1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "X86InstrInfo.h"
14 #include "X86.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrFoldTables.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Sequence.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/LiveVariables.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineModuleInfo.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/IR/DebugInfoMetadata.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/MC/MCAsmInfo.h"
39 #include "llvm/MC/MCExpr.h"
40 #include "llvm/MC/MCInst.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetOptions.h"
46
47 using namespace llvm;
48
49 #define DEBUG_TYPE "x86-instr-info"
50
51 #define GET_INSTRINFO_CTOR_DTOR
52 #include "X86GenInstrInfo.inc"
53
54 static cl::opt<bool>
55 NoFusing("disable-spill-fusing",
56 cl::desc("Disable fusing of spill code into instructions"),
57 cl::Hidden);
58 static cl::opt<bool>
59 PrintFailedFusing("print-failed-fuse-candidates",
60 cl::desc("Print instructions that the allocator wants to"
61 " fuse, but the X86 backend currently can't"),
62 cl::Hidden);
63 static cl::opt<bool>
64 ReMatPICStubLoad("remat-pic-stub-load",
65 cl::desc("Re-materialize load from stub in PIC mode"),
66 cl::init(false), cl::Hidden);
67 static cl::opt<unsigned>
68 PartialRegUpdateClearance("partial-reg-update-clearance",
69 cl::desc("Clearance between two register writes "
70 "for inserting XOR to avoid partial "
71 "register update"),
72 cl::init(64), cl::Hidden);
73 static cl::opt<unsigned>
74 UndefRegClearance("undef-reg-clearance",
75 cl::desc("How many idle instructions we would like before "
76 "certain undef register reads"),
77 cl::init(128), cl::Hidden);
78
79
80 // Pin the vtable to this file.
anchor()81 void X86InstrInfo::anchor() {}
82
X86InstrInfo(X86Subtarget & STI)83 X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
84 : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
85 : X86::ADJCALLSTACKDOWN32),
86 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
87 : X86::ADJCALLSTACKUP32),
88 X86::CATCHRET,
89 (STI.is64Bit() ? X86::RET64 : X86::RET32)),
90 Subtarget(STI), RI(STI.getTargetTriple()) {
91 }
92
93 bool
isCoalescableExtInstr(const MachineInstr & MI,Register & SrcReg,Register & DstReg,unsigned & SubIdx) const94 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
95 Register &SrcReg, Register &DstReg,
96 unsigned &SubIdx) const {
97 switch (MI.getOpcode()) {
98 default: break;
99 case X86::MOVSX16rr8:
100 case X86::MOVZX16rr8:
101 case X86::MOVSX32rr8:
102 case X86::MOVZX32rr8:
103 case X86::MOVSX64rr8:
104 if (!Subtarget.is64Bit())
105 // It's not always legal to reference the low 8-bit of the larger
106 // register in 32-bit mode.
107 return false;
108 LLVM_FALLTHROUGH;
109 case X86::MOVSX32rr16:
110 case X86::MOVZX32rr16:
111 case X86::MOVSX64rr16:
112 case X86::MOVSX64rr32: {
113 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
114 // Be conservative.
115 return false;
116 SrcReg = MI.getOperand(1).getReg();
117 DstReg = MI.getOperand(0).getReg();
118 switch (MI.getOpcode()) {
119 default: llvm_unreachable("Unreachable!");
120 case X86::MOVSX16rr8:
121 case X86::MOVZX16rr8:
122 case X86::MOVSX32rr8:
123 case X86::MOVZX32rr8:
124 case X86::MOVSX64rr8:
125 SubIdx = X86::sub_8bit;
126 break;
127 case X86::MOVSX32rr16:
128 case X86::MOVZX32rr16:
129 case X86::MOVSX64rr16:
130 SubIdx = X86::sub_16bit;
131 break;
132 case X86::MOVSX64rr32:
133 SubIdx = X86::sub_32bit;
134 break;
135 }
136 return true;
137 }
138 }
139 return false;
140 }
141
isDataInvariant(MachineInstr & MI)142 bool X86InstrInfo::isDataInvariant(MachineInstr &MI) {
143 if (MI.mayLoad() || MI.mayStore())
144 return false;
145
146 // Some target-independent operations that trivially lower to data-invariant
147 // instructions.
148 if (MI.isCopyLike() || MI.isInsertSubreg())
149 return true;
150
151 unsigned Opcode = MI.getOpcode();
152 using namespace X86;
153 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
154 // However, they set flags and are perhaps the most surprisingly constant
155 // time operations so we call them out here separately.
156 if (isIMUL(Opcode))
157 return true;
158 // Bit scanning and counting instructions that are somewhat surprisingly
159 // constant time as they scan across bits and do other fairly complex
160 // operations like popcnt, but are believed to be constant time on x86.
161 // However, these set flags.
162 if (isBSF(Opcode) || isBSR(Opcode) || isLZCNT(Opcode) || isPOPCNT(Opcode) ||
163 isTZCNT(Opcode))
164 return true;
165 // Bit manipulation instructions are effectively combinations of basic
166 // arithmetic ops, and should still execute in constant time. These also
167 // set flags.
168 if (isBLCFILL(Opcode) || isBLCI(Opcode) || isBLCIC(Opcode) ||
169 isBLCMSK(Opcode) || isBLCS(Opcode) || isBLSFILL(Opcode) ||
170 isBLSI(Opcode) || isBLSIC(Opcode) || isBLSMSK(Opcode) || isBLSR(Opcode) ||
171 isTZMSK(Opcode))
172 return true;
173 // Bit extracting and clearing instructions should execute in constant time,
174 // and set flags.
175 if (isBEXTR(Opcode) || isBZHI(Opcode))
176 return true;
177 // Shift and rotate.
178 if (isROL(Opcode) || isROR(Opcode) || isSAR(Opcode) || isSHL(Opcode) ||
179 isSHR(Opcode) || isSHLD(Opcode) || isSHRD(Opcode))
180 return true;
181 // Basic arithmetic is constant time on the input but does set flags.
182 if (isADC(Opcode) || isADD(Opcode) || isAND(Opcode) || isOR(Opcode) ||
183 isSBB(Opcode) || isSUB(Opcode) || isXOR(Opcode))
184 return true;
185 // Arithmetic with just 32-bit and 64-bit variants and no immediates.
186 if (isADCX(Opcode) || isADOX(Opcode) || isANDN(Opcode))
187 return true;
188 // Unary arithmetic operations.
189 if (isDEC(Opcode) || isINC(Opcode) || isNEG(Opcode))
190 return true;
191 // Unlike other arithmetic, NOT doesn't set EFLAGS.
192 if (isNOT(Opcode))
193 return true;
194 // Various move instructions used to zero or sign extend things. Note that we
195 // intentionally don't support the _NOREX variants as we can't handle that
196 // register constraint anyways.
197 if (isMOVSX(Opcode) || isMOVZX(Opcode) || isMOVSXD(Opcode) || isMOV(Opcode))
198 return true;
199 // Arithmetic instructions that are both constant time and don't set flags.
200 if (isRORX(Opcode) || isSARX(Opcode) || isSHLX(Opcode) || isSHRX(Opcode))
201 return true;
202 // LEA doesn't actually access memory, and its arithmetic is constant time.
203 if (isLEA(Opcode))
204 return true;
205 // By default, assume that the instruction is not data invariant.
206 return false;
207 }
208
isDataInvariantLoad(MachineInstr & MI)209 bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) {
210 switch (MI.getOpcode()) {
211 default:
212 // By default, assume that the load will immediately leak.
213 return false;
214
215 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
216 // However, they set flags and are perhaps the most surprisingly constant
217 // time operations so we call them out here separately.
218 case X86::IMUL16rm:
219 case X86::IMUL16rmi8:
220 case X86::IMUL16rmi:
221 case X86::IMUL32rm:
222 case X86::IMUL32rmi8:
223 case X86::IMUL32rmi:
224 case X86::IMUL64rm:
225 case X86::IMUL64rmi32:
226 case X86::IMUL64rmi8:
227
228 // Bit scanning and counting instructions that are somewhat surprisingly
229 // constant time as they scan across bits and do other fairly complex
230 // operations like popcnt, but are believed to be constant time on x86.
231 // However, these set flags.
232 case X86::BSF16rm:
233 case X86::BSF32rm:
234 case X86::BSF64rm:
235 case X86::BSR16rm:
236 case X86::BSR32rm:
237 case X86::BSR64rm:
238 case X86::LZCNT16rm:
239 case X86::LZCNT32rm:
240 case X86::LZCNT64rm:
241 case X86::POPCNT16rm:
242 case X86::POPCNT32rm:
243 case X86::POPCNT64rm:
244 case X86::TZCNT16rm:
245 case X86::TZCNT32rm:
246 case X86::TZCNT64rm:
247
248 // Bit manipulation instructions are effectively combinations of basic
249 // arithmetic ops, and should still execute in constant time. These also
250 // set flags.
251 case X86::BLCFILL32rm:
252 case X86::BLCFILL64rm:
253 case X86::BLCI32rm:
254 case X86::BLCI64rm:
255 case X86::BLCIC32rm:
256 case X86::BLCIC64rm:
257 case X86::BLCMSK32rm:
258 case X86::BLCMSK64rm:
259 case X86::BLCS32rm:
260 case X86::BLCS64rm:
261 case X86::BLSFILL32rm:
262 case X86::BLSFILL64rm:
263 case X86::BLSI32rm:
264 case X86::BLSI64rm:
265 case X86::BLSIC32rm:
266 case X86::BLSIC64rm:
267 case X86::BLSMSK32rm:
268 case X86::BLSMSK64rm:
269 case X86::BLSR32rm:
270 case X86::BLSR64rm:
271 case X86::TZMSK32rm:
272 case X86::TZMSK64rm:
273
274 // Bit extracting and clearing instructions should execute in constant time,
275 // and set flags.
276 case X86::BEXTR32rm:
277 case X86::BEXTR64rm:
278 case X86::BEXTRI32mi:
279 case X86::BEXTRI64mi:
280 case X86::BZHI32rm:
281 case X86::BZHI64rm:
282
283 // Basic arithmetic is constant time on the input but does set flags.
284 case X86::ADC8rm:
285 case X86::ADC16rm:
286 case X86::ADC32rm:
287 case X86::ADC64rm:
288 case X86::ADCX32rm:
289 case X86::ADCX64rm:
290 case X86::ADD8rm:
291 case X86::ADD16rm:
292 case X86::ADD32rm:
293 case X86::ADD64rm:
294 case X86::ADOX32rm:
295 case X86::ADOX64rm:
296 case X86::AND8rm:
297 case X86::AND16rm:
298 case X86::AND32rm:
299 case X86::AND64rm:
300 case X86::ANDN32rm:
301 case X86::ANDN64rm:
302 case X86::OR8rm:
303 case X86::OR16rm:
304 case X86::OR32rm:
305 case X86::OR64rm:
306 case X86::SBB8rm:
307 case X86::SBB16rm:
308 case X86::SBB32rm:
309 case X86::SBB64rm:
310 case X86::SUB8rm:
311 case X86::SUB16rm:
312 case X86::SUB32rm:
313 case X86::SUB64rm:
314 case X86::XOR8rm:
315 case X86::XOR16rm:
316 case X86::XOR32rm:
317 case X86::XOR64rm:
318
319 // Integer multiply w/o affecting flags is still believed to be constant
320 // time on x86. Called out separately as this is among the most surprising
321 // instructions to exhibit that behavior.
322 case X86::MULX32rm:
323 case X86::MULX64rm:
324
325 // Arithmetic instructions that are both constant time and don't set flags.
326 case X86::RORX32mi:
327 case X86::RORX64mi:
328 case X86::SARX32rm:
329 case X86::SARX64rm:
330 case X86::SHLX32rm:
331 case X86::SHLX64rm:
332 case X86::SHRX32rm:
333 case X86::SHRX64rm:
334
335 // Conversions are believed to be constant time and don't set flags.
336 case X86::CVTTSD2SI64rm:
337 case X86::VCVTTSD2SI64rm:
338 case X86::VCVTTSD2SI64Zrm:
339 case X86::CVTTSD2SIrm:
340 case X86::VCVTTSD2SIrm:
341 case X86::VCVTTSD2SIZrm:
342 case X86::CVTTSS2SI64rm:
343 case X86::VCVTTSS2SI64rm:
344 case X86::VCVTTSS2SI64Zrm:
345 case X86::CVTTSS2SIrm:
346 case X86::VCVTTSS2SIrm:
347 case X86::VCVTTSS2SIZrm:
348 case X86::CVTSI2SDrm:
349 case X86::VCVTSI2SDrm:
350 case X86::VCVTSI2SDZrm:
351 case X86::CVTSI2SSrm:
352 case X86::VCVTSI2SSrm:
353 case X86::VCVTSI2SSZrm:
354 case X86::CVTSI642SDrm:
355 case X86::VCVTSI642SDrm:
356 case X86::VCVTSI642SDZrm:
357 case X86::CVTSI642SSrm:
358 case X86::VCVTSI642SSrm:
359 case X86::VCVTSI642SSZrm:
360 case X86::CVTSS2SDrm:
361 case X86::VCVTSS2SDrm:
362 case X86::VCVTSS2SDZrm:
363 case X86::CVTSD2SSrm:
364 case X86::VCVTSD2SSrm:
365 case X86::VCVTSD2SSZrm:
366 // AVX512 added unsigned integer conversions.
367 case X86::VCVTTSD2USI64Zrm:
368 case X86::VCVTTSD2USIZrm:
369 case X86::VCVTTSS2USI64Zrm:
370 case X86::VCVTTSS2USIZrm:
371 case X86::VCVTUSI2SDZrm:
372 case X86::VCVTUSI642SDZrm:
373 case X86::VCVTUSI2SSZrm:
374 case X86::VCVTUSI642SSZrm:
375
376 // Loads to register don't set flags.
377 case X86::MOV8rm:
378 case X86::MOV8rm_NOREX:
379 case X86::MOV16rm:
380 case X86::MOV32rm:
381 case X86::MOV64rm:
382 case X86::MOVSX16rm8:
383 case X86::MOVSX32rm16:
384 case X86::MOVSX32rm8:
385 case X86::MOVSX32rm8_NOREX:
386 case X86::MOVSX64rm16:
387 case X86::MOVSX64rm32:
388 case X86::MOVSX64rm8:
389 case X86::MOVZX16rm8:
390 case X86::MOVZX32rm16:
391 case X86::MOVZX32rm8:
392 case X86::MOVZX32rm8_NOREX:
393 case X86::MOVZX64rm16:
394 case X86::MOVZX64rm8:
395 return true;
396 }
397 }
398
getSPAdjust(const MachineInstr & MI) const399 int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
400 const MachineFunction *MF = MI.getParent()->getParent();
401 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
402
403 if (isFrameInstr(MI)) {
404 int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign());
405 SPAdj -= getFrameAdjustment(MI);
406 if (!isFrameSetup(MI))
407 SPAdj = -SPAdj;
408 return SPAdj;
409 }
410
411 // To know whether a call adjusts the stack, we need information
412 // that is bound to the following ADJCALLSTACKUP pseudo.
413 // Look for the next ADJCALLSTACKUP that follows the call.
414 if (MI.isCall()) {
415 const MachineBasicBlock *MBB = MI.getParent();
416 auto I = ++MachineBasicBlock::const_iterator(MI);
417 for (auto E = MBB->end(); I != E; ++I) {
418 if (I->getOpcode() == getCallFrameDestroyOpcode() ||
419 I->isCall())
420 break;
421 }
422
423 // If we could not find a frame destroy opcode, then it has already
424 // been simplified, so we don't care.
425 if (I->getOpcode() != getCallFrameDestroyOpcode())
426 return 0;
427
428 return -(I->getOperand(1).getImm());
429 }
430
431 // Currently handle only PUSHes we can reasonably expect to see
432 // in call sequences
433 switch (MI.getOpcode()) {
434 default:
435 return 0;
436 case X86::PUSH32i8:
437 case X86::PUSH32r:
438 case X86::PUSH32rmm:
439 case X86::PUSH32rmr:
440 case X86::PUSHi32:
441 return 4;
442 case X86::PUSH64i8:
443 case X86::PUSH64r:
444 case X86::PUSH64rmm:
445 case X86::PUSH64rmr:
446 case X86::PUSH64i32:
447 return 8;
448 }
449 }
450
451 /// Return true and the FrameIndex if the specified
452 /// operand and follow operands form a reference to the stack frame.
isFrameOperand(const MachineInstr & MI,unsigned int Op,int & FrameIndex) const453 bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
454 int &FrameIndex) const {
455 if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
456 MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
457 MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
458 MI.getOperand(Op + X86::AddrDisp).isImm() &&
459 MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
460 MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
461 MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
462 FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
463 return true;
464 }
465 return false;
466 }
467
isFrameLoadOpcode(int Opcode,unsigned & MemBytes)468 static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
469 switch (Opcode) {
470 default:
471 return false;
472 case X86::MOV8rm:
473 case X86::KMOVBkm:
474 MemBytes = 1;
475 return true;
476 case X86::MOV16rm:
477 case X86::KMOVWkm:
478 case X86::VMOVSHZrm:
479 case X86::VMOVSHZrm_alt:
480 MemBytes = 2;
481 return true;
482 case X86::MOV32rm:
483 case X86::MOVSSrm:
484 case X86::MOVSSrm_alt:
485 case X86::VMOVSSrm:
486 case X86::VMOVSSrm_alt:
487 case X86::VMOVSSZrm:
488 case X86::VMOVSSZrm_alt:
489 case X86::KMOVDkm:
490 MemBytes = 4;
491 return true;
492 case X86::MOV64rm:
493 case X86::LD_Fp64m:
494 case X86::MOVSDrm:
495 case X86::MOVSDrm_alt:
496 case X86::VMOVSDrm:
497 case X86::VMOVSDrm_alt:
498 case X86::VMOVSDZrm:
499 case X86::VMOVSDZrm_alt:
500 case X86::MMX_MOVD64rm:
501 case X86::MMX_MOVQ64rm:
502 case X86::KMOVQkm:
503 MemBytes = 8;
504 return true;
505 case X86::MOVAPSrm:
506 case X86::MOVUPSrm:
507 case X86::MOVAPDrm:
508 case X86::MOVUPDrm:
509 case X86::MOVDQArm:
510 case X86::MOVDQUrm:
511 case X86::VMOVAPSrm:
512 case X86::VMOVUPSrm:
513 case X86::VMOVAPDrm:
514 case X86::VMOVUPDrm:
515 case X86::VMOVDQArm:
516 case X86::VMOVDQUrm:
517 case X86::VMOVAPSZ128rm:
518 case X86::VMOVUPSZ128rm:
519 case X86::VMOVAPSZ128rm_NOVLX:
520 case X86::VMOVUPSZ128rm_NOVLX:
521 case X86::VMOVAPDZ128rm:
522 case X86::VMOVUPDZ128rm:
523 case X86::VMOVDQU8Z128rm:
524 case X86::VMOVDQU16Z128rm:
525 case X86::VMOVDQA32Z128rm:
526 case X86::VMOVDQU32Z128rm:
527 case X86::VMOVDQA64Z128rm:
528 case X86::VMOVDQU64Z128rm:
529 MemBytes = 16;
530 return true;
531 case X86::VMOVAPSYrm:
532 case X86::VMOVUPSYrm:
533 case X86::VMOVAPDYrm:
534 case X86::VMOVUPDYrm:
535 case X86::VMOVDQAYrm:
536 case X86::VMOVDQUYrm:
537 case X86::VMOVAPSZ256rm:
538 case X86::VMOVUPSZ256rm:
539 case X86::VMOVAPSZ256rm_NOVLX:
540 case X86::VMOVUPSZ256rm_NOVLX:
541 case X86::VMOVAPDZ256rm:
542 case X86::VMOVUPDZ256rm:
543 case X86::VMOVDQU8Z256rm:
544 case X86::VMOVDQU16Z256rm:
545 case X86::VMOVDQA32Z256rm:
546 case X86::VMOVDQU32Z256rm:
547 case X86::VMOVDQA64Z256rm:
548 case X86::VMOVDQU64Z256rm:
549 MemBytes = 32;
550 return true;
551 case X86::VMOVAPSZrm:
552 case X86::VMOVUPSZrm:
553 case X86::VMOVAPDZrm:
554 case X86::VMOVUPDZrm:
555 case X86::VMOVDQU8Zrm:
556 case X86::VMOVDQU16Zrm:
557 case X86::VMOVDQA32Zrm:
558 case X86::VMOVDQU32Zrm:
559 case X86::VMOVDQA64Zrm:
560 case X86::VMOVDQU64Zrm:
561 MemBytes = 64;
562 return true;
563 }
564 }
565
isFrameStoreOpcode(int Opcode,unsigned & MemBytes)566 static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
567 switch (Opcode) {
568 default:
569 return false;
570 case X86::MOV8mr:
571 case X86::KMOVBmk:
572 MemBytes = 1;
573 return true;
574 case X86::MOV16mr:
575 case X86::KMOVWmk:
576 case X86::VMOVSHZmr:
577 MemBytes = 2;
578 return true;
579 case X86::MOV32mr:
580 case X86::MOVSSmr:
581 case X86::VMOVSSmr:
582 case X86::VMOVSSZmr:
583 case X86::KMOVDmk:
584 MemBytes = 4;
585 return true;
586 case X86::MOV64mr:
587 case X86::ST_FpP64m:
588 case X86::MOVSDmr:
589 case X86::VMOVSDmr:
590 case X86::VMOVSDZmr:
591 case X86::MMX_MOVD64mr:
592 case X86::MMX_MOVQ64mr:
593 case X86::MMX_MOVNTQmr:
594 case X86::KMOVQmk:
595 MemBytes = 8;
596 return true;
597 case X86::MOVAPSmr:
598 case X86::MOVUPSmr:
599 case X86::MOVAPDmr:
600 case X86::MOVUPDmr:
601 case X86::MOVDQAmr:
602 case X86::MOVDQUmr:
603 case X86::VMOVAPSmr:
604 case X86::VMOVUPSmr:
605 case X86::VMOVAPDmr:
606 case X86::VMOVUPDmr:
607 case X86::VMOVDQAmr:
608 case X86::VMOVDQUmr:
609 case X86::VMOVUPSZ128mr:
610 case X86::VMOVAPSZ128mr:
611 case X86::VMOVUPSZ128mr_NOVLX:
612 case X86::VMOVAPSZ128mr_NOVLX:
613 case X86::VMOVUPDZ128mr:
614 case X86::VMOVAPDZ128mr:
615 case X86::VMOVDQA32Z128mr:
616 case X86::VMOVDQU32Z128mr:
617 case X86::VMOVDQA64Z128mr:
618 case X86::VMOVDQU64Z128mr:
619 case X86::VMOVDQU8Z128mr:
620 case X86::VMOVDQU16Z128mr:
621 MemBytes = 16;
622 return true;
623 case X86::VMOVUPSYmr:
624 case X86::VMOVAPSYmr:
625 case X86::VMOVUPDYmr:
626 case X86::VMOVAPDYmr:
627 case X86::VMOVDQUYmr:
628 case X86::VMOVDQAYmr:
629 case X86::VMOVUPSZ256mr:
630 case X86::VMOVAPSZ256mr:
631 case X86::VMOVUPSZ256mr_NOVLX:
632 case X86::VMOVAPSZ256mr_NOVLX:
633 case X86::VMOVUPDZ256mr:
634 case X86::VMOVAPDZ256mr:
635 case X86::VMOVDQU8Z256mr:
636 case X86::VMOVDQU16Z256mr:
637 case X86::VMOVDQA32Z256mr:
638 case X86::VMOVDQU32Z256mr:
639 case X86::VMOVDQA64Z256mr:
640 case X86::VMOVDQU64Z256mr:
641 MemBytes = 32;
642 return true;
643 case X86::VMOVUPSZmr:
644 case X86::VMOVAPSZmr:
645 case X86::VMOVUPDZmr:
646 case X86::VMOVAPDZmr:
647 case X86::VMOVDQU8Zmr:
648 case X86::VMOVDQU16Zmr:
649 case X86::VMOVDQA32Zmr:
650 case X86::VMOVDQU32Zmr:
651 case X86::VMOVDQA64Zmr:
652 case X86::VMOVDQU64Zmr:
653 MemBytes = 64;
654 return true;
655 }
656 return false;
657 }
658
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const659 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
660 int &FrameIndex) const {
661 unsigned Dummy;
662 return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
663 }
664
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex,unsigned & MemBytes) const665 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
666 int &FrameIndex,
667 unsigned &MemBytes) const {
668 if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
669 if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
670 return MI.getOperand(0).getReg();
671 return 0;
672 }
673
isLoadFromStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const674 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
675 int &FrameIndex) const {
676 unsigned Dummy;
677 if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
678 unsigned Reg;
679 if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
680 return Reg;
681 // Check for post-frame index elimination operations
682 SmallVector<const MachineMemOperand *, 1> Accesses;
683 if (hasLoadFromStackSlot(MI, Accesses)) {
684 FrameIndex =
685 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
686 ->getFrameIndex();
687 return MI.getOperand(0).getReg();
688 }
689 }
690 return 0;
691 }
692
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const693 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
694 int &FrameIndex) const {
695 unsigned Dummy;
696 return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
697 }
698
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex,unsigned & MemBytes) const699 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
700 int &FrameIndex,
701 unsigned &MemBytes) const {
702 if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
703 if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
704 isFrameOperand(MI, 0, FrameIndex))
705 return MI.getOperand(X86::AddrNumOperands).getReg();
706 return 0;
707 }
708
isStoreToStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const709 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
710 int &FrameIndex) const {
711 unsigned Dummy;
712 if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
713 unsigned Reg;
714 if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
715 return Reg;
716 // Check for post-frame index elimination operations
717 SmallVector<const MachineMemOperand *, 1> Accesses;
718 if (hasStoreToStackSlot(MI, Accesses)) {
719 FrameIndex =
720 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
721 ->getFrameIndex();
722 return MI.getOperand(X86::AddrNumOperands).getReg();
723 }
724 }
725 return 0;
726 }
727
728 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
regIsPICBase(Register BaseReg,const MachineRegisterInfo & MRI)729 static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) {
730 // Don't waste compile time scanning use-def chains of physregs.
731 if (!BaseReg.isVirtual())
732 return false;
733 bool isPICBase = false;
734 for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
735 E = MRI.def_instr_end(); I != E; ++I) {
736 MachineInstr *DefMI = &*I;
737 if (DefMI->getOpcode() != X86::MOVPC32r)
738 return false;
739 assert(!isPICBase && "More than one PIC base?");
740 isPICBase = true;
741 }
742 return isPICBase;
743 }
744
isReallyTriviallyReMaterializable(const MachineInstr & MI) const745 bool X86InstrInfo::isReallyTriviallyReMaterializable(
746 const MachineInstr &MI) const {
747 switch (MI.getOpcode()) {
748 default:
749 // This function should only be called for opcodes with the ReMaterializable
750 // flag set.
751 llvm_unreachable("Unknown rematerializable operation!");
752 break;
753
754 case X86::LOAD_STACK_GUARD:
755 case X86::AVX1_SETALLONES:
756 case X86::AVX2_SETALLONES:
757 case X86::AVX512_128_SET0:
758 case X86::AVX512_256_SET0:
759 case X86::AVX512_512_SET0:
760 case X86::AVX512_512_SETALLONES:
761 case X86::AVX512_FsFLD0SD:
762 case X86::AVX512_FsFLD0SH:
763 case X86::AVX512_FsFLD0SS:
764 case X86::AVX512_FsFLD0F128:
765 case X86::AVX_SET0:
766 case X86::FsFLD0SD:
767 case X86::FsFLD0SS:
768 case X86::FsFLD0SH:
769 case X86::FsFLD0F128:
770 case X86::KSET0D:
771 case X86::KSET0Q:
772 case X86::KSET0W:
773 case X86::KSET1D:
774 case X86::KSET1Q:
775 case X86::KSET1W:
776 case X86::MMX_SET0:
777 case X86::MOV32ImmSExti8:
778 case X86::MOV32r0:
779 case X86::MOV32r1:
780 case X86::MOV32r_1:
781 case X86::MOV32ri64:
782 case X86::MOV64ImmSExti8:
783 case X86::V_SET0:
784 case X86::V_SETALLONES:
785 case X86::MOV16ri:
786 case X86::MOV32ri:
787 case X86::MOV64ri:
788 case X86::MOV64ri32:
789 case X86::MOV8ri:
790 case X86::PTILEZEROV:
791 return true;
792
793 case X86::MOV8rm:
794 case X86::MOV8rm_NOREX:
795 case X86::MOV16rm:
796 case X86::MOV32rm:
797 case X86::MOV64rm:
798 case X86::MOVSSrm:
799 case X86::MOVSSrm_alt:
800 case X86::MOVSDrm:
801 case X86::MOVSDrm_alt:
802 case X86::MOVAPSrm:
803 case X86::MOVUPSrm:
804 case X86::MOVAPDrm:
805 case X86::MOVUPDrm:
806 case X86::MOVDQArm:
807 case X86::MOVDQUrm:
808 case X86::VMOVSSrm:
809 case X86::VMOVSSrm_alt:
810 case X86::VMOVSDrm:
811 case X86::VMOVSDrm_alt:
812 case X86::VMOVAPSrm:
813 case X86::VMOVUPSrm:
814 case X86::VMOVAPDrm:
815 case X86::VMOVUPDrm:
816 case X86::VMOVDQArm:
817 case X86::VMOVDQUrm:
818 case X86::VMOVAPSYrm:
819 case X86::VMOVUPSYrm:
820 case X86::VMOVAPDYrm:
821 case X86::VMOVUPDYrm:
822 case X86::VMOVDQAYrm:
823 case X86::VMOVDQUYrm:
824 case X86::MMX_MOVD64rm:
825 case X86::MMX_MOVQ64rm:
826 // AVX-512
827 case X86::VMOVSSZrm:
828 case X86::VMOVSSZrm_alt:
829 case X86::VMOVSDZrm:
830 case X86::VMOVSDZrm_alt:
831 case X86::VMOVSHZrm:
832 case X86::VMOVSHZrm_alt:
833 case X86::VMOVAPDZ128rm:
834 case X86::VMOVAPDZ256rm:
835 case X86::VMOVAPDZrm:
836 case X86::VMOVAPSZ128rm:
837 case X86::VMOVAPSZ256rm:
838 case X86::VMOVAPSZ128rm_NOVLX:
839 case X86::VMOVAPSZ256rm_NOVLX:
840 case X86::VMOVAPSZrm:
841 case X86::VMOVDQA32Z128rm:
842 case X86::VMOVDQA32Z256rm:
843 case X86::VMOVDQA32Zrm:
844 case X86::VMOVDQA64Z128rm:
845 case X86::VMOVDQA64Z256rm:
846 case X86::VMOVDQA64Zrm:
847 case X86::VMOVDQU16Z128rm:
848 case X86::VMOVDQU16Z256rm:
849 case X86::VMOVDQU16Zrm:
850 case X86::VMOVDQU32Z128rm:
851 case X86::VMOVDQU32Z256rm:
852 case X86::VMOVDQU32Zrm:
853 case X86::VMOVDQU64Z128rm:
854 case X86::VMOVDQU64Z256rm:
855 case X86::VMOVDQU64Zrm:
856 case X86::VMOVDQU8Z128rm:
857 case X86::VMOVDQU8Z256rm:
858 case X86::VMOVDQU8Zrm:
859 case X86::VMOVUPDZ128rm:
860 case X86::VMOVUPDZ256rm:
861 case X86::VMOVUPDZrm:
862 case X86::VMOVUPSZ128rm:
863 case X86::VMOVUPSZ256rm:
864 case X86::VMOVUPSZ128rm_NOVLX:
865 case X86::VMOVUPSZ256rm_NOVLX:
866 case X86::VMOVUPSZrm: {
867 // Loads from constant pools are trivially rematerializable.
868 if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
869 MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
870 MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
871 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
872 MI.isDereferenceableInvariantLoad()) {
873 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
874 if (BaseReg == 0 || BaseReg == X86::RIP)
875 return true;
876 // Allow re-materialization of PIC load.
877 if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
878 return false;
879 const MachineFunction &MF = *MI.getParent()->getParent();
880 const MachineRegisterInfo &MRI = MF.getRegInfo();
881 return regIsPICBase(BaseReg, MRI);
882 }
883 return false;
884 }
885
886 case X86::LEA32r:
887 case X86::LEA64r: {
888 if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
889 MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
890 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
891 !MI.getOperand(1 + X86::AddrDisp).isReg()) {
892 // lea fi#, lea GV, etc. are all rematerializable.
893 if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
894 return true;
895 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
896 if (BaseReg == 0)
897 return true;
898 // Allow re-materialization of lea PICBase + x.
899 const MachineFunction &MF = *MI.getParent()->getParent();
900 const MachineRegisterInfo &MRI = MF.getRegInfo();
901 return regIsPICBase(BaseReg, MRI);
902 }
903 return false;
904 }
905 }
906 }
907
reMaterialize(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,Register DestReg,unsigned SubIdx,const MachineInstr & Orig,const TargetRegisterInfo & TRI) const908 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
909 MachineBasicBlock::iterator I,
910 Register DestReg, unsigned SubIdx,
911 const MachineInstr &Orig,
912 const TargetRegisterInfo &TRI) const {
913 bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
914 if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) !=
915 MachineBasicBlock::LQR_Dead) {
916 // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
917 // effects.
918 int Value;
919 switch (Orig.getOpcode()) {
920 case X86::MOV32r0: Value = 0; break;
921 case X86::MOV32r1: Value = 1; break;
922 case X86::MOV32r_1: Value = -1; break;
923 default:
924 llvm_unreachable("Unexpected instruction!");
925 }
926
927 const DebugLoc &DL = Orig.getDebugLoc();
928 BuildMI(MBB, I, DL, get(X86::MOV32ri))
929 .add(Orig.getOperand(0))
930 .addImm(Value);
931 } else {
932 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
933 MBB.insert(I, MI);
934 }
935
936 MachineInstr &NewMI = *std::prev(I);
937 NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
938 }
939
940 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
hasLiveCondCodeDef(MachineInstr & MI) const941 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
942 for (const MachineOperand &MO : MI.operands()) {
943 if (MO.isReg() && MO.isDef() &&
944 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
945 return true;
946 }
947 }
948 return false;
949 }
950
951 /// Check whether the shift count for a machine operand is non-zero.
getTruncatedShiftCount(const MachineInstr & MI,unsigned ShiftAmtOperandIdx)952 inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
953 unsigned ShiftAmtOperandIdx) {
954 // The shift count is six bits with the REX.W prefix and five bits without.
955 unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
956 unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
957 return Imm & ShiftCountMask;
958 }
959
960 /// Check whether the given shift count is appropriate
961 /// can be represented by a LEA instruction.
isTruncatedShiftCountForLEA(unsigned ShAmt)962 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
963 // Left shift instructions can be transformed into load-effective-address
964 // instructions if we can encode them appropriately.
965 // A LEA instruction utilizes a SIB byte to encode its scale factor.
966 // The SIB.scale field is two bits wide which means that we can encode any
967 // shift amount less than 4.
968 return ShAmt < 4 && ShAmt > 0;
969 }
970
findRedundantFlagInstr(MachineInstr & CmpInstr,MachineInstr & CmpValDefInstr,const MachineRegisterInfo * MRI,MachineInstr ** AndInstr,const TargetRegisterInfo * TRI,bool & NoSignFlag,bool & ClearsOverflowFlag)971 static bool findRedundantFlagInstr(MachineInstr &CmpInstr,
972 MachineInstr &CmpValDefInstr,
973 const MachineRegisterInfo *MRI,
974 MachineInstr **AndInstr,
975 const TargetRegisterInfo *TRI,
976 bool &NoSignFlag, bool &ClearsOverflowFlag) {
977 if (CmpValDefInstr.getOpcode() != X86::SUBREG_TO_REG)
978 return false;
979
980 if (CmpInstr.getOpcode() != X86::TEST64rr)
981 return false;
982
983 // CmpInstr is a TEST64rr instruction, and `X86InstrInfo::analyzeCompare`
984 // guarantees that it's analyzable only if two registers are identical.
985 assert(
986 (CmpInstr.getOperand(0).getReg() == CmpInstr.getOperand(1).getReg()) &&
987 "CmpInstr is an analyzable TEST64rr, and `X86InstrInfo::analyzeCompare` "
988 "requires two reg operands are the same.");
989
990 // Caller (`X86InstrInfo::optimizeCompareInstr`) guarantees that
991 // `CmpValDefInstr` defines the value that's used by `CmpInstr`; in this case
992 // if `CmpValDefInstr` sets the EFLAGS, it is likely that `CmpInstr` is
993 // redundant.
994 assert(
995 (MRI->getVRegDef(CmpInstr.getOperand(0).getReg()) == &CmpValDefInstr) &&
996 "Caller guarantees that TEST64rr is a user of SUBREG_TO_REG.");
997
998 // As seen in X86 td files, CmpValDefInstr.getOperand(1).getImm() is typically
999 // 0.
1000 if (CmpValDefInstr.getOperand(1).getImm() != 0)
1001 return false;
1002
1003 // As seen in X86 td files, CmpValDefInstr.getOperand(3) is typically
1004 // sub_32bit or sub_xmm.
1005 if (CmpValDefInstr.getOperand(3).getImm() != X86::sub_32bit)
1006 return false;
1007
1008 MachineInstr *VregDefInstr =
1009 MRI->getVRegDef(CmpValDefInstr.getOperand(2).getReg());
1010
1011 assert(VregDefInstr && "Must have a definition (SSA)");
1012
1013 // Requires `CmpValDefInstr` and `VregDefInstr` are from the same MBB
1014 // to simplify the subsequent analysis.
1015 //
1016 // FIXME: If `VregDefInstr->getParent()` is the only predecessor of
1017 // `CmpValDefInstr.getParent()`, this could be handled.
1018 if (VregDefInstr->getParent() != CmpValDefInstr.getParent())
1019 return false;
1020
1021 if (X86::isAND(VregDefInstr->getOpcode())) {
1022 // Get a sequence of instructions like
1023 // %reg = and* ... // Set EFLAGS
1024 // ... // EFLAGS not changed
1025 // %extended_reg = subreg_to_reg 0, %reg, %subreg.sub_32bit
1026 // test64rr %extended_reg, %extended_reg, implicit-def $eflags
1027 //
1028 // If subsequent readers use a subset of bits that don't change
1029 // after `and*` instructions, it's likely that the test64rr could
1030 // be optimized away.
1031 for (const MachineInstr &Instr :
1032 make_range(std::next(MachineBasicBlock::iterator(VregDefInstr)),
1033 MachineBasicBlock::iterator(CmpValDefInstr))) {
1034 // There are instructions between 'VregDefInstr' and
1035 // 'CmpValDefInstr' that modifies EFLAGS.
1036 if (Instr.modifiesRegister(X86::EFLAGS, TRI))
1037 return false;
1038 }
1039
1040 *AndInstr = VregDefInstr;
1041
1042 // AND instruction will essentially update SF and clear OF, so
1043 // NoSignFlag should be false in the sense that SF is modified by `AND`.
1044 //
1045 // However, the implementation artifically sets `NoSignFlag` to true
1046 // to poison the SF bit; that is to say, if SF is looked at later, the
1047 // optimization (to erase TEST64rr) will be disabled.
1048 //
1049 // The reason to poison SF bit is that SF bit value could be different
1050 // in the `AND` and `TEST` operation; signed bit is not known for `AND`,
1051 // and is known to be 0 as a result of `TEST64rr`.
1052 //
1053 // FIXME: As opposed to poisoning the SF bit directly, consider peeking into
1054 // the AND instruction and using the static information to guide peephole
1055 // optimization if possible. For example, it's possible to fold a
1056 // conditional move into a copy if the relevant EFLAG bits could be deduced
1057 // from an immediate operand of and operation.
1058 //
1059 NoSignFlag = true;
1060 // ClearsOverflowFlag is true for AND operation (no surprise).
1061 ClearsOverflowFlag = true;
1062 return true;
1063 }
1064 return false;
1065 }
1066
classifyLEAReg(MachineInstr & MI,const MachineOperand & Src,unsigned Opc,bool AllowSP,Register & NewSrc,bool & isKill,MachineOperand & ImplicitOp,LiveVariables * LV,LiveIntervals * LIS) const1067 bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
1068 unsigned Opc, bool AllowSP, Register &NewSrc,
1069 bool &isKill, MachineOperand &ImplicitOp,
1070 LiveVariables *LV, LiveIntervals *LIS) const {
1071 MachineFunction &MF = *MI.getParent()->getParent();
1072 const TargetRegisterClass *RC;
1073 if (AllowSP) {
1074 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
1075 } else {
1076 RC = Opc != X86::LEA32r ?
1077 &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
1078 }
1079 Register SrcReg = Src.getReg();
1080 isKill = MI.killsRegister(SrcReg);
1081
1082 // For both LEA64 and LEA32 the register already has essentially the right
1083 // type (32-bit or 64-bit) we may just need to forbid SP.
1084 if (Opc != X86::LEA64_32r) {
1085 NewSrc = SrcReg;
1086 assert(!Src.isUndef() && "Undef op doesn't need optimization");
1087
1088 if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC))
1089 return false;
1090
1091 return true;
1092 }
1093
1094 // This is for an LEA64_32r and incoming registers are 32-bit. One way or
1095 // another we need to add 64-bit registers to the final MI.
1096 if (SrcReg.isPhysical()) {
1097 ImplicitOp = Src;
1098 ImplicitOp.setImplicit();
1099
1100 NewSrc = getX86SubSuperRegister(SrcReg, 64);
1101 assert(!Src.isUndef() && "Undef op doesn't need optimization");
1102 } else {
1103 // Virtual register of the wrong class, we have to create a temporary 64-bit
1104 // vreg to feed into the LEA.
1105 NewSrc = MF.getRegInfo().createVirtualRegister(RC);
1106 MachineInstr *Copy =
1107 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1108 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
1109 .addReg(SrcReg, getKillRegState(isKill));
1110
1111 // Which is obviously going to be dead after we're done with it.
1112 isKill = true;
1113
1114 if (LV)
1115 LV->replaceKillInstruction(SrcReg, MI, *Copy);
1116
1117 if (LIS) {
1118 SlotIndex CopyIdx = LIS->InsertMachineInstrInMaps(*Copy);
1119 SlotIndex Idx = LIS->getInstructionIndex(MI);
1120 LiveInterval &LI = LIS->getInterval(SrcReg);
1121 LiveRange::Segment *S = LI.getSegmentContaining(Idx);
1122 if (S->end.getBaseIndex() == Idx)
1123 S->end = CopyIdx.getRegSlot();
1124 }
1125 }
1126
1127 // We've set all the parameters without issue.
1128 return true;
1129 }
1130
convertToThreeAddressWithLEA(unsigned MIOpc,MachineInstr & MI,LiveVariables * LV,LiveIntervals * LIS,bool Is8BitOp) const1131 MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1132 MachineInstr &MI,
1133 LiveVariables *LV,
1134 LiveIntervals *LIS,
1135 bool Is8BitOp) const {
1136 // We handle 8-bit adds and various 16-bit opcodes in the switch below.
1137 MachineBasicBlock &MBB = *MI.getParent();
1138 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
1139 assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits(
1140 *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
1141 "Unexpected type for LEA transform");
1142
1143 // TODO: For a 32-bit target, we need to adjust the LEA variables with
1144 // something like this:
1145 // Opcode = X86::LEA32r;
1146 // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1147 // OutRegLEA =
1148 // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
1149 // : RegInfo.createVirtualRegister(&X86::GR32RegClass);
1150 if (!Subtarget.is64Bit())
1151 return nullptr;
1152
1153 unsigned Opcode = X86::LEA64_32r;
1154 Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1155 Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1156 Register InRegLEA2;
1157
1158 // Build and insert into an implicit UNDEF value. This is OK because
1159 // we will be shifting and then extracting the lower 8/16-bits.
1160 // This has the potential to cause partial register stall. e.g.
1161 // movw (%rbp,%rcx,2), %dx
1162 // leal -65(%rdx), %esi
1163 // But testing has shown this *does* help performance in 64-bit mode (at
1164 // least on modern x86 machines).
1165 MachineBasicBlock::iterator MBBI = MI.getIterator();
1166 Register Dest = MI.getOperand(0).getReg();
1167 Register Src = MI.getOperand(1).getReg();
1168 Register Src2;
1169 bool IsDead = MI.getOperand(0).isDead();
1170 bool IsKill = MI.getOperand(1).isKill();
1171 unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
1172 assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
1173 MachineInstr *ImpDef =
1174 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
1175 MachineInstr *InsMI =
1176 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1177 .addReg(InRegLEA, RegState::Define, SubReg)
1178 .addReg(Src, getKillRegState(IsKill));
1179 MachineInstr *ImpDef2 = nullptr;
1180 MachineInstr *InsMI2 = nullptr;
1181
1182 MachineInstrBuilder MIB =
1183 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
1184 switch (MIOpc) {
1185 default: llvm_unreachable("Unreachable!");
1186 case X86::SHL8ri:
1187 case X86::SHL16ri: {
1188 unsigned ShAmt = MI.getOperand(2).getImm();
1189 MIB.addReg(0)
1190 .addImm(1LL << ShAmt)
1191 .addReg(InRegLEA, RegState::Kill)
1192 .addImm(0)
1193 .addReg(0);
1194 break;
1195 }
1196 case X86::INC8r:
1197 case X86::INC16r:
1198 addRegOffset(MIB, InRegLEA, true, 1);
1199 break;
1200 case X86::DEC8r:
1201 case X86::DEC16r:
1202 addRegOffset(MIB, InRegLEA, true, -1);
1203 break;
1204 case X86::ADD8ri:
1205 case X86::ADD8ri_DB:
1206 case X86::ADD16ri:
1207 case X86::ADD16ri8:
1208 case X86::ADD16ri_DB:
1209 case X86::ADD16ri8_DB:
1210 addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
1211 break;
1212 case X86::ADD8rr:
1213 case X86::ADD8rr_DB:
1214 case X86::ADD16rr:
1215 case X86::ADD16rr_DB: {
1216 Src2 = MI.getOperand(2).getReg();
1217 bool IsKill2 = MI.getOperand(2).isKill();
1218 assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
1219 if (Src == Src2) {
1220 // ADD8rr/ADD16rr killed %reg1028, %reg1028
1221 // just a single insert_subreg.
1222 addRegReg(MIB, InRegLEA, true, InRegLEA, false);
1223 } else {
1224 if (Subtarget.is64Bit())
1225 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1226 else
1227 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1228 // Build and insert into an implicit UNDEF value. This is OK because
1229 // we will be shifting and then extracting the lower 8/16-bits.
1230 ImpDef2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF),
1231 InRegLEA2);
1232 InsMI2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
1233 .addReg(InRegLEA2, RegState::Define, SubReg)
1234 .addReg(Src2, getKillRegState(IsKill2));
1235 addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
1236 }
1237 if (LV && IsKill2 && InsMI2)
1238 LV->replaceKillInstruction(Src2, MI, *InsMI2);
1239 break;
1240 }
1241 }
1242
1243 MachineInstr *NewMI = MIB;
1244 MachineInstr *ExtMI =
1245 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1246 .addReg(Dest, RegState::Define | getDeadRegState(IsDead))
1247 .addReg(OutRegLEA, RegState::Kill, SubReg);
1248
1249 if (LV) {
1250 // Update live variables.
1251 LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
1252 LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
1253 if (IsKill)
1254 LV->replaceKillInstruction(Src, MI, *InsMI);
1255 if (IsDead)
1256 LV->replaceKillInstruction(Dest, MI, *ExtMI);
1257 }
1258
1259 if (LIS) {
1260 LIS->InsertMachineInstrInMaps(*ImpDef);
1261 SlotIndex InsIdx = LIS->InsertMachineInstrInMaps(*InsMI);
1262 if (ImpDef2)
1263 LIS->InsertMachineInstrInMaps(*ImpDef2);
1264 SlotIndex Ins2Idx;
1265 if (InsMI2)
1266 Ins2Idx = LIS->InsertMachineInstrInMaps(*InsMI2);
1267 SlotIndex NewIdx = LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
1268 SlotIndex ExtIdx = LIS->InsertMachineInstrInMaps(*ExtMI);
1269 LIS->getInterval(InRegLEA);
1270 LIS->getInterval(OutRegLEA);
1271 if (InRegLEA2)
1272 LIS->getInterval(InRegLEA2);
1273
1274 // Move the use of Src up to InsMI.
1275 LiveInterval &SrcLI = LIS->getInterval(Src);
1276 LiveRange::Segment *SrcSeg = SrcLI.getSegmentContaining(NewIdx);
1277 if (SrcSeg->end == NewIdx.getRegSlot())
1278 SrcSeg->end = InsIdx.getRegSlot();
1279
1280 if (InsMI2) {
1281 // Move the use of Src2 up to InsMI2.
1282 LiveInterval &Src2LI = LIS->getInterval(Src2);
1283 LiveRange::Segment *Src2Seg = Src2LI.getSegmentContaining(NewIdx);
1284 if (Src2Seg->end == NewIdx.getRegSlot())
1285 Src2Seg->end = Ins2Idx.getRegSlot();
1286 }
1287
1288 // Move the definition of Dest down to ExtMI.
1289 LiveInterval &DestLI = LIS->getInterval(Dest);
1290 LiveRange::Segment *DestSeg =
1291 DestLI.getSegmentContaining(NewIdx.getRegSlot());
1292 assert(DestSeg->start == NewIdx.getRegSlot() &&
1293 DestSeg->valno->def == NewIdx.getRegSlot());
1294 DestSeg->start = ExtIdx.getRegSlot();
1295 DestSeg->valno->def = ExtIdx.getRegSlot();
1296 }
1297
1298 return ExtMI;
1299 }
1300
1301 /// This method must be implemented by targets that
1302 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1303 /// may be able to convert a two-address instruction into a true
1304 /// three-address instruction on demand. This allows the X86 target (for
1305 /// example) to convert ADD and SHL instructions into LEA instructions if they
1306 /// would require register copies due to two-addressness.
1307 ///
1308 /// This method returns a null pointer if the transformation cannot be
1309 /// performed, otherwise it returns the new instruction.
1310 ///
convertToThreeAddress(MachineInstr & MI,LiveVariables * LV,LiveIntervals * LIS) const1311 MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr &MI,
1312 LiveVariables *LV,
1313 LiveIntervals *LIS) const {
1314 // The following opcodes also sets the condition code register(s). Only
1315 // convert them to equivalent lea if the condition code register def's
1316 // are dead!
1317 if (hasLiveCondCodeDef(MI))
1318 return nullptr;
1319
1320 MachineFunction &MF = *MI.getParent()->getParent();
1321 // All instructions input are two-addr instructions. Get the known operands.
1322 const MachineOperand &Dest = MI.getOperand(0);
1323 const MachineOperand &Src = MI.getOperand(1);
1324
1325 // Ideally, operations with undef should be folded before we get here, but we
1326 // can't guarantee it. Bail out because optimizing undefs is a waste of time.
1327 // Without this, we have to forward undef state to new register operands to
1328 // avoid machine verifier errors.
1329 if (Src.isUndef())
1330 return nullptr;
1331 if (MI.getNumOperands() > 2)
1332 if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
1333 return nullptr;
1334
1335 MachineInstr *NewMI = nullptr;
1336 Register SrcReg, SrcReg2;
1337 bool Is64Bit = Subtarget.is64Bit();
1338
1339 bool Is8BitOp = false;
1340 unsigned MIOpc = MI.getOpcode();
1341 switch (MIOpc) {
1342 default: llvm_unreachable("Unreachable!");
1343 case X86::SHL64ri: {
1344 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1345 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1346 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
1347
1348 // LEA can't handle RSP.
1349 if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass(
1350 Src.getReg(), &X86::GR64_NOSPRegClass))
1351 return nullptr;
1352
1353 NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
1354 .add(Dest)
1355 .addReg(0)
1356 .addImm(1LL << ShAmt)
1357 .add(Src)
1358 .addImm(0)
1359 .addReg(0);
1360 break;
1361 }
1362 case X86::SHL32ri: {
1363 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1364 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1365 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
1366
1367 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1368
1369 // LEA can't handle ESP.
1370 bool isKill;
1371 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1372 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1373 ImplicitOp, LV, LIS))
1374 return nullptr;
1375
1376 MachineInstrBuilder MIB =
1377 BuildMI(MF, MI.getDebugLoc(), get(Opc))
1378 .add(Dest)
1379 .addReg(0)
1380 .addImm(1LL << ShAmt)
1381 .addReg(SrcReg, getKillRegState(isKill))
1382 .addImm(0)
1383 .addReg(0);
1384 if (ImplicitOp.getReg() != 0)
1385 MIB.add(ImplicitOp);
1386 NewMI = MIB;
1387
1388 break;
1389 }
1390 case X86::SHL8ri:
1391 Is8BitOp = true;
1392 LLVM_FALLTHROUGH;
1393 case X86::SHL16ri: {
1394 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1395 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1396 if (!isTruncatedShiftCountForLEA(ShAmt))
1397 return nullptr;
1398 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1399 }
1400 case X86::INC64r:
1401 case X86::INC32r: {
1402 assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
1403 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r :
1404 (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1405 bool isKill;
1406 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1407 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1408 ImplicitOp, LV, LIS))
1409 return nullptr;
1410
1411 MachineInstrBuilder MIB =
1412 BuildMI(MF, MI.getDebugLoc(), get(Opc))
1413 .add(Dest)
1414 .addReg(SrcReg, getKillRegState(isKill));
1415 if (ImplicitOp.getReg() != 0)
1416 MIB.add(ImplicitOp);
1417
1418 NewMI = addOffset(MIB, 1);
1419 break;
1420 }
1421 case X86::DEC64r:
1422 case X86::DEC32r: {
1423 assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
1424 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1425 : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1426
1427 bool isKill;
1428 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1429 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1430 ImplicitOp, LV, LIS))
1431 return nullptr;
1432
1433 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1434 .add(Dest)
1435 .addReg(SrcReg, getKillRegState(isKill));
1436 if (ImplicitOp.getReg() != 0)
1437 MIB.add(ImplicitOp);
1438
1439 NewMI = addOffset(MIB, -1);
1440
1441 break;
1442 }
1443 case X86::DEC8r:
1444 case X86::INC8r:
1445 Is8BitOp = true;
1446 LLVM_FALLTHROUGH;
1447 case X86::DEC16r:
1448 case X86::INC16r:
1449 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1450 case X86::ADD64rr:
1451 case X86::ADD64rr_DB:
1452 case X86::ADD32rr:
1453 case X86::ADD32rr_DB: {
1454 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1455 unsigned Opc;
1456 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
1457 Opc = X86::LEA64r;
1458 else
1459 Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1460
1461 const MachineOperand &Src2 = MI.getOperand(2);
1462 bool isKill2;
1463 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1464 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/false, SrcReg2, isKill2,
1465 ImplicitOp2, LV, LIS))
1466 return nullptr;
1467
1468 bool isKill;
1469 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1470 if (Src.getReg() == Src2.getReg()) {
1471 // Don't call classify LEAReg a second time on the same register, in case
1472 // the first call inserted a COPY from Src2 and marked it as killed.
1473 isKill = isKill2;
1474 SrcReg = SrcReg2;
1475 } else {
1476 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1477 ImplicitOp, LV, LIS))
1478 return nullptr;
1479 }
1480
1481 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1482 if (ImplicitOp.getReg() != 0)
1483 MIB.add(ImplicitOp);
1484 if (ImplicitOp2.getReg() != 0)
1485 MIB.add(ImplicitOp2);
1486
1487 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
1488 if (LV && Src2.isKill())
1489 LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
1490 break;
1491 }
1492 case X86::ADD8rr:
1493 case X86::ADD8rr_DB:
1494 Is8BitOp = true;
1495 LLVM_FALLTHROUGH;
1496 case X86::ADD16rr:
1497 case X86::ADD16rr_DB:
1498 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1499 case X86::ADD64ri32:
1500 case X86::ADD64ri8:
1501 case X86::ADD64ri32_DB:
1502 case X86::ADD64ri8_DB:
1503 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1504 NewMI = addOffset(
1505 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1506 MI.getOperand(2));
1507 break;
1508 case X86::ADD32ri:
1509 case X86::ADD32ri8:
1510 case X86::ADD32ri_DB:
1511 case X86::ADD32ri8_DB: {
1512 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1513 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1514
1515 bool isKill;
1516 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1517 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1518 ImplicitOp, LV, LIS))
1519 return nullptr;
1520
1521 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1522 .add(Dest)
1523 .addReg(SrcReg, getKillRegState(isKill));
1524 if (ImplicitOp.getReg() != 0)
1525 MIB.add(ImplicitOp);
1526
1527 NewMI = addOffset(MIB, MI.getOperand(2));
1528 break;
1529 }
1530 case X86::ADD8ri:
1531 case X86::ADD8ri_DB:
1532 Is8BitOp = true;
1533 LLVM_FALLTHROUGH;
1534 case X86::ADD16ri:
1535 case X86::ADD16ri8:
1536 case X86::ADD16ri_DB:
1537 case X86::ADD16ri8_DB:
1538 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1539 case X86::SUB8ri:
1540 case X86::SUB16ri8:
1541 case X86::SUB16ri:
1542 /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1543 return nullptr;
1544 case X86::SUB32ri8:
1545 case X86::SUB32ri: {
1546 if (!MI.getOperand(2).isImm())
1547 return nullptr;
1548 int64_t Imm = MI.getOperand(2).getImm();
1549 if (!isInt<32>(-Imm))
1550 return nullptr;
1551
1552 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1553 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1554
1555 bool isKill;
1556 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1557 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1558 ImplicitOp, LV, LIS))
1559 return nullptr;
1560
1561 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1562 .add(Dest)
1563 .addReg(SrcReg, getKillRegState(isKill));
1564 if (ImplicitOp.getReg() != 0)
1565 MIB.add(ImplicitOp);
1566
1567 NewMI = addOffset(MIB, -Imm);
1568 break;
1569 }
1570
1571 case X86::SUB64ri8:
1572 case X86::SUB64ri32: {
1573 if (!MI.getOperand(2).isImm())
1574 return nullptr;
1575 int64_t Imm = MI.getOperand(2).getImm();
1576 if (!isInt<32>(-Imm))
1577 return nullptr;
1578
1579 assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
1580
1581 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(),
1582 get(X86::LEA64r)).add(Dest).add(Src);
1583 NewMI = addOffset(MIB, -Imm);
1584 break;
1585 }
1586
1587 case X86::VMOVDQU8Z128rmk:
1588 case X86::VMOVDQU8Z256rmk:
1589 case X86::VMOVDQU8Zrmk:
1590 case X86::VMOVDQU16Z128rmk:
1591 case X86::VMOVDQU16Z256rmk:
1592 case X86::VMOVDQU16Zrmk:
1593 case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
1594 case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
1595 case X86::VMOVDQU32Zrmk: case X86::VMOVDQA32Zrmk:
1596 case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
1597 case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
1598 case X86::VMOVDQU64Zrmk: case X86::VMOVDQA64Zrmk:
1599 case X86::VMOVUPDZ128rmk: case X86::VMOVAPDZ128rmk:
1600 case X86::VMOVUPDZ256rmk: case X86::VMOVAPDZ256rmk:
1601 case X86::VMOVUPDZrmk: case X86::VMOVAPDZrmk:
1602 case X86::VMOVUPSZ128rmk: case X86::VMOVAPSZ128rmk:
1603 case X86::VMOVUPSZ256rmk: case X86::VMOVAPSZ256rmk:
1604 case X86::VMOVUPSZrmk: case X86::VMOVAPSZrmk:
1605 case X86::VBROADCASTSDZ256rmk:
1606 case X86::VBROADCASTSDZrmk:
1607 case X86::VBROADCASTSSZ128rmk:
1608 case X86::VBROADCASTSSZ256rmk:
1609 case X86::VBROADCASTSSZrmk:
1610 case X86::VPBROADCASTDZ128rmk:
1611 case X86::VPBROADCASTDZ256rmk:
1612 case X86::VPBROADCASTDZrmk:
1613 case X86::VPBROADCASTQZ128rmk:
1614 case X86::VPBROADCASTQZ256rmk:
1615 case X86::VPBROADCASTQZrmk: {
1616 unsigned Opc;
1617 switch (MIOpc) {
1618 default: llvm_unreachable("Unreachable!");
1619 case X86::VMOVDQU8Z128rmk: Opc = X86::VPBLENDMBZ128rmk; break;
1620 case X86::VMOVDQU8Z256rmk: Opc = X86::VPBLENDMBZ256rmk; break;
1621 case X86::VMOVDQU8Zrmk: Opc = X86::VPBLENDMBZrmk; break;
1622 case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break;
1623 case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break;
1624 case X86::VMOVDQU16Zrmk: Opc = X86::VPBLENDMWZrmk; break;
1625 case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1626 case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1627 case X86::VMOVDQU32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
1628 case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1629 case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1630 case X86::VMOVDQU64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
1631 case X86::VMOVUPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
1632 case X86::VMOVUPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
1633 case X86::VMOVUPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
1634 case X86::VMOVUPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
1635 case X86::VMOVUPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
1636 case X86::VMOVUPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
1637 case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1638 case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1639 case X86::VMOVDQA32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
1640 case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1641 case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1642 case X86::VMOVDQA64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
1643 case X86::VMOVAPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
1644 case X86::VMOVAPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
1645 case X86::VMOVAPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
1646 case X86::VMOVAPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
1647 case X86::VMOVAPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
1648 case X86::VMOVAPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
1649 case X86::VBROADCASTSDZ256rmk: Opc = X86::VBLENDMPDZ256rmbk; break;
1650 case X86::VBROADCASTSDZrmk: Opc = X86::VBLENDMPDZrmbk; break;
1651 case X86::VBROADCASTSSZ128rmk: Opc = X86::VBLENDMPSZ128rmbk; break;
1652 case X86::VBROADCASTSSZ256rmk: Opc = X86::VBLENDMPSZ256rmbk; break;
1653 case X86::VBROADCASTSSZrmk: Opc = X86::VBLENDMPSZrmbk; break;
1654 case X86::VPBROADCASTDZ128rmk: Opc = X86::VPBLENDMDZ128rmbk; break;
1655 case X86::VPBROADCASTDZ256rmk: Opc = X86::VPBLENDMDZ256rmbk; break;
1656 case X86::VPBROADCASTDZrmk: Opc = X86::VPBLENDMDZrmbk; break;
1657 case X86::VPBROADCASTQZ128rmk: Opc = X86::VPBLENDMQZ128rmbk; break;
1658 case X86::VPBROADCASTQZ256rmk: Opc = X86::VPBLENDMQZ256rmbk; break;
1659 case X86::VPBROADCASTQZrmk: Opc = X86::VPBLENDMQZrmbk; break;
1660 }
1661
1662 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1663 .add(Dest)
1664 .add(MI.getOperand(2))
1665 .add(Src)
1666 .add(MI.getOperand(3))
1667 .add(MI.getOperand(4))
1668 .add(MI.getOperand(5))
1669 .add(MI.getOperand(6))
1670 .add(MI.getOperand(7));
1671 break;
1672 }
1673
1674 case X86::VMOVDQU8Z128rrk:
1675 case X86::VMOVDQU8Z256rrk:
1676 case X86::VMOVDQU8Zrrk:
1677 case X86::VMOVDQU16Z128rrk:
1678 case X86::VMOVDQU16Z256rrk:
1679 case X86::VMOVDQU16Zrrk:
1680 case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
1681 case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
1682 case X86::VMOVDQU32Zrrk: case X86::VMOVDQA32Zrrk:
1683 case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
1684 case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
1685 case X86::VMOVDQU64Zrrk: case X86::VMOVDQA64Zrrk:
1686 case X86::VMOVUPDZ128rrk: case X86::VMOVAPDZ128rrk:
1687 case X86::VMOVUPDZ256rrk: case X86::VMOVAPDZ256rrk:
1688 case X86::VMOVUPDZrrk: case X86::VMOVAPDZrrk:
1689 case X86::VMOVUPSZ128rrk: case X86::VMOVAPSZ128rrk:
1690 case X86::VMOVUPSZ256rrk: case X86::VMOVAPSZ256rrk:
1691 case X86::VMOVUPSZrrk: case X86::VMOVAPSZrrk: {
1692 unsigned Opc;
1693 switch (MIOpc) {
1694 default: llvm_unreachable("Unreachable!");
1695 case X86::VMOVDQU8Z128rrk: Opc = X86::VPBLENDMBZ128rrk; break;
1696 case X86::VMOVDQU8Z256rrk: Opc = X86::VPBLENDMBZ256rrk; break;
1697 case X86::VMOVDQU8Zrrk: Opc = X86::VPBLENDMBZrrk; break;
1698 case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
1699 case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
1700 case X86::VMOVDQU16Zrrk: Opc = X86::VPBLENDMWZrrk; break;
1701 case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1702 case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1703 case X86::VMOVDQU32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
1704 case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1705 case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1706 case X86::VMOVDQU64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
1707 case X86::VMOVUPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
1708 case X86::VMOVUPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
1709 case X86::VMOVUPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
1710 case X86::VMOVUPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
1711 case X86::VMOVUPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
1712 case X86::VMOVUPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
1713 case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1714 case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1715 case X86::VMOVDQA32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
1716 case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1717 case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1718 case X86::VMOVDQA64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
1719 case X86::VMOVAPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
1720 case X86::VMOVAPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
1721 case X86::VMOVAPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
1722 case X86::VMOVAPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
1723 case X86::VMOVAPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
1724 case X86::VMOVAPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
1725 }
1726
1727 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1728 .add(Dest)
1729 .add(MI.getOperand(2))
1730 .add(Src)
1731 .add(MI.getOperand(3));
1732 break;
1733 }
1734 }
1735
1736 if (!NewMI) return nullptr;
1737
1738 if (LV) { // Update live variables
1739 if (Src.isKill())
1740 LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
1741 if (Dest.isDead())
1742 LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
1743 }
1744
1745 MachineBasicBlock &MBB = *MI.getParent();
1746 MBB.insert(MI.getIterator(), NewMI); // Insert the new inst
1747
1748 if (LIS) {
1749 LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
1750 if (SrcReg)
1751 LIS->getInterval(SrcReg);
1752 if (SrcReg2)
1753 LIS->getInterval(SrcReg2);
1754 }
1755
1756 return NewMI;
1757 }
1758
1759 /// This determines which of three possible cases of a three source commute
1760 /// the source indexes correspond to taking into account any mask operands.
1761 /// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1762 /// possible.
1763 /// Case 0 - Possible to commute the first and second operands.
1764 /// Case 1 - Possible to commute the first and third operands.
1765 /// Case 2 - Possible to commute the second and third operands.
getThreeSrcCommuteCase(uint64_t TSFlags,unsigned SrcOpIdx1,unsigned SrcOpIdx2)1766 static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
1767 unsigned SrcOpIdx2) {
1768 // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1769 if (SrcOpIdx1 > SrcOpIdx2)
1770 std::swap(SrcOpIdx1, SrcOpIdx2);
1771
1772 unsigned Op1 = 1, Op2 = 2, Op3 = 3;
1773 if (X86II::isKMasked(TSFlags)) {
1774 Op2++;
1775 Op3++;
1776 }
1777
1778 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
1779 return 0;
1780 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
1781 return 1;
1782 if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
1783 return 2;
1784 llvm_unreachable("Unknown three src commute case.");
1785 }
1786
getFMA3OpcodeToCommuteOperands(const MachineInstr & MI,unsigned SrcOpIdx1,unsigned SrcOpIdx2,const X86InstrFMA3Group & FMA3Group) const1787 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
1788 const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
1789 const X86InstrFMA3Group &FMA3Group) const {
1790
1791 unsigned Opc = MI.getOpcode();
1792
1793 // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1794 // analysis. The commute optimization is legal only if all users of FMA*_Int
1795 // use only the lowest element of the FMA*_Int instruction. Such analysis are
1796 // not implemented yet. So, just return 0 in that case.
1797 // When such analysis are available this place will be the right place for
1798 // calling it.
1799 assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
1800 "Intrinsic instructions can't commute operand 1");
1801
1802 // Determine which case this commute is or if it can't be done.
1803 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1804 SrcOpIdx2);
1805 assert(Case < 3 && "Unexpected case number!");
1806
1807 // Define the FMA forms mapping array that helps to map input FMA form
1808 // to output FMA form to preserve the operation semantics after
1809 // commuting the operands.
1810 const unsigned Form132Index = 0;
1811 const unsigned Form213Index = 1;
1812 const unsigned Form231Index = 2;
1813 static const unsigned FormMapping[][3] = {
1814 // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1815 // FMA132 A, C, b; ==> FMA231 C, A, b;
1816 // FMA213 B, A, c; ==> FMA213 A, B, c;
1817 // FMA231 C, A, b; ==> FMA132 A, C, b;
1818 { Form231Index, Form213Index, Form132Index },
1819 // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1820 // FMA132 A, c, B; ==> FMA132 B, c, A;
1821 // FMA213 B, a, C; ==> FMA231 C, a, B;
1822 // FMA231 C, a, B; ==> FMA213 B, a, C;
1823 { Form132Index, Form231Index, Form213Index },
1824 // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1825 // FMA132 a, C, B; ==> FMA213 a, B, C;
1826 // FMA213 b, A, C; ==> FMA132 b, C, A;
1827 // FMA231 c, A, B; ==> FMA231 c, B, A;
1828 { Form213Index, Form132Index, Form231Index }
1829 };
1830
1831 unsigned FMAForms[3];
1832 FMAForms[0] = FMA3Group.get132Opcode();
1833 FMAForms[1] = FMA3Group.get213Opcode();
1834 FMAForms[2] = FMA3Group.get231Opcode();
1835
1836 // Everything is ready, just adjust the FMA opcode and return it.
1837 for (unsigned FormIndex = 0; FormIndex < 3; FormIndex++)
1838 if (Opc == FMAForms[FormIndex])
1839 return FMAForms[FormMapping[Case][FormIndex]];
1840
1841 llvm_unreachable("Illegal FMA3 format");
1842 }
1843
commuteVPTERNLOG(MachineInstr & MI,unsigned SrcOpIdx1,unsigned SrcOpIdx2)1844 static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
1845 unsigned SrcOpIdx2) {
1846 // Determine which case this commute is or if it can't be done.
1847 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1848 SrcOpIdx2);
1849 assert(Case < 3 && "Unexpected case value!");
1850
1851 // For each case we need to swap two pairs of bits in the final immediate.
1852 static const uint8_t SwapMasks[3][4] = {
1853 { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1854 { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1855 { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1856 };
1857
1858 uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
1859 // Clear out the bits we are swapping.
1860 uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
1861 SwapMasks[Case][2] | SwapMasks[Case][3]);
1862 // If the immediate had a bit of the pair set, then set the opposite bit.
1863 if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
1864 if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
1865 if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
1866 if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
1867 MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
1868 }
1869
1870 // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1871 // commuted.
isCommutableVPERMV3Instruction(unsigned Opcode)1872 static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
1873 #define VPERM_CASES(Suffix) \
1874 case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \
1875 case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \
1876 case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \
1877 case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \
1878 case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \
1879 case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \
1880 case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \
1881 case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \
1882 case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \
1883 case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \
1884 case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \
1885 case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz:
1886
1887 #define VPERM_CASES_BROADCAST(Suffix) \
1888 VPERM_CASES(Suffix) \
1889 case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \
1890 case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \
1891 case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \
1892 case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
1893 case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
1894 case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz:
1895
1896 switch (Opcode) {
1897 default: return false;
1898 VPERM_CASES(B)
1899 VPERM_CASES_BROADCAST(D)
1900 VPERM_CASES_BROADCAST(PD)
1901 VPERM_CASES_BROADCAST(PS)
1902 VPERM_CASES_BROADCAST(Q)
1903 VPERM_CASES(W)
1904 return true;
1905 }
1906 #undef VPERM_CASES_BROADCAST
1907 #undef VPERM_CASES
1908 }
1909
1910 // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
1911 // from the I opcode to the T opcode and vice versa.
getCommutedVPERMV3Opcode(unsigned Opcode)1912 static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
1913 #define VPERM_CASES(Orig, New) \
1914 case X86::Orig##128rr: return X86::New##128rr; \
1915 case X86::Orig##128rrkz: return X86::New##128rrkz; \
1916 case X86::Orig##128rm: return X86::New##128rm; \
1917 case X86::Orig##128rmkz: return X86::New##128rmkz; \
1918 case X86::Orig##256rr: return X86::New##256rr; \
1919 case X86::Orig##256rrkz: return X86::New##256rrkz; \
1920 case X86::Orig##256rm: return X86::New##256rm; \
1921 case X86::Orig##256rmkz: return X86::New##256rmkz; \
1922 case X86::Orig##rr: return X86::New##rr; \
1923 case X86::Orig##rrkz: return X86::New##rrkz; \
1924 case X86::Orig##rm: return X86::New##rm; \
1925 case X86::Orig##rmkz: return X86::New##rmkz;
1926
1927 #define VPERM_CASES_BROADCAST(Orig, New) \
1928 VPERM_CASES(Orig, New) \
1929 case X86::Orig##128rmb: return X86::New##128rmb; \
1930 case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
1931 case X86::Orig##256rmb: return X86::New##256rmb; \
1932 case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
1933 case X86::Orig##rmb: return X86::New##rmb; \
1934 case X86::Orig##rmbkz: return X86::New##rmbkz;
1935
1936 switch (Opcode) {
1937 VPERM_CASES(VPERMI2B, VPERMT2B)
1938 VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D)
1939 VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
1940 VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
1941 VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q)
1942 VPERM_CASES(VPERMI2W, VPERMT2W)
1943 VPERM_CASES(VPERMT2B, VPERMI2B)
1944 VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D)
1945 VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
1946 VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
1947 VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q)
1948 VPERM_CASES(VPERMT2W, VPERMI2W)
1949 }
1950
1951 llvm_unreachable("Unreachable!");
1952 #undef VPERM_CASES_BROADCAST
1953 #undef VPERM_CASES
1954 }
1955
commuteInstructionImpl(MachineInstr & MI,bool NewMI,unsigned OpIdx1,unsigned OpIdx2) const1956 MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1957 unsigned OpIdx1,
1958 unsigned OpIdx2) const {
1959 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
1960 if (NewMI)
1961 return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
1962 return MI;
1963 };
1964
1965 switch (MI.getOpcode()) {
1966 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1967 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1968 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1969 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1970 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1971 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1972 unsigned Opc;
1973 unsigned Size;
1974 switch (MI.getOpcode()) {
1975 default: llvm_unreachable("Unreachable!");
1976 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1977 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1978 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1979 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1980 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1981 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1982 }
1983 unsigned Amt = MI.getOperand(3).getImm();
1984 auto &WorkingMI = cloneIfNew(MI);
1985 WorkingMI.setDesc(get(Opc));
1986 WorkingMI.getOperand(3).setImm(Size - Amt);
1987 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1988 OpIdx1, OpIdx2);
1989 }
1990 case X86::PFSUBrr:
1991 case X86::PFSUBRrr: {
1992 // PFSUB x, y: x = x - y
1993 // PFSUBR x, y: x = y - x
1994 unsigned Opc =
1995 (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
1996 auto &WorkingMI = cloneIfNew(MI);
1997 WorkingMI.setDesc(get(Opc));
1998 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1999 OpIdx1, OpIdx2);
2000 }
2001 case X86::BLENDPDrri:
2002 case X86::BLENDPSrri:
2003 case X86::VBLENDPDrri:
2004 case X86::VBLENDPSrri:
2005 // If we're optimizing for size, try to use MOVSD/MOVSS.
2006 if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
2007 unsigned Mask, Opc;
2008 switch (MI.getOpcode()) {
2009 default: llvm_unreachable("Unreachable!");
2010 case X86::BLENDPDrri: Opc = X86::MOVSDrr; Mask = 0x03; break;
2011 case X86::BLENDPSrri: Opc = X86::MOVSSrr; Mask = 0x0F; break;
2012 case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
2013 case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
2014 }
2015 if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
2016 auto &WorkingMI = cloneIfNew(MI);
2017 WorkingMI.setDesc(get(Opc));
2018 WorkingMI.removeOperand(3);
2019 return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
2020 /*NewMI=*/false,
2021 OpIdx1, OpIdx2);
2022 }
2023 }
2024 LLVM_FALLTHROUGH;
2025 case X86::PBLENDWrri:
2026 case X86::VBLENDPDYrri:
2027 case X86::VBLENDPSYrri:
2028 case X86::VPBLENDDrri:
2029 case X86::VPBLENDWrri:
2030 case X86::VPBLENDDYrri:
2031 case X86::VPBLENDWYrri:{
2032 int8_t Mask;
2033 switch (MI.getOpcode()) {
2034 default: llvm_unreachable("Unreachable!");
2035 case X86::BLENDPDrri: Mask = (int8_t)0x03; break;
2036 case X86::BLENDPSrri: Mask = (int8_t)0x0F; break;
2037 case X86::PBLENDWrri: Mask = (int8_t)0xFF; break;
2038 case X86::VBLENDPDrri: Mask = (int8_t)0x03; break;
2039 case X86::VBLENDPSrri: Mask = (int8_t)0x0F; break;
2040 case X86::VBLENDPDYrri: Mask = (int8_t)0x0F; break;
2041 case X86::VBLENDPSYrri: Mask = (int8_t)0xFF; break;
2042 case X86::VPBLENDDrri: Mask = (int8_t)0x0F; break;
2043 case X86::VPBLENDWrri: Mask = (int8_t)0xFF; break;
2044 case X86::VPBLENDDYrri: Mask = (int8_t)0xFF; break;
2045 case X86::VPBLENDWYrri: Mask = (int8_t)0xFF; break;
2046 }
2047 // Only the least significant bits of Imm are used.
2048 // Using int8_t to ensure it will be sign extended to the int64_t that
2049 // setImm takes in order to match isel behavior.
2050 int8_t Imm = MI.getOperand(3).getImm() & Mask;
2051 auto &WorkingMI = cloneIfNew(MI);
2052 WorkingMI.getOperand(3).setImm(Mask ^ Imm);
2053 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2054 OpIdx1, OpIdx2);
2055 }
2056 case X86::INSERTPSrr:
2057 case X86::VINSERTPSrr:
2058 case X86::VINSERTPSZrr: {
2059 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
2060 unsigned ZMask = Imm & 15;
2061 unsigned DstIdx = (Imm >> 4) & 3;
2062 unsigned SrcIdx = (Imm >> 6) & 3;
2063
2064 // We can commute insertps if we zero 2 of the elements, the insertion is
2065 // "inline" and we don't override the insertion with a zero.
2066 if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
2067 countPopulation(ZMask) == 2) {
2068 unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15);
2069 assert(AltIdx < 4 && "Illegal insertion index");
2070 unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
2071 auto &WorkingMI = cloneIfNew(MI);
2072 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm);
2073 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2074 OpIdx1, OpIdx2);
2075 }
2076 return nullptr;
2077 }
2078 case X86::MOVSDrr:
2079 case X86::MOVSSrr:
2080 case X86::VMOVSDrr:
2081 case X86::VMOVSSrr:{
2082 // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
2083 if (Subtarget.hasSSE41()) {
2084 unsigned Mask, Opc;
2085 switch (MI.getOpcode()) {
2086 default: llvm_unreachable("Unreachable!");
2087 case X86::MOVSDrr: Opc = X86::BLENDPDrri; Mask = 0x02; break;
2088 case X86::MOVSSrr: Opc = X86::BLENDPSrri; Mask = 0x0E; break;
2089 case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
2090 case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
2091 }
2092
2093 auto &WorkingMI = cloneIfNew(MI);
2094 WorkingMI.setDesc(get(Opc));
2095 WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
2096 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2097 OpIdx1, OpIdx2);
2098 }
2099
2100 // Convert to SHUFPD.
2101 assert(MI.getOpcode() == X86::MOVSDrr &&
2102 "Can only commute MOVSDrr without SSE4.1");
2103
2104 auto &WorkingMI = cloneIfNew(MI);
2105 WorkingMI.setDesc(get(X86::SHUFPDrri));
2106 WorkingMI.addOperand(MachineOperand::CreateImm(0x02));
2107 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2108 OpIdx1, OpIdx2);
2109 }
2110 case X86::SHUFPDrri: {
2111 // Commute to MOVSD.
2112 assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
2113 auto &WorkingMI = cloneIfNew(MI);
2114 WorkingMI.setDesc(get(X86::MOVSDrr));
2115 WorkingMI.removeOperand(3);
2116 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2117 OpIdx1, OpIdx2);
2118 }
2119 case X86::PCLMULQDQrr:
2120 case X86::VPCLMULQDQrr:
2121 case X86::VPCLMULQDQYrr:
2122 case X86::VPCLMULQDQZrr:
2123 case X86::VPCLMULQDQZ128rr:
2124 case X86::VPCLMULQDQZ256rr: {
2125 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
2126 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
2127 unsigned Imm = MI.getOperand(3).getImm();
2128 unsigned Src1Hi = Imm & 0x01;
2129 unsigned Src2Hi = Imm & 0x10;
2130 auto &WorkingMI = cloneIfNew(MI);
2131 WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
2132 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2133 OpIdx1, OpIdx2);
2134 }
2135 case X86::VPCMPBZ128rri: case X86::VPCMPUBZ128rri:
2136 case X86::VPCMPBZ256rri: case X86::VPCMPUBZ256rri:
2137 case X86::VPCMPBZrri: case X86::VPCMPUBZrri:
2138 case X86::VPCMPDZ128rri: case X86::VPCMPUDZ128rri:
2139 case X86::VPCMPDZ256rri: case X86::VPCMPUDZ256rri:
2140 case X86::VPCMPDZrri: case X86::VPCMPUDZrri:
2141 case X86::VPCMPQZ128rri: case X86::VPCMPUQZ128rri:
2142 case X86::VPCMPQZ256rri: case X86::VPCMPUQZ256rri:
2143 case X86::VPCMPQZrri: case X86::VPCMPUQZrri:
2144 case X86::VPCMPWZ128rri: case X86::VPCMPUWZ128rri:
2145 case X86::VPCMPWZ256rri: case X86::VPCMPUWZ256rri:
2146 case X86::VPCMPWZrri: case X86::VPCMPUWZrri:
2147 case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
2148 case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
2149 case X86::VPCMPBZrrik: case X86::VPCMPUBZrrik:
2150 case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
2151 case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
2152 case X86::VPCMPDZrrik: case X86::VPCMPUDZrrik:
2153 case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
2154 case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
2155 case X86::VPCMPQZrrik: case X86::VPCMPUQZrrik:
2156 case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
2157 case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
2158 case X86::VPCMPWZrrik: case X86::VPCMPUWZrrik: {
2159 // Flip comparison mode immediate (if necessary).
2160 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
2161 Imm = X86::getSwappedVPCMPImm(Imm);
2162 auto &WorkingMI = cloneIfNew(MI);
2163 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
2164 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2165 OpIdx1, OpIdx2);
2166 }
2167 case X86::VPCOMBri: case X86::VPCOMUBri:
2168 case X86::VPCOMDri: case X86::VPCOMUDri:
2169 case X86::VPCOMQri: case X86::VPCOMUQri:
2170 case X86::VPCOMWri: case X86::VPCOMUWri: {
2171 // Flip comparison mode immediate (if necessary).
2172 unsigned Imm = MI.getOperand(3).getImm() & 0x7;
2173 Imm = X86::getSwappedVPCOMImm(Imm);
2174 auto &WorkingMI = cloneIfNew(MI);
2175 WorkingMI.getOperand(3).setImm(Imm);
2176 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2177 OpIdx1, OpIdx2);
2178 }
2179 case X86::VCMPSDZrr:
2180 case X86::VCMPSSZrr:
2181 case X86::VCMPPDZrri:
2182 case X86::VCMPPSZrri:
2183 case X86::VCMPSHZrr:
2184 case X86::VCMPPHZrri:
2185 case X86::VCMPPHZ128rri:
2186 case X86::VCMPPHZ256rri:
2187 case X86::VCMPPDZ128rri:
2188 case X86::VCMPPSZ128rri:
2189 case X86::VCMPPDZ256rri:
2190 case X86::VCMPPSZ256rri:
2191 case X86::VCMPPDZrrik:
2192 case X86::VCMPPSZrrik:
2193 case X86::VCMPPDZ128rrik:
2194 case X86::VCMPPSZ128rrik:
2195 case X86::VCMPPDZ256rrik:
2196 case X86::VCMPPSZ256rrik: {
2197 unsigned Imm =
2198 MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f;
2199 Imm = X86::getSwappedVCMPImm(Imm);
2200 auto &WorkingMI = cloneIfNew(MI);
2201 WorkingMI.getOperand(MI.getNumExplicitOperands() - 1).setImm(Imm);
2202 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2203 OpIdx1, OpIdx2);
2204 }
2205 case X86::VPERM2F128rr:
2206 case X86::VPERM2I128rr: {
2207 // Flip permute source immediate.
2208 // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
2209 // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
2210 int8_t Imm = MI.getOperand(3).getImm() & 0xFF;
2211 auto &WorkingMI = cloneIfNew(MI);
2212 WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
2213 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2214 OpIdx1, OpIdx2);
2215 }
2216 case X86::MOVHLPSrr:
2217 case X86::UNPCKHPDrr:
2218 case X86::VMOVHLPSrr:
2219 case X86::VUNPCKHPDrr:
2220 case X86::VMOVHLPSZrr:
2221 case X86::VUNPCKHPDZ128rr: {
2222 assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
2223
2224 unsigned Opc = MI.getOpcode();
2225 switch (Opc) {
2226 default: llvm_unreachable("Unreachable!");
2227 case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break;
2228 case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break;
2229 case X86::VMOVHLPSrr: Opc = X86::VUNPCKHPDrr; break;
2230 case X86::VUNPCKHPDrr: Opc = X86::VMOVHLPSrr; break;
2231 case X86::VMOVHLPSZrr: Opc = X86::VUNPCKHPDZ128rr; break;
2232 case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr; break;
2233 }
2234 auto &WorkingMI = cloneIfNew(MI);
2235 WorkingMI.setDesc(get(Opc));
2236 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2237 OpIdx1, OpIdx2);
2238 }
2239 case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr: {
2240 auto &WorkingMI = cloneIfNew(MI);
2241 unsigned OpNo = MI.getDesc().getNumOperands() - 1;
2242 X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
2243 WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
2244 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2245 OpIdx1, OpIdx2);
2246 }
2247 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
2248 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
2249 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
2250 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
2251 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
2252 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
2253 case X86::VPTERNLOGDZrrik:
2254 case X86::VPTERNLOGDZ128rrik:
2255 case X86::VPTERNLOGDZ256rrik:
2256 case X86::VPTERNLOGQZrrik:
2257 case X86::VPTERNLOGQZ128rrik:
2258 case X86::VPTERNLOGQZ256rrik:
2259 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
2260 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2261 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2262 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
2263 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2264 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2265 case X86::VPTERNLOGDZ128rmbi:
2266 case X86::VPTERNLOGDZ256rmbi:
2267 case X86::VPTERNLOGDZrmbi:
2268 case X86::VPTERNLOGQZ128rmbi:
2269 case X86::VPTERNLOGQZ256rmbi:
2270 case X86::VPTERNLOGQZrmbi:
2271 case X86::VPTERNLOGDZ128rmbikz:
2272 case X86::VPTERNLOGDZ256rmbikz:
2273 case X86::VPTERNLOGDZrmbikz:
2274 case X86::VPTERNLOGQZ128rmbikz:
2275 case X86::VPTERNLOGQZ256rmbikz:
2276 case X86::VPTERNLOGQZrmbikz: {
2277 auto &WorkingMI = cloneIfNew(MI);
2278 commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
2279 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2280 OpIdx1, OpIdx2);
2281 }
2282 default: {
2283 if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
2284 unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
2285 auto &WorkingMI = cloneIfNew(MI);
2286 WorkingMI.setDesc(get(Opc));
2287 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2288 OpIdx1, OpIdx2);
2289 }
2290
2291 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2292 MI.getDesc().TSFlags);
2293 if (FMA3Group) {
2294 unsigned Opc =
2295 getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
2296 auto &WorkingMI = cloneIfNew(MI);
2297 WorkingMI.setDesc(get(Opc));
2298 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2299 OpIdx1, OpIdx2);
2300 }
2301
2302 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2303 }
2304 }
2305 }
2306
2307 bool
findThreeSrcCommutedOpIndices(const MachineInstr & MI,unsigned & SrcOpIdx1,unsigned & SrcOpIdx2,bool IsIntrinsic) const2308 X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
2309 unsigned &SrcOpIdx1,
2310 unsigned &SrcOpIdx2,
2311 bool IsIntrinsic) const {
2312 uint64_t TSFlags = MI.getDesc().TSFlags;
2313
2314 unsigned FirstCommutableVecOp = 1;
2315 unsigned LastCommutableVecOp = 3;
2316 unsigned KMaskOp = -1U;
2317 if (X86II::isKMasked(TSFlags)) {
2318 // For k-zero-masked operations it is Ok to commute the first vector
2319 // operand. Unless this is an intrinsic instruction.
2320 // For regular k-masked operations a conservative choice is done as the
2321 // elements of the first vector operand, for which the corresponding bit
2322 // in the k-mask operand is set to 0, are copied to the result of the
2323 // instruction.
2324 // TODO/FIXME: The commute still may be legal if it is known that the
2325 // k-mask operand is set to either all ones or all zeroes.
2326 // It is also Ok to commute the 1st operand if all users of MI use only
2327 // the elements enabled by the k-mask operand. For example,
2328 // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
2329 // : v1[i];
2330 // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
2331 // // Ok, to commute v1 in FMADD213PSZrk.
2332
2333 // The k-mask operand has index = 2 for masked and zero-masked operations.
2334 KMaskOp = 2;
2335
2336 // The operand with index = 1 is used as a source for those elements for
2337 // which the corresponding bit in the k-mask is set to 0.
2338 if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic)
2339 FirstCommutableVecOp = 3;
2340
2341 LastCommutableVecOp++;
2342 } else if (IsIntrinsic) {
2343 // Commuting the first operand of an intrinsic instruction isn't possible
2344 // unless we can prove that only the lowest element of the result is used.
2345 FirstCommutableVecOp = 2;
2346 }
2347
2348 if (isMem(MI, LastCommutableVecOp))
2349 LastCommutableVecOp--;
2350
2351 // Only the first RegOpsNum operands are commutable.
2352 // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
2353 // that the operand is not specified/fixed.
2354 if (SrcOpIdx1 != CommuteAnyOperandIndex &&
2355 (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
2356 SrcOpIdx1 == KMaskOp))
2357 return false;
2358 if (SrcOpIdx2 != CommuteAnyOperandIndex &&
2359 (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
2360 SrcOpIdx2 == KMaskOp))
2361 return false;
2362
2363 // Look for two different register operands assumed to be commutable
2364 // regardless of the FMA opcode. The FMA opcode is adjusted later.
2365 if (SrcOpIdx1 == CommuteAnyOperandIndex ||
2366 SrcOpIdx2 == CommuteAnyOperandIndex) {
2367 unsigned CommutableOpIdx2 = SrcOpIdx2;
2368
2369 // At least one of operands to be commuted is not specified and
2370 // this method is free to choose appropriate commutable operands.
2371 if (SrcOpIdx1 == SrcOpIdx2)
2372 // Both of operands are not fixed. By default set one of commutable
2373 // operands to the last register operand of the instruction.
2374 CommutableOpIdx2 = LastCommutableVecOp;
2375 else if (SrcOpIdx2 == CommuteAnyOperandIndex)
2376 // Only one of operands is not fixed.
2377 CommutableOpIdx2 = SrcOpIdx1;
2378
2379 // CommutableOpIdx2 is well defined now. Let's choose another commutable
2380 // operand and assign its index to CommutableOpIdx1.
2381 Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
2382
2383 unsigned CommutableOpIdx1;
2384 for (CommutableOpIdx1 = LastCommutableVecOp;
2385 CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
2386 // Just ignore and skip the k-mask operand.
2387 if (CommutableOpIdx1 == KMaskOp)
2388 continue;
2389
2390 // The commuted operands must have different registers.
2391 // Otherwise, the commute transformation does not change anything and
2392 // is useless then.
2393 if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
2394 break;
2395 }
2396
2397 // No appropriate commutable operands were found.
2398 if (CommutableOpIdx1 < FirstCommutableVecOp)
2399 return false;
2400
2401 // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
2402 // to return those values.
2403 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2404 CommutableOpIdx1, CommutableOpIdx2))
2405 return false;
2406 }
2407
2408 return true;
2409 }
2410
findCommutedOpIndices(const MachineInstr & MI,unsigned & SrcOpIdx1,unsigned & SrcOpIdx2) const2411 bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI,
2412 unsigned &SrcOpIdx1,
2413 unsigned &SrcOpIdx2) const {
2414 const MCInstrDesc &Desc = MI.getDesc();
2415 if (!Desc.isCommutable())
2416 return false;
2417
2418 switch (MI.getOpcode()) {
2419 case X86::CMPSDrr:
2420 case X86::CMPSSrr:
2421 case X86::CMPPDrri:
2422 case X86::CMPPSrri:
2423 case X86::VCMPSDrr:
2424 case X86::VCMPSSrr:
2425 case X86::VCMPPDrri:
2426 case X86::VCMPPSrri:
2427 case X86::VCMPPDYrri:
2428 case X86::VCMPPSYrri:
2429 case X86::VCMPSDZrr:
2430 case X86::VCMPSSZrr:
2431 case X86::VCMPPDZrri:
2432 case X86::VCMPPSZrri:
2433 case X86::VCMPSHZrr:
2434 case X86::VCMPPHZrri:
2435 case X86::VCMPPHZ128rri:
2436 case X86::VCMPPHZ256rri:
2437 case X86::VCMPPDZ128rri:
2438 case X86::VCMPPSZ128rri:
2439 case X86::VCMPPDZ256rri:
2440 case X86::VCMPPSZ256rri:
2441 case X86::VCMPPDZrrik:
2442 case X86::VCMPPSZrrik:
2443 case X86::VCMPPDZ128rrik:
2444 case X86::VCMPPSZ128rrik:
2445 case X86::VCMPPDZ256rrik:
2446 case X86::VCMPPSZ256rrik: {
2447 unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
2448
2449 // Float comparison can be safely commuted for
2450 // Ordered/Unordered/Equal/NotEqual tests
2451 unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
2452 switch (Imm) {
2453 default:
2454 // EVEX versions can be commuted.
2455 if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
2456 break;
2457 return false;
2458 case 0x00: // EQUAL
2459 case 0x03: // UNORDERED
2460 case 0x04: // NOT EQUAL
2461 case 0x07: // ORDERED
2462 break;
2463 }
2464
2465 // The indices of the commutable operands are 1 and 2 (or 2 and 3
2466 // when masked).
2467 // Assign them to the returned operand indices here.
2468 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
2469 2 + OpOffset);
2470 }
2471 case X86::MOVSSrr:
2472 // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
2473 // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
2474 // AVX implies sse4.1.
2475 if (Subtarget.hasSSE41())
2476 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2477 return false;
2478 case X86::SHUFPDrri:
2479 // We can commute this to MOVSD.
2480 if (MI.getOperand(3).getImm() == 0x02)
2481 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2482 return false;
2483 case X86::MOVHLPSrr:
2484 case X86::UNPCKHPDrr:
2485 case X86::VMOVHLPSrr:
2486 case X86::VUNPCKHPDrr:
2487 case X86::VMOVHLPSZrr:
2488 case X86::VUNPCKHPDZ128rr:
2489 if (Subtarget.hasSSE2())
2490 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2491 return false;
2492 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
2493 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
2494 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
2495 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
2496 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
2497 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
2498 case X86::VPTERNLOGDZrrik:
2499 case X86::VPTERNLOGDZ128rrik:
2500 case X86::VPTERNLOGDZ256rrik:
2501 case X86::VPTERNLOGQZrrik:
2502 case X86::VPTERNLOGQZ128rrik:
2503 case X86::VPTERNLOGQZ256rrik:
2504 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
2505 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2506 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2507 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
2508 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2509 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2510 case X86::VPTERNLOGDZ128rmbi:
2511 case X86::VPTERNLOGDZ256rmbi:
2512 case X86::VPTERNLOGDZrmbi:
2513 case X86::VPTERNLOGQZ128rmbi:
2514 case X86::VPTERNLOGQZ256rmbi:
2515 case X86::VPTERNLOGQZrmbi:
2516 case X86::VPTERNLOGDZ128rmbikz:
2517 case X86::VPTERNLOGDZ256rmbikz:
2518 case X86::VPTERNLOGDZrmbikz:
2519 case X86::VPTERNLOGQZ128rmbikz:
2520 case X86::VPTERNLOGQZ256rmbikz:
2521 case X86::VPTERNLOGQZrmbikz:
2522 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2523 case X86::VPDPWSSDYrr:
2524 case X86::VPDPWSSDrr:
2525 case X86::VPDPWSSDSYrr:
2526 case X86::VPDPWSSDSrr:
2527 case X86::VPDPWSSDZ128r:
2528 case X86::VPDPWSSDZ128rk:
2529 case X86::VPDPWSSDZ128rkz:
2530 case X86::VPDPWSSDZ256r:
2531 case X86::VPDPWSSDZ256rk:
2532 case X86::VPDPWSSDZ256rkz:
2533 case X86::VPDPWSSDZr:
2534 case X86::VPDPWSSDZrk:
2535 case X86::VPDPWSSDZrkz:
2536 case X86::VPDPWSSDSZ128r:
2537 case X86::VPDPWSSDSZ128rk:
2538 case X86::VPDPWSSDSZ128rkz:
2539 case X86::VPDPWSSDSZ256r:
2540 case X86::VPDPWSSDSZ256rk:
2541 case X86::VPDPWSSDSZ256rkz:
2542 case X86::VPDPWSSDSZr:
2543 case X86::VPDPWSSDSZrk:
2544 case X86::VPDPWSSDSZrkz:
2545 case X86::VPMADD52HUQZ128r:
2546 case X86::VPMADD52HUQZ128rk:
2547 case X86::VPMADD52HUQZ128rkz:
2548 case X86::VPMADD52HUQZ256r:
2549 case X86::VPMADD52HUQZ256rk:
2550 case X86::VPMADD52HUQZ256rkz:
2551 case X86::VPMADD52HUQZr:
2552 case X86::VPMADD52HUQZrk:
2553 case X86::VPMADD52HUQZrkz:
2554 case X86::VPMADD52LUQZ128r:
2555 case X86::VPMADD52LUQZ128rk:
2556 case X86::VPMADD52LUQZ128rkz:
2557 case X86::VPMADD52LUQZ256r:
2558 case X86::VPMADD52LUQZ256rk:
2559 case X86::VPMADD52LUQZ256rkz:
2560 case X86::VPMADD52LUQZr:
2561 case X86::VPMADD52LUQZrk:
2562 case X86::VPMADD52LUQZrkz:
2563 case X86::VFMADDCPHZr:
2564 case X86::VFMADDCPHZrk:
2565 case X86::VFMADDCPHZrkz:
2566 case X86::VFMADDCPHZ128r:
2567 case X86::VFMADDCPHZ128rk:
2568 case X86::VFMADDCPHZ128rkz:
2569 case X86::VFMADDCPHZ256r:
2570 case X86::VFMADDCPHZ256rk:
2571 case X86::VFMADDCPHZ256rkz:
2572 case X86::VFMADDCSHZr:
2573 case X86::VFMADDCSHZrk:
2574 case X86::VFMADDCSHZrkz: {
2575 unsigned CommutableOpIdx1 = 2;
2576 unsigned CommutableOpIdx2 = 3;
2577 if (X86II::isKMasked(Desc.TSFlags)) {
2578 // Skip the mask register.
2579 ++CommutableOpIdx1;
2580 ++CommutableOpIdx2;
2581 }
2582 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2583 CommutableOpIdx1, CommutableOpIdx2))
2584 return false;
2585 if (!MI.getOperand(SrcOpIdx1).isReg() ||
2586 !MI.getOperand(SrcOpIdx2).isReg())
2587 // No idea.
2588 return false;
2589 return true;
2590 }
2591
2592 default:
2593 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2594 MI.getDesc().TSFlags);
2595 if (FMA3Group)
2596 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
2597 FMA3Group->isIntrinsic());
2598
2599 // Handled masked instructions since we need to skip over the mask input
2600 // and the preserved input.
2601 if (X86II::isKMasked(Desc.TSFlags)) {
2602 // First assume that the first input is the mask operand and skip past it.
2603 unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
2604 unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
2605 // Check if the first input is tied. If there isn't one then we only
2606 // need to skip the mask operand which we did above.
2607 if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
2608 MCOI::TIED_TO) != -1)) {
2609 // If this is zero masking instruction with a tied operand, we need to
2610 // move the first index back to the first input since this must
2611 // be a 3 input instruction and we want the first two non-mask inputs.
2612 // Otherwise this is a 2 input instruction with a preserved input and
2613 // mask, so we need to move the indices to skip one more input.
2614 if (X86II::isKMergeMasked(Desc.TSFlags)) {
2615 ++CommutableOpIdx1;
2616 ++CommutableOpIdx2;
2617 } else {
2618 --CommutableOpIdx1;
2619 }
2620 }
2621
2622 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2623 CommutableOpIdx1, CommutableOpIdx2))
2624 return false;
2625
2626 if (!MI.getOperand(SrcOpIdx1).isReg() ||
2627 !MI.getOperand(SrcOpIdx2).isReg())
2628 // No idea.
2629 return false;
2630 return true;
2631 }
2632
2633 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2634 }
2635 return false;
2636 }
2637
isConvertibleLEA(MachineInstr * MI)2638 static bool isConvertibleLEA(MachineInstr *MI) {
2639 unsigned Opcode = MI->getOpcode();
2640 if (Opcode != X86::LEA32r && Opcode != X86::LEA64r &&
2641 Opcode != X86::LEA64_32r)
2642 return false;
2643
2644 const MachineOperand &Scale = MI->getOperand(1 + X86::AddrScaleAmt);
2645 const MachineOperand &Disp = MI->getOperand(1 + X86::AddrDisp);
2646 const MachineOperand &Segment = MI->getOperand(1 + X86::AddrSegmentReg);
2647
2648 if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 ||
2649 Scale.getImm() > 1)
2650 return false;
2651
2652 return true;
2653 }
2654
hasCommutePreference(MachineInstr & MI,bool & Commute) const2655 bool X86InstrInfo::hasCommutePreference(MachineInstr &MI, bool &Commute) const {
2656 // Currently we're interested in following sequence only.
2657 // r3 = lea r1, r2
2658 // r5 = add r3, r4
2659 // Both r3 and r4 are killed in add, we hope the add instruction has the
2660 // operand order
2661 // r5 = add r4, r3
2662 // So later in X86FixupLEAs the lea instruction can be rewritten as add.
2663 unsigned Opcode = MI.getOpcode();
2664 if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr)
2665 return false;
2666
2667 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2668 Register Reg1 = MI.getOperand(1).getReg();
2669 Register Reg2 = MI.getOperand(2).getReg();
2670
2671 // Check if Reg1 comes from LEA in the same MBB.
2672 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg1)) {
2673 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
2674 Commute = true;
2675 return true;
2676 }
2677 }
2678
2679 // Check if Reg2 comes from LEA in the same MBB.
2680 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg2)) {
2681 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
2682 Commute = false;
2683 return true;
2684 }
2685 }
2686
2687 return false;
2688 }
2689
getCondSrcNoFromDesc(const MCInstrDesc & MCID)2690 int X86::getCondSrcNoFromDesc(const MCInstrDesc &MCID) {
2691 unsigned Opcode = MCID.getOpcode();
2692 if (!(X86::isJCC(Opcode) || X86::isSETCC(Opcode) || X86::isCMOVCC(Opcode)))
2693 return -1;
2694 // Assume that condition code is always the last use operand.
2695 unsigned NumUses = MCID.getNumOperands() - MCID.getNumDefs();
2696 return NumUses - 1;
2697 }
2698
getCondFromMI(const MachineInstr & MI)2699 X86::CondCode X86::getCondFromMI(const MachineInstr &MI) {
2700 const MCInstrDesc &MCID = MI.getDesc();
2701 int CondNo = getCondSrcNoFromDesc(MCID);
2702 if (CondNo < 0)
2703 return X86::COND_INVALID;
2704 CondNo += MCID.getNumDefs();
2705 return static_cast<X86::CondCode>(MI.getOperand(CondNo).getImm());
2706 }
2707
getCondFromBranch(const MachineInstr & MI)2708 X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
2709 return X86::isJCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
2710 : X86::COND_INVALID;
2711 }
2712
getCondFromSETCC(const MachineInstr & MI)2713 X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
2714 return X86::isSETCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
2715 : X86::COND_INVALID;
2716 }
2717
getCondFromCMov(const MachineInstr & MI)2718 X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
2719 return X86::isCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
2720 : X86::COND_INVALID;
2721 }
2722
2723 /// Return the inverse of the specified condition,
2724 /// e.g. turning COND_E to COND_NE.
GetOppositeBranchCondition(X86::CondCode CC)2725 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2726 switch (CC) {
2727 default: llvm_unreachable("Illegal condition code!");
2728 case X86::COND_E: return X86::COND_NE;
2729 case X86::COND_NE: return X86::COND_E;
2730 case X86::COND_L: return X86::COND_GE;
2731 case X86::COND_LE: return X86::COND_G;
2732 case X86::COND_G: return X86::COND_LE;
2733 case X86::COND_GE: return X86::COND_L;
2734 case X86::COND_B: return X86::COND_AE;
2735 case X86::COND_BE: return X86::COND_A;
2736 case X86::COND_A: return X86::COND_BE;
2737 case X86::COND_AE: return X86::COND_B;
2738 case X86::COND_S: return X86::COND_NS;
2739 case X86::COND_NS: return X86::COND_S;
2740 case X86::COND_P: return X86::COND_NP;
2741 case X86::COND_NP: return X86::COND_P;
2742 case X86::COND_O: return X86::COND_NO;
2743 case X86::COND_NO: return X86::COND_O;
2744 case X86::COND_NE_OR_P: return X86::COND_E_AND_NP;
2745 case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
2746 }
2747 }
2748
2749 /// Assuming the flags are set by MI(a,b), return the condition code if we
2750 /// modify the instructions such that flags are set by MI(b,a).
getSwappedCondition(X86::CondCode CC)2751 static X86::CondCode getSwappedCondition(X86::CondCode CC) {
2752 switch (CC) {
2753 default: return X86::COND_INVALID;
2754 case X86::COND_E: return X86::COND_E;
2755 case X86::COND_NE: return X86::COND_NE;
2756 case X86::COND_L: return X86::COND_G;
2757 case X86::COND_LE: return X86::COND_GE;
2758 case X86::COND_G: return X86::COND_L;
2759 case X86::COND_GE: return X86::COND_LE;
2760 case X86::COND_B: return X86::COND_A;
2761 case X86::COND_BE: return X86::COND_AE;
2762 case X86::COND_A: return X86::COND_B;
2763 case X86::COND_AE: return X86::COND_BE;
2764 }
2765 }
2766
2767 std::pair<X86::CondCode, bool>
getX86ConditionCode(CmpInst::Predicate Predicate)2768 X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
2769 X86::CondCode CC = X86::COND_INVALID;
2770 bool NeedSwap = false;
2771 switch (Predicate) {
2772 default: break;
2773 // Floating-point Predicates
2774 case CmpInst::FCMP_UEQ: CC = X86::COND_E; break;
2775 case CmpInst::FCMP_OLT: NeedSwap = true; LLVM_FALLTHROUGH;
2776 case CmpInst::FCMP_OGT: CC = X86::COND_A; break;
2777 case CmpInst::FCMP_OLE: NeedSwap = true; LLVM_FALLTHROUGH;
2778 case CmpInst::FCMP_OGE: CC = X86::COND_AE; break;
2779 case CmpInst::FCMP_UGT: NeedSwap = true; LLVM_FALLTHROUGH;
2780 case CmpInst::FCMP_ULT: CC = X86::COND_B; break;
2781 case CmpInst::FCMP_UGE: NeedSwap = true; LLVM_FALLTHROUGH;
2782 case CmpInst::FCMP_ULE: CC = X86::COND_BE; break;
2783 case CmpInst::FCMP_ONE: CC = X86::COND_NE; break;
2784 case CmpInst::FCMP_UNO: CC = X86::COND_P; break;
2785 case CmpInst::FCMP_ORD: CC = X86::COND_NP; break;
2786 case CmpInst::FCMP_OEQ: LLVM_FALLTHROUGH;
2787 case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
2788
2789 // Integer Predicates
2790 case CmpInst::ICMP_EQ: CC = X86::COND_E; break;
2791 case CmpInst::ICMP_NE: CC = X86::COND_NE; break;
2792 case CmpInst::ICMP_UGT: CC = X86::COND_A; break;
2793 case CmpInst::ICMP_UGE: CC = X86::COND_AE; break;
2794 case CmpInst::ICMP_ULT: CC = X86::COND_B; break;
2795 case CmpInst::ICMP_ULE: CC = X86::COND_BE; break;
2796 case CmpInst::ICMP_SGT: CC = X86::COND_G; break;
2797 case CmpInst::ICMP_SGE: CC = X86::COND_GE; break;
2798 case CmpInst::ICMP_SLT: CC = X86::COND_L; break;
2799 case CmpInst::ICMP_SLE: CC = X86::COND_LE; break;
2800 }
2801
2802 return std::make_pair(CC, NeedSwap);
2803 }
2804
2805 /// Return a cmov opcode for the given register size in bytes, and operand type.
getCMovOpcode(unsigned RegBytes,bool HasMemoryOperand)2806 unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
2807 switch(RegBytes) {
2808 default: llvm_unreachable("Illegal register size!");
2809 case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
2810 case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
2811 case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr;
2812 }
2813 }
2814
2815 /// Get the VPCMP immediate for the given condition.
getVPCMPImmForCond(ISD::CondCode CC)2816 unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
2817 switch (CC) {
2818 default: llvm_unreachable("Unexpected SETCC condition");
2819 case ISD::SETNE: return 4;
2820 case ISD::SETEQ: return 0;
2821 case ISD::SETULT:
2822 case ISD::SETLT: return 1;
2823 case ISD::SETUGT:
2824 case ISD::SETGT: return 6;
2825 case ISD::SETUGE:
2826 case ISD::SETGE: return 5;
2827 case ISD::SETULE:
2828 case ISD::SETLE: return 2;
2829 }
2830 }
2831
2832 /// Get the VPCMP immediate if the operands are swapped.
getSwappedVPCMPImm(unsigned Imm)2833 unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
2834 switch (Imm) {
2835 default: llvm_unreachable("Unreachable!");
2836 case 0x01: Imm = 0x06; break; // LT -> NLE
2837 case 0x02: Imm = 0x05; break; // LE -> NLT
2838 case 0x05: Imm = 0x02; break; // NLT -> LE
2839 case 0x06: Imm = 0x01; break; // NLE -> LT
2840 case 0x00: // EQ
2841 case 0x03: // FALSE
2842 case 0x04: // NE
2843 case 0x07: // TRUE
2844 break;
2845 }
2846
2847 return Imm;
2848 }
2849
2850 /// Get the VPCOM immediate if the operands are swapped.
getSwappedVPCOMImm(unsigned Imm)2851 unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
2852 switch (Imm) {
2853 default: llvm_unreachable("Unreachable!");
2854 case 0x00: Imm = 0x02; break; // LT -> GT
2855 case 0x01: Imm = 0x03; break; // LE -> GE
2856 case 0x02: Imm = 0x00; break; // GT -> LT
2857 case 0x03: Imm = 0x01; break; // GE -> LE
2858 case 0x04: // EQ
2859 case 0x05: // NE
2860 case 0x06: // FALSE
2861 case 0x07: // TRUE
2862 break;
2863 }
2864
2865 return Imm;
2866 }
2867
2868 /// Get the VCMP immediate if the operands are swapped.
getSwappedVCMPImm(unsigned Imm)2869 unsigned X86::getSwappedVCMPImm(unsigned Imm) {
2870 // Only need the lower 2 bits to distinquish.
2871 switch (Imm & 0x3) {
2872 default: llvm_unreachable("Unreachable!");
2873 case 0x00: case 0x03:
2874 // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
2875 break;
2876 case 0x01: case 0x02:
2877 // Need to toggle bits 3:0. Bit 4 stays the same.
2878 Imm ^= 0xf;
2879 break;
2880 }
2881
2882 return Imm;
2883 }
2884
2885 /// Return true if the Reg is X87 register.
isX87Reg(unsigned Reg)2886 static bool isX87Reg(unsigned Reg) {
2887 return (Reg == X86::FPCW || Reg == X86::FPSW ||
2888 (Reg >= X86::ST0 && Reg <= X86::ST7));
2889 }
2890
2891 /// check if the instruction is X87 instruction
isX87Instruction(MachineInstr & MI)2892 bool X86::isX87Instruction(MachineInstr &MI) {
2893 for (const MachineOperand &MO : MI.operands()) {
2894 if (!MO.isReg())
2895 continue;
2896 if (isX87Reg(MO.getReg()))
2897 return true;
2898 }
2899 return false;
2900 }
2901
isUnconditionalTailCall(const MachineInstr & MI) const2902 bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
2903 switch (MI.getOpcode()) {
2904 case X86::TCRETURNdi:
2905 case X86::TCRETURNri:
2906 case X86::TCRETURNmi:
2907 case X86::TCRETURNdi64:
2908 case X86::TCRETURNri64:
2909 case X86::TCRETURNmi64:
2910 return true;
2911 default:
2912 return false;
2913 }
2914 }
2915
canMakeTailCallConditional(SmallVectorImpl<MachineOperand> & BranchCond,const MachineInstr & TailCall) const2916 bool X86InstrInfo::canMakeTailCallConditional(
2917 SmallVectorImpl<MachineOperand> &BranchCond,
2918 const MachineInstr &TailCall) const {
2919 if (TailCall.getOpcode() != X86::TCRETURNdi &&
2920 TailCall.getOpcode() != X86::TCRETURNdi64) {
2921 // Only direct calls can be done with a conditional branch.
2922 return false;
2923 }
2924
2925 const MachineFunction *MF = TailCall.getParent()->getParent();
2926 if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
2927 // Conditional tail calls confuse the Win64 unwinder.
2928 return false;
2929 }
2930
2931 assert(BranchCond.size() == 1);
2932 if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
2933 // Can't make a conditional tail call with this condition.
2934 return false;
2935 }
2936
2937 const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
2938 if (X86FI->getTCReturnAddrDelta() != 0 ||
2939 TailCall.getOperand(1).getImm() != 0) {
2940 // A conditional tail call cannot do any stack adjustment.
2941 return false;
2942 }
2943
2944 return true;
2945 }
2946
replaceBranchWithTailCall(MachineBasicBlock & MBB,SmallVectorImpl<MachineOperand> & BranchCond,const MachineInstr & TailCall) const2947 void X86InstrInfo::replaceBranchWithTailCall(
2948 MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
2949 const MachineInstr &TailCall) const {
2950 assert(canMakeTailCallConditional(BranchCond, TailCall));
2951
2952 MachineBasicBlock::iterator I = MBB.end();
2953 while (I != MBB.begin()) {
2954 --I;
2955 if (I->isDebugInstr())
2956 continue;
2957 if (!I->isBranch())
2958 assert(0 && "Can't find the branch to replace!");
2959
2960 X86::CondCode CC = X86::getCondFromBranch(*I);
2961 assert(BranchCond.size() == 1);
2962 if (CC != BranchCond[0].getImm())
2963 continue;
2964
2965 break;
2966 }
2967
2968 unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
2969 : X86::TCRETURNdi64cc;
2970
2971 auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
2972 MIB->addOperand(TailCall.getOperand(0)); // Destination.
2973 MIB.addImm(0); // Stack offset (not used).
2974 MIB->addOperand(BranchCond[0]); // Condition.
2975 MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
2976
2977 // Add implicit uses and defs of all live regs potentially clobbered by the
2978 // call. This way they still appear live across the call.
2979 LivePhysRegs LiveRegs(getRegisterInfo());
2980 LiveRegs.addLiveOuts(MBB);
2981 SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
2982 LiveRegs.stepForward(*MIB, Clobbers);
2983 for (const auto &C : Clobbers) {
2984 MIB.addReg(C.first, RegState::Implicit);
2985 MIB.addReg(C.first, RegState::Implicit | RegState::Define);
2986 }
2987
2988 I->eraseFromParent();
2989 }
2990
2991 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
2992 // not be a fallthrough MBB now due to layout changes). Return nullptr if the
2993 // fallthrough MBB cannot be identified.
getFallThroughMBB(MachineBasicBlock * MBB,MachineBasicBlock * TBB)2994 static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
2995 MachineBasicBlock *TBB) {
2996 // Look for non-EHPad successors other than TBB. If we find exactly one, it
2997 // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
2998 // and fallthrough MBB. If we find more than one, we cannot identify the
2999 // fallthrough MBB and should return nullptr.
3000 MachineBasicBlock *FallthroughBB = nullptr;
3001 for (MachineBasicBlock *Succ : MBB->successors()) {
3002 if (Succ->isEHPad() || (Succ == TBB && FallthroughBB))
3003 continue;
3004 // Return a nullptr if we found more than one fallthrough successor.
3005 if (FallthroughBB && FallthroughBB != TBB)
3006 return nullptr;
3007 FallthroughBB = Succ;
3008 }
3009 return FallthroughBB;
3010 }
3011
AnalyzeBranchImpl(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,SmallVectorImpl<MachineInstr * > & CondBranches,bool AllowModify) const3012 bool X86InstrInfo::AnalyzeBranchImpl(
3013 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
3014 SmallVectorImpl<MachineOperand> &Cond,
3015 SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
3016
3017 // Start from the bottom of the block and work up, examining the
3018 // terminator instructions.
3019 MachineBasicBlock::iterator I = MBB.end();
3020 MachineBasicBlock::iterator UnCondBrIter = MBB.end();
3021 while (I != MBB.begin()) {
3022 --I;
3023 if (I->isDebugInstr())
3024 continue;
3025
3026 // Working from the bottom, when we see a non-terminator instruction, we're
3027 // done.
3028 if (!isUnpredicatedTerminator(*I))
3029 break;
3030
3031 // A terminator that isn't a branch can't easily be handled by this
3032 // analysis.
3033 if (!I->isBranch())
3034 return true;
3035
3036 // Handle unconditional branches.
3037 if (I->getOpcode() == X86::JMP_1) {
3038 UnCondBrIter = I;
3039
3040 if (!AllowModify) {
3041 TBB = I->getOperand(0).getMBB();
3042 continue;
3043 }
3044
3045 // If the block has any instructions after a JMP, delete them.
3046 MBB.erase(std::next(I), MBB.end());
3047
3048 Cond.clear();
3049 FBB = nullptr;
3050
3051 // Delete the JMP if it's equivalent to a fall-through.
3052 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
3053 TBB = nullptr;
3054 I->eraseFromParent();
3055 I = MBB.end();
3056 UnCondBrIter = MBB.end();
3057 continue;
3058 }
3059
3060 // TBB is used to indicate the unconditional destination.
3061 TBB = I->getOperand(0).getMBB();
3062 continue;
3063 }
3064
3065 // Handle conditional branches.
3066 X86::CondCode BranchCode = X86::getCondFromBranch(*I);
3067 if (BranchCode == X86::COND_INVALID)
3068 return true; // Can't handle indirect branch.
3069
3070 // In practice we should never have an undef eflags operand, if we do
3071 // abort here as we are not prepared to preserve the flag.
3072 if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
3073 return true;
3074
3075 // Working from the bottom, handle the first conditional branch.
3076 if (Cond.empty()) {
3077 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
3078 if (AllowModify && UnCondBrIter != MBB.end() &&
3079 MBB.isLayoutSuccessor(TargetBB)) {
3080 // If we can modify the code and it ends in something like:
3081 //
3082 // jCC L1
3083 // jmp L2
3084 // L1:
3085 // ...
3086 // L2:
3087 //
3088 // Then we can change this to:
3089 //
3090 // jnCC L2
3091 // L1:
3092 // ...
3093 // L2:
3094 //
3095 // Which is a bit more efficient.
3096 // We conditionally jump to the fall-through block.
3097 BranchCode = GetOppositeBranchCondition(BranchCode);
3098 MachineBasicBlock::iterator OldInst = I;
3099
3100 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JCC_1))
3101 .addMBB(UnCondBrIter->getOperand(0).getMBB())
3102 .addImm(BranchCode);
3103 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
3104 .addMBB(TargetBB);
3105
3106 OldInst->eraseFromParent();
3107 UnCondBrIter->eraseFromParent();
3108
3109 // Restart the analysis.
3110 UnCondBrIter = MBB.end();
3111 I = MBB.end();
3112 continue;
3113 }
3114
3115 FBB = TBB;
3116 TBB = I->getOperand(0).getMBB();
3117 Cond.push_back(MachineOperand::CreateImm(BranchCode));
3118 CondBranches.push_back(&*I);
3119 continue;
3120 }
3121
3122 // Handle subsequent conditional branches. Only handle the case where all
3123 // conditional branches branch to the same destination and their condition
3124 // opcodes fit one of the special multi-branch idioms.
3125 assert(Cond.size() == 1);
3126 assert(TBB);
3127
3128 // If the conditions are the same, we can leave them alone.
3129 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
3130 auto NewTBB = I->getOperand(0).getMBB();
3131 if (OldBranchCode == BranchCode && TBB == NewTBB)
3132 continue;
3133
3134 // If they differ, see if they fit one of the known patterns. Theoretically,
3135 // we could handle more patterns here, but we shouldn't expect to see them
3136 // if instruction selection has done a reasonable job.
3137 if (TBB == NewTBB &&
3138 ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
3139 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
3140 BranchCode = X86::COND_NE_OR_P;
3141 } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
3142 (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
3143 if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
3144 return true;
3145
3146 // X86::COND_E_AND_NP usually has two different branch destinations.
3147 //
3148 // JP B1
3149 // JE B2
3150 // JMP B1
3151 // B1:
3152 // B2:
3153 //
3154 // Here this condition branches to B2 only if NP && E. It has another
3155 // equivalent form:
3156 //
3157 // JNE B1
3158 // JNP B2
3159 // JMP B1
3160 // B1:
3161 // B2:
3162 //
3163 // Similarly it branches to B2 only if E && NP. That is why this condition
3164 // is named with COND_E_AND_NP.
3165 BranchCode = X86::COND_E_AND_NP;
3166 } else
3167 return true;
3168
3169 // Update the MachineOperand.
3170 Cond[0].setImm(BranchCode);
3171 CondBranches.push_back(&*I);
3172 }
3173
3174 return false;
3175 }
3176
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const3177 bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
3178 MachineBasicBlock *&TBB,
3179 MachineBasicBlock *&FBB,
3180 SmallVectorImpl<MachineOperand> &Cond,
3181 bool AllowModify) const {
3182 SmallVector<MachineInstr *, 4> CondBranches;
3183 return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
3184 }
3185
analyzeBranchPredicate(MachineBasicBlock & MBB,MachineBranchPredicate & MBP,bool AllowModify) const3186 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
3187 MachineBranchPredicate &MBP,
3188 bool AllowModify) const {
3189 using namespace std::placeholders;
3190
3191 SmallVector<MachineOperand, 4> Cond;
3192 SmallVector<MachineInstr *, 4> CondBranches;
3193 if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
3194 AllowModify))
3195 return true;
3196
3197 if (Cond.size() != 1)
3198 return true;
3199
3200 assert(MBP.TrueDest && "expected!");
3201
3202 if (!MBP.FalseDest)
3203 MBP.FalseDest = MBB.getNextNode();
3204
3205 const TargetRegisterInfo *TRI = &getRegisterInfo();
3206
3207 MachineInstr *ConditionDef = nullptr;
3208 bool SingleUseCondition = true;
3209
3210 for (MachineInstr &MI : llvm::drop_begin(llvm::reverse(MBB))) {
3211 if (MI.modifiesRegister(X86::EFLAGS, TRI)) {
3212 ConditionDef = &MI;
3213 break;
3214 }
3215
3216 if (MI.readsRegister(X86::EFLAGS, TRI))
3217 SingleUseCondition = false;
3218 }
3219
3220 if (!ConditionDef)
3221 return true;
3222
3223 if (SingleUseCondition) {
3224 for (auto *Succ : MBB.successors())
3225 if (Succ->isLiveIn(X86::EFLAGS))
3226 SingleUseCondition = false;
3227 }
3228
3229 MBP.ConditionDef = ConditionDef;
3230 MBP.SingleUseCondition = SingleUseCondition;
3231
3232 // Currently we only recognize the simple pattern:
3233 //
3234 // test %reg, %reg
3235 // je %label
3236 //
3237 const unsigned TestOpcode =
3238 Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
3239
3240 if (ConditionDef->getOpcode() == TestOpcode &&
3241 ConditionDef->getNumOperands() == 3 &&
3242 ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
3243 (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
3244 MBP.LHS = ConditionDef->getOperand(0);
3245 MBP.RHS = MachineOperand::CreateImm(0);
3246 MBP.Predicate = Cond[0].getImm() == X86::COND_NE
3247 ? MachineBranchPredicate::PRED_NE
3248 : MachineBranchPredicate::PRED_EQ;
3249 return false;
3250 }
3251
3252 return true;
3253 }
3254
removeBranch(MachineBasicBlock & MBB,int * BytesRemoved) const3255 unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
3256 int *BytesRemoved) const {
3257 assert(!BytesRemoved && "code size not handled");
3258
3259 MachineBasicBlock::iterator I = MBB.end();
3260 unsigned Count = 0;
3261
3262 while (I != MBB.begin()) {
3263 --I;
3264 if (I->isDebugInstr())
3265 continue;
3266 if (I->getOpcode() != X86::JMP_1 &&
3267 X86::getCondFromBranch(*I) == X86::COND_INVALID)
3268 break;
3269 // Remove the branch.
3270 I->eraseFromParent();
3271 I = MBB.end();
3272 ++Count;
3273 }
3274
3275 return Count;
3276 }
3277
insertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL,int * BytesAdded) const3278 unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
3279 MachineBasicBlock *TBB,
3280 MachineBasicBlock *FBB,
3281 ArrayRef<MachineOperand> Cond,
3282 const DebugLoc &DL,
3283 int *BytesAdded) const {
3284 // Shouldn't be a fall through.
3285 assert(TBB && "insertBranch must not be told to insert a fallthrough");
3286 assert((Cond.size() == 1 || Cond.size() == 0) &&
3287 "X86 branch conditions have one component!");
3288 assert(!BytesAdded && "code size not handled");
3289
3290 if (Cond.empty()) {
3291 // Unconditional branch?
3292 assert(!FBB && "Unconditional branch with multiple successors!");
3293 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
3294 return 1;
3295 }
3296
3297 // If FBB is null, it is implied to be a fall-through block.
3298 bool FallThru = FBB == nullptr;
3299
3300 // Conditional branch.
3301 unsigned Count = 0;
3302 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
3303 switch (CC) {
3304 case X86::COND_NE_OR_P:
3305 // Synthesize NE_OR_P with two branches.
3306 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
3307 ++Count;
3308 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
3309 ++Count;
3310 break;
3311 case X86::COND_E_AND_NP:
3312 // Use the next block of MBB as FBB if it is null.
3313 if (FBB == nullptr) {
3314 FBB = getFallThroughMBB(&MBB, TBB);
3315 assert(FBB && "MBB cannot be the last block in function when the false "
3316 "body is a fall-through.");
3317 }
3318 // Synthesize COND_E_AND_NP with two branches.
3319 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
3320 ++Count;
3321 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
3322 ++Count;
3323 break;
3324 default: {
3325 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
3326 ++Count;
3327 }
3328 }
3329 if (!FallThru) {
3330 // Two-way Conditional branch. Insert the second branch.
3331 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
3332 ++Count;
3333 }
3334 return Count;
3335 }
3336
canInsertSelect(const MachineBasicBlock & MBB,ArrayRef<MachineOperand> Cond,Register DstReg,Register TrueReg,Register FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles) const3337 bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
3338 ArrayRef<MachineOperand> Cond,
3339 Register DstReg, Register TrueReg,
3340 Register FalseReg, int &CondCycles,
3341 int &TrueCycles, int &FalseCycles) const {
3342 // Not all subtargets have cmov instructions.
3343 if (!Subtarget.canUseCMOV())
3344 return false;
3345 if (Cond.size() != 1)
3346 return false;
3347 // We cannot do the composite conditions, at least not in SSA form.
3348 if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
3349 return false;
3350
3351 // Check register classes.
3352 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3353 const TargetRegisterClass *RC =
3354 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
3355 if (!RC)
3356 return false;
3357
3358 // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
3359 if (X86::GR16RegClass.hasSubClassEq(RC) ||
3360 X86::GR32RegClass.hasSubClassEq(RC) ||
3361 X86::GR64RegClass.hasSubClassEq(RC)) {
3362 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
3363 // Bridge. Probably Ivy Bridge as well.
3364 CondCycles = 2;
3365 TrueCycles = 2;
3366 FalseCycles = 2;
3367 return true;
3368 }
3369
3370 // Can't do vectors.
3371 return false;
3372 }
3373
insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,Register DstReg,ArrayRef<MachineOperand> Cond,Register TrueReg,Register FalseReg) const3374 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
3375 MachineBasicBlock::iterator I,
3376 const DebugLoc &DL, Register DstReg,
3377 ArrayRef<MachineOperand> Cond, Register TrueReg,
3378 Register FalseReg) const {
3379 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3380 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
3381 const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
3382 assert(Cond.size() == 1 && "Invalid Cond array");
3383 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
3384 false /*HasMemoryOperand*/);
3385 BuildMI(MBB, I, DL, get(Opc), DstReg)
3386 .addReg(FalseReg)
3387 .addReg(TrueReg)
3388 .addImm(Cond[0].getImm());
3389 }
3390
3391 /// Test if the given register is a physical h register.
isHReg(unsigned Reg)3392 static bool isHReg(unsigned Reg) {
3393 return X86::GR8_ABCD_HRegClass.contains(Reg);
3394 }
3395
3396 // Try and copy between VR128/VR64 and GR64 registers.
CopyToFromAsymmetricReg(unsigned DestReg,unsigned SrcReg,const X86Subtarget & Subtarget)3397 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
3398 const X86Subtarget &Subtarget) {
3399 bool HasAVX = Subtarget.hasAVX();
3400 bool HasAVX512 = Subtarget.hasAVX512();
3401
3402 // SrcReg(MaskReg) -> DestReg(GR64)
3403 // SrcReg(MaskReg) -> DestReg(GR32)
3404
3405 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3406 if (X86::VK16RegClass.contains(SrcReg)) {
3407 if (X86::GR64RegClass.contains(DestReg)) {
3408 assert(Subtarget.hasBWI());
3409 return X86::KMOVQrk;
3410 }
3411 if (X86::GR32RegClass.contains(DestReg))
3412 return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
3413 }
3414
3415 // SrcReg(GR64) -> DestReg(MaskReg)
3416 // SrcReg(GR32) -> DestReg(MaskReg)
3417
3418 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3419 if (X86::VK16RegClass.contains(DestReg)) {
3420 if (X86::GR64RegClass.contains(SrcReg)) {
3421 assert(Subtarget.hasBWI());
3422 return X86::KMOVQkr;
3423 }
3424 if (X86::GR32RegClass.contains(SrcReg))
3425 return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
3426 }
3427
3428
3429 // SrcReg(VR128) -> DestReg(GR64)
3430 // SrcReg(VR64) -> DestReg(GR64)
3431 // SrcReg(GR64) -> DestReg(VR128)
3432 // SrcReg(GR64) -> DestReg(VR64)
3433
3434 if (X86::GR64RegClass.contains(DestReg)) {
3435 if (X86::VR128XRegClass.contains(SrcReg))
3436 // Copy from a VR128 register to a GR64 register.
3437 return HasAVX512 ? X86::VMOVPQIto64Zrr :
3438 HasAVX ? X86::VMOVPQIto64rr :
3439 X86::MOVPQIto64rr;
3440 if (X86::VR64RegClass.contains(SrcReg))
3441 // Copy from a VR64 register to a GR64 register.
3442 return X86::MMX_MOVD64from64rr;
3443 } else if (X86::GR64RegClass.contains(SrcReg)) {
3444 // Copy from a GR64 register to a VR128 register.
3445 if (X86::VR128XRegClass.contains(DestReg))
3446 return HasAVX512 ? X86::VMOV64toPQIZrr :
3447 HasAVX ? X86::VMOV64toPQIrr :
3448 X86::MOV64toPQIrr;
3449 // Copy from a GR64 register to a VR64 register.
3450 if (X86::VR64RegClass.contains(DestReg))
3451 return X86::MMX_MOVD64to64rr;
3452 }
3453
3454 // SrcReg(VR128) -> DestReg(GR32)
3455 // SrcReg(GR32) -> DestReg(VR128)
3456
3457 if (X86::GR32RegClass.contains(DestReg) &&
3458 X86::VR128XRegClass.contains(SrcReg))
3459 // Copy from a VR128 register to a GR32 register.
3460 return HasAVX512 ? X86::VMOVPDI2DIZrr :
3461 HasAVX ? X86::VMOVPDI2DIrr :
3462 X86::MOVPDI2DIrr;
3463
3464 if (X86::VR128XRegClass.contains(DestReg) &&
3465 X86::GR32RegClass.contains(SrcReg))
3466 // Copy from a VR128 register to a VR128 register.
3467 return HasAVX512 ? X86::VMOVDI2PDIZrr :
3468 HasAVX ? X86::VMOVDI2PDIrr :
3469 X86::MOVDI2PDIrr;
3470 return 0;
3471 }
3472
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const DebugLoc & DL,MCRegister DestReg,MCRegister SrcReg,bool KillSrc) const3473 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3474 MachineBasicBlock::iterator MI,
3475 const DebugLoc &DL, MCRegister DestReg,
3476 MCRegister SrcReg, bool KillSrc) const {
3477 // First deal with the normal symmetric copies.
3478 bool HasAVX = Subtarget.hasAVX();
3479 bool HasVLX = Subtarget.hasVLX();
3480 unsigned Opc = 0;
3481 if (X86::GR64RegClass.contains(DestReg, SrcReg))
3482 Opc = X86::MOV64rr;
3483 else if (X86::GR32RegClass.contains(DestReg, SrcReg))
3484 Opc = X86::MOV32rr;
3485 else if (X86::GR16RegClass.contains(DestReg, SrcReg))
3486 Opc = X86::MOV16rr;
3487 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
3488 // Copying to or from a physical H register on x86-64 requires a NOREX
3489 // move. Otherwise use a normal move.
3490 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
3491 Subtarget.is64Bit()) {
3492 Opc = X86::MOV8rr_NOREX;
3493 // Both operands must be encodable without an REX prefix.
3494 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
3495 "8-bit H register can not be copied outside GR8_NOREX");
3496 } else
3497 Opc = X86::MOV8rr;
3498 }
3499 else if (X86::VR64RegClass.contains(DestReg, SrcReg))
3500 Opc = X86::MMX_MOVQ64rr;
3501 else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
3502 if (HasVLX)
3503 Opc = X86::VMOVAPSZ128rr;
3504 else if (X86::VR128RegClass.contains(DestReg, SrcReg))
3505 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
3506 else {
3507 // If this an extended register and we don't have VLX we need to use a
3508 // 512-bit move.
3509 Opc = X86::VMOVAPSZrr;
3510 const TargetRegisterInfo *TRI = &getRegisterInfo();
3511 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
3512 &X86::VR512RegClass);
3513 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
3514 &X86::VR512RegClass);
3515 }
3516 } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
3517 if (HasVLX)
3518 Opc = X86::VMOVAPSZ256rr;
3519 else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3520 Opc = X86::VMOVAPSYrr;
3521 else {
3522 // If this an extended register and we don't have VLX we need to use a
3523 // 512-bit move.
3524 Opc = X86::VMOVAPSZrr;
3525 const TargetRegisterInfo *TRI = &getRegisterInfo();
3526 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
3527 &X86::VR512RegClass);
3528 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
3529 &X86::VR512RegClass);
3530 }
3531 } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
3532 Opc = X86::VMOVAPSZrr;
3533 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3534 else if (X86::VK16RegClass.contains(DestReg, SrcReg))
3535 Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
3536 if (!Opc)
3537 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
3538
3539 if (Opc) {
3540 BuildMI(MBB, MI, DL, get(Opc), DestReg)
3541 .addReg(SrcReg, getKillRegState(KillSrc));
3542 return;
3543 }
3544
3545 if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
3546 // FIXME: We use a fatal error here because historically LLVM has tried
3547 // lower some of these physreg copies and we want to ensure we get
3548 // reasonable bug reports if someone encounters a case no other testing
3549 // found. This path should be removed after the LLVM 7 release.
3550 report_fatal_error("Unable to copy EFLAGS physical register!");
3551 }
3552
3553 LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
3554 << RI.getName(DestReg) << '\n');
3555 report_fatal_error("Cannot emit physreg copy instruction");
3556 }
3557
3558 Optional<DestSourcePair>
isCopyInstrImpl(const MachineInstr & MI) const3559 X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
3560 if (MI.isMoveReg())
3561 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
3562 return None;
3563 }
3564
getLoadStoreRegOpcode(Register Reg,const TargetRegisterClass * RC,bool IsStackAligned,const X86Subtarget & STI,bool load)3565 static unsigned getLoadStoreRegOpcode(Register Reg,
3566 const TargetRegisterClass *RC,
3567 bool IsStackAligned,
3568 const X86Subtarget &STI, bool load) {
3569 bool HasAVX = STI.hasAVX();
3570 bool HasAVX512 = STI.hasAVX512();
3571 bool HasVLX = STI.hasVLX();
3572
3573 switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
3574 default:
3575 llvm_unreachable("Unknown spill size");
3576 case 1:
3577 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
3578 if (STI.is64Bit())
3579 // Copying to or from a physical H register on x86-64 requires a NOREX
3580 // move. Otherwise use a normal move.
3581 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3582 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3583 return load ? X86::MOV8rm : X86::MOV8mr;
3584 case 2:
3585 if (X86::VK16RegClass.hasSubClassEq(RC))
3586 return load ? X86::KMOVWkm : X86::KMOVWmk;
3587 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
3588 return load ? X86::MOV16rm : X86::MOV16mr;
3589 case 4:
3590 if (X86::GR32RegClass.hasSubClassEq(RC))
3591 return load ? X86::MOV32rm : X86::MOV32mr;
3592 if (X86::FR32XRegClass.hasSubClassEq(RC))
3593 return load ?
3594 (HasAVX512 ? X86::VMOVSSZrm_alt :
3595 HasAVX ? X86::VMOVSSrm_alt :
3596 X86::MOVSSrm_alt) :
3597 (HasAVX512 ? X86::VMOVSSZmr :
3598 HasAVX ? X86::VMOVSSmr :
3599 X86::MOVSSmr);
3600 if (X86::RFP32RegClass.hasSubClassEq(RC))
3601 return load ? X86::LD_Fp32m : X86::ST_Fp32m;
3602 if (X86::VK32RegClass.hasSubClassEq(RC)) {
3603 assert(STI.hasBWI() && "KMOVD requires BWI");
3604 return load ? X86::KMOVDkm : X86::KMOVDmk;
3605 }
3606 // All of these mask pair classes have the same spill size, the same kind
3607 // of kmov instructions can be used with all of them.
3608 if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
3609 X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
3610 X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
3611 X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
3612 X86::VK16PAIRRegClass.hasSubClassEq(RC))
3613 return load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
3614 if ((X86::FR16RegClass.hasSubClassEq(RC) ||
3615 X86::FR16XRegClass.hasSubClassEq(RC)) &&
3616 STI.hasFP16())
3617 return load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr;
3618 llvm_unreachable("Unknown 4-byte regclass");
3619 case 8:
3620 if (X86::GR64RegClass.hasSubClassEq(RC))
3621 return load ? X86::MOV64rm : X86::MOV64mr;
3622 if (X86::FR64XRegClass.hasSubClassEq(RC))
3623 return load ?
3624 (HasAVX512 ? X86::VMOVSDZrm_alt :
3625 HasAVX ? X86::VMOVSDrm_alt :
3626 X86::MOVSDrm_alt) :
3627 (HasAVX512 ? X86::VMOVSDZmr :
3628 HasAVX ? X86::VMOVSDmr :
3629 X86::MOVSDmr);
3630 if (X86::VR64RegClass.hasSubClassEq(RC))
3631 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3632 if (X86::RFP64RegClass.hasSubClassEq(RC))
3633 return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3634 if (X86::VK64RegClass.hasSubClassEq(RC)) {
3635 assert(STI.hasBWI() && "KMOVQ requires BWI");
3636 return load ? X86::KMOVQkm : X86::KMOVQmk;
3637 }
3638 llvm_unreachable("Unknown 8-byte regclass");
3639 case 10:
3640 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
3641 return load ? X86::LD_Fp80m : X86::ST_FpP80m;
3642 case 16: {
3643 if (X86::VR128XRegClass.hasSubClassEq(RC)) {
3644 // If stack is realigned we can use aligned stores.
3645 if (IsStackAligned)
3646 return load ?
3647 (HasVLX ? X86::VMOVAPSZ128rm :
3648 HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
3649 HasAVX ? X86::VMOVAPSrm :
3650 X86::MOVAPSrm):
3651 (HasVLX ? X86::VMOVAPSZ128mr :
3652 HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
3653 HasAVX ? X86::VMOVAPSmr :
3654 X86::MOVAPSmr);
3655 else
3656 return load ?
3657 (HasVLX ? X86::VMOVUPSZ128rm :
3658 HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
3659 HasAVX ? X86::VMOVUPSrm :
3660 X86::MOVUPSrm):
3661 (HasVLX ? X86::VMOVUPSZ128mr :
3662 HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
3663 HasAVX ? X86::VMOVUPSmr :
3664 X86::MOVUPSmr);
3665 }
3666 llvm_unreachable("Unknown 16-byte regclass");
3667 }
3668 case 32:
3669 assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
3670 // If stack is realigned we can use aligned stores.
3671 if (IsStackAligned)
3672 return load ?
3673 (HasVLX ? X86::VMOVAPSZ256rm :
3674 HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
3675 X86::VMOVAPSYrm) :
3676 (HasVLX ? X86::VMOVAPSZ256mr :
3677 HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
3678 X86::VMOVAPSYmr);
3679 else
3680 return load ?
3681 (HasVLX ? X86::VMOVUPSZ256rm :
3682 HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
3683 X86::VMOVUPSYrm) :
3684 (HasVLX ? X86::VMOVUPSZ256mr :
3685 HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
3686 X86::VMOVUPSYmr);
3687 case 64:
3688 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3689 assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
3690 if (IsStackAligned)
3691 return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3692 else
3693 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3694 }
3695 }
3696
3697 Optional<ExtAddrMode>
getAddrModeFromMemoryOp(const MachineInstr & MemI,const TargetRegisterInfo * TRI) const3698 X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI,
3699 const TargetRegisterInfo *TRI) const {
3700 const MCInstrDesc &Desc = MemI.getDesc();
3701 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3702 if (MemRefBegin < 0)
3703 return None;
3704
3705 MemRefBegin += X86II::getOperandBias(Desc);
3706
3707 auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg);
3708 if (!BaseOp.isReg()) // Can be an MO_FrameIndex
3709 return None;
3710
3711 const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp);
3712 // Displacement can be symbolic
3713 if (!DispMO.isImm())
3714 return None;
3715
3716 ExtAddrMode AM;
3717 AM.BaseReg = BaseOp.getReg();
3718 AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg();
3719 AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm();
3720 AM.Displacement = DispMO.getImm();
3721 return AM;
3722 }
3723
verifyInstruction(const MachineInstr & MI,StringRef & ErrInfo) const3724 bool X86InstrInfo::verifyInstruction(const MachineInstr &MI,
3725 StringRef &ErrInfo) const {
3726 Optional<ExtAddrMode> AMOrNone = getAddrModeFromMemoryOp(MI, nullptr);
3727 if (!AMOrNone)
3728 return true;
3729
3730 ExtAddrMode AM = *AMOrNone;
3731
3732 if (AM.ScaledReg != X86::NoRegister) {
3733 switch (AM.Scale) {
3734 case 1:
3735 case 2:
3736 case 4:
3737 case 8:
3738 break;
3739 default:
3740 ErrInfo = "Scale factor in address must be 1, 2, 4 or 8";
3741 return false;
3742 }
3743 }
3744 if (!isInt<32>(AM.Displacement)) {
3745 ErrInfo = "Displacement in address must fit into 32-bit signed "
3746 "integer";
3747 return false;
3748 }
3749
3750 return true;
3751 }
3752
getConstValDefinedInReg(const MachineInstr & MI,const Register Reg,int64_t & ImmVal) const3753 bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI,
3754 const Register Reg,
3755 int64_t &ImmVal) const {
3756 if (MI.getOpcode() != X86::MOV32ri && MI.getOpcode() != X86::MOV64ri)
3757 return false;
3758 // Mov Src can be a global address.
3759 if (!MI.getOperand(1).isImm() || MI.getOperand(0).getReg() != Reg)
3760 return false;
3761 ImmVal = MI.getOperand(1).getImm();
3762 return true;
3763 }
3764
preservesZeroValueInReg(const MachineInstr * MI,const Register NullValueReg,const TargetRegisterInfo * TRI) const3765 bool X86InstrInfo::preservesZeroValueInReg(
3766 const MachineInstr *MI, const Register NullValueReg,
3767 const TargetRegisterInfo *TRI) const {
3768 if (!MI->modifiesRegister(NullValueReg, TRI))
3769 return true;
3770 switch (MI->getOpcode()) {
3771 // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax
3772 // X.
3773 case X86::SHR64ri:
3774 case X86::SHR32ri:
3775 case X86::SHL64ri:
3776 case X86::SHL32ri:
3777 assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() &&
3778 "expected for shift opcode!");
3779 return MI->getOperand(0).getReg() == NullValueReg &&
3780 MI->getOperand(1).getReg() == NullValueReg;
3781 // Zero extend of a sub-reg of NullValueReg into itself does not change the
3782 // null value.
3783 case X86::MOV32rr:
3784 return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) {
3785 return TRI->isSubRegisterEq(NullValueReg, MO.getReg());
3786 });
3787 default:
3788 return false;
3789 }
3790 llvm_unreachable("Should be handled above!");
3791 }
3792
getMemOperandsWithOffsetWidth(const MachineInstr & MemOp,SmallVectorImpl<const MachineOperand * > & BaseOps,int64_t & Offset,bool & OffsetIsScalable,unsigned & Width,const TargetRegisterInfo * TRI) const3793 bool X86InstrInfo::getMemOperandsWithOffsetWidth(
3794 const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps,
3795 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
3796 const TargetRegisterInfo *TRI) const {
3797 const MCInstrDesc &Desc = MemOp.getDesc();
3798 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3799 if (MemRefBegin < 0)
3800 return false;
3801
3802 MemRefBegin += X86II::getOperandBias(Desc);
3803
3804 const MachineOperand *BaseOp =
3805 &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
3806 if (!BaseOp->isReg()) // Can be an MO_FrameIndex
3807 return false;
3808
3809 if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
3810 return false;
3811
3812 if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
3813 X86::NoRegister)
3814 return false;
3815
3816 const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
3817
3818 // Displacement can be symbolic
3819 if (!DispMO.isImm())
3820 return false;
3821
3822 Offset = DispMO.getImm();
3823
3824 if (!BaseOp->isReg())
3825 return false;
3826
3827 OffsetIsScalable = false;
3828 // FIXME: Relying on memoperands() may not be right thing to do here. Check
3829 // with X86 maintainers, and fix it accordingly. For now, it is ok, since
3830 // there is no use of `Width` for X86 back-end at the moment.
3831 Width =
3832 !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0;
3833 BaseOps.push_back(BaseOp);
3834 return true;
3835 }
3836
getStoreRegOpcode(Register SrcReg,const TargetRegisterClass * RC,bool IsStackAligned,const X86Subtarget & STI)3837 static unsigned getStoreRegOpcode(Register SrcReg,
3838 const TargetRegisterClass *RC,
3839 bool IsStackAligned,
3840 const X86Subtarget &STI) {
3841 return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false);
3842 }
3843
getLoadRegOpcode(Register DestReg,const TargetRegisterClass * RC,bool IsStackAligned,const X86Subtarget & STI)3844 static unsigned getLoadRegOpcode(Register DestReg,
3845 const TargetRegisterClass *RC,
3846 bool IsStackAligned, const X86Subtarget &STI) {
3847 return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true);
3848 }
3849
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,Register SrcReg,bool isKill,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const3850 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3851 MachineBasicBlock::iterator MI,
3852 Register SrcReg, bool isKill, int FrameIdx,
3853 const TargetRegisterClass *RC,
3854 const TargetRegisterInfo *TRI) const {
3855 const MachineFunction &MF = *MBB.getParent();
3856 const MachineFrameInfo &MFI = MF.getFrameInfo();
3857 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
3858 assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
3859 "Stack slot too small for store");
3860 if (RC->getID() == X86::TILERegClassID) {
3861 unsigned Opc = X86::TILESTORED;
3862 // tilestored %tmm, (%sp, %idx)
3863 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
3864 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
3865 MachineInstr *NewMI =
3866 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3867 .addReg(SrcReg, getKillRegState(isKill));
3868 MachineOperand &MO = NewMI->getOperand(2);
3869 MO.setReg(VirtReg);
3870 MO.setIsKill(true);
3871 } else if ((RC->getID() == X86::FR16RegClassID ||
3872 RC->getID() == X86::FR16XRegClassID) &&
3873 !Subtarget.hasFP16()) {
3874 unsigned Opc = Subtarget.hasAVX512() ? X86::VMOVSSZmr
3875 : Subtarget.hasAVX() ? X86::VMOVSSmr
3876 : X86::MOVSSmr;
3877 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3878 .addReg(SrcReg, getKillRegState(isKill));
3879 } else {
3880 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3881 bool isAligned =
3882 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
3883 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
3884 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3885 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3886 .addReg(SrcReg, getKillRegState(isKill));
3887 }
3888 }
3889
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,Register DestReg,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const3890 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
3891 MachineBasicBlock::iterator MI,
3892 Register DestReg, int FrameIdx,
3893 const TargetRegisterClass *RC,
3894 const TargetRegisterInfo *TRI) const {
3895 const MachineFunction &MF = *MBB.getParent();
3896 const MachineFrameInfo &MFI = MF.getFrameInfo();
3897 assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
3898 "Load size exceeds stack slot");
3899 if (RC->getID() == X86::TILERegClassID) {
3900 unsigned Opc = X86::TILELOADD;
3901 // tileloadd (%sp, %idx), %tmm
3902 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
3903 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
3904 MachineInstr *NewMI =
3905 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
3906 NewMI = addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
3907 FrameIdx);
3908 MachineOperand &MO = NewMI->getOperand(3);
3909 MO.setReg(VirtReg);
3910 MO.setIsKill(true);
3911 } else if ((RC->getID() == X86::FR16RegClassID ||
3912 RC->getID() == X86::FR16XRegClassID) &&
3913 !Subtarget.hasFP16()) {
3914 unsigned Opc = Subtarget.hasAVX512() ? X86::VMOVSSZrm
3915 : Subtarget.hasAVX() ? X86::VMOVSSrm
3916 : X86::MOVSSrm;
3917 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
3918 FrameIdx);
3919 } else {
3920 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3921 bool isAligned =
3922 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
3923 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
3924 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3925 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
3926 FrameIdx);
3927 }
3928 }
3929
analyzeCompare(const MachineInstr & MI,Register & SrcReg,Register & SrcReg2,int64_t & CmpMask,int64_t & CmpValue) const3930 bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
3931 Register &SrcReg2, int64_t &CmpMask,
3932 int64_t &CmpValue) const {
3933 switch (MI.getOpcode()) {
3934 default: break;
3935 case X86::CMP64ri32:
3936 case X86::CMP64ri8:
3937 case X86::CMP32ri:
3938 case X86::CMP32ri8:
3939 case X86::CMP16ri:
3940 case X86::CMP16ri8:
3941 case X86::CMP8ri:
3942 SrcReg = MI.getOperand(0).getReg();
3943 SrcReg2 = 0;
3944 if (MI.getOperand(1).isImm()) {
3945 CmpMask = ~0;
3946 CmpValue = MI.getOperand(1).getImm();
3947 } else {
3948 CmpMask = CmpValue = 0;
3949 }
3950 return true;
3951 // A SUB can be used to perform comparison.
3952 case X86::SUB64rm:
3953 case X86::SUB32rm:
3954 case X86::SUB16rm:
3955 case X86::SUB8rm:
3956 SrcReg = MI.getOperand(1).getReg();
3957 SrcReg2 = 0;
3958 CmpMask = 0;
3959 CmpValue = 0;
3960 return true;
3961 case X86::SUB64rr:
3962 case X86::SUB32rr:
3963 case X86::SUB16rr:
3964 case X86::SUB8rr:
3965 SrcReg = MI.getOperand(1).getReg();
3966 SrcReg2 = MI.getOperand(2).getReg();
3967 CmpMask = 0;
3968 CmpValue = 0;
3969 return true;
3970 case X86::SUB64ri32:
3971 case X86::SUB64ri8:
3972 case X86::SUB32ri:
3973 case X86::SUB32ri8:
3974 case X86::SUB16ri:
3975 case X86::SUB16ri8:
3976 case X86::SUB8ri:
3977 SrcReg = MI.getOperand(1).getReg();
3978 SrcReg2 = 0;
3979 if (MI.getOperand(2).isImm()) {
3980 CmpMask = ~0;
3981 CmpValue = MI.getOperand(2).getImm();
3982 } else {
3983 CmpMask = CmpValue = 0;
3984 }
3985 return true;
3986 case X86::CMP64rr:
3987 case X86::CMP32rr:
3988 case X86::CMP16rr:
3989 case X86::CMP8rr:
3990 SrcReg = MI.getOperand(0).getReg();
3991 SrcReg2 = MI.getOperand(1).getReg();
3992 CmpMask = 0;
3993 CmpValue = 0;
3994 return true;
3995 case X86::TEST8rr:
3996 case X86::TEST16rr:
3997 case X86::TEST32rr:
3998 case X86::TEST64rr:
3999 SrcReg = MI.getOperand(0).getReg();
4000 if (MI.getOperand(1).getReg() != SrcReg)
4001 return false;
4002 // Compare against zero.
4003 SrcReg2 = 0;
4004 CmpMask = ~0;
4005 CmpValue = 0;
4006 return true;
4007 }
4008 return false;
4009 }
4010
isRedundantFlagInstr(const MachineInstr & FlagI,Register SrcReg,Register SrcReg2,int64_t ImmMask,int64_t ImmValue,const MachineInstr & OI,bool * IsSwapped,int64_t * ImmDelta) const4011 bool X86InstrInfo::isRedundantFlagInstr(const MachineInstr &FlagI,
4012 Register SrcReg, Register SrcReg2,
4013 int64_t ImmMask, int64_t ImmValue,
4014 const MachineInstr &OI, bool *IsSwapped,
4015 int64_t *ImmDelta) const {
4016 switch (OI.getOpcode()) {
4017 case X86::CMP64rr:
4018 case X86::CMP32rr:
4019 case X86::CMP16rr:
4020 case X86::CMP8rr:
4021 case X86::SUB64rr:
4022 case X86::SUB32rr:
4023 case X86::SUB16rr:
4024 case X86::SUB8rr: {
4025 Register OISrcReg;
4026 Register OISrcReg2;
4027 int64_t OIMask;
4028 int64_t OIValue;
4029 if (!analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) ||
4030 OIMask != ImmMask || OIValue != ImmValue)
4031 return false;
4032 if (SrcReg == OISrcReg && SrcReg2 == OISrcReg2) {
4033 *IsSwapped = false;
4034 return true;
4035 }
4036 if (SrcReg == OISrcReg2 && SrcReg2 == OISrcReg) {
4037 *IsSwapped = true;
4038 return true;
4039 }
4040 return false;
4041 }
4042 case X86::CMP64ri32:
4043 case X86::CMP64ri8:
4044 case X86::CMP32ri:
4045 case X86::CMP32ri8:
4046 case X86::CMP16ri:
4047 case X86::CMP16ri8:
4048 case X86::CMP8ri:
4049 case X86::SUB64ri32:
4050 case X86::SUB64ri8:
4051 case X86::SUB32ri:
4052 case X86::SUB32ri8:
4053 case X86::SUB16ri:
4054 case X86::SUB16ri8:
4055 case X86::SUB8ri:
4056 case X86::TEST64rr:
4057 case X86::TEST32rr:
4058 case X86::TEST16rr:
4059 case X86::TEST8rr: {
4060 if (ImmMask != 0) {
4061 Register OISrcReg;
4062 Register OISrcReg2;
4063 int64_t OIMask;
4064 int64_t OIValue;
4065 if (analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) &&
4066 SrcReg == OISrcReg && ImmMask == OIMask) {
4067 if (OIValue == ImmValue) {
4068 *ImmDelta = 0;
4069 return true;
4070 } else if (static_cast<uint64_t>(ImmValue) ==
4071 static_cast<uint64_t>(OIValue) - 1) {
4072 *ImmDelta = -1;
4073 return true;
4074 } else if (static_cast<uint64_t>(ImmValue) ==
4075 static_cast<uint64_t>(OIValue) + 1) {
4076 *ImmDelta = 1;
4077 return true;
4078 } else {
4079 return false;
4080 }
4081 }
4082 }
4083 return FlagI.isIdenticalTo(OI);
4084 }
4085 default:
4086 return false;
4087 }
4088 }
4089
4090 /// Check whether the definition can be converted
4091 /// to remove a comparison against zero.
isDefConvertible(const MachineInstr & MI,bool & NoSignFlag,bool & ClearsOverflowFlag)4092 inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag,
4093 bool &ClearsOverflowFlag) {
4094 NoSignFlag = false;
4095 ClearsOverflowFlag = false;
4096
4097 switch (MI.getOpcode()) {
4098 default: return false;
4099
4100 // The shift instructions only modify ZF if their shift count is non-zero.
4101 // N.B.: The processor truncates the shift count depending on the encoding.
4102 case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri:
4103 case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri:
4104 return getTruncatedShiftCount(MI, 2) != 0;
4105
4106 // Some left shift instructions can be turned into LEA instructions but only
4107 // if their flags aren't used. Avoid transforming such instructions.
4108 case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{
4109 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
4110 if (isTruncatedShiftCountForLEA(ShAmt)) return false;
4111 return ShAmt != 0;
4112 }
4113
4114 case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
4115 case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
4116 return getTruncatedShiftCount(MI, 3) != 0;
4117
4118 case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
4119 case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8:
4120 case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr:
4121 case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
4122 case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
4123 case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r:
4124 case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
4125 case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8:
4126 case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
4127 case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
4128 case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
4129 case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r:
4130 case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
4131 case X86::ADC32ri8: case X86::ADC16ri: case X86::ADC16ri8:
4132 case X86::ADC8ri: case X86::ADC64rr: case X86::ADC32rr:
4133 case X86::ADC16rr: case X86::ADC8rr: case X86::ADC64rm:
4134 case X86::ADC32rm: case X86::ADC16rm: case X86::ADC8rm:
4135 case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
4136 case X86::SBB32ri8: case X86::SBB16ri: case X86::SBB16ri8:
4137 case X86::SBB8ri: case X86::SBB64rr: case X86::SBB32rr:
4138 case X86::SBB16rr: case X86::SBB8rr: case X86::SBB64rm:
4139 case X86::SBB32rm: case X86::SBB16rm: case X86::SBB8rm:
4140 case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
4141 case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1:
4142 case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1:
4143 case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1:
4144 case X86::LZCNT16rr: case X86::LZCNT16rm:
4145 case X86::LZCNT32rr: case X86::LZCNT32rm:
4146 case X86::LZCNT64rr: case X86::LZCNT64rm:
4147 case X86::POPCNT16rr:case X86::POPCNT16rm:
4148 case X86::POPCNT32rr:case X86::POPCNT32rm:
4149 case X86::POPCNT64rr:case X86::POPCNT64rm:
4150 case X86::TZCNT16rr: case X86::TZCNT16rm:
4151 case X86::TZCNT32rr: case X86::TZCNT32rm:
4152 case X86::TZCNT64rr: case X86::TZCNT64rm:
4153 return true;
4154 case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
4155 case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8:
4156 case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
4157 case X86::AND16rr: case X86::AND8rr: case X86::AND64rm:
4158 case X86::AND32rm: case X86::AND16rm: case X86::AND8rm:
4159 case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
4160 case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8:
4161 case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr:
4162 case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm:
4163 case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm:
4164 case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri:
4165 case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8:
4166 case X86::OR8ri: case X86::OR64rr: case X86::OR32rr:
4167 case X86::OR16rr: case X86::OR8rr: case X86::OR64rm:
4168 case X86::OR32rm: case X86::OR16rm: case X86::OR8rm:
4169 case X86::ANDN32rr: case X86::ANDN32rm:
4170 case X86::ANDN64rr: case X86::ANDN64rm:
4171 case X86::BLSI32rr: case X86::BLSI32rm:
4172 case X86::BLSI64rr: case X86::BLSI64rm:
4173 case X86::BLSMSK32rr: case X86::BLSMSK32rm:
4174 case X86::BLSMSK64rr: case X86::BLSMSK64rm:
4175 case X86::BLSR32rr: case X86::BLSR32rm:
4176 case X86::BLSR64rr: case X86::BLSR64rm:
4177 case X86::BLCFILL32rr: case X86::BLCFILL32rm:
4178 case X86::BLCFILL64rr: case X86::BLCFILL64rm:
4179 case X86::BLCI32rr: case X86::BLCI32rm:
4180 case X86::BLCI64rr: case X86::BLCI64rm:
4181 case X86::BLCIC32rr: case X86::BLCIC32rm:
4182 case X86::BLCIC64rr: case X86::BLCIC64rm:
4183 case X86::BLCMSK32rr: case X86::BLCMSK32rm:
4184 case X86::BLCMSK64rr: case X86::BLCMSK64rm:
4185 case X86::BLCS32rr: case X86::BLCS32rm:
4186 case X86::BLCS64rr: case X86::BLCS64rm:
4187 case X86::BLSFILL32rr: case X86::BLSFILL32rm:
4188 case X86::BLSFILL64rr: case X86::BLSFILL64rm:
4189 case X86::BLSIC32rr: case X86::BLSIC32rm:
4190 case X86::BLSIC64rr: case X86::BLSIC64rm:
4191 case X86::BZHI32rr: case X86::BZHI32rm:
4192 case X86::BZHI64rr: case X86::BZHI64rm:
4193 case X86::T1MSKC32rr: case X86::T1MSKC32rm:
4194 case X86::T1MSKC64rr: case X86::T1MSKC64rm:
4195 case X86::TZMSK32rr: case X86::TZMSK32rm:
4196 case X86::TZMSK64rr: case X86::TZMSK64rm:
4197 // These instructions clear the overflow flag just like TEST.
4198 // FIXME: These are not the only instructions in this switch that clear the
4199 // overflow flag.
4200 ClearsOverflowFlag = true;
4201 return true;
4202 case X86::BEXTR32rr: case X86::BEXTR64rr:
4203 case X86::BEXTR32rm: case X86::BEXTR64rm:
4204 case X86::BEXTRI32ri: case X86::BEXTRI32mi:
4205 case X86::BEXTRI64ri: case X86::BEXTRI64mi:
4206 // BEXTR doesn't update the sign flag so we can't use it. It does clear
4207 // the overflow flag, but that's not useful without the sign flag.
4208 NoSignFlag = true;
4209 return true;
4210 }
4211 }
4212
4213 /// Check whether the use can be converted to remove a comparison against zero.
isUseDefConvertible(const MachineInstr & MI)4214 static X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
4215 switch (MI.getOpcode()) {
4216 default: return X86::COND_INVALID;
4217 case X86::NEG8r:
4218 case X86::NEG16r:
4219 case X86::NEG32r:
4220 case X86::NEG64r:
4221 return X86::COND_AE;
4222 case X86::LZCNT16rr:
4223 case X86::LZCNT32rr:
4224 case X86::LZCNT64rr:
4225 return X86::COND_B;
4226 case X86::POPCNT16rr:
4227 case X86::POPCNT32rr:
4228 case X86::POPCNT64rr:
4229 return X86::COND_E;
4230 case X86::TZCNT16rr:
4231 case X86::TZCNT32rr:
4232 case X86::TZCNT64rr:
4233 return X86::COND_B;
4234 case X86::BSF16rr:
4235 case X86::BSF32rr:
4236 case X86::BSF64rr:
4237 case X86::BSR16rr:
4238 case X86::BSR32rr:
4239 case X86::BSR64rr:
4240 return X86::COND_E;
4241 case X86::BLSI32rr:
4242 case X86::BLSI64rr:
4243 return X86::COND_AE;
4244 case X86::BLSR32rr:
4245 case X86::BLSR64rr:
4246 case X86::BLSMSK32rr:
4247 case X86::BLSMSK64rr:
4248 return X86::COND_B;
4249 // TODO: TBM instructions.
4250 }
4251 }
4252
4253 /// Check if there exists an earlier instruction that
4254 /// operates on the same source operands and sets flags in the same way as
4255 /// Compare; remove Compare if possible.
optimizeCompareInstr(MachineInstr & CmpInstr,Register SrcReg,Register SrcReg2,int64_t CmpMask,int64_t CmpValue,const MachineRegisterInfo * MRI) const4256 bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
4257 Register SrcReg2, int64_t CmpMask,
4258 int64_t CmpValue,
4259 const MachineRegisterInfo *MRI) const {
4260 // Check whether we can replace SUB with CMP.
4261 switch (CmpInstr.getOpcode()) {
4262 default: break;
4263 case X86::SUB64ri32:
4264 case X86::SUB64ri8:
4265 case X86::SUB32ri:
4266 case X86::SUB32ri8:
4267 case X86::SUB16ri:
4268 case X86::SUB16ri8:
4269 case X86::SUB8ri:
4270 case X86::SUB64rm:
4271 case X86::SUB32rm:
4272 case X86::SUB16rm:
4273 case X86::SUB8rm:
4274 case X86::SUB64rr:
4275 case X86::SUB32rr:
4276 case X86::SUB16rr:
4277 case X86::SUB8rr: {
4278 if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
4279 return false;
4280 // There is no use of the destination register, we can replace SUB with CMP.
4281 unsigned NewOpcode = 0;
4282 switch (CmpInstr.getOpcode()) {
4283 default: llvm_unreachable("Unreachable!");
4284 case X86::SUB64rm: NewOpcode = X86::CMP64rm; break;
4285 case X86::SUB32rm: NewOpcode = X86::CMP32rm; break;
4286 case X86::SUB16rm: NewOpcode = X86::CMP16rm; break;
4287 case X86::SUB8rm: NewOpcode = X86::CMP8rm; break;
4288 case X86::SUB64rr: NewOpcode = X86::CMP64rr; break;
4289 case X86::SUB32rr: NewOpcode = X86::CMP32rr; break;
4290 case X86::SUB16rr: NewOpcode = X86::CMP16rr; break;
4291 case X86::SUB8rr: NewOpcode = X86::CMP8rr; break;
4292 case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
4293 case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break;
4294 case X86::SUB32ri: NewOpcode = X86::CMP32ri; break;
4295 case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break;
4296 case X86::SUB16ri: NewOpcode = X86::CMP16ri; break;
4297 case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break;
4298 case X86::SUB8ri: NewOpcode = X86::CMP8ri; break;
4299 }
4300 CmpInstr.setDesc(get(NewOpcode));
4301 CmpInstr.removeOperand(0);
4302 // Mutating this instruction invalidates any debug data associated with it.
4303 CmpInstr.dropDebugNumber();
4304 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
4305 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
4306 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
4307 return false;
4308 }
4309 }
4310
4311 // The following code tries to remove the comparison by re-using EFLAGS
4312 // from earlier instructions.
4313
4314 bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
4315
4316 // Transformation currently requires SSA values.
4317 if (SrcReg2.isPhysical())
4318 return false;
4319 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
4320 assert(SrcRegDef && "Must have a definition (SSA)");
4321
4322 MachineInstr *MI = nullptr;
4323 MachineInstr *Sub = nullptr;
4324 MachineInstr *Movr0Inst = nullptr;
4325 bool NoSignFlag = false;
4326 bool ClearsOverflowFlag = false;
4327 bool ShouldUpdateCC = false;
4328 bool IsSwapped = false;
4329 X86::CondCode NewCC = X86::COND_INVALID;
4330 int64_t ImmDelta = 0;
4331
4332 // Search backward from CmpInstr for the next instruction defining EFLAGS.
4333 const TargetRegisterInfo *TRI = &getRegisterInfo();
4334 MachineBasicBlock &CmpMBB = *CmpInstr.getParent();
4335 MachineBasicBlock::reverse_iterator From =
4336 std::next(MachineBasicBlock::reverse_iterator(CmpInstr));
4337 for (MachineBasicBlock *MBB = &CmpMBB;;) {
4338 for (MachineInstr &Inst : make_range(From, MBB->rend())) {
4339 // Try to use EFLAGS from the instruction defining %SrcReg. Example:
4340 // %eax = addl ...
4341 // ... // EFLAGS not changed
4342 // testl %eax, %eax // <-- can be removed
4343 if (&Inst == SrcRegDef) {
4344 if (IsCmpZero &&
4345 isDefConvertible(Inst, NoSignFlag, ClearsOverflowFlag)) {
4346 MI = &Inst;
4347 break;
4348 }
4349
4350 // Look back for the following pattern, in which case the test64rr
4351 // instruction could be erased.
4352 //
4353 // Example:
4354 // %reg = and32ri %in_reg, 5
4355 // ... // EFLAGS not changed.
4356 // %src_reg = subreg_to_reg 0, %reg, %subreg.sub_index
4357 // test64rr %src_reg, %src_reg, implicit-def $eflags
4358 MachineInstr *AndInstr = nullptr;
4359 if (IsCmpZero &&
4360 findRedundantFlagInstr(CmpInstr, Inst, MRI, &AndInstr, TRI,
4361 NoSignFlag, ClearsOverflowFlag)) {
4362 assert(AndInstr != nullptr && X86::isAND(AndInstr->getOpcode()));
4363 MI = AndInstr;
4364 break;
4365 }
4366 // Cannot find other candidates before definition of SrcReg.
4367 return false;
4368 }
4369
4370 if (Inst.modifiesRegister(X86::EFLAGS, TRI)) {
4371 // Try to use EFLAGS produced by an instruction reading %SrcReg.
4372 // Example:
4373 // %eax = ...
4374 // ...
4375 // popcntl %eax
4376 // ... // EFLAGS not changed
4377 // testl %eax, %eax // <-- can be removed
4378 if (IsCmpZero) {
4379 NewCC = isUseDefConvertible(Inst);
4380 if (NewCC != X86::COND_INVALID && Inst.getOperand(1).isReg() &&
4381 Inst.getOperand(1).getReg() == SrcReg) {
4382 ShouldUpdateCC = true;
4383 MI = &Inst;
4384 break;
4385 }
4386 }
4387
4388 // Try to use EFLAGS from an instruction with similar flag results.
4389 // Example:
4390 // sub x, y or cmp x, y
4391 // ... // EFLAGS not changed
4392 // cmp x, y // <-- can be removed
4393 if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, CmpValue,
4394 Inst, &IsSwapped, &ImmDelta)) {
4395 Sub = &Inst;
4396 break;
4397 }
4398
4399 // MOV32r0 is implemented with xor which clobbers condition code. It is
4400 // safe to move up, if the definition to EFLAGS is dead and earlier
4401 // instructions do not read or write EFLAGS.
4402 if (!Movr0Inst && Inst.getOpcode() == X86::MOV32r0 &&
4403 Inst.registerDefIsDead(X86::EFLAGS, TRI)) {
4404 Movr0Inst = &Inst;
4405 continue;
4406 }
4407
4408 // Cannot do anything for any other EFLAG changes.
4409 return false;
4410 }
4411 }
4412
4413 if (MI || Sub)
4414 break;
4415
4416 // Reached begin of basic block. Continue in predecessor if there is
4417 // exactly one.
4418 if (MBB->pred_size() != 1)
4419 return false;
4420 MBB = *MBB->pred_begin();
4421 From = MBB->rbegin();
4422 }
4423
4424 // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
4425 // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
4426 // If we are done with the basic block, we need to check whether EFLAGS is
4427 // live-out.
4428 bool FlagsMayLiveOut = true;
4429 SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate;
4430 MachineBasicBlock::iterator AfterCmpInstr =
4431 std::next(MachineBasicBlock::iterator(CmpInstr));
4432 for (MachineInstr &Instr : make_range(AfterCmpInstr, CmpMBB.end())) {
4433 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
4434 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
4435 // We should check the usage if this instruction uses and updates EFLAGS.
4436 if (!UseEFLAGS && ModifyEFLAGS) {
4437 // It is safe to remove CmpInstr if EFLAGS is updated again.
4438 FlagsMayLiveOut = false;
4439 break;
4440 }
4441 if (!UseEFLAGS && !ModifyEFLAGS)
4442 continue;
4443
4444 // EFLAGS is used by this instruction.
4445 X86::CondCode OldCC = X86::COND_INVALID;
4446 if (MI || IsSwapped || ImmDelta != 0) {
4447 // We decode the condition code from opcode.
4448 if (Instr.isBranch())
4449 OldCC = X86::getCondFromBranch(Instr);
4450 else {
4451 OldCC = X86::getCondFromSETCC(Instr);
4452 if (OldCC == X86::COND_INVALID)
4453 OldCC = X86::getCondFromCMov(Instr);
4454 }
4455 if (OldCC == X86::COND_INVALID) return false;
4456 }
4457 X86::CondCode ReplacementCC = X86::COND_INVALID;
4458 if (MI) {
4459 switch (OldCC) {
4460 default: break;
4461 case X86::COND_A: case X86::COND_AE:
4462 case X86::COND_B: case X86::COND_BE:
4463 // CF is used, we can't perform this optimization.
4464 return false;
4465 case X86::COND_G: case X86::COND_GE:
4466 case X86::COND_L: case X86::COND_LE:
4467 // If SF is used, but the instruction doesn't update the SF, then we
4468 // can't do the optimization.
4469 if (NoSignFlag)
4470 return false;
4471 LLVM_FALLTHROUGH;
4472 case X86::COND_O: case X86::COND_NO:
4473 // If OF is used, the instruction needs to clear it like CmpZero does.
4474 if (!ClearsOverflowFlag)
4475 return false;
4476 break;
4477 case X86::COND_S: case X86::COND_NS:
4478 // If SF is used, but the instruction doesn't update the SF, then we
4479 // can't do the optimization.
4480 if (NoSignFlag)
4481 return false;
4482 break;
4483 }
4484
4485 // If we're updating the condition code check if we have to reverse the
4486 // condition.
4487 if (ShouldUpdateCC)
4488 switch (OldCC) {
4489 default:
4490 return false;
4491 case X86::COND_E:
4492 ReplacementCC = NewCC;
4493 break;
4494 case X86::COND_NE:
4495 ReplacementCC = GetOppositeBranchCondition(NewCC);
4496 break;
4497 }
4498 } else if (IsSwapped) {
4499 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
4500 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
4501 // We swap the condition code and synthesize the new opcode.
4502 ReplacementCC = getSwappedCondition(OldCC);
4503 if (ReplacementCC == X86::COND_INVALID)
4504 return false;
4505 ShouldUpdateCC = true;
4506 } else if (ImmDelta != 0) {
4507 unsigned BitWidth = TRI->getRegSizeInBits(*MRI->getRegClass(SrcReg));
4508 // Shift amount for min/max constants to adjust for 8/16/32 instruction
4509 // sizes.
4510 switch (OldCC) {
4511 case X86::COND_L: // x <s (C + 1) --> x <=s C
4512 if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
4513 return false;
4514 ReplacementCC = X86::COND_LE;
4515 break;
4516 case X86::COND_B: // x <u (C + 1) --> x <=u C
4517 if (ImmDelta != 1 || CmpValue == 0)
4518 return false;
4519 ReplacementCC = X86::COND_BE;
4520 break;
4521 case X86::COND_GE: // x >=s (C + 1) --> x >s C
4522 if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
4523 return false;
4524 ReplacementCC = X86::COND_G;
4525 break;
4526 case X86::COND_AE: // x >=u (C + 1) --> x >u C
4527 if (ImmDelta != 1 || CmpValue == 0)
4528 return false;
4529 ReplacementCC = X86::COND_A;
4530 break;
4531 case X86::COND_G: // x >s (C - 1) --> x >=s C
4532 if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
4533 return false;
4534 ReplacementCC = X86::COND_GE;
4535 break;
4536 case X86::COND_A: // x >u (C - 1) --> x >=u C
4537 if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
4538 return false;
4539 ReplacementCC = X86::COND_AE;
4540 break;
4541 case X86::COND_LE: // x <=s (C - 1) --> x <s C
4542 if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
4543 return false;
4544 ReplacementCC = X86::COND_L;
4545 break;
4546 case X86::COND_BE: // x <=u (C - 1) --> x <u C
4547 if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
4548 return false;
4549 ReplacementCC = X86::COND_B;
4550 break;
4551 default:
4552 return false;
4553 }
4554 ShouldUpdateCC = true;
4555 }
4556
4557 if (ShouldUpdateCC && ReplacementCC != OldCC) {
4558 // Push the MachineInstr to OpsToUpdate.
4559 // If it is safe to remove CmpInstr, the condition code of these
4560 // instructions will be modified.
4561 OpsToUpdate.push_back(std::make_pair(&Instr, ReplacementCC));
4562 }
4563 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
4564 // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
4565 FlagsMayLiveOut = false;
4566 break;
4567 }
4568 }
4569
4570 // If we have to update users but EFLAGS is live-out abort, since we cannot
4571 // easily find all of the users.
4572 if ((MI != nullptr || ShouldUpdateCC) && FlagsMayLiveOut) {
4573 for (MachineBasicBlock *Successor : CmpMBB.successors())
4574 if (Successor->isLiveIn(X86::EFLAGS))
4575 return false;
4576 }
4577
4578 // The instruction to be updated is either Sub or MI.
4579 assert((MI == nullptr || Sub == nullptr) && "Should not have Sub and MI set");
4580 Sub = MI != nullptr ? MI : Sub;
4581 MachineBasicBlock *SubBB = Sub->getParent();
4582 // Move Movr0Inst to the appropriate place before Sub.
4583 if (Movr0Inst) {
4584 // Only move within the same block so we don't accidentally move to a
4585 // block with higher execution frequency.
4586 if (&CmpMBB != SubBB)
4587 return false;
4588 // Look backwards until we find a def that doesn't use the current EFLAGS.
4589 MachineBasicBlock::reverse_iterator InsertI = Sub,
4590 InsertE = Sub->getParent()->rend();
4591 for (; InsertI != InsertE; ++InsertI) {
4592 MachineInstr *Instr = &*InsertI;
4593 if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
4594 Instr->modifiesRegister(X86::EFLAGS, TRI)) {
4595 Movr0Inst->getParent()->remove(Movr0Inst);
4596 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
4597 Movr0Inst);
4598 break;
4599 }
4600 }
4601 if (InsertI == InsertE)
4602 return false;
4603 }
4604
4605 // Make sure Sub instruction defines EFLAGS and mark the def live.
4606 MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS);
4607 assert(FlagDef && "Unable to locate a def EFLAGS operand");
4608 FlagDef->setIsDead(false);
4609
4610 CmpInstr.eraseFromParent();
4611
4612 // Modify the condition code of instructions in OpsToUpdate.
4613 for (auto &Op : OpsToUpdate) {
4614 Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
4615 .setImm(Op.second);
4616 }
4617 // Add EFLAGS to block live-ins between CmpBB and block of flags producer.
4618 for (MachineBasicBlock *MBB = &CmpMBB; MBB != SubBB;
4619 MBB = *MBB->pred_begin()) {
4620 assert(MBB->pred_size() == 1 && "Expected exactly one predecessor");
4621 if (!MBB->isLiveIn(X86::EFLAGS))
4622 MBB->addLiveIn(X86::EFLAGS);
4623 }
4624 return true;
4625 }
4626
4627 /// Try to remove the load by folding it to a register
4628 /// operand at the use. We fold the load instructions if load defines a virtual
4629 /// register, the virtual register is used once in the same BB, and the
4630 /// instructions in-between do not load or store, and have no side effects.
optimizeLoadInstr(MachineInstr & MI,const MachineRegisterInfo * MRI,Register & FoldAsLoadDefReg,MachineInstr * & DefMI) const4631 MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
4632 const MachineRegisterInfo *MRI,
4633 Register &FoldAsLoadDefReg,
4634 MachineInstr *&DefMI) const {
4635 // Check whether we can move DefMI here.
4636 DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
4637 assert(DefMI);
4638 bool SawStore = false;
4639 if (!DefMI->isSafeToMove(nullptr, SawStore))
4640 return nullptr;
4641
4642 // Collect information about virtual register operands of MI.
4643 SmallVector<unsigned, 1> SrcOperandIds;
4644 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
4645 MachineOperand &MO = MI.getOperand(i);
4646 if (!MO.isReg())
4647 continue;
4648 Register Reg = MO.getReg();
4649 if (Reg != FoldAsLoadDefReg)
4650 continue;
4651 // Do not fold if we have a subreg use or a def.
4652 if (MO.getSubReg() || MO.isDef())
4653 return nullptr;
4654 SrcOperandIds.push_back(i);
4655 }
4656 if (SrcOperandIds.empty())
4657 return nullptr;
4658
4659 // Check whether we can fold the def into SrcOperandId.
4660 if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
4661 FoldAsLoadDefReg = 0;
4662 return FoldMI;
4663 }
4664
4665 return nullptr;
4666 }
4667
4668 /// Expand a single-def pseudo instruction to a two-addr
4669 /// instruction with two undef reads of the register being defined.
4670 /// This is used for mapping:
4671 /// %xmm4 = V_SET0
4672 /// to:
4673 /// %xmm4 = PXORrr undef %xmm4, undef %xmm4
4674 ///
Expand2AddrUndef(MachineInstrBuilder & MIB,const MCInstrDesc & Desc)4675 static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
4676 const MCInstrDesc &Desc) {
4677 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
4678 Register Reg = MIB.getReg(0);
4679 MIB->setDesc(Desc);
4680
4681 // MachineInstr::addOperand() will insert explicit operands before any
4682 // implicit operands.
4683 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4684 // But we don't trust that.
4685 assert(MIB.getReg(1) == Reg &&
4686 MIB.getReg(2) == Reg && "Misplaced operand");
4687 return true;
4688 }
4689
4690 /// Expand a single-def pseudo instruction to a two-addr
4691 /// instruction with two %k0 reads.
4692 /// This is used for mapping:
4693 /// %k4 = K_SET1
4694 /// to:
4695 /// %k4 = KXNORrr %k0, %k0
Expand2AddrKreg(MachineInstrBuilder & MIB,const MCInstrDesc & Desc,Register Reg)4696 static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc,
4697 Register Reg) {
4698 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
4699 MIB->setDesc(Desc);
4700 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4701 return true;
4702 }
4703
expandMOV32r1(MachineInstrBuilder & MIB,const TargetInstrInfo & TII,bool MinusOne)4704 static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
4705 bool MinusOne) {
4706 MachineBasicBlock &MBB = *MIB->getParent();
4707 const DebugLoc &DL = MIB->getDebugLoc();
4708 Register Reg = MIB.getReg(0);
4709
4710 // Insert the XOR.
4711 BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
4712 .addReg(Reg, RegState::Undef)
4713 .addReg(Reg, RegState::Undef);
4714
4715 // Turn the pseudo into an INC or DEC.
4716 MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
4717 MIB.addReg(Reg);
4718
4719 return true;
4720 }
4721
ExpandMOVImmSExti8(MachineInstrBuilder & MIB,const TargetInstrInfo & TII,const X86Subtarget & Subtarget)4722 static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
4723 const TargetInstrInfo &TII,
4724 const X86Subtarget &Subtarget) {
4725 MachineBasicBlock &MBB = *MIB->getParent();
4726 const DebugLoc &DL = MIB->getDebugLoc();
4727 int64_t Imm = MIB->getOperand(1).getImm();
4728 assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
4729 MachineBasicBlock::iterator I = MIB.getInstr();
4730
4731 int StackAdjustment;
4732
4733 if (Subtarget.is64Bit()) {
4734 assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
4735 MIB->getOpcode() == X86::MOV32ImmSExti8);
4736
4737 // Can't use push/pop lowering if the function might write to the red zone.
4738 X86MachineFunctionInfo *X86FI =
4739 MBB.getParent()->getInfo<X86MachineFunctionInfo>();
4740 if (X86FI->getUsesRedZone()) {
4741 MIB->setDesc(TII.get(MIB->getOpcode() ==
4742 X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
4743 return true;
4744 }
4745
4746 // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
4747 // widen the register if necessary.
4748 StackAdjustment = 8;
4749 BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
4750 MIB->setDesc(TII.get(X86::POP64r));
4751 MIB->getOperand(0)
4752 .setReg(getX86SubSuperRegister(MIB.getReg(0), 64));
4753 } else {
4754 assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
4755 StackAdjustment = 4;
4756 BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
4757 MIB->setDesc(TII.get(X86::POP32r));
4758 }
4759 MIB->removeOperand(1);
4760 MIB->addImplicitDefUseOperands(*MBB.getParent());
4761
4762 // Build CFI if necessary.
4763 MachineFunction &MF = *MBB.getParent();
4764 const X86FrameLowering *TFL = Subtarget.getFrameLowering();
4765 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
4766 bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
4767 bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
4768 if (EmitCFI) {
4769 TFL->BuildCFI(MBB, I, DL,
4770 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
4771 TFL->BuildCFI(MBB, std::next(I), DL,
4772 MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
4773 }
4774
4775 return true;
4776 }
4777
4778 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
4779 // code sequence is needed for other targets.
expandLoadStackGuard(MachineInstrBuilder & MIB,const TargetInstrInfo & TII)4780 static void expandLoadStackGuard(MachineInstrBuilder &MIB,
4781 const TargetInstrInfo &TII) {
4782 MachineBasicBlock &MBB = *MIB->getParent();
4783 const DebugLoc &DL = MIB->getDebugLoc();
4784 Register Reg = MIB.getReg(0);
4785 const GlobalValue *GV =
4786 cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
4787 auto Flags = MachineMemOperand::MOLoad |
4788 MachineMemOperand::MODereferenceable |
4789 MachineMemOperand::MOInvariant;
4790 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4791 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8));
4792 MachineBasicBlock::iterator I = MIB.getInstr();
4793
4794 BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
4795 .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
4796 .addMemOperand(MMO);
4797 MIB->setDebugLoc(DL);
4798 MIB->setDesc(TII.get(X86::MOV64rm));
4799 MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
4800 }
4801
expandXorFP(MachineInstrBuilder & MIB,const TargetInstrInfo & TII)4802 static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
4803 MachineBasicBlock &MBB = *MIB->getParent();
4804 MachineFunction &MF = *MBB.getParent();
4805 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
4806 const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
4807 unsigned XorOp =
4808 MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
4809 MIB->setDesc(TII.get(XorOp));
4810 MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
4811 return true;
4812 }
4813
4814 // This is used to handle spills for 128/256-bit registers when we have AVX512,
4815 // but not VLX. If it uses an extended register we need to use an instruction
4816 // that loads the lower 128/256-bit, but is available with only AVX512F.
expandNOVLXLoad(MachineInstrBuilder & MIB,const TargetRegisterInfo * TRI,const MCInstrDesc & LoadDesc,const MCInstrDesc & BroadcastDesc,unsigned SubIdx)4817 static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
4818 const TargetRegisterInfo *TRI,
4819 const MCInstrDesc &LoadDesc,
4820 const MCInstrDesc &BroadcastDesc,
4821 unsigned SubIdx) {
4822 Register DestReg = MIB.getReg(0);
4823 // Check if DestReg is XMM16-31 or YMM16-31.
4824 if (TRI->getEncodingValue(DestReg) < 16) {
4825 // We can use a normal VEX encoded load.
4826 MIB->setDesc(LoadDesc);
4827 } else {
4828 // Use a 128/256-bit VBROADCAST instruction.
4829 MIB->setDesc(BroadcastDesc);
4830 // Change the destination to a 512-bit register.
4831 DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
4832 MIB->getOperand(0).setReg(DestReg);
4833 }
4834 return true;
4835 }
4836
4837 // This is used to handle spills for 128/256-bit registers when we have AVX512,
4838 // but not VLX. If it uses an extended register we need to use an instruction
4839 // that stores the lower 128/256-bit, but is available with only AVX512F.
expandNOVLXStore(MachineInstrBuilder & MIB,const TargetRegisterInfo * TRI,const MCInstrDesc & StoreDesc,const MCInstrDesc & ExtractDesc,unsigned SubIdx)4840 static bool expandNOVLXStore(MachineInstrBuilder &MIB,
4841 const TargetRegisterInfo *TRI,
4842 const MCInstrDesc &StoreDesc,
4843 const MCInstrDesc &ExtractDesc,
4844 unsigned SubIdx) {
4845 Register SrcReg = MIB.getReg(X86::AddrNumOperands);
4846 // Check if DestReg is XMM16-31 or YMM16-31.
4847 if (TRI->getEncodingValue(SrcReg) < 16) {
4848 // We can use a normal VEX encoded store.
4849 MIB->setDesc(StoreDesc);
4850 } else {
4851 // Use a VEXTRACTF instruction.
4852 MIB->setDesc(ExtractDesc);
4853 // Change the destination to a 512-bit register.
4854 SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
4855 MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
4856 MIB.addImm(0x0); // Append immediate to extract from the lower bits.
4857 }
4858
4859 return true;
4860 }
4861
expandSHXDROT(MachineInstrBuilder & MIB,const MCInstrDesc & Desc)4862 static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
4863 MIB->setDesc(Desc);
4864 int64_t ShiftAmt = MIB->getOperand(2).getImm();
4865 // Temporarily remove the immediate so we can add another source register.
4866 MIB->removeOperand(2);
4867 // Add the register. Don't copy the kill flag if there is one.
4868 MIB.addReg(MIB.getReg(1),
4869 getUndefRegState(MIB->getOperand(1).isUndef()));
4870 // Add back the immediate.
4871 MIB.addImm(ShiftAmt);
4872 return true;
4873 }
4874
expandPostRAPseudo(MachineInstr & MI) const4875 bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
4876 bool HasAVX = Subtarget.hasAVX();
4877 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4878 switch (MI.getOpcode()) {
4879 case X86::MOV32r0:
4880 return Expand2AddrUndef(MIB, get(X86::XOR32rr));
4881 case X86::MOV32r1:
4882 return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
4883 case X86::MOV32r_1:
4884 return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
4885 case X86::MOV32ImmSExti8:
4886 case X86::MOV64ImmSExti8:
4887 return ExpandMOVImmSExti8(MIB, *this, Subtarget);
4888 case X86::SETB_C32r:
4889 return Expand2AddrUndef(MIB, get(X86::SBB32rr));
4890 case X86::SETB_C64r:
4891 return Expand2AddrUndef(MIB, get(X86::SBB64rr));
4892 case X86::MMX_SET0:
4893 return Expand2AddrUndef(MIB, get(X86::MMX_PXORrr));
4894 case X86::V_SET0:
4895 case X86::FsFLD0SS:
4896 case X86::FsFLD0SD:
4897 case X86::FsFLD0SH:
4898 case X86::FsFLD0F128:
4899 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
4900 case X86::AVX_SET0: {
4901 assert(HasAVX && "AVX not supported");
4902 const TargetRegisterInfo *TRI = &getRegisterInfo();
4903 Register SrcReg = MIB.getReg(0);
4904 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4905 MIB->getOperand(0).setReg(XReg);
4906 Expand2AddrUndef(MIB, get(X86::VXORPSrr));
4907 MIB.addReg(SrcReg, RegState::ImplicitDefine);
4908 return true;
4909 }
4910 case X86::AVX512_128_SET0:
4911 case X86::AVX512_FsFLD0SH:
4912 case X86::AVX512_FsFLD0SS:
4913 case X86::AVX512_FsFLD0SD:
4914 case X86::AVX512_FsFLD0F128: {
4915 bool HasVLX = Subtarget.hasVLX();
4916 Register SrcReg = MIB.getReg(0);
4917 const TargetRegisterInfo *TRI = &getRegisterInfo();
4918 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
4919 return Expand2AddrUndef(MIB,
4920 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4921 // Extended register without VLX. Use a larger XOR.
4922 SrcReg =
4923 TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4924 MIB->getOperand(0).setReg(SrcReg);
4925 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4926 }
4927 case X86::AVX512_256_SET0:
4928 case X86::AVX512_512_SET0: {
4929 bool HasVLX = Subtarget.hasVLX();
4930 Register SrcReg = MIB.getReg(0);
4931 const TargetRegisterInfo *TRI = &getRegisterInfo();
4932 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
4933 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4934 MIB->getOperand(0).setReg(XReg);
4935 Expand2AddrUndef(MIB,
4936 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4937 MIB.addReg(SrcReg, RegState::ImplicitDefine);
4938 return true;
4939 }
4940 if (MI.getOpcode() == X86::AVX512_256_SET0) {
4941 // No VLX so we must reference a zmm.
4942 unsigned ZReg =
4943 TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
4944 MIB->getOperand(0).setReg(ZReg);
4945 }
4946 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4947 }
4948 case X86::V_SETALLONES:
4949 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
4950 case X86::AVX2_SETALLONES:
4951 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
4952 case X86::AVX1_SETALLONES: {
4953 Register Reg = MIB.getReg(0);
4954 // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
4955 MIB->setDesc(get(X86::VCMPPSYrri));
4956 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
4957 return true;
4958 }
4959 case X86::AVX512_512_SETALLONES: {
4960 Register Reg = MIB.getReg(0);
4961 MIB->setDesc(get(X86::VPTERNLOGDZrri));
4962 // VPTERNLOGD needs 3 register inputs and an immediate.
4963 // 0xff will return 1s for any input.
4964 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
4965 .addReg(Reg, RegState::Undef).addImm(0xff);
4966 return true;
4967 }
4968 case X86::AVX512_512_SEXT_MASK_32:
4969 case X86::AVX512_512_SEXT_MASK_64: {
4970 Register Reg = MIB.getReg(0);
4971 Register MaskReg = MIB.getReg(1);
4972 unsigned MaskState = getRegState(MIB->getOperand(1));
4973 unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
4974 X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
4975 MI.removeOperand(1);
4976 MIB->setDesc(get(Opc));
4977 // VPTERNLOG needs 3 register inputs and an immediate.
4978 // 0xff will return 1s for any input.
4979 MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
4980 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
4981 return true;
4982 }
4983 case X86::VMOVAPSZ128rm_NOVLX:
4984 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
4985 get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4986 case X86::VMOVUPSZ128rm_NOVLX:
4987 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
4988 get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4989 case X86::VMOVAPSZ256rm_NOVLX:
4990 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
4991 get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4992 case X86::VMOVUPSZ256rm_NOVLX:
4993 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
4994 get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4995 case X86::VMOVAPSZ128mr_NOVLX:
4996 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
4997 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4998 case X86::VMOVUPSZ128mr_NOVLX:
4999 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
5000 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
5001 case X86::VMOVAPSZ256mr_NOVLX:
5002 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
5003 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
5004 case X86::VMOVUPSZ256mr_NOVLX:
5005 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
5006 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
5007 case X86::MOV32ri64: {
5008 Register Reg = MIB.getReg(0);
5009 Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
5010 MI.setDesc(get(X86::MOV32ri));
5011 MIB->getOperand(0).setReg(Reg32);
5012 MIB.addReg(Reg, RegState::ImplicitDefine);
5013 return true;
5014 }
5015
5016 // KNL does not recognize dependency-breaking idioms for mask registers,
5017 // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
5018 // Using %k0 as the undef input register is a performance heuristic based
5019 // on the assumption that %k0 is used less frequently than the other mask
5020 // registers, since it is not usable as a write mask.
5021 // FIXME: A more advanced approach would be to choose the best input mask
5022 // register based on context.
5023 case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
5024 case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
5025 case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
5026 case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
5027 case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
5028 case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
5029 case TargetOpcode::LOAD_STACK_GUARD:
5030 expandLoadStackGuard(MIB, *this);
5031 return true;
5032 case X86::XOR64_FP:
5033 case X86::XOR32_FP:
5034 return expandXorFP(MIB, *this);
5035 case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8));
5036 case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8));
5037 case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8));
5038 case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8));
5039 case X86::ADD8rr_DB: MIB->setDesc(get(X86::OR8rr)); break;
5040 case X86::ADD16rr_DB: MIB->setDesc(get(X86::OR16rr)); break;
5041 case X86::ADD32rr_DB: MIB->setDesc(get(X86::OR32rr)); break;
5042 case X86::ADD64rr_DB: MIB->setDesc(get(X86::OR64rr)); break;
5043 case X86::ADD8ri_DB: MIB->setDesc(get(X86::OR8ri)); break;
5044 case X86::ADD16ri_DB: MIB->setDesc(get(X86::OR16ri)); break;
5045 case X86::ADD32ri_DB: MIB->setDesc(get(X86::OR32ri)); break;
5046 case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break;
5047 case X86::ADD16ri8_DB: MIB->setDesc(get(X86::OR16ri8)); break;
5048 case X86::ADD32ri8_DB: MIB->setDesc(get(X86::OR32ri8)); break;
5049 case X86::ADD64ri8_DB: MIB->setDesc(get(X86::OR64ri8)); break;
5050 }
5051 return false;
5052 }
5053
5054 /// Return true for all instructions that only update
5055 /// the first 32 or 64-bits of the destination register and leave the rest
5056 /// unmodified. This can be used to avoid folding loads if the instructions
5057 /// only update part of the destination register, and the non-updated part is
5058 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
5059 /// instructions breaks the partial register dependency and it can improve
5060 /// performance. e.g.:
5061 ///
5062 /// movss (%rdi), %xmm0
5063 /// cvtss2sd %xmm0, %xmm0
5064 ///
5065 /// Instead of
5066 /// cvtss2sd (%rdi), %xmm0
5067 ///
5068 /// FIXME: This should be turned into a TSFlags.
5069 ///
hasPartialRegUpdate(unsigned Opcode,const X86Subtarget & Subtarget,bool ForLoadFold=false)5070 static bool hasPartialRegUpdate(unsigned Opcode,
5071 const X86Subtarget &Subtarget,
5072 bool ForLoadFold = false) {
5073 switch (Opcode) {
5074 case X86::CVTSI2SSrr:
5075 case X86::CVTSI2SSrm:
5076 case X86::CVTSI642SSrr:
5077 case X86::CVTSI642SSrm:
5078 case X86::CVTSI2SDrr:
5079 case X86::CVTSI2SDrm:
5080 case X86::CVTSI642SDrr:
5081 case X86::CVTSI642SDrm:
5082 // Load folding won't effect the undef register update since the input is
5083 // a GPR.
5084 return !ForLoadFold;
5085 case X86::CVTSD2SSrr:
5086 case X86::CVTSD2SSrm:
5087 case X86::CVTSS2SDrr:
5088 case X86::CVTSS2SDrm:
5089 case X86::MOVHPDrm:
5090 case X86::MOVHPSrm:
5091 case X86::MOVLPDrm:
5092 case X86::MOVLPSrm:
5093 case X86::RCPSSr:
5094 case X86::RCPSSm:
5095 case X86::RCPSSr_Int:
5096 case X86::RCPSSm_Int:
5097 case X86::ROUNDSDr:
5098 case X86::ROUNDSDm:
5099 case X86::ROUNDSSr:
5100 case X86::ROUNDSSm:
5101 case X86::RSQRTSSr:
5102 case X86::RSQRTSSm:
5103 case X86::RSQRTSSr_Int:
5104 case X86::RSQRTSSm_Int:
5105 case X86::SQRTSSr:
5106 case X86::SQRTSSm:
5107 case X86::SQRTSSr_Int:
5108 case X86::SQRTSSm_Int:
5109 case X86::SQRTSDr:
5110 case X86::SQRTSDm:
5111 case X86::SQRTSDr_Int:
5112 case X86::SQRTSDm_Int:
5113 return true;
5114 case X86::VFCMULCPHZ128rm:
5115 case X86::VFCMULCPHZ128rmb:
5116 case X86::VFCMULCPHZ128rmbkz:
5117 case X86::VFCMULCPHZ128rmkz:
5118 case X86::VFCMULCPHZ128rr:
5119 case X86::VFCMULCPHZ128rrkz:
5120 case X86::VFCMULCPHZ256rm:
5121 case X86::VFCMULCPHZ256rmb:
5122 case X86::VFCMULCPHZ256rmbkz:
5123 case X86::VFCMULCPHZ256rmkz:
5124 case X86::VFCMULCPHZ256rr:
5125 case X86::VFCMULCPHZ256rrkz:
5126 case X86::VFCMULCPHZrm:
5127 case X86::VFCMULCPHZrmb:
5128 case X86::VFCMULCPHZrmbkz:
5129 case X86::VFCMULCPHZrmkz:
5130 case X86::VFCMULCPHZrr:
5131 case X86::VFCMULCPHZrrb:
5132 case X86::VFCMULCPHZrrbkz:
5133 case X86::VFCMULCPHZrrkz:
5134 case X86::VFMULCPHZ128rm:
5135 case X86::VFMULCPHZ128rmb:
5136 case X86::VFMULCPHZ128rmbkz:
5137 case X86::VFMULCPHZ128rmkz:
5138 case X86::VFMULCPHZ128rr:
5139 case X86::VFMULCPHZ128rrkz:
5140 case X86::VFMULCPHZ256rm:
5141 case X86::VFMULCPHZ256rmb:
5142 case X86::VFMULCPHZ256rmbkz:
5143 case X86::VFMULCPHZ256rmkz:
5144 case X86::VFMULCPHZ256rr:
5145 case X86::VFMULCPHZ256rrkz:
5146 case X86::VFMULCPHZrm:
5147 case X86::VFMULCPHZrmb:
5148 case X86::VFMULCPHZrmbkz:
5149 case X86::VFMULCPHZrmkz:
5150 case X86::VFMULCPHZrr:
5151 case X86::VFMULCPHZrrb:
5152 case X86::VFMULCPHZrrbkz:
5153 case X86::VFMULCPHZrrkz:
5154 case X86::VFCMULCSHZrm:
5155 case X86::VFCMULCSHZrmkz:
5156 case X86::VFCMULCSHZrr:
5157 case X86::VFCMULCSHZrrb:
5158 case X86::VFCMULCSHZrrbkz:
5159 case X86::VFCMULCSHZrrkz:
5160 case X86::VFMULCSHZrm:
5161 case X86::VFMULCSHZrmkz:
5162 case X86::VFMULCSHZrr:
5163 case X86::VFMULCSHZrrb:
5164 case X86::VFMULCSHZrrbkz:
5165 case X86::VFMULCSHZrrkz:
5166 return Subtarget.hasMULCFalseDeps();
5167 case X86::VPERMDYrm:
5168 case X86::VPERMDYrr:
5169 case X86::VPERMQYmi:
5170 case X86::VPERMQYri:
5171 case X86::VPERMPSYrm:
5172 case X86::VPERMPSYrr:
5173 case X86::VPERMPDYmi:
5174 case X86::VPERMPDYri:
5175 case X86::VPERMDZ256rm:
5176 case X86::VPERMDZ256rmb:
5177 case X86::VPERMDZ256rmbkz:
5178 case X86::VPERMDZ256rmkz:
5179 case X86::VPERMDZ256rr:
5180 case X86::VPERMDZ256rrkz:
5181 case X86::VPERMDZrm:
5182 case X86::VPERMDZrmb:
5183 case X86::VPERMDZrmbkz:
5184 case X86::VPERMDZrmkz:
5185 case X86::VPERMDZrr:
5186 case X86::VPERMDZrrkz:
5187 case X86::VPERMQZ256mbi:
5188 case X86::VPERMQZ256mbikz:
5189 case X86::VPERMQZ256mi:
5190 case X86::VPERMQZ256mikz:
5191 case X86::VPERMQZ256ri:
5192 case X86::VPERMQZ256rikz:
5193 case X86::VPERMQZ256rm:
5194 case X86::VPERMQZ256rmb:
5195 case X86::VPERMQZ256rmbkz:
5196 case X86::VPERMQZ256rmkz:
5197 case X86::VPERMQZ256rr:
5198 case X86::VPERMQZ256rrkz:
5199 case X86::VPERMQZmbi:
5200 case X86::VPERMQZmbikz:
5201 case X86::VPERMQZmi:
5202 case X86::VPERMQZmikz:
5203 case X86::VPERMQZri:
5204 case X86::VPERMQZrikz:
5205 case X86::VPERMQZrm:
5206 case X86::VPERMQZrmb:
5207 case X86::VPERMQZrmbkz:
5208 case X86::VPERMQZrmkz:
5209 case X86::VPERMQZrr:
5210 case X86::VPERMQZrrkz:
5211 case X86::VPERMPSZ256rm:
5212 case X86::VPERMPSZ256rmb:
5213 case X86::VPERMPSZ256rmbkz:
5214 case X86::VPERMPSZ256rmkz:
5215 case X86::VPERMPSZ256rr:
5216 case X86::VPERMPSZ256rrkz:
5217 case X86::VPERMPSZrm:
5218 case X86::VPERMPSZrmb:
5219 case X86::VPERMPSZrmbkz:
5220 case X86::VPERMPSZrmkz:
5221 case X86::VPERMPSZrr:
5222 case X86::VPERMPSZrrkz:
5223 case X86::VPERMPDZ256mbi:
5224 case X86::VPERMPDZ256mbikz:
5225 case X86::VPERMPDZ256mi:
5226 case X86::VPERMPDZ256mikz:
5227 case X86::VPERMPDZ256ri:
5228 case X86::VPERMPDZ256rikz:
5229 case X86::VPERMPDZ256rm:
5230 case X86::VPERMPDZ256rmb:
5231 case X86::VPERMPDZ256rmbkz:
5232 case X86::VPERMPDZ256rmkz:
5233 case X86::VPERMPDZ256rr:
5234 case X86::VPERMPDZ256rrkz:
5235 case X86::VPERMPDZmbi:
5236 case X86::VPERMPDZmbikz:
5237 case X86::VPERMPDZmi:
5238 case X86::VPERMPDZmikz:
5239 case X86::VPERMPDZri:
5240 case X86::VPERMPDZrikz:
5241 case X86::VPERMPDZrm:
5242 case X86::VPERMPDZrmb:
5243 case X86::VPERMPDZrmbkz:
5244 case X86::VPERMPDZrmkz:
5245 case X86::VPERMPDZrr:
5246 case X86::VPERMPDZrrkz:
5247 return Subtarget.hasPERMFalseDeps();
5248 case X86::VRANGEPDZ128rmbi:
5249 case X86::VRANGEPDZ128rmbikz:
5250 case X86::VRANGEPDZ128rmi:
5251 case X86::VRANGEPDZ128rmikz:
5252 case X86::VRANGEPDZ128rri:
5253 case X86::VRANGEPDZ128rrikz:
5254 case X86::VRANGEPDZ256rmbi:
5255 case X86::VRANGEPDZ256rmbikz:
5256 case X86::VRANGEPDZ256rmi:
5257 case X86::VRANGEPDZ256rmikz:
5258 case X86::VRANGEPDZ256rri:
5259 case X86::VRANGEPDZ256rrikz:
5260 case X86::VRANGEPDZrmbi:
5261 case X86::VRANGEPDZrmbikz:
5262 case X86::VRANGEPDZrmi:
5263 case X86::VRANGEPDZrmikz:
5264 case X86::VRANGEPDZrri:
5265 case X86::VRANGEPDZrrib:
5266 case X86::VRANGEPDZrribkz:
5267 case X86::VRANGEPDZrrikz:
5268 case X86::VRANGEPSZ128rmbi:
5269 case X86::VRANGEPSZ128rmbikz:
5270 case X86::VRANGEPSZ128rmi:
5271 case X86::VRANGEPSZ128rmikz:
5272 case X86::VRANGEPSZ128rri:
5273 case X86::VRANGEPSZ128rrikz:
5274 case X86::VRANGEPSZ256rmbi:
5275 case X86::VRANGEPSZ256rmbikz:
5276 case X86::VRANGEPSZ256rmi:
5277 case X86::VRANGEPSZ256rmikz:
5278 case X86::VRANGEPSZ256rri:
5279 case X86::VRANGEPSZ256rrikz:
5280 case X86::VRANGEPSZrmbi:
5281 case X86::VRANGEPSZrmbikz:
5282 case X86::VRANGEPSZrmi:
5283 case X86::VRANGEPSZrmikz:
5284 case X86::VRANGEPSZrri:
5285 case X86::VRANGEPSZrrib:
5286 case X86::VRANGEPSZrribkz:
5287 case X86::VRANGEPSZrrikz:
5288 case X86::VRANGESDZrmi:
5289 case X86::VRANGESDZrmikz:
5290 case X86::VRANGESDZrri:
5291 case X86::VRANGESDZrrib:
5292 case X86::VRANGESDZrribkz:
5293 case X86::VRANGESDZrrikz:
5294 case X86::VRANGESSZrmi:
5295 case X86::VRANGESSZrmikz:
5296 case X86::VRANGESSZrri:
5297 case X86::VRANGESSZrrib:
5298 case X86::VRANGESSZrribkz:
5299 case X86::VRANGESSZrrikz:
5300 return Subtarget.hasRANGEFalseDeps();
5301 case X86::VGETMANTSSZrmi:
5302 case X86::VGETMANTSSZrmikz:
5303 case X86::VGETMANTSSZrri:
5304 case X86::VGETMANTSSZrrib:
5305 case X86::VGETMANTSSZrribkz:
5306 case X86::VGETMANTSSZrrikz:
5307 case X86::VGETMANTSDZrmi:
5308 case X86::VGETMANTSDZrmikz:
5309 case X86::VGETMANTSDZrri:
5310 case X86::VGETMANTSDZrrib:
5311 case X86::VGETMANTSDZrribkz:
5312 case X86::VGETMANTSDZrrikz:
5313 case X86::VGETMANTSHZrmi:
5314 case X86::VGETMANTSHZrmikz:
5315 case X86::VGETMANTSHZrri:
5316 case X86::VGETMANTSHZrrib:
5317 case X86::VGETMANTSHZrribkz:
5318 case X86::VGETMANTSHZrrikz:
5319 case X86::VGETMANTPSZ128rmbi:
5320 case X86::VGETMANTPSZ128rmbikz:
5321 case X86::VGETMANTPSZ128rmi:
5322 case X86::VGETMANTPSZ128rmikz:
5323 case X86::VGETMANTPSZ256rmbi:
5324 case X86::VGETMANTPSZ256rmbikz:
5325 case X86::VGETMANTPSZ256rmi:
5326 case X86::VGETMANTPSZ256rmikz:
5327 case X86::VGETMANTPSZrmbi:
5328 case X86::VGETMANTPSZrmbikz:
5329 case X86::VGETMANTPSZrmi:
5330 case X86::VGETMANTPSZrmikz:
5331 case X86::VGETMANTPDZ128rmbi:
5332 case X86::VGETMANTPDZ128rmbikz:
5333 case X86::VGETMANTPDZ128rmi:
5334 case X86::VGETMANTPDZ128rmikz:
5335 case X86::VGETMANTPDZ256rmbi:
5336 case X86::VGETMANTPDZ256rmbikz:
5337 case X86::VGETMANTPDZ256rmi:
5338 case X86::VGETMANTPDZ256rmikz:
5339 case X86::VGETMANTPDZrmbi:
5340 case X86::VGETMANTPDZrmbikz:
5341 case X86::VGETMANTPDZrmi:
5342 case X86::VGETMANTPDZrmikz:
5343 return Subtarget.hasGETMANTFalseDeps();
5344 case X86::VPMULLQZ128rm:
5345 case X86::VPMULLQZ128rmb:
5346 case X86::VPMULLQZ128rmbkz:
5347 case X86::VPMULLQZ128rmkz:
5348 case X86::VPMULLQZ128rr:
5349 case X86::VPMULLQZ128rrkz:
5350 case X86::VPMULLQZ256rm:
5351 case X86::VPMULLQZ256rmb:
5352 case X86::VPMULLQZ256rmbkz:
5353 case X86::VPMULLQZ256rmkz:
5354 case X86::VPMULLQZ256rr:
5355 case X86::VPMULLQZ256rrkz:
5356 case X86::VPMULLQZrm:
5357 case X86::VPMULLQZrmb:
5358 case X86::VPMULLQZrmbkz:
5359 case X86::VPMULLQZrmkz:
5360 case X86::VPMULLQZrr:
5361 case X86::VPMULLQZrrkz:
5362 return Subtarget.hasMULLQFalseDeps();
5363 // GPR
5364 case X86::POPCNT32rm:
5365 case X86::POPCNT32rr:
5366 case X86::POPCNT64rm:
5367 case X86::POPCNT64rr:
5368 return Subtarget.hasPOPCNTFalseDeps();
5369 case X86::LZCNT32rm:
5370 case X86::LZCNT32rr:
5371 case X86::LZCNT64rm:
5372 case X86::LZCNT64rr:
5373 case X86::TZCNT32rm:
5374 case X86::TZCNT32rr:
5375 case X86::TZCNT64rm:
5376 case X86::TZCNT64rr:
5377 return Subtarget.hasLZCNTFalseDeps();
5378 }
5379
5380 return false;
5381 }
5382
5383 /// Inform the BreakFalseDeps pass how many idle
5384 /// instructions we would like before a partial register update.
getPartialRegUpdateClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const5385 unsigned X86InstrInfo::getPartialRegUpdateClearance(
5386 const MachineInstr &MI, unsigned OpNum,
5387 const TargetRegisterInfo *TRI) const {
5388 if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
5389 return 0;
5390
5391 // If MI is marked as reading Reg, the partial register update is wanted.
5392 const MachineOperand &MO = MI.getOperand(0);
5393 Register Reg = MO.getReg();
5394 if (Reg.isVirtual()) {
5395 if (MO.readsReg() || MI.readsVirtualRegister(Reg))
5396 return 0;
5397 } else {
5398 if (MI.readsRegister(Reg, TRI))
5399 return 0;
5400 }
5401
5402 // If any instructions in the clearance range are reading Reg, insert a
5403 // dependency breaking instruction, which is inexpensive and is likely to
5404 // be hidden in other instruction's cycles.
5405 return PartialRegUpdateClearance;
5406 }
5407
5408 // Return true for any instruction the copies the high bits of the first source
5409 // operand into the unused high bits of the destination operand.
5410 // Also returns true for instructions that have two inputs where one may
5411 // be undef and we want it to use the same register as the other input.
hasUndefRegUpdate(unsigned Opcode,unsigned OpNum,bool ForLoadFold=false)5412 static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum,
5413 bool ForLoadFold = false) {
5414 // Set the OpNum parameter to the first source operand.
5415 switch (Opcode) {
5416 case X86::MMX_PUNPCKHBWrr:
5417 case X86::MMX_PUNPCKHWDrr:
5418 case X86::MMX_PUNPCKHDQrr:
5419 case X86::MMX_PUNPCKLBWrr:
5420 case X86::MMX_PUNPCKLWDrr:
5421 case X86::MMX_PUNPCKLDQrr:
5422 case X86::MOVHLPSrr:
5423 case X86::PACKSSWBrr:
5424 case X86::PACKUSWBrr:
5425 case X86::PACKSSDWrr:
5426 case X86::PACKUSDWrr:
5427 case X86::PUNPCKHBWrr:
5428 case X86::PUNPCKLBWrr:
5429 case X86::PUNPCKHWDrr:
5430 case X86::PUNPCKLWDrr:
5431 case X86::PUNPCKHDQrr:
5432 case X86::PUNPCKLDQrr:
5433 case X86::PUNPCKHQDQrr:
5434 case X86::PUNPCKLQDQrr:
5435 case X86::SHUFPDrri:
5436 case X86::SHUFPSrri:
5437 // These instructions are sometimes used with an undef first or second
5438 // source. Return true here so BreakFalseDeps will assign this source to the
5439 // same register as the first source to avoid a false dependency.
5440 // Operand 1 of these instructions is tied so they're separate from their
5441 // VEX counterparts.
5442 return OpNum == 2 && !ForLoadFold;
5443
5444 case X86::VMOVLHPSrr:
5445 case X86::VMOVLHPSZrr:
5446 case X86::VPACKSSWBrr:
5447 case X86::VPACKUSWBrr:
5448 case X86::VPACKSSDWrr:
5449 case X86::VPACKUSDWrr:
5450 case X86::VPACKSSWBZ128rr:
5451 case X86::VPACKUSWBZ128rr:
5452 case X86::VPACKSSDWZ128rr:
5453 case X86::VPACKUSDWZ128rr:
5454 case X86::VPERM2F128rr:
5455 case X86::VPERM2I128rr:
5456 case X86::VSHUFF32X4Z256rri:
5457 case X86::VSHUFF32X4Zrri:
5458 case X86::VSHUFF64X2Z256rri:
5459 case X86::VSHUFF64X2Zrri:
5460 case X86::VSHUFI32X4Z256rri:
5461 case X86::VSHUFI32X4Zrri:
5462 case X86::VSHUFI64X2Z256rri:
5463 case X86::VSHUFI64X2Zrri:
5464 case X86::VPUNPCKHBWrr:
5465 case X86::VPUNPCKLBWrr:
5466 case X86::VPUNPCKHBWYrr:
5467 case X86::VPUNPCKLBWYrr:
5468 case X86::VPUNPCKHBWZ128rr:
5469 case X86::VPUNPCKLBWZ128rr:
5470 case X86::VPUNPCKHBWZ256rr:
5471 case X86::VPUNPCKLBWZ256rr:
5472 case X86::VPUNPCKHBWZrr:
5473 case X86::VPUNPCKLBWZrr:
5474 case X86::VPUNPCKHWDrr:
5475 case X86::VPUNPCKLWDrr:
5476 case X86::VPUNPCKHWDYrr:
5477 case X86::VPUNPCKLWDYrr:
5478 case X86::VPUNPCKHWDZ128rr:
5479 case X86::VPUNPCKLWDZ128rr:
5480 case X86::VPUNPCKHWDZ256rr:
5481 case X86::VPUNPCKLWDZ256rr:
5482 case X86::VPUNPCKHWDZrr:
5483 case X86::VPUNPCKLWDZrr:
5484 case X86::VPUNPCKHDQrr:
5485 case X86::VPUNPCKLDQrr:
5486 case X86::VPUNPCKHDQYrr:
5487 case X86::VPUNPCKLDQYrr:
5488 case X86::VPUNPCKHDQZ128rr:
5489 case X86::VPUNPCKLDQZ128rr:
5490 case X86::VPUNPCKHDQZ256rr:
5491 case X86::VPUNPCKLDQZ256rr:
5492 case X86::VPUNPCKHDQZrr:
5493 case X86::VPUNPCKLDQZrr:
5494 case X86::VPUNPCKHQDQrr:
5495 case X86::VPUNPCKLQDQrr:
5496 case X86::VPUNPCKHQDQYrr:
5497 case X86::VPUNPCKLQDQYrr:
5498 case X86::VPUNPCKHQDQZ128rr:
5499 case X86::VPUNPCKLQDQZ128rr:
5500 case X86::VPUNPCKHQDQZ256rr:
5501 case X86::VPUNPCKLQDQZ256rr:
5502 case X86::VPUNPCKHQDQZrr:
5503 case X86::VPUNPCKLQDQZrr:
5504 // These instructions are sometimes used with an undef first or second
5505 // source. Return true here so BreakFalseDeps will assign this source to the
5506 // same register as the first source to avoid a false dependency.
5507 return (OpNum == 1 || OpNum == 2) && !ForLoadFold;
5508
5509 case X86::VCVTSI2SSrr:
5510 case X86::VCVTSI2SSrm:
5511 case X86::VCVTSI2SSrr_Int:
5512 case X86::VCVTSI2SSrm_Int:
5513 case X86::VCVTSI642SSrr:
5514 case X86::VCVTSI642SSrm:
5515 case X86::VCVTSI642SSrr_Int:
5516 case X86::VCVTSI642SSrm_Int:
5517 case X86::VCVTSI2SDrr:
5518 case X86::VCVTSI2SDrm:
5519 case X86::VCVTSI2SDrr_Int:
5520 case X86::VCVTSI2SDrm_Int:
5521 case X86::VCVTSI642SDrr:
5522 case X86::VCVTSI642SDrm:
5523 case X86::VCVTSI642SDrr_Int:
5524 case X86::VCVTSI642SDrm_Int:
5525 // AVX-512
5526 case X86::VCVTSI2SSZrr:
5527 case X86::VCVTSI2SSZrm:
5528 case X86::VCVTSI2SSZrr_Int:
5529 case X86::VCVTSI2SSZrrb_Int:
5530 case X86::VCVTSI2SSZrm_Int:
5531 case X86::VCVTSI642SSZrr:
5532 case X86::VCVTSI642SSZrm:
5533 case X86::VCVTSI642SSZrr_Int:
5534 case X86::VCVTSI642SSZrrb_Int:
5535 case X86::VCVTSI642SSZrm_Int:
5536 case X86::VCVTSI2SDZrr:
5537 case X86::VCVTSI2SDZrm:
5538 case X86::VCVTSI2SDZrr_Int:
5539 case X86::VCVTSI2SDZrm_Int:
5540 case X86::VCVTSI642SDZrr:
5541 case X86::VCVTSI642SDZrm:
5542 case X86::VCVTSI642SDZrr_Int:
5543 case X86::VCVTSI642SDZrrb_Int:
5544 case X86::VCVTSI642SDZrm_Int:
5545 case X86::VCVTUSI2SSZrr:
5546 case X86::VCVTUSI2SSZrm:
5547 case X86::VCVTUSI2SSZrr_Int:
5548 case X86::VCVTUSI2SSZrrb_Int:
5549 case X86::VCVTUSI2SSZrm_Int:
5550 case X86::VCVTUSI642SSZrr:
5551 case X86::VCVTUSI642SSZrm:
5552 case X86::VCVTUSI642SSZrr_Int:
5553 case X86::VCVTUSI642SSZrrb_Int:
5554 case X86::VCVTUSI642SSZrm_Int:
5555 case X86::VCVTUSI2SDZrr:
5556 case X86::VCVTUSI2SDZrm:
5557 case X86::VCVTUSI2SDZrr_Int:
5558 case X86::VCVTUSI2SDZrm_Int:
5559 case X86::VCVTUSI642SDZrr:
5560 case X86::VCVTUSI642SDZrm:
5561 case X86::VCVTUSI642SDZrr_Int:
5562 case X86::VCVTUSI642SDZrrb_Int:
5563 case X86::VCVTUSI642SDZrm_Int:
5564 case X86::VCVTSI2SHZrr:
5565 case X86::VCVTSI2SHZrm:
5566 case X86::VCVTSI2SHZrr_Int:
5567 case X86::VCVTSI2SHZrrb_Int:
5568 case X86::VCVTSI2SHZrm_Int:
5569 case X86::VCVTSI642SHZrr:
5570 case X86::VCVTSI642SHZrm:
5571 case X86::VCVTSI642SHZrr_Int:
5572 case X86::VCVTSI642SHZrrb_Int:
5573 case X86::VCVTSI642SHZrm_Int:
5574 case X86::VCVTUSI2SHZrr:
5575 case X86::VCVTUSI2SHZrm:
5576 case X86::VCVTUSI2SHZrr_Int:
5577 case X86::VCVTUSI2SHZrrb_Int:
5578 case X86::VCVTUSI2SHZrm_Int:
5579 case X86::VCVTUSI642SHZrr:
5580 case X86::VCVTUSI642SHZrm:
5581 case X86::VCVTUSI642SHZrr_Int:
5582 case X86::VCVTUSI642SHZrrb_Int:
5583 case X86::VCVTUSI642SHZrm_Int:
5584 // Load folding won't effect the undef register update since the input is
5585 // a GPR.
5586 return OpNum == 1 && !ForLoadFold;
5587 case X86::VCVTSD2SSrr:
5588 case X86::VCVTSD2SSrm:
5589 case X86::VCVTSD2SSrr_Int:
5590 case X86::VCVTSD2SSrm_Int:
5591 case X86::VCVTSS2SDrr:
5592 case X86::VCVTSS2SDrm:
5593 case X86::VCVTSS2SDrr_Int:
5594 case X86::VCVTSS2SDrm_Int:
5595 case X86::VRCPSSr:
5596 case X86::VRCPSSr_Int:
5597 case X86::VRCPSSm:
5598 case X86::VRCPSSm_Int:
5599 case X86::VROUNDSDr:
5600 case X86::VROUNDSDm:
5601 case X86::VROUNDSDr_Int:
5602 case X86::VROUNDSDm_Int:
5603 case X86::VROUNDSSr:
5604 case X86::VROUNDSSm:
5605 case X86::VROUNDSSr_Int:
5606 case X86::VROUNDSSm_Int:
5607 case X86::VRSQRTSSr:
5608 case X86::VRSQRTSSr_Int:
5609 case X86::VRSQRTSSm:
5610 case X86::VRSQRTSSm_Int:
5611 case X86::VSQRTSSr:
5612 case X86::VSQRTSSr_Int:
5613 case X86::VSQRTSSm:
5614 case X86::VSQRTSSm_Int:
5615 case X86::VSQRTSDr:
5616 case X86::VSQRTSDr_Int:
5617 case X86::VSQRTSDm:
5618 case X86::VSQRTSDm_Int:
5619 // AVX-512
5620 case X86::VCVTSD2SSZrr:
5621 case X86::VCVTSD2SSZrr_Int:
5622 case X86::VCVTSD2SSZrrb_Int:
5623 case X86::VCVTSD2SSZrm:
5624 case X86::VCVTSD2SSZrm_Int:
5625 case X86::VCVTSS2SDZrr:
5626 case X86::VCVTSS2SDZrr_Int:
5627 case X86::VCVTSS2SDZrrb_Int:
5628 case X86::VCVTSS2SDZrm:
5629 case X86::VCVTSS2SDZrm_Int:
5630 case X86::VGETEXPSDZr:
5631 case X86::VGETEXPSDZrb:
5632 case X86::VGETEXPSDZm:
5633 case X86::VGETEXPSSZr:
5634 case X86::VGETEXPSSZrb:
5635 case X86::VGETEXPSSZm:
5636 case X86::VGETMANTSDZrri:
5637 case X86::VGETMANTSDZrrib:
5638 case X86::VGETMANTSDZrmi:
5639 case X86::VGETMANTSSZrri:
5640 case X86::VGETMANTSSZrrib:
5641 case X86::VGETMANTSSZrmi:
5642 case X86::VRNDSCALESDZr:
5643 case X86::VRNDSCALESDZr_Int:
5644 case X86::VRNDSCALESDZrb_Int:
5645 case X86::VRNDSCALESDZm:
5646 case X86::VRNDSCALESDZm_Int:
5647 case X86::VRNDSCALESSZr:
5648 case X86::VRNDSCALESSZr_Int:
5649 case X86::VRNDSCALESSZrb_Int:
5650 case X86::VRNDSCALESSZm:
5651 case X86::VRNDSCALESSZm_Int:
5652 case X86::VRCP14SDZrr:
5653 case X86::VRCP14SDZrm:
5654 case X86::VRCP14SSZrr:
5655 case X86::VRCP14SSZrm:
5656 case X86::VRCPSHZrr:
5657 case X86::VRCPSHZrm:
5658 case X86::VRSQRTSHZrr:
5659 case X86::VRSQRTSHZrm:
5660 case X86::VREDUCESHZrmi:
5661 case X86::VREDUCESHZrri:
5662 case X86::VREDUCESHZrrib:
5663 case X86::VGETEXPSHZr:
5664 case X86::VGETEXPSHZrb:
5665 case X86::VGETEXPSHZm:
5666 case X86::VGETMANTSHZrri:
5667 case X86::VGETMANTSHZrrib:
5668 case X86::VGETMANTSHZrmi:
5669 case X86::VRNDSCALESHZr:
5670 case X86::VRNDSCALESHZr_Int:
5671 case X86::VRNDSCALESHZrb_Int:
5672 case X86::VRNDSCALESHZm:
5673 case X86::VRNDSCALESHZm_Int:
5674 case X86::VSQRTSHZr:
5675 case X86::VSQRTSHZr_Int:
5676 case X86::VSQRTSHZrb_Int:
5677 case X86::VSQRTSHZm:
5678 case X86::VSQRTSHZm_Int:
5679 case X86::VRCP28SDZr:
5680 case X86::VRCP28SDZrb:
5681 case X86::VRCP28SDZm:
5682 case X86::VRCP28SSZr:
5683 case X86::VRCP28SSZrb:
5684 case X86::VRCP28SSZm:
5685 case X86::VREDUCESSZrmi:
5686 case X86::VREDUCESSZrri:
5687 case X86::VREDUCESSZrrib:
5688 case X86::VRSQRT14SDZrr:
5689 case X86::VRSQRT14SDZrm:
5690 case X86::VRSQRT14SSZrr:
5691 case X86::VRSQRT14SSZrm:
5692 case X86::VRSQRT28SDZr:
5693 case X86::VRSQRT28SDZrb:
5694 case X86::VRSQRT28SDZm:
5695 case X86::VRSQRT28SSZr:
5696 case X86::VRSQRT28SSZrb:
5697 case X86::VRSQRT28SSZm:
5698 case X86::VSQRTSSZr:
5699 case X86::VSQRTSSZr_Int:
5700 case X86::VSQRTSSZrb_Int:
5701 case X86::VSQRTSSZm:
5702 case X86::VSQRTSSZm_Int:
5703 case X86::VSQRTSDZr:
5704 case X86::VSQRTSDZr_Int:
5705 case X86::VSQRTSDZrb_Int:
5706 case X86::VSQRTSDZm:
5707 case X86::VSQRTSDZm_Int:
5708 case X86::VCVTSD2SHZrr:
5709 case X86::VCVTSD2SHZrr_Int:
5710 case X86::VCVTSD2SHZrrb_Int:
5711 case X86::VCVTSD2SHZrm:
5712 case X86::VCVTSD2SHZrm_Int:
5713 case X86::VCVTSS2SHZrr:
5714 case X86::VCVTSS2SHZrr_Int:
5715 case X86::VCVTSS2SHZrrb_Int:
5716 case X86::VCVTSS2SHZrm:
5717 case X86::VCVTSS2SHZrm_Int:
5718 case X86::VCVTSH2SDZrr:
5719 case X86::VCVTSH2SDZrr_Int:
5720 case X86::VCVTSH2SDZrrb_Int:
5721 case X86::VCVTSH2SDZrm:
5722 case X86::VCVTSH2SDZrm_Int:
5723 case X86::VCVTSH2SSZrr:
5724 case X86::VCVTSH2SSZrr_Int:
5725 case X86::VCVTSH2SSZrrb_Int:
5726 case X86::VCVTSH2SSZrm:
5727 case X86::VCVTSH2SSZrm_Int:
5728 return OpNum == 1;
5729 case X86::VMOVSSZrrk:
5730 case X86::VMOVSDZrrk:
5731 return OpNum == 3 && !ForLoadFold;
5732 case X86::VMOVSSZrrkz:
5733 case X86::VMOVSDZrrkz:
5734 return OpNum == 2 && !ForLoadFold;
5735 }
5736
5737 return false;
5738 }
5739
5740 /// Inform the BreakFalseDeps pass how many idle instructions we would like
5741 /// before certain undef register reads.
5742 ///
5743 /// This catches the VCVTSI2SD family of instructions:
5744 ///
5745 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
5746 ///
5747 /// We should to be careful *not* to catch VXOR idioms which are presumably
5748 /// handled specially in the pipeline:
5749 ///
5750 /// vxorps undef %xmm1, undef %xmm1, %xmm1
5751 ///
5752 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
5753 /// high bits that are passed-through are not live.
5754 unsigned
getUndefRegClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const5755 X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
5756 const TargetRegisterInfo *TRI) const {
5757 const MachineOperand &MO = MI.getOperand(OpNum);
5758 if (Register::isPhysicalRegister(MO.getReg()) &&
5759 hasUndefRegUpdate(MI.getOpcode(), OpNum))
5760 return UndefRegClearance;
5761
5762 return 0;
5763 }
5764
breakPartialRegDependency(MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const5765 void X86InstrInfo::breakPartialRegDependency(
5766 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5767 Register Reg = MI.getOperand(OpNum).getReg();
5768 // If MI kills this register, the false dependence is already broken.
5769 if (MI.killsRegister(Reg, TRI))
5770 return;
5771
5772 if (X86::VR128RegClass.contains(Reg)) {
5773 // These instructions are all floating point domain, so xorps is the best
5774 // choice.
5775 unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
5776 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
5777 .addReg(Reg, RegState::Undef)
5778 .addReg(Reg, RegState::Undef);
5779 MI.addRegisterKilled(Reg, TRI, true);
5780 } else if (X86::VR256RegClass.contains(Reg)) {
5781 // Use vxorps to clear the full ymm register.
5782 // It wants to read and write the xmm sub-register.
5783 Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
5784 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
5785 .addReg(XReg, RegState::Undef)
5786 .addReg(XReg, RegState::Undef)
5787 .addReg(Reg, RegState::ImplicitDefine);
5788 MI.addRegisterKilled(Reg, TRI, true);
5789 } else if (X86::VR128XRegClass.contains(Reg)) {
5790 // Only handle VLX targets.
5791 if (!Subtarget.hasVLX())
5792 return;
5793 // Since vxorps requires AVX512DQ, vpxord should be the best choice.
5794 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), Reg)
5795 .addReg(Reg, RegState::Undef)
5796 .addReg(Reg, RegState::Undef);
5797 MI.addRegisterKilled(Reg, TRI, true);
5798 } else if (X86::VR256XRegClass.contains(Reg) ||
5799 X86::VR512RegClass.contains(Reg)) {
5800 // Only handle VLX targets.
5801 if (!Subtarget.hasVLX())
5802 return;
5803 // Use vpxord to clear the full ymm/zmm register.
5804 // It wants to read and write the xmm sub-register.
5805 Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
5806 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), XReg)
5807 .addReg(XReg, RegState::Undef)
5808 .addReg(XReg, RegState::Undef)
5809 .addReg(Reg, RegState::ImplicitDefine);
5810 MI.addRegisterKilled(Reg, TRI, true);
5811 } else if (X86::GR64RegClass.contains(Reg)) {
5812 // Using XOR32rr because it has shorter encoding and zeros up the upper bits
5813 // as well.
5814 Register XReg = TRI->getSubReg(Reg, X86::sub_32bit);
5815 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
5816 .addReg(XReg, RegState::Undef)
5817 .addReg(XReg, RegState::Undef)
5818 .addReg(Reg, RegState::ImplicitDefine);
5819 MI.addRegisterKilled(Reg, TRI, true);
5820 } else if (X86::GR32RegClass.contains(Reg)) {
5821 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
5822 .addReg(Reg, RegState::Undef)
5823 .addReg(Reg, RegState::Undef);
5824 MI.addRegisterKilled(Reg, TRI, true);
5825 }
5826 }
5827
addOperands(MachineInstrBuilder & MIB,ArrayRef<MachineOperand> MOs,int PtrOffset=0)5828 static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
5829 int PtrOffset = 0) {
5830 unsigned NumAddrOps = MOs.size();
5831
5832 if (NumAddrOps < 4) {
5833 // FrameIndex only - add an immediate offset (whether its zero or not).
5834 for (unsigned i = 0; i != NumAddrOps; ++i)
5835 MIB.add(MOs[i]);
5836 addOffset(MIB, PtrOffset);
5837 } else {
5838 // General Memory Addressing - we need to add any offset to an existing
5839 // offset.
5840 assert(MOs.size() == 5 && "Unexpected memory operand list length");
5841 for (unsigned i = 0; i != NumAddrOps; ++i) {
5842 const MachineOperand &MO = MOs[i];
5843 if (i == 3 && PtrOffset != 0) {
5844 MIB.addDisp(MO, PtrOffset);
5845 } else {
5846 MIB.add(MO);
5847 }
5848 }
5849 }
5850 }
5851
updateOperandRegConstraints(MachineFunction & MF,MachineInstr & NewMI,const TargetInstrInfo & TII)5852 static void updateOperandRegConstraints(MachineFunction &MF,
5853 MachineInstr &NewMI,
5854 const TargetInstrInfo &TII) {
5855 MachineRegisterInfo &MRI = MF.getRegInfo();
5856 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
5857
5858 for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
5859 MachineOperand &MO = NewMI.getOperand(Idx);
5860 // We only need to update constraints on virtual register operands.
5861 if (!MO.isReg())
5862 continue;
5863 Register Reg = MO.getReg();
5864 if (!Reg.isVirtual())
5865 continue;
5866
5867 auto *NewRC = MRI.constrainRegClass(
5868 Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
5869 if (!NewRC) {
5870 LLVM_DEBUG(
5871 dbgs() << "WARNING: Unable to update register constraint for operand "
5872 << Idx << " of instruction:\n";
5873 NewMI.dump(); dbgs() << "\n");
5874 }
5875 }
5876 }
5877
FuseTwoAddrInst(MachineFunction & MF,unsigned Opcode,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,MachineInstr & MI,const TargetInstrInfo & TII)5878 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
5879 ArrayRef<MachineOperand> MOs,
5880 MachineBasicBlock::iterator InsertPt,
5881 MachineInstr &MI,
5882 const TargetInstrInfo &TII) {
5883 // Create the base instruction with the memory operand as the first part.
5884 // Omit the implicit operands, something BuildMI can't do.
5885 MachineInstr *NewMI =
5886 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
5887 MachineInstrBuilder MIB(MF, NewMI);
5888 addOperands(MIB, MOs);
5889
5890 // Loop over the rest of the ri operands, converting them over.
5891 unsigned NumOps = MI.getDesc().getNumOperands() - 2;
5892 for (unsigned i = 0; i != NumOps; ++i) {
5893 MachineOperand &MO = MI.getOperand(i + 2);
5894 MIB.add(MO);
5895 }
5896 for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), NumOps + 2))
5897 MIB.add(MO);
5898
5899 updateOperandRegConstraints(MF, *NewMI, TII);
5900
5901 MachineBasicBlock *MBB = InsertPt->getParent();
5902 MBB->insert(InsertPt, NewMI);
5903
5904 return MIB;
5905 }
5906
FuseInst(MachineFunction & MF,unsigned Opcode,unsigned OpNo,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,MachineInstr & MI,const TargetInstrInfo & TII,int PtrOffset=0)5907 static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
5908 unsigned OpNo, ArrayRef<MachineOperand> MOs,
5909 MachineBasicBlock::iterator InsertPt,
5910 MachineInstr &MI, const TargetInstrInfo &TII,
5911 int PtrOffset = 0) {
5912 // Omit the implicit operands, something BuildMI can't do.
5913 MachineInstr *NewMI =
5914 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
5915 MachineInstrBuilder MIB(MF, NewMI);
5916
5917 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5918 MachineOperand &MO = MI.getOperand(i);
5919 if (i == OpNo) {
5920 assert(MO.isReg() && "Expected to fold into reg operand!");
5921 addOperands(MIB, MOs, PtrOffset);
5922 } else {
5923 MIB.add(MO);
5924 }
5925 }
5926
5927 updateOperandRegConstraints(MF, *NewMI, TII);
5928
5929 // Copy the NoFPExcept flag from the instruction we're fusing.
5930 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
5931 NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept);
5932
5933 MachineBasicBlock *MBB = InsertPt->getParent();
5934 MBB->insert(InsertPt, NewMI);
5935
5936 return MIB;
5937 }
5938
MakeM0Inst(const TargetInstrInfo & TII,unsigned Opcode,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,MachineInstr & MI)5939 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
5940 ArrayRef<MachineOperand> MOs,
5941 MachineBasicBlock::iterator InsertPt,
5942 MachineInstr &MI) {
5943 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
5944 MI.getDebugLoc(), TII.get(Opcode));
5945 addOperands(MIB, MOs);
5946 return MIB.addImm(0);
5947 }
5948
foldMemoryOperandCustom(MachineFunction & MF,MachineInstr & MI,unsigned OpNum,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,unsigned Size,Align Alignment) const5949 MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
5950 MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
5951 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
5952 unsigned Size, Align Alignment) const {
5953 switch (MI.getOpcode()) {
5954 case X86::INSERTPSrr:
5955 case X86::VINSERTPSrr:
5956 case X86::VINSERTPSZrr:
5957 // Attempt to convert the load of inserted vector into a fold load
5958 // of a single float.
5959 if (OpNum == 2) {
5960 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
5961 unsigned ZMask = Imm & 15;
5962 unsigned DstIdx = (Imm >> 4) & 3;
5963 unsigned SrcIdx = (Imm >> 6) & 3;
5964
5965 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5966 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
5967 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5968 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(4)) {
5969 int PtrOffset = SrcIdx * 4;
5970 unsigned NewImm = (DstIdx << 4) | ZMask;
5971 unsigned NewOpCode =
5972 (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
5973 (MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm :
5974 X86::INSERTPSrm;
5975 MachineInstr *NewMI =
5976 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
5977 NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
5978 return NewMI;
5979 }
5980 }
5981 break;
5982 case X86::MOVHLPSrr:
5983 case X86::VMOVHLPSrr:
5984 case X86::VMOVHLPSZrr:
5985 // Move the upper 64-bits of the second operand to the lower 64-bits.
5986 // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
5987 // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
5988 if (OpNum == 2) {
5989 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5990 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
5991 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5992 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) {
5993 unsigned NewOpCode =
5994 (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
5995 (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm :
5996 X86::MOVLPSrm;
5997 MachineInstr *NewMI =
5998 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
5999 return NewMI;
6000 }
6001 }
6002 break;
6003 case X86::UNPCKLPDrr:
6004 // If we won't be able to fold this to the memory form of UNPCKL, use
6005 // MOVHPD instead. Done as custom because we can't have this in the load
6006 // table twice.
6007 if (OpNum == 2) {
6008 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6009 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
6010 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
6011 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) {
6012 MachineInstr *NewMI =
6013 FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
6014 return NewMI;
6015 }
6016 }
6017 break;
6018 }
6019
6020 return nullptr;
6021 }
6022
shouldPreventUndefRegUpdateMemFold(MachineFunction & MF,MachineInstr & MI)6023 static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
6024 MachineInstr &MI) {
6025 if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/true) ||
6026 !MI.getOperand(1).isReg())
6027 return false;
6028
6029 // The are two cases we need to handle depending on where in the pipeline
6030 // the folding attempt is being made.
6031 // -Register has the undef flag set.
6032 // -Register is produced by the IMPLICIT_DEF instruction.
6033
6034 if (MI.getOperand(1).isUndef())
6035 return true;
6036
6037 MachineRegisterInfo &RegInfo = MF.getRegInfo();
6038 MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
6039 return VRegDef && VRegDef->isImplicitDef();
6040 }
6041
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr & MI,unsigned OpNum,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,unsigned Size,Align Alignment,bool AllowCommute) const6042 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
6043 MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
6044 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
6045 unsigned Size, Align Alignment, bool AllowCommute) const {
6046 bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
6047 bool isTwoAddrFold = false;
6048
6049 // For CPUs that favor the register form of a call or push,
6050 // do not fold loads into calls or pushes, unless optimizing for size
6051 // aggressively.
6052 if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
6053 (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
6054 MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
6055 MI.getOpcode() == X86::PUSH64r))
6056 return nullptr;
6057
6058 // Avoid partial and undef register update stalls unless optimizing for size.
6059 if (!MF.getFunction().hasOptSize() &&
6060 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
6061 shouldPreventUndefRegUpdateMemFold(MF, MI)))
6062 return nullptr;
6063
6064 unsigned NumOps = MI.getDesc().getNumOperands();
6065 bool isTwoAddr =
6066 NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
6067
6068 // FIXME: AsmPrinter doesn't know how to handle
6069 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
6070 if (MI.getOpcode() == X86::ADD32ri &&
6071 MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
6072 return nullptr;
6073
6074 // GOTTPOFF relocation loads can only be folded into add instructions.
6075 // FIXME: Need to exclude other relocations that only support specific
6076 // instructions.
6077 if (MOs.size() == X86::AddrNumOperands &&
6078 MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
6079 MI.getOpcode() != X86::ADD64rr)
6080 return nullptr;
6081
6082 MachineInstr *NewMI = nullptr;
6083
6084 // Attempt to fold any custom cases we have.
6085 if (MachineInstr *CustomMI = foldMemoryOperandCustom(
6086 MF, MI, OpNum, MOs, InsertPt, Size, Alignment))
6087 return CustomMI;
6088
6089 const X86MemoryFoldTableEntry *I = nullptr;
6090
6091 // Folding a memory location into the two-address part of a two-address
6092 // instruction is different than folding it other places. It requires
6093 // replacing the *two* registers with the memory location.
6094 if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
6095 MI.getOperand(1).isReg() &&
6096 MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
6097 I = lookupTwoAddrFoldTable(MI.getOpcode());
6098 isTwoAddrFold = true;
6099 } else {
6100 if (OpNum == 0) {
6101 if (MI.getOpcode() == X86::MOV32r0) {
6102 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
6103 if (NewMI)
6104 return NewMI;
6105 }
6106 }
6107
6108 I = lookupFoldTable(MI.getOpcode(), OpNum);
6109 }
6110
6111 if (I != nullptr) {
6112 unsigned Opcode = I->DstOp;
6113 bool FoldedLoad =
6114 isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_LOAD) || OpNum > 0;
6115 bool FoldedStore =
6116 isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_STORE);
6117 MaybeAlign MinAlign =
6118 decodeMaybeAlign((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT);
6119 if (MinAlign && Alignment < *MinAlign)
6120 return nullptr;
6121 bool NarrowToMOV32rm = false;
6122 if (Size) {
6123 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6124 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
6125 &RI, MF);
6126 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
6127 // Check if it's safe to fold the load. If the size of the object is
6128 // narrower than the load width, then it's not.
6129 // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
6130 if (FoldedLoad && Size < RCSize) {
6131 // If this is a 64-bit load, but the spill slot is 32, then we can do
6132 // a 32-bit load which is implicitly zero-extended. This likely is
6133 // due to live interval analysis remat'ing a load from stack slot.
6134 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
6135 return nullptr;
6136 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
6137 return nullptr;
6138 Opcode = X86::MOV32rm;
6139 NarrowToMOV32rm = true;
6140 }
6141 // For stores, make sure the size of the object is equal to the size of
6142 // the store. If the object is larger, the extra bits would be garbage. If
6143 // the object is smaller we might overwrite another object or fault.
6144 if (FoldedStore && Size != RCSize)
6145 return nullptr;
6146 }
6147
6148 if (isTwoAddrFold)
6149 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
6150 else
6151 NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
6152
6153 if (NarrowToMOV32rm) {
6154 // If this is the special case where we use a MOV32rm to load a 32-bit
6155 // value and zero-extend the top bits. Change the destination register
6156 // to a 32-bit one.
6157 Register DstReg = NewMI->getOperand(0).getReg();
6158 if (DstReg.isPhysical())
6159 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
6160 else
6161 NewMI->getOperand(0).setSubReg(X86::sub_32bit);
6162 }
6163 return NewMI;
6164 }
6165
6166 // If the instruction and target operand are commutable, commute the
6167 // instruction and try again.
6168 if (AllowCommute) {
6169 unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
6170 if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
6171 bool HasDef = MI.getDesc().getNumDefs();
6172 Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
6173 Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
6174 Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
6175 bool Tied1 =
6176 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
6177 bool Tied2 =
6178 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
6179
6180 // If either of the commutable operands are tied to the destination
6181 // then we can not commute + fold.
6182 if ((HasDef && Reg0 == Reg1 && Tied1) ||
6183 (HasDef && Reg0 == Reg2 && Tied2))
6184 return nullptr;
6185
6186 MachineInstr *CommutedMI =
6187 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
6188 if (!CommutedMI) {
6189 // Unable to commute.
6190 return nullptr;
6191 }
6192 if (CommutedMI != &MI) {
6193 // New instruction. We can't fold from this.
6194 CommutedMI->eraseFromParent();
6195 return nullptr;
6196 }
6197
6198 // Attempt to fold with the commuted version of the instruction.
6199 NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size,
6200 Alignment, /*AllowCommute=*/false);
6201 if (NewMI)
6202 return NewMI;
6203
6204 // Folding failed again - undo the commute before returning.
6205 MachineInstr *UncommutedMI =
6206 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
6207 if (!UncommutedMI) {
6208 // Unable to commute.
6209 return nullptr;
6210 }
6211 if (UncommutedMI != &MI) {
6212 // New instruction. It doesn't need to be kept.
6213 UncommutedMI->eraseFromParent();
6214 return nullptr;
6215 }
6216
6217 // Return here to prevent duplicate fuse failure report.
6218 return nullptr;
6219 }
6220 }
6221
6222 // No fusion
6223 if (PrintFailedFusing && !MI.isCopy())
6224 dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
6225 return nullptr;
6226 }
6227
6228 MachineInstr *
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr & MI,ArrayRef<unsigned> Ops,MachineBasicBlock::iterator InsertPt,int FrameIndex,LiveIntervals * LIS,VirtRegMap * VRM) const6229 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
6230 ArrayRef<unsigned> Ops,
6231 MachineBasicBlock::iterator InsertPt,
6232 int FrameIndex, LiveIntervals *LIS,
6233 VirtRegMap *VRM) const {
6234 // Check switch flag
6235 if (NoFusing)
6236 return nullptr;
6237
6238 // Avoid partial and undef register update stalls unless optimizing for size.
6239 if (!MF.getFunction().hasOptSize() &&
6240 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
6241 shouldPreventUndefRegUpdateMemFold(MF, MI)))
6242 return nullptr;
6243
6244 // Don't fold subreg spills, or reloads that use a high subreg.
6245 for (auto Op : Ops) {
6246 MachineOperand &MO = MI.getOperand(Op);
6247 auto SubReg = MO.getSubReg();
6248 if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
6249 return nullptr;
6250 }
6251
6252 const MachineFrameInfo &MFI = MF.getFrameInfo();
6253 unsigned Size = MFI.getObjectSize(FrameIndex);
6254 Align Alignment = MFI.getObjectAlign(FrameIndex);
6255 // If the function stack isn't realigned we don't want to fold instructions
6256 // that need increased alignment.
6257 if (!RI.hasStackRealignment(MF))
6258 Alignment =
6259 std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign());
6260 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
6261 unsigned NewOpc = 0;
6262 unsigned RCSize = 0;
6263 switch (MI.getOpcode()) {
6264 default: return nullptr;
6265 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
6266 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
6267 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
6268 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
6269 }
6270 // Check if it's safe to fold the load. If the size of the object is
6271 // narrower than the load width, then it's not.
6272 if (Size < RCSize)
6273 return nullptr;
6274 // Change to CMPXXri r, 0 first.
6275 MI.setDesc(get(NewOpc));
6276 MI.getOperand(1).ChangeToImmediate(0);
6277 } else if (Ops.size() != 1)
6278 return nullptr;
6279
6280 return foldMemoryOperandImpl(MF, MI, Ops[0],
6281 MachineOperand::CreateFI(FrameIndex), InsertPt,
6282 Size, Alignment, /*AllowCommute=*/true);
6283 }
6284
6285 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI
6286 /// because the latter uses contents that wouldn't be defined in the folded
6287 /// version. For instance, this transformation isn't legal:
6288 /// movss (%rdi), %xmm0
6289 /// addps %xmm0, %xmm0
6290 /// ->
6291 /// addps (%rdi), %xmm0
6292 ///
6293 /// But this one is:
6294 /// movss (%rdi), %xmm0
6295 /// addss %xmm0, %xmm0
6296 /// ->
6297 /// addss (%rdi), %xmm0
6298 ///
isNonFoldablePartialRegisterLoad(const MachineInstr & LoadMI,const MachineInstr & UserMI,const MachineFunction & MF)6299 static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
6300 const MachineInstr &UserMI,
6301 const MachineFunction &MF) {
6302 unsigned Opc = LoadMI.getOpcode();
6303 unsigned UserOpc = UserMI.getOpcode();
6304 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6305 const TargetRegisterClass *RC =
6306 MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
6307 unsigned RegSize = TRI.getRegSizeInBits(*RC);
6308
6309 if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
6310 Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
6311 Opc == X86::VMOVSSZrm_alt) &&
6312 RegSize > 32) {
6313 // These instructions only load 32 bits, we can't fold them if the
6314 // destination register is wider than 32 bits (4 bytes), and its user
6315 // instruction isn't scalar (SS).
6316 switch (UserOpc) {
6317 case X86::CVTSS2SDrr_Int:
6318 case X86::VCVTSS2SDrr_Int:
6319 case X86::VCVTSS2SDZrr_Int:
6320 case X86::VCVTSS2SDZrr_Intk:
6321 case X86::VCVTSS2SDZrr_Intkz:
6322 case X86::CVTSS2SIrr_Int: case X86::CVTSS2SI64rr_Int:
6323 case X86::VCVTSS2SIrr_Int: case X86::VCVTSS2SI64rr_Int:
6324 case X86::VCVTSS2SIZrr_Int: case X86::VCVTSS2SI64Zrr_Int:
6325 case X86::CVTTSS2SIrr_Int: case X86::CVTTSS2SI64rr_Int:
6326 case X86::VCVTTSS2SIrr_Int: case X86::VCVTTSS2SI64rr_Int:
6327 case X86::VCVTTSS2SIZrr_Int: case X86::VCVTTSS2SI64Zrr_Int:
6328 case X86::VCVTSS2USIZrr_Int: case X86::VCVTSS2USI64Zrr_Int:
6329 case X86::VCVTTSS2USIZrr_Int: case X86::VCVTTSS2USI64Zrr_Int:
6330 case X86::RCPSSr_Int: case X86::VRCPSSr_Int:
6331 case X86::RSQRTSSr_Int: case X86::VRSQRTSSr_Int:
6332 case X86::ROUNDSSr_Int: case X86::VROUNDSSr_Int:
6333 case X86::COMISSrr_Int: case X86::VCOMISSrr_Int: case X86::VCOMISSZrr_Int:
6334 case X86::UCOMISSrr_Int:case X86::VUCOMISSrr_Int:case X86::VUCOMISSZrr_Int:
6335 case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
6336 case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
6337 case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
6338 case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
6339 case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
6340 case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
6341 case X86::SQRTSSr_Int: case X86::VSQRTSSr_Int: case X86::VSQRTSSZr_Int:
6342 case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
6343 case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
6344 case X86::VCMPSSZrr_Intk:
6345 case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
6346 case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
6347 case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
6348 case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
6349 case X86::VSQRTSSZr_Intk: case X86::VSQRTSSZr_Intkz:
6350 case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
6351 case X86::VFMADDSS4rr_Int: case X86::VFNMADDSS4rr_Int:
6352 case X86::VFMSUBSS4rr_Int: case X86::VFNMSUBSS4rr_Int:
6353 case X86::VFMADD132SSr_Int: case X86::VFNMADD132SSr_Int:
6354 case X86::VFMADD213SSr_Int: case X86::VFNMADD213SSr_Int:
6355 case X86::VFMADD231SSr_Int: case X86::VFNMADD231SSr_Int:
6356 case X86::VFMSUB132SSr_Int: case X86::VFNMSUB132SSr_Int:
6357 case X86::VFMSUB213SSr_Int: case X86::VFNMSUB213SSr_Int:
6358 case X86::VFMSUB231SSr_Int: case X86::VFNMSUB231SSr_Int:
6359 case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
6360 case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
6361 case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
6362 case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
6363 case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
6364 case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
6365 case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
6366 case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
6367 case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
6368 case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
6369 case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
6370 case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
6371 case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
6372 case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
6373 case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
6374 case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
6375 case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
6376 case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
6377 case X86::VFIXUPIMMSSZrri:
6378 case X86::VFIXUPIMMSSZrrik:
6379 case X86::VFIXUPIMMSSZrrikz:
6380 case X86::VFPCLASSSSZrr:
6381 case X86::VFPCLASSSSZrrk:
6382 case X86::VGETEXPSSZr:
6383 case X86::VGETEXPSSZrk:
6384 case X86::VGETEXPSSZrkz:
6385 case X86::VGETMANTSSZrri:
6386 case X86::VGETMANTSSZrrik:
6387 case X86::VGETMANTSSZrrikz:
6388 case X86::VRANGESSZrri:
6389 case X86::VRANGESSZrrik:
6390 case X86::VRANGESSZrrikz:
6391 case X86::VRCP14SSZrr:
6392 case X86::VRCP14SSZrrk:
6393 case X86::VRCP14SSZrrkz:
6394 case X86::VRCP28SSZr:
6395 case X86::VRCP28SSZrk:
6396 case X86::VRCP28SSZrkz:
6397 case X86::VREDUCESSZrri:
6398 case X86::VREDUCESSZrrik:
6399 case X86::VREDUCESSZrrikz:
6400 case X86::VRNDSCALESSZr_Int:
6401 case X86::VRNDSCALESSZr_Intk:
6402 case X86::VRNDSCALESSZr_Intkz:
6403 case X86::VRSQRT14SSZrr:
6404 case X86::VRSQRT14SSZrrk:
6405 case X86::VRSQRT14SSZrrkz:
6406 case X86::VRSQRT28SSZr:
6407 case X86::VRSQRT28SSZrk:
6408 case X86::VRSQRT28SSZrkz:
6409 case X86::VSCALEFSSZrr:
6410 case X86::VSCALEFSSZrrk:
6411 case X86::VSCALEFSSZrrkz:
6412 return false;
6413 default:
6414 return true;
6415 }
6416 }
6417
6418 if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
6419 Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
6420 Opc == X86::VMOVSDZrm_alt) &&
6421 RegSize > 64) {
6422 // These instructions only load 64 bits, we can't fold them if the
6423 // destination register is wider than 64 bits (8 bytes), and its user
6424 // instruction isn't scalar (SD).
6425 switch (UserOpc) {
6426 case X86::CVTSD2SSrr_Int:
6427 case X86::VCVTSD2SSrr_Int:
6428 case X86::VCVTSD2SSZrr_Int:
6429 case X86::VCVTSD2SSZrr_Intk:
6430 case X86::VCVTSD2SSZrr_Intkz:
6431 case X86::CVTSD2SIrr_Int: case X86::CVTSD2SI64rr_Int:
6432 case X86::VCVTSD2SIrr_Int: case X86::VCVTSD2SI64rr_Int:
6433 case X86::VCVTSD2SIZrr_Int: case X86::VCVTSD2SI64Zrr_Int:
6434 case X86::CVTTSD2SIrr_Int: case X86::CVTTSD2SI64rr_Int:
6435 case X86::VCVTTSD2SIrr_Int: case X86::VCVTTSD2SI64rr_Int:
6436 case X86::VCVTTSD2SIZrr_Int: case X86::VCVTTSD2SI64Zrr_Int:
6437 case X86::VCVTSD2USIZrr_Int: case X86::VCVTSD2USI64Zrr_Int:
6438 case X86::VCVTTSD2USIZrr_Int: case X86::VCVTTSD2USI64Zrr_Int:
6439 case X86::ROUNDSDr_Int: case X86::VROUNDSDr_Int:
6440 case X86::COMISDrr_Int: case X86::VCOMISDrr_Int: case X86::VCOMISDZrr_Int:
6441 case X86::UCOMISDrr_Int:case X86::VUCOMISDrr_Int:case X86::VUCOMISDZrr_Int:
6442 case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
6443 case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
6444 case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
6445 case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
6446 case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
6447 case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
6448 case X86::SQRTSDr_Int: case X86::VSQRTSDr_Int: case X86::VSQRTSDZr_Int:
6449 case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
6450 case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
6451 case X86::VCMPSDZrr_Intk:
6452 case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
6453 case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
6454 case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
6455 case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
6456 case X86::VSQRTSDZr_Intk: case X86::VSQRTSDZr_Intkz:
6457 case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
6458 case X86::VFMADDSD4rr_Int: case X86::VFNMADDSD4rr_Int:
6459 case X86::VFMSUBSD4rr_Int: case X86::VFNMSUBSD4rr_Int:
6460 case X86::VFMADD132SDr_Int: case X86::VFNMADD132SDr_Int:
6461 case X86::VFMADD213SDr_Int: case X86::VFNMADD213SDr_Int:
6462 case X86::VFMADD231SDr_Int: case X86::VFNMADD231SDr_Int:
6463 case X86::VFMSUB132SDr_Int: case X86::VFNMSUB132SDr_Int:
6464 case X86::VFMSUB213SDr_Int: case X86::VFNMSUB213SDr_Int:
6465 case X86::VFMSUB231SDr_Int: case X86::VFNMSUB231SDr_Int:
6466 case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
6467 case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
6468 case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
6469 case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
6470 case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
6471 case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
6472 case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
6473 case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
6474 case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
6475 case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
6476 case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
6477 case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
6478 case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
6479 case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
6480 case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
6481 case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
6482 case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
6483 case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
6484 case X86::VFIXUPIMMSDZrri:
6485 case X86::VFIXUPIMMSDZrrik:
6486 case X86::VFIXUPIMMSDZrrikz:
6487 case X86::VFPCLASSSDZrr:
6488 case X86::VFPCLASSSDZrrk:
6489 case X86::VGETEXPSDZr:
6490 case X86::VGETEXPSDZrk:
6491 case X86::VGETEXPSDZrkz:
6492 case X86::VGETMANTSDZrri:
6493 case X86::VGETMANTSDZrrik:
6494 case X86::VGETMANTSDZrrikz:
6495 case X86::VRANGESDZrri:
6496 case X86::VRANGESDZrrik:
6497 case X86::VRANGESDZrrikz:
6498 case X86::VRCP14SDZrr:
6499 case X86::VRCP14SDZrrk:
6500 case X86::VRCP14SDZrrkz:
6501 case X86::VRCP28SDZr:
6502 case X86::VRCP28SDZrk:
6503 case X86::VRCP28SDZrkz:
6504 case X86::VREDUCESDZrri:
6505 case X86::VREDUCESDZrrik:
6506 case X86::VREDUCESDZrrikz:
6507 case X86::VRNDSCALESDZr_Int:
6508 case X86::VRNDSCALESDZr_Intk:
6509 case X86::VRNDSCALESDZr_Intkz:
6510 case X86::VRSQRT14SDZrr:
6511 case X86::VRSQRT14SDZrrk:
6512 case X86::VRSQRT14SDZrrkz:
6513 case X86::VRSQRT28SDZr:
6514 case X86::VRSQRT28SDZrk:
6515 case X86::VRSQRT28SDZrkz:
6516 case X86::VSCALEFSDZrr:
6517 case X86::VSCALEFSDZrrk:
6518 case X86::VSCALEFSDZrrkz:
6519 return false;
6520 default:
6521 return true;
6522 }
6523 }
6524
6525 if ((Opc == X86::VMOVSHZrm || Opc == X86::VMOVSHZrm_alt) && RegSize > 16) {
6526 // These instructions only load 16 bits, we can't fold them if the
6527 // destination register is wider than 16 bits (2 bytes), and its user
6528 // instruction isn't scalar (SH).
6529 switch (UserOpc) {
6530 case X86::VADDSHZrr_Int:
6531 case X86::VCMPSHZrr_Int:
6532 case X86::VDIVSHZrr_Int:
6533 case X86::VMAXSHZrr_Int:
6534 case X86::VMINSHZrr_Int:
6535 case X86::VMULSHZrr_Int:
6536 case X86::VSUBSHZrr_Int:
6537 case X86::VADDSHZrr_Intk: case X86::VADDSHZrr_Intkz:
6538 case X86::VCMPSHZrr_Intk:
6539 case X86::VDIVSHZrr_Intk: case X86::VDIVSHZrr_Intkz:
6540 case X86::VMAXSHZrr_Intk: case X86::VMAXSHZrr_Intkz:
6541 case X86::VMINSHZrr_Intk: case X86::VMINSHZrr_Intkz:
6542 case X86::VMULSHZrr_Intk: case X86::VMULSHZrr_Intkz:
6543 case X86::VSUBSHZrr_Intk: case X86::VSUBSHZrr_Intkz:
6544 case X86::VFMADD132SHZr_Int: case X86::VFNMADD132SHZr_Int:
6545 case X86::VFMADD213SHZr_Int: case X86::VFNMADD213SHZr_Int:
6546 case X86::VFMADD231SHZr_Int: case X86::VFNMADD231SHZr_Int:
6547 case X86::VFMSUB132SHZr_Int: case X86::VFNMSUB132SHZr_Int:
6548 case X86::VFMSUB213SHZr_Int: case X86::VFNMSUB213SHZr_Int:
6549 case X86::VFMSUB231SHZr_Int: case X86::VFNMSUB231SHZr_Int:
6550 case X86::VFMADD132SHZr_Intk: case X86::VFNMADD132SHZr_Intk:
6551 case X86::VFMADD213SHZr_Intk: case X86::VFNMADD213SHZr_Intk:
6552 case X86::VFMADD231SHZr_Intk: case X86::VFNMADD231SHZr_Intk:
6553 case X86::VFMSUB132SHZr_Intk: case X86::VFNMSUB132SHZr_Intk:
6554 case X86::VFMSUB213SHZr_Intk: case X86::VFNMSUB213SHZr_Intk:
6555 case X86::VFMSUB231SHZr_Intk: case X86::VFNMSUB231SHZr_Intk:
6556 case X86::VFMADD132SHZr_Intkz: case X86::VFNMADD132SHZr_Intkz:
6557 case X86::VFMADD213SHZr_Intkz: case X86::VFNMADD213SHZr_Intkz:
6558 case X86::VFMADD231SHZr_Intkz: case X86::VFNMADD231SHZr_Intkz:
6559 case X86::VFMSUB132SHZr_Intkz: case X86::VFNMSUB132SHZr_Intkz:
6560 case X86::VFMSUB213SHZr_Intkz: case X86::VFNMSUB213SHZr_Intkz:
6561 case X86::VFMSUB231SHZr_Intkz: case X86::VFNMSUB231SHZr_Intkz:
6562 return false;
6563 default:
6564 return true;
6565 }
6566 }
6567
6568 return false;
6569 }
6570
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr & MI,ArrayRef<unsigned> Ops,MachineBasicBlock::iterator InsertPt,MachineInstr & LoadMI,LiveIntervals * LIS) const6571 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
6572 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
6573 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
6574 LiveIntervals *LIS) const {
6575
6576 // TODO: Support the case where LoadMI loads a wide register, but MI
6577 // only uses a subreg.
6578 for (auto Op : Ops) {
6579 if (MI.getOperand(Op).getSubReg())
6580 return nullptr;
6581 }
6582
6583 // If loading from a FrameIndex, fold directly from the FrameIndex.
6584 unsigned NumOps = LoadMI.getDesc().getNumOperands();
6585 int FrameIndex;
6586 if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
6587 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
6588 return nullptr;
6589 return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
6590 }
6591
6592 // Check switch flag
6593 if (NoFusing) return nullptr;
6594
6595 // Avoid partial and undef register update stalls unless optimizing for size.
6596 if (!MF.getFunction().hasOptSize() &&
6597 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
6598 shouldPreventUndefRegUpdateMemFold(MF, MI)))
6599 return nullptr;
6600
6601 // Determine the alignment of the load.
6602 Align Alignment;
6603 if (LoadMI.hasOneMemOperand())
6604 Alignment = (*LoadMI.memoperands_begin())->getAlign();
6605 else
6606 switch (LoadMI.getOpcode()) {
6607 case X86::AVX512_512_SET0:
6608 case X86::AVX512_512_SETALLONES:
6609 Alignment = Align(64);
6610 break;
6611 case X86::AVX2_SETALLONES:
6612 case X86::AVX1_SETALLONES:
6613 case X86::AVX_SET0:
6614 case X86::AVX512_256_SET0:
6615 Alignment = Align(32);
6616 break;
6617 case X86::V_SET0:
6618 case X86::V_SETALLONES:
6619 case X86::AVX512_128_SET0:
6620 case X86::FsFLD0F128:
6621 case X86::AVX512_FsFLD0F128:
6622 Alignment = Align(16);
6623 break;
6624 case X86::MMX_SET0:
6625 case X86::FsFLD0SD:
6626 case X86::AVX512_FsFLD0SD:
6627 Alignment = Align(8);
6628 break;
6629 case X86::FsFLD0SS:
6630 case X86::AVX512_FsFLD0SS:
6631 Alignment = Align(4);
6632 break;
6633 case X86::FsFLD0SH:
6634 case X86::AVX512_FsFLD0SH:
6635 Alignment = Align(2);
6636 break;
6637 default:
6638 return nullptr;
6639 }
6640 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
6641 unsigned NewOpc = 0;
6642 switch (MI.getOpcode()) {
6643 default: return nullptr;
6644 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
6645 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
6646 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
6647 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
6648 }
6649 // Change to CMPXXri r, 0 first.
6650 MI.setDesc(get(NewOpc));
6651 MI.getOperand(1).ChangeToImmediate(0);
6652 } else if (Ops.size() != 1)
6653 return nullptr;
6654
6655 // Make sure the subregisters match.
6656 // Otherwise we risk changing the size of the load.
6657 if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
6658 return nullptr;
6659
6660 SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
6661 switch (LoadMI.getOpcode()) {
6662 case X86::MMX_SET0:
6663 case X86::V_SET0:
6664 case X86::V_SETALLONES:
6665 case X86::AVX2_SETALLONES:
6666 case X86::AVX1_SETALLONES:
6667 case X86::AVX_SET0:
6668 case X86::AVX512_128_SET0:
6669 case X86::AVX512_256_SET0:
6670 case X86::AVX512_512_SET0:
6671 case X86::AVX512_512_SETALLONES:
6672 case X86::FsFLD0SH:
6673 case X86::AVX512_FsFLD0SH:
6674 case X86::FsFLD0SD:
6675 case X86::AVX512_FsFLD0SD:
6676 case X86::FsFLD0SS:
6677 case X86::AVX512_FsFLD0SS:
6678 case X86::FsFLD0F128:
6679 case X86::AVX512_FsFLD0F128: {
6680 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
6681 // Create a constant-pool entry and operands to load from it.
6682
6683 // Medium and large mode can't fold loads this way.
6684 if (MF.getTarget().getCodeModel() != CodeModel::Small &&
6685 MF.getTarget().getCodeModel() != CodeModel::Kernel)
6686 return nullptr;
6687
6688 // x86-32 PIC requires a PIC base register for constant pools.
6689 unsigned PICBase = 0;
6690 // Since we're using Small or Kernel code model, we can always use
6691 // RIP-relative addressing for a smaller encoding.
6692 if (Subtarget.is64Bit()) {
6693 PICBase = X86::RIP;
6694 } else if (MF.getTarget().isPositionIndependent()) {
6695 // FIXME: PICBase = getGlobalBaseReg(&MF);
6696 // This doesn't work for several reasons.
6697 // 1. GlobalBaseReg may have been spilled.
6698 // 2. It may not be live at MI.
6699 return nullptr;
6700 }
6701
6702 // Create a constant-pool entry.
6703 MachineConstantPool &MCP = *MF.getConstantPool();
6704 Type *Ty;
6705 unsigned Opc = LoadMI.getOpcode();
6706 if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
6707 Ty = Type::getFloatTy(MF.getFunction().getContext());
6708 else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
6709 Ty = Type::getDoubleTy(MF.getFunction().getContext());
6710 else if (Opc == X86::FsFLD0F128 || Opc == X86::AVX512_FsFLD0F128)
6711 Ty = Type::getFP128Ty(MF.getFunction().getContext());
6712 else if (Opc == X86::FsFLD0SH || Opc == X86::AVX512_FsFLD0SH)
6713 Ty = Type::getHalfTy(MF.getFunction().getContext());
6714 else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
6715 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6716 16);
6717 else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
6718 Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
6719 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6720 8);
6721 else if (Opc == X86::MMX_SET0)
6722 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6723 2);
6724 else
6725 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6726 4);
6727
6728 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
6729 Opc == X86::AVX512_512_SETALLONES ||
6730 Opc == X86::AVX1_SETALLONES);
6731 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
6732 Constant::getNullValue(Ty);
6733 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
6734
6735 // Create operands to load from the constant pool entry.
6736 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
6737 MOs.push_back(MachineOperand::CreateImm(1));
6738 MOs.push_back(MachineOperand::CreateReg(0, false));
6739 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
6740 MOs.push_back(MachineOperand::CreateReg(0, false));
6741 break;
6742 }
6743 default: {
6744 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
6745 return nullptr;
6746
6747 // Folding a normal load. Just copy the load's address operands.
6748 MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
6749 LoadMI.operands_begin() + NumOps);
6750 break;
6751 }
6752 }
6753 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
6754 /*Size=*/0, Alignment, /*AllowCommute=*/true);
6755 }
6756
6757 static SmallVector<MachineMemOperand *, 2>
extractLoadMMOs(ArrayRef<MachineMemOperand * > MMOs,MachineFunction & MF)6758 extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
6759 SmallVector<MachineMemOperand *, 2> LoadMMOs;
6760
6761 for (MachineMemOperand *MMO : MMOs) {
6762 if (!MMO->isLoad())
6763 continue;
6764
6765 if (!MMO->isStore()) {
6766 // Reuse the MMO.
6767 LoadMMOs.push_back(MMO);
6768 } else {
6769 // Clone the MMO and unset the store flag.
6770 LoadMMOs.push_back(MF.getMachineMemOperand(
6771 MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
6772 }
6773 }
6774
6775 return LoadMMOs;
6776 }
6777
6778 static SmallVector<MachineMemOperand *, 2>
extractStoreMMOs(ArrayRef<MachineMemOperand * > MMOs,MachineFunction & MF)6779 extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
6780 SmallVector<MachineMemOperand *, 2> StoreMMOs;
6781
6782 for (MachineMemOperand *MMO : MMOs) {
6783 if (!MMO->isStore())
6784 continue;
6785
6786 if (!MMO->isLoad()) {
6787 // Reuse the MMO.
6788 StoreMMOs.push_back(MMO);
6789 } else {
6790 // Clone the MMO and unset the load flag.
6791 StoreMMOs.push_back(MF.getMachineMemOperand(
6792 MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
6793 }
6794 }
6795
6796 return StoreMMOs;
6797 }
6798
getBroadcastOpcode(const X86MemoryFoldTableEntry * I,const TargetRegisterClass * RC,const X86Subtarget & STI)6799 static unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry *I,
6800 const TargetRegisterClass *RC,
6801 const X86Subtarget &STI) {
6802 assert(STI.hasAVX512() && "Expected at least AVX512!");
6803 unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC);
6804 assert((SpillSize == 64 || STI.hasVLX()) &&
6805 "Can't broadcast less than 64 bytes without AVX512VL!");
6806
6807 switch (I->Flags & TB_BCAST_MASK) {
6808 default: llvm_unreachable("Unexpected broadcast type!");
6809 case TB_BCAST_D:
6810 switch (SpillSize) {
6811 default: llvm_unreachable("Unknown spill size");
6812 case 16: return X86::VPBROADCASTDZ128rm;
6813 case 32: return X86::VPBROADCASTDZ256rm;
6814 case 64: return X86::VPBROADCASTDZrm;
6815 }
6816 break;
6817 case TB_BCAST_Q:
6818 switch (SpillSize) {
6819 default: llvm_unreachable("Unknown spill size");
6820 case 16: return X86::VPBROADCASTQZ128rm;
6821 case 32: return X86::VPBROADCASTQZ256rm;
6822 case 64: return X86::VPBROADCASTQZrm;
6823 }
6824 break;
6825 case TB_BCAST_SS:
6826 switch (SpillSize) {
6827 default: llvm_unreachable("Unknown spill size");
6828 case 16: return X86::VBROADCASTSSZ128rm;
6829 case 32: return X86::VBROADCASTSSZ256rm;
6830 case 64: return X86::VBROADCASTSSZrm;
6831 }
6832 break;
6833 case TB_BCAST_SD:
6834 switch (SpillSize) {
6835 default: llvm_unreachable("Unknown spill size");
6836 case 16: return X86::VMOVDDUPZ128rm;
6837 case 32: return X86::VBROADCASTSDZ256rm;
6838 case 64: return X86::VBROADCASTSDZrm;
6839 }
6840 break;
6841 }
6842 }
6843
unfoldMemoryOperand(MachineFunction & MF,MachineInstr & MI,unsigned Reg,bool UnfoldLoad,bool UnfoldStore,SmallVectorImpl<MachineInstr * > & NewMIs) const6844 bool X86InstrInfo::unfoldMemoryOperand(
6845 MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
6846 bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
6847 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
6848 if (I == nullptr)
6849 return false;
6850 unsigned Opc = I->DstOp;
6851 unsigned Index = I->Flags & TB_INDEX_MASK;
6852 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
6853 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
6854 bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
6855 if (UnfoldLoad && !FoldedLoad)
6856 return false;
6857 UnfoldLoad &= FoldedLoad;
6858 if (UnfoldStore && !FoldedStore)
6859 return false;
6860 UnfoldStore &= FoldedStore;
6861
6862 const MCInstrDesc &MCID = get(Opc);
6863
6864 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
6865 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6866 // TODO: Check if 32-byte or greater accesses are slow too?
6867 if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
6868 Subtarget.isUnalignedMem16Slow())
6869 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
6870 // conservatively assume the address is unaligned. That's bad for
6871 // performance.
6872 return false;
6873 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
6874 SmallVector<MachineOperand,2> BeforeOps;
6875 SmallVector<MachineOperand,2> AfterOps;
6876 SmallVector<MachineOperand,4> ImpOps;
6877 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
6878 MachineOperand &Op = MI.getOperand(i);
6879 if (i >= Index && i < Index + X86::AddrNumOperands)
6880 AddrOps.push_back(Op);
6881 else if (Op.isReg() && Op.isImplicit())
6882 ImpOps.push_back(Op);
6883 else if (i < Index)
6884 BeforeOps.push_back(Op);
6885 else if (i > Index)
6886 AfterOps.push_back(Op);
6887 }
6888
6889 // Emit the load or broadcast instruction.
6890 if (UnfoldLoad) {
6891 auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
6892
6893 unsigned Opc;
6894 if (FoldedBCast) {
6895 Opc = getBroadcastOpcode(I, RC, Subtarget);
6896 } else {
6897 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
6898 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6899 Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget);
6900 }
6901
6902 DebugLoc DL;
6903 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg);
6904 for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
6905 MIB.add(AddrOps[i]);
6906 MIB.setMemRefs(MMOs);
6907 NewMIs.push_back(MIB);
6908
6909 if (UnfoldStore) {
6910 // Address operands cannot be marked isKill.
6911 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
6912 MachineOperand &MO = NewMIs[0]->getOperand(i);
6913 if (MO.isReg())
6914 MO.setIsKill(false);
6915 }
6916 }
6917 }
6918
6919 // Emit the data processing instruction.
6920 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
6921 MachineInstrBuilder MIB(MF, DataMI);
6922
6923 if (FoldedStore)
6924 MIB.addReg(Reg, RegState::Define);
6925 for (MachineOperand &BeforeOp : BeforeOps)
6926 MIB.add(BeforeOp);
6927 if (FoldedLoad)
6928 MIB.addReg(Reg);
6929 for (MachineOperand &AfterOp : AfterOps)
6930 MIB.add(AfterOp);
6931 for (MachineOperand &ImpOp : ImpOps) {
6932 MIB.addReg(ImpOp.getReg(),
6933 getDefRegState(ImpOp.isDef()) |
6934 RegState::Implicit |
6935 getKillRegState(ImpOp.isKill()) |
6936 getDeadRegState(ImpOp.isDead()) |
6937 getUndefRegState(ImpOp.isUndef()));
6938 }
6939 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
6940 switch (DataMI->getOpcode()) {
6941 default: break;
6942 case X86::CMP64ri32:
6943 case X86::CMP64ri8:
6944 case X86::CMP32ri:
6945 case X86::CMP32ri8:
6946 case X86::CMP16ri:
6947 case X86::CMP16ri8:
6948 case X86::CMP8ri: {
6949 MachineOperand &MO0 = DataMI->getOperand(0);
6950 MachineOperand &MO1 = DataMI->getOperand(1);
6951 if (MO1.isImm() && MO1.getImm() == 0) {
6952 unsigned NewOpc;
6953 switch (DataMI->getOpcode()) {
6954 default: llvm_unreachable("Unreachable!");
6955 case X86::CMP64ri8:
6956 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
6957 case X86::CMP32ri8:
6958 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
6959 case X86::CMP16ri8:
6960 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
6961 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
6962 }
6963 DataMI->setDesc(get(NewOpc));
6964 MO1.ChangeToRegister(MO0.getReg(), false);
6965 }
6966 }
6967 }
6968 NewMIs.push_back(DataMI);
6969
6970 // Emit the store instruction.
6971 if (UnfoldStore) {
6972 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
6973 auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
6974 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16);
6975 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6976 unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget);
6977 DebugLoc DL;
6978 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
6979 for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
6980 MIB.add(AddrOps[i]);
6981 MIB.addReg(Reg, RegState::Kill);
6982 MIB.setMemRefs(MMOs);
6983 NewMIs.push_back(MIB);
6984 }
6985
6986 return true;
6987 }
6988
6989 bool
unfoldMemoryOperand(SelectionDAG & DAG,SDNode * N,SmallVectorImpl<SDNode * > & NewNodes) const6990 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
6991 SmallVectorImpl<SDNode*> &NewNodes) const {
6992 if (!N->isMachineOpcode())
6993 return false;
6994
6995 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
6996 if (I == nullptr)
6997 return false;
6998 unsigned Opc = I->DstOp;
6999 unsigned Index = I->Flags & TB_INDEX_MASK;
7000 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
7001 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
7002 bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
7003 const MCInstrDesc &MCID = get(Opc);
7004 MachineFunction &MF = DAG.getMachineFunction();
7005 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7006 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
7007 unsigned NumDefs = MCID.NumDefs;
7008 std::vector<SDValue> AddrOps;
7009 std::vector<SDValue> BeforeOps;
7010 std::vector<SDValue> AfterOps;
7011 SDLoc dl(N);
7012 unsigned NumOps = N->getNumOperands();
7013 for (unsigned i = 0; i != NumOps-1; ++i) {
7014 SDValue Op = N->getOperand(i);
7015 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
7016 AddrOps.push_back(Op);
7017 else if (i < Index-NumDefs)
7018 BeforeOps.push_back(Op);
7019 else if (i > Index-NumDefs)
7020 AfterOps.push_back(Op);
7021 }
7022 SDValue Chain = N->getOperand(NumOps-1);
7023 AddrOps.push_back(Chain);
7024
7025 // Emit the load instruction.
7026 SDNode *Load = nullptr;
7027 if (FoldedLoad) {
7028 EVT VT = *TRI.legalclasstypes_begin(*RC);
7029 auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
7030 if (MMOs.empty() && RC == &X86::VR128RegClass &&
7031 Subtarget.isUnalignedMem16Slow())
7032 // Do not introduce a slow unaligned load.
7033 return false;
7034 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
7035 // memory access is slow above.
7036
7037 unsigned Opc;
7038 if (FoldedBCast) {
7039 Opc = getBroadcastOpcode(I, RC, Subtarget);
7040 } else {
7041 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
7042 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
7043 Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget);
7044 }
7045
7046 Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps);
7047 NewNodes.push_back(Load);
7048
7049 // Preserve memory reference information.
7050 DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
7051 }
7052
7053 // Emit the data processing instruction.
7054 std::vector<EVT> VTs;
7055 const TargetRegisterClass *DstRC = nullptr;
7056 if (MCID.getNumDefs() > 0) {
7057 DstRC = getRegClass(MCID, 0, &RI, MF);
7058 VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
7059 }
7060 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
7061 EVT VT = N->getValueType(i);
7062 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
7063 VTs.push_back(VT);
7064 }
7065 if (Load)
7066 BeforeOps.push_back(SDValue(Load, 0));
7067 llvm::append_range(BeforeOps, AfterOps);
7068 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
7069 switch (Opc) {
7070 default: break;
7071 case X86::CMP64ri32:
7072 case X86::CMP64ri8:
7073 case X86::CMP32ri:
7074 case X86::CMP32ri8:
7075 case X86::CMP16ri:
7076 case X86::CMP16ri8:
7077 case X86::CMP8ri:
7078 if (isNullConstant(BeforeOps[1])) {
7079 switch (Opc) {
7080 default: llvm_unreachable("Unreachable!");
7081 case X86::CMP64ri8:
7082 case X86::CMP64ri32: Opc = X86::TEST64rr; break;
7083 case X86::CMP32ri8:
7084 case X86::CMP32ri: Opc = X86::TEST32rr; break;
7085 case X86::CMP16ri8:
7086 case X86::CMP16ri: Opc = X86::TEST16rr; break;
7087 case X86::CMP8ri: Opc = X86::TEST8rr; break;
7088 }
7089 BeforeOps[1] = BeforeOps[0];
7090 }
7091 }
7092 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
7093 NewNodes.push_back(NewNode);
7094
7095 // Emit the store instruction.
7096 if (FoldedStore) {
7097 AddrOps.pop_back();
7098 AddrOps.push_back(SDValue(NewNode, 0));
7099 AddrOps.push_back(Chain);
7100 auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
7101 if (MMOs.empty() && RC == &X86::VR128RegClass &&
7102 Subtarget.isUnalignedMem16Slow())
7103 // Do not introduce a slow unaligned store.
7104 return false;
7105 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
7106 // memory access is slow above.
7107 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
7108 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
7109 SDNode *Store =
7110 DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
7111 dl, MVT::Other, AddrOps);
7112 NewNodes.push_back(Store);
7113
7114 // Preserve memory reference information.
7115 DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
7116 }
7117
7118 return true;
7119 }
7120
getOpcodeAfterMemoryUnfold(unsigned Opc,bool UnfoldLoad,bool UnfoldStore,unsigned * LoadRegIndex) const7121 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
7122 bool UnfoldLoad, bool UnfoldStore,
7123 unsigned *LoadRegIndex) const {
7124 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
7125 if (I == nullptr)
7126 return 0;
7127 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
7128 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
7129 if (UnfoldLoad && !FoldedLoad)
7130 return 0;
7131 if (UnfoldStore && !FoldedStore)
7132 return 0;
7133 if (LoadRegIndex)
7134 *LoadRegIndex = I->Flags & TB_INDEX_MASK;
7135 return I->DstOp;
7136 }
7137
7138 bool
areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2) const7139 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
7140 int64_t &Offset1, int64_t &Offset2) const {
7141 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
7142 return false;
7143 unsigned Opc1 = Load1->getMachineOpcode();
7144 unsigned Opc2 = Load2->getMachineOpcode();
7145 switch (Opc1) {
7146 default: return false;
7147 case X86::MOV8rm:
7148 case X86::MOV16rm:
7149 case X86::MOV32rm:
7150 case X86::MOV64rm:
7151 case X86::LD_Fp32m:
7152 case X86::LD_Fp64m:
7153 case X86::LD_Fp80m:
7154 case X86::MOVSSrm:
7155 case X86::MOVSSrm_alt:
7156 case X86::MOVSDrm:
7157 case X86::MOVSDrm_alt:
7158 case X86::MMX_MOVD64rm:
7159 case X86::MMX_MOVQ64rm:
7160 case X86::MOVAPSrm:
7161 case X86::MOVUPSrm:
7162 case X86::MOVAPDrm:
7163 case X86::MOVUPDrm:
7164 case X86::MOVDQArm:
7165 case X86::MOVDQUrm:
7166 // AVX load instructions
7167 case X86::VMOVSSrm:
7168 case X86::VMOVSSrm_alt:
7169 case X86::VMOVSDrm:
7170 case X86::VMOVSDrm_alt:
7171 case X86::VMOVAPSrm:
7172 case X86::VMOVUPSrm:
7173 case X86::VMOVAPDrm:
7174 case X86::VMOVUPDrm:
7175 case X86::VMOVDQArm:
7176 case X86::VMOVDQUrm:
7177 case X86::VMOVAPSYrm:
7178 case X86::VMOVUPSYrm:
7179 case X86::VMOVAPDYrm:
7180 case X86::VMOVUPDYrm:
7181 case X86::VMOVDQAYrm:
7182 case X86::VMOVDQUYrm:
7183 // AVX512 load instructions
7184 case X86::VMOVSSZrm:
7185 case X86::VMOVSSZrm_alt:
7186 case X86::VMOVSDZrm:
7187 case X86::VMOVSDZrm_alt:
7188 case X86::VMOVAPSZ128rm:
7189 case X86::VMOVUPSZ128rm:
7190 case X86::VMOVAPSZ128rm_NOVLX:
7191 case X86::VMOVUPSZ128rm_NOVLX:
7192 case X86::VMOVAPDZ128rm:
7193 case X86::VMOVUPDZ128rm:
7194 case X86::VMOVDQU8Z128rm:
7195 case X86::VMOVDQU16Z128rm:
7196 case X86::VMOVDQA32Z128rm:
7197 case X86::VMOVDQU32Z128rm:
7198 case X86::VMOVDQA64Z128rm:
7199 case X86::VMOVDQU64Z128rm:
7200 case X86::VMOVAPSZ256rm:
7201 case X86::VMOVUPSZ256rm:
7202 case X86::VMOVAPSZ256rm_NOVLX:
7203 case X86::VMOVUPSZ256rm_NOVLX:
7204 case X86::VMOVAPDZ256rm:
7205 case X86::VMOVUPDZ256rm:
7206 case X86::VMOVDQU8Z256rm:
7207 case X86::VMOVDQU16Z256rm:
7208 case X86::VMOVDQA32Z256rm:
7209 case X86::VMOVDQU32Z256rm:
7210 case X86::VMOVDQA64Z256rm:
7211 case X86::VMOVDQU64Z256rm:
7212 case X86::VMOVAPSZrm:
7213 case X86::VMOVUPSZrm:
7214 case X86::VMOVAPDZrm:
7215 case X86::VMOVUPDZrm:
7216 case X86::VMOVDQU8Zrm:
7217 case X86::VMOVDQU16Zrm:
7218 case X86::VMOVDQA32Zrm:
7219 case X86::VMOVDQU32Zrm:
7220 case X86::VMOVDQA64Zrm:
7221 case X86::VMOVDQU64Zrm:
7222 case X86::KMOVBkm:
7223 case X86::KMOVWkm:
7224 case X86::KMOVDkm:
7225 case X86::KMOVQkm:
7226 break;
7227 }
7228 switch (Opc2) {
7229 default: return false;
7230 case X86::MOV8rm:
7231 case X86::MOV16rm:
7232 case X86::MOV32rm:
7233 case X86::MOV64rm:
7234 case X86::LD_Fp32m:
7235 case X86::LD_Fp64m:
7236 case X86::LD_Fp80m:
7237 case X86::MOVSSrm:
7238 case X86::MOVSSrm_alt:
7239 case X86::MOVSDrm:
7240 case X86::MOVSDrm_alt:
7241 case X86::MMX_MOVD64rm:
7242 case X86::MMX_MOVQ64rm:
7243 case X86::MOVAPSrm:
7244 case X86::MOVUPSrm:
7245 case X86::MOVAPDrm:
7246 case X86::MOVUPDrm:
7247 case X86::MOVDQArm:
7248 case X86::MOVDQUrm:
7249 // AVX load instructions
7250 case X86::VMOVSSrm:
7251 case X86::VMOVSSrm_alt:
7252 case X86::VMOVSDrm:
7253 case X86::VMOVSDrm_alt:
7254 case X86::VMOVAPSrm:
7255 case X86::VMOVUPSrm:
7256 case X86::VMOVAPDrm:
7257 case X86::VMOVUPDrm:
7258 case X86::VMOVDQArm:
7259 case X86::VMOVDQUrm:
7260 case X86::VMOVAPSYrm:
7261 case X86::VMOVUPSYrm:
7262 case X86::VMOVAPDYrm:
7263 case X86::VMOVUPDYrm:
7264 case X86::VMOVDQAYrm:
7265 case X86::VMOVDQUYrm:
7266 // AVX512 load instructions
7267 case X86::VMOVSSZrm:
7268 case X86::VMOVSSZrm_alt:
7269 case X86::VMOVSDZrm:
7270 case X86::VMOVSDZrm_alt:
7271 case X86::VMOVAPSZ128rm:
7272 case X86::VMOVUPSZ128rm:
7273 case X86::VMOVAPSZ128rm_NOVLX:
7274 case X86::VMOVUPSZ128rm_NOVLX:
7275 case X86::VMOVAPDZ128rm:
7276 case X86::VMOVUPDZ128rm:
7277 case X86::VMOVDQU8Z128rm:
7278 case X86::VMOVDQU16Z128rm:
7279 case X86::VMOVDQA32Z128rm:
7280 case X86::VMOVDQU32Z128rm:
7281 case X86::VMOVDQA64Z128rm:
7282 case X86::VMOVDQU64Z128rm:
7283 case X86::VMOVAPSZ256rm:
7284 case X86::VMOVUPSZ256rm:
7285 case X86::VMOVAPSZ256rm_NOVLX:
7286 case X86::VMOVUPSZ256rm_NOVLX:
7287 case X86::VMOVAPDZ256rm:
7288 case X86::VMOVUPDZ256rm:
7289 case X86::VMOVDQU8Z256rm:
7290 case X86::VMOVDQU16Z256rm:
7291 case X86::VMOVDQA32Z256rm:
7292 case X86::VMOVDQU32Z256rm:
7293 case X86::VMOVDQA64Z256rm:
7294 case X86::VMOVDQU64Z256rm:
7295 case X86::VMOVAPSZrm:
7296 case X86::VMOVUPSZrm:
7297 case X86::VMOVAPDZrm:
7298 case X86::VMOVUPDZrm:
7299 case X86::VMOVDQU8Zrm:
7300 case X86::VMOVDQU16Zrm:
7301 case X86::VMOVDQA32Zrm:
7302 case X86::VMOVDQU32Zrm:
7303 case X86::VMOVDQA64Zrm:
7304 case X86::VMOVDQU64Zrm:
7305 case X86::KMOVBkm:
7306 case X86::KMOVWkm:
7307 case X86::KMOVDkm:
7308 case X86::KMOVQkm:
7309 break;
7310 }
7311
7312 // Lambda to check if both the loads have the same value for an operand index.
7313 auto HasSameOp = [&](int I) {
7314 return Load1->getOperand(I) == Load2->getOperand(I);
7315 };
7316
7317 // All operands except the displacement should match.
7318 if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
7319 !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
7320 return false;
7321
7322 // Chain Operand must be the same.
7323 if (!HasSameOp(5))
7324 return false;
7325
7326 // Now let's examine if the displacements are constants.
7327 auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
7328 auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
7329 if (!Disp1 || !Disp2)
7330 return false;
7331
7332 Offset1 = Disp1->getSExtValue();
7333 Offset2 = Disp2->getSExtValue();
7334 return true;
7335 }
7336
shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads) const7337 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
7338 int64_t Offset1, int64_t Offset2,
7339 unsigned NumLoads) const {
7340 assert(Offset2 > Offset1);
7341 if ((Offset2 - Offset1) / 8 > 64)
7342 return false;
7343
7344 unsigned Opc1 = Load1->getMachineOpcode();
7345 unsigned Opc2 = Load2->getMachineOpcode();
7346 if (Opc1 != Opc2)
7347 return false; // FIXME: overly conservative?
7348
7349 switch (Opc1) {
7350 default: break;
7351 case X86::LD_Fp32m:
7352 case X86::LD_Fp64m:
7353 case X86::LD_Fp80m:
7354 case X86::MMX_MOVD64rm:
7355 case X86::MMX_MOVQ64rm:
7356 return false;
7357 }
7358
7359 EVT VT = Load1->getValueType(0);
7360 switch (VT.getSimpleVT().SimpleTy) {
7361 default:
7362 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
7363 // have 16 of them to play with.
7364 if (Subtarget.is64Bit()) {
7365 if (NumLoads >= 3)
7366 return false;
7367 } else if (NumLoads) {
7368 return false;
7369 }
7370 break;
7371 case MVT::i8:
7372 case MVT::i16:
7373 case MVT::i32:
7374 case MVT::i64:
7375 case MVT::f32:
7376 case MVT::f64:
7377 if (NumLoads)
7378 return false;
7379 break;
7380 }
7381
7382 return true;
7383 }
7384
isSchedulingBoundary(const MachineInstr & MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const7385 bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI,
7386 const MachineBasicBlock *MBB,
7387 const MachineFunction &MF) const {
7388
7389 // ENDBR instructions should not be scheduled around.
7390 unsigned Opcode = MI.getOpcode();
7391 if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 ||
7392 Opcode == X86::PLDTILECFGV)
7393 return true;
7394
7395 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
7396 }
7397
7398 bool X86InstrInfo::
reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const7399 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
7400 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
7401 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
7402 Cond[0].setImm(GetOppositeBranchCondition(CC));
7403 return false;
7404 }
7405
7406 bool X86InstrInfo::
isSafeToMoveRegClassDefs(const TargetRegisterClass * RC) const7407 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
7408 // FIXME: Return false for x87 stack register classes for now. We can't
7409 // allow any loads of these registers before FpGet_ST0_80.
7410 return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
7411 RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
7412 RC == &X86::RFP80RegClass);
7413 }
7414
7415 /// Return a virtual register initialized with the
7416 /// the global base register value. Output instructions required to
7417 /// initialize the register in the function entry block, if necessary.
7418 ///
7419 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
7420 ///
getGlobalBaseReg(MachineFunction * MF) const7421 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
7422 assert((!Subtarget.is64Bit() ||
7423 MF->getTarget().getCodeModel() == CodeModel::Medium ||
7424 MF->getTarget().getCodeModel() == CodeModel::Large) &&
7425 "X86-64 PIC uses RIP relative addressing");
7426
7427 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
7428 Register GlobalBaseReg = X86FI->getGlobalBaseReg();
7429 if (GlobalBaseReg != 0)
7430 return GlobalBaseReg;
7431
7432 // Create the register. The code to initialize it is inserted
7433 // later, by the CGBR pass (below).
7434 MachineRegisterInfo &RegInfo = MF->getRegInfo();
7435 GlobalBaseReg = RegInfo.createVirtualRegister(
7436 Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
7437 X86FI->setGlobalBaseReg(GlobalBaseReg);
7438 return GlobalBaseReg;
7439 }
7440
7441 // These are the replaceable SSE instructions. Some of these have Int variants
7442 // that we don't include here. We don't want to replace instructions selected
7443 // by intrinsics.
7444 static const uint16_t ReplaceableInstrs[][3] = {
7445 //PackedSingle PackedDouble PackedInt
7446 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
7447 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
7448 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
7449 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
7450 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
7451 { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr },
7452 { X86::MOVSDmr, X86::MOVSDmr, X86::MOVPQI2QImr },
7453 { X86::MOVSSmr, X86::MOVSSmr, X86::MOVPDI2DImr },
7454 { X86::MOVSDrm, X86::MOVSDrm, X86::MOVQI2PQIrm },
7455 { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm },
7456 { X86::MOVSSrm, X86::MOVSSrm, X86::MOVDI2PDIrm },
7457 { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm },
7458 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
7459 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
7460 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
7461 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
7462 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
7463 { X86::ORPSrm, X86::ORPDrm, X86::PORrm },
7464 { X86::ORPSrr, X86::ORPDrr, X86::PORrr },
7465 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
7466 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
7467 { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
7468 { X86::MOVLHPSrr, X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
7469 { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
7470 { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
7471 { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
7472 { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
7473 { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
7474 { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
7475 { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
7476 { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
7477 // AVX 128-bit support
7478 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
7479 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
7480 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
7481 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
7482 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
7483 { X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr },
7484 { X86::VMOVSDmr, X86::VMOVSDmr, X86::VMOVPQI2QImr },
7485 { X86::VMOVSSmr, X86::VMOVSSmr, X86::VMOVPDI2DImr },
7486 { X86::VMOVSDrm, X86::VMOVSDrm, X86::VMOVQI2PQIrm },
7487 { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm },
7488 { X86::VMOVSSrm, X86::VMOVSSrm, X86::VMOVDI2PDIrm },
7489 { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm },
7490 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
7491 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
7492 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
7493 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
7494 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
7495 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
7496 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
7497 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
7498 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
7499 { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
7500 { X86::VMOVLHPSrr, X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
7501 { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
7502 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
7503 { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
7504 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
7505 { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
7506 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
7507 { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
7508 { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
7509 // AVX 256-bit support
7510 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
7511 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
7512 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
7513 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
7514 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
7515 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr },
7516 { X86::VPERMPSYrm, X86::VPERMPSYrm, X86::VPERMDYrm },
7517 { X86::VPERMPSYrr, X86::VPERMPSYrr, X86::VPERMDYrr },
7518 { X86::VPERMPDYmi, X86::VPERMPDYmi, X86::VPERMQYmi },
7519 { X86::VPERMPDYri, X86::VPERMPDYri, X86::VPERMQYri },
7520 // AVX512 support
7521 { X86::VMOVLPSZ128mr, X86::VMOVLPDZ128mr, X86::VMOVPQI2QIZmr },
7522 { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
7523 { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
7524 { X86::VMOVNTPSZmr, X86::VMOVNTPDZmr, X86::VMOVNTDQZmr },
7525 { X86::VMOVSDZmr, X86::VMOVSDZmr, X86::VMOVPQI2QIZmr },
7526 { X86::VMOVSSZmr, X86::VMOVSSZmr, X86::VMOVPDI2DIZmr },
7527 { X86::VMOVSDZrm, X86::VMOVSDZrm, X86::VMOVQI2PQIZrm },
7528 { X86::VMOVSDZrm_alt, X86::VMOVSDZrm_alt, X86::VMOVQI2PQIZrm },
7529 { X86::VMOVSSZrm, X86::VMOVSSZrm, X86::VMOVDI2PDIZrm },
7530 { X86::VMOVSSZrm_alt, X86::VMOVSSZrm_alt, X86::VMOVDI2PDIZrm },
7531 { X86::VBROADCASTSSZ128rr,X86::VBROADCASTSSZ128rr,X86::VPBROADCASTDZ128rr },
7532 { X86::VBROADCASTSSZ128rm,X86::VBROADCASTSSZ128rm,X86::VPBROADCASTDZ128rm },
7533 { X86::VBROADCASTSSZ256rr,X86::VBROADCASTSSZ256rr,X86::VPBROADCASTDZ256rr },
7534 { X86::VBROADCASTSSZ256rm,X86::VBROADCASTSSZ256rm,X86::VPBROADCASTDZ256rm },
7535 { X86::VBROADCASTSSZrr, X86::VBROADCASTSSZrr, X86::VPBROADCASTDZrr },
7536 { X86::VBROADCASTSSZrm, X86::VBROADCASTSSZrm, X86::VPBROADCASTDZrm },
7537 { X86::VMOVDDUPZ128rr, X86::VMOVDDUPZ128rr, X86::VPBROADCASTQZ128rr },
7538 { X86::VMOVDDUPZ128rm, X86::VMOVDDUPZ128rm, X86::VPBROADCASTQZ128rm },
7539 { X86::VBROADCASTSDZ256rr,X86::VBROADCASTSDZ256rr,X86::VPBROADCASTQZ256rr },
7540 { X86::VBROADCASTSDZ256rm,X86::VBROADCASTSDZ256rm,X86::VPBROADCASTQZ256rm },
7541 { X86::VBROADCASTSDZrr, X86::VBROADCASTSDZrr, X86::VPBROADCASTQZrr },
7542 { X86::VBROADCASTSDZrm, X86::VBROADCASTSDZrm, X86::VPBROADCASTQZrm },
7543 { X86::VINSERTF32x4Zrr, X86::VINSERTF32x4Zrr, X86::VINSERTI32x4Zrr },
7544 { X86::VINSERTF32x4Zrm, X86::VINSERTF32x4Zrm, X86::VINSERTI32x4Zrm },
7545 { X86::VINSERTF32x8Zrr, X86::VINSERTF32x8Zrr, X86::VINSERTI32x8Zrr },
7546 { X86::VINSERTF32x8Zrm, X86::VINSERTF32x8Zrm, X86::VINSERTI32x8Zrm },
7547 { X86::VINSERTF64x2Zrr, X86::VINSERTF64x2Zrr, X86::VINSERTI64x2Zrr },
7548 { X86::VINSERTF64x2Zrm, X86::VINSERTF64x2Zrm, X86::VINSERTI64x2Zrm },
7549 { X86::VINSERTF64x4Zrr, X86::VINSERTF64x4Zrr, X86::VINSERTI64x4Zrr },
7550 { X86::VINSERTF64x4Zrm, X86::VINSERTF64x4Zrm, X86::VINSERTI64x4Zrm },
7551 { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
7552 { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
7553 { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
7554 { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
7555 { X86::VEXTRACTF32x4Zrr, X86::VEXTRACTF32x4Zrr, X86::VEXTRACTI32x4Zrr },
7556 { X86::VEXTRACTF32x4Zmr, X86::VEXTRACTF32x4Zmr, X86::VEXTRACTI32x4Zmr },
7557 { X86::VEXTRACTF32x8Zrr, X86::VEXTRACTF32x8Zrr, X86::VEXTRACTI32x8Zrr },
7558 { X86::VEXTRACTF32x8Zmr, X86::VEXTRACTF32x8Zmr, X86::VEXTRACTI32x8Zmr },
7559 { X86::VEXTRACTF64x2Zrr, X86::VEXTRACTF64x2Zrr, X86::VEXTRACTI64x2Zrr },
7560 { X86::VEXTRACTF64x2Zmr, X86::VEXTRACTF64x2Zmr, X86::VEXTRACTI64x2Zmr },
7561 { X86::VEXTRACTF64x4Zrr, X86::VEXTRACTF64x4Zrr, X86::VEXTRACTI64x4Zrr },
7562 { X86::VEXTRACTF64x4Zmr, X86::VEXTRACTF64x4Zmr, X86::VEXTRACTI64x4Zmr },
7563 { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
7564 { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
7565 { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
7566 { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
7567 { X86::VPERMILPSmi, X86::VPERMILPSmi, X86::VPSHUFDmi },
7568 { X86::VPERMILPSri, X86::VPERMILPSri, X86::VPSHUFDri },
7569 { X86::VPERMILPSZ128mi, X86::VPERMILPSZ128mi, X86::VPSHUFDZ128mi },
7570 { X86::VPERMILPSZ128ri, X86::VPERMILPSZ128ri, X86::VPSHUFDZ128ri },
7571 { X86::VPERMILPSZ256mi, X86::VPERMILPSZ256mi, X86::VPSHUFDZ256mi },
7572 { X86::VPERMILPSZ256ri, X86::VPERMILPSZ256ri, X86::VPSHUFDZ256ri },
7573 { X86::VPERMILPSZmi, X86::VPERMILPSZmi, X86::VPSHUFDZmi },
7574 { X86::VPERMILPSZri, X86::VPERMILPSZri, X86::VPSHUFDZri },
7575 { X86::VPERMPSZ256rm, X86::VPERMPSZ256rm, X86::VPERMDZ256rm },
7576 { X86::VPERMPSZ256rr, X86::VPERMPSZ256rr, X86::VPERMDZ256rr },
7577 { X86::VPERMPDZ256mi, X86::VPERMPDZ256mi, X86::VPERMQZ256mi },
7578 { X86::VPERMPDZ256ri, X86::VPERMPDZ256ri, X86::VPERMQZ256ri },
7579 { X86::VPERMPDZ256rm, X86::VPERMPDZ256rm, X86::VPERMQZ256rm },
7580 { X86::VPERMPDZ256rr, X86::VPERMPDZ256rr, X86::VPERMQZ256rr },
7581 { X86::VPERMPSZrm, X86::VPERMPSZrm, X86::VPERMDZrm },
7582 { X86::VPERMPSZrr, X86::VPERMPSZrr, X86::VPERMDZrr },
7583 { X86::VPERMPDZmi, X86::VPERMPDZmi, X86::VPERMQZmi },
7584 { X86::VPERMPDZri, X86::VPERMPDZri, X86::VPERMQZri },
7585 { X86::VPERMPDZrm, X86::VPERMPDZrm, X86::VPERMQZrm },
7586 { X86::VPERMPDZrr, X86::VPERMPDZrr, X86::VPERMQZrr },
7587 { X86::VUNPCKLPDZ256rm, X86::VUNPCKLPDZ256rm, X86::VPUNPCKLQDQZ256rm },
7588 { X86::VUNPCKLPDZ256rr, X86::VUNPCKLPDZ256rr, X86::VPUNPCKLQDQZ256rr },
7589 { X86::VUNPCKHPDZ256rm, X86::VUNPCKHPDZ256rm, X86::VPUNPCKHQDQZ256rm },
7590 { X86::VUNPCKHPDZ256rr, X86::VUNPCKHPDZ256rr, X86::VPUNPCKHQDQZ256rr },
7591 { X86::VUNPCKLPSZ256rm, X86::VUNPCKLPSZ256rm, X86::VPUNPCKLDQZ256rm },
7592 { X86::VUNPCKLPSZ256rr, X86::VUNPCKLPSZ256rr, X86::VPUNPCKLDQZ256rr },
7593 { X86::VUNPCKHPSZ256rm, X86::VUNPCKHPSZ256rm, X86::VPUNPCKHDQZ256rm },
7594 { X86::VUNPCKHPSZ256rr, X86::VUNPCKHPSZ256rr, X86::VPUNPCKHDQZ256rr },
7595 { X86::VUNPCKLPDZ128rm, X86::VUNPCKLPDZ128rm, X86::VPUNPCKLQDQZ128rm },
7596 { X86::VMOVLHPSZrr, X86::VUNPCKLPDZ128rr, X86::VPUNPCKLQDQZ128rr },
7597 { X86::VUNPCKHPDZ128rm, X86::VUNPCKHPDZ128rm, X86::VPUNPCKHQDQZ128rm },
7598 { X86::VUNPCKHPDZ128rr, X86::VUNPCKHPDZ128rr, X86::VPUNPCKHQDQZ128rr },
7599 { X86::VUNPCKLPSZ128rm, X86::VUNPCKLPSZ128rm, X86::VPUNPCKLDQZ128rm },
7600 { X86::VUNPCKLPSZ128rr, X86::VUNPCKLPSZ128rr, X86::VPUNPCKLDQZ128rr },
7601 { X86::VUNPCKHPSZ128rm, X86::VUNPCKHPSZ128rm, X86::VPUNPCKHDQZ128rm },
7602 { X86::VUNPCKHPSZ128rr, X86::VUNPCKHPSZ128rr, X86::VPUNPCKHDQZ128rr },
7603 { X86::VUNPCKLPDZrm, X86::VUNPCKLPDZrm, X86::VPUNPCKLQDQZrm },
7604 { X86::VUNPCKLPDZrr, X86::VUNPCKLPDZrr, X86::VPUNPCKLQDQZrr },
7605 { X86::VUNPCKHPDZrm, X86::VUNPCKHPDZrm, X86::VPUNPCKHQDQZrm },
7606 { X86::VUNPCKHPDZrr, X86::VUNPCKHPDZrr, X86::VPUNPCKHQDQZrr },
7607 { X86::VUNPCKLPSZrm, X86::VUNPCKLPSZrm, X86::VPUNPCKLDQZrm },
7608 { X86::VUNPCKLPSZrr, X86::VUNPCKLPSZrr, X86::VPUNPCKLDQZrr },
7609 { X86::VUNPCKHPSZrm, X86::VUNPCKHPSZrm, X86::VPUNPCKHDQZrm },
7610 { X86::VUNPCKHPSZrr, X86::VUNPCKHPSZrr, X86::VPUNPCKHDQZrr },
7611 { X86::VEXTRACTPSZmr, X86::VEXTRACTPSZmr, X86::VPEXTRDZmr },
7612 { X86::VEXTRACTPSZrr, X86::VEXTRACTPSZrr, X86::VPEXTRDZrr },
7613 };
7614
7615 static const uint16_t ReplaceableInstrsAVX2[][3] = {
7616 //PackedSingle PackedDouble PackedInt
7617 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
7618 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
7619 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
7620 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
7621 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
7622 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
7623 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
7624 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
7625 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
7626 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr },
7627 { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
7628 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
7629 { X86::VMOVDDUPrm, X86::VMOVDDUPrm, X86::VPBROADCASTQrm},
7630 { X86::VMOVDDUPrr, X86::VMOVDDUPrr, X86::VPBROADCASTQrr},
7631 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
7632 { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
7633 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
7634 { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
7635 { X86::VBROADCASTF128, X86::VBROADCASTF128, X86::VBROADCASTI128 },
7636 { X86::VBLENDPSYrri, X86::VBLENDPSYrri, X86::VPBLENDDYrri },
7637 { X86::VBLENDPSYrmi, X86::VBLENDPSYrmi, X86::VPBLENDDYrmi },
7638 { X86::VPERMILPSYmi, X86::VPERMILPSYmi, X86::VPSHUFDYmi },
7639 { X86::VPERMILPSYri, X86::VPERMILPSYri, X86::VPSHUFDYri },
7640 { X86::VUNPCKLPDYrm, X86::VUNPCKLPDYrm, X86::VPUNPCKLQDQYrm },
7641 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrr, X86::VPUNPCKLQDQYrr },
7642 { X86::VUNPCKHPDYrm, X86::VUNPCKHPDYrm, X86::VPUNPCKHQDQYrm },
7643 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrr, X86::VPUNPCKHQDQYrr },
7644 { X86::VUNPCKLPSYrm, X86::VUNPCKLPSYrm, X86::VPUNPCKLDQYrm },
7645 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrr, X86::VPUNPCKLDQYrr },
7646 { X86::VUNPCKHPSYrm, X86::VUNPCKHPSYrm, X86::VPUNPCKHDQYrm },
7647 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrr, X86::VPUNPCKHDQYrr },
7648 };
7649
7650 static const uint16_t ReplaceableInstrsFP[][3] = {
7651 //PackedSingle PackedDouble
7652 { X86::MOVLPSrm, X86::MOVLPDrm, X86::INSTRUCTION_LIST_END },
7653 { X86::MOVHPSrm, X86::MOVHPDrm, X86::INSTRUCTION_LIST_END },
7654 { X86::MOVHPSmr, X86::MOVHPDmr, X86::INSTRUCTION_LIST_END },
7655 { X86::VMOVLPSrm, X86::VMOVLPDrm, X86::INSTRUCTION_LIST_END },
7656 { X86::VMOVHPSrm, X86::VMOVHPDrm, X86::INSTRUCTION_LIST_END },
7657 { X86::VMOVHPSmr, X86::VMOVHPDmr, X86::INSTRUCTION_LIST_END },
7658 { X86::VMOVLPSZ128rm, X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END },
7659 { X86::VMOVHPSZ128rm, X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END },
7660 { X86::VMOVHPSZ128mr, X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END },
7661 };
7662
7663 static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
7664 //PackedSingle PackedDouble PackedInt
7665 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
7666 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
7667 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
7668 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
7669 };
7670
7671 static const uint16_t ReplaceableInstrsAVX512[][4] = {
7672 // Two integer columns for 64-bit and 32-bit elements.
7673 //PackedSingle PackedDouble PackedInt PackedInt
7674 { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr },
7675 { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm },
7676 { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr },
7677 { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr },
7678 { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm },
7679 { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr },
7680 { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm },
7681 { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr },
7682 { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr },
7683 { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm },
7684 { X86::VMOVAPSZmr, X86::VMOVAPDZmr, X86::VMOVDQA64Zmr, X86::VMOVDQA32Zmr },
7685 { X86::VMOVAPSZrm, X86::VMOVAPDZrm, X86::VMOVDQA64Zrm, X86::VMOVDQA32Zrm },
7686 { X86::VMOVAPSZrr, X86::VMOVAPDZrr, X86::VMOVDQA64Zrr, X86::VMOVDQA32Zrr },
7687 { X86::VMOVUPSZmr, X86::VMOVUPDZmr, X86::VMOVDQU64Zmr, X86::VMOVDQU32Zmr },
7688 { X86::VMOVUPSZrm, X86::VMOVUPDZrm, X86::VMOVDQU64Zrm, X86::VMOVDQU32Zrm },
7689 };
7690
7691 static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
7692 // Two integer columns for 64-bit and 32-bit elements.
7693 //PackedSingle PackedDouble PackedInt PackedInt
7694 { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
7695 { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
7696 { X86::VANDPSZ128rm, X86::VANDPDZ128rm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
7697 { X86::VANDPSZ128rr, X86::VANDPDZ128rr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
7698 { X86::VORPSZ128rm, X86::VORPDZ128rm, X86::VPORQZ128rm, X86::VPORDZ128rm },
7699 { X86::VORPSZ128rr, X86::VORPDZ128rr, X86::VPORQZ128rr, X86::VPORDZ128rr },
7700 { X86::VXORPSZ128rm, X86::VXORPDZ128rm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
7701 { X86::VXORPSZ128rr, X86::VXORPDZ128rr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
7702 { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
7703 { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
7704 { X86::VANDPSZ256rm, X86::VANDPDZ256rm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
7705 { X86::VANDPSZ256rr, X86::VANDPDZ256rr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
7706 { X86::VORPSZ256rm, X86::VORPDZ256rm, X86::VPORQZ256rm, X86::VPORDZ256rm },
7707 { X86::VORPSZ256rr, X86::VORPDZ256rr, X86::VPORQZ256rr, X86::VPORDZ256rr },
7708 { X86::VXORPSZ256rm, X86::VXORPDZ256rm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
7709 { X86::VXORPSZ256rr, X86::VXORPDZ256rr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
7710 { X86::VANDNPSZrm, X86::VANDNPDZrm, X86::VPANDNQZrm, X86::VPANDNDZrm },
7711 { X86::VANDNPSZrr, X86::VANDNPDZrr, X86::VPANDNQZrr, X86::VPANDNDZrr },
7712 { X86::VANDPSZrm, X86::VANDPDZrm, X86::VPANDQZrm, X86::VPANDDZrm },
7713 { X86::VANDPSZrr, X86::VANDPDZrr, X86::VPANDQZrr, X86::VPANDDZrr },
7714 { X86::VORPSZrm, X86::VORPDZrm, X86::VPORQZrm, X86::VPORDZrm },
7715 { X86::VORPSZrr, X86::VORPDZrr, X86::VPORQZrr, X86::VPORDZrr },
7716 { X86::VXORPSZrm, X86::VXORPDZrm, X86::VPXORQZrm, X86::VPXORDZrm },
7717 { X86::VXORPSZrr, X86::VXORPDZrr, X86::VPXORQZrr, X86::VPXORDZrr },
7718 };
7719
7720 static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
7721 // Two integer columns for 64-bit and 32-bit elements.
7722 //PackedSingle PackedDouble
7723 //PackedInt PackedInt
7724 { X86::VANDNPSZ128rmk, X86::VANDNPDZ128rmk,
7725 X86::VPANDNQZ128rmk, X86::VPANDNDZ128rmk },
7726 { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
7727 X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
7728 { X86::VANDNPSZ128rrk, X86::VANDNPDZ128rrk,
7729 X86::VPANDNQZ128rrk, X86::VPANDNDZ128rrk },
7730 { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
7731 X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
7732 { X86::VANDPSZ128rmk, X86::VANDPDZ128rmk,
7733 X86::VPANDQZ128rmk, X86::VPANDDZ128rmk },
7734 { X86::VANDPSZ128rmkz, X86::VANDPDZ128rmkz,
7735 X86::VPANDQZ128rmkz, X86::VPANDDZ128rmkz },
7736 { X86::VANDPSZ128rrk, X86::VANDPDZ128rrk,
7737 X86::VPANDQZ128rrk, X86::VPANDDZ128rrk },
7738 { X86::VANDPSZ128rrkz, X86::VANDPDZ128rrkz,
7739 X86::VPANDQZ128rrkz, X86::VPANDDZ128rrkz },
7740 { X86::VORPSZ128rmk, X86::VORPDZ128rmk,
7741 X86::VPORQZ128rmk, X86::VPORDZ128rmk },
7742 { X86::VORPSZ128rmkz, X86::VORPDZ128rmkz,
7743 X86::VPORQZ128rmkz, X86::VPORDZ128rmkz },
7744 { X86::VORPSZ128rrk, X86::VORPDZ128rrk,
7745 X86::VPORQZ128rrk, X86::VPORDZ128rrk },
7746 { X86::VORPSZ128rrkz, X86::VORPDZ128rrkz,
7747 X86::VPORQZ128rrkz, X86::VPORDZ128rrkz },
7748 { X86::VXORPSZ128rmk, X86::VXORPDZ128rmk,
7749 X86::VPXORQZ128rmk, X86::VPXORDZ128rmk },
7750 { X86::VXORPSZ128rmkz, X86::VXORPDZ128rmkz,
7751 X86::VPXORQZ128rmkz, X86::VPXORDZ128rmkz },
7752 { X86::VXORPSZ128rrk, X86::VXORPDZ128rrk,
7753 X86::VPXORQZ128rrk, X86::VPXORDZ128rrk },
7754 { X86::VXORPSZ128rrkz, X86::VXORPDZ128rrkz,
7755 X86::VPXORQZ128rrkz, X86::VPXORDZ128rrkz },
7756 { X86::VANDNPSZ256rmk, X86::VANDNPDZ256rmk,
7757 X86::VPANDNQZ256rmk, X86::VPANDNDZ256rmk },
7758 { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
7759 X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
7760 { X86::VANDNPSZ256rrk, X86::VANDNPDZ256rrk,
7761 X86::VPANDNQZ256rrk, X86::VPANDNDZ256rrk },
7762 { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
7763 X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
7764 { X86::VANDPSZ256rmk, X86::VANDPDZ256rmk,
7765 X86::VPANDQZ256rmk, X86::VPANDDZ256rmk },
7766 { X86::VANDPSZ256rmkz, X86::VANDPDZ256rmkz,
7767 X86::VPANDQZ256rmkz, X86::VPANDDZ256rmkz },
7768 { X86::VANDPSZ256rrk, X86::VANDPDZ256rrk,
7769 X86::VPANDQZ256rrk, X86::VPANDDZ256rrk },
7770 { X86::VANDPSZ256rrkz, X86::VANDPDZ256rrkz,
7771 X86::VPANDQZ256rrkz, X86::VPANDDZ256rrkz },
7772 { X86::VORPSZ256rmk, X86::VORPDZ256rmk,
7773 X86::VPORQZ256rmk, X86::VPORDZ256rmk },
7774 { X86::VORPSZ256rmkz, X86::VORPDZ256rmkz,
7775 X86::VPORQZ256rmkz, X86::VPORDZ256rmkz },
7776 { X86::VORPSZ256rrk, X86::VORPDZ256rrk,
7777 X86::VPORQZ256rrk, X86::VPORDZ256rrk },
7778 { X86::VORPSZ256rrkz, X86::VORPDZ256rrkz,
7779 X86::VPORQZ256rrkz, X86::VPORDZ256rrkz },
7780 { X86::VXORPSZ256rmk, X86::VXORPDZ256rmk,
7781 X86::VPXORQZ256rmk, X86::VPXORDZ256rmk },
7782 { X86::VXORPSZ256rmkz, X86::VXORPDZ256rmkz,
7783 X86::VPXORQZ256rmkz, X86::VPXORDZ256rmkz },
7784 { X86::VXORPSZ256rrk, X86::VXORPDZ256rrk,
7785 X86::VPXORQZ256rrk, X86::VPXORDZ256rrk },
7786 { X86::VXORPSZ256rrkz, X86::VXORPDZ256rrkz,
7787 X86::VPXORQZ256rrkz, X86::VPXORDZ256rrkz },
7788 { X86::VANDNPSZrmk, X86::VANDNPDZrmk,
7789 X86::VPANDNQZrmk, X86::VPANDNDZrmk },
7790 { X86::VANDNPSZrmkz, X86::VANDNPDZrmkz,
7791 X86::VPANDNQZrmkz, X86::VPANDNDZrmkz },
7792 { X86::VANDNPSZrrk, X86::VANDNPDZrrk,
7793 X86::VPANDNQZrrk, X86::VPANDNDZrrk },
7794 { X86::VANDNPSZrrkz, X86::VANDNPDZrrkz,
7795 X86::VPANDNQZrrkz, X86::VPANDNDZrrkz },
7796 { X86::VANDPSZrmk, X86::VANDPDZrmk,
7797 X86::VPANDQZrmk, X86::VPANDDZrmk },
7798 { X86::VANDPSZrmkz, X86::VANDPDZrmkz,
7799 X86::VPANDQZrmkz, X86::VPANDDZrmkz },
7800 { X86::VANDPSZrrk, X86::VANDPDZrrk,
7801 X86::VPANDQZrrk, X86::VPANDDZrrk },
7802 { X86::VANDPSZrrkz, X86::VANDPDZrrkz,
7803 X86::VPANDQZrrkz, X86::VPANDDZrrkz },
7804 { X86::VORPSZrmk, X86::VORPDZrmk,
7805 X86::VPORQZrmk, X86::VPORDZrmk },
7806 { X86::VORPSZrmkz, X86::VORPDZrmkz,
7807 X86::VPORQZrmkz, X86::VPORDZrmkz },
7808 { X86::VORPSZrrk, X86::VORPDZrrk,
7809 X86::VPORQZrrk, X86::VPORDZrrk },
7810 { X86::VORPSZrrkz, X86::VORPDZrrkz,
7811 X86::VPORQZrrkz, X86::VPORDZrrkz },
7812 { X86::VXORPSZrmk, X86::VXORPDZrmk,
7813 X86::VPXORQZrmk, X86::VPXORDZrmk },
7814 { X86::VXORPSZrmkz, X86::VXORPDZrmkz,
7815 X86::VPXORQZrmkz, X86::VPXORDZrmkz },
7816 { X86::VXORPSZrrk, X86::VXORPDZrrk,
7817 X86::VPXORQZrrk, X86::VPXORDZrrk },
7818 { X86::VXORPSZrrkz, X86::VXORPDZrrkz,
7819 X86::VPXORQZrrkz, X86::VPXORDZrrkz },
7820 // Broadcast loads can be handled the same as masked operations to avoid
7821 // changing element size.
7822 { X86::VANDNPSZ128rmb, X86::VANDNPDZ128rmb,
7823 X86::VPANDNQZ128rmb, X86::VPANDNDZ128rmb },
7824 { X86::VANDPSZ128rmb, X86::VANDPDZ128rmb,
7825 X86::VPANDQZ128rmb, X86::VPANDDZ128rmb },
7826 { X86::VORPSZ128rmb, X86::VORPDZ128rmb,
7827 X86::VPORQZ128rmb, X86::VPORDZ128rmb },
7828 { X86::VXORPSZ128rmb, X86::VXORPDZ128rmb,
7829 X86::VPXORQZ128rmb, X86::VPXORDZ128rmb },
7830 { X86::VANDNPSZ256rmb, X86::VANDNPDZ256rmb,
7831 X86::VPANDNQZ256rmb, X86::VPANDNDZ256rmb },
7832 { X86::VANDPSZ256rmb, X86::VANDPDZ256rmb,
7833 X86::VPANDQZ256rmb, X86::VPANDDZ256rmb },
7834 { X86::VORPSZ256rmb, X86::VORPDZ256rmb,
7835 X86::VPORQZ256rmb, X86::VPORDZ256rmb },
7836 { X86::VXORPSZ256rmb, X86::VXORPDZ256rmb,
7837 X86::VPXORQZ256rmb, X86::VPXORDZ256rmb },
7838 { X86::VANDNPSZrmb, X86::VANDNPDZrmb,
7839 X86::VPANDNQZrmb, X86::VPANDNDZrmb },
7840 { X86::VANDPSZrmb, X86::VANDPDZrmb,
7841 X86::VPANDQZrmb, X86::VPANDDZrmb },
7842 { X86::VANDPSZrmb, X86::VANDPDZrmb,
7843 X86::VPANDQZrmb, X86::VPANDDZrmb },
7844 { X86::VORPSZrmb, X86::VORPDZrmb,
7845 X86::VPORQZrmb, X86::VPORDZrmb },
7846 { X86::VXORPSZrmb, X86::VXORPDZrmb,
7847 X86::VPXORQZrmb, X86::VPXORDZrmb },
7848 { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
7849 X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
7850 { X86::VANDPSZ128rmbk, X86::VANDPDZ128rmbk,
7851 X86::VPANDQZ128rmbk, X86::VPANDDZ128rmbk },
7852 { X86::VORPSZ128rmbk, X86::VORPDZ128rmbk,
7853 X86::VPORQZ128rmbk, X86::VPORDZ128rmbk },
7854 { X86::VXORPSZ128rmbk, X86::VXORPDZ128rmbk,
7855 X86::VPXORQZ128rmbk, X86::VPXORDZ128rmbk },
7856 { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
7857 X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
7858 { X86::VANDPSZ256rmbk, X86::VANDPDZ256rmbk,
7859 X86::VPANDQZ256rmbk, X86::VPANDDZ256rmbk },
7860 { X86::VORPSZ256rmbk, X86::VORPDZ256rmbk,
7861 X86::VPORQZ256rmbk, X86::VPORDZ256rmbk },
7862 { X86::VXORPSZ256rmbk, X86::VXORPDZ256rmbk,
7863 X86::VPXORQZ256rmbk, X86::VPXORDZ256rmbk },
7864 { X86::VANDNPSZrmbk, X86::VANDNPDZrmbk,
7865 X86::VPANDNQZrmbk, X86::VPANDNDZrmbk },
7866 { X86::VANDPSZrmbk, X86::VANDPDZrmbk,
7867 X86::VPANDQZrmbk, X86::VPANDDZrmbk },
7868 { X86::VANDPSZrmbk, X86::VANDPDZrmbk,
7869 X86::VPANDQZrmbk, X86::VPANDDZrmbk },
7870 { X86::VORPSZrmbk, X86::VORPDZrmbk,
7871 X86::VPORQZrmbk, X86::VPORDZrmbk },
7872 { X86::VXORPSZrmbk, X86::VXORPDZrmbk,
7873 X86::VPXORQZrmbk, X86::VPXORDZrmbk },
7874 { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
7875 X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
7876 { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
7877 X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
7878 { X86::VORPSZ128rmbkz, X86::VORPDZ128rmbkz,
7879 X86::VPORQZ128rmbkz, X86::VPORDZ128rmbkz },
7880 { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
7881 X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
7882 { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
7883 X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
7884 { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
7885 X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
7886 { X86::VORPSZ256rmbkz, X86::VORPDZ256rmbkz,
7887 X86::VPORQZ256rmbkz, X86::VPORDZ256rmbkz },
7888 { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
7889 X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
7890 { X86::VANDNPSZrmbkz, X86::VANDNPDZrmbkz,
7891 X86::VPANDNQZrmbkz, X86::VPANDNDZrmbkz },
7892 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
7893 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
7894 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
7895 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
7896 { X86::VORPSZrmbkz, X86::VORPDZrmbkz,
7897 X86::VPORQZrmbkz, X86::VPORDZrmbkz },
7898 { X86::VXORPSZrmbkz, X86::VXORPDZrmbkz,
7899 X86::VPXORQZrmbkz, X86::VPXORDZrmbkz },
7900 };
7901
7902 // NOTE: These should only be used by the custom domain methods.
7903 static const uint16_t ReplaceableBlendInstrs[][3] = {
7904 //PackedSingle PackedDouble PackedInt
7905 { X86::BLENDPSrmi, X86::BLENDPDrmi, X86::PBLENDWrmi },
7906 { X86::BLENDPSrri, X86::BLENDPDrri, X86::PBLENDWrri },
7907 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDWrmi },
7908 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDWrri },
7909 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDWYrmi },
7910 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDWYrri },
7911 };
7912 static const uint16_t ReplaceableBlendAVX2Instrs[][3] = {
7913 //PackedSingle PackedDouble PackedInt
7914 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDDrmi },
7915 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDDrri },
7916 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDDYrmi },
7917 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDDYrri },
7918 };
7919
7920 // Special table for changing EVEX logic instructions to VEX.
7921 // TODO: Should we run EVEX->VEX earlier?
7922 static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
7923 // Two integer columns for 64-bit and 32-bit elements.
7924 //PackedSingle PackedDouble PackedInt PackedInt
7925 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
7926 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
7927 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
7928 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
7929 { X86::VORPSrm, X86::VORPDrm, X86::VPORQZ128rm, X86::VPORDZ128rm },
7930 { X86::VORPSrr, X86::VORPDrr, X86::VPORQZ128rr, X86::VPORDZ128rr },
7931 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
7932 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
7933 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
7934 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
7935 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
7936 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
7937 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORQZ256rm, X86::VPORDZ256rm },
7938 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORQZ256rr, X86::VPORDZ256rr },
7939 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
7940 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
7941 };
7942
7943 // FIXME: Some shuffle and unpack instructions have equivalents in different
7944 // domains, but they require a bit more work than just switching opcodes.
7945
lookup(unsigned opcode,unsigned domain,ArrayRef<uint16_t[3]> Table)7946 static const uint16_t *lookup(unsigned opcode, unsigned domain,
7947 ArrayRef<uint16_t[3]> Table) {
7948 for (const uint16_t (&Row)[3] : Table)
7949 if (Row[domain-1] == opcode)
7950 return Row;
7951 return nullptr;
7952 }
7953
lookupAVX512(unsigned opcode,unsigned domain,ArrayRef<uint16_t[4]> Table)7954 static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
7955 ArrayRef<uint16_t[4]> Table) {
7956 // If this is the integer domain make sure to check both integer columns.
7957 for (const uint16_t (&Row)[4] : Table)
7958 if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
7959 return Row;
7960 return nullptr;
7961 }
7962
7963 // Helper to attempt to widen/narrow blend masks.
AdjustBlendMask(unsigned OldMask,unsigned OldWidth,unsigned NewWidth,unsigned * pNewMask=nullptr)7964 static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
7965 unsigned NewWidth, unsigned *pNewMask = nullptr) {
7966 assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
7967 "Illegal blend mask scale");
7968 unsigned NewMask = 0;
7969
7970 if ((OldWidth % NewWidth) == 0) {
7971 unsigned Scale = OldWidth / NewWidth;
7972 unsigned SubMask = (1u << Scale) - 1;
7973 for (unsigned i = 0; i != NewWidth; ++i) {
7974 unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
7975 if (Sub == SubMask)
7976 NewMask |= (1u << i);
7977 else if (Sub != 0x0)
7978 return false;
7979 }
7980 } else {
7981 unsigned Scale = NewWidth / OldWidth;
7982 unsigned SubMask = (1u << Scale) - 1;
7983 for (unsigned i = 0; i != OldWidth; ++i) {
7984 if (OldMask & (1 << i)) {
7985 NewMask |= (SubMask << (i * Scale));
7986 }
7987 }
7988 }
7989
7990 if (pNewMask)
7991 *pNewMask = NewMask;
7992 return true;
7993 }
7994
getExecutionDomainCustom(const MachineInstr & MI) const7995 uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
7996 unsigned Opcode = MI.getOpcode();
7997 unsigned NumOperands = MI.getDesc().getNumOperands();
7998
7999 auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
8000 uint16_t validDomains = 0;
8001 if (MI.getOperand(NumOperands - 1).isImm()) {
8002 unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
8003 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
8004 validDomains |= 0x2; // PackedSingle
8005 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
8006 validDomains |= 0x4; // PackedDouble
8007 if (!Is256 || Subtarget.hasAVX2())
8008 validDomains |= 0x8; // PackedInt
8009 }
8010 return validDomains;
8011 };
8012
8013 switch (Opcode) {
8014 case X86::BLENDPDrmi:
8015 case X86::BLENDPDrri:
8016 case X86::VBLENDPDrmi:
8017 case X86::VBLENDPDrri:
8018 return GetBlendDomains(2, false);
8019 case X86::VBLENDPDYrmi:
8020 case X86::VBLENDPDYrri:
8021 return GetBlendDomains(4, true);
8022 case X86::BLENDPSrmi:
8023 case X86::BLENDPSrri:
8024 case X86::VBLENDPSrmi:
8025 case X86::VBLENDPSrri:
8026 case X86::VPBLENDDrmi:
8027 case X86::VPBLENDDrri:
8028 return GetBlendDomains(4, false);
8029 case X86::VBLENDPSYrmi:
8030 case X86::VBLENDPSYrri:
8031 case X86::VPBLENDDYrmi:
8032 case X86::VPBLENDDYrri:
8033 return GetBlendDomains(8, true);
8034 case X86::PBLENDWrmi:
8035 case X86::PBLENDWrri:
8036 case X86::VPBLENDWrmi:
8037 case X86::VPBLENDWrri:
8038 // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
8039 case X86::VPBLENDWYrmi:
8040 case X86::VPBLENDWYrri:
8041 return GetBlendDomains(8, false);
8042 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
8043 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
8044 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
8045 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
8046 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
8047 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
8048 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
8049 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
8050 case X86::VPORDZ128rr: case X86::VPORDZ128rm:
8051 case X86::VPORDZ256rr: case X86::VPORDZ256rm:
8052 case X86::VPORQZ128rr: case X86::VPORQZ128rm:
8053 case X86::VPORQZ256rr: case X86::VPORQZ256rm:
8054 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
8055 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
8056 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
8057 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm:
8058 // If we don't have DQI see if we can still switch from an EVEX integer
8059 // instruction to a VEX floating point instruction.
8060 if (Subtarget.hasDQI())
8061 return 0;
8062
8063 if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
8064 return 0;
8065 if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
8066 return 0;
8067 // Register forms will have 3 operands. Memory form will have more.
8068 if (NumOperands == 3 &&
8069 RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
8070 return 0;
8071
8072 // All domains are valid.
8073 return 0xe;
8074 case X86::MOVHLPSrr:
8075 // We can swap domains when both inputs are the same register.
8076 // FIXME: This doesn't catch all the cases we would like. If the input
8077 // register isn't KILLed by the instruction, the two address instruction
8078 // pass puts a COPY on one input. The other input uses the original
8079 // register. This prevents the same physical register from being used by
8080 // both inputs.
8081 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
8082 MI.getOperand(0).getSubReg() == 0 &&
8083 MI.getOperand(1).getSubReg() == 0 &&
8084 MI.getOperand(2).getSubReg() == 0)
8085 return 0x6;
8086 return 0;
8087 case X86::SHUFPDrri:
8088 return 0x6;
8089 }
8090 return 0;
8091 }
8092
setExecutionDomainCustom(MachineInstr & MI,unsigned Domain) const8093 bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
8094 unsigned Domain) const {
8095 assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
8096 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
8097 assert(dom && "Not an SSE instruction");
8098
8099 unsigned Opcode = MI.getOpcode();
8100 unsigned NumOperands = MI.getDesc().getNumOperands();
8101
8102 auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
8103 if (MI.getOperand(NumOperands - 1).isImm()) {
8104 unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
8105 Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
8106 unsigned NewImm = Imm;
8107
8108 const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
8109 if (!table)
8110 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
8111
8112 if (Domain == 1) { // PackedSingle
8113 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
8114 } else if (Domain == 2) { // PackedDouble
8115 AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
8116 } else if (Domain == 3) { // PackedInt
8117 if (Subtarget.hasAVX2()) {
8118 // If we are already VPBLENDW use that, else use VPBLENDD.
8119 if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
8120 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
8121 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
8122 }
8123 } else {
8124 assert(!Is256 && "128-bit vector expected");
8125 AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
8126 }
8127 }
8128
8129 assert(table && table[Domain - 1] && "Unknown domain op");
8130 MI.setDesc(get(table[Domain - 1]));
8131 MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
8132 }
8133 return true;
8134 };
8135
8136 switch (Opcode) {
8137 case X86::BLENDPDrmi:
8138 case X86::BLENDPDrri:
8139 case X86::VBLENDPDrmi:
8140 case X86::VBLENDPDrri:
8141 return SetBlendDomain(2, false);
8142 case X86::VBLENDPDYrmi:
8143 case X86::VBLENDPDYrri:
8144 return SetBlendDomain(4, true);
8145 case X86::BLENDPSrmi:
8146 case X86::BLENDPSrri:
8147 case X86::VBLENDPSrmi:
8148 case X86::VBLENDPSrri:
8149 case X86::VPBLENDDrmi:
8150 case X86::VPBLENDDrri:
8151 return SetBlendDomain(4, false);
8152 case X86::VBLENDPSYrmi:
8153 case X86::VBLENDPSYrri:
8154 case X86::VPBLENDDYrmi:
8155 case X86::VPBLENDDYrri:
8156 return SetBlendDomain(8, true);
8157 case X86::PBLENDWrmi:
8158 case X86::PBLENDWrri:
8159 case X86::VPBLENDWrmi:
8160 case X86::VPBLENDWrri:
8161 return SetBlendDomain(8, false);
8162 case X86::VPBLENDWYrmi:
8163 case X86::VPBLENDWYrri:
8164 return SetBlendDomain(16, true);
8165 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
8166 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
8167 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
8168 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
8169 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
8170 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
8171 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
8172 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
8173 case X86::VPORDZ128rr: case X86::VPORDZ128rm:
8174 case X86::VPORDZ256rr: case X86::VPORDZ256rm:
8175 case X86::VPORQZ128rr: case X86::VPORQZ128rm:
8176 case X86::VPORQZ256rr: case X86::VPORQZ256rm:
8177 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
8178 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
8179 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
8180 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: {
8181 // Without DQI, convert EVEX instructions to VEX instructions.
8182 if (Subtarget.hasDQI())
8183 return false;
8184
8185 const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
8186 ReplaceableCustomAVX512LogicInstrs);
8187 assert(table && "Instruction not found in table?");
8188 // Don't change integer Q instructions to D instructions and
8189 // use D intructions if we started with a PS instruction.
8190 if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
8191 Domain = 4;
8192 MI.setDesc(get(table[Domain - 1]));
8193 return true;
8194 }
8195 case X86::UNPCKHPDrr:
8196 case X86::MOVHLPSrr:
8197 // We just need to commute the instruction which will switch the domains.
8198 if (Domain != dom && Domain != 3 &&
8199 MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
8200 MI.getOperand(0).getSubReg() == 0 &&
8201 MI.getOperand(1).getSubReg() == 0 &&
8202 MI.getOperand(2).getSubReg() == 0) {
8203 commuteInstruction(MI, false);
8204 return true;
8205 }
8206 // We must always return true for MOVHLPSrr.
8207 if (Opcode == X86::MOVHLPSrr)
8208 return true;
8209 break;
8210 case X86::SHUFPDrri: {
8211 if (Domain == 1) {
8212 unsigned Imm = MI.getOperand(3).getImm();
8213 unsigned NewImm = 0x44;
8214 if (Imm & 1) NewImm |= 0x0a;
8215 if (Imm & 2) NewImm |= 0xa0;
8216 MI.getOperand(3).setImm(NewImm);
8217 MI.setDesc(get(X86::SHUFPSrri));
8218 }
8219 return true;
8220 }
8221 }
8222 return false;
8223 }
8224
8225 std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr & MI) const8226 X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
8227 uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
8228 unsigned opcode = MI.getOpcode();
8229 uint16_t validDomains = 0;
8230 if (domain) {
8231 // Attempt to match for custom instructions.
8232 validDomains = getExecutionDomainCustom(MI);
8233 if (validDomains)
8234 return std::make_pair(domain, validDomains);
8235
8236 if (lookup(opcode, domain, ReplaceableInstrs)) {
8237 validDomains = 0xe;
8238 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
8239 validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
8240 } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
8241 validDomains = 0x6;
8242 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
8243 // Insert/extract instructions should only effect domain if AVX2
8244 // is enabled.
8245 if (!Subtarget.hasAVX2())
8246 return std::make_pair(0, 0);
8247 validDomains = 0xe;
8248 } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
8249 validDomains = 0xe;
8250 } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
8251 ReplaceableInstrsAVX512DQ)) {
8252 validDomains = 0xe;
8253 } else if (Subtarget.hasDQI()) {
8254 if (const uint16_t *table = lookupAVX512(opcode, domain,
8255 ReplaceableInstrsAVX512DQMasked)) {
8256 if (domain == 1 || (domain == 3 && table[3] == opcode))
8257 validDomains = 0xa;
8258 else
8259 validDomains = 0xc;
8260 }
8261 }
8262 }
8263 return std::make_pair(domain, validDomains);
8264 }
8265
setExecutionDomain(MachineInstr & MI,unsigned Domain) const8266 void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
8267 assert(Domain>0 && Domain<4 && "Invalid execution domain");
8268 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
8269 assert(dom && "Not an SSE instruction");
8270
8271 // Attempt to match for custom instructions.
8272 if (setExecutionDomainCustom(MI, Domain))
8273 return;
8274
8275 const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
8276 if (!table) { // try the other table
8277 assert((Subtarget.hasAVX2() || Domain < 3) &&
8278 "256-bit vector operations only available in AVX2");
8279 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
8280 }
8281 if (!table) { // try the FP table
8282 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
8283 assert((!table || Domain < 3) &&
8284 "Can only select PackedSingle or PackedDouble");
8285 }
8286 if (!table) { // try the other table
8287 assert(Subtarget.hasAVX2() &&
8288 "256-bit insert/extract only available in AVX2");
8289 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
8290 }
8291 if (!table) { // try the AVX512 table
8292 assert(Subtarget.hasAVX512() && "Requires AVX-512");
8293 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
8294 // Don't change integer Q instructions to D instructions.
8295 if (table && Domain == 3 && table[3] == MI.getOpcode())
8296 Domain = 4;
8297 }
8298 if (!table) { // try the AVX512DQ table
8299 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
8300 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
8301 // Don't change integer Q instructions to D instructions and
8302 // use D instructions if we started with a PS instruction.
8303 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
8304 Domain = 4;
8305 }
8306 if (!table) { // try the AVX512DQMasked table
8307 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
8308 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
8309 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
8310 Domain = 4;
8311 }
8312 assert(table && "Cannot change domain");
8313 MI.setDesc(get(table[Domain - 1]));
8314 }
8315
8316 /// Return the noop instruction to use for a noop.
getNop() const8317 MCInst X86InstrInfo::getNop() const {
8318 MCInst Nop;
8319 Nop.setOpcode(X86::NOOP);
8320 return Nop;
8321 }
8322
isHighLatencyDef(int opc) const8323 bool X86InstrInfo::isHighLatencyDef(int opc) const {
8324 switch (opc) {
8325 default: return false;
8326 case X86::DIVPDrm:
8327 case X86::DIVPDrr:
8328 case X86::DIVPSrm:
8329 case X86::DIVPSrr:
8330 case X86::DIVSDrm:
8331 case X86::DIVSDrm_Int:
8332 case X86::DIVSDrr:
8333 case X86::DIVSDrr_Int:
8334 case X86::DIVSSrm:
8335 case X86::DIVSSrm_Int:
8336 case X86::DIVSSrr:
8337 case X86::DIVSSrr_Int:
8338 case X86::SQRTPDm:
8339 case X86::SQRTPDr:
8340 case X86::SQRTPSm:
8341 case X86::SQRTPSr:
8342 case X86::SQRTSDm:
8343 case X86::SQRTSDm_Int:
8344 case X86::SQRTSDr:
8345 case X86::SQRTSDr_Int:
8346 case X86::SQRTSSm:
8347 case X86::SQRTSSm_Int:
8348 case X86::SQRTSSr:
8349 case X86::SQRTSSr_Int:
8350 // AVX instructions with high latency
8351 case X86::VDIVPDrm:
8352 case X86::VDIVPDrr:
8353 case X86::VDIVPDYrm:
8354 case X86::VDIVPDYrr:
8355 case X86::VDIVPSrm:
8356 case X86::VDIVPSrr:
8357 case X86::VDIVPSYrm:
8358 case X86::VDIVPSYrr:
8359 case X86::VDIVSDrm:
8360 case X86::VDIVSDrm_Int:
8361 case X86::VDIVSDrr:
8362 case X86::VDIVSDrr_Int:
8363 case X86::VDIVSSrm:
8364 case X86::VDIVSSrm_Int:
8365 case X86::VDIVSSrr:
8366 case X86::VDIVSSrr_Int:
8367 case X86::VSQRTPDm:
8368 case X86::VSQRTPDr:
8369 case X86::VSQRTPDYm:
8370 case X86::VSQRTPDYr:
8371 case X86::VSQRTPSm:
8372 case X86::VSQRTPSr:
8373 case X86::VSQRTPSYm:
8374 case X86::VSQRTPSYr:
8375 case X86::VSQRTSDm:
8376 case X86::VSQRTSDm_Int:
8377 case X86::VSQRTSDr:
8378 case X86::VSQRTSDr_Int:
8379 case X86::VSQRTSSm:
8380 case X86::VSQRTSSm_Int:
8381 case X86::VSQRTSSr:
8382 case X86::VSQRTSSr_Int:
8383 // AVX512 instructions with high latency
8384 case X86::VDIVPDZ128rm:
8385 case X86::VDIVPDZ128rmb:
8386 case X86::VDIVPDZ128rmbk:
8387 case X86::VDIVPDZ128rmbkz:
8388 case X86::VDIVPDZ128rmk:
8389 case X86::VDIVPDZ128rmkz:
8390 case X86::VDIVPDZ128rr:
8391 case X86::VDIVPDZ128rrk:
8392 case X86::VDIVPDZ128rrkz:
8393 case X86::VDIVPDZ256rm:
8394 case X86::VDIVPDZ256rmb:
8395 case X86::VDIVPDZ256rmbk:
8396 case X86::VDIVPDZ256rmbkz:
8397 case X86::VDIVPDZ256rmk:
8398 case X86::VDIVPDZ256rmkz:
8399 case X86::VDIVPDZ256rr:
8400 case X86::VDIVPDZ256rrk:
8401 case X86::VDIVPDZ256rrkz:
8402 case X86::VDIVPDZrrb:
8403 case X86::VDIVPDZrrbk:
8404 case X86::VDIVPDZrrbkz:
8405 case X86::VDIVPDZrm:
8406 case X86::VDIVPDZrmb:
8407 case X86::VDIVPDZrmbk:
8408 case X86::VDIVPDZrmbkz:
8409 case X86::VDIVPDZrmk:
8410 case X86::VDIVPDZrmkz:
8411 case X86::VDIVPDZrr:
8412 case X86::VDIVPDZrrk:
8413 case X86::VDIVPDZrrkz:
8414 case X86::VDIVPSZ128rm:
8415 case X86::VDIVPSZ128rmb:
8416 case X86::VDIVPSZ128rmbk:
8417 case X86::VDIVPSZ128rmbkz:
8418 case X86::VDIVPSZ128rmk:
8419 case X86::VDIVPSZ128rmkz:
8420 case X86::VDIVPSZ128rr:
8421 case X86::VDIVPSZ128rrk:
8422 case X86::VDIVPSZ128rrkz:
8423 case X86::VDIVPSZ256rm:
8424 case X86::VDIVPSZ256rmb:
8425 case X86::VDIVPSZ256rmbk:
8426 case X86::VDIVPSZ256rmbkz:
8427 case X86::VDIVPSZ256rmk:
8428 case X86::VDIVPSZ256rmkz:
8429 case X86::VDIVPSZ256rr:
8430 case X86::VDIVPSZ256rrk:
8431 case X86::VDIVPSZ256rrkz:
8432 case X86::VDIVPSZrrb:
8433 case X86::VDIVPSZrrbk:
8434 case X86::VDIVPSZrrbkz:
8435 case X86::VDIVPSZrm:
8436 case X86::VDIVPSZrmb:
8437 case X86::VDIVPSZrmbk:
8438 case X86::VDIVPSZrmbkz:
8439 case X86::VDIVPSZrmk:
8440 case X86::VDIVPSZrmkz:
8441 case X86::VDIVPSZrr:
8442 case X86::VDIVPSZrrk:
8443 case X86::VDIVPSZrrkz:
8444 case X86::VDIVSDZrm:
8445 case X86::VDIVSDZrr:
8446 case X86::VDIVSDZrm_Int:
8447 case X86::VDIVSDZrm_Intk:
8448 case X86::VDIVSDZrm_Intkz:
8449 case X86::VDIVSDZrr_Int:
8450 case X86::VDIVSDZrr_Intk:
8451 case X86::VDIVSDZrr_Intkz:
8452 case X86::VDIVSDZrrb_Int:
8453 case X86::VDIVSDZrrb_Intk:
8454 case X86::VDIVSDZrrb_Intkz:
8455 case X86::VDIVSSZrm:
8456 case X86::VDIVSSZrr:
8457 case X86::VDIVSSZrm_Int:
8458 case X86::VDIVSSZrm_Intk:
8459 case X86::VDIVSSZrm_Intkz:
8460 case X86::VDIVSSZrr_Int:
8461 case X86::VDIVSSZrr_Intk:
8462 case X86::VDIVSSZrr_Intkz:
8463 case X86::VDIVSSZrrb_Int:
8464 case X86::VDIVSSZrrb_Intk:
8465 case X86::VDIVSSZrrb_Intkz:
8466 case X86::VSQRTPDZ128m:
8467 case X86::VSQRTPDZ128mb:
8468 case X86::VSQRTPDZ128mbk:
8469 case X86::VSQRTPDZ128mbkz:
8470 case X86::VSQRTPDZ128mk:
8471 case X86::VSQRTPDZ128mkz:
8472 case X86::VSQRTPDZ128r:
8473 case X86::VSQRTPDZ128rk:
8474 case X86::VSQRTPDZ128rkz:
8475 case X86::VSQRTPDZ256m:
8476 case X86::VSQRTPDZ256mb:
8477 case X86::VSQRTPDZ256mbk:
8478 case X86::VSQRTPDZ256mbkz:
8479 case X86::VSQRTPDZ256mk:
8480 case X86::VSQRTPDZ256mkz:
8481 case X86::VSQRTPDZ256r:
8482 case X86::VSQRTPDZ256rk:
8483 case X86::VSQRTPDZ256rkz:
8484 case X86::VSQRTPDZm:
8485 case X86::VSQRTPDZmb:
8486 case X86::VSQRTPDZmbk:
8487 case X86::VSQRTPDZmbkz:
8488 case X86::VSQRTPDZmk:
8489 case X86::VSQRTPDZmkz:
8490 case X86::VSQRTPDZr:
8491 case X86::VSQRTPDZrb:
8492 case X86::VSQRTPDZrbk:
8493 case X86::VSQRTPDZrbkz:
8494 case X86::VSQRTPDZrk:
8495 case X86::VSQRTPDZrkz:
8496 case X86::VSQRTPSZ128m:
8497 case X86::VSQRTPSZ128mb:
8498 case X86::VSQRTPSZ128mbk:
8499 case X86::VSQRTPSZ128mbkz:
8500 case X86::VSQRTPSZ128mk:
8501 case X86::VSQRTPSZ128mkz:
8502 case X86::VSQRTPSZ128r:
8503 case X86::VSQRTPSZ128rk:
8504 case X86::VSQRTPSZ128rkz:
8505 case X86::VSQRTPSZ256m:
8506 case X86::VSQRTPSZ256mb:
8507 case X86::VSQRTPSZ256mbk:
8508 case X86::VSQRTPSZ256mbkz:
8509 case X86::VSQRTPSZ256mk:
8510 case X86::VSQRTPSZ256mkz:
8511 case X86::VSQRTPSZ256r:
8512 case X86::VSQRTPSZ256rk:
8513 case X86::VSQRTPSZ256rkz:
8514 case X86::VSQRTPSZm:
8515 case X86::VSQRTPSZmb:
8516 case X86::VSQRTPSZmbk:
8517 case X86::VSQRTPSZmbkz:
8518 case X86::VSQRTPSZmk:
8519 case X86::VSQRTPSZmkz:
8520 case X86::VSQRTPSZr:
8521 case X86::VSQRTPSZrb:
8522 case X86::VSQRTPSZrbk:
8523 case X86::VSQRTPSZrbkz:
8524 case X86::VSQRTPSZrk:
8525 case X86::VSQRTPSZrkz:
8526 case X86::VSQRTSDZm:
8527 case X86::VSQRTSDZm_Int:
8528 case X86::VSQRTSDZm_Intk:
8529 case X86::VSQRTSDZm_Intkz:
8530 case X86::VSQRTSDZr:
8531 case X86::VSQRTSDZr_Int:
8532 case X86::VSQRTSDZr_Intk:
8533 case X86::VSQRTSDZr_Intkz:
8534 case X86::VSQRTSDZrb_Int:
8535 case X86::VSQRTSDZrb_Intk:
8536 case X86::VSQRTSDZrb_Intkz:
8537 case X86::VSQRTSSZm:
8538 case X86::VSQRTSSZm_Int:
8539 case X86::VSQRTSSZm_Intk:
8540 case X86::VSQRTSSZm_Intkz:
8541 case X86::VSQRTSSZr:
8542 case X86::VSQRTSSZr_Int:
8543 case X86::VSQRTSSZr_Intk:
8544 case X86::VSQRTSSZr_Intkz:
8545 case X86::VSQRTSSZrb_Int:
8546 case X86::VSQRTSSZrb_Intk:
8547 case X86::VSQRTSSZrb_Intkz:
8548
8549 case X86::VGATHERDPDYrm:
8550 case X86::VGATHERDPDZ128rm:
8551 case X86::VGATHERDPDZ256rm:
8552 case X86::VGATHERDPDZrm:
8553 case X86::VGATHERDPDrm:
8554 case X86::VGATHERDPSYrm:
8555 case X86::VGATHERDPSZ128rm:
8556 case X86::VGATHERDPSZ256rm:
8557 case X86::VGATHERDPSZrm:
8558 case X86::VGATHERDPSrm:
8559 case X86::VGATHERPF0DPDm:
8560 case X86::VGATHERPF0DPSm:
8561 case X86::VGATHERPF0QPDm:
8562 case X86::VGATHERPF0QPSm:
8563 case X86::VGATHERPF1DPDm:
8564 case X86::VGATHERPF1DPSm:
8565 case X86::VGATHERPF1QPDm:
8566 case X86::VGATHERPF1QPSm:
8567 case X86::VGATHERQPDYrm:
8568 case X86::VGATHERQPDZ128rm:
8569 case X86::VGATHERQPDZ256rm:
8570 case X86::VGATHERQPDZrm:
8571 case X86::VGATHERQPDrm:
8572 case X86::VGATHERQPSYrm:
8573 case X86::VGATHERQPSZ128rm:
8574 case X86::VGATHERQPSZ256rm:
8575 case X86::VGATHERQPSZrm:
8576 case X86::VGATHERQPSrm:
8577 case X86::VPGATHERDDYrm:
8578 case X86::VPGATHERDDZ128rm:
8579 case X86::VPGATHERDDZ256rm:
8580 case X86::VPGATHERDDZrm:
8581 case X86::VPGATHERDDrm:
8582 case X86::VPGATHERDQYrm:
8583 case X86::VPGATHERDQZ128rm:
8584 case X86::VPGATHERDQZ256rm:
8585 case X86::VPGATHERDQZrm:
8586 case X86::VPGATHERDQrm:
8587 case X86::VPGATHERQDYrm:
8588 case X86::VPGATHERQDZ128rm:
8589 case X86::VPGATHERQDZ256rm:
8590 case X86::VPGATHERQDZrm:
8591 case X86::VPGATHERQDrm:
8592 case X86::VPGATHERQQYrm:
8593 case X86::VPGATHERQQZ128rm:
8594 case X86::VPGATHERQQZ256rm:
8595 case X86::VPGATHERQQZrm:
8596 case X86::VPGATHERQQrm:
8597 case X86::VSCATTERDPDZ128mr:
8598 case X86::VSCATTERDPDZ256mr:
8599 case X86::VSCATTERDPDZmr:
8600 case X86::VSCATTERDPSZ128mr:
8601 case X86::VSCATTERDPSZ256mr:
8602 case X86::VSCATTERDPSZmr:
8603 case X86::VSCATTERPF0DPDm:
8604 case X86::VSCATTERPF0DPSm:
8605 case X86::VSCATTERPF0QPDm:
8606 case X86::VSCATTERPF0QPSm:
8607 case X86::VSCATTERPF1DPDm:
8608 case X86::VSCATTERPF1DPSm:
8609 case X86::VSCATTERPF1QPDm:
8610 case X86::VSCATTERPF1QPSm:
8611 case X86::VSCATTERQPDZ128mr:
8612 case X86::VSCATTERQPDZ256mr:
8613 case X86::VSCATTERQPDZmr:
8614 case X86::VSCATTERQPSZ128mr:
8615 case X86::VSCATTERQPSZ256mr:
8616 case X86::VSCATTERQPSZmr:
8617 case X86::VPSCATTERDDZ128mr:
8618 case X86::VPSCATTERDDZ256mr:
8619 case X86::VPSCATTERDDZmr:
8620 case X86::VPSCATTERDQZ128mr:
8621 case X86::VPSCATTERDQZ256mr:
8622 case X86::VPSCATTERDQZmr:
8623 case X86::VPSCATTERQDZ128mr:
8624 case X86::VPSCATTERQDZ256mr:
8625 case X86::VPSCATTERQDZmr:
8626 case X86::VPSCATTERQQZ128mr:
8627 case X86::VPSCATTERQQZ256mr:
8628 case X86::VPSCATTERQQZmr:
8629 return true;
8630 }
8631 }
8632
hasHighOperandLatency(const TargetSchedModel & SchedModel,const MachineRegisterInfo * MRI,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const8633 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
8634 const MachineRegisterInfo *MRI,
8635 const MachineInstr &DefMI,
8636 unsigned DefIdx,
8637 const MachineInstr &UseMI,
8638 unsigned UseIdx) const {
8639 return isHighLatencyDef(DefMI.getOpcode());
8640 }
8641
hasReassociableOperands(const MachineInstr & Inst,const MachineBasicBlock * MBB) const8642 bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
8643 const MachineBasicBlock *MBB) const {
8644 assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 &&
8645 Inst.getNumDefs() <= 2 && "Reassociation needs binary operators");
8646
8647 // Integer binary math/logic instructions have a third source operand:
8648 // the EFLAGS register. That operand must be both defined here and never
8649 // used; ie, it must be dead. If the EFLAGS operand is live, then we can
8650 // not change anything because rearranging the operands could affect other
8651 // instructions that depend on the exact status flags (zero, sign, etc.)
8652 // that are set by using these particular operands with this operation.
8653 const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS);
8654 assert((Inst.getNumDefs() == 1 || FlagDef) &&
8655 "Implicit def isn't flags?");
8656 if (FlagDef && !FlagDef->isDead())
8657 return false;
8658
8659 return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
8660 }
8661
8662 // TODO: There are many more machine instruction opcodes to match:
8663 // 1. Other data types (integer, vectors)
8664 // 2. Other math / logic operations (xor, or)
8665 // 3. Other forms of the same operation (intrinsics and other variants)
isAssociativeAndCommutative(const MachineInstr & Inst) const8666 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
8667 switch (Inst.getOpcode()) {
8668 case X86::AND8rr:
8669 case X86::AND16rr:
8670 case X86::AND32rr:
8671 case X86::AND64rr:
8672 case X86::OR8rr:
8673 case X86::OR16rr:
8674 case X86::OR32rr:
8675 case X86::OR64rr:
8676 case X86::XOR8rr:
8677 case X86::XOR16rr:
8678 case X86::XOR32rr:
8679 case X86::XOR64rr:
8680 case X86::IMUL16rr:
8681 case X86::IMUL32rr:
8682 case X86::IMUL64rr:
8683 case X86::PANDrr:
8684 case X86::PORrr:
8685 case X86::PXORrr:
8686 case X86::ANDPDrr:
8687 case X86::ANDPSrr:
8688 case X86::ORPDrr:
8689 case X86::ORPSrr:
8690 case X86::XORPDrr:
8691 case X86::XORPSrr:
8692 case X86::PADDBrr:
8693 case X86::PADDWrr:
8694 case X86::PADDDrr:
8695 case X86::PADDQrr:
8696 case X86::PMULLWrr:
8697 case X86::PMULLDrr:
8698 case X86::PMAXSBrr:
8699 case X86::PMAXSDrr:
8700 case X86::PMAXSWrr:
8701 case X86::PMAXUBrr:
8702 case X86::PMAXUDrr:
8703 case X86::PMAXUWrr:
8704 case X86::PMINSBrr:
8705 case X86::PMINSDrr:
8706 case X86::PMINSWrr:
8707 case X86::PMINUBrr:
8708 case X86::PMINUDrr:
8709 case X86::PMINUWrr:
8710 case X86::VPANDrr:
8711 case X86::VPANDYrr:
8712 case X86::VPANDDZ128rr:
8713 case X86::VPANDDZ256rr:
8714 case X86::VPANDDZrr:
8715 case X86::VPANDQZ128rr:
8716 case X86::VPANDQZ256rr:
8717 case X86::VPANDQZrr:
8718 case X86::VPORrr:
8719 case X86::VPORYrr:
8720 case X86::VPORDZ128rr:
8721 case X86::VPORDZ256rr:
8722 case X86::VPORDZrr:
8723 case X86::VPORQZ128rr:
8724 case X86::VPORQZ256rr:
8725 case X86::VPORQZrr:
8726 case X86::VPXORrr:
8727 case X86::VPXORYrr:
8728 case X86::VPXORDZ128rr:
8729 case X86::VPXORDZ256rr:
8730 case X86::VPXORDZrr:
8731 case X86::VPXORQZ128rr:
8732 case X86::VPXORQZ256rr:
8733 case X86::VPXORQZrr:
8734 case X86::VANDPDrr:
8735 case X86::VANDPSrr:
8736 case X86::VANDPDYrr:
8737 case X86::VANDPSYrr:
8738 case X86::VANDPDZ128rr:
8739 case X86::VANDPSZ128rr:
8740 case X86::VANDPDZ256rr:
8741 case X86::VANDPSZ256rr:
8742 case X86::VANDPDZrr:
8743 case X86::VANDPSZrr:
8744 case X86::VORPDrr:
8745 case X86::VORPSrr:
8746 case X86::VORPDYrr:
8747 case X86::VORPSYrr:
8748 case X86::VORPDZ128rr:
8749 case X86::VORPSZ128rr:
8750 case X86::VORPDZ256rr:
8751 case X86::VORPSZ256rr:
8752 case X86::VORPDZrr:
8753 case X86::VORPSZrr:
8754 case X86::VXORPDrr:
8755 case X86::VXORPSrr:
8756 case X86::VXORPDYrr:
8757 case X86::VXORPSYrr:
8758 case X86::VXORPDZ128rr:
8759 case X86::VXORPSZ128rr:
8760 case X86::VXORPDZ256rr:
8761 case X86::VXORPSZ256rr:
8762 case X86::VXORPDZrr:
8763 case X86::VXORPSZrr:
8764 case X86::KADDBrr:
8765 case X86::KADDWrr:
8766 case X86::KADDDrr:
8767 case X86::KADDQrr:
8768 case X86::KANDBrr:
8769 case X86::KANDWrr:
8770 case X86::KANDDrr:
8771 case X86::KANDQrr:
8772 case X86::KORBrr:
8773 case X86::KORWrr:
8774 case X86::KORDrr:
8775 case X86::KORQrr:
8776 case X86::KXORBrr:
8777 case X86::KXORWrr:
8778 case X86::KXORDrr:
8779 case X86::KXORQrr:
8780 case X86::VPADDBrr:
8781 case X86::VPADDWrr:
8782 case X86::VPADDDrr:
8783 case X86::VPADDQrr:
8784 case X86::VPADDBYrr:
8785 case X86::VPADDWYrr:
8786 case X86::VPADDDYrr:
8787 case X86::VPADDQYrr:
8788 case X86::VPADDBZ128rr:
8789 case X86::VPADDWZ128rr:
8790 case X86::VPADDDZ128rr:
8791 case X86::VPADDQZ128rr:
8792 case X86::VPADDBZ256rr:
8793 case X86::VPADDWZ256rr:
8794 case X86::VPADDDZ256rr:
8795 case X86::VPADDQZ256rr:
8796 case X86::VPADDBZrr:
8797 case X86::VPADDWZrr:
8798 case X86::VPADDDZrr:
8799 case X86::VPADDQZrr:
8800 case X86::VPMULLWrr:
8801 case X86::VPMULLWYrr:
8802 case X86::VPMULLWZ128rr:
8803 case X86::VPMULLWZ256rr:
8804 case X86::VPMULLWZrr:
8805 case X86::VPMULLDrr:
8806 case X86::VPMULLDYrr:
8807 case X86::VPMULLDZ128rr:
8808 case X86::VPMULLDZ256rr:
8809 case X86::VPMULLDZrr:
8810 case X86::VPMULLQZ128rr:
8811 case X86::VPMULLQZ256rr:
8812 case X86::VPMULLQZrr:
8813 case X86::VPMAXSBrr:
8814 case X86::VPMAXSBYrr:
8815 case X86::VPMAXSBZ128rr:
8816 case X86::VPMAXSBZ256rr:
8817 case X86::VPMAXSBZrr:
8818 case X86::VPMAXSDrr:
8819 case X86::VPMAXSDYrr:
8820 case X86::VPMAXSDZ128rr:
8821 case X86::VPMAXSDZ256rr:
8822 case X86::VPMAXSDZrr:
8823 case X86::VPMAXSQZ128rr:
8824 case X86::VPMAXSQZ256rr:
8825 case X86::VPMAXSQZrr:
8826 case X86::VPMAXSWrr:
8827 case X86::VPMAXSWYrr:
8828 case X86::VPMAXSWZ128rr:
8829 case X86::VPMAXSWZ256rr:
8830 case X86::VPMAXSWZrr:
8831 case X86::VPMAXUBrr:
8832 case X86::VPMAXUBYrr:
8833 case X86::VPMAXUBZ128rr:
8834 case X86::VPMAXUBZ256rr:
8835 case X86::VPMAXUBZrr:
8836 case X86::VPMAXUDrr:
8837 case X86::VPMAXUDYrr:
8838 case X86::VPMAXUDZ128rr:
8839 case X86::VPMAXUDZ256rr:
8840 case X86::VPMAXUDZrr:
8841 case X86::VPMAXUQZ128rr:
8842 case X86::VPMAXUQZ256rr:
8843 case X86::VPMAXUQZrr:
8844 case X86::VPMAXUWrr:
8845 case X86::VPMAXUWYrr:
8846 case X86::VPMAXUWZ128rr:
8847 case X86::VPMAXUWZ256rr:
8848 case X86::VPMAXUWZrr:
8849 case X86::VPMINSBrr:
8850 case X86::VPMINSBYrr:
8851 case X86::VPMINSBZ128rr:
8852 case X86::VPMINSBZ256rr:
8853 case X86::VPMINSBZrr:
8854 case X86::VPMINSDrr:
8855 case X86::VPMINSDYrr:
8856 case X86::VPMINSDZ128rr:
8857 case X86::VPMINSDZ256rr:
8858 case X86::VPMINSDZrr:
8859 case X86::VPMINSQZ128rr:
8860 case X86::VPMINSQZ256rr:
8861 case X86::VPMINSQZrr:
8862 case X86::VPMINSWrr:
8863 case X86::VPMINSWYrr:
8864 case X86::VPMINSWZ128rr:
8865 case X86::VPMINSWZ256rr:
8866 case X86::VPMINSWZrr:
8867 case X86::VPMINUBrr:
8868 case X86::VPMINUBYrr:
8869 case X86::VPMINUBZ128rr:
8870 case X86::VPMINUBZ256rr:
8871 case X86::VPMINUBZrr:
8872 case X86::VPMINUDrr:
8873 case X86::VPMINUDYrr:
8874 case X86::VPMINUDZ128rr:
8875 case X86::VPMINUDZ256rr:
8876 case X86::VPMINUDZrr:
8877 case X86::VPMINUQZ128rr:
8878 case X86::VPMINUQZ256rr:
8879 case X86::VPMINUQZrr:
8880 case X86::VPMINUWrr:
8881 case X86::VPMINUWYrr:
8882 case X86::VPMINUWZ128rr:
8883 case X86::VPMINUWZ256rr:
8884 case X86::VPMINUWZrr:
8885 // Normal min/max instructions are not commutative because of NaN and signed
8886 // zero semantics, but these are. Thus, there's no need to check for global
8887 // relaxed math; the instructions themselves have the properties we need.
8888 case X86::MAXCPDrr:
8889 case X86::MAXCPSrr:
8890 case X86::MAXCSDrr:
8891 case X86::MAXCSSrr:
8892 case X86::MINCPDrr:
8893 case X86::MINCPSrr:
8894 case X86::MINCSDrr:
8895 case X86::MINCSSrr:
8896 case X86::VMAXCPDrr:
8897 case X86::VMAXCPSrr:
8898 case X86::VMAXCPDYrr:
8899 case X86::VMAXCPSYrr:
8900 case X86::VMAXCPDZ128rr:
8901 case X86::VMAXCPSZ128rr:
8902 case X86::VMAXCPDZ256rr:
8903 case X86::VMAXCPSZ256rr:
8904 case X86::VMAXCPDZrr:
8905 case X86::VMAXCPSZrr:
8906 case X86::VMAXCSDrr:
8907 case X86::VMAXCSSrr:
8908 case X86::VMAXCSDZrr:
8909 case X86::VMAXCSSZrr:
8910 case X86::VMINCPDrr:
8911 case X86::VMINCPSrr:
8912 case X86::VMINCPDYrr:
8913 case X86::VMINCPSYrr:
8914 case X86::VMINCPDZ128rr:
8915 case X86::VMINCPSZ128rr:
8916 case X86::VMINCPDZ256rr:
8917 case X86::VMINCPSZ256rr:
8918 case X86::VMINCPDZrr:
8919 case X86::VMINCPSZrr:
8920 case X86::VMINCSDrr:
8921 case X86::VMINCSSrr:
8922 case X86::VMINCSDZrr:
8923 case X86::VMINCSSZrr:
8924 case X86::VMAXCPHZ128rr:
8925 case X86::VMAXCPHZ256rr:
8926 case X86::VMAXCPHZrr:
8927 case X86::VMAXCSHZrr:
8928 case X86::VMINCPHZ128rr:
8929 case X86::VMINCPHZ256rr:
8930 case X86::VMINCPHZrr:
8931 case X86::VMINCSHZrr:
8932 return true;
8933 case X86::ADDPDrr:
8934 case X86::ADDPSrr:
8935 case X86::ADDSDrr:
8936 case X86::ADDSSrr:
8937 case X86::MULPDrr:
8938 case X86::MULPSrr:
8939 case X86::MULSDrr:
8940 case X86::MULSSrr:
8941 case X86::VADDPDrr:
8942 case X86::VADDPSrr:
8943 case X86::VADDPDYrr:
8944 case X86::VADDPSYrr:
8945 case X86::VADDPDZ128rr:
8946 case X86::VADDPSZ128rr:
8947 case X86::VADDPDZ256rr:
8948 case X86::VADDPSZ256rr:
8949 case X86::VADDPDZrr:
8950 case X86::VADDPSZrr:
8951 case X86::VADDSDrr:
8952 case X86::VADDSSrr:
8953 case X86::VADDSDZrr:
8954 case X86::VADDSSZrr:
8955 case X86::VMULPDrr:
8956 case X86::VMULPSrr:
8957 case X86::VMULPDYrr:
8958 case X86::VMULPSYrr:
8959 case X86::VMULPDZ128rr:
8960 case X86::VMULPSZ128rr:
8961 case X86::VMULPDZ256rr:
8962 case X86::VMULPSZ256rr:
8963 case X86::VMULPDZrr:
8964 case X86::VMULPSZrr:
8965 case X86::VMULSDrr:
8966 case X86::VMULSSrr:
8967 case X86::VMULSDZrr:
8968 case X86::VMULSSZrr:
8969 case X86::VADDPHZ128rr:
8970 case X86::VADDPHZ256rr:
8971 case X86::VADDPHZrr:
8972 case X86::VADDSHZrr:
8973 case X86::VMULPHZ128rr:
8974 case X86::VMULPHZ256rr:
8975 case X86::VMULPHZrr:
8976 case X86::VMULSHZrr:
8977 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
8978 Inst.getFlag(MachineInstr::MIFlag::FmNsz);
8979 default:
8980 return false;
8981 }
8982 }
8983
8984 /// If \p DescribedReg overlaps with the MOVrr instruction's destination
8985 /// register then, if possible, describe the value in terms of the source
8986 /// register.
8987 static Optional<ParamLoadedValue>
describeMOVrrLoadedValue(const MachineInstr & MI,Register DescribedReg,const TargetRegisterInfo * TRI)8988 describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg,
8989 const TargetRegisterInfo *TRI) {
8990 Register DestReg = MI.getOperand(0).getReg();
8991 Register SrcReg = MI.getOperand(1).getReg();
8992
8993 auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
8994
8995 // If the described register is the destination, just return the source.
8996 if (DestReg == DescribedReg)
8997 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
8998
8999 // If the described register is a sub-register of the destination register,
9000 // then pick out the source register's corresponding sub-register.
9001 if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) {
9002 Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx);
9003 return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
9004 }
9005
9006 // The remaining case to consider is when the described register is a
9007 // super-register of the destination register. MOV8rr and MOV16rr does not
9008 // write to any of the other bytes in the register, meaning that we'd have to
9009 // describe the value using a combination of the source register and the
9010 // non-overlapping bits in the described register, which is not currently
9011 // possible.
9012 if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr ||
9013 !TRI->isSuperRegister(DestReg, DescribedReg))
9014 return None;
9015
9016 assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case");
9017 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
9018 }
9019
9020 Optional<ParamLoadedValue>
describeLoadedValue(const MachineInstr & MI,Register Reg) const9021 X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
9022 const MachineOperand *Op = nullptr;
9023 DIExpression *Expr = nullptr;
9024
9025 const TargetRegisterInfo *TRI = &getRegisterInfo();
9026
9027 switch (MI.getOpcode()) {
9028 case X86::LEA32r:
9029 case X86::LEA64r:
9030 case X86::LEA64_32r: {
9031 // We may need to describe a 64-bit parameter with a 32-bit LEA.
9032 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
9033 return None;
9034
9035 // Operand 4 could be global address. For now we do not support
9036 // such situation.
9037 if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm())
9038 return None;
9039
9040 const MachineOperand &Op1 = MI.getOperand(1);
9041 const MachineOperand &Op2 = MI.getOperand(3);
9042 assert(Op2.isReg() && (Op2.getReg() == X86::NoRegister ||
9043 Register::isPhysicalRegister(Op2.getReg())));
9044
9045 // Omit situations like:
9046 // %rsi = lea %rsi, 4, ...
9047 if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) ||
9048 Op2.getReg() == MI.getOperand(0).getReg())
9049 return None;
9050 else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister &&
9051 TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) ||
9052 (Op2.getReg() != X86::NoRegister &&
9053 TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg())))
9054 return None;
9055
9056 int64_t Coef = MI.getOperand(2).getImm();
9057 int64_t Offset = MI.getOperand(4).getImm();
9058 SmallVector<uint64_t, 8> Ops;
9059
9060 if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) {
9061 Op = &Op1;
9062 } else if (Op1.isFI())
9063 Op = &Op1;
9064
9065 if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) {
9066 Ops.push_back(dwarf::DW_OP_constu);
9067 Ops.push_back(Coef + 1);
9068 Ops.push_back(dwarf::DW_OP_mul);
9069 } else {
9070 if (Op && Op2.getReg() != X86::NoRegister) {
9071 int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false);
9072 if (dwarfReg < 0)
9073 return None;
9074 else if (dwarfReg < 32) {
9075 Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg);
9076 Ops.push_back(0);
9077 } else {
9078 Ops.push_back(dwarf::DW_OP_bregx);
9079 Ops.push_back(dwarfReg);
9080 Ops.push_back(0);
9081 }
9082 } else if (!Op) {
9083 assert(Op2.getReg() != X86::NoRegister);
9084 Op = &Op2;
9085 }
9086
9087 if (Coef > 1) {
9088 assert(Op2.getReg() != X86::NoRegister);
9089 Ops.push_back(dwarf::DW_OP_constu);
9090 Ops.push_back(Coef);
9091 Ops.push_back(dwarf::DW_OP_mul);
9092 }
9093
9094 if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) &&
9095 Op2.getReg() != X86::NoRegister) {
9096 Ops.push_back(dwarf::DW_OP_plus);
9097 }
9098 }
9099
9100 DIExpression::appendOffset(Ops, Offset);
9101 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops);
9102
9103 return ParamLoadedValue(*Op, Expr);;
9104 }
9105 case X86::MOV8ri:
9106 case X86::MOV16ri:
9107 // TODO: Handle MOV8ri and MOV16ri.
9108 return None;
9109 case X86::MOV32ri:
9110 case X86::MOV64ri:
9111 case X86::MOV64ri32:
9112 // MOV32ri may be used for producing zero-extended 32-bit immediates in
9113 // 64-bit parameters, so we need to consider super-registers.
9114 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
9115 return None;
9116 return ParamLoadedValue(MI.getOperand(1), Expr);
9117 case X86::MOV8rr:
9118 case X86::MOV16rr:
9119 case X86::MOV32rr:
9120 case X86::MOV64rr:
9121 return describeMOVrrLoadedValue(MI, Reg, TRI);
9122 case X86::XOR32rr: {
9123 // 64-bit parameters are zero-materialized using XOR32rr, so also consider
9124 // super-registers.
9125 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
9126 return None;
9127 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
9128 return ParamLoadedValue(MachineOperand::CreateImm(0), Expr);
9129 return None;
9130 }
9131 case X86::MOVSX64rr32: {
9132 // We may need to describe the lower 32 bits of the MOVSX; for example, in
9133 // cases like this:
9134 //
9135 // $ebx = [...]
9136 // $rdi = MOVSX64rr32 $ebx
9137 // $esi = MOV32rr $edi
9138 if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg))
9139 return None;
9140
9141 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
9142
9143 // If the described register is the destination register we need to
9144 // sign-extend the source register from 32 bits. The other case we handle
9145 // is when the described register is the 32-bit sub-register of the
9146 // destination register, in case we just need to return the source
9147 // register.
9148 if (Reg == MI.getOperand(0).getReg())
9149 Expr = DIExpression::appendExt(Expr, 32, 64, true);
9150 else
9151 assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) &&
9152 "Unhandled sub-register case for MOVSX64rr32");
9153
9154 return ParamLoadedValue(MI.getOperand(1), Expr);
9155 }
9156 default:
9157 assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction");
9158 return TargetInstrInfo::describeLoadedValue(MI, Reg);
9159 }
9160 }
9161
9162 /// This is an architecture-specific helper function of reassociateOps.
9163 /// Set special operand attributes for new instructions after reassociation.
setSpecialOperandAttr(MachineInstr & OldMI1,MachineInstr & OldMI2,MachineInstr & NewMI1,MachineInstr & NewMI2) const9164 void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
9165 MachineInstr &OldMI2,
9166 MachineInstr &NewMI1,
9167 MachineInstr &NewMI2) const {
9168 // Propagate FP flags from the original instructions.
9169 // But clear poison-generating flags because those may not be valid now.
9170 // TODO: There should be a helper function for copying only fast-math-flags.
9171 uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
9172 NewMI1.setFlags(IntersectedFlags);
9173 NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
9174 NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
9175 NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
9176
9177 NewMI2.setFlags(IntersectedFlags);
9178 NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
9179 NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
9180 NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
9181
9182 // Integer instructions may define an implicit EFLAGS dest register operand.
9183 MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS);
9184 MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS);
9185
9186 assert(!OldFlagDef1 == !OldFlagDef2 &&
9187 "Unexpected instruction type for reassociation");
9188
9189 if (!OldFlagDef1 || !OldFlagDef2)
9190 return;
9191
9192 assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() &&
9193 "Must have dead EFLAGS operand in reassociable instruction");
9194
9195 MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS);
9196 MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS);
9197
9198 assert(NewFlagDef1 && NewFlagDef2 &&
9199 "Unexpected operand in reassociable instruction");
9200
9201 // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
9202 // of this pass or other passes. The EFLAGS operands must be dead in these new
9203 // instructions because the EFLAGS operands in the original instructions must
9204 // be dead in order for reassociation to occur.
9205 NewFlagDef1->setIsDead();
9206 NewFlagDef2->setIsDead();
9207 }
9208
9209 std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const9210 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
9211 return std::make_pair(TF, 0u);
9212 }
9213
9214 ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const9215 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
9216 using namespace X86II;
9217 static const std::pair<unsigned, const char *> TargetFlags[] = {
9218 {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
9219 {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
9220 {MO_GOT, "x86-got"},
9221 {MO_GOTOFF, "x86-gotoff"},
9222 {MO_GOTPCREL, "x86-gotpcrel"},
9223 {MO_GOTPCREL_NORELAX, "x86-gotpcrel-norelax"},
9224 {MO_PLT, "x86-plt"},
9225 {MO_TLSGD, "x86-tlsgd"},
9226 {MO_TLSLD, "x86-tlsld"},
9227 {MO_TLSLDM, "x86-tlsldm"},
9228 {MO_GOTTPOFF, "x86-gottpoff"},
9229 {MO_INDNTPOFF, "x86-indntpoff"},
9230 {MO_TPOFF, "x86-tpoff"},
9231 {MO_DTPOFF, "x86-dtpoff"},
9232 {MO_NTPOFF, "x86-ntpoff"},
9233 {MO_GOTNTPOFF, "x86-gotntpoff"},
9234 {MO_DLLIMPORT, "x86-dllimport"},
9235 {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
9236 {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
9237 {MO_TLVP, "x86-tlvp"},
9238 {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
9239 {MO_SECREL, "x86-secrel"},
9240 {MO_COFFSTUB, "x86-coffstub"}};
9241 return makeArrayRef(TargetFlags);
9242 }
9243
9244 namespace {
9245 /// Create Global Base Reg pass. This initializes the PIC
9246 /// global base register for x86-32.
9247 struct CGBR : public MachineFunctionPass {
9248 static char ID;
CGBR__anonc948994d0611::CGBR9249 CGBR() : MachineFunctionPass(ID) {}
9250
runOnMachineFunction__anonc948994d0611::CGBR9251 bool runOnMachineFunction(MachineFunction &MF) override {
9252 const X86TargetMachine *TM =
9253 static_cast<const X86TargetMachine *>(&MF.getTarget());
9254 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
9255
9256 // Don't do anything in the 64-bit small and kernel code models. They use
9257 // RIP-relative addressing for everything.
9258 if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
9259 TM->getCodeModel() == CodeModel::Kernel))
9260 return false;
9261
9262 // Only emit a global base reg in PIC mode.
9263 if (!TM->isPositionIndependent())
9264 return false;
9265
9266 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
9267 Register GlobalBaseReg = X86FI->getGlobalBaseReg();
9268
9269 // If we didn't need a GlobalBaseReg, don't insert code.
9270 if (GlobalBaseReg == 0)
9271 return false;
9272
9273 // Insert the set of GlobalBaseReg into the first MBB of the function
9274 MachineBasicBlock &FirstMBB = MF.front();
9275 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
9276 DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
9277 MachineRegisterInfo &RegInfo = MF.getRegInfo();
9278 const X86InstrInfo *TII = STI.getInstrInfo();
9279
9280 Register PC;
9281 if (STI.isPICStyleGOT())
9282 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
9283 else
9284 PC = GlobalBaseReg;
9285
9286 if (STI.is64Bit()) {
9287 if (TM->getCodeModel() == CodeModel::Medium) {
9288 // In the medium code model, use a RIP-relative LEA to materialize the
9289 // GOT.
9290 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
9291 .addReg(X86::RIP)
9292 .addImm(0)
9293 .addReg(0)
9294 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
9295 .addReg(0);
9296 } else if (TM->getCodeModel() == CodeModel::Large) {
9297 // In the large code model, we are aiming for this code, though the
9298 // register allocation may vary:
9299 // leaq .LN$pb(%rip), %rax
9300 // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
9301 // addq %rcx, %rax
9302 // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
9303 Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
9304 Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
9305 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
9306 .addReg(X86::RIP)
9307 .addImm(0)
9308 .addReg(0)
9309 .addSym(MF.getPICBaseSymbol())
9310 .addReg(0);
9311 std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
9312 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
9313 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
9314 X86II::MO_PIC_BASE_OFFSET);
9315 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
9316 .addReg(PBReg, RegState::Kill)
9317 .addReg(GOTReg, RegState::Kill);
9318 } else {
9319 llvm_unreachable("unexpected code model");
9320 }
9321 } else {
9322 // Operand of MovePCtoStack is completely ignored by asm printer. It's
9323 // only used in JIT code emission as displacement to pc.
9324 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
9325
9326 // If we're using vanilla 'GOT' PIC style, we should use relative
9327 // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
9328 if (STI.isPICStyleGOT()) {
9329 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
9330 // %some_register
9331 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
9332 .addReg(PC)
9333 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
9334 X86II::MO_GOT_ABSOLUTE_ADDRESS);
9335 }
9336 }
9337
9338 return true;
9339 }
9340
getPassName__anonc948994d0611::CGBR9341 StringRef getPassName() const override {
9342 return "X86 PIC Global Base Reg Initialization";
9343 }
9344
getAnalysisUsage__anonc948994d0611::CGBR9345 void getAnalysisUsage(AnalysisUsage &AU) const override {
9346 AU.setPreservesCFG();
9347 MachineFunctionPass::getAnalysisUsage(AU);
9348 }
9349 };
9350 } // namespace
9351
9352 char CGBR::ID = 0;
9353 FunctionPass*
createX86GlobalBaseRegPass()9354 llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
9355
9356 namespace {
9357 struct LDTLSCleanup : public MachineFunctionPass {
9358 static char ID;
LDTLSCleanup__anonc948994d0711::LDTLSCleanup9359 LDTLSCleanup() : MachineFunctionPass(ID) {}
9360
runOnMachineFunction__anonc948994d0711::LDTLSCleanup9361 bool runOnMachineFunction(MachineFunction &MF) override {
9362 if (skipFunction(MF.getFunction()))
9363 return false;
9364
9365 X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
9366 if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
9367 // No point folding accesses if there isn't at least two.
9368 return false;
9369 }
9370
9371 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
9372 return VisitNode(DT->getRootNode(), 0);
9373 }
9374
9375 // Visit the dominator subtree rooted at Node in pre-order.
9376 // If TLSBaseAddrReg is non-null, then use that to replace any
9377 // TLS_base_addr instructions. Otherwise, create the register
9378 // when the first such instruction is seen, and then use it
9379 // as we encounter more instructions.
VisitNode__anonc948994d0711::LDTLSCleanup9380 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
9381 MachineBasicBlock *BB = Node->getBlock();
9382 bool Changed = false;
9383
9384 // Traverse the current block.
9385 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
9386 ++I) {
9387 switch (I->getOpcode()) {
9388 case X86::TLS_base_addr32:
9389 case X86::TLS_base_addr64:
9390 if (TLSBaseAddrReg)
9391 I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
9392 else
9393 I = SetRegister(*I, &TLSBaseAddrReg);
9394 Changed = true;
9395 break;
9396 default:
9397 break;
9398 }
9399 }
9400
9401 // Visit the children of this block in the dominator tree.
9402 for (auto I = Node->begin(), E = Node->end(); I != E; ++I) {
9403 Changed |= VisitNode(*I, TLSBaseAddrReg);
9404 }
9405
9406 return Changed;
9407 }
9408
9409 // Replace the TLS_base_addr instruction I with a copy from
9410 // TLSBaseAddrReg, returning the new instruction.
ReplaceTLSBaseAddrCall__anonc948994d0711::LDTLSCleanup9411 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
9412 unsigned TLSBaseAddrReg) {
9413 MachineFunction *MF = I.getParent()->getParent();
9414 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
9415 const bool is64Bit = STI.is64Bit();
9416 const X86InstrInfo *TII = STI.getInstrInfo();
9417
9418 // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
9419 MachineInstr *Copy =
9420 BuildMI(*I.getParent(), I, I.getDebugLoc(),
9421 TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
9422 .addReg(TLSBaseAddrReg);
9423
9424 // Erase the TLS_base_addr instruction.
9425 I.eraseFromParent();
9426
9427 return Copy;
9428 }
9429
9430 // Create a virtual register in *TLSBaseAddrReg, and populate it by
9431 // inserting a copy instruction after I. Returns the new instruction.
SetRegister__anonc948994d0711::LDTLSCleanup9432 MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
9433 MachineFunction *MF = I.getParent()->getParent();
9434 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
9435 const bool is64Bit = STI.is64Bit();
9436 const X86InstrInfo *TII = STI.getInstrInfo();
9437
9438 // Create a virtual register for the TLS base address.
9439 MachineRegisterInfo &RegInfo = MF->getRegInfo();
9440 *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
9441 ? &X86::GR64RegClass
9442 : &X86::GR32RegClass);
9443
9444 // Insert a copy from RAX/EAX to TLSBaseAddrReg.
9445 MachineInstr *Next = I.getNextNode();
9446 MachineInstr *Copy =
9447 BuildMI(*I.getParent(), Next, I.getDebugLoc(),
9448 TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
9449 .addReg(is64Bit ? X86::RAX : X86::EAX);
9450
9451 return Copy;
9452 }
9453
getPassName__anonc948994d0711::LDTLSCleanup9454 StringRef getPassName() const override {
9455 return "Local Dynamic TLS Access Clean-up";
9456 }
9457
getAnalysisUsage__anonc948994d0711::LDTLSCleanup9458 void getAnalysisUsage(AnalysisUsage &AU) const override {
9459 AU.setPreservesCFG();
9460 AU.addRequired<MachineDominatorTree>();
9461 MachineFunctionPass::getAnalysisUsage(AU);
9462 }
9463 };
9464 }
9465
9466 char LDTLSCleanup::ID = 0;
9467 FunctionPass*
createCleanupLocalDynamicTLSPass()9468 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
9469
9470 /// Constants defining how certain sequences should be outlined.
9471 ///
9472 /// \p MachineOutlinerDefault implies that the function is called with a call
9473 /// instruction, and a return must be emitted for the outlined function frame.
9474 ///
9475 /// That is,
9476 ///
9477 /// I1 OUTLINED_FUNCTION:
9478 /// I2 --> call OUTLINED_FUNCTION I1
9479 /// I3 I2
9480 /// I3
9481 /// ret
9482 ///
9483 /// * Call construction overhead: 1 (call instruction)
9484 /// * Frame construction overhead: 1 (return instruction)
9485 ///
9486 /// \p MachineOutlinerTailCall implies that the function is being tail called.
9487 /// A jump is emitted instead of a call, and the return is already present in
9488 /// the outlined sequence. That is,
9489 ///
9490 /// I1 OUTLINED_FUNCTION:
9491 /// I2 --> jmp OUTLINED_FUNCTION I1
9492 /// ret I2
9493 /// ret
9494 ///
9495 /// * Call construction overhead: 1 (jump instruction)
9496 /// * Frame construction overhead: 0 (don't need to return)
9497 ///
9498 enum MachineOutlinerClass {
9499 MachineOutlinerDefault,
9500 MachineOutlinerTailCall
9501 };
9502
getOutliningCandidateInfo(std::vector<outliner::Candidate> & RepeatedSequenceLocs) const9503 outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
9504 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
9505 unsigned SequenceSize =
9506 std::accumulate(RepeatedSequenceLocs[0].front(),
9507 std::next(RepeatedSequenceLocs[0].back()), 0,
9508 [](unsigned Sum, const MachineInstr &MI) {
9509 // FIXME: x86 doesn't implement getInstSizeInBytes, so
9510 // we can't tell the cost. Just assume each instruction
9511 // is one byte.
9512 if (MI.isDebugInstr() || MI.isKill())
9513 return Sum;
9514 return Sum + 1;
9515 });
9516
9517 // We check to see if CFI Instructions are present, and if they are
9518 // we find the number of CFI Instructions in the candidates.
9519 unsigned CFICount = 0;
9520 for (auto &I : make_range(RepeatedSequenceLocs[0].front(),
9521 std::next(RepeatedSequenceLocs[0].back()))) {
9522 if (I.isCFIInstruction())
9523 CFICount++;
9524 }
9525
9526 // We compare the number of found CFI Instructions to the number of CFI
9527 // instructions in the parent function for each candidate. We must check this
9528 // since if we outline one of the CFI instructions in a function, we have to
9529 // outline them all for correctness. If we do not, the address offsets will be
9530 // incorrect between the two sections of the program.
9531 for (outliner::Candidate &C : RepeatedSequenceLocs) {
9532 std::vector<MCCFIInstruction> CFIInstructions =
9533 C.getMF()->getFrameInstructions();
9534
9535 if (CFICount > 0 && CFICount != CFIInstructions.size())
9536 return outliner::OutlinedFunction();
9537 }
9538
9539 // FIXME: Use real size in bytes for call and ret instructions.
9540 if (RepeatedSequenceLocs[0].back()->isTerminator()) {
9541 for (outliner::Candidate &C : RepeatedSequenceLocs)
9542 C.setCallInfo(MachineOutlinerTailCall, 1);
9543
9544 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
9545 0, // Number of bytes to emit frame.
9546 MachineOutlinerTailCall // Type of frame.
9547 );
9548 }
9549
9550 if (CFICount > 0)
9551 return outliner::OutlinedFunction();
9552
9553 for (outliner::Candidate &C : RepeatedSequenceLocs)
9554 C.setCallInfo(MachineOutlinerDefault, 1);
9555
9556 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
9557 MachineOutlinerDefault);
9558 }
9559
isFunctionSafeToOutlineFrom(MachineFunction & MF,bool OutlineFromLinkOnceODRs) const9560 bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
9561 bool OutlineFromLinkOnceODRs) const {
9562 const Function &F = MF.getFunction();
9563
9564 // Does the function use a red zone? If it does, then we can't risk messing
9565 // with the stack.
9566 if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
9567 // It could have a red zone. If it does, then we don't want to touch it.
9568 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
9569 if (!X86FI || X86FI->getUsesRedZone())
9570 return false;
9571 }
9572
9573 // If we *don't* want to outline from things that could potentially be deduped
9574 // then return false.
9575 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
9576 return false;
9577
9578 // This function is viable for outlining, so return true.
9579 return true;
9580 }
9581
9582 outliner::InstrType
getOutliningType(MachineBasicBlock::iterator & MIT,unsigned Flags) const9583 X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
9584 MachineInstr &MI = *MIT;
9585 // Don't allow debug values to impact outlining type.
9586 if (MI.isDebugInstr() || MI.isIndirectDebugValue())
9587 return outliner::InstrType::Invisible;
9588
9589 // At this point, KILL instructions don't really tell us much so we can go
9590 // ahead and skip over them.
9591 if (MI.isKill())
9592 return outliner::InstrType::Invisible;
9593
9594 // Is this a tail call? If yes, we can outline as a tail call.
9595 if (isTailCall(MI))
9596 return outliner::InstrType::Legal;
9597
9598 // Is this the terminator of a basic block?
9599 if (MI.isTerminator() || MI.isReturn()) {
9600
9601 // Does its parent have any successors in its MachineFunction?
9602 if (MI.getParent()->succ_empty())
9603 return outliner::InstrType::Legal;
9604
9605 // It does, so we can't tail call it.
9606 return outliner::InstrType::Illegal;
9607 }
9608
9609 // Don't outline anything that modifies or reads from the stack pointer.
9610 //
9611 // FIXME: There are instructions which are being manually built without
9612 // explicit uses/defs so we also have to check the MCInstrDesc. We should be
9613 // able to remove the extra checks once those are fixed up. For example,
9614 // sometimes we might get something like %rax = POP64r 1. This won't be
9615 // caught by modifiesRegister or readsRegister even though the instruction
9616 // really ought to be formed so that modifiesRegister/readsRegister would
9617 // catch it.
9618 if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
9619 MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
9620 MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
9621 return outliner::InstrType::Illegal;
9622
9623 // Outlined calls change the instruction pointer, so don't read from it.
9624 if (MI.readsRegister(X86::RIP, &RI) ||
9625 MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
9626 MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
9627 return outliner::InstrType::Illegal;
9628
9629 // Positions can't safely be outlined.
9630 if (MI.isPosition())
9631 return outliner::InstrType::Illegal;
9632
9633 // Make sure none of the operands of this instruction do anything tricky.
9634 for (const MachineOperand &MOP : MI.operands())
9635 if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
9636 MOP.isTargetIndex())
9637 return outliner::InstrType::Illegal;
9638
9639 return outliner::InstrType::Legal;
9640 }
9641
buildOutlinedFrame(MachineBasicBlock & MBB,MachineFunction & MF,const outliner::OutlinedFunction & OF) const9642 void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
9643 MachineFunction &MF,
9644 const outliner::OutlinedFunction &OF)
9645 const {
9646 // If we're a tail call, we already have a return, so don't do anything.
9647 if (OF.FrameConstructionID == MachineOutlinerTailCall)
9648 return;
9649
9650 // We're a normal call, so our sequence doesn't have a return instruction.
9651 // Add it in.
9652 MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RET64));
9653 MBB.insert(MBB.end(), retq);
9654 }
9655
9656 MachineBasicBlock::iterator
insertOutlinedCall(Module & M,MachineBasicBlock & MBB,MachineBasicBlock::iterator & It,MachineFunction & MF,outliner::Candidate & C) const9657 X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
9658 MachineBasicBlock::iterator &It,
9659 MachineFunction &MF,
9660 outliner::Candidate &C) const {
9661 // Is it a tail call?
9662 if (C.CallConstructionID == MachineOutlinerTailCall) {
9663 // Yes, just insert a JMP.
9664 It = MBB.insert(It,
9665 BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
9666 .addGlobalAddress(M.getNamedValue(MF.getName())));
9667 } else {
9668 // No, insert a call.
9669 It = MBB.insert(It,
9670 BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
9671 .addGlobalAddress(M.getNamedValue(MF.getName())));
9672 }
9673
9674 return It;
9675 }
9676
9677 #define GET_INSTRINFO_HELPERS
9678 #include "X86GenInstrInfo.inc"
9679