP32ri r, 0 back to TEST32rr r, r, etc. 6910 switch (DataMI->getOpcode()) { 6911 default: break; 6912 case X86::CMP64ri32: 6913 case X86::CMP64ri8: 6914 case X86::CMP32ri: 6915 case X86::CMP32ri8: 6916 case X86::CMP16ri: 6917 case X86::CMP16ri8: 6918 case X86::CMP8ri: { 6919 MachineOperand &MO0 = DataMI->getOperand(0); 6920 MachineOperand &MO1 = DataMI->getOperand(1); 6921 if (MO1.isImm() && MO1.getImm() == 0) { 6922 unsigned NewOpc; 6923 switch (DataMI->getOpcode()) { 6924 default: llvm_unreachable("Unreachable!"); 6925 case X86::CMP64ri8: 6926 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; 6927 case X86::CMP32ri8: 6928 case X86::CMP32ri: NewOpc = X86::TEST32rr; break; 6929 case X86::CMP16ri8: 6930 case X86::CMP16ri: NewOpc = X86::TEST16rr; break; 6931 case X86::CMP8ri: NewOpc = X86::TEST8rr; break; 6932 } 6933 DataMI->setDesc(get(NewOpc)); 6934 MO1.ChangeToRegister(MO0.getReg(), false); 6935 } 6936 } 6937 } 6938 NewMIs.push_back(DataMI); 6939 6940 // Emit the store instruction. 6941 if (UnfoldStore) { 6942 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF); 6943 auto MMOs = extractStoreMMOs(MI.memoperands(), MF); 6944 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16); 6945 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; 6946 unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget); 6947 DebugLoc DL; 6948 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); 6949 for (unsigned i = 0, e = AddrOps.size(); i != e; ++i) 6950 MIB.add(AddrOps[i]); 6951 MIB.addReg(Reg, RegState::Kill); 6952 MIB.setMemRefs(MMOs); 6953 NewMIs.push_back(MIB); 6954 } 6955 6956 return true; 6957 } 6958 6959 bool 6960 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, 6961 SmallVectorImpl<SDNode*> &NewNodes) const { 6962 if (!N->isMachineOpcode()) 6963 return false; 6964 6965 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode()); 6966 if (I == nullptr) 6967 return false; 6968 unsigned Opc = I->DstOp; 6969 unsigned Index = I->Flags & TB_INDEX_MASK; 6970 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; 6971 bool FoldedStore = I->Flags & TB_FOLDED_STORE; 6972 bool FoldedBCast = I->Flags & TB_FOLDED_BCAST; 6973 const MCInstrDesc &MCID = get(Opc); 6974 MachineFunction &MF = DAG.getMachineFunction(); 6975 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 6976 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); 6977 unsigned NumDefs = MCID.NumDefs; 6978 std::vector<SDValue> AddrOps; 6979 std::vector<SDValue> BeforeOps; 6980 std::vector<SDValue> AfterOps; 6981 SDLoc dl(N); 6982 unsigned NumOps = N->getNumOperands(); 6983 for (unsigned i = 0; i != NumOps-1; ++i) { 6984 SDValue Op = N->getOperand(i); 6985 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands) 6986 AddrOps.push_back(Op); 6987 else if (i < Index-NumDefs) 6988 BeforeOps.push_back(Op); 6989 else if (i > Index-NumDefs) 6990 AfterOps.push_back(Op); 6991 } 6992 SDValue Chain = N->getOperand(NumOps-1); 6993 AddrOps.push_back(Chain); 6994 6995 // Emit the load instruction. 6996 SDNode *Load = nullptr; 6997 if (FoldedLoad) { 6998 EVT VT = *TRI.legalclasstypes_begin(*RC); 6999 auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF); 7000 if (MMOs.empty() && RC == &X86::VR128RegClass && 7001 Subtarget.isUnalignedMem16Slow()) 7002 // Do not introduce a slow unaligned load. 7003 return false; 7004 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte 7005 // memory access is slow above. 7006 7007 unsigned Opc; 7008 if (FoldedBCast) { 7009 Opc = getBroadcastOpcode(I, RC, Subtarget); 7010 } else { 7011 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); 7012 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; 7013 Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget); 7014 } 7015 7016 Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps); 7017 NewNodes.push_back(Load); 7018 7019 // Preserve memory reference information. 7020 DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs); 7021 } 7022 7023 // Emit the data processing instruction. 7024 std::vector<EVT> VTs; 7025 const TargetRegisterClass *DstRC = nullptr; 7026 if (MCID.getNumDefs() > 0) { 7027 DstRC = getRegClass(MCID, 0, &RI, MF); 7028 VTs.push_back(*TRI.legalclasstypes_begin(*DstRC)); 7029 } 7030 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { 7031 EVT VT = N->getValueType(i); 7032 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) 7033 VTs.push_back(VT); 7034 } 7035 if (Load) 7036 BeforeOps.push_back(SDValue(Load, 0)); 7037 llvm::append_range(BeforeOps, AfterOps); 7038 // Change CMP32ri r, 0 back to TEST32rr r, r, etc. 7039 switch (Opc) { 7040 default: break; 7041 case X86::CMP64ri32: 7042 case X86::CMP64ri8: 7043 case X86::CMP32ri: 7044 case X86::CMP32ri8: 7045 case X86::CMP16ri: 7046 case X86::CMP16ri8: 7047 case X86::CMP8ri: 7048 if (isNullConstant(BeforeOps[1])) { 7049 switch (Opc) { 7050 default: llvm_unreachable("Unreachable!"); 7051 case X86::CMP64ri8: 7052 case X86::CMP64ri32: Opc = X86::TEST64rr; break; 7053 case X86::CMP32ri8: 7054 case X86::CMP32ri: Opc = X86::TEST32rr; break; 7055 case X86::CMP16ri8: 7056 case X86::CMP16ri: Opc = X86::TEST16rr; break; 7057 case X86::CMP8ri: Opc = X86::TEST8rr; break; 7058 } 7059 BeforeOps[1] = BeforeOps[0]; 7060 } 7061 } 7062 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps); 7063 NewNodes.push_back(NewNode); 7064 7065 // Emit the store instruction. 7066 if (FoldedStore) { 7067 AddrOps.pop_back(); 7068 AddrOps.push_back(SDValue(NewNode, 0)); 7069 AddrOps.push_back(Chain); 7070 auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF); 7071 if (MMOs.empty() && RC == &X86::VR128RegClass && 7072 Subtarget.isUnalignedMem16Slow()) 7073 // Do not introduce a slow unaligned store. 7074 return false; 7075 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte 7076 // memory access is slow above. 7077 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); 7078 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; 7079 SDNode *Store = 7080 DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget), 7081 dl, MVT::Other, AddrOps); 7082 NewNodes.push_back(Store); 7083 7084 // Preserve memory reference information. 7085 DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs); 7086 } 7087 7088 return true; 7089 } 7090 7091 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, 7092 bool UnfoldLoad, bool UnfoldStore, 7093 unsigned *LoadRegIndex) const { 7094 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc); 7095 if (I == nullptr) 7096 return 0; 7097 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; 7098 bool FoldedStore = I->Flags & TB_FOLDED_STORE; 7099 if (UnfoldLoad && !FoldedLoad) 7100 return 0; 7101 if (UnfoldStore && !FoldedStore) 7102 return 0; 7103 if (LoadRegIndex) 7104 *LoadRegIndex = I->Flags & TB_INDEX_MASK; 7105 return I->DstOp; 7106 } 7107 7108 bool 7109 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 7110 int64_t &Offset1, int64_t &Offset2) const { 7111 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 7112 return false; 7113 unsigned Opc1 = Load1->getMachineOpcode(); 7114 unsigned Opc2 = Load2->getMachineOpcode(); 7115 switch (Opc1) { 7116 default: return false; 7117 case X86::MOV8rm: 7118 case X86::MOV16rm: 7119 case X86::MOV32rm: 7120 case X86::MOV64rm: 7121 case X86::LD_Fp32m: 7122 case X86::LD_Fp64m: 7123 case X86::LD_Fp80m: 7124 case X86::MOVSSrm: 7125 case X86::MOVSSrm_alt: 7126 case X86::MOVSDrm: 7127 case X86::MOVSDrm_alt: 7128 case X86::MMX_MOVD64rm: 7129 case X86::MMX_MOVQ64rm: 7130 case X86::MOVAPSrm: 7131 case X86::MOVUPSrm: 7132 case X86::MOVAPDrm: 7133 case X86::MOVUPDrm: 7134 case X86::MOVDQArm: 7135 case X86::MOVDQUrm: 7136 // AVX load instructions 7137 case X86::VMOVSSrm: 7138 case X86::VMOVSSrm_alt: 7139 case X86::VMOVSDrm: 7140 case X86::VMOVSDrm_alt: 7141 case X86::VMOVAPSrm: 7142 case X86::VMOVUPSrm: 7143 case X86::VMOVAPDrm: 7144 case X86::VMOVUPDrm: 7145 case X86::VMOVDQArm: 7146 case X86::VMOVDQUrm: 7147 case X86::VMOVAPSYrm: 7148 case X86::VMOVUPSYrm: 7149 case X86::VMOVAPDYrm: 7150 case X86::VMOVUPDYrm: 7151 case X86::VMOVDQAYrm: 7152 case X86::VMOVDQUYrm: 7153 // AVX512 load instructions 7154 case X86::VMOVSSZrm: 7155 case X86::VMOVSSZrm_alt: 7156 case X86::VMOVSDZrm: 7157 case X86::VMOVSDZrm_alt: 7158 case X86::VMOVAPSZ128rm: 7159 case X86::VMOVUPSZ128rm: 7160 case X86::VMOVAPSZ128rm_NOVLX: 7161 case X86::VMOVUPSZ128rm_NOVLX: 7162 case X86::VMOVAPDZ128rm: 7163 case X86::VMOVUPDZ128rm: 7164 case X86::VMOVDQU8Z128rm: 7165 case X86::VMOVDQU16Z128rm: 7166 case X86::VMOVDQA32Z128rm: 7167 case X86::VMOVDQU32Z128rm: 7168 case X86::VMOVDQA64Z128rm: 7169 case X86::VMOVDQU64Z128rm: 7170 case X86::VMOVAPSZ256rm: 7171 case X86::VMOVUPSZ256rm: 7172 case X86::VMOVAPSZ256rm_NOVLX: 7173 case X86::VMOVUPSZ256rm_NOVLX: 7174 case X86::VMOVAPDZ256rm: 7175 case X86::VMOVUPDZ256rm: 7176 case X86::VMOVDQU8Z256rm: 7177 case X86::VMOVDQU16Z256rm: 7178 case X86::VMOVDQA32Z256rm: 7179 case X86::VMOVDQU32Z256rm: 7180 case X86::VMOVDQA64Z256rm: 7181 case X86::VMOVDQU64Z256rm: 7182 case X86::VMOVAPSZrm: 7183 case X86::VMOVUPSZrm: 7184 case X86::VMOVAPDZrm: 7185 case X86::VMOVUPDZrm: 7186 case X86::VMOVDQU8Zrm: 7187 case X86::VMOVDQU16Zrm: 7188 case X86::VMOVDQA32Zrm: 7189 case X86::VMOVDQU32Zrm: 7190 case X86::VMOVDQA64Zrm: 7191 case X86::VMOVDQU64Zrm: 7192 case X86::KMOVBkm: 7193 case X86::KMOVWkm: 7194 case X86::KMOVDkm: 7195 case X86::KMOVQkm: 7196 break; 7197 } 7198 switch (Opc2) { 7199 default: return false; 7200 case X86::MOV8rm: 7201 case X86::MOV16rm: 7202 case X86::MOV32rm: 7203 case X86::MOV64rm: 7204 case X86::LD_Fp32m: 7205 case X86::LD_Fp64m: 7206 case X86::LD_Fp80m: 7207 case X86::MOVSSrm: 7208 case X86::MOVSSrm_alt: 7209 case X86::MOVSDrm: 7210 case X86::MOVSDrm_alt: 7211 case X86::MMX_MOVD64rm: 7212 case X86::MMX_MOVQ64rm: 7213 case X86::MOVAPSrm: 7214 case X86::MOVUPSrm: 7215 case X86::MOVAPDrm: 7216 case X86::MOVUPDrm: 7217 case X86::MOVDQArm: 7218 case X86::MOVDQUrm: 7219 // AVX load instructions 7220 case X86::VMOVSSrm: 7221 case X86::VMOVSSrm_alt: 7222 case X86::VMOVSDrm: 7223 case X86::VMOVSDrm_alt: 7224 case X86::VMOVAPSrm: 7225 case X86::VMOVUPSrm: 7226 case X86::VMOVAPDrm: 7227 case X86::VMOVUPDrm: 7228 case X86::VMOVDQArm: 7229 case X86::VMOVDQUrm: 7230 case X86::VMOVAPSYrm: 7231 case X86::VMOVUPSYrm: 7232 case X86::VMOVAPDYrm: 7233 case X86::VMOVUPDYrm: 7234 case X86::VMOVDQAYrm: 7235 case X86::VMOVDQUYrm: 7236 // AVX512 load instructions 7237 case X86::VMOVSSZrm: 7238 case X86::VMOVSSZrm_alt: 7239 case X86::VMOVSDZrm: 7240 case X86::VMOVSDZrm_alt: 7241 case X86::VMOVAPSZ128rm: 7242 case X86::VMOVUPSZ128rm: 7243 case X86::VMOVAPSZ128rm_NOVLX: 7244 case X86::VMOVUPSZ128rm_NOVLX: 7245 case X86::VMOVAPDZ128rm: 7246 case X86::VMOVUPDZ128rm: 7247 case X86::VMOVDQU8Z128rm: 7248 case X86::VMOVDQU16Z128rm: 7249 case X86::VMOVDQA32Z128rm: 7250 case X86::VMOVDQU32Z128rm: 7251 case X86::VMOVDQA64Z128rm: 7252 case X86::VMOVDQU64Z128rm: 7253 case X86::VMOVAPSZ256rm: 7254 case X86::VMOVUPSZ256rm: 7255 case X86::VMOVAPSZ256rm_NOVLX: 7256 case X86::VMOVUPSZ256rm_NOVLX: 7257 case X86::VMOVAPDZ256rm: 7258 case X86::VMOVUPDZ256rm: 7259 case X86::VMOVDQU8Z256rm: 7260 case X86::VMOVDQU16Z256rm: 7261 case X86::VMOVDQA32Z256rm: 7262 case X86::VMOVDQU32Z256rm: 7263 case X86::VMOVDQA64Z256rm: 7264 case X86::VMOVDQU64Z256rm: 7265 case X86::VMOVAPSZrm: 7266 case X86::VMOVUPSZrm: 7267 case X86::VMOVAPDZrm: 7268 case X86::VMOVUPDZrm: 7269 case X86::VMOVDQU8Zrm: 7270 case X86::VMOVDQU16Zrm: 7271 case X86::VMOVDQA32Zrm: 7272 case X86::VMOVDQU32Zrm: 7273 case X86::VMOVDQA64Zrm: 7274 case X86::VMOVDQU64Zrm: 7275 case X86::KMOVBkm: 7276 case X86::KMOVWkm: 7277 case X86::KMOVDkm: 7278 case X86::KMOVQkm: 7279 break; 7280 } 7281 7282 // Lambda to check if both the loads have the same value for an operand index. 7283 auto HasSameOp = [&](int I) { 7284 return Load1->getOperand(I) == Load2->getOperand(I); 7285 }; 7286 7287 // All operands except the displacement should match. 7288 if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) || 7289 !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg)) 7290 return false; 7291 7292 // Chain Operand must be the same. 7293 if (!HasSameOp(5)) 7294 return false; 7295 7296 // Now let's examine if the displacements are constants. 7297 auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp)); 7298 auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp)); 7299 if (!Disp1 || !Disp2) 7300 return false; 7301 7302 Offset1 = Disp1->getSExtValue(); 7303 Offset2 = Disp2->getSExtValue(); 7304 return true; 7305 } 7306 7307 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 7308 int64_t Offset1, int64_t Offset2, 7309 unsigned NumLoads) const { 7310 assert(Offset2 > Offset1); 7311 if ((Offset2 - Offset1) / 8 > 64) 7312 return false; 7313 7314 unsigned Opc1 = Load1->getMachineOpcode(); 7315 unsigned Opc2 = Load2->getMachineOpcode(); 7316 if (Opc1 != Opc2) 7317 return false; // FIXME: overly conservative? 7318 7319 switch (Opc1) { 7320 default: break; 7321 case X86::LD_Fp32m: 7322 case X86::LD_Fp64m: 7323 case X86::LD_Fp80m: 7324 case X86::MMX_MOVD64rm: 7325 case X86::MMX_MOVQ64rm: 7326 return false; 7327 } 7328 7329 EVT VT = Load1->getValueType(0); 7330 switch (VT.getSimpleVT().SimpleTy) { 7331 default: 7332 // XMM registers. In 64-bit mode we can be a bit more aggressive since we 7333 // have 16 of them to play with. 7334 if (Subtarget.is64Bit()) { 7335 if (NumLoads >= 3) 7336 return false; 7337 } else if (NumLoads) { 7338 return false; 7339 } 7340 break; 7341 case MVT::i8: 7342 case MVT::i16: 7343 case MVT::i32: 7344 case MVT::i64: 7345 case MVT::f32: 7346 case MVT::f64: 7347 if (NumLoads) 7348 return false; 7349 break; 7350 } 7351 7352 return true; 7353 } 7354 7355 bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI, 7356 const MachineBasicBlock *MBB, 7357 const MachineFunction &MF) const { 7358 7359 // ENDBR instructions should not be scheduled around. 7360 unsigned Opcode = MI.getOpcode(); 7361 if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 || 7362 Opcode == X86::PLDTILECFGV) 7363 return true; 7364 7365 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); 7366 } 7367 7368 bool X86InstrInfo:: 7369 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 7370 assert(Cond.size() == 1 && "Invalid X86 branch condition!"); 7371 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm()); 7372 Cond[0].setImm(GetOppositeBranchCondition(CC)); 7373 return false; 7374 } 7375 7376 bool X86InstrInfo:: 7377 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { 7378 // FIXME: Return false for x87 stack register classes for now. We can't 7379 // allow any loads of these registers before FpGet_ST0_80. 7380 return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass || 7381 RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass || 7382 RC == &X86::RFP80RegClass); 7383 } 7384 7385 /// Return a virtual register initialized with the 7386 /// the global base register value. Output instructions required to 7387 /// initialize the register in the function entry block, if necessary. 7388 /// 7389 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. 7390 /// 7391 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { 7392 assert((!Subtarget.is64Bit() || 7393 MF->getTarget().getCodeModel() == CodeModel::Medium || 7394 MF->getTarget().getCodeModel() == CodeModel::Large) && 7395 "X86-64 PIC uses RIP relative addressing"); 7396 7397 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); 7398 Register GlobalBaseReg = X86FI->getGlobalBaseReg(); 7399 if (GlobalBaseReg != 0) 7400 return GlobalBaseReg; 7401 7402 // Create the register. The code to initialize it is inserted 7403 // later, by the CGBR pass (below). 7404 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 7405 GlobalBaseReg = RegInfo.createVirtualRegister( 7406 Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass); 7407 X86FI->setGlobalBaseReg(GlobalBaseReg); 7408 return GlobalBaseReg; 7409 } 7410 7411 // These are the replaceable SSE instructions. Some of these have Int variants 7412 // that we don't include here. We don't want to replace instructions selected 7413 // by intrinsics. 7414 static const uint16_t ReplaceableInstrs[][3] = { 7415 //PackedSingle PackedDouble PackedInt 7416 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr }, 7417 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm }, 7418 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr }, 7419 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr }, 7420 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm }, 7421 { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr }, 7422 { X86::MOVSDmr, X86::MOVSDmr, X86::MOVPQI2QImr }, 7423 { X86::MOVSSmr, X86::MOVSSmr, X86::MOVPDI2DImr }, 7424 { X86::MOVSDrm, X86::MOVSDrm, X86::MOVQI2PQIrm }, 7425 { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm }, 7426 { X86::MOVSSrm, X86::MOVSSrm, X86::MOVDI2PDIrm }, 7427 { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm }, 7428 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr }, 7429 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm }, 7430 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr }, 7431 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm }, 7432 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr }, 7433 { X86::ORPSrm, X86::ORPDrm, X86::PORrm }, 7434 { X86::ORPSrr, X86::ORPDrr, X86::PORrr }, 7435 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm }, 7436 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr }, 7437 { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm }, 7438 { X86::MOVLHPSrr, X86::UNPCKLPDrr, X86::PUNPCKLQDQrr }, 7439 { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm }, 7440 { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr }, 7441 { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm }, 7442 { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr }, 7443 { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm }, 7444 { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr }, 7445 { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr }, 7446 { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr }, 7447 // AVX 128-bit support 7448 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr }, 7449 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm }, 7450 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr }, 7451 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr }, 7452 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm }, 7453 { X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr }, 7454 { X86::VMOVSDmr, X86::VMOVSDmr, X86::VMOVPQI2QImr }, 7455 { X86::VMOVSSmr, X86::VMOVSSmr, X86::VMOVPDI2DImr }, 7456 { X86::VMOVSDrm, X86::VMOVSDrm, X86::VMOVQI2PQIrm }, 7457 { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm }, 7458 { X86::VMOVSSrm, X86::VMOVSSrm, X86::VMOVDI2PDIrm }, 7459 { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm }, 7460 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr }, 7461 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm }, 7462 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr }, 7463 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm }, 7464 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr }, 7465 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm }, 7466 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr }, 7467 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm }, 7468 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr }, 7469 { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm }, 7470 { X86::VMOVLHPSrr, X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr }, 7471 { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm }, 7472 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr }, 7473 { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm }, 7474 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr }, 7475 { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm }, 7476 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr }, 7477 { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr }, 7478 { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr }, 7479 // AVX 256-bit support 7480 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr }, 7481 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm }, 7482 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr }, 7483 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr }, 7484 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm }, 7485 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr }, 7486 { X86::VPERMPSYrm, X86::VPERMPSYrm, X86::VPERMDYrm }, 7487 { X86::VPERMPSYrr, X86::VPERMPSYrr, X86::VPERMDYrr }, 7488 { X86::VPERMPDYmi, X86::VPERMPDYmi, X86::VPERMQYmi }, 7489 { X86::VPERMPDYri, X86::VPERMPDYri, X86::VPERMQYri }, 7490 // AVX512 support 7491 { X86::VMOVLPSZ128mr, X86::VMOVLPDZ128mr, X86::VMOVPQI2QIZmr }, 7492 { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr }, 7493 { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr }, 7494 { X86::VMOVNTPSZmr, X86::VMOVNTPDZmr, X86::VMOVNTDQZmr }, 7495 { X86::VMOVSDZmr, X86::VMOVSDZmr, X86::VMOVPQI2QIZmr }, 7496 { X86::VMOVSSZmr, X86::VMOVSSZmr, X86::VMOVPDI2DIZmr }, 7497 { X86::VMOVSDZrm, X86::VMOVSDZrm, X86::VMOVQI2PQIZrm }, 7498 { X86::VMOVSDZrm_alt, X86::VMOVSDZrm_alt, X86::VMOVQI2PQIZrm }, 7499 { X86::VMOVSSZrm, X86::VMOVSSZrm, X86::VMOVDI2PDIZrm }, 7500 { X86::VMOVSSZrm_alt, X86::VMOVSSZrm_alt, X86::VMOVDI2PDIZrm }, 7501 { X86::VBROADCASTSSZ128rr,X86::VBROADCASTSSZ128rr,X86::VPBROADCASTDZ128rr }, 7502 { X86::VBROADCASTSSZ128rm,X86::VBROADCASTSSZ128rm,X86::VPBROADCASTDZ128rm }, 7503 { X86::VBROADCASTSSZ256rr,X86::VBROADCASTSSZ256rr,X86::VPBROADCASTDZ256rr }, 7504 { X86::VBROADCASTSSZ256rm,X86::VBROADCASTSSZ256rm,X86::VPBROADCASTDZ256rm }, 7505 { X86::VBROADCASTSSZrr, X86::VBROADCASTSSZrr, X86::VPBROADCASTDZrr }, 7506 { X86::VBROADCASTSSZrm, X86::VBROADCASTSSZrm, X86::VPBROADCASTDZrm }, 7507 { X86::VMOVDDUPZ128rr, X86::VMOVDDUPZ128rr, X86::VPBROADCASTQZ128rr }, 7508 { X86::VMOVDDUPZ128rm, X86::VMOVDDUPZ128rm, X86::VPBROADCASTQZ128rm }, 7509 { X86::VBROADCASTSDZ256rr,X86::VBROADCASTSDZ256rr,X86::VPBROADCASTQZ256rr }, 7510 { X86::VBROADCASTSDZ256rm,X86::VBROADCASTSDZ256rm,X86::VPBROADCASTQZ256rm }, 7511 { X86::VBROADCASTSDZrr, X86::VBROADCASTSDZrr, X86::VPBROADCASTQZrr }, 7512 { X86::VBROADCASTSDZrm, X86::VBROADCASTSDZrm, X86::VPBROADCASTQZrm }, 7513 { X86::VINSERTF32x4Zrr, X86::VINSERTF32x4Zrr, X86::VINSERTI32x4Zrr }, 7514 { X86::VINSERTF32x4Zrm, X86::VINSERTF32x4Zrm, X86::VINSERTI32x4Zrm }, 7515 { X86::VINSERTF32x8Zrr, X86::VINSERTF32x8Zrr, X86::VINSERTI32x8Zrr }, 7516 { X86::VINSERTF32x8Zrm, X86::VINSERTF32x8Zrm, X86::VINSERTI32x8Zrm }, 7517 { X86::VINSERTF64x2Zrr, X86::VINSERTF64x2Zrr, X86::VINSERTI64x2Zrr }, 7518 { X86::VINSERTF64x2Zrm, X86::VINSERTF64x2Zrm, X86::VINSERTI64x2Zrm }, 7519 { X86::VINSERTF64x4Zrr, X86::VINSERTF64x4Zrr, X86::VINSERTI64x4Zrr }, 7520 { X86::VINSERTF64x4Zrm, X86::VINSERTF64x4Zrm, X86::VINSERTI64x4Zrm }, 7521 { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr }, 7522 { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm }, 7523 { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr }, 7524 { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm }, 7525 { X86::VEXTRACTF32x4Zrr, X86::VEXTRACTF32x4Zrr, X86::VEXTRACTI32x4Zrr }, 7526 { X86::VEXTRACTF32x4Zmr, X86::VEXTRACTF32x4Zmr, X86::VEXTRACTI32x4Zmr }, 7527 { X86::VEXTRACTF32x8Zrr, X86::VEXTRACTF32x8Zrr, X86::VEXTRACTI32x8Zrr }, 7528 { X86::VEXTRACTF32x8Zmr, X86::VEXTRACTF32x8Zmr, X86::VEXTRACTI32x8Zmr }, 7529 { X86::VEXTRACTF64x2Zrr, X86::VEXTRACTF64x2Zrr, X86::VEXTRACTI64x2Zrr }, 7530 { X86::VEXTRACTF64x2Zmr, X86::VEXTRACTF64x2Zmr, X86::VEXTRACTI64x2Zmr }, 7531 { X86::VEXTRACTF64x4Zrr, X86::VEXTRACTF64x4Zrr, X86::VEXTRACTI64x4Zrr }, 7532 { X86::VEXTRACTF64x4Zmr, X86::VEXTRACTF64x4Zmr, X86::VEXTRACTI64x4Zmr }, 7533 { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr }, 7534 { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr }, 7535 { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr }, 7536 { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr }, 7537 { X86::VPERMILPSmi, X86::VPERMILPSmi, X86::VPSHUFDmi }, 7538 { X86::VPERMILPSri, X86::VPERMILPSri, X86::VPSHUFDri }, 7539 { X86::VPERMILPSZ128mi, X86::VPERMILPSZ128mi, X86::VPSHUFDZ128mi }, 7540 { X86::VPERMILPSZ128ri, X86::VPERMILPSZ128ri, X86::VPSHUFDZ128ri }, 7541 { X86::VPERMILPSZ256mi, X86::VPERMILPSZ256mi, X86::VPSHUFDZ256mi }, 7542 { X86::VPERMILPSZ256ri, X86::VPERMILPSZ256ri, X86::VPSHUFDZ256ri }, 7543 { X86::VPERMILPSZmi, X86::VPERMILPSZmi, X86::VPSHUFDZmi }, 7544 { X86::VPERMILPSZri, X86::VPERMILPSZri, X86::VPSHUFDZri }, 7545 { X86::VPERMPSZ256rm, X86::VPERMPSZ256rm, X86::VPERMDZ256rm }, 7546 { X86::VPERMPSZ256rr, X86::VPERMPSZ256rr, X86::VPERMDZ256rr }, 7547 { X86::VPERMPDZ256mi, X86::VPERMPDZ256mi, X86::VPERMQZ256mi }, 7548 { X86::VPERMPDZ256ri, X86::VPERMPDZ256ri, X86::VPERMQZ256ri }, 7549 { X86::VPERMPDZ256rm, X86::VPERMPDZ256rm, X86::VPERMQZ256rm }, 7550 { X86::VPERMPDZ256rr, X86::VPERMPDZ256rr, X86::VPERMQZ256rr }, 7551 { X86::VPERMPSZrm, X86::VPERMPSZrm, X86::VPERMDZrm }, 7552 { X86::VPERMPSZrr, X86::VPERMPSZrr, X86::VPERMDZrr }, 7553 { X86::VPERMPDZmi, X86::VPERMPDZmi, X86::VPERMQZmi }, 7554 { X86::VPERMPDZri, X86::VPERMPDZri, X86::VPERMQZri }, 7555 { X86::VPERMPDZrm, X86::VPERMPDZrm, X86::VPERMQZrm }, 7556 { X86::VPERMPDZrr, X86::VPERMPDZrr, X86::VPERMQZrr }, 7557 { X86::VUNPCKLPDZ256rm, X86::VUNPCKLPDZ256rm, X86::VPUNPCKLQDQZ256rm }, 7558 { X86::VUNPCKLPDZ256rr, X86::VUNPCKLPDZ256rr, X86::VPUNPCKLQDQZ256rr }, 7559 { X86::VUNPCKHPDZ256rm, X86::VUNPCKHPDZ256rm, X86::VPUNPCKHQDQZ256rm }, 7560 { X86::VUNPCKHPDZ256rr, X86::VUNPCKHPDZ256rr, X86::VPUNPCKHQDQZ256rr }, 7561 { X86::VUNPCKLPSZ256rm, X86::VUNPCKLPSZ256rm, X86::VPUNPCKLDQZ256rm }, 7562 { X86::VUNPCKLPSZ256rr, X86::VUNPCKLPSZ256rr, X86::VPUNPCKLDQZ256rr }, 7563 { X86::VUNPCKHPSZ256rm, X86::VUNPCKHPSZ256rm, X86::VPUNPCKHDQZ256rm }, 7564 { X86::VUNPCKHPSZ256rr, X86::VUNPCKHPSZ256rr, X86::VPUNPCKHDQZ256rr }, 7565 { X86::VUNPCKLPDZ128rm, X86::VUNPCKLPDZ128rm, X86::VPUNPCKLQDQZ128rm }, 7566 { X86::VMOVLHPSZrr, X86::VUNPCKLPDZ128rr, X86::VPUNPCKLQDQZ128rr }, 7567 { X86::VUNPCKHPDZ128rm, X86::VUNPCKHPDZ128rm, X86::VPUNPCKHQDQZ128rm }, 7568 { X86::VUNPCKHPDZ128rr, X86::VUNPCKHPDZ128rr, X86::VPUNPCKHQDQZ128rr }, 7569 { X86::VUNPCKLPSZ128rm, X86::VUNPCKLPSZ128rm, X86::VPUNPCKLDQZ128rm }, 7570 { X86::VUNPCKLPSZ128rr, X86::VUNPCKLPSZ128rr, X86::VPUNPCKLDQZ128rr }, 7571 { X86::VUNPCKHPSZ128rm, X86::VUNPCKHPSZ128rm, X86::VPUNPCKHDQZ128rm }, 7572 { X86::VUNPCKHPSZ128rr, X86::VUNPCKHPSZ128rr, X86::VPUNPCKHDQZ128rr }, 7573 { X86::VUNPCKLPDZrm, X86::VUNPCKLPDZrm, X86::VPUNPCKLQDQZrm }, 7574 { X86::VUNPCKLPDZrr, X86::VUNPCKLPDZrr, X86::VPUNPCKLQDQZrr }, 7575 { X86::VUNPCKHPDZrm, X86::VUNPCKHPDZrm, X86::VPUNPCKHQDQZrm }, 7576 { X86::VUNPCKHPDZrr, X86::VUNPCKHPDZrr, X86::VPUNPCKHQDQZrr }, 7577 { X86::VUNPCKLPSZrm, X86::VUNPCKLPSZrm, X86::VPUNPCKLDQZrm }, 7578 { X86::VUNPCKLPSZrr, X86::VUNPCKLPSZrr, X86::VPUNPCKLDQZrr }, 7579 { X86::VUNPCKHPSZrm, X86::VUNPCKHPSZrm, X86::VPUNPCKHDQZrm }, 7580 { X86::VUNPCKHPSZrr, X86::VUNPCKHPSZrr, X86::VPUNPCKHDQZrr }, 7581 { X86::VEXTRACTPSZmr, X86::VEXTRACTPSZmr, X86::VPEXTRDZmr }, 7582 { X86::VEXTRACTPSZrr, X86::VEXTRACTPSZrr, X86::VPEXTRDZrr }, 7583 }; 7584 7585 static const uint16_t ReplaceableInstrsAVX2[][3] = { 7586 //PackedSingle PackedDouble PackedInt 7587 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm }, 7588 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr }, 7589 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm }, 7590 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr }, 7591 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm }, 7592 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr }, 7593 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm }, 7594 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr }, 7595 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm }, 7596 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr }, 7597 { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm}, 7598 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr}, 7599 { X86::VMOVDDUPrm, X86::VMOVDDUPrm, X86::VPBROADCASTQrm}, 7600 { X86::VMOVDDUPrr, X86::VMOVDDUPrr, X86::VPBROADCASTQrr}, 7601 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr}, 7602 { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm}, 7603 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr}, 7604 { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm}, 7605 { X86::VBROADCASTF128, X86::VBROADCASTF128, X86::VBROADCASTI128 }, 7606 { X86::VBLENDPSYrri, X86::VBLENDPSYrri, X86::VPBLENDDYrri }, 7607 { X86::VBLENDPSYrmi, X86::VBLENDPSYrmi, X86::VPBLENDDYrmi }, 7608 { X86::VPERMILPSYmi, X86::VPERMILPSYmi, X86::VPSHUFDYmi }, 7609 { X86::VPERMILPSYri, X86::VPERMILPSYri, X86::VPSHUFDYri }, 7610 { X86::VUNPCKLPDYrm, X86::VUNPCKLPDYrm, X86::VPUNPCKLQDQYrm }, 7611 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrr, X86::VPUNPCKLQDQYrr }, 7612 { X86::VUNPCKHPDYrm, X86::VUNPCKHPDYrm, X86::VPUNPCKHQDQYrm }, 7613 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrr, X86::VPUNPCKHQDQYrr }, 7614 { X86::VUNPCKLPSYrm, X86::VUNPCKLPSYrm, X86::VPUNPCKLDQYrm }, 7615 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrr, X86::VPUNPCKLDQYrr }, 7616 { X86::VUNPCKHPSYrm, X86::VUNPCKHPSYrm, X86::VPUNPCKHDQYrm }, 7617 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrr, X86::VPUNPCKHDQYrr }, 7618 }; 7619 7620 static const uint16_t ReplaceableInstrsFP[][3] = { 7621 //PackedSingle PackedDouble 7622 { X86::MOVLPSrm, X86::MOVLPDrm, X86::INSTRUCTION_LIST_END }, 7623 { X86::MOVHPSrm, X86::MOVHPDrm, X86::INSTRUCTION_LIST_END }, 7624 { X86::MOVHPSmr, X86::MOVHPDmr, X86::INSTRUCTION_LIST_END }, 7625 { X86::VMOVLPSrm, X86::VMOVLPDrm, X86::INSTRUCTION_LIST_END }, 7626 { X86::VMOVHPSrm, X86::VMOVHPDrm, X86::INSTRUCTION_LIST_END }, 7627 { X86::VMOVHPSmr, X86::VMOVHPDmr, X86::INSTRUCTION_LIST_END }, 7628 { X86::VMOVLPSZ128rm, X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END }, 7629 { X86::VMOVHPSZ128rm, X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END }, 7630 { X86::VMOVHPSZ128mr, X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END }, 7631 }; 7632 7633 static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = { 7634 //PackedSingle PackedDouble PackedInt 7635 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr }, 7636 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr }, 7637 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm }, 7638 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr }, 7639 }; 7640 7641 static const uint16_t ReplaceableInstrsAVX512[][4] = { 7642 // Two integer columns for 64-bit and 32-bit elements. 7643 //PackedSingle PackedDouble PackedInt PackedInt 7644 { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr }, 7645 { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm }, 7646 { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr }, 7647 { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr }, 7648 { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm }, 7649 { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr }, 7650 { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm }, 7651 { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr }, 7652 { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr }, 7653 { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm }, 7654 { X86::VMOVAPSZmr, X86::VMOVAPDZmr, X86::VMOVDQA64Zmr, X86::VMOVDQA32Zmr }, 7655 { X86::VMOVAPSZrm, X86::VMOVAPDZrm, X86::VMOVDQA64Zrm, X86::VMOVDQA32Zrm }, 7656 { X86::VMOVAPSZrr, X86::VMOVAPDZrr, X86::VMOVDQA64Zrr, X86::VMOVDQA32Zrr }, 7657 { X86::VMOVUPSZmr, X86::VMOVUPDZmr, X86::VMOVDQU64Zmr, X86::VMOVDQU32Zmr }, 7658 { X86::VMOVUPSZrm, X86::VMOVUPDZrm, X86::VMOVDQU64Zrm, X86::VMOVDQU32Zrm }, 7659 }; 7660 7661 static const uint16_t ReplaceableInstrsAVX512DQ[][4] = { 7662 // Two integer columns for 64-bit and 32-bit elements. 7663 //PackedSingle PackedDouble PackedInt PackedInt 7664 { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm }, 7665 { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr }, 7666 { X86::VANDPSZ128rm, X86::VANDPDZ128rm, X86::VPANDQZ128rm, X86::VPANDDZ128rm }, 7667 { X86::VANDPSZ128rr, X86::VANDPDZ128rr, X86::VPANDQZ128rr, X86::VPANDDZ128rr }, 7668 { X86::VORPSZ128rm, X86::VORPDZ128rm, X86::VPORQZ128rm, X86::VPORDZ128rm }, 7669 { X86::VORPSZ128rr, X86::VORPDZ128rr, X86::VPORQZ128rr, X86::VPORDZ128rr }, 7670 { X86::VXORPSZ128rm, X86::VXORPDZ128rm, X86::VPXORQZ128rm, X86::VPXORDZ128rm }, 7671 { X86::VXORPSZ128rr, X86::VXORPDZ128rr, X86::VPXORQZ128rr, X86::VPXORDZ128rr }, 7672 { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm }, 7673 { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr }, 7674 { X86::VANDPSZ256rm, X86::VANDPDZ256rm, X86::VPANDQZ256rm, X86::VPANDDZ256rm }, 7675 { X86::VANDPSZ256rr, X86::VANDPDZ256rr, X86::VPANDQZ256rr, X86::VPANDDZ256rr }, 7676 { X86::VORPSZ256rm, X86::VORPDZ256rm, X86::VPORQZ256rm, X86::VPORDZ256rm }, 7677 { X86::VORPSZ256rr, X86::VORPDZ256rr, X86::VPORQZ256rr, X86::VPORDZ256rr }, 7678 { X86::VXORPSZ256rm, X86::VXORPDZ256rm, X86::VPXORQZ256rm, X86::VPXORDZ256rm }, 7679 { X86::VXORPSZ256rr, X86::VXORPDZ256rr, X86::VPXORQZ256rr, X86::VPXORDZ256rr }, 7680 { X86::VANDNPSZrm, X86::VANDNPDZrm, X86::VPANDNQZrm, X86::VPANDNDZrm }, 7681 { X86::VANDNPSZrr, X86::VANDNPDZrr, X86::VPANDNQZrr, X86::VPANDNDZrr }, 7682 { X86::VANDPSZrm, X86::VANDPDZrm, X86::VPANDQZrm, X86::VPANDDZrm }, 7683 { X86::VANDPSZrr, X86::VANDPDZrr, X86::VPANDQZrr, X86::VPANDDZrr }, 7684 { X86::VORPSZrm, X86::VORPDZrm, X86::VPORQZrm, X86::VPORDZrm }, 7685 { X86::VORPSZrr, X86::VORPDZrr, X86::VPORQZrr, X86::VPORDZrr }, 7686 { X86::VXORPSZrm, X86::VXORPDZrm, X86::VPXORQZrm, X86::VPXORDZrm }, 7687 { X86::VXORPSZrr, X86::VXORPDZrr, X86::VPXORQZrr, X86::VPXORDZrr }, 7688 }; 7689 7690 static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = { 7691 // Two integer columns for 64-bit and 32-bit elements. 7692 //PackedSingle PackedDouble 7693 //PackedInt PackedInt 7694 { X86::VANDNPSZ128rmk, X86::VANDNPDZ128rmk, 7695 X86::VPANDNQZ128rmk, X86::VPANDNDZ128rmk }, 7696 { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz, 7697 X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz }, 7698 { X86::VANDNPSZ128rrk, X86::VANDNPDZ128rrk, 7699 X86::VPANDNQZ128rrk, X86::VPANDNDZ128rrk }, 7700 { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz, 7701 X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz }, 7702 { X86::VANDPSZ128rmk, X86::VANDPDZ128rmk, 7703 X86::VPANDQZ128rmk, X86::VPANDDZ128rmk }, 7704 { X86::VANDPSZ128rmkz, X86::VANDPDZ128rmkz, 7705 X86::VPANDQZ128rmkz, X86::VPANDDZ128rmkz }, 7706 { X86::VANDPSZ128rrk, X86::VANDPDZ128rrk, 7707 X86::VPANDQZ128rrk, X86::VPANDDZ128rrk }, 7708 { X86::VANDPSZ128rrkz, X86::VANDPDZ128rrkz, 7709 X86::VPANDQZ128rrkz, X86::VPANDDZ128rrkz }, 7710 { X86::VORPSZ128rmk, X86::VORPDZ128rmk, 7711 X86::VPORQZ128rmk, X86::VPORDZ128rmk }, 7712 { X86::VORPSZ128rmkz, X86::VORPDZ128rmkz, 7713 X86::VPORQZ128rmkz, X86::VPORDZ128rmkz }, 7714 { X86::VORPSZ128rrk, X86::VORPDZ128rrk, 7715 X86::VPORQZ128rrk, X86::VPORDZ128rrk }, 7716 { X86::VORPSZ128rrkz, X86::VORPDZ128rrkz, 7717 X86::VPORQZ128rrkz, X86::VPORDZ128rrkz }, 7718 { X86::VXORPSZ128rmk, X86::VXORPDZ128rmk, 7719 X86::VPXORQZ128rmk, X86::VPXORDZ128rmk }, 7720 { X86::VXORPSZ128rmkz, X86::VXORPDZ128rmkz, 7721 X86::VPXORQZ128rmkz, X86::VPXORDZ128rmkz }, 7722 { X86::VXORPSZ128rrk, X86::VXORPDZ128rrk, 7723 X86::VPXORQZ128rrk, X86::VPXORDZ128rrk }, 7724 { X86::VXORPSZ128rrkz, X86::VXORPDZ128rrkz, 7725 X86::VPXORQZ128rrkz, X86::VPXORDZ128rrkz }, 7726 { X86::VANDNPSZ256rmk, X86::VANDNPDZ256rmk, 7727 X86::VPANDNQZ256rmk, X86::VPANDNDZ256rmk }, 7728 { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz, 7729 X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz }, 7730 { X86::VANDNPSZ256rrk, X86::VANDNPDZ256rrk, 7731 X86::VPANDNQZ256rrk, X86::VPANDNDZ256rrk }, 7732 { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz, 7733 X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz }, 7734 { X86::VANDPSZ256rmk, X86::VANDPDZ256rmk, 7735 X86::VPANDQZ256rmk, X86::VPANDDZ256rmk }, 7736 { X86::VANDPSZ256rmkz, X86::VANDPDZ256rmkz, 7737 X86::VPANDQZ256rmkz, X86::VPANDDZ256rmkz }, 7738 { X86::VANDPSZ256rrk, X86::VANDPDZ256rrk, 7739 X86::VPANDQZ256rrk, X86::VPANDDZ256rrk }, 7740 { X86::VANDPSZ256rrkz, X86::VANDPDZ256rrkz, 7741 X86::VPANDQZ256rrkz, X86::VPANDDZ256rrkz }, 7742 { X86::VORPSZ256rmk, X86::VORPDZ256rmk, 7743 X86::VPORQZ256rmk, X86::VPORDZ256rmk }, 7744 { X86::VORPSZ256rmkz, X86::VORPDZ256rmkz, 7745 X86::VPORQZ256rmkz, X86::VPORDZ256rmkz }, 7746 { X86::VORPSZ256rrk, X86::VORPDZ256rrk, 7747 X86::VPORQZ256rrk, X86::VPORDZ256rrk }, 7748 { X86::VORPSZ256rrkz, X86::VORPDZ256rrkz, 7749 X86::VPORQZ256rrkz, X86::VPORDZ256rrkz }, 7750 { X86::VXORPSZ256rmk, X86::VXORPDZ256rmk, 7751 X86::VPXORQZ256rmk, X86::VPXORDZ256rmk }, 7752 { X86::VXORPSZ256rmkz, X86::VXORPDZ256rmkz, 7753 X86::VPXORQZ256rmkz, X86::VPXORDZ256rmkz }, 7754 { X86::VXORPSZ256rrk, X86::VXORPDZ256rrk, 7755 X86::VPXORQZ256rrk, X86::VPXORDZ256rrk }, 7756 { X86::VXORPSZ256rrkz, X86::VXORPDZ256rrkz, 7757 X86::VPXORQZ256rrkz, X86::VPXORDZ256rrkz }, 7758 { X86::VANDNPSZrmk, X86::VANDNPDZrmk, 7759 X86::VPANDNQZrmk, X86::VPANDNDZrmk }, 7760 { X86::VANDNPSZrmkz, X86::VANDNPDZrmkz, 7761 X86::VPANDNQZrmkz, X86::VPANDNDZrmkz }, 7762 { X86::VANDNPSZrrk, X86::VANDNPDZrrk, 7763 X86::VPANDNQZrrk, X86::VPANDNDZrrk }, 7764 { X86::VANDNPSZrrkz, X86::VANDNPDZrrkz, 7765 X86::VPANDNQZrrkz, X86::VPANDNDZrrkz }, 7766 { X86::VANDPSZrmk, X86::VANDPDZrmk, 7767 X86::VPANDQZrmk, X86::VPANDDZrmk }, 7768 { X86::VANDPSZrmkz, X86::VANDPDZrmkz, 7769 X86::VPANDQZrmkz, X86::VPANDDZrmkz }, 7770 { X86::VANDPSZrrk, X86::VANDPDZrrk, 7771 X86::VPANDQZrrk, X86::VPANDDZrrk }, 7772 { X86::VANDPSZrrkz, X86::VANDPDZrrkz, 7773 X86::VPANDQZrrkz, X86::VPANDDZrrkz }, 7774 { X86::VORPSZrmk, X86::VORPDZrmk, 7775 X86::VPORQZrmk, X86::VPORDZrmk }, 7776 { X86::VORPSZrmkz, X86::VORPDZrmkz, 7777 X86::VPORQZrmkz, X86::VPORDZrmkz }, 7778 { X86::VORPSZrrk, X86::VORPDZrrk, 7779 X86::VPORQZrrk, X86::VPORDZrrk }, 7780 { X86::VORPSZrrkz, X86::VORPDZrrkz, 7781 X86::VPORQZrrkz, X86::VPORDZrrkz }, 7782 { X86::VXORPSZrmk, X86::VXORPDZrmk, 7783 X86::VPXORQZrmk, X86::VPXORDZrmk }, 7784 { X86::VXORPSZrmkz, X86::VXORPDZrmkz, 7785 X86::VPXORQZrmkz, X86::VPXORDZrmkz }, 7786 { X86::VXORPSZrrk, X86::VXORPDZrrk, 7787 X86::VPXORQZrrk, X86::VPXORDZrrk }, 7788 { X86::VXORPSZrrkz, X86::VXORPDZrrkz, 7789 X86::VPXORQZrrkz, X86::VPXORDZrrkz }, 7790 // Broadcast loads can be handled the same as masked operations to avoid 7791 // changing element size. 7792 { X86::VANDNPSZ128rmb, X86::VANDNPDZ128rmb, 7793 X86::VPANDNQZ128rmb, X86::VPANDNDZ128rmb }, 7794 { X86::VANDPSZ128rmb, X86::VANDPDZ128rmb, 7795 X86::VPANDQZ128rmb, X86::VPANDDZ128rmb }, 7796 { X86::VORPSZ128rmb, X86::VORPDZ128rmb, 7797 X86::VPORQZ128rmb, X86::VPORDZ128rmb }, 7798 { X86::VXORPSZ128rmb, X86::VXORPDZ128rmb, 7799 X86::VPXORQZ128rmb, X86::VPXORDZ128rmb }, 7800 { X86::VANDNPSZ256rmb, X86::VANDNPDZ256rmb, 7801 X86::VPANDNQZ256rmb, X86::VPANDNDZ256rmb }, 7802 { X86::VANDPSZ256rmb, X86::VANDPDZ256rmb, 7803 X86::VPANDQZ256rmb, X86::VPANDDZ256rmb }, 7804 { X86::VORPSZ256rmb, X86::VORPDZ256rmb, 7805 X86::VPORQZ256rmb, X86::VPORDZ256rmb }, 7806 { X86::VXORPSZ256rmb, X86::VXORPDZ256rmb, 7807 X86::VPXORQZ256rmb, X86::VPXORDZ256rmb }, 7808 { X86::VANDNPSZrmb, X86::VANDNPDZrmb, 7809 X86::VPANDNQZrmb, X86::VPANDNDZrmb }, 7810 { X86::VANDPSZrmb, X86::VANDPDZrmb, 7811 X86::VPANDQZrmb, X86::VPANDDZrmb }, 7812 { X86::VANDPSZrmb, X86::VANDPDZrmb, 7813 X86::VPANDQZrmb, X86::VPANDDZrmb }, 7814 { X86::VORPSZrmb, X86::VORPDZrmb, 7815 X86::VPORQZrmb, X86::VPORDZrmb }, 7816 { X86::VXORPSZrmb, X86::VXORPDZrmb, 7817 X86::VPXORQZrmb, X86::VPXORDZrmb }, 7818 { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk, 7819 X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk }, 7820 { X86::VANDPSZ128rmbk, X86::VANDPDZ128rmbk, 7821 X86::VPANDQZ128rmbk, X86::VPANDDZ128rmbk }, 7822 { X86::VORPSZ128rmbk, X86::VORPDZ128rmbk, 7823 X86::VPORQZ128rmbk, X86::VPORDZ128rmbk }, 7824 { X86::VXORPSZ128rmbk, X86::VXORPDZ128rmbk, 7825 X86::VPXORQZ128rmbk, X86::VPXORDZ128rmbk }, 7826 { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk, 7827 X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk }, 7828 { X86::VANDPSZ256rmbk, X86::VANDPDZ256rmbk, 7829 X86::VPANDQZ256rmbk, X86::VPANDDZ256rmbk }, 7830 { X86::VORPSZ256rmbk, X86::VORPDZ256rmbk, 7831 X86::VPORQZ256rmbk, X86::VPORDZ256rmbk }, 7832 { X86::VXORPSZ256rmbk, X86::VXORPDZ256rmbk, 7833 X86::VPXORQZ256rmbk, X86::VPXORDZ256rmbk }, 7834 { X86::VANDNPSZrmbk, X86::VANDNPDZrmbk, 7835 X86::VPANDNQZrmbk, X86::VPANDNDZrmbk }, 7836 { X86::VANDPSZrmbk, X86::VANDPDZrmbk, 7837 X86::VPANDQZrmbk, X86::VPANDDZrmbk }, 7838 { X86::VANDPSZrmbk, X86::VANDPDZrmbk, 7839 X86::VPANDQZrmbk, X86::VPANDDZrmbk }, 7840 { X86::VORPSZrmbk, X86::VORPDZrmbk, 7841 X86::VPORQZrmbk, X86::VPORDZrmbk }, 7842 { X86::VXORPSZrmbk, X86::VXORPDZrmbk, 7843 X86::VPXORQZrmbk, X86::VPXORDZrmbk }, 7844 { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz, 7845 X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz}, 7846 { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz, 7847 X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz }, 7848 { X86::VORPSZ128rmbkz, X86::VORPDZ128rmbkz, 7849 X86::VPORQZ128rmbkz, X86::VPORDZ128rmbkz }, 7850 { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz, 7851 X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz }, 7852 { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz, 7853 X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz}, 7854 { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz, 7855 X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz }, 7856 { X86::VORPSZ256rmbkz, X86::VORPDZ256rmbkz, 7857 X86::VPORQZ256rmbkz, X86::VPORDZ256rmbkz }, 7858 { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz, 7859 X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz }, 7860 { X86::VANDNPSZrmbkz, X86::VANDNPDZrmbkz, 7861 X86::VPANDNQZrmbkz, X86::VPANDNDZrmbkz }, 7862 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz, 7863 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz }, 7864 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz, 7865 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz }, 7866 { X86::VORPSZrmbkz, X86::VORPDZrmbkz, 7867 X86::VPORQZrmbkz, X86::VPORDZrmbkz }, 7868 { X86::VXORPSZrmbkz, X86::VXORPDZrmbkz, 7869 X86::VPXORQZrmbkz, X86::VPXORDZrmbkz }, 7870 }; 7871 7872 // NOTE: These should only be used by the custom domain methods. 7873 static const uint16_t ReplaceableBlendInstrs[][3] = { 7874 //PackedSingle PackedDouble PackedInt 7875 { X86::BLENDPSrmi, X86::BLENDPDrmi, X86::PBLENDWrmi }, 7876 { X86::BLENDPSrri, X86::BLENDPDrri, X86::PBLENDWrri }, 7877 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDWrmi }, 7878 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDWrri }, 7879 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDWYrmi }, 7880 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDWYrri }, 7881 }; 7882 static const uint16_t ReplaceableBlendAVX2Instrs[][3] = { 7883 //PackedSingle PackedDouble PackedInt 7884 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDDrmi }, 7885 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDDrri }, 7886 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDDYrmi }, 7887 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDDYrri }, 7888 }; 7889 7890 // Special table for changing EVEX logic instructions to VEX. 7891 // TODO: Should we run EVEX->VEX earlier? 7892 static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = { 7893 // Two integer columns for 64-bit and 32-bit elements. 7894 //PackedSingle PackedDouble PackedInt PackedInt 7895 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm }, 7896 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr }, 7897 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDQZ128rm, X86::VPANDDZ128rm }, 7898 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDQZ128rr, X86::VPANDDZ128rr }, 7899 { X86::VORPSrm, X86::VORPDrm, X86::VPORQZ128rm, X86::VPORDZ128rm }, 7900 { X86::VORPSrr, X86::VORPDrr, X86::VPORQZ128rr, X86::VPORDZ128rr }, 7901 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORQZ128rm, X86::VPXORDZ128rm }, 7902 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORQZ128rr, X86::VPXORDZ128rr }, 7903 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm }, 7904 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr }, 7905 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDQZ256rm, X86::VPANDDZ256rm }, 7906 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDQZ256rr, X86::VPANDDZ256rr }, 7907 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORQZ256rm, X86::VPORDZ256rm }, 7908 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORQZ256rr, X86::VPORDZ256rr }, 7909 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORQZ256rm, X86::VPXORDZ256rm }, 7910 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORQZ256rr, X86::VPXORDZ256rr }, 7911 }; 7912 7913 // FIXME: Some shuffle and unpack instructions have equivalents in different 7914 // domains, but they require a bit more work than just switching opcodes. 7915 7916 static const uint16_t *lookup(unsigned opcode, unsigned domain, 7917 ArrayRef<uint16_t[3]> Table) { 7918 for (const uint16_t (&Row)[3] : Table) 7919 if (Row[domain-1] == opcode) 7920 return Row; 7921 return nullptr; 7922 } 7923 7924 static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain, 7925 ArrayRef<uint16_t[4]> Table) { 7926 // If this is the integer domain make sure to check both integer columns. 7927 for (const uint16_t (&Row)[4] : Table) 7928 if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode)) 7929 return Row; 7930 return nullptr; 7931 } 7932 7933 // Helper to attempt to widen/narrow blend masks. 7934 static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth, 7935 unsigned NewWidth, unsigned *pNewMask = nullptr) { 7936 assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) && 7937 "Illegal blend mask scale"); 7938 unsigned NewMask = 0; 7939 7940 if ((OldWidth % NewWidth) == 0) { 7941 unsigned Scale = OldWidth / NewWidth; 7942 unsigned SubMask = (1u << Scale) - 1; 7943 for (unsigned i = 0; i != NewWidth; ++i) { 7944 unsigned Sub = (OldMask >> (i * Scale)) & SubMask; 7945 if (Sub == SubMask) 7946 NewMask |= (1u << i); 7947 else if (Sub != 0x0) 7948 return false; 7949 } 7950 } else { 7951 unsigned Scale = NewWidth / OldWidth; 7952 unsigned SubMask = (1u << Scale) - 1; 7953 for (unsigned i = 0; i != OldWidth; ++i) { 7954 if (OldMask & (1 << i)) { 7955 NewMask |= (SubMask << (i * Scale)); 7956 } 7957 } 7958 } 7959 7960 if (pNewMask) 7961 *pNewMask = NewMask; 7962 return true; 7963 } 7964 7965 uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const { 7966 unsigned Opcode = MI.getOpcode(); 7967 unsigned NumOperands = MI.getDesc().getNumOperands(); 7968 7969 auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) { 7970 uint16_t validDomains = 0; 7971 if (MI.getOperand(NumOperands - 1).isImm()) { 7972 unsigned Imm = MI.getOperand(NumOperands - 1).getImm(); 7973 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4)) 7974 validDomains |= 0x2; // PackedSingle 7975 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2)) 7976 validDomains |= 0x4; // PackedDouble 7977 if (!Is256 || Subtarget.hasAVX2()) 7978 validDomains |= 0x8; // PackedInt 7979 } 7980 return validDomains; 7981 }; 7982 7983 switch (Opcode) { 7984 case X86::BLENDPDrmi: 7985 case X86::BLENDPDrri: 7986 case X86::VBLENDPDrmi: 7987 case X86::VBLENDPDrri: 7988 return GetBlendDomains(2, false); 7989 case X86::VBLENDPDYrmi: 7990 case X86::VBLENDPDYrri: 7991 return GetBlendDomains(4, true); 7992 case X86::BLENDPSrmi: 7993 case X86::BLENDPSrri: 7994 case X86::VBLENDPSrmi: 7995 case X86::VBLENDPSrri: 7996 case X86::VPBLENDDrmi: 7997 case X86::VPBLENDDrri: 7998 return GetBlendDomains(4, false); 7999 case X86::VBLENDPSYrmi: 8000 case X86::VBLENDPSYrri: 8001 case X86::VPBLENDDYrmi: 8002 case X86::VPBLENDDYrri: 8003 return GetBlendDomains(8, true); 8004 case X86::PBLENDWrmi: 8005 case X86::PBLENDWrri: 8006 case X86::VPBLENDWrmi: 8007 case X86::VPBLENDWrri: 8008 // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks. 8009 case X86::VPBLENDWYrmi: 8010 case X86::VPBLENDWYrri: 8011 return GetBlendDomains(8, false); 8012 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm: 8013 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm: 8014 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm: 8015 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm: 8016 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm: 8017 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm: 8018 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm: 8019 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm: 8020 case X86::VPORDZ128rr: case X86::VPORDZ128rm: 8021 case X86::VPORDZ256rr: case X86::VPORDZ256rm: 8022 case X86::VPORQZ128rr: case X86::VPORQZ128rm: 8023 case X86::VPORQZ256rr: case X86::VPORQZ256rm: 8024 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm: 8025 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm: 8026 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm: 8027 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: 8028 // If we don't have DQI see if we can still switch from an EVEX integer 8029 // instruction to a VEX floating point instruction. 8030 if (Subtarget.hasDQI()) 8031 return 0; 8032 8033 if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16) 8034 return 0; 8035 if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16) 8036 return 0; 8037 // Register forms will have 3 operands. Memory form will have more. 8038 if (NumOperands == 3 && 8039 RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16) 8040 return 0; 8041 8042 // All domains are valid. 8043 return 0xe; 8044 case X86::MOVHLPSrr: 8045 // We can swap domains when both inputs are the same register. 8046 // FIXME: This doesn't catch all the cases we would like. If the input 8047 // register isn't KILLed by the instruction, the two address instruction 8048 // pass puts a COPY on one input. The other input uses the original 8049 // register. This prevents the same physical register from being used by 8050 // both inputs. 8051 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() && 8052 MI.getOperand(0).getSubReg() == 0 && 8053 MI.getOperand(1).getSubReg() == 0 && 8054 MI.getOperand(2).getSubReg() == 0) 8055 return 0x6; 8056 return 0; 8057 case X86::SHUFPDrri: 8058 return 0x6; 8059 } 8060 return 0; 8061 } 8062 8063 bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI, 8064 unsigned Domain) const { 8065 assert(Domain > 0 && Domain < 4 && "Invalid execution domain"); 8066 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 8067 assert(dom && "Not an SSE instruction"); 8068 8069 unsigned Opcode = MI.getOpcode(); 8070 unsigned NumOperands = MI.getDesc().getNumOperands(); 8071 8072 auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) { 8073 if (MI.getOperand(NumOperands - 1).isImm()) { 8074 unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255; 8075 Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm); 8076 unsigned NewImm = Imm; 8077 8078 const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs); 8079 if (!table) 8080 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs); 8081 8082 if (Domain == 1) { // PackedSingle 8083 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm); 8084 } else if (Domain == 2) { // PackedDouble 8085 AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm); 8086 } else if (Domain == 3) { // PackedInt 8087 if (Subtarget.hasAVX2()) { 8088 // If we are already VPBLENDW use that, else use VPBLENDD. 8089 if ((ImmWidth / (Is256 ? 2 : 1)) != 8) { 8090 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs); 8091 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm); 8092 } 8093 } else { 8094 assert(!Is256 && "128-bit vector expected"); 8095 AdjustBlendMask(Imm, ImmWidth, 8, &NewImm); 8096 } 8097 } 8098 8099 assert(table && table[Domain - 1] && "Unknown domain op"); 8100 MI.setDesc(get(table[Domain - 1])); 8101 MI.getOperand(NumOperands - 1).setImm(NewImm & 255); 8102 } 8103 return true; 8104 }; 8105 8106 switch (Opcode) { 8107 case X86::BLENDPDrmi: 8108 case X86::BLENDPDrri: 8109 case X86::VBLENDPDrmi: 8110 case X86::VBLENDPDrri: 8111 return SetBlendDomain(2, false); 8112 case X86::VBLENDPDYrmi: 8113 case X86::VBLENDPDYrri: 8114 return SetBlendDomain(4, true); 8115 case X86::BLENDPSrmi: 8116 case X86::BLENDPSrri: 8117 case X86::VBLENDPSrmi: 8118 case X86::VBLENDPSrri: 8119 case X86::VPBLENDDrmi: 8120 case X86::VPBLENDDrri: 8121 return SetBlendDomain(4, false); 8122 case X86::VBLENDPSYrmi: 8123 case X86::VBLENDPSYrri: 8124 case X86::VPBLENDDYrmi: 8125 case X86::VPBLENDDYrri: 8126 return SetBlendDomain(8, true); 8127 case X86::PBLENDWrmi: 8128 case X86::PBLENDWrri: 8129 case X86::VPBLENDWrmi: 8130 case X86::VPBLENDWrri: 8131 return SetBlendDomain(8, false); 8132 case X86::VPBLENDWYrmi: 8133 case X86::VPBLENDWYrri: 8134 return SetBlendDomain(16, true); 8135 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm: 8136 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm: 8137 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm: 8138 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm: 8139 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm: 8140 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm: 8141 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm: 8142 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm: 8143 case X86::VPORDZ128rr: case X86::VPORDZ128rm: 8144 case X86::VPORDZ256rr: case X86::VPORDZ256rm: 8145 case X86::VPORQZ128rr: case X86::VPORQZ128rm: 8146 case X86::VPORQZ256rr: case X86::VPORQZ256rm: 8147 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm: 8148 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm: 8149 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm: 8150 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: { 8151 // Without DQI, convert EVEX instructions to VEX instructions. 8152 if (Subtarget.hasDQI()) 8153 return false; 8154 8155 const uint16_t *table = lookupAVX512(MI.getOpcode(), dom, 8156 ReplaceableCustomAVX512LogicInstrs); 8157 assert(table && "Instruction not found in table?"); 8158 // Don't change integer Q instructions to D instructions and 8159 // use D intructions if we started with a PS instruction. 8160 if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) 8161 Domain = 4; 8162 MI.setDesc(get(table[Domain - 1])); 8163 return true; 8164 } 8165 case X86::UNPCKHPDrr: 8166 case X86::MOVHLPSrr: 8167 // We just need to commute the instruction which will switch the domains. 8168 if (Domain != dom && Domain != 3 && 8169 MI.getOperand(1).getReg() == MI.getOperand(2).getReg() && 8170 MI.getOperand(0).getSubReg() == 0 && 8171 MI.getOperand(1).getSubReg() == 0 && 8172 MI.getOperand(2).getSubReg() == 0) { 8173 commuteInstruction(MI, false); 8174 return true; 8175 } 8176 // We must always return true for MOVHLPSrr. 8177 if (Opcode == X86::MOVHLPSrr) 8178 return true; 8179 break; 8180 case X86::SHUFPDrri: { 8181 if (Domain == 1) { 8182 unsigned Imm = MI.getOperand(3).getImm(); 8183 unsigned NewImm = 0x44; 8184 if (Imm & 1) NewImm |= 0x0a; 8185 if (Imm & 2) NewImm |= 0xa0; 8186 MI.getOperand(3).setImm(NewImm); 8187 MI.setDesc(get(X86::SHUFPSrri)); 8188 } 8189 return true; 8190 } 8191 } 8192 return false; 8193 } 8194 8195 std::pair<uint16_t, uint16_t> 8196 X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const { 8197 uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 8198 unsigned opcode = MI.getOpcode(); 8199 uint16_t validDomains = 0; 8200 if (domain) { 8201 // Attempt to match for custom instructions. 8202 validDomains = getExecutionDomainCustom(MI); 8203 if (validDomains) 8204 return std::make_pair(domain, validDomains); 8205 8206 if (lookup(opcode, domain, ReplaceableInstrs)) { 8207 validDomains = 0xe; 8208 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) { 8209 validDomains = Subtarget.hasAVX2() ? 0xe : 0x6; 8210 } else if (lookup(opcode, domain, ReplaceableInstrsFP)) { 8211 validDomains = 0x6; 8212 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) { 8213 // Insert/extract instructions should only effect domain if AVX2 8214 // is enabled. 8215 if (!Subtarget.hasAVX2()) 8216 return std::make_pair(0, 0); 8217 validDomains = 0xe; 8218 } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) { 8219 validDomains = 0xe; 8220 } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain, 8221 ReplaceableInstrsAVX512DQ)) { 8222 validDomains = 0xe; 8223 } else if (Subtarget.hasDQI()) { 8224 if (const uint16_t *table = lookupAVX512(opcode, domain, 8225 ReplaceableInstrsAVX512DQMasked)) { 8226 if (domain == 1 || (domain == 3 && table[3] == opcode)) 8227 validDomains = 0xa; 8228 else 8229 validDomains = 0xc; 8230 } 8231 } 8232 } 8233 return std::make_pair(domain, validDomains); 8234 } 8235 8236 void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const { 8237 assert(Domain>0 && Domain<4 && "Invalid execution domain"); 8238 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 8239 assert(dom && "Not an SSE instruction"); 8240 8241 // Attempt to match for custom instructions. 8242 if (setExecutionDomainCustom(MI, Domain)) 8243 return; 8244 8245 const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs); 8246 if (!table) { // try the other table 8247 assert((Subtarget.hasAVX2() || Domain < 3) && 8248 "256-bit vector operations only available in AVX2"); 8249 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2); 8250 } 8251 if (!table) { // try the FP table 8252 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP); 8253 assert((!table || Domain < 3) && 8254 "Can only select PackedSingle or PackedDouble"); 8255 } 8256 if (!table) { // try the other table 8257 assert(Subtarget.hasAVX2() && 8258 "256-bit insert/extract only available in AVX2"); 8259 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract); 8260 } 8261 if (!table) { // try the AVX512 table 8262 assert(Subtarget.hasAVX512() && "Requires AVX-512"); 8263 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512); 8264 // Don't change integer Q instructions to D instructions. 8265 if (table && Domain == 3 && table[3] == MI.getOpcode()) 8266 Domain = 4; 8267 } 8268 if (!table) { // try the AVX512DQ table 8269 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); 8270 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ); 8271 // Don't change integer Q instructions to D instructions and 8272 // use D instructions if we started with a PS instruction. 8273 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) 8274 Domain = 4; 8275 } 8276 if (!table) { // try the AVX512DQMasked table 8277 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); 8278 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked); 8279 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) 8280 Domain = 4; 8281 } 8282 assert(table && "Cannot change domain"); 8283 MI.setDesc(get(table[Domain - 1])); 8284 } 8285 8286 /// Return the noop instruction to use for a noop. 8287 MCInst X86InstrInfo::getNop() const { 8288 MCInst Nop; 8289 Nop.setOpcode(X86::NOOP); 8290 return Nop; 8291 } 8292 8293 bool X86InstrInfo::isHighLatencyDef(int opc) const { 8294 switch (opc) { 8295 default: return false; 8296 case X86::DIVPDrm: 8297 case X86::DIVPDrr: 8298 case X86::DIVPSrm: 8299 case X86::DIVPSrr: 8300 case X86::DIVSDrm: 8301 case X86::DIVSDrm_Int: 8302 case X86::DIVSDrr: 8303 case X86::DIVSDrr_Int: 8304 case X86::DIVSSrm: 8305 case X86::DIVSSrm_Int: 8306 case X86::DIVSSrr: 8307 case X86::DIVSSrr_Int: 8308 case X86::SQRTPDm: 8309 case X86::SQRTPDr: 8310 case X86::SQRTPSm: 8311 case X86::SQRTPSr: 8312 case X86::SQRTSDm: 8313 case X86::SQRTSDm_Int: 8314 case X86::SQRTSDr: 8315 case X86::SQRTSDr_Int: 8316 case X86::SQRTSSm: 8317 case X86::SQRTSSm_Int: 8318 case X86::SQRTSSr: 8319 case X86::SQRTSSr_Int: 8320 // AVX instructions with high latency 8321 case X86::VDIVPDrm: 8322 case X86::VDIVPDrr: 8323 case X86::VDIVPDYrm: 8324 case X86::VDIVPDYrr: 8325 case X86::VDIVPSrm: 8326 case X86::VDIVPSrr: 8327 case X86::VDIVPSYrm: 8328 case X86::VDIVPSYrr: 8329 case X86::VDIVSDrm: 8330 case X86::VDIVSDrm_Int: 8331 case X86::VDIVSDrr: 8332 case X86::VDIVSDrr_Int: 8333 case X86::VDIVSSrm: 8334 case X86::VDIVSSrm_Int: 8335 case X86::VDIVSSrr: 8336 case X86::VDIVSSrr_Int: 8337 case X86::VSQRTPDm: 8338 case X86::VSQRTPDr: 8339 case X86::VSQRTPDYm: 8340 case X86::VSQRTPDYr: 8341 case X86::VSQRTPSm: 8342 case X86::VSQRTPSr: 8343 case X86::VSQRTPSYm: 8344 case X86::VSQRTPSYr: 8345 case X86::VSQRTSDm: 8346 case X86::VSQRTSDm_Int: 8347 case X86::VSQRTSDr: 8348 case X86::VSQRTSDr_Int: 8349 case X86::VSQRTSSm: 8350 case X86::VSQRTSSm_Int: 8351 case X86::VSQRTSSr: 8352 case X86::VSQRTSSr_Int: 8353 // AVX512 instructions with high latency 8354 case X86::VDIVPDZ128rm: 8355 case X86::VDIVPDZ128rmb: 8356 case X86::VDIVPDZ128rmbk: 8357 case X86::VDIVPDZ128rmbkz: 8358 case X86::VDIVPDZ128rmk: 8359 case X86::VDIVPDZ128rmkz: 8360 case X86::VDIVPDZ128rr: 8361 case X86::VDIVPDZ128rrk: 8362 case X86::VDIVPDZ128rrkz: 8363 case X86::VDIVPDZ256rm: 8364 case X86::VDIVPDZ256rmb: 8365 case X86::VDIVPDZ256rmbk: 8366 case X86::VDIVPDZ256rmbkz: 8367 case X86::VDIVPDZ256rmk: 8368 case X86::VDIVPDZ256rmkz: 8369 case X86::VDIVPDZ256rr: 8370 case X86::VDIVPDZ256rrk: 8371 case X86::VDIVPDZ256rrkz: 8372 case X86::VDIVPDZrrb: 8373 case X86::VDIVPDZrrbk: 8374 case X86::VDIVPDZrrbkz: 8375 case X86::VDIVPDZrm: 8376 case X86::VDIVPDZrmb: 8377 case X86::VDIVPDZrmbk: 8378 case X86::VDIVPDZrmbkz: 8379 case X86::VDIVPDZrmk: 8380 case X86::VDIVPDZrmkz: 8381 case X86::VDIVPDZrr: 8382 case X86::VDIVPDZrrk: 8383 case X86::VDIVPDZrrkz: 8384 case X86::VDIVPSZ128rm: 8385 case X86::VDIVPSZ128rmb: 8386 case X86::VDIVPSZ128rmbk: 8387 case X86::VDIVPSZ128rmbkz: 8388 case X86::VDIVPSZ128rmk: 8389 case X86::VDIVPSZ128rmkz: 8390 case X86::VDIVPSZ128rr: 8391 case X86::VDIVPSZ128rrk: 8392 case X86::VDIVPSZ128rrkz: 8393 case X86::VDIVPSZ256rm: 8394 case X86::VDIVPSZ256rmb: 8395 case X86::VDIVPSZ256rmbk: 8396 case X86::VDIVPSZ256rmbkz: 8397 case X86::VDIVPSZ256rmk: 8398 case X86::VDIVPSZ256rmkz: 8399 case X86::VDIVPSZ256rr: 8400 case X86::VDIVPSZ256rrk: 8401 case X86::VDIVPSZ256rrkz: 8402 case X86::VDIVPSZrrb: 8403 case X86::VDIVPSZrrbk: 8404 case X86::VDIVPSZrrbkz: 8405 case X86::VDIVPSZrm: 8406 case X86::VDIVPSZrmb: 8407 case X86::VDIVPSZrmbk: 8408 case X86::VDIVPSZrmbkz: 8409 case X86::VDIVPSZrmk: 8410 case X86::VDIVPSZrmkz: 8411 case X86::VDIVPSZrr: 8412 case X86::VDIVPSZrrk: 8413 case X86::VDIVPSZrrkz: 8414 case X86::VDIVSDZrm: 8415 case X86::VDIVSDZrr: 8416 case X86::VDIVSDZrm_Int: 8417 case X86::VDIVSDZrm_Intk: 8418 case X86::VDIVSDZrm_Intkz: 8419 case X86::VDIVSDZrr_Int: 8420 case X86::VDIVSDZrr_Intk: 8421 case X86::VDIVSDZrr_Intkz: 8422 case X86::VDIVSDZrrb_Int: 8423 case X86::VDIVSDZrrb_Intk: 8424 case X86::VDIVSDZrrb_Intkz: 8425 case X86::VDIVSSZrm: 8426 case X86::VDIVSSZrr: 8427 case X86::VDIVSSZrm_Int: 8428 case X86::VDIVSSZrm_Intk: 8429 case X86::VDIVSSZrm_Intkz: 8430 case X86::VDIVSSZrr_Int: 8431 case X86::VDIVSSZrr_Intk: 8432 case X86::VDIVSSZrr_Intkz: 8433 case X86::VDIVSSZrrb_Int: 8434 case X86::VDIVSSZrrb_Intk: 8435 case X86::VDIVSSZrrb_Intkz: 8436 case X86::VSQRTPDZ128m: 8437 case X86::VSQRTPDZ128mb: 8438 case X86::VSQRTPDZ128mbk: 8439 case X86::VSQRTPDZ128mbkz: 8440 case X86::VSQRTPDZ128mk: 8441 case X86::VSQRTPDZ128mkz: 8442 case X86::VSQRTPDZ128r: 8443 case X86::VSQRTPDZ128rk: 8444 case X86::VSQRTPDZ128rkz: 8445 case X86::VSQRTPDZ256m: 8446 case X86::VSQRTPDZ256mb: 8447 case X86::VSQRTPDZ256mbk: 8448 case X86::VSQRTPDZ256mbkz: 8449 case X86::VSQRTPDZ256mk: 8450 case X86::VSQRTPDZ256mkz: 8451 case X86::VSQRTPDZ256r: 8452 case X86::VSQRTPDZ256rk: 8453 case X86::VSQRTPDZ256rkz: 8454 case X86::VSQRTPDZm: 8455 case X86::VSQRTPDZmb: 8456 case X86::VSQRTPDZmbk: 8457 case X86::VSQRTPDZmbkz: 8458 case X86::VSQRTPDZmk: 8459 case X86::VSQRTPDZmkz: 8460 case X86::VSQRTPDZr: 8461 case X86::VSQRTPDZrb: 8462 case X86::VSQRTPDZrbk: 8463 case X86::VSQRTPDZrbkz: 8464 case X86::VSQRTPDZrk: 8465 case X86::VSQRTPDZrkz: 8466 case X86::VSQRTPSZ128m: 8467 case X86::VSQRTPSZ128mb: 8468 case X86::VSQRTPSZ128mbk: 8469 case X86::VSQRTPSZ128mbkz: 8470 case X86::VSQRTPSZ128mk: 8471 case X86::VSQRTPSZ128mkz: 8472 case X86::VSQRTPSZ128r: 8473 case X86::VSQRTPSZ128rk: 8474 case X86::VSQRTPSZ128rkz: 8475 case X86::VSQRTPSZ256m: 8476 case X86::VSQRTPSZ256mb: 8477 case X86::VSQRTPSZ256mbk: 8478 case X86::VSQRTPSZ256mbkz: 8479 case X86::VSQRTPSZ256mk: 8480 case X86::VSQRTPSZ256mkz: 8481 case X86::VSQRTPSZ256r: 8482 case X86::VSQRTPSZ256rk: 8483 case X86::VSQRTPSZ256rkz: 8484 case X86::VSQRTPSZm: 8485 case X86::VSQRTPSZmb: 8486 case X86::VSQRTPSZmbk: 8487 case X86::VSQRTPSZmbkz: 8488 case X86::VSQRTPSZmk: 8489 case X86::VSQRTPSZmkz: 8490 case X86::VSQRTPSZr: 8491 case X86::VSQRTPSZrb: 8492 case X86::VSQRTPSZrbk: 8493 case X86::VSQRTPSZrbkz: 8494 case X86::VSQRTPSZrk: 8495 case X86::VSQRTPSZrkz: 8496 case X86::VSQRTSDZm: 8497 case X86::VSQRTSDZm_Int: 8498 case X86::VSQRTSDZm_Intk: 8499 case X86::VSQRTSDZm_Intkz: 8500 case X86::VSQRTSDZr: 8501 case X86::VSQRTSDZr_Int: 8502 case X86::VSQRTSDZr_Intk: 8503 case X86::VSQRTSDZr_Intkz: 8504 case X86::VSQRTSDZrb_Int: 8505 case X86::VSQRTSDZrb_Intk: 8506 case X86::VSQRTSDZrb_Intkz: 8507 case X86::VSQRTSSZm: 8508 case X86::VSQRTSSZm_Int: 8509 case X86::VSQRTSSZm_Intk: 8510 case X86::VSQRTSSZm_Intkz: 8511 case X86::VSQRTSSZr: 8512 case X86::VSQRTSSZr_Int: 8513 case X86::VSQRTSSZr_Intk: 8514 case X86::VSQRTSSZr_Intkz: 8515 case X86::VSQRTSSZrb_Int: 8516 case X86::VSQRTSSZrb_Intk: 8517 case X86::VSQRTSSZrb_Intkz: 8518 8519 case X86::VGATHERDPDYrm: 8520 case X86::VGATHERDPDZ128rm: 8521 case X86::VGATHERDPDZ256rm: 8522 case X86::VGATHERDPDZrm: 8523 case X86::VGATHERDPDrm: 8524 case X86::VGATHERDPSYrm: 8525 case X86::VGATHERDPSZ128rm: 8526 case X86::VGATHERDPSZ256rm: 8527 case X86::VGATHERDPSZrm: 8528 case X86::VGATHERDPSrm: 8529 case X86::VGATHERPF0DPDm: 8530 case X86::VGATHERPF0DPSm: 8531 case X86::VGATHERPF0QPDm: 8532 case X86::VGATHERPF0QPSm: 8533 case X86::VGATHERPF1DPDm: 8534 case X86::VGATHERPF1DPSm: 8535 case X86::VGATHERPF1QPDm: 8536 case X86::VGATHERPF1QPSm: 8537 case X86::VGATHERQPDYrm: 8538 case X86::VGATHERQPDZ128rm: 8539 case X86::VGATHERQPDZ256rm: 8540 case X86::VGATHERQPDZrm: 8541 case X86::VGATHERQPDrm: 8542 case X86::VGATHERQPSYrm: 8543 case X86::VGATHERQPSZ128rm: 8544 case X86::VGATHERQPSZ256rm: 8545 case X86::VGATHERQPSZrm: 8546 case X86::VGATHERQPSrm: 8547 case X86::VPGATHERDDYrm: 8548 case X86::VPGATHERDDZ128rm: 8549 case X86::VPGATHERDDZ256rm: 8550 case X86::VPGATHERDDZrm: 8551 case X86::VPGATHERDDrm: 8552 case X86::VPGATHERDQYrm: 8553 case X86::VPGATHERDQZ128rm: 8554 case X86::VPGATHERDQZ256rm: 8555 case X86::VPGATHERDQZrm: 8556 case X86::VPGATHERDQrm: 8557 case X86::VPGATHERQDYrm: 8558 case X86::VPGATHERQDZ128rm: 8559 case X86::VPGATHERQDZ256rm: 8560 case X86::VPGATHERQDZrm: 8561 case X86::VPGATHERQDrm: 8562 case X86::VPGATHERQQYrm: 8563 case X86::VPGATHERQQZ128rm: 8564 case X86::VPGATHERQQZ256rm: 8565 case X86::VPGATHERQQZrm: 8566 case X86::VPGATHERQQrm: 8567 case X86::VSCATTERDPDZ128mr: 8568 case X86::VSCATTERDPDZ256mr: 8569 case X86::VSCATTERDPDZmr: 8570 case X86::VSCATTERDPSZ128mr: 8571 case X86::VSCATTERDPSZ256mr: 8572 case X86::VSCATTERDPSZmr: 8573 case X86::VSCATTERPF0DPDm: 8574 case X86::VSCATTERPF0DPSm: 8575 case X86::VSCATTERPF0QPDm: 8576 case X86::VSCATTERPF0QPSm: 8577 case X86::VSCATTERPF1DPDm: 8578 case X86::VSCATTERPF1DPSm: 8579 case X86::VSCATTERPF1QPDm: 8580 case X86::VSCATTERPF1QPSm: 8581 case X86::VSCATTERQPDZ128mr: 8582 case X86::VSCATTERQPDZ256mr: 8583 case X86::VSCATTERQPDZmr: 8584 case X86::VSCATTERQPSZ128mr: 8585 case X86::VSCATTERQPSZ256mr: 8586 case X86::VSCATTERQPSZmr: 8587 case X86::VPSCATTERDDZ128mr: 8588 case X86::VPSCATTERDDZ256mr: 8589 case X86::VPSCATTERDDZmr: 8590 case X86::VPSCATTERDQZ128mr: 8591 case X86::VPSCATTERDQZ256mr: 8592 case X86::VPSCATTERDQZmr: 8593 case X86::VPSCATTERQDZ128mr: 8594 case X86::VPSCATTERQDZ256mr: 8595 case X86::VPSCATTERQDZmr: 8596 case X86::VPSCATTERQQZ128mr: 8597 case X86::VPSCATTERQQZ256mr: 8598 case X86::VPSCATTERQQZmr: 8599 return true; 8600 } 8601 } 8602 8603 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, 8604 const MachineRegisterInfo *MRI, 8605 const MachineInstr &DefMI, 8606 unsigned DefIdx, 8607 const MachineInstr &UseMI, 8608 unsigned UseIdx) const { 8609 return isHighLatencyDef(DefMI.getOpcode()); 8610 } 8611 8612 bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst, 8613 const MachineBasicBlock *MBB) const { 8614 assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 && 8615 Inst.getNumDefs() <= 2 && "Reassociation needs binary operators"); 8616 8617 // Integer binary math/logic instructions have a third source operand: 8618 // the EFLAGS register. That operand must be both defined here and never 8619 // used; ie, it must be dead. If the EFLAGS operand is live, then we can 8620 // not change anything because rearranging the operands could affect other 8621 // instructions that depend on the exact status flags (zero, sign, etc.) 8622 // that are set by using these particular operands with this operation. 8623 const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS); 8624 assert((Inst.getNumDefs() == 1 || FlagDef) && 8625 "Implicit def isn't flags?"); 8626 if (FlagDef && !FlagDef->isDead()) 8627 return false; 8628 8629 return TargetInstrInfo::hasReassociableOperands(Inst, MBB); 8630 } 8631 8632 // TODO: There are many more machine instruction opcodes to match: 8633 // 1. Other data types (integer, vectors) 8634 // 2. Other math / logic operations (xor, or) 8635 // 3. Other forms of the same operation (intrinsics and other variants) 8636 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { 8637 switch (Inst.getOpcode()) { 8638 case X86::AND8rr: 8639 case X86::AND16rr: 8640 case X86::AND32rr: 8641 case X86::AND64rr: 8642 case X86::OR8rr: 8643 case X86::OR16rr: 8644 case X86::OR32rr: 8645 case X86::OR64rr: 8646 case X86::XOR8rr: 8647 case X86::XOR16rr: 8648 case X86::XOR32rr: 8649 case X86::XOR64rr: 8650 case X86::IMUL16rr: 8651 case X86::IMUL32rr: 8652 case X86::IMUL64rr: 8653 case X86::PANDrr: 8654 case X86::PORrr: 8655 case X86::PXORrr: 8656 case X86::ANDPDrr: 8657 case X86::ANDPSrr: 8658 case X86::ORPDrr: 8659 case X86::ORPSrr: 8660 case X86::XORPDrr: 8661 case X86::XORPSrr: 8662 case X86::PADDBrr: 8663 case X86::PADDWrr: 8664 case X86::PADDDrr: 8665 case X86::PADDQrr: 8666 case X86::PMULLWrr: 8667 case X86::PMULLDrr: 8668 case X86::PMAXSBrr: 8669 case X86::PMAXSDrr: 8670 case X86::PMAXSWrr: 8671 case X86::PMAXUBrr: 8672 case X86::PMAXUDrr: 8673 case X86::PMAXUWrr: 8674 case X86::PMINSBrr: 8675 case X86::PMINSDrr: 8676 case X86::PMINSWrr: 8677 case X86::PMINUBrr: 8678 case X86::PMINUDrr: 8679 case X86::PMINUWrr: 8680 case X86::VPANDrr: 8681 case X86::VPANDYrr: 8682 case X86::VPANDDZ128rr: 8683 case X86::VPANDDZ256rr: 8684 case X86::VPANDDZrr: 8685 case X86::VPANDQZ128rr: 8686 case X86::VPANDQZ256rr: 8687 case X86::VPANDQZrr: 8688 case X86::VPORrr: 8689 case X86::VPORYrr: 8690 case X86::VPORDZ128rr: 8691 case X86::VPORDZ256rr: 8692 case X86::VPORDZrr: 8693 case X86::VPORQZ128rr: 8694 case X86::VPORQZ256rr: 8695 case X86::VPORQZrr: 8696 case X86::VPXORrr: 8697 case X86::VPXORYrr: 8698 case X86::VPXORDZ128rr: 8699 case X86::VPXORDZ256rr: 8700 case X86::VPXORDZrr: 8701 case X86::VPXORQZ128rr: 8702 case X86::VPXORQZ256rr: 8703 case X86::VPXORQZrr: 8704 case X86::VANDPDrr: 8705 case X86::VANDPSrr: 8706 case X86::VANDPDYrr: 8707 case X86::VANDPSYrr: 8708 case X86::VANDPDZ128rr: 8709 case X86::VANDPSZ128rr: 8710 case X86::VANDPDZ256rr: 8711 case X86::VANDPSZ256rr: 8712 case X86::VANDPDZrr: 8713 case X86::VANDPSZrr: 8714 case X86::VORPDrr: 8715 case X86::VORPSrr: 8716 case X86::VORPDYrr: 8717 case X86::VORPSYrr: 8718 case X86::VORPDZ128rr: 8719 case X86::VORPSZ128rr: 8720 case X86::VORPDZ256rr: 8721 case X86::VORPSZ256rr: 8722 case X86::VORPDZrr: 8723 case X86::VORPSZrr: 8724 case X86::VXORPDrr: 8725 case X86::VXORPSrr: 8726 case X86::VXORPDYrr: 8727 case X86::VXORPSYrr: 8728 case X86::VXORPDZ128rr: 8729 case X86::VXORPSZ128rr: 8730 case X86::VXORPDZ256rr: 8731 case X86::VXORPSZ256rr: 8732 case X86::VXORPDZrr: 8733 case X86::VXORPSZrr: 8734 case X86::KADDBrr: 8735 case X86::KADDWrr: 8736 case X86::KADDDrr: 8737 case X86::KADDQrr: 8738 case X86::KANDBrr: 8739 case X86::KANDWrr: 8740 case X86::KANDDrr: 8741 case X86::KANDQrr: 8742 case X86::KORBrr: 8743 case X86::KORWrr: 8744 case X86::KORDrr: 8745 case X86::KORQrr: 8746 case X86::KXORBrr: 8747 case X86::KXORWrr: 8748 case X86::KXORDrr: 8749 case X86::KXORQrr: 8750 case X86::VPADDBrr: 8751 case X86::VPADDWrr: 8752 case X86::VPADDDrr: 8753 case X86::VPADDQrr: 8754 case X86::VPADDBYrr: 8755 case X86::VPADDWYrr: 8756 case X86::VPADDDYrr: 8757 case X86::VPADDQYrr: 8758 case X86::VPADDBZ128rr: 8759 case X86::VPADDWZ128rr: 8760 case X86::VPADDDZ128rr: 8761 case X86::VPADDQZ128rr: 8762 case X86::VPADDBZ256rr: 8763 case X86::VPADDWZ256rr: 8764 case X86::VPADDDZ256rr: 8765 case X86::VPADDQZ256rr: 8766 case X86::VPADDBZrr: 8767 case X86::VPADDWZrr: 8768 case X86::VPADDDZrr: 8769 case X86::VPADDQZrr: 8770 case X86::VPMULLWrr: 8771 case X86::VPMULLWYrr: 8772 case X86::VPMULLWZ128rr: 8773 case X86::VPMULLWZ256rr: 8774 case X86::VPMULLWZrr: 8775 case X86::VPMULLDrr: 8776 case X86::VPMULLDYrr: 8777 case X86::VPMULLDZ128rr: 8778 case X86::VPMULLDZ256rr: 8779 case X86::VPMULLDZrr: 8780 case X86::VPMULLQZ128rr: 8781 case X86::VPMULLQZ256rr: 8782 case X86::VPMULLQZrr: 8783 case X86::VPMAXSBrr: 8784 case X86::VPMAXSBYrr: 8785 case X86::VPMAXSBZ128rr: 8786 case X86::VPMAXSBZ256rr: 8787 case X86::VPMAXSBZrr: 8788 case X86::VPMAXSDrr: 8789 case X86::VPMAXSDYrr: 8790 case X86::VPMAXSDZ128rr: 8791 case X86::VPMAXSDZ256rr: 8792 case X86::VPMAXSDZrr: 8793 case X86::VPMAXSQZ128rr: 8794 case X86::VPMAXSQZ256rr: 8795 case X86::VPMAXSQZrr: 8796 case X86::VPMAXSWrr: 8797 case X86::VPMAXSWYrr: 8798 case X86::VPMAXSWZ128rr: 8799 case X86::VPMAXSWZ256rr: 8800 case X86::VPMAXSWZrr: 8801 case X86::VPMAXUBrr: 8802 case X86::VPMAXUBYrr: 8803 case X86::VPMAXUBZ128rr: 8804 case X86::VPMAXUBZ256rr: 8805 case X86::VPMAXUBZrr: 8806 case X86::VPMAXUDrr: 8807 case X86::VPMAXUDYrr: 8808 case X86::VPMAXUDZ128rr: 8809 case X86::VPMAXUDZ256rr: 8810 case X86::VPMAXUDZrr: 8811 case X86::VPMAXUQZ128rr: 8812 case X86::VPMAXUQZ256rr: 8813 case X86::VPMAXUQZrr: 8814 case X86::VPMAXUWrr: 8815 case X86::VPMAXUWYrr: 8816 case X86::VPMAXUWZ128rr: 8817 case X86::VPMAXUWZ256rr: 8818 case X86::VPMAXUWZrr: 8819 case X86::VPMINSBrr: 8820 case X86::VPMINSBYrr: 8821 case X86::VPMINSBZ128rr: 8822 case X86::VPMINSBZ256rr: 8823 case X86::VPMINSBZrr: 8824 case X86::VPMINSDrr: 8825 case X86::VPMINSDYrr: 8826 case X86::VPMINSDZ128rr: 8827 case X86::VPMINSDZ256rr: 8828 case X86::VPMINSDZrr: 8829 case X86::VPMINSQZ128rr: 8830 case X86::VPMINSQZ256rr: 8831 case X86::VPMINSQZrr: 8832 case X86::VPMINSWrr: 8833 case X86::VPMINSWYrr: 8834 case X86::VPMINSWZ128rr: 8835 case X86::VPMINSWZ256rr: 8836 case X86::VPMINSWZrr: 8837 case X86::VPMINUBrr: 8838 case X86::VPMINUBYrr: 8839 case X86::VPMINUBZ128rr: 8840 case X86::VPMINUBZ256rr: 8841 case X86::VPMINUBZrr: 8842 case X86::VPMINUDrr: 8843 case X86::VPMINUDYrr: 8844 case X86::VPMINUDZ128rr: 8845 case X86::VPMINUDZ256rr: 8846 case X86::VPMINUDZrr: 8847 case X86::VPMINUQZ128rr: 8848 case X86::VPMINUQZ256rr: 8849 case X86::VPMINUQZrr: 8850 case X86::VPMINUWrr: 8851 case X86::VPMINUWYrr: 8852 case X86::VPMINUWZ128rr: 8853 case X86::VPMINUWZ256rr: 8854 case X86::VPMINUWZrr: 8855 // Normal min/max instructions are not commutative because of NaN and signed 8856 // zero semantics, but these are. Thus, there's no need to check for global 8857 // relaxed math; the instructions themselves have the properties we need. 8858 case X86::MAXCPDrr: 8859 case X86::MAXCPSrr: 8860 case X86::MAXCSDrr: 8861 case X86::MAXCSSrr: 8862 case X86::MINCPDrr: 8863 case X86::MINCPSrr: 8864 case X86::MINCSDrr: 8865 case X86::MINCSSrr: 8866 case X86::VMAXCPDrr: 8867 case X86::VMAXCPSrr: 8868 case X86::VMAXCPDYrr: 8869 case X86::VMAXCPSYrr: 8870 case X86::VMAXCPDZ128rr: 8871 case X86::VMAXCPSZ128rr: 8872 case X86::VMAXCPDZ256rr: 8873 case X86::VMAXCPSZ256rr: 8874 case X86::VMAXCPDZrr: 8875 case X86::VMAXCPSZrr: 8876 case X86::VMAXCSDrr: 8877 case X86::VMAXCSSrr: 8878 case X86::VMAXCSDZrr: 8879 case X86::VMAXCSSZrr: 8880 case X86::VMINCPDrr: 8881 case X86::VMINCPSrr: 8882 case X86::VMINCPDYrr: 8883 case X86::VMINCPSYrr: 8884 case X86::VMINCPDZ128rr: 8885 case X86::VMINCPSZ128rr: 8886 case X86::VMINCPDZ256rr: 8887 case X86::VMINCPSZ256rr: 8888 case X86::VMINCPDZrr: 8889 case X86::VMINCPSZrr: 8890 case X86::VMINCSDrr: 8891 case X86::VMINCSSrr: 8892 case X86::VMINCSDZrr: 8893 case X86::VMINCSSZrr: 8894 case X86::VMAXCPHZ128rr: 8895 case X86::VMAXCPHZ256rr: 8896 case X86::VMAXCPHZrr: 8897 case X86::VMAXCSHZrr: 8898 case X86::VMINCPHZ128rr: 8899 case X86::VMINCPHZ256rr: 8900 case X86::VMINCPHZrr: 8901 case X86::VMINCSHZrr: 8902 return true; 8903 case X86::ADDPDrr: 8904 case X86::ADDPSrr: 8905 case X86::ADDSDrr: 8906 case X86::ADDSSrr: 8907 case X86::MULPDrr: 8908 case X86::MULPSrr: 8909 case X86::MULSDrr: 8910 case X86::MULSSrr: 8911 case X86::VADDPDrr: 8912 case X86::VADDPSrr: 8913 case X86::VADDPDYrr: 8914 case X86::VADDPSYrr: 8915 case X86::VADDPDZ128rr: 8916 case X86::VADDPSZ128rr: 8917 case X86::VADDPDZ256rr: 8918 case X86::VADDPSZ256rr: 8919 case X86::VADDPDZrr: 8920 case X86::VADDPSZrr: 8921 case X86::VADDSDrr: 8922 case X86::VADDSSrr: 8923 case X86::VADDSDZrr: 8924 case X86::VADDSSZrr: 8925 case X86::VMULPDrr: 8926 case X86::VMULPSrr: 8927 case X86::VMULPDYrr: 8928 case X86::VMULPSYrr: 8929 case X86::VMULPDZ128rr: 8930 case X86::VMULPSZ128rr: 8931 case X86::VMULPDZ256rr: 8932 case X86::VMULPSZ256rr: 8933 case X86::VMULPDZrr: 8934 case X86::VMULPSZrr: 8935 case X86::VMULSDrr: 8936 case X86::VMULSSrr: 8937 case X86::VMULSDZrr: 8938 case X86::VMULSSZrr: 8939 case X86::VADDPHZ128rr: 8940 case X86::VADDPHZ256rr: 8941 case X86::VADDPHZrr: 8942 case X86::VADDSHZrr: 8943 case X86::VMULPHZ128rr: 8944 case X86::VMULPHZ256rr: 8945 case X86::VMULPHZrr: 8946 case X86::VMULSHZrr: 8947 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 8948 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 8949 default: 8950 return false; 8951 } 8952 } 8953 8954 /// If \p DescribedReg overlaps with the MOVrr instruction's destination 8955 /// register then, if possible, describe the value in terms of the source 8956 /// register. 8957 static Optional<ParamLoadedValue> 8958 describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg, 8959 const TargetRegisterInfo *TRI) { 8960 Register DestReg = MI.getOperand(0).getReg(); 8961 Register SrcReg = MI.getOperand(1).getReg(); 8962 8963 auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {}); 8964 8965 // If the described register is the destination, just return the source. 8966 if (DestReg == DescribedReg) 8967 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); 8968 8969 // If the described register is a sub-register of the destination register, 8970 // then pick out the source register's corresponding sub-register. 8971 if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) { 8972 Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx); 8973 return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr); 8974 } 8975 8976 // The remaining case to consider is when the described register is a 8977 // super-register of the destination register. MOV8rr and MOV16rr does not 8978 // write to any of the other bytes in the register, meaning that we'd have to 8979 // describe the value using a combination of the source register and the 8980 // non-overlapping bits in the described register, which is not currently 8981 // possible. 8982 if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr || 8983 !TRI->isSuperRegister(DestReg, DescribedReg)) 8984 return None; 8985 8986 assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case"); 8987 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); 8988 } 8989 8990 Optional<ParamLoadedValue> 8991 X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const { 8992 const MachineOperand *Op = nullptr; 8993 DIExpression *Expr = nullptr; 8994 8995 const TargetRegisterInfo *TRI = &getRegisterInfo(); 8996 8997 switch (MI.getOpcode()) { 8998 case X86::LEA32r: 8999 case X86::LEA64r: 9000 case X86::LEA64_32r: { 9001 // We may need to describe a 64-bit parameter with a 32-bit LEA. 9002 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg)) 9003 return None; 9004 9005 // Operand 4 could be global address. For now we do not support 9006 // such situation. 9007 if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm()) 9008 return None; 9009 9010 const MachineOperand &Op1 = MI.getOperand(1); 9011 const MachineOperand &Op2 = MI.getOperand(3); 9012 assert(Op2.isReg() && (Op2.getReg() == X86::NoRegister || 9013 Register::isPhysicalRegister(Op2.getReg()))); 9014 9015 // Omit situations like: 9016 // %rsi = lea %rsi, 4, ... 9017 if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) || 9018 Op2.getReg() == MI.getOperand(0).getReg()) 9019 return None; 9020 else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister && 9021 TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) || 9022 (Op2.getReg() != X86::NoRegister && 9023 TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg()))) 9024 return None; 9025 9026 int64_t Coef = MI.getOperand(2).getImm(); 9027 int64_t Offset = MI.getOperand(4).getImm(); 9028 SmallVector<uint64_t, 8> Ops; 9029 9030 if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) { 9031 Op = &Op1; 9032 } else if (Op1.isFI()) 9033 Op = &Op1; 9034 9035 if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) { 9036 Ops.push_back(dwarf::DW_OP_constu); 9037 Ops.push_back(Coef + 1); 9038 Ops.push_back(dwarf::DW_OP_mul); 9039 } else { 9040 if (Op && Op2.getReg() != X86::NoRegister) { 9041 int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false); 9042 if (dwarfReg < 0) 9043 return None; 9044 else if (dwarfReg < 32) { 9045 Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg); 9046 Ops.push_back(0); 9047 } else { 9048 Ops.push_back(dwarf::DW_OP_bregx); 9049 Ops.push_back(dwarfReg); 9050 Ops.push_back(0); 9051 } 9052 } else if (!Op) { 9053 assert(Op2.getReg() != X86::NoRegister); 9054 Op = &Op2; 9055 } 9056 9057 if (Coef > 1) { 9058 assert(Op2.getReg() != X86::NoRegister); 9059 Ops.push_back(dwarf::DW_OP_constu); 9060 Ops.push_back(Coef); 9061 Ops.push_back(dwarf::DW_OP_mul); 9062 } 9063 9064 if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) && 9065 Op2.getReg() != X86::NoRegister) { 9066 Ops.push_back(dwarf::DW_OP_plus); 9067 } 9068 } 9069 9070 DIExpression::appendOffset(Ops, Offset); 9071 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops); 9072 9073 return ParamLoadedValue(*Op, Expr);; 9074 } 9075 case X86::MOV8ri: 9076 case X86::MOV16ri: 9077 // TODO: Handle MOV8ri and MOV16ri. 9078 return None; 9079 case X86::MOV32ri: 9080 case X86::MOV64ri: 9081 case X86::MOV64ri32: 9082 // MOV32ri may be used for producing zero-extended 32-bit immediates in 9083 // 64-bit parameters, so we need to consider super-registers. 9084 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg)) 9085 return None; 9086 return ParamLoadedValue(MI.getOperand(1), Expr); 9087 case X86::MOV8rr: 9088 case X86::MOV16rr: 9089 case X86::MOV32rr: 9090 case X86::MOV64rr: 9091 return describeMOVrrLoadedValue(MI, Reg, TRI); 9092 case X86::XOR32rr: { 9093 // 64-bit parameters are zero-materialized using XOR32rr, so also consider 9094 // super-registers. 9095 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg)) 9096 return None; 9097 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 9098 return ParamLoadedValue(MachineOperand::CreateImm(0), Expr); 9099 return None; 9100 } 9101 case X86::MOVSX64rr32: { 9102 // We may need to describe the lower 32 bits of the MOVSX; for example, in 9103 // cases like this: 9104 // 9105 // $ebx = [...] 9106 // $rdi = MOVSX64rr32 $ebx 9107 // $esi = MOV32rr $edi 9108 if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg)) 9109 return None; 9110 9111 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {}); 9112 9113 // If the described register is the destination register we need to 9114 // sign-extend the source register from 32 bits. The other case we handle 9115 // is when the described register is the 32-bit sub-register of the 9116 // destination register, in case we just need to return the source 9117 // register. 9118 if (Reg == MI.getOperand(0).getReg()) 9119 Expr = DIExpression::appendExt(Expr, 32, 64, true); 9120 else 9121 assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) && 9122 "Unhandled sub-register case for MOVSX64rr32"); 9123 9124 return ParamLoadedValue(MI.getOperand(1), Expr); 9125 } 9126 default: 9127 assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction"); 9128 return TargetInstrInfo::describeLoadedValue(MI, Reg); 9129 } 9130 } 9131 9132 /// This is an architecture-specific helper function of reassociateOps. 9133 /// Set special operand attributes for new instructions after reassociation. 9134 void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, 9135 MachineInstr &OldMI2, 9136 MachineInstr &NewMI1, 9137 MachineInstr &NewMI2) const { 9138 // Propagate FP flags from the original instructions. 9139 // But clear poison-generating flags because those may not be valid now. 9140 // TODO: There should be a helper function for copying only fast-math-flags. 9141 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags(); 9142 NewMI1.setFlags(IntersectedFlags); 9143 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap); 9144 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap); 9145 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact); 9146 9147 NewMI2.setFlags(IntersectedFlags); 9148 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap); 9149 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap); 9150 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact); 9151 9152 // Integer instructions may define an implicit EFLAGS dest register operand. 9153 MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS); 9154 MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS); 9155 9156 assert(!OldFlagDef1 == !OldFlagDef2 && 9157 "Unexpected instruction type for reassociation"); 9158 9159 if (!OldFlagDef1 || !OldFlagDef2) 9160 return; 9161 9162 assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() && 9163 "Must have dead EFLAGS operand in reassociable instruction"); 9164 9165 MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS); 9166 MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS); 9167 9168 assert(NewFlagDef1 && NewFlagDef2 && 9169 "Unexpected operand in reassociable instruction"); 9170 9171 // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations 9172 // of this pass or other passes. The EFLAGS operands must be dead in these new 9173 // instructions because the EFLAGS operands in the original instructions must 9174 // be dead in order for reassociation to occur. 9175 NewFlagDef1->setIsDead(); 9176 NewFlagDef2->setIsDead(); 9177 } 9178 9179 std::pair<unsigned, unsigned> 9180 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 9181 return std::make_pair(TF, 0u); 9182 } 9183 9184 ArrayRef<std::pair<unsigned, const char *>> 9185 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 9186 using namespace X86II; 9187 static const std::pair<unsigned, const char *> TargetFlags[] = { 9188 {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"}, 9189 {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"}, 9190 {MO_GOT, "x86-got"}, 9191 {MO_GOTOFF, "x86-gotoff"}, 9192 {MO_GOTPCREL, "x86-gotpcrel"}, 9193 {MO_GOTPCREL_NORELAX, "x86-gotpcrel-norelax"}, 9194 {MO_PLT, "x86-plt"}, 9195 {MO_TLSGD, "x86-tlsgd"}, 9196 {MO_TLSLD, "x86-tlsld"}, 9197 {MO_TLSLDM, "x86-tlsldm"}, 9198 {MO_GOTTPOFF, "x86-gottpoff"}, 9199 {MO_INDNTPOFF, "x86-indntpoff"}, 9200 {MO_TPOFF, "x86-tpoff"}, 9201 {MO_DTPOFF, "x86-dtpoff"}, 9202 {MO_NTPOFF, "x86-ntpoff"}, 9203 {MO_GOTNTPOFF, "x86-gotntpoff"}, 9204 {MO_DLLIMPORT, "x86-dllimport"}, 9205 {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"}, 9206 {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"}, 9207 {MO_TLVP, "x86-tlvp"}, 9208 {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"}, 9209 {MO_SECREL, "x86-secrel"}, 9210 {MO_COFFSTUB, "x86-coffstub"}}; 9211 return makeArrayRef(TargetFlags); 9212 } 9213 9214 namespace { 9215 /// Create Global Base Reg pass. This initializes the PIC 9216 /// global base register for x86-32. 9217 struct CGBR : public MachineFunctionPass { 9218 static char ID; 9219 CGBR() : MachineFunctionPass(ID) {} 9220 9221 bool runOnMachineFunction(MachineFunction &MF) override { 9222 const X86TargetMachine *TM = 9223 static_cast<const X86TargetMachine *>(&MF.getTarget()); 9224 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 9225 9226 // Don't do anything in the 64-bit small and kernel code models. They use 9227 // RIP-relative addressing for everything. 9228 if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small || 9229 TM->getCodeModel() == CodeModel::Kernel)) 9230 return false; 9231 9232 // Only emit a global base reg in PIC mode. 9233 if (!TM->isPositionIndependent()) 9234 return false; 9235 9236 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 9237 Register GlobalBaseReg = X86FI->getGlobalBaseReg(); 9238 9239 // If we didn't need a GlobalBaseReg, don't insert code. 9240 if (GlobalBaseReg == 0) 9241 return false; 9242 9243 // Insert the set of GlobalBaseReg into the first MBB of the function 9244 MachineBasicBlock &FirstMBB = MF.front(); 9245 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 9246 DebugLoc DL = FirstMBB.findDebugLoc(MBBI); 9247 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9248 const X86InstrInfo *TII = STI.getInstrInfo(); 9249 9250 Register PC; 9251 if (STI.isPICStyleGOT()) 9252 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass); 9253 else 9254 PC = GlobalBaseReg; 9255 9256 if (STI.is64Bit()) { 9257 if (TM->getCodeModel() == CodeModel::Medium) { 9258 // In the medium code model, use a RIP-relative LEA to materialize the 9259 // GOT. 9260 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC) 9261 .addReg(X86::RIP) 9262 .addImm(0) 9263 .addReg(0) 9264 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_") 9265 .addReg(0); 9266 } else if (TM->getCodeModel() == CodeModel::Large) { 9267 // In the large code model, we are aiming for this code, though the 9268 // register allocation may vary: 9269 // leaq .LN$pb(%rip), %rax 9270 // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx 9271 // addq %rcx, %rax 9272 // RAX now holds address of _GLOBAL_OFFSET_TABLE_. 9273 Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass); 9274 Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass); 9275 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg) 9276 .addReg(X86::RIP) 9277 .addImm(0) 9278 .addReg(0) 9279 .addSym(MF.getPICBaseSymbol()) 9280 .addReg(0); 9281 std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol()); 9282 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg) 9283 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_", 9284 X86II::MO_PIC_BASE_OFFSET); 9285 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC) 9286 .addReg(PBReg, RegState::Kill) 9287 .addReg(GOTReg, RegState::Kill); 9288 } else { 9289 llvm_unreachable("unexpected code model"); 9290 } 9291 } else { 9292 // Operand of MovePCtoStack is completely ignored by asm printer. It's 9293 // only used in JIT code emission as displacement to pc. 9294 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); 9295 9296 // If we're using vanilla 'GOT' PIC style, we should use relative 9297 // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external. 9298 if (STI.isPICStyleGOT()) { 9299 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], 9300 // %some_register 9301 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) 9302 .addReg(PC) 9303 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_", 9304 X86II::MO_GOT_ABSOLUTE_ADDRESS); 9305 } 9306 } 9307 9308 return true; 9309 } 9310 9311 StringRef getPassName() const override { 9312 return "X86 PIC Global Base Reg Initialization"; 9313 } 9314 9315 void getAnalysisUsage(AnalysisUsage &AU) const override { 9316 AU.setPreservesCFG(); 9317 MachineFunctionPass::getAnalysisUsage(AU); 9318 } 9319 }; 9320 } // namespace 9321 9322 char CGBR::ID = 0; 9323 FunctionPass* 9324 llvm::createX86GlobalBaseRegPass() { return new CGBR(); } 9325 9326 namespace { 9327 struct LDTLSCleanup : public MachineFunctionPass { 9328 static char ID; 9329 LDTLSCleanup() : MachineFunctionPass(ID) {} 9330 9331 bool runOnMachineFunction(MachineFunction &MF) override { 9332 if (skipFunction(MF.getFunction())) 9333 return false; 9334 9335 X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>(); 9336 if (MFI->getNumLocalDynamicTLSAccesses() < 2) { 9337 // No point folding accesses if there isn't at least two. 9338 return false; 9339 } 9340 9341 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>(); 9342 return VisitNode(DT->getRootNode(), 0); 9343 } 9344 9345 // Visit the dominator subtree rooted at Node in pre-order. 9346 // If TLSBaseAddrReg is non-null, then use that to replace any 9347 // TLS_base_addr instructions. Otherwise, create the register 9348 // when the first such instruction is seen, and then use it 9349 // as we encounter more instructions. 9350 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { 9351 MachineBasicBlock *BB = Node->getBlock(); 9352 bool Changed = false; 9353 9354 // Traverse the current block. 9355 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; 9356 ++I) { 9357 switch (I->getOpcode()) { 9358 case X86::TLS_base_addr32: 9359 case X86::TLS_base_addr64: 9360 if (TLSBaseAddrReg) 9361 I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg); 9362 else 9363 I = SetRegister(*I, &TLSBaseAddrReg); 9364 Changed = true; 9365 break; 9366 default: 9367 break; 9368 } 9369 } 9370 9371 // Visit the children of this block in the dominator tree. 9372 for (auto I = Node->begin(), E = Node->end(); I != E; ++I) { 9373 Changed |= VisitNode(*I, TLSBaseAddrReg); 9374 } 9375 9376 return Changed; 9377 } 9378 9379 // Replace the TLS_base_addr instruction I with a copy from 9380 // TLSBaseAddrReg, returning the new instruction. 9381 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I, 9382 unsigned TLSBaseAddrReg) { 9383 MachineFunction *MF = I.getParent()->getParent(); 9384 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); 9385 const bool is64Bit = STI.is64Bit(); 9386 const X86InstrInfo *TII = STI.getInstrInfo(); 9387 9388 // Insert a Copy from TLSBaseAddrReg to RAX/EAX. 9389 MachineInstr *Copy = 9390 BuildMI(*I.getParent(), I, I.getDebugLoc(), 9391 TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX) 9392 .addReg(TLSBaseAddrReg); 9393 9394 // Erase the TLS_base_addr instruction. 9395 I.eraseFromParent(); 9396 9397 return Copy; 9398 } 9399 9400 // Create a virtual register in *TLSBaseAddrReg, and populate it by 9401 // inserting a copy instruction after I. Returns the new instruction. 9402 MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) { 9403 MachineFunction *MF = I.getParent()->getParent(); 9404 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); 9405 const bool is64Bit = STI.is64Bit(); 9406 const X86InstrInfo *TII = STI.getInstrInfo(); 9407 9408 // Create a virtual register for the TLS base address. 9409 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 9410 *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit 9411 ? &X86::GR64RegClass 9412 : &X86::GR32RegClass); 9413 9414 // Insert a copy from RAX/EAX to TLSBaseAddrReg. 9415 MachineInstr *Next = I.getNextNode(); 9416 MachineInstr *Copy = 9417 BuildMI(*I.getParent(), Next, I.getDebugLoc(), 9418 TII->get(TargetOpcode::COPY), *TLSBaseAddrReg) 9419 .addReg(is64Bit ? X86::RAX : X86::EAX); 9420 9421 return Copy; 9422 } 9423 9424 StringRef getPassName() const override { 9425 return "Local Dynamic TLS Access Clean-up"; 9426 } 9427 9428 void getAnalysisUsage(AnalysisUsage &AU) const override { 9429 AU.setPreservesCFG(); 9430 AU.addRequired<MachineDominatorTree>(); 9431 MachineFunctionPass::getAnalysisUsage(AU); 9432 } 9433 }; 9434 } 9435 9436 char LDTLSCleanup::ID = 0; 9437 FunctionPass* 9438 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); } 9439 9440 /// Constants defining how certain sequences should be outlined. 9441 /// 9442 /// \p MachineOutlinerDefault implies that the function is called with a call 9443 /// instruction, and a return must be emitted for the outlined function frame. 9444 /// 9445 /// That is, 9446 /// 9447 /// I1 OUTLINED_FUNCTION: 9448 /// I2 --> call OUTLINED_FUNCTION I1 9449 /// I3 I2 9450 /// I3 9451 /// ret 9452 /// 9453 /// * Call construction overhead: 1 (call instruction) 9454 /// * Frame construction overhead: 1 (return instruction) 9455 /// 9456 /// \p MachineOutlinerTailCall implies that the function is being tail called. 9457 /// A jump is emitted instead of a call, and the return is already present in 9458 /// the outlined sequence. That is, 9459 /// 9460 /// I1 OUTLINED_FUNCTION: 9461 /// I2 --> jmp OUTLINED_FUNCTION I1 9462 /// ret I2 9463 /// ret 9464 /// 9465 /// * Call construction overhead: 1 (jump instruction) 9466 /// * Frame construction overhead: 0 (don't need to return) 9467 /// 9468 enum MachineOutlinerClass { 9469 MachineOutlinerDefault, 9470 MachineOutlinerTailCall 9471 }; 9472 9473 outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo( 9474 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { 9475 unsigned SequenceSize = 9476 std::accumulate(RepeatedSequenceLocs[0].front(), 9477 std::next(RepeatedSequenceLocs[0].back()), 0, 9478 [](unsigned Sum, const MachineInstr &MI) { 9479 // FIXME: x86 doesn't implement getInstSizeInBytes, so 9480 // we can't tell the cost. Just assume each instruction 9481 // is one byte. 9482 if (MI.isDebugInstr() || MI.isKill()) 9483 return Sum; 9484 return Sum + 1; 9485 }); 9486 9487 // We check to see if CFI Instructions are present, and if they are 9488 // we find the number of CFI Instructions in the candidates. 9489 unsigned CFICount = 0; 9490 for (auto &I : make_range(RepeatedSequenceLocs[0].front(), 9491 std::next(RepeatedSequenceLocs[0].back()))) { 9492 if (I.isCFIInstruction()) 9493 CFICount++; 9494 } 9495 9496 // We compare the number of found CFI Instructions to the number of CFI 9497 // instructions in the parent function for each candidate. We must check this 9498 // since if we outline one of the CFI instructions in a function, we have to 9499 // outline them all for correctness. If we do not, the address offsets will be 9500 // incorrect between the two sections of the program. 9501 for (outliner::Candidate &C : RepeatedSequenceLocs) { 9502 std::vector<MCCFIInstruction> CFIInstructions = 9503 C.getMF()->getFrameInstructions(); 9504 9505 if (CFICount > 0 && CFICount != CFIInstructions.size()) 9506 return outliner::OutlinedFunction(); 9507 } 9508 9509 // FIXME: Use real size in bytes for call and ret instructions. 9510 if (RepeatedSequenceLocs[0].back()->isTerminator()) { 9511 for (outliner::Candidate &C : RepeatedSequenceLocs) 9512 C.setCallInfo(MachineOutlinerTailCall, 1); 9513 9514 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 9515 0, // Number of bytes to emit frame. 9516 MachineOutlinerTailCall // Type of frame. 9517 ); 9518 } 9519 9520 if (CFICount > 0) 9521 return outliner::OutlinedFunction(); 9522 9523 for (outliner::Candidate &C : RepeatedSequenceLocs) 9524 C.setCallInfo(MachineOutlinerDefault, 1); 9525 9526 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1, 9527 MachineOutlinerDefault); 9528 } 9529 9530 bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF, 9531 bool OutlineFromLinkOnceODRs) const { 9532 const Function &F = MF.getFunction(); 9533 9534 // Does the function use a red zone? If it does, then we can't risk messing 9535 // with the stack. 9536 if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) { 9537 // It could have a red zone. If it does, then we don't want to touch it. 9538 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 9539 if (!X86FI || X86FI->getUsesRedZone()) 9540 return false; 9541 } 9542 9543 // If we *don't* want to outline from things that could potentially be deduped 9544 // then return false. 9545 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) 9546 return false; 9547 9548 // This function is viable for outlining, so return true. 9549 return true; 9550 } 9551 9552 outliner::InstrType 9553 X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const { 9554 MachineInstr &MI = *MIT; 9555 // Don't allow debug values to impact outlining type. 9556 if (MI.isDebugInstr() || MI.isIndirectDebugValue()) 9557 return outliner::InstrType::Invisible; 9558 9559 // At this point, KILL instructions don't really tell us much so we can go 9560 // ahead and skip over them. 9561 if (MI.isKill()) 9562 return outliner::InstrType::Invisible; 9563 9564 // Is this a tail call? If yes, we can outline as a tail call. 9565 if (isTailCall(MI)) 9566 return outliner::InstrType::Legal; 9567 9568 // Is this the terminator of a basic block? 9569 if (MI.isTerminator() || MI.isReturn()) { 9570 9571 // Does its parent have any successors in its MachineFunction? 9572 if (MI.getParent()->succ_empty()) 9573 return outliner::InstrType::Legal; 9574 9575 // It does, so we can't tail call it. 9576 return outliner::InstrType::Illegal; 9577 } 9578 9579 // Don't outline anything that modifies or reads from the stack pointer. 9580 // 9581 // FIXME: There are instructions which are being manually built without 9582 // explicit uses/defs so we also have to check the MCInstrDesc. We should be 9583 // able to remove the extra checks once those are fixed up. For example, 9584 // sometimes we might get something like %rax = POP64r 1. This won't be 9585 // caught by modifiesRegister or readsRegister even though the instruction 9586 // really ought to be formed so that modifiesRegister/readsRegister would 9587 // catch it. 9588 if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) || 9589 MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) || 9590 MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP)) 9591 return outliner::InstrType::Illegal; 9592 9593 // Outlined calls change the instruction pointer, so don't read from it. 9594 if (MI.readsRegister(X86::RIP, &RI) || 9595 MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) || 9596 MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP)) 9597 return outliner::InstrType::Illegal; 9598 9599 // Positions can't safely be outlined. 9600 if (MI.isPosition()) 9601 return outliner::InstrType::Illegal; 9602 9603 // Make sure none of the operands of this instruction do anything tricky. 9604 for (const MachineOperand &MOP : MI.operands()) 9605 if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() || 9606 MOP.isTargetIndex()) 9607 return outliner::InstrType::Illegal; 9608 9609 return outliner::InstrType::Legal; 9610 } 9611 9612 void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB, 9613 MachineFunction &MF, 9614 const outliner::OutlinedFunction &OF) 9615 const { 9616 // If we're a tail call, we already have a return, so don't do anything. 9617 if (OF.FrameConstructionID == MachineOutlinerTailCall) 9618 return; 9619 9620 // We're a normal call, so our sequence doesn't have a return instruction. 9621 // Add it in. 9622 MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RET64)); 9623 MBB.insert(MBB.end(), retq); 9624 } 9625 9626 MachineBasicBlock::iterator 9627 X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB, 9628 MachineBasicBlock::iterator &It, 9629 MachineFunction &MF, 9630 outliner::Candidate &C) const { 9631 // Is it a tail call? 9632 if (C.CallConstructionID == MachineOutlinerTailCall) { 9633 // Yes, just insert a JMP. 9634 It = MBB.insert(It, 9635 BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64)) 9636 .addGlobalAddress(M.getNamedValue(MF.getName()))); 9637 } else { 9638 // No, insert a call. 9639 It = MBB.insert(It, 9640 BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32)) 9641 .addGlobalAddress(M.getNamedValue(MF.getName()))); 9642 } 9643 9644 return It; 9645 } 9646 9647 #define GET_INSTRINFO_HELPERS 9648 #include "X86GenInstrInfo.inc" 9649