1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of TargetFrameLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86FrameLowering.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrInfo.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Analysis/EHPersonalities.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/WinEHFuncInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include <cstdlib>
35 
36 using namespace llvm;
37 
38 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
39                                    unsigned StackAlignOverride)
40     : TargetFrameLowering(StackGrowsDown, StackAlignOverride,
41                           STI.is64Bit() ? -8 : -4),
42       STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
43   // Cache a bunch of frame-related predicates for this subtarget.
44   SlotSize = TRI->getSlotSize();
45   Is64Bit = STI.is64Bit();
46   IsLP64 = STI.isTarget64BitLP64();
47   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
48   Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
49   StackPtr = TRI->getStackRegister();
50 }
51 
52 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
53   return !MF.getFrameInfo().hasVarSizedObjects() &&
54          !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
55 }
56 
57 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
58 /// call frame pseudos can be simplified.  Having a FP, as in the default
59 /// implementation, is not sufficient here since we can't always use it.
60 /// Use a more nuanced condition.
61 bool
62 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
63   return hasReservedCallFrame(MF) ||
64          (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
65          TRI->hasBasePointer(MF);
66 }
67 
68 // needsFrameIndexResolution - Do we need to perform FI resolution for
69 // this function. Normally, this is required only when the function
70 // has any stack objects. However, FI resolution actually has another job,
71 // not apparent from the title - it resolves callframesetup/destroy
72 // that were not simplified earlier.
73 // So, this is required for x86 functions that have push sequences even
74 // when there are no stack objects.
75 bool
76 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
77   return MF.getFrameInfo().hasStackObjects() ||
78          MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
79 }
80 
81 /// hasFP - Return true if the specified function should have a dedicated frame
82 /// pointer register.  This is true if the function has variable sized allocas
83 /// or if frame pointer elimination is disabled.
84 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
85   const MachineFrameInfo &MFI = MF.getFrameInfo();
86   return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
87           TRI->needsStackRealignment(MF) ||
88           MFI.hasVarSizedObjects() ||
89           MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
90           MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
91           MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
92           MFI.hasStackMap() || MFI.hasPatchPoint() ||
93           MFI.hasCopyImplyingStackAdjustment());
94 }
95 
96 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
97   if (IsLP64) {
98     if (isInt<8>(Imm))
99       return X86::SUB64ri8;
100     return X86::SUB64ri32;
101   } else {
102     if (isInt<8>(Imm))
103       return X86::SUB32ri8;
104     return X86::SUB32ri;
105   }
106 }
107 
108 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
109   if (IsLP64) {
110     if (isInt<8>(Imm))
111       return X86::ADD64ri8;
112     return X86::ADD64ri32;
113   } else {
114     if (isInt<8>(Imm))
115       return X86::ADD32ri8;
116     return X86::ADD32ri;
117   }
118 }
119 
120 static unsigned getSUBrrOpcode(unsigned isLP64) {
121   return isLP64 ? X86::SUB64rr : X86::SUB32rr;
122 }
123 
124 static unsigned getADDrrOpcode(unsigned isLP64) {
125   return isLP64 ? X86::ADD64rr : X86::ADD32rr;
126 }
127 
128 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
129   if (IsLP64) {
130     if (isInt<8>(Imm))
131       return X86::AND64ri8;
132     return X86::AND64ri32;
133   }
134   if (isInt<8>(Imm))
135     return X86::AND32ri8;
136   return X86::AND32ri;
137 }
138 
139 static unsigned getLEArOpcode(unsigned IsLP64) {
140   return IsLP64 ? X86::LEA64r : X86::LEA32r;
141 }
142 
143 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
144 /// when it reaches the "return" instruction. We can then pop a stack object
145 /// to this register without worry about clobbering it.
146 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
147                                        MachineBasicBlock::iterator &MBBI,
148                                        const X86RegisterInfo *TRI,
149                                        bool Is64Bit) {
150   const MachineFunction *MF = MBB.getParent();
151   if (MF->callsEHReturn())
152     return 0;
153 
154   const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);
155 
156   if (MBBI == MBB.end())
157     return 0;
158 
159   switch (MBBI->getOpcode()) {
160   default: return 0;
161   case TargetOpcode::PATCHABLE_RET:
162   case X86::RET:
163   case X86::RETL:
164   case X86::RETQ:
165   case X86::RETIL:
166   case X86::RETIQ:
167   case X86::TCRETURNdi:
168   case X86::TCRETURNri:
169   case X86::TCRETURNmi:
170   case X86::TCRETURNdi64:
171   case X86::TCRETURNri64:
172   case X86::TCRETURNmi64:
173   case X86::EH_RETURN:
174   case X86::EH_RETURN64: {
175     SmallSet<uint16_t, 8> Uses;
176     for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
177       MachineOperand &MO = MBBI->getOperand(i);
178       if (!MO.isReg() || MO.isDef())
179         continue;
180       unsigned Reg = MO.getReg();
181       if (!Reg)
182         continue;
183       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
184         Uses.insert(*AI);
185     }
186 
187     for (auto CS : AvailableRegs)
188       if (!Uses.count(CS) && CS != X86::RIP)
189         return CS;
190   }
191   }
192 
193   return 0;
194 }
195 
196 static bool isEAXLiveIn(MachineBasicBlock &MBB) {
197   for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
198     unsigned Reg = RegMask.PhysReg;
199 
200     if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
201         Reg == X86::AH || Reg == X86::AL)
202       return true;
203   }
204 
205   return false;
206 }
207 
208 /// Check if the flags need to be preserved before the terminators.
209 /// This would be the case, if the eflags is live-in of the region
210 /// composed by the terminators or live-out of that region, without
211 /// being defined by a terminator.
212 static bool
213 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
214   for (const MachineInstr &MI : MBB.terminators()) {
215     bool BreakNext = false;
216     for (const MachineOperand &MO : MI.operands()) {
217       if (!MO.isReg())
218         continue;
219       unsigned Reg = MO.getReg();
220       if (Reg != X86::EFLAGS)
221         continue;
222 
223       // This terminator needs an eflags that is not defined
224       // by a previous another terminator:
225       // EFLAGS is live-in of the region composed by the terminators.
226       if (!MO.isDef())
227         return true;
228       // This terminator defines the eflags, i.e., we don't need to preserve it.
229       // However, we still need to check this specific terminator does not
230       // read a live-in value.
231       BreakNext = true;
232     }
233     // We found a definition of the eflags, no need to preserve them.
234     if (BreakNext)
235       return false;
236   }
237 
238   // None of the terminators use or define the eflags.
239   // Check if they are live-out, that would imply we need to preserve them.
240   for (const MachineBasicBlock *Succ : MBB.successors())
241     if (Succ->isLiveIn(X86::EFLAGS))
242       return true;
243 
244   return false;
245 }
246 
247 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
248 /// stack pointer by a constant value.
249 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
250                                     MachineBasicBlock::iterator &MBBI,
251                                     const DebugLoc &DL,
252                                     int64_t NumBytes, bool InEpilogue) const {
253   bool isSub = NumBytes < 0;
254   uint64_t Offset = isSub ? -NumBytes : NumBytes;
255   MachineInstr::MIFlag Flag =
256       isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;
257 
258   uint64_t Chunk = (1LL << 31) - 1;
259 
260   if (Offset > Chunk) {
261     // Rather than emit a long series of instructions for large offsets,
262     // load the offset into a register and do one sub/add
263     unsigned Reg = 0;
264     unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
265 
266     if (isSub && !isEAXLiveIn(MBB))
267       Reg = Rax;
268     else
269       Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
270 
271     unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
272     unsigned AddSubRROpc =
273         isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit);
274     if (Reg) {
275       BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg)
276           .addImm(Offset)
277           .setMIFlag(Flag);
278       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
279                              .addReg(StackPtr)
280                              .addReg(Reg);
281       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
282       return;
283     } else if (Offset > 8 * Chunk) {
284       // If we would need more than 8 add or sub instructions (a >16GB stack
285       // frame), it's worth spilling RAX to materialize this immediate.
286       //   pushq %rax
287       //   movabsq +-$Offset+-SlotSize, %rax
288       //   addq %rsp, %rax
289       //   xchg %rax, (%rsp)
290       //   movq (%rsp), %rsp
291       assert(Is64Bit && "can't have 32-bit 16GB stack frame");
292       BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
293           .addReg(Rax, RegState::Kill)
294           .setMIFlag(Flag);
295       // Subtract is not commutative, so negate the offset and always use add.
296       // Subtract 8 less and add 8 more to account for the PUSH we just did.
297       if (isSub)
298         Offset = -(Offset - SlotSize);
299       else
300         Offset = Offset + SlotSize;
301       BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax)
302           .addImm(Offset)
303           .setMIFlag(Flag);
304       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
305                              .addReg(Rax)
306                              .addReg(StackPtr);
307       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
308       // Exchange the new SP in RAX with the top of the stack.
309       addRegOffset(
310           BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
311           StackPtr, false, 0);
312       // Load new SP from the top of the stack into RSP.
313       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
314                    StackPtr, false, 0);
315       return;
316     }
317   }
318 
319   while (Offset) {
320     uint64_t ThisVal = std::min(Offset, Chunk);
321     if (ThisVal == SlotSize) {
322       // Use push / pop for slot sized adjustments as a size optimization. We
323       // need to find a dead register when using pop.
324       unsigned Reg = isSub
325         ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
326         : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
327       if (Reg) {
328         unsigned Opc = isSub
329           ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
330           : (Is64Bit ? X86::POP64r  : X86::POP32r);
331         BuildMI(MBB, MBBI, DL, TII.get(Opc))
332             .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub))
333             .setMIFlag(Flag);
334         Offset -= ThisVal;
335         continue;
336       }
337     }
338 
339     BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue)
340         .setMIFlag(Flag);
341 
342     Offset -= ThisVal;
343   }
344 }
345 
346 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
347     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
348     const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
349   assert(Offset != 0 && "zero offset stack adjustment requested");
350 
351   // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
352   // is tricky.
353   bool UseLEA;
354   if (!InEpilogue) {
355     // Check if inserting the prologue at the beginning
356     // of MBB would require to use LEA operations.
357     // We need to use LEA operations if EFLAGS is live in, because
358     // it means an instruction will read it before it gets defined.
359     UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
360   } else {
361     // If we can use LEA for SP but we shouldn't, check that none
362     // of the terminators uses the eflags. Otherwise we will insert
363     // a ADD that will redefine the eflags and break the condition.
364     // Alternatively, we could move the ADD, but this may not be possible
365     // and is an optimization anyway.
366     UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
367     if (UseLEA && !STI.useLeaForSP())
368       UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
369     // If that assert breaks, that means we do not do the right thing
370     // in canUseAsEpilogue.
371     assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
372            "We shouldn't have allowed this insertion point");
373   }
374 
375   MachineInstrBuilder MI;
376   if (UseLEA) {
377     MI = addRegOffset(BuildMI(MBB, MBBI, DL,
378                               TII.get(getLEArOpcode(Uses64BitFramePtr)),
379                               StackPtr),
380                       StackPtr, false, Offset);
381   } else {
382     bool IsSub = Offset < 0;
383     uint64_t AbsOffset = IsSub ? -Offset : Offset;
384     unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
385                          : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
386     MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
387              .addReg(StackPtr)
388              .addImm(AbsOffset);
389     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
390   }
391   return MI;
392 }
393 
394 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
395                                      MachineBasicBlock::iterator &MBBI,
396                                      bool doMergeWithPrevious) const {
397   if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
398       (!doMergeWithPrevious && MBBI == MBB.end()))
399     return 0;
400 
401   MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
402 
403   PI = skipDebugInstructionsBackward(PI, MBB.begin());
404   // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
405   // instruction, and that there are no DBG_VALUE or other instructions between
406   // ADD/SUB/LEA and its corresponding CFI instruction.
407   /* TODO: Add support for the case where there are multiple CFI instructions
408     below the ADD/SUB/LEA, e.g.:
409     ...
410     add
411     cfi_def_cfa_offset
412     cfi_offset
413     ...
414   */
415   if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
416     PI = std::prev(PI);
417 
418   unsigned Opc = PI->getOpcode();
419   int Offset = 0;
420 
421   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
422        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
423       PI->getOperand(0).getReg() == StackPtr){
424     assert(PI->getOperand(1).getReg() == StackPtr);
425     Offset = PI->getOperand(2).getImm();
426   } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
427              PI->getOperand(0).getReg() == StackPtr &&
428              PI->getOperand(1).getReg() == StackPtr &&
429              PI->getOperand(2).getImm() == 1 &&
430              PI->getOperand(3).getReg() == X86::NoRegister &&
431              PI->getOperand(5).getReg() == X86::NoRegister) {
432     // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
433     Offset = PI->getOperand(4).getImm();
434   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
435               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
436              PI->getOperand(0).getReg() == StackPtr) {
437     assert(PI->getOperand(1).getReg() == StackPtr);
438     Offset = -PI->getOperand(2).getImm();
439   } else
440     return 0;
441 
442   PI = MBB.erase(PI);
443   if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI);
444   if (!doMergeWithPrevious)
445     MBBI = skipDebugInstructionsForward(PI, MBB.end());
446 
447   return Offset;
448 }
449 
450 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
451                                 MachineBasicBlock::iterator MBBI,
452                                 const DebugLoc &DL,
453                                 const MCCFIInstruction &CFIInst) const {
454   MachineFunction &MF = *MBB.getParent();
455   unsigned CFIIndex = MF.addFrameInst(CFIInst);
456   BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
457       .addCFIIndex(CFIIndex);
458 }
459 
460 void X86FrameLowering::emitCalleeSavedFrameMoves(
461     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
462     const DebugLoc &DL) const {
463   MachineFunction &MF = *MBB.getParent();
464   MachineFrameInfo &MFI = MF.getFrameInfo();
465   MachineModuleInfo &MMI = MF.getMMI();
466   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
467 
468   // Add callee saved registers to move list.
469   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
470   if (CSI.empty()) return;
471 
472   // Calculate offsets.
473   for (std::vector<CalleeSavedInfo>::const_iterator
474          I = CSI.begin(), E = CSI.end(); I != E; ++I) {
475     int64_t Offset = MFI.getObjectOffset(I->getFrameIdx());
476     unsigned Reg = I->getReg();
477 
478     unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
479     BuildCFI(MBB, MBBI, DL,
480              MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
481   }
482 }
483 
484 void X86FrameLowering::emitStackProbe(MachineFunction &MF,
485                                       MachineBasicBlock &MBB,
486                                       MachineBasicBlock::iterator MBBI,
487                                       const DebugLoc &DL, bool InProlog) const {
488   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
489   if (STI.isTargetWindowsCoreCLR()) {
490     if (InProlog) {
491       emitStackProbeInlineStub(MF, MBB, MBBI, DL, true);
492     } else {
493       emitStackProbeInline(MF, MBB, MBBI, DL, false);
494     }
495   } else {
496     emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
497   }
498 }
499 
500 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
501                                         MachineBasicBlock &PrologMBB) const {
502   const StringRef ChkStkStubSymbol = "__chkstk_stub";
503   MachineInstr *ChkStkStub = nullptr;
504 
505   for (MachineInstr &MI : PrologMBB) {
506     if (MI.isCall() && MI.getOperand(0).isSymbol() &&
507         ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) {
508       ChkStkStub = &MI;
509       break;
510     }
511   }
512 
513   if (ChkStkStub != nullptr) {
514     assert(!ChkStkStub->isBundled() &&
515            "Not expecting bundled instructions here");
516     MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator());
517     assert(std::prev(MBBI) == ChkStkStub &&
518            "MBBI expected after __chkstk_stub.");
519     DebugLoc DL = PrologMBB.findDebugLoc(MBBI);
520     emitStackProbeInline(MF, PrologMBB, MBBI, DL, true);
521     ChkStkStub->eraseFromParent();
522   }
523 }
524 
525 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
526                                             MachineBasicBlock &MBB,
527                                             MachineBasicBlock::iterator MBBI,
528                                             const DebugLoc &DL,
529                                             bool InProlog) const {
530   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
531   assert(STI.is64Bit() && "different expansion needed for 32 bit");
532   assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
533   const TargetInstrInfo &TII = *STI.getInstrInfo();
534   const BasicBlock *LLVM_BB = MBB.getBasicBlock();
535 
536   // RAX contains the number of bytes of desired stack adjustment.
537   // The handling here assumes this value has already been updated so as to
538   // maintain stack alignment.
539   //
540   // We need to exit with RSP modified by this amount and execute suitable
541   // page touches to notify the OS that we're growing the stack responsibly.
542   // All stack probing must be done without modifying RSP.
543   //
544   // MBB:
545   //    SizeReg = RAX;
546   //    ZeroReg = 0
547   //    CopyReg = RSP
548   //    Flags, TestReg = CopyReg - SizeReg
549   //    FinalReg = !Flags.Ovf ? TestReg : ZeroReg
550   //    LimitReg = gs magic thread env access
551   //    if FinalReg >= LimitReg goto ContinueMBB
552   // RoundBB:
553   //    RoundReg = page address of FinalReg
554   // LoopMBB:
555   //    LoopReg = PHI(LimitReg,ProbeReg)
556   //    ProbeReg = LoopReg - PageSize
557   //    [ProbeReg] = 0
558   //    if (ProbeReg > RoundReg) goto LoopMBB
559   // ContinueMBB:
560   //    RSP = RSP - RAX
561   //    [rest of original MBB]
562 
563   // Set up the new basic blocks
564   MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
565   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
566   MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
567 
568   MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
569   MF.insert(MBBIter, RoundMBB);
570   MF.insert(MBBIter, LoopMBB);
571   MF.insert(MBBIter, ContinueMBB);
572 
573   // Split MBB and move the tail portion down to ContinueMBB.
574   MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
575   ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
576   ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
577 
578   // Some useful constants
579   const int64_t ThreadEnvironmentStackLimit = 0x10;
580   const int64_t PageSize = 0x1000;
581   const int64_t PageMask = ~(PageSize - 1);
582 
583   // Registers we need. For the normal case we use virtual
584   // registers. For the prolog expansion we use RAX, RCX and RDX.
585   MachineRegisterInfo &MRI = MF.getRegInfo();
586   const TargetRegisterClass *RegClass = &X86::GR64RegClass;
587   const unsigned SizeReg = InProlog ? (unsigned)X86::RAX
588                                     : MRI.createVirtualRegister(RegClass),
589                  ZeroReg = InProlog ? (unsigned)X86::RCX
590                                     : MRI.createVirtualRegister(RegClass),
591                  CopyReg = InProlog ? (unsigned)X86::RDX
592                                     : MRI.createVirtualRegister(RegClass),
593                  TestReg = InProlog ? (unsigned)X86::RDX
594                                     : MRI.createVirtualRegister(RegClass),
595                  FinalReg = InProlog ? (unsigned)X86::RDX
596                                      : MRI.createVirtualRegister(RegClass),
597                  RoundedReg = InProlog ? (unsigned)X86::RDX
598                                        : MRI.createVirtualRegister(RegClass),
599                  LimitReg = InProlog ? (unsigned)X86::RCX
600                                      : MRI.createVirtualRegister(RegClass),
601                  JoinReg = InProlog ? (unsigned)X86::RCX
602                                     : MRI.createVirtualRegister(RegClass),
603                  ProbeReg = InProlog ? (unsigned)X86::RCX
604                                      : MRI.createVirtualRegister(RegClass);
605 
606   // SP-relative offsets where we can save RCX and RDX.
607   int64_t RCXShadowSlot = 0;
608   int64_t RDXShadowSlot = 0;
609 
610   // If inlining in the prolog, save RCX and RDX.
611   // Future optimization: don't save or restore if not live in.
612   if (InProlog) {
613     // Compute the offsets. We need to account for things already
614     // pushed onto the stack at this point: return address, frame
615     // pointer (if used), and callee saves.
616     X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
617     const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
618     const bool HasFP = hasFP(MF);
619     RCXShadowSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
620     RDXShadowSlot = RCXShadowSlot + 8;
621     // Emit the saves.
622     addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
623                  RCXShadowSlot)
624         .addReg(X86::RCX);
625     addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
626                  RDXShadowSlot)
627         .addReg(X86::RDX);
628   } else {
629     // Not in the prolog. Copy RAX to a virtual reg.
630     BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
631   }
632 
633   // Add code to MBB to check for overflow and set the new target stack pointer
634   // to zero if so.
635   BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
636       .addReg(ZeroReg, RegState::Undef)
637       .addReg(ZeroReg, RegState::Undef);
638   BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
639   BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
640       .addReg(CopyReg)
641       .addReg(SizeReg);
642   BuildMI(&MBB, DL, TII.get(X86::CMOVB64rr), FinalReg)
643       .addReg(TestReg)
644       .addReg(ZeroReg);
645 
646   // FinalReg now holds final stack pointer value, or zero if
647   // allocation would overflow. Compare against the current stack
648   // limit from the thread environment block. Note this limit is the
649   // lowest touched page on the stack, not the point at which the OS
650   // will cause an overflow exception, so this is just an optimization
651   // to avoid unnecessarily touching pages that are below the current
652   // SP but already committed to the stack by the OS.
653   BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
654       .addReg(0)
655       .addImm(1)
656       .addReg(0)
657       .addImm(ThreadEnvironmentStackLimit)
658       .addReg(X86::GS);
659   BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
660   // Jump if the desired stack pointer is at or above the stack limit.
661   BuildMI(&MBB, DL, TII.get(X86::JAE_1)).addMBB(ContinueMBB);
662 
663   // Add code to roundMBB to round the final stack pointer to a page boundary.
664   BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
665       .addReg(FinalReg)
666       .addImm(PageMask);
667   BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
668 
669   // LimitReg now holds the current stack limit, RoundedReg page-rounded
670   // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
671   // and probe until we reach RoundedReg.
672   if (!InProlog) {
673     BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
674         .addReg(LimitReg)
675         .addMBB(RoundMBB)
676         .addReg(ProbeReg)
677         .addMBB(LoopMBB);
678   }
679 
680   addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
681                false, -PageSize);
682 
683   // Probe by storing a byte onto the stack.
684   BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
685       .addReg(ProbeReg)
686       .addImm(1)
687       .addReg(0)
688       .addImm(0)
689       .addReg(0)
690       .addImm(0);
691   BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
692       .addReg(RoundedReg)
693       .addReg(ProbeReg);
694   BuildMI(LoopMBB, DL, TII.get(X86::JNE_1)).addMBB(LoopMBB);
695 
696   MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
697 
698   // If in prolog, restore RDX and RCX.
699   if (InProlog) {
700     addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
701                          X86::RCX),
702                  X86::RSP, false, RCXShadowSlot);
703     addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
704                          X86::RDX),
705                  X86::RSP, false, RDXShadowSlot);
706   }
707 
708   // Now that the probing is done, add code to continueMBB to update
709   // the stack pointer for real.
710   BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
711       .addReg(X86::RSP)
712       .addReg(SizeReg);
713 
714   // Add the control flow edges we need.
715   MBB.addSuccessor(ContinueMBB);
716   MBB.addSuccessor(RoundMBB);
717   RoundMBB->addSuccessor(LoopMBB);
718   LoopMBB->addSuccessor(ContinueMBB);
719   LoopMBB->addSuccessor(LoopMBB);
720 
721   // Mark all the instructions added to the prolog as frame setup.
722   if (InProlog) {
723     for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
724       BeforeMBBI->setFlag(MachineInstr::FrameSetup);
725     }
726     for (MachineInstr &MI : *RoundMBB) {
727       MI.setFlag(MachineInstr::FrameSetup);
728     }
729     for (MachineInstr &MI : *LoopMBB) {
730       MI.setFlag(MachineInstr::FrameSetup);
731     }
732     for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
733          CMBBI != ContinueMBBI; ++CMBBI) {
734       CMBBI->setFlag(MachineInstr::FrameSetup);
735     }
736   }
737 
738   // Possible TODO: physreg liveness for InProlog case.
739 }
740 
741 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF,
742                                           MachineBasicBlock &MBB,
743                                           MachineBasicBlock::iterator MBBI,
744                                           const DebugLoc &DL,
745                                           bool InProlog) const {
746   bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
747 
748   // FIXME: Add retpoline support and remove this.
749   if (Is64Bit && IsLargeCodeModel && STI.useRetpoline())
750     report_fatal_error("Emitting stack probe calls on 64-bit with the large "
751                        "code model and retpoline not yet implemented.");
752 
753   unsigned CallOp;
754   if (Is64Bit)
755     CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
756   else
757     CallOp = X86::CALLpcrel32;
758 
759   StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);
760 
761   MachineInstrBuilder CI;
762   MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
763 
764   // All current stack probes take AX and SP as input, clobber flags, and
765   // preserve all registers. x86_64 probes leave RSP unmodified.
766   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
767     // For the large code model, we have to call through a register. Use R11,
768     // as it is scratch in all supported calling conventions.
769     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
770         .addExternalSymbol(MF.createExternalSymbolName(Symbol));
771     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
772   } else {
773     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
774         .addExternalSymbol(MF.createExternalSymbolName(Symbol));
775   }
776 
777   unsigned AX = Is64Bit ? X86::RAX : X86::EAX;
778   unsigned SP = Is64Bit ? X86::RSP : X86::ESP;
779   CI.addReg(AX, RegState::Implicit)
780       .addReg(SP, RegState::Implicit)
781       .addReg(AX, RegState::Define | RegState::Implicit)
782       .addReg(SP, RegState::Define | RegState::Implicit)
783       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
784 
785   if (STI.isTargetWin64() || !STI.isOSWindows()) {
786     // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
787     // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
788     // themselves. They also does not clobber %rax so we can reuse it when
789     // adjusting %rsp.
790     // All other platforms do not specify a particular ABI for the stack probe
791     // function, so we arbitrarily define it to not adjust %esp/%rsp itself.
792     BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Is64Bit)), SP)
793         .addReg(SP)
794         .addReg(AX);
795   }
796 
797   if (InProlog) {
798     // Apply the frame setup flag to all inserted instrs.
799     for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
800       ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
801   }
802 }
803 
804 void X86FrameLowering::emitStackProbeInlineStub(
805     MachineFunction &MF, MachineBasicBlock &MBB,
806     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
807 
808   assert(InProlog && "ChkStkStub called outside prolog!");
809 
810   BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
811       .addExternalSymbol("__chkstk_stub");
812 }
813 
814 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
815   // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
816   // and might require smaller successive adjustments.
817   const uint64_t Win64MaxSEHOffset = 128;
818   uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
819   // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
820   return SEHFrameOffset & -16;
821 }
822 
823 // If we're forcing a stack realignment we can't rely on just the frame
824 // info, we need to know the ABI stack alignment as well in case we
825 // have a call out.  Otherwise just make sure we have some alignment - we'll
826 // go with the minimum SlotSize.
827 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
828   const MachineFrameInfo &MFI = MF.getFrameInfo();
829   uint64_t MaxAlign = MFI.getMaxAlignment(); // Desired stack alignment.
830   unsigned StackAlign = getStackAlignment();
831   if (MF.getFunction().hasFnAttribute("stackrealign")) {
832     if (MFI.hasCalls())
833       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
834     else if (MaxAlign < SlotSize)
835       MaxAlign = SlotSize;
836   }
837   return MaxAlign;
838 }
839 
840 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
841                                           MachineBasicBlock::iterator MBBI,
842                                           const DebugLoc &DL, unsigned Reg,
843                                           uint64_t MaxAlign) const {
844   uint64_t Val = -MaxAlign;
845   unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
846   MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
847                          .addReg(Reg)
848                          .addImm(Val)
849                          .setMIFlag(MachineInstr::FrameSetup);
850 
851   // The EFLAGS implicit def is dead.
852   MI->getOperand(3).setIsDead();
853 }
854 
855 /// emitPrologue - Push callee-saved registers onto the stack, which
856 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
857 /// space for local variables. Also emit labels used by the exception handler to
858 /// generate the exception handling frames.
859 
860 /*
861   Here's a gist of what gets emitted:
862 
863   ; Establish frame pointer, if needed
864   [if needs FP]
865       push  %rbp
866       .cfi_def_cfa_offset 16
867       .cfi_offset %rbp, -16
868       .seh_pushreg %rpb
869       mov  %rsp, %rbp
870       .cfi_def_cfa_register %rbp
871 
872   ; Spill general-purpose registers
873   [for all callee-saved GPRs]
874       pushq %<reg>
875       [if not needs FP]
876          .cfi_def_cfa_offset (offset from RETADDR)
877       .seh_pushreg %<reg>
878 
879   ; If the required stack alignment > default stack alignment
880   ; rsp needs to be re-aligned.  This creates a "re-alignment gap"
881   ; of unknown size in the stack frame.
882   [if stack needs re-alignment]
883       and  $MASK, %rsp
884 
885   ; Allocate space for locals
886   [if target is Windows and allocated space > 4096 bytes]
887       ; Windows needs special care for allocations larger
888       ; than one page.
889       mov $NNN, %rax
890       call ___chkstk_ms/___chkstk
891       sub  %rax, %rsp
892   [else]
893       sub  $NNN, %rsp
894 
895   [if needs FP]
896       .seh_stackalloc (size of XMM spill slots)
897       .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
898   [else]
899       .seh_stackalloc NNN
900 
901   ; Spill XMMs
902   ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
903   ; they may get spilled on any platform, if the current function
904   ; calls @llvm.eh.unwind.init
905   [if needs FP]
906       [for all callee-saved XMM registers]
907           movaps  %<xmm reg>, -MMM(%rbp)
908       [for all callee-saved XMM registers]
909           .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
910               ; i.e. the offset relative to (%rbp - SEHFrameOffset)
911   [else]
912       [for all callee-saved XMM registers]
913           movaps  %<xmm reg>, KKK(%rsp)
914       [for all callee-saved XMM registers]
915           .seh_savexmm %<xmm reg>, KKK
916 
917   .seh_endprologue
918 
919   [if needs base pointer]
920       mov  %rsp, %rbx
921       [if needs to restore base pointer]
922           mov %rsp, -MMM(%rbp)
923 
924   ; Emit CFI info
925   [if needs FP]
926       [for all callee-saved registers]
927           .cfi_offset %<reg>, (offset from %rbp)
928   [else]
929        .cfi_def_cfa_offset (offset from RETADDR)
930       [for all callee-saved registers]
931           .cfi_offset %<reg>, (offset from %rsp)
932 
933   Notes:
934   - .seh directives are emitted only for Windows 64 ABI
935   - .cv_fpo directives are emitted on win32 when emitting CodeView
936   - .cfi directives are emitted for all other ABIs
937   - for 32-bit code, substitute %e?? registers for %r??
938 */
939 
940 void X86FrameLowering::emitPrologue(MachineFunction &MF,
941                                     MachineBasicBlock &MBB) const {
942   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
943          "MF used frame lowering for wrong subtarget");
944   MachineBasicBlock::iterator MBBI = MBB.begin();
945   MachineFrameInfo &MFI = MF.getFrameInfo();
946   const Function &Fn = MF.getFunction();
947   MachineModuleInfo &MMI = MF.getMMI();
948   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
949   uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
950   uint64_t StackSize = MFI.getStackSize();    // Number of bytes to allocate.
951   bool IsFunclet = MBB.isEHFuncletEntry();
952   EHPersonality Personality = EHPersonality::Unknown;
953   if (Fn.hasPersonalityFn())
954     Personality = classifyEHPersonality(Fn.getPersonalityFn());
955   bool FnHasClrFunclet =
956       MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
957   bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
958   bool HasFP = hasFP(MF);
959   bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv());
960   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
961   bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
962   // FIXME: Emit FPO data for EH funclets.
963   bool NeedsWinFPO =
964       !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag();
965   bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
966   bool NeedsDwarfCFI =
967       !IsWin64Prologue && (MMI.hasDebugInfo() || Fn.needsUnwindTableEntry());
968   unsigned FramePtr = TRI->getFrameRegister(MF);
969   const unsigned MachineFramePtr =
970       STI.isTarget64BitILP32()
971           ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
972   unsigned BasePtr = TRI->getBaseRegister();
973   bool HasWinCFI = false;
974 
975   // Debug location must be unknown since the first debug location is used
976   // to determine the end of the prologue.
977   DebugLoc DL;
978 
979   // Add RETADDR move area to callee saved frame size.
980   int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
981   if (TailCallReturnAddrDelta && IsWin64Prologue)
982     report_fatal_error("Can't handle guaranteed tail call under win64 yet");
983 
984   if (TailCallReturnAddrDelta < 0)
985     X86FI->setCalleeSavedFrameSize(
986       X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
987 
988   bool UseStackProbe = !STI.getTargetLowering()->getStackProbeSymbolName(MF).empty();
989 
990   // The default stack probe size is 4096 if the function has no stackprobesize
991   // attribute.
992   unsigned StackProbeSize = 4096;
993   if (Fn.hasFnAttribute("stack-probe-size"))
994     Fn.getFnAttribute("stack-probe-size")
995         .getValueAsString()
996         .getAsInteger(0, StackProbeSize);
997 
998   // Re-align the stack on 64-bit if the x86-interrupt calling convention is
999   // used and an error code was pushed, since the x86-64 ABI requires a 16-byte
1000   // stack alignment.
1001   if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
1002       Fn.arg_size() == 2) {
1003     StackSize += 8;
1004     MFI.setStackSize(StackSize);
1005     emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false);
1006   }
1007 
1008   // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
1009   // function, and use up to 128 bytes of stack space, don't have a frame
1010   // pointer, calls, or dynamic alloca then we do not need to adjust the
1011   // stack pointer (we fit in the Red Zone). We also check that we don't
1012   // push and pop from the stack.
1013   if (Is64Bit && !Fn.hasFnAttribute(Attribute::NoRedZone) &&
1014       !TRI->needsStackRealignment(MF) &&
1015       !MFI.hasVarSizedObjects() &&             // No dynamic alloca.
1016       !MFI.adjustsStack() &&                   // No calls.
1017       !UseStackProbe &&                        // No stack probes.
1018       !IsWin64CC &&                            // Win64 has no Red Zone
1019       !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
1020       !MF.shouldSplitStack()) {                // Regular stack
1021     uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
1022     if (HasFP) MinSize += SlotSize;
1023     X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
1024     StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
1025     MFI.setStackSize(StackSize);
1026   }
1027 
1028   // Insert stack pointer adjustment for later moving of return addr.  Only
1029   // applies to tail call optimized functions where the callee argument stack
1030   // size is bigger than the callers.
1031   if (TailCallReturnAddrDelta < 0) {
1032     BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
1033                          /*InEpilogue=*/false)
1034         .setMIFlag(MachineInstr::FrameSetup);
1035   }
1036 
1037   // Mapping for machine moves:
1038   //
1039   //   DST: VirtualFP AND
1040   //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
1041   //        ELSE                        => DW_CFA_def_cfa
1042   //
1043   //   SRC: VirtualFP AND
1044   //        DST: Register               => DW_CFA_def_cfa_register
1045   //
1046   //   ELSE
1047   //        OFFSET < 0                  => DW_CFA_offset_extended_sf
1048   //        REG < 64                    => DW_CFA_offset + Reg
1049   //        ELSE                        => DW_CFA_offset_extended
1050 
1051   uint64_t NumBytes = 0;
1052   int stackGrowth = -SlotSize;
1053 
1054   // Find the funclet establisher parameter
1055   unsigned Establisher = X86::NoRegister;
1056   if (IsClrFunclet)
1057     Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1058   else if (IsFunclet)
1059     Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1060 
1061   if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1062     // Immediately spill establisher into the home slot.
1063     // The runtime cares about this.
1064     // MOV64mr %rdx, 16(%rsp)
1065     unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1066     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1067         .addReg(Establisher)
1068         .setMIFlag(MachineInstr::FrameSetup);
1069     MBB.addLiveIn(Establisher);
1070   }
1071 
1072   if (HasFP) {
1073     assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved");
1074 
1075     // Calculate required stack adjustment.
1076     uint64_t FrameSize = StackSize - SlotSize;
1077     // If required, include space for extra hidden slot for stashing base pointer.
1078     if (X86FI->getRestoreBasePointer())
1079       FrameSize += SlotSize;
1080 
1081     NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
1082 
1083     // Callee-saved registers are pushed on stack before the stack is realigned.
1084     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1085       NumBytes = alignTo(NumBytes, MaxAlign);
1086 
1087     // Get the offset of the stack slot for the EBP register, which is
1088     // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
1089     // Update the frame offset adjustment.
1090     if (!IsFunclet)
1091       MFI.setOffsetAdjustment(-NumBytes);
1092     else
1093       assert(MFI.getOffsetAdjustment() == -(int)NumBytes &&
1094              "should calculate same local variable offset for funclets");
1095 
1096     // Save EBP/RBP into the appropriate stack slot.
1097     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1098       .addReg(MachineFramePtr, RegState::Kill)
1099       .setMIFlag(MachineInstr::FrameSetup);
1100 
1101     if (NeedsDwarfCFI) {
1102       // Mark the place where EBP/RBP was saved.
1103       // Define the current CFA rule to use the provided offset.
1104       assert(StackSize);
1105       BuildCFI(MBB, MBBI, DL,
1106                MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
1107 
1108       // Change the rule for the FramePtr to be an "offset" rule.
1109       unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1110       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
1111                                   nullptr, DwarfFramePtr, 2 * stackGrowth));
1112     }
1113 
1114     if (NeedsWinCFI) {
1115       HasWinCFI = true;
1116       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1117           .addImm(FramePtr)
1118           .setMIFlag(MachineInstr::FrameSetup);
1119     }
1120 
1121     if (!IsWin64Prologue && !IsFunclet) {
1122       // Update EBP with the new base value.
1123       BuildMI(MBB, MBBI, DL,
1124               TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1125               FramePtr)
1126           .addReg(StackPtr)
1127           .setMIFlag(MachineInstr::FrameSetup);
1128 
1129       if (NeedsDwarfCFI) {
1130         // Mark effective beginning of when frame pointer becomes valid.
1131         // Define the current CFA to use the EBP/RBP register.
1132         unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1133         BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
1134                                     nullptr, DwarfFramePtr));
1135       }
1136 
1137       if (NeedsWinFPO) {
1138         // .cv_fpo_setframe $FramePtr
1139         HasWinCFI = true;
1140         BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1141             .addImm(FramePtr)
1142             .addImm(0)
1143             .setMIFlag(MachineInstr::FrameSetup);
1144       }
1145     }
1146   } else {
1147     assert(!IsFunclet && "funclets without FPs not yet implemented");
1148     NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1149   }
1150 
1151   // For EH funclets, only allocate enough space for outgoing calls. Save the
1152   // NumBytes value that we would've used for the parent frame.
1153   unsigned ParentFrameNumBytes = NumBytes;
1154   if (IsFunclet)
1155     NumBytes = getWinEHFuncletFrameSize(MF);
1156 
1157   // Skip the callee-saved push instructions.
1158   bool PushedRegs = false;
1159   int StackOffset = 2 * stackGrowth;
1160 
1161   while (MBBI != MBB.end() &&
1162          MBBI->getFlag(MachineInstr::FrameSetup) &&
1163          (MBBI->getOpcode() == X86::PUSH32r ||
1164           MBBI->getOpcode() == X86::PUSH64r)) {
1165     PushedRegs = true;
1166     unsigned Reg = MBBI->getOperand(0).getReg();
1167     ++MBBI;
1168 
1169     if (!HasFP && NeedsDwarfCFI) {
1170       // Mark callee-saved push instruction.
1171       // Define the current CFA rule to use the provided offset.
1172       assert(StackSize);
1173       BuildCFI(MBB, MBBI, DL,
1174                MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
1175       StackOffset += stackGrowth;
1176     }
1177 
1178     if (NeedsWinCFI) {
1179       HasWinCFI = true;
1180       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1181           .addImm(Reg)
1182           .setMIFlag(MachineInstr::FrameSetup);
1183     }
1184   }
1185 
1186   // Realign stack after we pushed callee-saved registers (so that we'll be
1187   // able to calculate their offsets from the frame pointer).
1188   // Don't do this for Win64, it needs to realign the stack after the prologue.
1189   if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
1190     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1191     BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1192   }
1193 
1194   // If there is an SUB32ri of ESP immediately before this instruction, merge
1195   // the two. This can be the case when tail call elimination is enabled and
1196   // the callee has more arguments then the caller.
1197   NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1198 
1199   // Adjust stack pointer: ESP -= numbytes.
1200 
1201   // Windows and cygwin/mingw require a prologue helper routine when allocating
1202   // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
1203   // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
1204   // stack and adjust the stack pointer in one go.  The 64-bit version of
1205   // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
1206   // responsible for adjusting the stack pointer.  Touching the stack at 4K
1207   // increments is necessary to ensure that the guard pages used by the OS
1208   // virtual memory manager are allocated in correct sequence.
1209   uint64_t AlignedNumBytes = NumBytes;
1210   if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
1211     AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
1212   if (AlignedNumBytes >= StackProbeSize && UseStackProbe) {
1213     assert(!X86FI->getUsesRedZone() &&
1214            "The Red Zone is not accounted for in stack probes");
1215 
1216     // Check whether EAX is livein for this block.
1217     bool isEAXAlive = isEAXLiveIn(MBB);
1218 
1219     if (isEAXAlive) {
1220       if (Is64Bit) {
1221         // Save RAX
1222         BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1223           .addReg(X86::RAX, RegState::Kill)
1224           .setMIFlag(MachineInstr::FrameSetup);
1225       } else {
1226         // Save EAX
1227         BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1228           .addReg(X86::EAX, RegState::Kill)
1229           .setMIFlag(MachineInstr::FrameSetup);
1230       }
1231     }
1232 
1233     if (Is64Bit) {
1234       // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1235       // Function prologue is responsible for adjusting the stack pointer.
1236       int Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
1237       if (isUInt<32>(Alloc)) {
1238         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1239             .addImm(Alloc)
1240             .setMIFlag(MachineInstr::FrameSetup);
1241       } else if (isInt<32>(Alloc)) {
1242         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
1243             .addImm(Alloc)
1244             .setMIFlag(MachineInstr::FrameSetup);
1245       } else {
1246         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
1247             .addImm(Alloc)
1248             .setMIFlag(MachineInstr::FrameSetup);
1249       }
1250     } else {
1251       // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1252       // We'll also use 4 already allocated bytes for EAX.
1253       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1254           .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1255           .setMIFlag(MachineInstr::FrameSetup);
1256     }
1257 
1258     // Call __chkstk, __chkstk_ms, or __alloca.
1259     emitStackProbe(MF, MBB, MBBI, DL, true);
1260 
1261     if (isEAXAlive) {
1262       // Restore RAX/EAX
1263       MachineInstr *MI;
1264       if (Is64Bit)
1265         MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
1266                           StackPtr, false, NumBytes - 8);
1267       else
1268         MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1269                           StackPtr, false, NumBytes - 4);
1270       MI->setFlag(MachineInstr::FrameSetup);
1271       MBB.insert(MBBI, MI);
1272     }
1273   } else if (NumBytes) {
1274     emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false);
1275   }
1276 
1277   if (NeedsWinCFI && NumBytes) {
1278     HasWinCFI = true;
1279     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1280         .addImm(NumBytes)
1281         .setMIFlag(MachineInstr::FrameSetup);
1282   }
1283 
1284   int SEHFrameOffset = 0;
1285   unsigned SPOrEstablisher;
1286   if (IsFunclet) {
1287     if (IsClrFunclet) {
1288       // The establisher parameter passed to a CLR funclet is actually a pointer
1289       // to the (mostly empty) frame of its nearest enclosing funclet; we have
1290       // to find the root function establisher frame by loading the PSPSym from
1291       // the intermediate frame.
1292       unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1293       MachinePointerInfo NoInfo;
1294       MBB.addLiveIn(Establisher);
1295       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1296                    Establisher, false, PSPSlotOffset)
1297           .addMemOperand(MF.getMachineMemOperand(
1298               NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize));
1299       ;
1300       // Save the root establisher back into the current funclet's (mostly
1301       // empty) frame, in case a sub-funclet or the GC needs it.
1302       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
1303                    false, PSPSlotOffset)
1304           .addReg(Establisher)
1305           .addMemOperand(
1306               MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore |
1307                                                   MachineMemOperand::MOVolatile,
1308                                       SlotSize, SlotSize));
1309     }
1310     SPOrEstablisher = Establisher;
1311   } else {
1312     SPOrEstablisher = StackPtr;
1313   }
1314 
1315   if (IsWin64Prologue && HasFP) {
1316     // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1317     // this calculation on the incoming establisher, which holds the value of
1318     // RSP from the parent frame at the end of the prologue.
1319     SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
1320     if (SEHFrameOffset)
1321       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
1322                    SPOrEstablisher, false, SEHFrameOffset);
1323     else
1324       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
1325           .addReg(SPOrEstablisher);
1326 
1327     // If this is not a funclet, emit the CFI describing our frame pointer.
1328     if (NeedsWinCFI && !IsFunclet) {
1329       assert(!NeedsWinFPO && "this setframe incompatible with FPO data");
1330       HasWinCFI = true;
1331       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1332           .addImm(FramePtr)
1333           .addImm(SEHFrameOffset)
1334           .setMIFlag(MachineInstr::FrameSetup);
1335       if (isAsynchronousEHPersonality(Personality))
1336         MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
1337     }
1338   } else if (IsFunclet && STI.is32Bit()) {
1339     // Reset EBP / ESI to something good for funclets.
1340     MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
1341     // If we're a catch funclet, we can be returned to via catchret. Save ESP
1342     // into the registration node so that the runtime will restore it for us.
1343     if (!MBB.isCleanupFuncletEntry()) {
1344       assert(Personality == EHPersonality::MSVC_CXX);
1345       unsigned FrameReg;
1346       int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
1347       int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
1348       // ESP is the first field, so no extra displacement is needed.
1349       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
1350                    false, EHRegOffset)
1351           .addReg(X86::ESP);
1352     }
1353   }
1354 
1355   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
1356     const MachineInstr &FrameInstr = *MBBI;
1357     ++MBBI;
1358 
1359     if (NeedsWinCFI) {
1360       int FI;
1361       if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
1362         if (X86::FR64RegClass.contains(Reg)) {
1363           unsigned IgnoredFrameReg;
1364           int Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg);
1365           Offset += SEHFrameOffset;
1366 
1367           HasWinCFI = true;
1368           assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data");
1369           BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
1370               .addImm(Reg)
1371               .addImm(Offset)
1372               .setMIFlag(MachineInstr::FrameSetup);
1373         }
1374       }
1375     }
1376   }
1377 
1378   if (NeedsWinCFI && HasWinCFI)
1379     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
1380         .setMIFlag(MachineInstr::FrameSetup);
1381 
1382   if (FnHasClrFunclet && !IsFunclet) {
1383     // Save the so-called Initial-SP (i.e. the value of the stack pointer
1384     // immediately after the prolog)  into the PSPSlot so that funclets
1385     // and the GC can recover it.
1386     unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1387     auto PSPInfo = MachinePointerInfo::getFixedStack(
1388         MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
1389     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
1390                  PSPSlotOffset)
1391         .addReg(StackPtr)
1392         .addMemOperand(MF.getMachineMemOperand(
1393             PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1394             SlotSize, SlotSize));
1395   }
1396 
1397   // Realign stack after we spilled callee-saved registers (so that we'll be
1398   // able to calculate their offsets from the frame pointer).
1399   // Win64 requires aligning the stack after the prologue.
1400   if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
1401     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1402     BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
1403   }
1404 
1405   // We already dealt with stack realignment and funclets above.
1406   if (IsFunclet && STI.is32Bit())
1407     return;
1408 
1409   // If we need a base pointer, set it up here. It's whatever the value
1410   // of the stack pointer is at this point. Any variable size objects
1411   // will be allocated after this, so we can still use the base pointer
1412   // to reference locals.
1413   if (TRI->hasBasePointer(MF)) {
1414     // Update the base pointer with the current stack pointer.
1415     unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
1416     BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
1417       .addReg(SPOrEstablisher)
1418       .setMIFlag(MachineInstr::FrameSetup);
1419     if (X86FI->getRestoreBasePointer()) {
1420       // Stash value of base pointer.  Saving RSP instead of EBP shortens
1421       // dependence chain. Used by SjLj EH.
1422       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1423       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
1424                    FramePtr, true, X86FI->getRestoreBasePointerOffset())
1425         .addReg(SPOrEstablisher)
1426         .setMIFlag(MachineInstr::FrameSetup);
1427     }
1428 
1429     if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
1430       // Stash the value of the frame pointer relative to the base pointer for
1431       // Win32 EH. This supports Win32 EH, which does the inverse of the above:
1432       // it recovers the frame pointer from the base pointer rather than the
1433       // other way around.
1434       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1435       unsigned UsedReg;
1436       int Offset =
1437           getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
1438       assert(UsedReg == BasePtr);
1439       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
1440           .addReg(FramePtr)
1441           .setMIFlag(MachineInstr::FrameSetup);
1442     }
1443   }
1444 
1445   if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
1446     // Mark end of stack pointer adjustment.
1447     if (!HasFP && NumBytes) {
1448       // Define the current CFA rule to use the provided offset.
1449       assert(StackSize);
1450       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1451                                   nullptr, -StackSize + stackGrowth));
1452     }
1453 
1454     // Emit DWARF info specifying the offsets of the callee-saved registers.
1455     emitCalleeSavedFrameMoves(MBB, MBBI, DL);
1456   }
1457 
1458   // X86 Interrupt handling function cannot assume anything about the direction
1459   // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
1460   // in each prologue of interrupt handler function.
1461   //
1462   // FIXME: Create "cld" instruction only in these cases:
1463   // 1. The interrupt handling function uses any of the "rep" instructions.
1464   // 2. Interrupt handling function calls another function.
1465   //
1466   if (Fn.getCallingConv() == CallingConv::X86_INTR)
1467     BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
1468         .setMIFlag(MachineInstr::FrameSetup);
1469 
1470   // At this point we know if the function has WinCFI or not.
1471   MF.setHasWinCFI(HasWinCFI);
1472 }
1473 
1474 bool X86FrameLowering::canUseLEAForSPInEpilogue(
1475     const MachineFunction &MF) const {
1476   // We can't use LEA instructions for adjusting the stack pointer if we don't
1477   // have a frame pointer in the Win64 ABI.  Only ADD instructions may be used
1478   // to deallocate the stack.
1479   // This means that we can use LEA for SP in two situations:
1480   // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
1481   // 2. We *have* a frame pointer which means we are permitted to use LEA.
1482   return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
1483 }
1484 
1485 static bool isFuncletReturnInstr(MachineInstr &MI) {
1486   switch (MI.getOpcode()) {
1487   case X86::CATCHRET:
1488   case X86::CLEANUPRET:
1489     return true;
1490   default:
1491     return false;
1492   }
1493   llvm_unreachable("impossible");
1494 }
1495 
1496 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
1497 // stack. It holds a pointer to the bottom of the root function frame.  The
1498 // establisher frame pointer passed to a nested funclet may point to the
1499 // (mostly empty) frame of its parent funclet, but it will need to find
1500 // the frame of the root function to access locals.  To facilitate this,
1501 // every funclet copies the pointer to the bottom of the root function
1502 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
1503 // same offset for the PSPSym in the root function frame that's used in the
1504 // funclets' frames allows each funclet to dynamically accept any ancestor
1505 // frame as its establisher argument (the runtime doesn't guarantee the
1506 // immediate parent for some reason lost to history), and also allows the GC,
1507 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
1508 // frame with only a single offset reported for the entire method.
1509 unsigned
1510 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
1511   const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
1512   unsigned SPReg;
1513   int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
1514                                               /*IgnoreSPUpdates*/ true);
1515   assert(Offset >= 0 && SPReg == TRI->getStackRegister());
1516   return static_cast<unsigned>(Offset);
1517 }
1518 
1519 unsigned
1520 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
1521   // This is the size of the pushed CSRs.
1522   unsigned CSSize =
1523       MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
1524   // This is the amount of stack a funclet needs to allocate.
1525   unsigned UsedSize;
1526   EHPersonality Personality =
1527       classifyEHPersonality(MF.getFunction().getPersonalityFn());
1528   if (Personality == EHPersonality::CoreCLR) {
1529     // CLR funclets need to hold enough space to include the PSPSym, at the
1530     // same offset from the stack pointer (immediately after the prolog) as it
1531     // resides at in the main function.
1532     UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
1533   } else {
1534     // Other funclets just need enough stack for outgoing call arguments.
1535     UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
1536   }
1537   // RBP is not included in the callee saved register block. After pushing RBP,
1538   // everything is 16 byte aligned. Everything we allocate before an outgoing
1539   // call must also be 16 byte aligned.
1540   unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment());
1541   // Subtract out the size of the callee saved registers. This is how much stack
1542   // each funclet will allocate.
1543   return FrameSizeMinusRBP - CSSize;
1544 }
1545 
1546 static bool isTailCallOpcode(unsigned Opc) {
1547     return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
1548         Opc == X86::TCRETURNmi ||
1549         Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
1550         Opc == X86::TCRETURNmi64;
1551 }
1552 
1553 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
1554                                     MachineBasicBlock &MBB) const {
1555   const MachineFrameInfo &MFI = MF.getFrameInfo();
1556   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1557   MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
1558   MachineBasicBlock::iterator MBBI = Terminator;
1559   DebugLoc DL;
1560   if (MBBI != MBB.end())
1561     DL = MBBI->getDebugLoc();
1562   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
1563   const bool Is64BitILP32 = STI.isTarget64BitILP32();
1564   unsigned FramePtr = TRI->getFrameRegister(MF);
1565   unsigned MachineFramePtr =
1566       Is64BitILP32 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
1567 
1568   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1569   bool NeedsWin64CFI =
1570       IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
1571   bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
1572 
1573   // Get the number of bytes to allocate from the FrameInfo.
1574   uint64_t StackSize = MFI.getStackSize();
1575   uint64_t MaxAlign = calculateMaxStackAlign(MF);
1576   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1577   bool HasFP = hasFP(MF);
1578   uint64_t NumBytes = 0;
1579 
1580   bool NeedsDwarfCFI =
1581       (!MF.getTarget().getTargetTriple().isOSDarwin() &&
1582        !MF.getTarget().getTargetTriple().isOSWindows()) &&
1583       (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry());
1584 
1585   if (IsFunclet) {
1586     assert(HasFP && "EH funclets without FP not yet implemented");
1587     NumBytes = getWinEHFuncletFrameSize(MF);
1588   } else if (HasFP) {
1589     // Calculate required stack adjustment.
1590     uint64_t FrameSize = StackSize - SlotSize;
1591     NumBytes = FrameSize - CSSize;
1592 
1593     // Callee-saved registers were pushed on stack before the stack was
1594     // realigned.
1595     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1596       NumBytes = alignTo(FrameSize, MaxAlign);
1597   } else {
1598     NumBytes = StackSize - CSSize;
1599   }
1600   uint64_t SEHStackAllocAmt = NumBytes;
1601 
1602   if (HasFP) {
1603     // Pop EBP.
1604     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
1605             MachineFramePtr)
1606         .setMIFlag(MachineInstr::FrameDestroy);
1607     if (NeedsDwarfCFI) {
1608       unsigned DwarfStackPtr =
1609           TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
1610       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfa(
1611                                   nullptr, DwarfStackPtr, -SlotSize));
1612       --MBBI;
1613     }
1614   }
1615 
1616   MachineBasicBlock::iterator FirstCSPop = MBBI;
1617   // Skip the callee-saved pop instructions.
1618   while (MBBI != MBB.begin()) {
1619     MachineBasicBlock::iterator PI = std::prev(MBBI);
1620     unsigned Opc = PI->getOpcode();
1621 
1622     if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
1623       if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
1624           (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)))
1625         break;
1626       FirstCSPop = PI;
1627     }
1628 
1629     --MBBI;
1630   }
1631   MBBI = FirstCSPop;
1632 
1633   if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
1634     emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator);
1635 
1636   if (MBBI != MBB.end())
1637     DL = MBBI->getDebugLoc();
1638 
1639   // If there is an ADD32ri or SUB32ri of ESP immediately before this
1640   // instruction, merge the two instructions.
1641   if (NumBytes || MFI.hasVarSizedObjects())
1642     NumBytes += mergeSPUpdates(MBB, MBBI, true);
1643 
1644   // If dynamic alloca is used, then reset esp to point to the last callee-saved
1645   // slot before popping them off! Same applies for the case, when stack was
1646   // realigned. Don't do this if this was a funclet epilogue, since the funclets
1647   // will not do realignment or dynamic stack allocation.
1648   if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) &&
1649       !IsFunclet) {
1650     if (TRI->needsStackRealignment(MF))
1651       MBBI = FirstCSPop;
1652     unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
1653     uint64_t LEAAmount =
1654         IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
1655 
1656     // There are only two legal forms of epilogue:
1657     // - add SEHAllocationSize, %rsp
1658     // - lea SEHAllocationSize(%FramePtr), %rsp
1659     //
1660     // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
1661     // However, we may use this sequence if we have a frame pointer because the
1662     // effects of the prologue can safely be undone.
1663     if (LEAAmount != 0) {
1664       unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
1665       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
1666                    FramePtr, false, LEAAmount);
1667       --MBBI;
1668     } else {
1669       unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
1670       BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
1671         .addReg(FramePtr);
1672       --MBBI;
1673     }
1674   } else if (NumBytes) {
1675     // Adjust stack pointer back: ESP += numbytes.
1676     emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
1677     if (!hasFP(MF) && NeedsDwarfCFI) {
1678       // Define the current CFA rule to use the provided offset.
1679       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1680                                   nullptr, -CSSize - SlotSize));
1681     }
1682     --MBBI;
1683   }
1684 
1685   // Windows unwinder will not invoke function's exception handler if IP is
1686   // either in prologue or in epilogue.  This behavior causes a problem when a
1687   // call immediately precedes an epilogue, because the return address points
1688   // into the epilogue.  To cope with that, we insert an epilogue marker here,
1689   // then replace it with a 'nop' if it ends up immediately after a CALL in the
1690   // final emitted code.
1691   if (NeedsWin64CFI && MF.hasWinCFI())
1692     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
1693 
1694   if (!hasFP(MF) && NeedsDwarfCFI) {
1695     MBBI = FirstCSPop;
1696     int64_t Offset = -CSSize - SlotSize;
1697     // Mark callee-saved pop instruction.
1698     // Define the current CFA rule to use the provided offset.
1699     while (MBBI != MBB.end()) {
1700       MachineBasicBlock::iterator PI = MBBI;
1701       unsigned Opc = PI->getOpcode();
1702       ++MBBI;
1703       if (Opc == X86::POP32r || Opc == X86::POP64r) {
1704         Offset += SlotSize;
1705         BuildCFI(MBB, MBBI, DL,
1706                  MCCFIInstruction::createDefCfaOffset(nullptr, Offset));
1707       }
1708     }
1709   }
1710 
1711   if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) {
1712     // Add the return addr area delta back since we are not tail calling.
1713     int Offset = -1 * X86FI->getTCReturnAddrDelta();
1714     assert(Offset >= 0 && "TCDelta should never be positive");
1715     if (Offset) {
1716       // Check for possible merge with preceding ADD instruction.
1717       Offset += mergeSPUpdates(MBB, Terminator, true);
1718       emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true);
1719     }
1720   }
1721 }
1722 
1723 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1724                                              unsigned &FrameReg) const {
1725   const MachineFrameInfo &MFI = MF.getFrameInfo();
1726 
1727   bool IsFixed = MFI.isFixedObjectIndex(FI);
1728   // We can't calculate offset from frame pointer if the stack is realigned,
1729   // so enforce usage of stack/base pointer.  The base pointer is used when we
1730   // have dynamic allocas in addition to dynamic realignment.
1731   if (TRI->hasBasePointer(MF))
1732     FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
1733   else if (TRI->needsStackRealignment(MF))
1734     FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
1735   else
1736     FrameReg = TRI->getFrameRegister(MF);
1737 
1738   // Offset will hold the offset from the stack pointer at function entry to the
1739   // object.
1740   // We need to factor in additional offsets applied during the prologue to the
1741   // frame, base, and stack pointer depending on which is used.
1742   int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
1743   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1744   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1745   uint64_t StackSize = MFI.getStackSize();
1746   bool HasFP = hasFP(MF);
1747   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1748   int64_t FPDelta = 0;
1749 
1750   if (IsWin64Prologue) {
1751     assert(!MFI.hasCalls() || (StackSize % 16) == 8);
1752 
1753     // Calculate required stack adjustment.
1754     uint64_t FrameSize = StackSize - SlotSize;
1755     // If required, include space for extra hidden slot for stashing base pointer.
1756     if (X86FI->getRestoreBasePointer())
1757       FrameSize += SlotSize;
1758     uint64_t NumBytes = FrameSize - CSSize;
1759 
1760     uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
1761     if (FI && FI == X86FI->getFAIndex())
1762       return -SEHFrameOffset;
1763 
1764     // FPDelta is the offset from the "traditional" FP location of the old base
1765     // pointer followed by return address and the location required by the
1766     // restricted Win64 prologue.
1767     // Add FPDelta to all offsets below that go through the frame pointer.
1768     FPDelta = FrameSize - SEHFrameOffset;
1769     assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
1770            "FPDelta isn't aligned per the Win64 ABI!");
1771   }
1772 
1773 
1774   if (TRI->hasBasePointer(MF)) {
1775     assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
1776     if (FI < 0) {
1777       // Skip the saved EBP.
1778       return Offset + SlotSize + FPDelta;
1779     } else {
1780       assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
1781       return Offset + StackSize;
1782     }
1783   } else if (TRI->needsStackRealignment(MF)) {
1784     if (FI < 0) {
1785       // Skip the saved EBP.
1786       return Offset + SlotSize + FPDelta;
1787     } else {
1788       assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
1789       return Offset + StackSize;
1790     }
1791     // FIXME: Support tail calls
1792   } else {
1793     if (!HasFP)
1794       return Offset + StackSize;
1795 
1796     // Skip the saved EBP.
1797     Offset += SlotSize;
1798 
1799     // Skip the RETADDR move area
1800     int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1801     if (TailCallReturnAddrDelta < 0)
1802       Offset -= TailCallReturnAddrDelta;
1803   }
1804 
1805   return Offset + FPDelta;
1806 }
1807 
1808 int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF,
1809                                                int FI, unsigned &FrameReg,
1810                                                int Adjustment) const {
1811   const MachineFrameInfo &MFI = MF.getFrameInfo();
1812   FrameReg = TRI->getStackRegister();
1813   return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment;
1814 }
1815 
1816 int
1817 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
1818                                                  int FI, unsigned &FrameReg,
1819                                                  bool IgnoreSPUpdates) const {
1820 
1821   const MachineFrameInfo &MFI = MF.getFrameInfo();
1822   // Does not include any dynamic realign.
1823   const uint64_t StackSize = MFI.getStackSize();
1824   // LLVM arranges the stack as follows:
1825   //   ...
1826   //   ARG2
1827   //   ARG1
1828   //   RETADDR
1829   //   PUSH RBP   <-- RBP points here
1830   //   PUSH CSRs
1831   //   ~~~~~~~    <-- possible stack realignment (non-win64)
1832   //   ...
1833   //   STACK OBJECTS
1834   //   ...        <-- RSP after prologue points here
1835   //   ~~~~~~~    <-- possible stack realignment (win64)
1836   //
1837   // if (hasVarSizedObjects()):
1838   //   ...        <-- "base pointer" (ESI/RBX) points here
1839   //   DYNAMIC ALLOCAS
1840   //   ...        <-- RSP points here
1841   //
1842   // Case 1: In the simple case of no stack realignment and no dynamic
1843   // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
1844   // with fixed offsets from RSP.
1845   //
1846   // Case 2: In the case of stack realignment with no dynamic allocas, fixed
1847   // stack objects are addressed with RBP and regular stack objects with RSP.
1848   //
1849   // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
1850   // to address stack arguments for outgoing calls and nothing else. The "base
1851   // pointer" points to local variables, and RBP points to fixed objects.
1852   //
1853   // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
1854   // answer we give is relative to the SP after the prologue, and not the
1855   // SP in the middle of the function.
1856 
1857   if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) &&
1858       !STI.isTargetWin64())
1859     return getFrameIndexReference(MF, FI, FrameReg);
1860 
1861   // If !hasReservedCallFrame the function might have SP adjustement in the
1862   // body.  So, even though the offset is statically known, it depends on where
1863   // we are in the function.
1864   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
1865   if (!IgnoreSPUpdates && !TFI->hasReservedCallFrame(MF))
1866     return getFrameIndexReference(MF, FI, FrameReg);
1867 
1868   // We don't handle tail calls, and shouldn't be seeing them either.
1869   assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
1870          "we don't handle this case!");
1871 
1872   // This is how the math works out:
1873   //
1874   //  %rsp grows (i.e. gets lower) left to right. Each box below is
1875   //  one word (eight bytes).  Obj0 is the stack slot we're trying to
1876   //  get to.
1877   //
1878   //    ----------------------------------
1879   //    | BP | Obj0 | Obj1 | ... | ObjN |
1880   //    ----------------------------------
1881   //    ^    ^      ^                   ^
1882   //    A    B      C                   E
1883   //
1884   // A is the incoming stack pointer.
1885   // (B - A) is the local area offset (-8 for x86-64) [1]
1886   // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
1887   //
1888   // |(E - B)| is the StackSize (absolute value, positive).  For a
1889   // stack that grown down, this works out to be (B - E). [3]
1890   //
1891   // E is also the value of %rsp after stack has been set up, and we
1892   // want (C - E) -- the value we can add to %rsp to get to Obj0.  Now
1893   // (C - E) == (C - A) - (B - A) + (B - E)
1894   //            { Using [1], [2] and [3] above }
1895   //         == getObjectOffset - LocalAreaOffset + StackSize
1896 
1897   return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize);
1898 }
1899 
1900 bool X86FrameLowering::assignCalleeSavedSpillSlots(
1901     MachineFunction &MF, const TargetRegisterInfo *TRI,
1902     std::vector<CalleeSavedInfo> &CSI) const {
1903   MachineFrameInfo &MFI = MF.getFrameInfo();
1904   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1905 
1906   unsigned CalleeSavedFrameSize = 0;
1907   int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
1908 
1909   int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1910 
1911   if (TailCallReturnAddrDelta < 0) {
1912     // create RETURNADDR area
1913     //   arg
1914     //   arg
1915     //   RETADDR
1916     //   { ...
1917     //     RETADDR area
1918     //     ...
1919     //   }
1920     //   [EBP]
1921     MFI.CreateFixedObject(-TailCallReturnAddrDelta,
1922                            TailCallReturnAddrDelta - SlotSize, true);
1923   }
1924 
1925   // Spill the BasePtr if it's used.
1926   if (this->TRI->hasBasePointer(MF)) {
1927     // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
1928     if (MF.hasEHFunclets()) {
1929       int FI = MFI.CreateSpillStackObject(SlotSize, SlotSize);
1930       X86FI->setHasSEHFramePtrSave(true);
1931       X86FI->setSEHFramePtrSaveIndex(FI);
1932     }
1933   }
1934 
1935   if (hasFP(MF)) {
1936     // emitPrologue always spills frame register the first thing.
1937     SpillSlotOffset -= SlotSize;
1938     MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
1939 
1940     // Since emitPrologue and emitEpilogue will handle spilling and restoring of
1941     // the frame register, we can delete it from CSI list and not have to worry
1942     // about avoiding it later.
1943     unsigned FPReg = TRI->getFrameRegister(MF);
1944     for (unsigned i = 0; i < CSI.size(); ++i) {
1945       if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
1946         CSI.erase(CSI.begin() + i);
1947         break;
1948       }
1949     }
1950   }
1951 
1952   // Assign slots for GPRs. It increases frame size.
1953   for (unsigned i = CSI.size(); i != 0; --i) {
1954     unsigned Reg = CSI[i - 1].getReg();
1955 
1956     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
1957       continue;
1958 
1959     SpillSlotOffset -= SlotSize;
1960     CalleeSavedFrameSize += SlotSize;
1961 
1962     int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
1963     CSI[i - 1].setFrameIdx(SlotIndex);
1964   }
1965 
1966   X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
1967 
1968   // Assign slots for XMMs.
1969   for (unsigned i = CSI.size(); i != 0; --i) {
1970     unsigned Reg = CSI[i - 1].getReg();
1971     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
1972       continue;
1973 
1974     // If this is k-register make sure we lookup via the largest legal type.
1975     MVT VT = MVT::Other;
1976     if (X86::VK16RegClass.contains(Reg))
1977       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
1978 
1979     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
1980     unsigned Size = TRI->getSpillSize(*RC);
1981     unsigned Align = TRI->getSpillAlignment(*RC);
1982     // ensure alignment
1983     SpillSlotOffset -= std::abs(SpillSlotOffset) % Align;
1984     // spill into slot
1985     SpillSlotOffset -= Size;
1986     int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
1987     CSI[i - 1].setFrameIdx(SlotIndex);
1988     MFI.ensureMaxAlignment(Align);
1989   }
1990 
1991   return true;
1992 }
1993 
1994 bool X86FrameLowering::spillCalleeSavedRegisters(
1995     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1996     const std::vector<CalleeSavedInfo> &CSI,
1997     const TargetRegisterInfo *TRI) const {
1998   DebugLoc DL = MBB.findDebugLoc(MI);
1999 
2000   // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
2001   // for us, and there are no XMM CSRs on Win32.
2002   if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
2003     return true;
2004 
2005   // Push GPRs. It increases frame size.
2006   const MachineFunction &MF = *MBB.getParent();
2007   unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
2008   for (unsigned i = CSI.size(); i != 0; --i) {
2009     unsigned Reg = CSI[i - 1].getReg();
2010 
2011     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2012       continue;
2013 
2014     const MachineRegisterInfo &MRI = MF.getRegInfo();
2015     bool isLiveIn = MRI.isLiveIn(Reg);
2016     if (!isLiveIn)
2017       MBB.addLiveIn(Reg);
2018 
2019     // Decide whether we can add a kill flag to the use.
2020     bool CanKill = !isLiveIn;
2021     // Check if any subregister is live-in
2022     if (CanKill) {
2023       for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
2024         if (MRI.isLiveIn(*AReg)) {
2025           CanKill = false;
2026           break;
2027         }
2028       }
2029     }
2030 
2031     // Do not set a kill flag on values that are also marked as live-in. This
2032     // happens with the @llvm-returnaddress intrinsic and with arguments
2033     // passed in callee saved registers.
2034     // Omitting the kill flags is conservatively correct even if the live-in
2035     // is not used after all.
2036     BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
2037       .setMIFlag(MachineInstr::FrameSetup);
2038   }
2039 
2040   // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
2041   // It can be done by spilling XMMs to stack frame.
2042   for (unsigned i = CSI.size(); i != 0; --i) {
2043     unsigned Reg = CSI[i-1].getReg();
2044     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2045       continue;
2046 
2047     // If this is k-register make sure we lookup via the largest legal type.
2048     MVT VT = MVT::Other;
2049     if (X86::VK16RegClass.contains(Reg))
2050       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2051 
2052     // Add the callee-saved register as live-in. It's killed at the spill.
2053     MBB.addLiveIn(Reg);
2054     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2055 
2056     TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
2057                             TRI);
2058     --MI;
2059     MI->setFlag(MachineInstr::FrameSetup);
2060     ++MI;
2061   }
2062 
2063   return true;
2064 }
2065 
2066 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
2067                                                MachineBasicBlock::iterator MBBI,
2068                                                MachineInstr *CatchRet) const {
2069   // SEH shouldn't use catchret.
2070   assert(!isAsynchronousEHPersonality(classifyEHPersonality(
2071              MBB.getParent()->getFunction().getPersonalityFn())) &&
2072          "SEH should not use CATCHRET");
2073   DebugLoc DL = CatchRet->getDebugLoc();
2074   MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB();
2075 
2076   // Fill EAX/RAX with the address of the target block.
2077   if (STI.is64Bit()) {
2078     // LEA64r CatchRetTarget(%rip), %rax
2079     BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
2080         .addReg(X86::RIP)
2081         .addImm(0)
2082         .addReg(0)
2083         .addMBB(CatchRetTarget)
2084         .addReg(0);
2085   } else {
2086     // MOV32ri $CatchRetTarget, %eax
2087     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
2088         .addMBB(CatchRetTarget);
2089   }
2090 
2091   // Record that we've taken the address of CatchRetTarget and no longer just
2092   // reference it in a terminator.
2093   CatchRetTarget->setHasAddressTaken();
2094 }
2095 
2096 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
2097                                                MachineBasicBlock::iterator MI,
2098                                           std::vector<CalleeSavedInfo> &CSI,
2099                                           const TargetRegisterInfo *TRI) const {
2100   if (CSI.empty())
2101     return false;
2102 
2103   if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
2104     // Don't restore CSRs in 32-bit EH funclets. Matches
2105     // spillCalleeSavedRegisters.
2106     if (STI.is32Bit())
2107       return true;
2108     // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
2109     // funclets. emitEpilogue transforms these to normal jumps.
2110     if (MI->getOpcode() == X86::CATCHRET) {
2111       const Function &F = MBB.getParent()->getFunction();
2112       bool IsSEH = isAsynchronousEHPersonality(
2113           classifyEHPersonality(F.getPersonalityFn()));
2114       if (IsSEH)
2115         return true;
2116     }
2117   }
2118 
2119   DebugLoc DL = MBB.findDebugLoc(MI);
2120 
2121   // Reload XMMs from stack frame.
2122   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2123     unsigned Reg = CSI[i].getReg();
2124     if (X86::GR64RegClass.contains(Reg) ||
2125         X86::GR32RegClass.contains(Reg))
2126       continue;
2127 
2128     // If this is k-register make sure we lookup via the largest legal type.
2129     MVT VT = MVT::Other;
2130     if (X86::VK16RegClass.contains(Reg))
2131       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2132 
2133     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2134     TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
2135   }
2136 
2137   // POP GPRs.
2138   unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
2139   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2140     unsigned Reg = CSI[i].getReg();
2141     if (!X86::GR64RegClass.contains(Reg) &&
2142         !X86::GR32RegClass.contains(Reg))
2143       continue;
2144 
2145     BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
2146         .setMIFlag(MachineInstr::FrameDestroy);
2147   }
2148   return true;
2149 }
2150 
2151 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
2152                                             BitVector &SavedRegs,
2153                                             RegScavenger *RS) const {
2154   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2155 
2156   // Spill the BasePtr if it's used.
2157   if (TRI->hasBasePointer(MF)){
2158     unsigned BasePtr = TRI->getBaseRegister();
2159     if (STI.isTarget64BitILP32())
2160       BasePtr = getX86SubSuperRegister(BasePtr, 64);
2161     SavedRegs.set(BasePtr);
2162   }
2163 }
2164 
2165 static bool
2166 HasNestArgument(const MachineFunction *MF) {
2167   const Function &F = MF->getFunction();
2168   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
2169        I != E; I++) {
2170     if (I->hasNestAttr())
2171       return true;
2172   }
2173   return false;
2174 }
2175 
2176 /// GetScratchRegister - Get a temp register for performing work in the
2177 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
2178 /// and the properties of the function either one or two registers will be
2179 /// needed. Set primary to true for the first register, false for the second.
2180 static unsigned
2181 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
2182   CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();
2183 
2184   // Erlang stuff.
2185   if (CallingConvention == CallingConv::HiPE) {
2186     if (Is64Bit)
2187       return Primary ? X86::R14 : X86::R13;
2188     else
2189       return Primary ? X86::EBX : X86::EDI;
2190   }
2191 
2192   if (Is64Bit) {
2193     if (IsLP64)
2194       return Primary ? X86::R11 : X86::R12;
2195     else
2196       return Primary ? X86::R11D : X86::R12D;
2197   }
2198 
2199   bool IsNested = HasNestArgument(&MF);
2200 
2201   if (CallingConvention == CallingConv::X86_FastCall ||
2202       CallingConvention == CallingConv::Fast) {
2203     if (IsNested)
2204       report_fatal_error("Segmented stacks does not support fastcall with "
2205                          "nested function.");
2206     return Primary ? X86::EAX : X86::ECX;
2207   }
2208   if (IsNested)
2209     return Primary ? X86::EDX : X86::EAX;
2210   return Primary ? X86::ECX : X86::EAX;
2211 }
2212 
2213 // The stack limit in the TCB is set to this many bytes above the actual stack
2214 // limit.
2215 static const uint64_t kSplitStackAvailable = 256;
2216 
2217 void X86FrameLowering::adjustForSegmentedStacks(
2218     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2219   MachineFrameInfo &MFI = MF.getFrameInfo();
2220   uint64_t StackSize;
2221   unsigned TlsReg, TlsOffset;
2222   DebugLoc DL;
2223 
2224   // To support shrink-wrapping we would need to insert the new blocks
2225   // at the right place and update the branches to PrologueMBB.
2226   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2227 
2228   unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2229   assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2230          "Scratch register is live-in");
2231 
2232   if (MF.getFunction().isVarArg())
2233     report_fatal_error("Segmented stacks do not support vararg functions.");
2234   if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
2235       !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
2236       !STI.isTargetDragonFly())
2237     report_fatal_error("Segmented stacks not supported on this platform.");
2238 
2239   // Eventually StackSize will be calculated by a link-time pass; which will
2240   // also decide whether checking code needs to be injected into this particular
2241   // prologue.
2242   StackSize = MFI.getStackSize();
2243 
2244   // Do not generate a prologue for functions with a stack of size zero
2245   if (StackSize == 0)
2246     return;
2247 
2248   MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
2249   MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
2250   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2251   bool IsNested = false;
2252 
2253   // We need to know if the function has a nest argument only in 64 bit mode.
2254   if (Is64Bit)
2255     IsNested = HasNestArgument(&MF);
2256 
2257   // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2258   // allocMBB needs to be last (terminating) instruction.
2259 
2260   for (const auto &LI : PrologueMBB.liveins()) {
2261     allocMBB->addLiveIn(LI);
2262     checkMBB->addLiveIn(LI);
2263   }
2264 
2265   if (IsNested)
2266     allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
2267 
2268   MF.push_front(allocMBB);
2269   MF.push_front(checkMBB);
2270 
2271   // When the frame size is less than 256 we just compare the stack
2272   // boundary directly to the value of the stack pointer, per gcc.
2273   bool CompareStackPointer = StackSize < kSplitStackAvailable;
2274 
2275   // Read the limit off the current stacklet off the stack_guard location.
2276   if (Is64Bit) {
2277     if (STI.isTargetLinux()) {
2278       TlsReg = X86::FS;
2279       TlsOffset = IsLP64 ? 0x70 : 0x40;
2280     } else if (STI.isTargetDarwin()) {
2281       TlsReg = X86::GS;
2282       TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2283     } else if (STI.isTargetWin64()) {
2284       TlsReg = X86::GS;
2285       TlsOffset = 0x28; // pvArbitrary, reserved for application use
2286     } else if (STI.isTargetFreeBSD()) {
2287       TlsReg = X86::FS;
2288       TlsOffset = 0x18;
2289     } else if (STI.isTargetDragonFly()) {
2290       TlsReg = X86::FS;
2291       TlsOffset = 0x20; // use tls_tcb.tcb_segstack
2292     } else {
2293       report_fatal_error("Segmented stacks not supported on this platform.");
2294     }
2295 
2296     if (CompareStackPointer)
2297       ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
2298     else
2299       BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
2300         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2301 
2302     BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
2303       .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2304   } else {
2305     if (STI.isTargetLinux()) {
2306       TlsReg = X86::GS;
2307       TlsOffset = 0x30;
2308     } else if (STI.isTargetDarwin()) {
2309       TlsReg = X86::GS;
2310       TlsOffset = 0x48 + 90*4;
2311     } else if (STI.isTargetWin32()) {
2312       TlsReg = X86::FS;
2313       TlsOffset = 0x14; // pvArbitrary, reserved for application use
2314     } else if (STI.isTargetDragonFly()) {
2315       TlsReg = X86::FS;
2316       TlsOffset = 0x10; // use tls_tcb.tcb_segstack
2317     } else if (STI.isTargetFreeBSD()) {
2318       report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
2319     } else {
2320       report_fatal_error("Segmented stacks not supported on this platform.");
2321     }
2322 
2323     if (CompareStackPointer)
2324       ScratchReg = X86::ESP;
2325     else
2326       BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
2327         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2328 
2329     if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
2330         STI.isTargetDragonFly()) {
2331       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
2332         .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2333     } else if (STI.isTargetDarwin()) {
2334 
2335       // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
2336       unsigned ScratchReg2;
2337       bool SaveScratch2;
2338       if (CompareStackPointer) {
2339         // The primary scratch register is available for holding the TLS offset.
2340         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2341         SaveScratch2 = false;
2342       } else {
2343         // Need to use a second register to hold the TLS offset
2344         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
2345 
2346         // Unfortunately, with fastcc the second scratch register may hold an
2347         // argument.
2348         SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
2349       }
2350 
2351       // If Scratch2 is live-in then it needs to be saved.
2352       assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
2353              "Scratch register is live-in and not saved");
2354 
2355       if (SaveScratch2)
2356         BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
2357           .addReg(ScratchReg2, RegState::Kill);
2358 
2359       BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
2360         .addImm(TlsOffset);
2361       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
2362         .addReg(ScratchReg)
2363         .addReg(ScratchReg2).addImm(1).addReg(0)
2364         .addImm(0)
2365         .addReg(TlsReg);
2366 
2367       if (SaveScratch2)
2368         BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
2369     }
2370   }
2371 
2372   // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
2373   // It jumps to normal execution of the function body.
2374   BuildMI(checkMBB, DL, TII.get(X86::JA_1)).addMBB(&PrologueMBB);
2375 
2376   // On 32 bit we first push the arguments size and then the frame size. On 64
2377   // bit, we pass the stack frame size in r10 and the argument size in r11.
2378   if (Is64Bit) {
2379     // Functions with nested arguments use R10, so it needs to be saved across
2380     // the call to _morestack
2381 
2382     const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
2383     const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
2384     const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
2385     const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
2386     const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
2387 
2388     if (IsNested)
2389       BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
2390 
2391     BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
2392       .addImm(StackSize);
2393     BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
2394       .addImm(X86FI->getArgumentStackSize());
2395   } else {
2396     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2397       .addImm(X86FI->getArgumentStackSize());
2398     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2399       .addImm(StackSize);
2400   }
2401 
2402   // __morestack is in libgcc
2403   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
2404     // Under the large code model, we cannot assume that __morestack lives
2405     // within 2^31 bytes of the call site, so we cannot use pc-relative
2406     // addressing. We cannot perform the call via a temporary register,
2407     // as the rax register may be used to store the static chain, and all
2408     // other suitable registers may be either callee-save or used for
2409     // parameter passing. We cannot use the stack at this point either
2410     // because __morestack manipulates the stack directly.
2411     //
2412     // To avoid these issues, perform an indirect call via a read-only memory
2413     // location containing the address.
2414     //
2415     // This solution is not perfect, as it assumes that the .rodata section
2416     // is laid out within 2^31 bytes of each function body, but this seems
2417     // to be sufficient for JIT.
2418     // FIXME: Add retpoline support and remove the error here..
2419     if (STI.useRetpoline())
2420       report_fatal_error("Emitting morestack calls on 64-bit with the large "
2421                          "code model and retpoline not yet implemented.");
2422     BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
2423         .addReg(X86::RIP)
2424         .addImm(0)
2425         .addReg(0)
2426         .addExternalSymbol("__morestack_addr")
2427         .addReg(0);
2428     MF.getMMI().setUsesMorestackAddr(true);
2429   } else {
2430     if (Is64Bit)
2431       BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
2432         .addExternalSymbol("__morestack");
2433     else
2434       BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
2435         .addExternalSymbol("__morestack");
2436   }
2437 
2438   if (IsNested)
2439     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
2440   else
2441     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
2442 
2443   allocMBB->addSuccessor(&PrologueMBB);
2444 
2445   checkMBB->addSuccessor(allocMBB);
2446   checkMBB->addSuccessor(&PrologueMBB);
2447 
2448 #ifdef EXPENSIVE_CHECKS
2449   MF.verify();
2450 #endif
2451 }
2452 
2453 /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
2454 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
2455 /// to fields it needs, through a named metadata node "hipe.literals" containing
2456 /// name-value pairs.
2457 static unsigned getHiPELiteral(
2458     NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
2459   for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
2460     MDNode *Node = HiPELiteralsMD->getOperand(i);
2461     if (Node->getNumOperands() != 2) continue;
2462     MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
2463     ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
2464     if (!NodeName || !NodeVal) continue;
2465     ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
2466     if (ValConst && NodeName->getString() == LiteralName) {
2467       return ValConst->getZExtValue();
2468     }
2469   }
2470 
2471   report_fatal_error("HiPE literal " + LiteralName
2472                      + " required but not provided");
2473 }
2474 
2475 /// Erlang programs may need a special prologue to handle the stack size they
2476 /// might need at runtime. That is because Erlang/OTP does not implement a C
2477 /// stack but uses a custom implementation of hybrid stack/heap architecture.
2478 /// (for more information see Eric Stenman's Ph.D. thesis:
2479 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
2480 ///
2481 /// CheckStack:
2482 ///       temp0 = sp - MaxStack
2483 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2484 /// OldStart:
2485 ///       ...
2486 /// IncStack:
2487 ///       call inc_stack   # doubles the stack space
2488 ///       temp0 = sp - MaxStack
2489 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2490 void X86FrameLowering::adjustForHiPEPrologue(
2491     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2492   MachineFrameInfo &MFI = MF.getFrameInfo();
2493   DebugLoc DL;
2494 
2495   // To support shrink-wrapping we would need to insert the new blocks
2496   // at the right place and update the branches to PrologueMBB.
2497   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2498 
2499   // HiPE-specific values
2500   NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
2501     ->getNamedMetadata("hipe.literals");
2502   if (!HiPELiteralsMD)
2503     report_fatal_error(
2504         "Can't generate HiPE prologue without runtime parameters");
2505   const unsigned HipeLeafWords
2506     = getHiPELiteral(HiPELiteralsMD,
2507                      Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
2508   const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
2509   const unsigned Guaranteed = HipeLeafWords * SlotSize;
2510   unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ?
2511                             MF.getFunction().arg_size() - CCRegisteredArgs : 0;
2512   unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;
2513 
2514   assert(STI.isTargetLinux() &&
2515          "HiPE prologue is only supported on Linux operating systems.");
2516 
2517   // Compute the largest caller's frame that is needed to fit the callees'
2518   // frames. This 'MaxStack' is computed from:
2519   //
2520   // a) the fixed frame size, which is the space needed for all spilled temps,
2521   // b) outgoing on-stack parameter areas, and
2522   // c) the minimum stack space this function needs to make available for the
2523   //    functions it calls (a tunable ABI property).
2524   if (MFI.hasCalls()) {
2525     unsigned MoreStackForCalls = 0;
2526 
2527     for (auto &MBB : MF) {
2528       for (auto &MI : MBB) {
2529         if (!MI.isCall())
2530           continue;
2531 
2532         // Get callee operand.
2533         const MachineOperand &MO = MI.getOperand(0);
2534 
2535         // Only take account of global function calls (no closures etc.).
2536         if (!MO.isGlobal())
2537           continue;
2538 
2539         const Function *F = dyn_cast<Function>(MO.getGlobal());
2540         if (!F)
2541           continue;
2542 
2543         // Do not update 'MaxStack' for primitive and built-in functions
2544         // (encoded with names either starting with "erlang."/"bif_" or not
2545         // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
2546         // "_", such as the BIF "suspend_0") as they are executed on another
2547         // stack.
2548         if (F->getName().find("erlang.") != StringRef::npos ||
2549             F->getName().find("bif_") != StringRef::npos ||
2550             F->getName().find_first_of("._") == StringRef::npos)
2551           continue;
2552 
2553         unsigned CalleeStkArity =
2554           F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
2555         if (HipeLeafWords - 1 > CalleeStkArity)
2556           MoreStackForCalls = std::max(MoreStackForCalls,
2557                                (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
2558       }
2559     }
2560     MaxStack += MoreStackForCalls;
2561   }
2562 
2563   // If the stack frame needed is larger than the guaranteed then runtime checks
2564   // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
2565   if (MaxStack > Guaranteed) {
2566     MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
2567     MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
2568 
2569     for (const auto &LI : PrologueMBB.liveins()) {
2570       stackCheckMBB->addLiveIn(LI);
2571       incStackMBB->addLiveIn(LI);
2572     }
2573 
2574     MF.push_front(incStackMBB);
2575     MF.push_front(stackCheckMBB);
2576 
2577     unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
2578     unsigned LEAop, CMPop, CALLop;
2579     SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
2580     if (Is64Bit) {
2581       SPReg = X86::RSP;
2582       PReg  = X86::RBP;
2583       LEAop = X86::LEA64r;
2584       CMPop = X86::CMP64rm;
2585       CALLop = X86::CALL64pcrel32;
2586     } else {
2587       SPReg = X86::ESP;
2588       PReg  = X86::EBP;
2589       LEAop = X86::LEA32r;
2590       CMPop = X86::CMP32rm;
2591       CALLop = X86::CALLpcrel32;
2592     }
2593 
2594     ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2595     assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2596            "HiPE prologue scratch register is live-in");
2597 
2598     // Create new MBB for StackCheck:
2599     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
2600                  SPReg, false, -MaxStack);
2601     // SPLimitOffset is in a fixed heap location (pointed by BP).
2602     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
2603                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
2604     BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_1)).addMBB(&PrologueMBB);
2605 
2606     // Create new MBB for IncStack:
2607     BuildMI(incStackMBB, DL, TII.get(CALLop)).
2608       addExternalSymbol("inc_stack_0");
2609     addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
2610                  SPReg, false, -MaxStack);
2611     addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
2612                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
2613     BuildMI(incStackMBB, DL, TII.get(X86::JLE_1)).addMBB(incStackMBB);
2614 
2615     stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
2616     stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
2617     incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
2618     incStackMBB->addSuccessor(incStackMBB, {1, 100});
2619   }
2620 #ifdef EXPENSIVE_CHECKS
2621   MF.verify();
2622 #endif
2623 }
2624 
2625 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
2626                                            MachineBasicBlock::iterator MBBI,
2627                                            const DebugLoc &DL,
2628                                            int Offset) const {
2629 
2630   if (Offset <= 0)
2631     return false;
2632 
2633   if (Offset % SlotSize)
2634     return false;
2635 
2636   int NumPops = Offset / SlotSize;
2637   // This is only worth it if we have at most 2 pops.
2638   if (NumPops != 1 && NumPops != 2)
2639     return false;
2640 
2641   // Handle only the trivial case where the adjustment directly follows
2642   // a call. This is the most common one, anyway.
2643   if (MBBI == MBB.begin())
2644     return false;
2645   MachineBasicBlock::iterator Prev = std::prev(MBBI);
2646   if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
2647     return false;
2648 
2649   unsigned Regs[2];
2650   unsigned FoundRegs = 0;
2651 
2652   auto &MRI = MBB.getParent()->getRegInfo();
2653   auto RegMask = Prev->getOperand(1);
2654 
2655   auto &RegClass =
2656       Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
2657   // Try to find up to NumPops free registers.
2658   for (auto Candidate : RegClass) {
2659 
2660     // Poor man's liveness:
2661     // Since we're immediately after a call, any register that is clobbered
2662     // by the call and not defined by it can be considered dead.
2663     if (!RegMask.clobbersPhysReg(Candidate))
2664       continue;
2665 
2666     // Don't clobber reserved registers
2667     if (MRI.isReserved(Candidate))
2668       continue;
2669 
2670     bool IsDef = false;
2671     for (const MachineOperand &MO : Prev->implicit_operands()) {
2672       if (MO.isReg() && MO.isDef() &&
2673           TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
2674         IsDef = true;
2675         break;
2676       }
2677     }
2678 
2679     if (IsDef)
2680       continue;
2681 
2682     Regs[FoundRegs++] = Candidate;
2683     if (FoundRegs == (unsigned)NumPops)
2684       break;
2685   }
2686 
2687   if (FoundRegs == 0)
2688     return false;
2689 
2690   // If we found only one free register, but need two, reuse the same one twice.
2691   while (FoundRegs < (unsigned)NumPops)
2692     Regs[FoundRegs++] = Regs[0];
2693 
2694   for (int i = 0; i < NumPops; ++i)
2695     BuildMI(MBB, MBBI, DL,
2696             TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
2697 
2698   return true;
2699 }
2700 
2701 MachineBasicBlock::iterator X86FrameLowering::
2702 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
2703                               MachineBasicBlock::iterator I) const {
2704   bool reserveCallFrame = hasReservedCallFrame(MF);
2705   unsigned Opcode = I->getOpcode();
2706   bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
2707   DebugLoc DL = I->getDebugLoc();
2708   uint64_t Amount = !reserveCallFrame ? TII.getFrameSize(*I) : 0;
2709   uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0;
2710   I = MBB.erase(I);
2711   auto InsertPos = skipDebugInstructionsForward(I, MBB.end());
2712 
2713   if (!reserveCallFrame) {
2714     // If the stack pointer can be changed after prologue, turn the
2715     // adjcallstackup instruction into a 'sub ESP, <amt>' and the
2716     // adjcallstackdown instruction into 'add ESP, <amt>'
2717 
2718     // We need to keep the stack aligned properly.  To do this, we round the
2719     // amount of space needed for the outgoing arguments up to the next
2720     // alignment boundary.
2721     unsigned StackAlign = getStackAlignment();
2722     Amount = alignTo(Amount, StackAlign);
2723 
2724     MachineModuleInfo &MMI = MF.getMMI();
2725     const Function &F = MF.getFunction();
2726     bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2727     bool DwarfCFI = !WindowsCFI &&
2728                     (MMI.hasDebugInfo() || F.needsUnwindTableEntry());
2729 
2730     // If we have any exception handlers in this function, and we adjust
2731     // the SP before calls, we may need to indicate this to the unwinder
2732     // using GNU_ARGS_SIZE. Note that this may be necessary even when
2733     // Amount == 0, because the preceding function may have set a non-0
2734     // GNU_ARGS_SIZE.
2735     // TODO: We don't need to reset this between subsequent functions,
2736     // if it didn't change.
2737     bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();
2738 
2739     if (HasDwarfEHHandlers && !isDestroy &&
2740         MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
2741       BuildCFI(MBB, InsertPos, DL,
2742                MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
2743 
2744     if (Amount == 0)
2745       return I;
2746 
2747     // Factor out the amount that gets handled inside the sequence
2748     // (Pushes of argument for frame setup, callee pops for frame destroy)
2749     Amount -= InternalAmt;
2750 
2751     // TODO: This is needed only if we require precise CFA.
2752     // If this is a callee-pop calling convention, emit a CFA adjust for
2753     // the amount the callee popped.
2754     if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
2755       BuildCFI(MBB, InsertPos, DL,
2756                MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
2757 
2758     // Add Amount to SP to destroy a frame, or subtract to setup.
2759     int64_t StackAdjustment = isDestroy ? Amount : -Amount;
2760 
2761     if (StackAdjustment) {
2762       // Merge with any previous or following adjustment instruction. Note: the
2763       // instructions merged with here do not have CFI, so their stack
2764       // adjustments do not feed into CfaAdjustment.
2765       StackAdjustment += mergeSPUpdates(MBB, InsertPos, true);
2766       StackAdjustment += mergeSPUpdates(MBB, InsertPos, false);
2767 
2768       if (StackAdjustment) {
2769         if (!(F.optForMinSize() &&
2770               adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment)))
2771           BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment,
2772                                /*InEpilogue=*/false);
2773       }
2774     }
2775 
2776     if (DwarfCFI && !hasFP(MF)) {
2777       // If we don't have FP, but need to generate unwind information,
2778       // we need to set the correct CFA offset after the stack adjustment.
2779       // How much we adjust the CFA offset depends on whether we're emitting
2780       // CFI only for EH purposes or for debugging. EH only requires the CFA
2781       // offset to be correct at each call site, while for debugging we want
2782       // it to be more precise.
2783 
2784       int64_t CfaAdjustment = -StackAdjustment;
2785       // TODO: When not using precise CFA, we also need to adjust for the
2786       // InternalAmt here.
2787       if (CfaAdjustment) {
2788         BuildCFI(MBB, InsertPos, DL,
2789                  MCCFIInstruction::createAdjustCfaOffset(nullptr,
2790                                                          CfaAdjustment));
2791       }
2792     }
2793 
2794     return I;
2795   }
2796 
2797   if (isDestroy && InternalAmt) {
2798     // If we are performing frame pointer elimination and if the callee pops
2799     // something off the stack pointer, add it back.  We do this until we have
2800     // more advanced stack pointer tracking ability.
2801     // We are not tracking the stack pointer adjustment by the callee, so make
2802     // sure we restore the stack pointer immediately after the call, there may
2803     // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
2804     MachineBasicBlock::iterator CI = I;
2805     MachineBasicBlock::iterator B = MBB.begin();
2806     while (CI != B && !std::prev(CI)->isCall())
2807       --CI;
2808     BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
2809   }
2810 
2811   return I;
2812 }
2813 
2814 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
2815   assert(MBB.getParent() && "Block is not attached to a function!");
2816   const MachineFunction &MF = *MBB.getParent();
2817   return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS);
2818 }
2819 
2820 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
2821   assert(MBB.getParent() && "Block is not attached to a function!");
2822 
2823   // Win64 has strict requirements in terms of epilogue and we are
2824   // not taking a chance at messing with them.
2825   // I.e., unless this block is already an exit block, we can't use
2826   // it as an epilogue.
2827   if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
2828     return false;
2829 
2830   if (canUseLEAForSPInEpilogue(*MBB.getParent()))
2831     return true;
2832 
2833   // If we cannot use LEA to adjust SP, we may need to use ADD, which
2834   // clobbers the EFLAGS. Check that we do not need to preserve it,
2835   // otherwise, conservatively assume this is not
2836   // safe to insert the epilogue here.
2837   return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
2838 }
2839 
2840 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2841   // If we may need to emit frameless compact unwind information, give
2842   // up as this is currently broken: PR25614.
2843   return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) &&
2844          // The lowering of segmented stack and HiPE only support entry blocks
2845          // as prologue blocks: PR26107.
2846          // This limitation may be lifted if we fix:
2847          // - adjustForSegmentedStacks
2848          // - adjustForHiPEPrologue
2849          MF.getFunction().getCallingConv() != CallingConv::HiPE &&
2850          !MF.shouldSplitStack();
2851 }
2852 
2853 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
2854     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
2855     const DebugLoc &DL, bool RestoreSP) const {
2856   assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
2857   assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
2858   assert(STI.is32Bit() && !Uses64BitFramePtr &&
2859          "restoring EBP/ESI on non-32-bit target");
2860 
2861   MachineFunction &MF = *MBB.getParent();
2862   unsigned FramePtr = TRI->getFrameRegister(MF);
2863   unsigned BasePtr = TRI->getBaseRegister();
2864   WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
2865   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2866   MachineFrameInfo &MFI = MF.getFrameInfo();
2867 
2868   // FIXME: Don't set FrameSetup flag in catchret case.
2869 
2870   int FI = FuncInfo.EHRegNodeFrameIndex;
2871   int EHRegSize = MFI.getObjectSize(FI);
2872 
2873   if (RestoreSP) {
2874     // MOV32rm -EHRegSize(%ebp), %esp
2875     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
2876                  X86::EBP, true, -EHRegSize)
2877         .setMIFlag(MachineInstr::FrameSetup);
2878   }
2879 
2880   unsigned UsedReg;
2881   int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
2882   int EndOffset = -EHRegOffset - EHRegSize;
2883   FuncInfo.EHRegNodeEndOffset = EndOffset;
2884 
2885   if (UsedReg == FramePtr) {
2886     // ADD $offset, %ebp
2887     unsigned ADDri = getADDriOpcode(false, EndOffset);
2888     BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
2889         .addReg(FramePtr)
2890         .addImm(EndOffset)
2891         .setMIFlag(MachineInstr::FrameSetup)
2892         ->getOperand(3)
2893         .setIsDead();
2894     assert(EndOffset >= 0 &&
2895            "end of registration object above normal EBP position!");
2896   } else if (UsedReg == BasePtr) {
2897     // LEA offset(%ebp), %esi
2898     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
2899                  FramePtr, false, EndOffset)
2900         .setMIFlag(MachineInstr::FrameSetup);
2901     // MOV32rm SavedEBPOffset(%esi), %ebp
2902     assert(X86FI->getHasSEHFramePtrSave());
2903     int Offset =
2904         getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
2905     assert(UsedReg == BasePtr);
2906     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
2907                  UsedReg, true, Offset)
2908         .setMIFlag(MachineInstr::FrameSetup);
2909   } else {
2910     llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
2911   }
2912   return MBBI;
2913 }
2914 
2915 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
2916   return TRI->getSlotSize();
2917 }
2918 
2919 unsigned X86FrameLowering::getInitialCFARegister(const MachineFunction &MF)
2920     const {
2921   return TRI->getDwarfRegNum(StackPtr, true);
2922 }
2923 
2924 namespace {
2925 // Struct used by orderFrameObjects to help sort the stack objects.
2926 struct X86FrameSortingObject {
2927   bool IsValid = false;         // true if we care about this Object.
2928   unsigned ObjectIndex = 0;     // Index of Object into MFI list.
2929   unsigned ObjectSize = 0;      // Size of Object in bytes.
2930   unsigned ObjectAlignment = 1; // Alignment of Object in bytes.
2931   unsigned ObjectNumUses = 0;   // Object static number of uses.
2932 };
2933 
2934 // The comparison function we use for std::sort to order our local
2935 // stack symbols. The current algorithm is to use an estimated
2936 // "density". This takes into consideration the size and number of
2937 // uses each object has in order to roughly minimize code size.
2938 // So, for example, an object of size 16B that is referenced 5 times
2939 // will get higher priority than 4 4B objects referenced 1 time each.
2940 // It's not perfect and we may be able to squeeze a few more bytes out of
2941 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
2942 // fringe end can have special consideration, given their size is less
2943 // important, etc.), but the algorithmic complexity grows too much to be
2944 // worth the extra gains we get. This gets us pretty close.
2945 // The final order leaves us with objects with highest priority going
2946 // at the end of our list.
2947 struct X86FrameSortingComparator {
2948   inline bool operator()(const X86FrameSortingObject &A,
2949                          const X86FrameSortingObject &B) {
2950     uint64_t DensityAScaled, DensityBScaled;
2951 
2952     // For consistency in our comparison, all invalid objects are placed
2953     // at the end. This also allows us to stop walking when we hit the
2954     // first invalid item after it's all sorted.
2955     if (!A.IsValid)
2956       return false;
2957     if (!B.IsValid)
2958       return true;
2959 
2960     // The density is calculated by doing :
2961     //     (double)DensityA = A.ObjectNumUses / A.ObjectSize
2962     //     (double)DensityB = B.ObjectNumUses / B.ObjectSize
2963     // Since this approach may cause inconsistencies in
2964     // the floating point <, >, == comparisons, depending on the floating
2965     // point model with which the compiler was built, we're going
2966     // to scale both sides by multiplying with
2967     // A.ObjectSize * B.ObjectSize. This ends up factoring away
2968     // the division and, with it, the need for any floating point
2969     // arithmetic.
2970     DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
2971       static_cast<uint64_t>(B.ObjectSize);
2972     DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
2973       static_cast<uint64_t>(A.ObjectSize);
2974 
2975     // If the two densities are equal, prioritize highest alignment
2976     // objects. This allows for similar alignment objects
2977     // to be packed together (given the same density).
2978     // There's room for improvement here, also, since we can pack
2979     // similar alignment (different density) objects next to each
2980     // other to save padding. This will also require further
2981     // complexity/iterations, and the overall gain isn't worth it,
2982     // in general. Something to keep in mind, though.
2983     if (DensityAScaled == DensityBScaled)
2984       return A.ObjectAlignment < B.ObjectAlignment;
2985 
2986     return DensityAScaled < DensityBScaled;
2987   }
2988 };
2989 } // namespace
2990 
2991 // Order the symbols in the local stack.
2992 // We want to place the local stack objects in some sort of sensible order.
2993 // The heuristic we use is to try and pack them according to static number
2994 // of uses and size of object in order to minimize code size.
2995 void X86FrameLowering::orderFrameObjects(
2996     const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
2997   const MachineFrameInfo &MFI = MF.getFrameInfo();
2998 
2999   // Don't waste time if there's nothing to do.
3000   if (ObjectsToAllocate.empty())
3001     return;
3002 
3003   // Create an array of all MFI objects. We won't need all of these
3004   // objects, but we're going to create a full array of them to make
3005   // it easier to index into when we're counting "uses" down below.
3006   // We want to be able to easily/cheaply access an object by simply
3007   // indexing into it, instead of having to search for it every time.
3008   std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
3009 
3010   // Walk the objects we care about and mark them as such in our working
3011   // struct.
3012   for (auto &Obj : ObjectsToAllocate) {
3013     SortingObjects[Obj].IsValid = true;
3014     SortingObjects[Obj].ObjectIndex = Obj;
3015     SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlignment(Obj);
3016     // Set the size.
3017     int ObjectSize = MFI.getObjectSize(Obj);
3018     if (ObjectSize == 0)
3019       // Variable size. Just use 4.
3020       SortingObjects[Obj].ObjectSize = 4;
3021     else
3022       SortingObjects[Obj].ObjectSize = ObjectSize;
3023   }
3024 
3025   // Count the number of uses for each object.
3026   for (auto &MBB : MF) {
3027     for (auto &MI : MBB) {
3028       if (MI.isDebugInstr())
3029         continue;
3030       for (const MachineOperand &MO : MI.operands()) {
3031         // Check to see if it's a local stack symbol.
3032         if (!MO.isFI())
3033           continue;
3034         int Index = MO.getIndex();
3035         // Check to see if it falls within our range, and is tagged
3036         // to require ordering.
3037         if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
3038             SortingObjects[Index].IsValid)
3039           SortingObjects[Index].ObjectNumUses++;
3040       }
3041     }
3042   }
3043 
3044   // Sort the objects using X86FrameSortingAlgorithm (see its comment for
3045   // info).
3046   std::stable_sort(SortingObjects.begin(), SortingObjects.end(),
3047                    X86FrameSortingComparator());
3048 
3049   // Now modify the original list to represent the final order that
3050   // we want. The order will depend on whether we're going to access them
3051   // from the stack pointer or the frame pointer. For SP, the list should
3052   // end up with the END containing objects that we want with smaller offsets.
3053   // For FP, it should be flipped.
3054   int i = 0;
3055   for (auto &Obj : SortingObjects) {
3056     // All invalid items are sorted at the end, so it's safe to stop.
3057     if (!Obj.IsValid)
3058       break;
3059     ObjectsToAllocate[i++] = Obj.ObjectIndex;
3060   }
3061 
3062   // Flip it if we're accessing off of the FP.
3063   if (!TRI->needsStackRealignment(MF) && hasFP(MF))
3064     std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
3065 }
3066 
3067 
3068 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
3069   // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
3070   unsigned Offset = 16;
3071   // RBP is immediately pushed.
3072   Offset += SlotSize;
3073   // All callee-saved registers are then pushed.
3074   Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
3075   // Every funclet allocates enough stack space for the largest outgoing call.
3076   Offset += getWinEHFuncletFrameSize(MF);
3077   return Offset;
3078 }
3079 
3080 void X86FrameLowering::processFunctionBeforeFrameFinalized(
3081     MachineFunction &MF, RegScavenger *RS) const {
3082   // Mark the function as not having WinCFI. We will set it back to true in
3083   // emitPrologue if it gets called and emits CFI.
3084   MF.setHasWinCFI(false);
3085 
3086   // If this function isn't doing Win64-style C++ EH, we don't need to do
3087   // anything.
3088   const Function &F = MF.getFunction();
3089   if (!STI.is64Bit() || !MF.hasEHFunclets() ||
3090       classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX)
3091     return;
3092 
3093   // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
3094   // relative to RSP after the prologue.  Find the offset of the last fixed
3095   // object, so that we can allocate a slot immediately following it. If there
3096   // were no fixed objects, use offset -SlotSize, which is immediately after the
3097   // return address. Fixed objects have negative frame indices.
3098   MachineFrameInfo &MFI = MF.getFrameInfo();
3099   WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3100   int64_t MinFixedObjOffset = -SlotSize;
3101   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
3102     MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
3103 
3104   for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
3105     for (WinEHHandlerType &H : TBME.HandlerArray) {
3106       int FrameIndex = H.CatchObj.FrameIndex;
3107       if (FrameIndex != INT_MAX) {
3108         // Ensure alignment.
3109         unsigned Align = MFI.getObjectAlignment(FrameIndex);
3110         MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
3111         MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
3112         MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
3113       }
3114     }
3115   }
3116 
3117   // Ensure alignment.
3118   MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
3119   int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
3120   int UnwindHelpFI =
3121       MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*Immutable=*/false);
3122   EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3123 
3124   // Store -2 into UnwindHelp on function entry. We have to scan forwards past
3125   // other frame setup instructions.
3126   MachineBasicBlock &MBB = MF.front();
3127   auto MBBI = MBB.begin();
3128   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3129     ++MBBI;
3130 
3131   DebugLoc DL = MBB.findDebugLoc(MBBI);
3132   addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
3133                     UnwindHelpFI)
3134       .addImm(-2);
3135 }
3136