1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the X86 implementation of TargetFrameLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "X86FrameLowering.h" 15 #include "X86InstrBuilder.h" 16 #include "X86InstrInfo.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/Analysis/EHPersonalities.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/WinEHFuncInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/MC/MCAsmInfo.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Target/TargetOptions.h" 34 #include <cstdlib> 35 36 using namespace llvm; 37 38 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 39 unsigned StackAlignOverride) 40 : TargetFrameLowering(StackGrowsDown, StackAlignOverride, 41 STI.is64Bit() ? -8 : -4), 42 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { 43 // Cache a bunch of frame-related predicates for this subtarget. 44 SlotSize = TRI->getSlotSize(); 45 Is64Bit = STI.is64Bit(); 46 IsLP64 = STI.isTarget64BitLP64(); 47 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 48 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 49 StackPtr = TRI->getStackRegister(); 50 } 51 52 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 53 return !MF.getFrameInfo().hasVarSizedObjects() && 54 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 55 } 56 57 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 58 /// call frame pseudos can be simplified. Having a FP, as in the default 59 /// implementation, is not sufficient here since we can't always use it. 60 /// Use a more nuanced condition. 61 bool 62 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 63 return hasReservedCallFrame(MF) || 64 (hasFP(MF) && !TRI->needsStackRealignment(MF)) || 65 TRI->hasBasePointer(MF); 66 } 67 68 // needsFrameIndexResolution - Do we need to perform FI resolution for 69 // this function. Normally, this is required only when the function 70 // has any stack objects. However, FI resolution actually has another job, 71 // not apparent from the title - it resolves callframesetup/destroy 72 // that were not simplified earlier. 73 // So, this is required for x86 functions that have push sequences even 74 // when there are no stack objects. 75 bool 76 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 77 return MF.getFrameInfo().hasStackObjects() || 78 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 79 } 80 81 /// hasFP - Return true if the specified function should have a dedicated frame 82 /// pointer register. This is true if the function has variable sized allocas 83 /// or if frame pointer elimination is disabled. 84 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 85 const MachineFrameInfo &MFI = MF.getFrameInfo(); 86 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 87 TRI->needsStackRealignment(MF) || 88 MFI.hasVarSizedObjects() || 89 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 90 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 91 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 92 MFI.hasStackMap() || MFI.hasPatchPoint() || 93 MFI.hasCopyImplyingStackAdjustment()); 94 } 95 96 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) { 97 if (IsLP64) { 98 if (isInt<8>(Imm)) 99 return X86::SUB64ri8; 100 return X86::SUB64ri32; 101 } else { 102 if (isInt<8>(Imm)) 103 return X86::SUB32ri8; 104 return X86::SUB32ri; 105 } 106 } 107 108 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) { 109 if (IsLP64) { 110 if (isInt<8>(Imm)) 111 return X86::ADD64ri8; 112 return X86::ADD64ri32; 113 } else { 114 if (isInt<8>(Imm)) 115 return X86::ADD32ri8; 116 return X86::ADD32ri; 117 } 118 } 119 120 static unsigned getSUBrrOpcode(unsigned isLP64) { 121 return isLP64 ? X86::SUB64rr : X86::SUB32rr; 122 } 123 124 static unsigned getADDrrOpcode(unsigned isLP64) { 125 return isLP64 ? X86::ADD64rr : X86::ADD32rr; 126 } 127 128 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 129 if (IsLP64) { 130 if (isInt<8>(Imm)) 131 return X86::AND64ri8; 132 return X86::AND64ri32; 133 } 134 if (isInt<8>(Imm)) 135 return X86::AND32ri8; 136 return X86::AND32ri; 137 } 138 139 static unsigned getLEArOpcode(unsigned IsLP64) { 140 return IsLP64 ? X86::LEA64r : X86::LEA32r; 141 } 142 143 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live 144 /// when it reaches the "return" instruction. We can then pop a stack object 145 /// to this register without worry about clobbering it. 146 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB, 147 MachineBasicBlock::iterator &MBBI, 148 const X86RegisterInfo *TRI, 149 bool Is64Bit) { 150 const MachineFunction *MF = MBB.getParent(); 151 if (MF->callsEHReturn()) 152 return 0; 153 154 const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF); 155 156 if (MBBI == MBB.end()) 157 return 0; 158 159 switch (MBBI->getOpcode()) { 160 default: return 0; 161 case TargetOpcode::PATCHABLE_RET: 162 case X86::RET: 163 case X86::RETL: 164 case X86::RETQ: 165 case X86::RETIL: 166 case X86::RETIQ: 167 case X86::TCRETURNdi: 168 case X86::TCRETURNri: 169 case X86::TCRETURNmi: 170 case X86::TCRETURNdi64: 171 case X86::TCRETURNri64: 172 case X86::TCRETURNmi64: 173 case X86::EH_RETURN: 174 case X86::EH_RETURN64: { 175 SmallSet<uint16_t, 8> Uses; 176 for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) { 177 MachineOperand &MO = MBBI->getOperand(i); 178 if (!MO.isReg() || MO.isDef()) 179 continue; 180 unsigned Reg = MO.getReg(); 181 if (!Reg) 182 continue; 183 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 184 Uses.insert(*AI); 185 } 186 187 for (auto CS : AvailableRegs) 188 if (!Uses.count(CS) && CS != X86::RIP) 189 return CS; 190 } 191 } 192 193 return 0; 194 } 195 196 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 197 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 198 unsigned Reg = RegMask.PhysReg; 199 200 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 201 Reg == X86::AH || Reg == X86::AL) 202 return true; 203 } 204 205 return false; 206 } 207 208 /// Check if the flags need to be preserved before the terminators. 209 /// This would be the case, if the eflags is live-in of the region 210 /// composed by the terminators or live-out of that region, without 211 /// being defined by a terminator. 212 static bool 213 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 214 for (const MachineInstr &MI : MBB.terminators()) { 215 bool BreakNext = false; 216 for (const MachineOperand &MO : MI.operands()) { 217 if (!MO.isReg()) 218 continue; 219 unsigned Reg = MO.getReg(); 220 if (Reg != X86::EFLAGS) 221 continue; 222 223 // This terminator needs an eflags that is not defined 224 // by a previous another terminator: 225 // EFLAGS is live-in of the region composed by the terminators. 226 if (!MO.isDef()) 227 return true; 228 // This terminator defines the eflags, i.e., we don't need to preserve it. 229 // However, we still need to check this specific terminator does not 230 // read a live-in value. 231 BreakNext = true; 232 } 233 // We found a definition of the eflags, no need to preserve them. 234 if (BreakNext) 235 return false; 236 } 237 238 // None of the terminators use or define the eflags. 239 // Check if they are live-out, that would imply we need to preserve them. 240 for (const MachineBasicBlock *Succ : MBB.successors()) 241 if (Succ->isLiveIn(X86::EFLAGS)) 242 return true; 243 244 return false; 245 } 246 247 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 248 /// stack pointer by a constant value. 249 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 250 MachineBasicBlock::iterator &MBBI, 251 const DebugLoc &DL, 252 int64_t NumBytes, bool InEpilogue) const { 253 bool isSub = NumBytes < 0; 254 uint64_t Offset = isSub ? -NumBytes : NumBytes; 255 MachineInstr::MIFlag Flag = 256 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 257 258 uint64_t Chunk = (1LL << 31) - 1; 259 260 if (Offset > Chunk) { 261 // Rather than emit a long series of instructions for large offsets, 262 // load the offset into a register and do one sub/add 263 unsigned Reg = 0; 264 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 265 266 if (isSub && !isEAXLiveIn(MBB)) 267 Reg = Rax; 268 else 269 Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 270 271 unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri; 272 unsigned AddSubRROpc = 273 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 274 if (Reg) { 275 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg) 276 .addImm(Offset) 277 .setMIFlag(Flag); 278 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 279 .addReg(StackPtr) 280 .addReg(Reg); 281 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 282 return; 283 } else if (Offset > 8 * Chunk) { 284 // If we would need more than 8 add or sub instructions (a >16GB stack 285 // frame), it's worth spilling RAX to materialize this immediate. 286 // pushq %rax 287 // movabsq +-$Offset+-SlotSize, %rax 288 // addq %rsp, %rax 289 // xchg %rax, (%rsp) 290 // movq (%rsp), %rsp 291 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 292 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 293 .addReg(Rax, RegState::Kill) 294 .setMIFlag(Flag); 295 // Subtract is not commutative, so negate the offset and always use add. 296 // Subtract 8 less and add 8 more to account for the PUSH we just did. 297 if (isSub) 298 Offset = -(Offset - SlotSize); 299 else 300 Offset = Offset + SlotSize; 301 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax) 302 .addImm(Offset) 303 .setMIFlag(Flag); 304 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 305 .addReg(Rax) 306 .addReg(StackPtr); 307 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 308 // Exchange the new SP in RAX with the top of the stack. 309 addRegOffset( 310 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 311 StackPtr, false, 0); 312 // Load new SP from the top of the stack into RSP. 313 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 314 StackPtr, false, 0); 315 return; 316 } 317 } 318 319 while (Offset) { 320 uint64_t ThisVal = std::min(Offset, Chunk); 321 if (ThisVal == SlotSize) { 322 // Use push / pop for slot sized adjustments as a size optimization. We 323 // need to find a dead register when using pop. 324 unsigned Reg = isSub 325 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 326 : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 327 if (Reg) { 328 unsigned Opc = isSub 329 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 330 : (Is64Bit ? X86::POP64r : X86::POP32r); 331 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 332 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 333 .setMIFlag(Flag); 334 Offset -= ThisVal; 335 continue; 336 } 337 } 338 339 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 340 .setMIFlag(Flag); 341 342 Offset -= ThisVal; 343 } 344 } 345 346 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 347 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 348 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 349 assert(Offset != 0 && "zero offset stack adjustment requested"); 350 351 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 352 // is tricky. 353 bool UseLEA; 354 if (!InEpilogue) { 355 // Check if inserting the prologue at the beginning 356 // of MBB would require to use LEA operations. 357 // We need to use LEA operations if EFLAGS is live in, because 358 // it means an instruction will read it before it gets defined. 359 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 360 } else { 361 // If we can use LEA for SP but we shouldn't, check that none 362 // of the terminators uses the eflags. Otherwise we will insert 363 // a ADD that will redefine the eflags and break the condition. 364 // Alternatively, we could move the ADD, but this may not be possible 365 // and is an optimization anyway. 366 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 367 if (UseLEA && !STI.useLeaForSP()) 368 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 369 // If that assert breaks, that means we do not do the right thing 370 // in canUseAsEpilogue. 371 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 372 "We shouldn't have allowed this insertion point"); 373 } 374 375 MachineInstrBuilder MI; 376 if (UseLEA) { 377 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 378 TII.get(getLEArOpcode(Uses64BitFramePtr)), 379 StackPtr), 380 StackPtr, false, Offset); 381 } else { 382 bool IsSub = Offset < 0; 383 uint64_t AbsOffset = IsSub ? -Offset : Offset; 384 unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 385 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 386 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 387 .addReg(StackPtr) 388 .addImm(AbsOffset); 389 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 390 } 391 return MI; 392 } 393 394 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 395 MachineBasicBlock::iterator &MBBI, 396 bool doMergeWithPrevious) const { 397 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 398 (!doMergeWithPrevious && MBBI == MBB.end())) 399 return 0; 400 401 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 402 403 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 404 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 405 // instruction, and that there are no DBG_VALUE or other instructions between 406 // ADD/SUB/LEA and its corresponding CFI instruction. 407 /* TODO: Add support for the case where there are multiple CFI instructions 408 below the ADD/SUB/LEA, e.g.: 409 ... 410 add 411 cfi_def_cfa_offset 412 cfi_offset 413 ... 414 */ 415 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 416 PI = std::prev(PI); 417 418 unsigned Opc = PI->getOpcode(); 419 int Offset = 0; 420 421 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 422 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 423 PI->getOperand(0).getReg() == StackPtr){ 424 assert(PI->getOperand(1).getReg() == StackPtr); 425 Offset = PI->getOperand(2).getImm(); 426 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 427 PI->getOperand(0).getReg() == StackPtr && 428 PI->getOperand(1).getReg() == StackPtr && 429 PI->getOperand(2).getImm() == 1 && 430 PI->getOperand(3).getReg() == X86::NoRegister && 431 PI->getOperand(5).getReg() == X86::NoRegister) { 432 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 433 Offset = PI->getOperand(4).getImm(); 434 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 435 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 436 PI->getOperand(0).getReg() == StackPtr) { 437 assert(PI->getOperand(1).getReg() == StackPtr); 438 Offset = -PI->getOperand(2).getImm(); 439 } else 440 return 0; 441 442 PI = MBB.erase(PI); 443 if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI); 444 if (!doMergeWithPrevious) 445 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 446 447 return Offset; 448 } 449 450 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 451 MachineBasicBlock::iterator MBBI, 452 const DebugLoc &DL, 453 const MCCFIInstruction &CFIInst) const { 454 MachineFunction &MF = *MBB.getParent(); 455 unsigned CFIIndex = MF.addFrameInst(CFIInst); 456 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 457 .addCFIIndex(CFIIndex); 458 } 459 460 void X86FrameLowering::emitCalleeSavedFrameMoves( 461 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 462 const DebugLoc &DL) const { 463 MachineFunction &MF = *MBB.getParent(); 464 MachineFrameInfo &MFI = MF.getFrameInfo(); 465 MachineModuleInfo &MMI = MF.getMMI(); 466 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 467 468 // Add callee saved registers to move list. 469 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 470 if (CSI.empty()) return; 471 472 // Calculate offsets. 473 for (std::vector<CalleeSavedInfo>::const_iterator 474 I = CSI.begin(), E = CSI.end(); I != E; ++I) { 475 int64_t Offset = MFI.getObjectOffset(I->getFrameIdx()); 476 unsigned Reg = I->getReg(); 477 478 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 479 BuildCFI(MBB, MBBI, DL, 480 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 481 } 482 } 483 484 void X86FrameLowering::emitStackProbe(MachineFunction &MF, 485 MachineBasicBlock &MBB, 486 MachineBasicBlock::iterator MBBI, 487 const DebugLoc &DL, bool InProlog) const { 488 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 489 if (STI.isTargetWindowsCoreCLR()) { 490 if (InProlog) { 491 emitStackProbeInlineStub(MF, MBB, MBBI, DL, true); 492 } else { 493 emitStackProbeInline(MF, MBB, MBBI, DL, false); 494 } 495 } else { 496 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog); 497 } 498 } 499 500 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 501 MachineBasicBlock &PrologMBB) const { 502 const StringRef ChkStkStubSymbol = "__chkstk_stub"; 503 MachineInstr *ChkStkStub = nullptr; 504 505 for (MachineInstr &MI : PrologMBB) { 506 if (MI.isCall() && MI.getOperand(0).isSymbol() && 507 ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) { 508 ChkStkStub = &MI; 509 break; 510 } 511 } 512 513 if (ChkStkStub != nullptr) { 514 assert(!ChkStkStub->isBundled() && 515 "Not expecting bundled instructions here"); 516 MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator()); 517 assert(std::prev(MBBI) == ChkStkStub && 518 "MBBI expected after __chkstk_stub."); 519 DebugLoc DL = PrologMBB.findDebugLoc(MBBI); 520 emitStackProbeInline(MF, PrologMBB, MBBI, DL, true); 521 ChkStkStub->eraseFromParent(); 522 } 523 } 524 525 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 526 MachineBasicBlock &MBB, 527 MachineBasicBlock::iterator MBBI, 528 const DebugLoc &DL, 529 bool InProlog) const { 530 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 531 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 532 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 533 const TargetInstrInfo &TII = *STI.getInstrInfo(); 534 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 535 536 // RAX contains the number of bytes of desired stack adjustment. 537 // The handling here assumes this value has already been updated so as to 538 // maintain stack alignment. 539 // 540 // We need to exit with RSP modified by this amount and execute suitable 541 // page touches to notify the OS that we're growing the stack responsibly. 542 // All stack probing must be done without modifying RSP. 543 // 544 // MBB: 545 // SizeReg = RAX; 546 // ZeroReg = 0 547 // CopyReg = RSP 548 // Flags, TestReg = CopyReg - SizeReg 549 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 550 // LimitReg = gs magic thread env access 551 // if FinalReg >= LimitReg goto ContinueMBB 552 // RoundBB: 553 // RoundReg = page address of FinalReg 554 // LoopMBB: 555 // LoopReg = PHI(LimitReg,ProbeReg) 556 // ProbeReg = LoopReg - PageSize 557 // [ProbeReg] = 0 558 // if (ProbeReg > RoundReg) goto LoopMBB 559 // ContinueMBB: 560 // RSP = RSP - RAX 561 // [rest of original MBB] 562 563 // Set up the new basic blocks 564 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 565 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 566 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 567 568 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 569 MF.insert(MBBIter, RoundMBB); 570 MF.insert(MBBIter, LoopMBB); 571 MF.insert(MBBIter, ContinueMBB); 572 573 // Split MBB and move the tail portion down to ContinueMBB. 574 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 575 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 576 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 577 578 // Some useful constants 579 const int64_t ThreadEnvironmentStackLimit = 0x10; 580 const int64_t PageSize = 0x1000; 581 const int64_t PageMask = ~(PageSize - 1); 582 583 // Registers we need. For the normal case we use virtual 584 // registers. For the prolog expansion we use RAX, RCX and RDX. 585 MachineRegisterInfo &MRI = MF.getRegInfo(); 586 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 587 const unsigned SizeReg = InProlog ? (unsigned)X86::RAX 588 : MRI.createVirtualRegister(RegClass), 589 ZeroReg = InProlog ? (unsigned)X86::RCX 590 : MRI.createVirtualRegister(RegClass), 591 CopyReg = InProlog ? (unsigned)X86::RDX 592 : MRI.createVirtualRegister(RegClass), 593 TestReg = InProlog ? (unsigned)X86::RDX 594 : MRI.createVirtualRegister(RegClass), 595 FinalReg = InProlog ? (unsigned)X86::RDX 596 : MRI.createVirtualRegister(RegClass), 597 RoundedReg = InProlog ? (unsigned)X86::RDX 598 : MRI.createVirtualRegister(RegClass), 599 LimitReg = InProlog ? (unsigned)X86::RCX 600 : MRI.createVirtualRegister(RegClass), 601 JoinReg = InProlog ? (unsigned)X86::RCX 602 : MRI.createVirtualRegister(RegClass), 603 ProbeReg = InProlog ? (unsigned)X86::RCX 604 : MRI.createVirtualRegister(RegClass); 605 606 // SP-relative offsets where we can save RCX and RDX. 607 int64_t RCXShadowSlot = 0; 608 int64_t RDXShadowSlot = 0; 609 610 // If inlining in the prolog, save RCX and RDX. 611 // Future optimization: don't save or restore if not live in. 612 if (InProlog) { 613 // Compute the offsets. We need to account for things already 614 // pushed onto the stack at this point: return address, frame 615 // pointer (if used), and callee saves. 616 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 617 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 618 const bool HasFP = hasFP(MF); 619 RCXShadowSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 620 RDXShadowSlot = RCXShadowSlot + 8; 621 // Emit the saves. 622 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 623 RCXShadowSlot) 624 .addReg(X86::RCX); 625 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 626 RDXShadowSlot) 627 .addReg(X86::RDX); 628 } else { 629 // Not in the prolog. Copy RAX to a virtual reg. 630 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 631 } 632 633 // Add code to MBB to check for overflow and set the new target stack pointer 634 // to zero if so. 635 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 636 .addReg(ZeroReg, RegState::Undef) 637 .addReg(ZeroReg, RegState::Undef); 638 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 639 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 640 .addReg(CopyReg) 641 .addReg(SizeReg); 642 BuildMI(&MBB, DL, TII.get(X86::CMOVB64rr), FinalReg) 643 .addReg(TestReg) 644 .addReg(ZeroReg); 645 646 // FinalReg now holds final stack pointer value, or zero if 647 // allocation would overflow. Compare against the current stack 648 // limit from the thread environment block. Note this limit is the 649 // lowest touched page on the stack, not the point at which the OS 650 // will cause an overflow exception, so this is just an optimization 651 // to avoid unnecessarily touching pages that are below the current 652 // SP but already committed to the stack by the OS. 653 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 654 .addReg(0) 655 .addImm(1) 656 .addReg(0) 657 .addImm(ThreadEnvironmentStackLimit) 658 .addReg(X86::GS); 659 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 660 // Jump if the desired stack pointer is at or above the stack limit. 661 BuildMI(&MBB, DL, TII.get(X86::JAE_1)).addMBB(ContinueMBB); 662 663 // Add code to roundMBB to round the final stack pointer to a page boundary. 664 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 665 .addReg(FinalReg) 666 .addImm(PageMask); 667 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 668 669 // LimitReg now holds the current stack limit, RoundedReg page-rounded 670 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 671 // and probe until we reach RoundedReg. 672 if (!InProlog) { 673 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 674 .addReg(LimitReg) 675 .addMBB(RoundMBB) 676 .addReg(ProbeReg) 677 .addMBB(LoopMBB); 678 } 679 680 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 681 false, -PageSize); 682 683 // Probe by storing a byte onto the stack. 684 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 685 .addReg(ProbeReg) 686 .addImm(1) 687 .addReg(0) 688 .addImm(0) 689 .addReg(0) 690 .addImm(0); 691 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 692 .addReg(RoundedReg) 693 .addReg(ProbeReg); 694 BuildMI(LoopMBB, DL, TII.get(X86::JNE_1)).addMBB(LoopMBB); 695 696 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 697 698 // If in prolog, restore RDX and RCX. 699 if (InProlog) { 700 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm), 701 X86::RCX), 702 X86::RSP, false, RCXShadowSlot); 703 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm), 704 X86::RDX), 705 X86::RSP, false, RDXShadowSlot); 706 } 707 708 // Now that the probing is done, add code to continueMBB to update 709 // the stack pointer for real. 710 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 711 .addReg(X86::RSP) 712 .addReg(SizeReg); 713 714 // Add the control flow edges we need. 715 MBB.addSuccessor(ContinueMBB); 716 MBB.addSuccessor(RoundMBB); 717 RoundMBB->addSuccessor(LoopMBB); 718 LoopMBB->addSuccessor(ContinueMBB); 719 LoopMBB->addSuccessor(LoopMBB); 720 721 // Mark all the instructions added to the prolog as frame setup. 722 if (InProlog) { 723 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 724 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 725 } 726 for (MachineInstr &MI : *RoundMBB) { 727 MI.setFlag(MachineInstr::FrameSetup); 728 } 729 for (MachineInstr &MI : *LoopMBB) { 730 MI.setFlag(MachineInstr::FrameSetup); 731 } 732 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); 733 CMBBI != ContinueMBBI; ++CMBBI) { 734 CMBBI->setFlag(MachineInstr::FrameSetup); 735 } 736 } 737 738 // Possible TODO: physreg liveness for InProlog case. 739 } 740 741 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF, 742 MachineBasicBlock &MBB, 743 MachineBasicBlock::iterator MBBI, 744 const DebugLoc &DL, 745 bool InProlog) const { 746 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 747 748 // FIXME: Add retpoline support and remove this. 749 if (Is64Bit && IsLargeCodeModel && STI.useRetpoline()) 750 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 751 "code model and retpoline not yet implemented."); 752 753 unsigned CallOp; 754 if (Is64Bit) 755 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 756 else 757 CallOp = X86::CALLpcrel32; 758 759 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 760 761 MachineInstrBuilder CI; 762 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 763 764 // All current stack probes take AX and SP as input, clobber flags, and 765 // preserve all registers. x86_64 probes leave RSP unmodified. 766 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 767 // For the large code model, we have to call through a register. Use R11, 768 // as it is scratch in all supported calling conventions. 769 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 770 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 771 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 772 } else { 773 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 774 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 775 } 776 777 unsigned AX = Is64Bit ? X86::RAX : X86::EAX; 778 unsigned SP = Is64Bit ? X86::RSP : X86::ESP; 779 CI.addReg(AX, RegState::Implicit) 780 .addReg(SP, RegState::Implicit) 781 .addReg(AX, RegState::Define | RegState::Implicit) 782 .addReg(SP, RegState::Define | RegState::Implicit) 783 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 784 785 if (STI.isTargetWin64() || !STI.isOSWindows()) { 786 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 787 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 788 // themselves. They also does not clobber %rax so we can reuse it when 789 // adjusting %rsp. 790 // All other platforms do not specify a particular ABI for the stack probe 791 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 792 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Is64Bit)), SP) 793 .addReg(SP) 794 .addReg(AX); 795 } 796 797 if (InProlog) { 798 // Apply the frame setup flag to all inserted instrs. 799 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 800 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 801 } 802 } 803 804 void X86FrameLowering::emitStackProbeInlineStub( 805 MachineFunction &MF, MachineBasicBlock &MBB, 806 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 807 808 assert(InProlog && "ChkStkStub called outside prolog!"); 809 810 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32)) 811 .addExternalSymbol("__chkstk_stub"); 812 } 813 814 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 815 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 816 // and might require smaller successive adjustments. 817 const uint64_t Win64MaxSEHOffset = 128; 818 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 819 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 820 return SEHFrameOffset & -16; 821 } 822 823 // If we're forcing a stack realignment we can't rely on just the frame 824 // info, we need to know the ABI stack alignment as well in case we 825 // have a call out. Otherwise just make sure we have some alignment - we'll 826 // go with the minimum SlotSize. 827 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 828 const MachineFrameInfo &MFI = MF.getFrameInfo(); 829 uint64_t MaxAlign = MFI.getMaxAlignment(); // Desired stack alignment. 830 unsigned StackAlign = getStackAlignment(); 831 if (MF.getFunction().hasFnAttribute("stackrealign")) { 832 if (MFI.hasCalls()) 833 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 834 else if (MaxAlign < SlotSize) 835 MaxAlign = SlotSize; 836 } 837 return MaxAlign; 838 } 839 840 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 841 MachineBasicBlock::iterator MBBI, 842 const DebugLoc &DL, unsigned Reg, 843 uint64_t MaxAlign) const { 844 uint64_t Val = -MaxAlign; 845 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 846 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 847 .addReg(Reg) 848 .addImm(Val) 849 .setMIFlag(MachineInstr::FrameSetup); 850 851 // The EFLAGS implicit def is dead. 852 MI->getOperand(3).setIsDead(); 853 } 854 855 /// emitPrologue - Push callee-saved registers onto the stack, which 856 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 857 /// space for local variables. Also emit labels used by the exception handler to 858 /// generate the exception handling frames. 859 860 /* 861 Here's a gist of what gets emitted: 862 863 ; Establish frame pointer, if needed 864 [if needs FP] 865 push %rbp 866 .cfi_def_cfa_offset 16 867 .cfi_offset %rbp, -16 868 .seh_pushreg %rpb 869 mov %rsp, %rbp 870 .cfi_def_cfa_register %rbp 871 872 ; Spill general-purpose registers 873 [for all callee-saved GPRs] 874 pushq %<reg> 875 [if not needs FP] 876 .cfi_def_cfa_offset (offset from RETADDR) 877 .seh_pushreg %<reg> 878 879 ; If the required stack alignment > default stack alignment 880 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 881 ; of unknown size in the stack frame. 882 [if stack needs re-alignment] 883 and $MASK, %rsp 884 885 ; Allocate space for locals 886 [if target is Windows and allocated space > 4096 bytes] 887 ; Windows needs special care for allocations larger 888 ; than one page. 889 mov $NNN, %rax 890 call ___chkstk_ms/___chkstk 891 sub %rax, %rsp 892 [else] 893 sub $NNN, %rsp 894 895 [if needs FP] 896 .seh_stackalloc (size of XMM spill slots) 897 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 898 [else] 899 .seh_stackalloc NNN 900 901 ; Spill XMMs 902 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 903 ; they may get spilled on any platform, if the current function 904 ; calls @llvm.eh.unwind.init 905 [if needs FP] 906 [for all callee-saved XMM registers] 907 movaps %<xmm reg>, -MMM(%rbp) 908 [for all callee-saved XMM registers] 909 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 910 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 911 [else] 912 [for all callee-saved XMM registers] 913 movaps %<xmm reg>, KKK(%rsp) 914 [for all callee-saved XMM registers] 915 .seh_savexmm %<xmm reg>, KKK 916 917 .seh_endprologue 918 919 [if needs base pointer] 920 mov %rsp, %rbx 921 [if needs to restore base pointer] 922 mov %rsp, -MMM(%rbp) 923 924 ; Emit CFI info 925 [if needs FP] 926 [for all callee-saved registers] 927 .cfi_offset %<reg>, (offset from %rbp) 928 [else] 929 .cfi_def_cfa_offset (offset from RETADDR) 930 [for all callee-saved registers] 931 .cfi_offset %<reg>, (offset from %rsp) 932 933 Notes: 934 - .seh directives are emitted only for Windows 64 ABI 935 - .cv_fpo directives are emitted on win32 when emitting CodeView 936 - .cfi directives are emitted for all other ABIs 937 - for 32-bit code, substitute %e?? registers for %r?? 938 */ 939 940 void X86FrameLowering::emitPrologue(MachineFunction &MF, 941 MachineBasicBlock &MBB) const { 942 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 943 "MF used frame lowering for wrong subtarget"); 944 MachineBasicBlock::iterator MBBI = MBB.begin(); 945 MachineFrameInfo &MFI = MF.getFrameInfo(); 946 const Function &Fn = MF.getFunction(); 947 MachineModuleInfo &MMI = MF.getMMI(); 948 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 949 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 950 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 951 bool IsFunclet = MBB.isEHFuncletEntry(); 952 EHPersonality Personality = EHPersonality::Unknown; 953 if (Fn.hasPersonalityFn()) 954 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 955 bool FnHasClrFunclet = 956 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 957 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 958 bool HasFP = hasFP(MF); 959 bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 960 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 961 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 962 // FIXME: Emit FPO data for EH funclets. 963 bool NeedsWinFPO = 964 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); 965 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 966 bool NeedsDwarfCFI = 967 !IsWin64Prologue && (MMI.hasDebugInfo() || Fn.needsUnwindTableEntry()); 968 unsigned FramePtr = TRI->getFrameRegister(MF); 969 const unsigned MachineFramePtr = 970 STI.isTarget64BitILP32() 971 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr; 972 unsigned BasePtr = TRI->getBaseRegister(); 973 bool HasWinCFI = false; 974 975 // Debug location must be unknown since the first debug location is used 976 // to determine the end of the prologue. 977 DebugLoc DL; 978 979 // Add RETADDR move area to callee saved frame size. 980 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 981 if (TailCallReturnAddrDelta && IsWin64Prologue) 982 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 983 984 if (TailCallReturnAddrDelta < 0) 985 X86FI->setCalleeSavedFrameSize( 986 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); 987 988 bool UseStackProbe = !STI.getTargetLowering()->getStackProbeSymbolName(MF).empty(); 989 990 // The default stack probe size is 4096 if the function has no stackprobesize 991 // attribute. 992 unsigned StackProbeSize = 4096; 993 if (Fn.hasFnAttribute("stack-probe-size")) 994 Fn.getFnAttribute("stack-probe-size") 995 .getValueAsString() 996 .getAsInteger(0, StackProbeSize); 997 998 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 999 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1000 // stack alignment. 1001 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1002 Fn.arg_size() == 2) { 1003 StackSize += 8; 1004 MFI.setStackSize(StackSize); 1005 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); 1006 } 1007 1008 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1009 // function, and use up to 128 bytes of stack space, don't have a frame 1010 // pointer, calls, or dynamic alloca then we do not need to adjust the 1011 // stack pointer (we fit in the Red Zone). We also check that we don't 1012 // push and pop from the stack. 1013 if (Is64Bit && !Fn.hasFnAttribute(Attribute::NoRedZone) && 1014 !TRI->needsStackRealignment(MF) && 1015 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1016 !MFI.adjustsStack() && // No calls. 1017 !UseStackProbe && // No stack probes. 1018 !IsWin64CC && // Win64 has no Red Zone 1019 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1020 !MF.shouldSplitStack()) { // Regular stack 1021 uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); 1022 if (HasFP) MinSize += SlotSize; 1023 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1024 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1025 MFI.setStackSize(StackSize); 1026 } 1027 1028 // Insert stack pointer adjustment for later moving of return addr. Only 1029 // applies to tail call optimized functions where the callee argument stack 1030 // size is bigger than the callers. 1031 if (TailCallReturnAddrDelta < 0) { 1032 BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta, 1033 /*InEpilogue=*/false) 1034 .setMIFlag(MachineInstr::FrameSetup); 1035 } 1036 1037 // Mapping for machine moves: 1038 // 1039 // DST: VirtualFP AND 1040 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1041 // ELSE => DW_CFA_def_cfa 1042 // 1043 // SRC: VirtualFP AND 1044 // DST: Register => DW_CFA_def_cfa_register 1045 // 1046 // ELSE 1047 // OFFSET < 0 => DW_CFA_offset_extended_sf 1048 // REG < 64 => DW_CFA_offset + Reg 1049 // ELSE => DW_CFA_offset_extended 1050 1051 uint64_t NumBytes = 0; 1052 int stackGrowth = -SlotSize; 1053 1054 // Find the funclet establisher parameter 1055 unsigned Establisher = X86::NoRegister; 1056 if (IsClrFunclet) 1057 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1058 else if (IsFunclet) 1059 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1060 1061 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1062 // Immediately spill establisher into the home slot. 1063 // The runtime cares about this. 1064 // MOV64mr %rdx, 16(%rsp) 1065 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1066 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1067 .addReg(Establisher) 1068 .setMIFlag(MachineInstr::FrameSetup); 1069 MBB.addLiveIn(Establisher); 1070 } 1071 1072 if (HasFP) { 1073 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1074 1075 // Calculate required stack adjustment. 1076 uint64_t FrameSize = StackSize - SlotSize; 1077 // If required, include space for extra hidden slot for stashing base pointer. 1078 if (X86FI->getRestoreBasePointer()) 1079 FrameSize += SlotSize; 1080 1081 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); 1082 1083 // Callee-saved registers are pushed on stack before the stack is realigned. 1084 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1085 NumBytes = alignTo(NumBytes, MaxAlign); 1086 1087 // Get the offset of the stack slot for the EBP register, which is 1088 // guaranteed to be the last slot by processFunctionBeforeFrameFinalized. 1089 // Update the frame offset adjustment. 1090 if (!IsFunclet) 1091 MFI.setOffsetAdjustment(-NumBytes); 1092 else 1093 assert(MFI.getOffsetAdjustment() == -(int)NumBytes && 1094 "should calculate same local variable offset for funclets"); 1095 1096 // Save EBP/RBP into the appropriate stack slot. 1097 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1098 .addReg(MachineFramePtr, RegState::Kill) 1099 .setMIFlag(MachineInstr::FrameSetup); 1100 1101 if (NeedsDwarfCFI) { 1102 // Mark the place where EBP/RBP was saved. 1103 // Define the current CFA rule to use the provided offset. 1104 assert(StackSize); 1105 BuildCFI(MBB, MBBI, DL, 1106 MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth)); 1107 1108 // Change the rule for the FramePtr to be an "offset" rule. 1109 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1110 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset( 1111 nullptr, DwarfFramePtr, 2 * stackGrowth)); 1112 } 1113 1114 if (NeedsWinCFI) { 1115 HasWinCFI = true; 1116 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1117 .addImm(FramePtr) 1118 .setMIFlag(MachineInstr::FrameSetup); 1119 } 1120 1121 if (!IsWin64Prologue && !IsFunclet) { 1122 // Update EBP with the new base value. 1123 BuildMI(MBB, MBBI, DL, 1124 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1125 FramePtr) 1126 .addReg(StackPtr) 1127 .setMIFlag(MachineInstr::FrameSetup); 1128 1129 if (NeedsDwarfCFI) { 1130 // Mark effective beginning of when frame pointer becomes valid. 1131 // Define the current CFA to use the EBP/RBP register. 1132 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1133 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister( 1134 nullptr, DwarfFramePtr)); 1135 } 1136 1137 if (NeedsWinFPO) { 1138 // .cv_fpo_setframe $FramePtr 1139 HasWinCFI = true; 1140 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1141 .addImm(FramePtr) 1142 .addImm(0) 1143 .setMIFlag(MachineInstr::FrameSetup); 1144 } 1145 } 1146 } else { 1147 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1148 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); 1149 } 1150 1151 // For EH funclets, only allocate enough space for outgoing calls. Save the 1152 // NumBytes value that we would've used for the parent frame. 1153 unsigned ParentFrameNumBytes = NumBytes; 1154 if (IsFunclet) 1155 NumBytes = getWinEHFuncletFrameSize(MF); 1156 1157 // Skip the callee-saved push instructions. 1158 bool PushedRegs = false; 1159 int StackOffset = 2 * stackGrowth; 1160 1161 while (MBBI != MBB.end() && 1162 MBBI->getFlag(MachineInstr::FrameSetup) && 1163 (MBBI->getOpcode() == X86::PUSH32r || 1164 MBBI->getOpcode() == X86::PUSH64r)) { 1165 PushedRegs = true; 1166 unsigned Reg = MBBI->getOperand(0).getReg(); 1167 ++MBBI; 1168 1169 if (!HasFP && NeedsDwarfCFI) { 1170 // Mark callee-saved push instruction. 1171 // Define the current CFA rule to use the provided offset. 1172 assert(StackSize); 1173 BuildCFI(MBB, MBBI, DL, 1174 MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset)); 1175 StackOffset += stackGrowth; 1176 } 1177 1178 if (NeedsWinCFI) { 1179 HasWinCFI = true; 1180 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1181 .addImm(Reg) 1182 .setMIFlag(MachineInstr::FrameSetup); 1183 } 1184 } 1185 1186 // Realign stack after we pushed callee-saved registers (so that we'll be 1187 // able to calculate their offsets from the frame pointer). 1188 // Don't do this for Win64, it needs to realign the stack after the prologue. 1189 if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) { 1190 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1191 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1192 } 1193 1194 // If there is an SUB32ri of ESP immediately before this instruction, merge 1195 // the two. This can be the case when tail call elimination is enabled and 1196 // the callee has more arguments then the caller. 1197 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1198 1199 // Adjust stack pointer: ESP -= numbytes. 1200 1201 // Windows and cygwin/mingw require a prologue helper routine when allocating 1202 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1203 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1204 // stack and adjust the stack pointer in one go. The 64-bit version of 1205 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1206 // responsible for adjusting the stack pointer. Touching the stack at 4K 1207 // increments is necessary to ensure that the guard pages used by the OS 1208 // virtual memory manager are allocated in correct sequence. 1209 uint64_t AlignedNumBytes = NumBytes; 1210 if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) 1211 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1212 if (AlignedNumBytes >= StackProbeSize && UseStackProbe) { 1213 assert(!X86FI->getUsesRedZone() && 1214 "The Red Zone is not accounted for in stack probes"); 1215 1216 // Check whether EAX is livein for this block. 1217 bool isEAXAlive = isEAXLiveIn(MBB); 1218 1219 if (isEAXAlive) { 1220 if (Is64Bit) { 1221 // Save RAX 1222 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1223 .addReg(X86::RAX, RegState::Kill) 1224 .setMIFlag(MachineInstr::FrameSetup); 1225 } else { 1226 // Save EAX 1227 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1228 .addReg(X86::EAX, RegState::Kill) 1229 .setMIFlag(MachineInstr::FrameSetup); 1230 } 1231 } 1232 1233 if (Is64Bit) { 1234 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1235 // Function prologue is responsible for adjusting the stack pointer. 1236 int Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1237 if (isUInt<32>(Alloc)) { 1238 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1239 .addImm(Alloc) 1240 .setMIFlag(MachineInstr::FrameSetup); 1241 } else if (isInt<32>(Alloc)) { 1242 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX) 1243 .addImm(Alloc) 1244 .setMIFlag(MachineInstr::FrameSetup); 1245 } else { 1246 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) 1247 .addImm(Alloc) 1248 .setMIFlag(MachineInstr::FrameSetup); 1249 } 1250 } else { 1251 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1252 // We'll also use 4 already allocated bytes for EAX. 1253 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1254 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1255 .setMIFlag(MachineInstr::FrameSetup); 1256 } 1257 1258 // Call __chkstk, __chkstk_ms, or __alloca. 1259 emitStackProbe(MF, MBB, MBBI, DL, true); 1260 1261 if (isEAXAlive) { 1262 // Restore RAX/EAX 1263 MachineInstr *MI; 1264 if (Is64Bit) 1265 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 1266 StackPtr, false, NumBytes - 8); 1267 else 1268 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1269 StackPtr, false, NumBytes - 4); 1270 MI->setFlag(MachineInstr::FrameSetup); 1271 MBB.insert(MBBI, MI); 1272 } 1273 } else if (NumBytes) { 1274 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 1275 } 1276 1277 if (NeedsWinCFI && NumBytes) { 1278 HasWinCFI = true; 1279 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1280 .addImm(NumBytes) 1281 .setMIFlag(MachineInstr::FrameSetup); 1282 } 1283 1284 int SEHFrameOffset = 0; 1285 unsigned SPOrEstablisher; 1286 if (IsFunclet) { 1287 if (IsClrFunclet) { 1288 // The establisher parameter passed to a CLR funclet is actually a pointer 1289 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1290 // to find the root function establisher frame by loading the PSPSym from 1291 // the intermediate frame. 1292 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1293 MachinePointerInfo NoInfo; 1294 MBB.addLiveIn(Establisher); 1295 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1296 Establisher, false, PSPSlotOffset) 1297 .addMemOperand(MF.getMachineMemOperand( 1298 NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize)); 1299 ; 1300 // Save the root establisher back into the current funclet's (mostly 1301 // empty) frame, in case a sub-funclet or the GC needs it. 1302 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1303 false, PSPSlotOffset) 1304 .addReg(Establisher) 1305 .addMemOperand( 1306 MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore | 1307 MachineMemOperand::MOVolatile, 1308 SlotSize, SlotSize)); 1309 } 1310 SPOrEstablisher = Establisher; 1311 } else { 1312 SPOrEstablisher = StackPtr; 1313 } 1314 1315 if (IsWin64Prologue && HasFP) { 1316 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1317 // this calculation on the incoming establisher, which holds the value of 1318 // RSP from the parent frame at the end of the prologue. 1319 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1320 if (SEHFrameOffset) 1321 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1322 SPOrEstablisher, false, SEHFrameOffset); 1323 else 1324 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1325 .addReg(SPOrEstablisher); 1326 1327 // If this is not a funclet, emit the CFI describing our frame pointer. 1328 if (NeedsWinCFI && !IsFunclet) { 1329 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 1330 HasWinCFI = true; 1331 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1332 .addImm(FramePtr) 1333 .addImm(SEHFrameOffset) 1334 .setMIFlag(MachineInstr::FrameSetup); 1335 if (isAsynchronousEHPersonality(Personality)) 1336 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 1337 } 1338 } else if (IsFunclet && STI.is32Bit()) { 1339 // Reset EBP / ESI to something good for funclets. 1340 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 1341 // If we're a catch funclet, we can be returned to via catchret. Save ESP 1342 // into the registration node so that the runtime will restore it for us. 1343 if (!MBB.isCleanupFuncletEntry()) { 1344 assert(Personality == EHPersonality::MSVC_CXX); 1345 unsigned FrameReg; 1346 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 1347 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg); 1348 // ESP is the first field, so no extra displacement is needed. 1349 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 1350 false, EHRegOffset) 1351 .addReg(X86::ESP); 1352 } 1353 } 1354 1355 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 1356 const MachineInstr &FrameInstr = *MBBI; 1357 ++MBBI; 1358 1359 if (NeedsWinCFI) { 1360 int FI; 1361 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 1362 if (X86::FR64RegClass.contains(Reg)) { 1363 unsigned IgnoredFrameReg; 1364 int Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg); 1365 Offset += SEHFrameOffset; 1366 1367 HasWinCFI = true; 1368 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 1369 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 1370 .addImm(Reg) 1371 .addImm(Offset) 1372 .setMIFlag(MachineInstr::FrameSetup); 1373 } 1374 } 1375 } 1376 } 1377 1378 if (NeedsWinCFI && HasWinCFI) 1379 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 1380 .setMIFlag(MachineInstr::FrameSetup); 1381 1382 if (FnHasClrFunclet && !IsFunclet) { 1383 // Save the so-called Initial-SP (i.e. the value of the stack pointer 1384 // immediately after the prolog) into the PSPSlot so that funclets 1385 // and the GC can recover it. 1386 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1387 auto PSPInfo = MachinePointerInfo::getFixedStack( 1388 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 1389 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 1390 PSPSlotOffset) 1391 .addReg(StackPtr) 1392 .addMemOperand(MF.getMachineMemOperand( 1393 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1394 SlotSize, SlotSize)); 1395 } 1396 1397 // Realign stack after we spilled callee-saved registers (so that we'll be 1398 // able to calculate their offsets from the frame pointer). 1399 // Win64 requires aligning the stack after the prologue. 1400 if (IsWin64Prologue && TRI->needsStackRealignment(MF)) { 1401 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1402 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 1403 } 1404 1405 // We already dealt with stack realignment and funclets above. 1406 if (IsFunclet && STI.is32Bit()) 1407 return; 1408 1409 // If we need a base pointer, set it up here. It's whatever the value 1410 // of the stack pointer is at this point. Any variable size objects 1411 // will be allocated after this, so we can still use the base pointer 1412 // to reference locals. 1413 if (TRI->hasBasePointer(MF)) { 1414 // Update the base pointer with the current stack pointer. 1415 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 1416 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 1417 .addReg(SPOrEstablisher) 1418 .setMIFlag(MachineInstr::FrameSetup); 1419 if (X86FI->getRestoreBasePointer()) { 1420 // Stash value of base pointer. Saving RSP instead of EBP shortens 1421 // dependence chain. Used by SjLj EH. 1422 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1423 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 1424 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 1425 .addReg(SPOrEstablisher) 1426 .setMIFlag(MachineInstr::FrameSetup); 1427 } 1428 1429 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 1430 // Stash the value of the frame pointer relative to the base pointer for 1431 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 1432 // it recovers the frame pointer from the base pointer rather than the 1433 // other way around. 1434 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1435 unsigned UsedReg; 1436 int Offset = 1437 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 1438 assert(UsedReg == BasePtr); 1439 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 1440 .addReg(FramePtr) 1441 .setMIFlag(MachineInstr::FrameSetup); 1442 } 1443 } 1444 1445 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 1446 // Mark end of stack pointer adjustment. 1447 if (!HasFP && NumBytes) { 1448 // Define the current CFA rule to use the provided offset. 1449 assert(StackSize); 1450 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset( 1451 nullptr, -StackSize + stackGrowth)); 1452 } 1453 1454 // Emit DWARF info specifying the offsets of the callee-saved registers. 1455 emitCalleeSavedFrameMoves(MBB, MBBI, DL); 1456 } 1457 1458 // X86 Interrupt handling function cannot assume anything about the direction 1459 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 1460 // in each prologue of interrupt handler function. 1461 // 1462 // FIXME: Create "cld" instruction only in these cases: 1463 // 1. The interrupt handling function uses any of the "rep" instructions. 1464 // 2. Interrupt handling function calls another function. 1465 // 1466 if (Fn.getCallingConv() == CallingConv::X86_INTR) 1467 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 1468 .setMIFlag(MachineInstr::FrameSetup); 1469 1470 // At this point we know if the function has WinCFI or not. 1471 MF.setHasWinCFI(HasWinCFI); 1472 } 1473 1474 bool X86FrameLowering::canUseLEAForSPInEpilogue( 1475 const MachineFunction &MF) const { 1476 // We can't use LEA instructions for adjusting the stack pointer if we don't 1477 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 1478 // to deallocate the stack. 1479 // This means that we can use LEA for SP in two situations: 1480 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 1481 // 2. We *have* a frame pointer which means we are permitted to use LEA. 1482 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 1483 } 1484 1485 static bool isFuncletReturnInstr(MachineInstr &MI) { 1486 switch (MI.getOpcode()) { 1487 case X86::CATCHRET: 1488 case X86::CLEANUPRET: 1489 return true; 1490 default: 1491 return false; 1492 } 1493 llvm_unreachable("impossible"); 1494 } 1495 1496 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 1497 // stack. It holds a pointer to the bottom of the root function frame. The 1498 // establisher frame pointer passed to a nested funclet may point to the 1499 // (mostly empty) frame of its parent funclet, but it will need to find 1500 // the frame of the root function to access locals. To facilitate this, 1501 // every funclet copies the pointer to the bottom of the root function 1502 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 1503 // same offset for the PSPSym in the root function frame that's used in the 1504 // funclets' frames allows each funclet to dynamically accept any ancestor 1505 // frame as its establisher argument (the runtime doesn't guarantee the 1506 // immediate parent for some reason lost to history), and also allows the GC, 1507 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 1508 // frame with only a single offset reported for the entire method. 1509 unsigned 1510 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 1511 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 1512 unsigned SPReg; 1513 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 1514 /*IgnoreSPUpdates*/ true); 1515 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 1516 return static_cast<unsigned>(Offset); 1517 } 1518 1519 unsigned 1520 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 1521 // This is the size of the pushed CSRs. 1522 unsigned CSSize = 1523 MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 1524 // This is the amount of stack a funclet needs to allocate. 1525 unsigned UsedSize; 1526 EHPersonality Personality = 1527 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 1528 if (Personality == EHPersonality::CoreCLR) { 1529 // CLR funclets need to hold enough space to include the PSPSym, at the 1530 // same offset from the stack pointer (immediately after the prolog) as it 1531 // resides at in the main function. 1532 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 1533 } else { 1534 // Other funclets just need enough stack for outgoing call arguments. 1535 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 1536 } 1537 // RBP is not included in the callee saved register block. After pushing RBP, 1538 // everything is 16 byte aligned. Everything we allocate before an outgoing 1539 // call must also be 16 byte aligned. 1540 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment()); 1541 // Subtract out the size of the callee saved registers. This is how much stack 1542 // each funclet will allocate. 1543 return FrameSizeMinusRBP - CSSize; 1544 } 1545 1546 static bool isTailCallOpcode(unsigned Opc) { 1547 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 1548 Opc == X86::TCRETURNmi || 1549 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 1550 Opc == X86::TCRETURNmi64; 1551 } 1552 1553 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 1554 MachineBasicBlock &MBB) const { 1555 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1556 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1557 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 1558 MachineBasicBlock::iterator MBBI = Terminator; 1559 DebugLoc DL; 1560 if (MBBI != MBB.end()) 1561 DL = MBBI->getDebugLoc(); 1562 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 1563 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 1564 unsigned FramePtr = TRI->getFrameRegister(MF); 1565 unsigned MachineFramePtr = 1566 Is64BitILP32 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr; 1567 1568 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1569 bool NeedsWin64CFI = 1570 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 1571 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 1572 1573 // Get the number of bytes to allocate from the FrameInfo. 1574 uint64_t StackSize = MFI.getStackSize(); 1575 uint64_t MaxAlign = calculateMaxStackAlign(MF); 1576 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1577 bool HasFP = hasFP(MF); 1578 uint64_t NumBytes = 0; 1579 1580 bool NeedsDwarfCFI = 1581 (!MF.getTarget().getTargetTriple().isOSDarwin() && 1582 !MF.getTarget().getTargetTriple().isOSWindows()) && 1583 (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry()); 1584 1585 if (IsFunclet) { 1586 assert(HasFP && "EH funclets without FP not yet implemented"); 1587 NumBytes = getWinEHFuncletFrameSize(MF); 1588 } else if (HasFP) { 1589 // Calculate required stack adjustment. 1590 uint64_t FrameSize = StackSize - SlotSize; 1591 NumBytes = FrameSize - CSSize; 1592 1593 // Callee-saved registers were pushed on stack before the stack was 1594 // realigned. 1595 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1596 NumBytes = alignTo(FrameSize, MaxAlign); 1597 } else { 1598 NumBytes = StackSize - CSSize; 1599 } 1600 uint64_t SEHStackAllocAmt = NumBytes; 1601 1602 if (HasFP) { 1603 // Pop EBP. 1604 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 1605 MachineFramePtr) 1606 .setMIFlag(MachineInstr::FrameDestroy); 1607 if (NeedsDwarfCFI) { 1608 unsigned DwarfStackPtr = 1609 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 1610 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfa( 1611 nullptr, DwarfStackPtr, -SlotSize)); 1612 --MBBI; 1613 } 1614 } 1615 1616 MachineBasicBlock::iterator FirstCSPop = MBBI; 1617 // Skip the callee-saved pop instructions. 1618 while (MBBI != MBB.begin()) { 1619 MachineBasicBlock::iterator PI = std::prev(MBBI); 1620 unsigned Opc = PI->getOpcode(); 1621 1622 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 1623 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 1624 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy))) 1625 break; 1626 FirstCSPop = PI; 1627 } 1628 1629 --MBBI; 1630 } 1631 MBBI = FirstCSPop; 1632 1633 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 1634 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 1635 1636 if (MBBI != MBB.end()) 1637 DL = MBBI->getDebugLoc(); 1638 1639 // If there is an ADD32ri or SUB32ri of ESP immediately before this 1640 // instruction, merge the two instructions. 1641 if (NumBytes || MFI.hasVarSizedObjects()) 1642 NumBytes += mergeSPUpdates(MBB, MBBI, true); 1643 1644 // If dynamic alloca is used, then reset esp to point to the last callee-saved 1645 // slot before popping them off! Same applies for the case, when stack was 1646 // realigned. Don't do this if this was a funclet epilogue, since the funclets 1647 // will not do realignment or dynamic stack allocation. 1648 if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) && 1649 !IsFunclet) { 1650 if (TRI->needsStackRealignment(MF)) 1651 MBBI = FirstCSPop; 1652 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 1653 uint64_t LEAAmount = 1654 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 1655 1656 // There are only two legal forms of epilogue: 1657 // - add SEHAllocationSize, %rsp 1658 // - lea SEHAllocationSize(%FramePtr), %rsp 1659 // 1660 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 1661 // However, we may use this sequence if we have a frame pointer because the 1662 // effects of the prologue can safely be undone. 1663 if (LEAAmount != 0) { 1664 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 1665 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 1666 FramePtr, false, LEAAmount); 1667 --MBBI; 1668 } else { 1669 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 1670 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 1671 .addReg(FramePtr); 1672 --MBBI; 1673 } 1674 } else if (NumBytes) { 1675 // Adjust stack pointer back: ESP += numbytes. 1676 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 1677 if (!hasFP(MF) && NeedsDwarfCFI) { 1678 // Define the current CFA rule to use the provided offset. 1679 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset( 1680 nullptr, -CSSize - SlotSize)); 1681 } 1682 --MBBI; 1683 } 1684 1685 // Windows unwinder will not invoke function's exception handler if IP is 1686 // either in prologue or in epilogue. This behavior causes a problem when a 1687 // call immediately precedes an epilogue, because the return address points 1688 // into the epilogue. To cope with that, we insert an epilogue marker here, 1689 // then replace it with a 'nop' if it ends up immediately after a CALL in the 1690 // final emitted code. 1691 if (NeedsWin64CFI && MF.hasWinCFI()) 1692 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 1693 1694 if (!hasFP(MF) && NeedsDwarfCFI) { 1695 MBBI = FirstCSPop; 1696 int64_t Offset = -CSSize - SlotSize; 1697 // Mark callee-saved pop instruction. 1698 // Define the current CFA rule to use the provided offset. 1699 while (MBBI != MBB.end()) { 1700 MachineBasicBlock::iterator PI = MBBI; 1701 unsigned Opc = PI->getOpcode(); 1702 ++MBBI; 1703 if (Opc == X86::POP32r || Opc == X86::POP64r) { 1704 Offset += SlotSize; 1705 BuildCFI(MBB, MBBI, DL, 1706 MCCFIInstruction::createDefCfaOffset(nullptr, Offset)); 1707 } 1708 } 1709 } 1710 1711 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 1712 // Add the return addr area delta back since we are not tail calling. 1713 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 1714 assert(Offset >= 0 && "TCDelta should never be positive"); 1715 if (Offset) { 1716 // Check for possible merge with preceding ADD instruction. 1717 Offset += mergeSPUpdates(MBB, Terminator, true); 1718 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 1719 } 1720 } 1721 } 1722 1723 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 1724 unsigned &FrameReg) const { 1725 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1726 1727 bool IsFixed = MFI.isFixedObjectIndex(FI); 1728 // We can't calculate offset from frame pointer if the stack is realigned, 1729 // so enforce usage of stack/base pointer. The base pointer is used when we 1730 // have dynamic allocas in addition to dynamic realignment. 1731 if (TRI->hasBasePointer(MF)) 1732 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 1733 else if (TRI->needsStackRealignment(MF)) 1734 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 1735 else 1736 FrameReg = TRI->getFrameRegister(MF); 1737 1738 // Offset will hold the offset from the stack pointer at function entry to the 1739 // object. 1740 // We need to factor in additional offsets applied during the prologue to the 1741 // frame, base, and stack pointer depending on which is used. 1742 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 1743 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1744 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1745 uint64_t StackSize = MFI.getStackSize(); 1746 bool HasFP = hasFP(MF); 1747 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1748 int64_t FPDelta = 0; 1749 1750 if (IsWin64Prologue) { 1751 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 1752 1753 // Calculate required stack adjustment. 1754 uint64_t FrameSize = StackSize - SlotSize; 1755 // If required, include space for extra hidden slot for stashing base pointer. 1756 if (X86FI->getRestoreBasePointer()) 1757 FrameSize += SlotSize; 1758 uint64_t NumBytes = FrameSize - CSSize; 1759 1760 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 1761 if (FI && FI == X86FI->getFAIndex()) 1762 return -SEHFrameOffset; 1763 1764 // FPDelta is the offset from the "traditional" FP location of the old base 1765 // pointer followed by return address and the location required by the 1766 // restricted Win64 prologue. 1767 // Add FPDelta to all offsets below that go through the frame pointer. 1768 FPDelta = FrameSize - SEHFrameOffset; 1769 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 1770 "FPDelta isn't aligned per the Win64 ABI!"); 1771 } 1772 1773 1774 if (TRI->hasBasePointer(MF)) { 1775 assert(HasFP && "VLAs and dynamic stack realign, but no FP?!"); 1776 if (FI < 0) { 1777 // Skip the saved EBP. 1778 return Offset + SlotSize + FPDelta; 1779 } else { 1780 assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0); 1781 return Offset + StackSize; 1782 } 1783 } else if (TRI->needsStackRealignment(MF)) { 1784 if (FI < 0) { 1785 // Skip the saved EBP. 1786 return Offset + SlotSize + FPDelta; 1787 } else { 1788 assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0); 1789 return Offset + StackSize; 1790 } 1791 // FIXME: Support tail calls 1792 } else { 1793 if (!HasFP) 1794 return Offset + StackSize; 1795 1796 // Skip the saved EBP. 1797 Offset += SlotSize; 1798 1799 // Skip the RETADDR move area 1800 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1801 if (TailCallReturnAddrDelta < 0) 1802 Offset -= TailCallReturnAddrDelta; 1803 } 1804 1805 return Offset + FPDelta; 1806 } 1807 1808 int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, 1809 int FI, unsigned &FrameReg, 1810 int Adjustment) const { 1811 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1812 FrameReg = TRI->getStackRegister(); 1813 return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment; 1814 } 1815 1816 int 1817 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, 1818 int FI, unsigned &FrameReg, 1819 bool IgnoreSPUpdates) const { 1820 1821 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1822 // Does not include any dynamic realign. 1823 const uint64_t StackSize = MFI.getStackSize(); 1824 // LLVM arranges the stack as follows: 1825 // ... 1826 // ARG2 1827 // ARG1 1828 // RETADDR 1829 // PUSH RBP <-- RBP points here 1830 // PUSH CSRs 1831 // ~~~~~~~ <-- possible stack realignment (non-win64) 1832 // ... 1833 // STACK OBJECTS 1834 // ... <-- RSP after prologue points here 1835 // ~~~~~~~ <-- possible stack realignment (win64) 1836 // 1837 // if (hasVarSizedObjects()): 1838 // ... <-- "base pointer" (ESI/RBX) points here 1839 // DYNAMIC ALLOCAS 1840 // ... <-- RSP points here 1841 // 1842 // Case 1: In the simple case of no stack realignment and no dynamic 1843 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 1844 // with fixed offsets from RSP. 1845 // 1846 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 1847 // stack objects are addressed with RBP and regular stack objects with RSP. 1848 // 1849 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 1850 // to address stack arguments for outgoing calls and nothing else. The "base 1851 // pointer" points to local variables, and RBP points to fixed objects. 1852 // 1853 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 1854 // answer we give is relative to the SP after the prologue, and not the 1855 // SP in the middle of the function. 1856 1857 if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) && 1858 !STI.isTargetWin64()) 1859 return getFrameIndexReference(MF, FI, FrameReg); 1860 1861 // If !hasReservedCallFrame the function might have SP adjustement in the 1862 // body. So, even though the offset is statically known, it depends on where 1863 // we are in the function. 1864 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 1865 if (!IgnoreSPUpdates && !TFI->hasReservedCallFrame(MF)) 1866 return getFrameIndexReference(MF, FI, FrameReg); 1867 1868 // We don't handle tail calls, and shouldn't be seeing them either. 1869 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 1870 "we don't handle this case!"); 1871 1872 // This is how the math works out: 1873 // 1874 // %rsp grows (i.e. gets lower) left to right. Each box below is 1875 // one word (eight bytes). Obj0 is the stack slot we're trying to 1876 // get to. 1877 // 1878 // ---------------------------------- 1879 // | BP | Obj0 | Obj1 | ... | ObjN | 1880 // ---------------------------------- 1881 // ^ ^ ^ ^ 1882 // A B C E 1883 // 1884 // A is the incoming stack pointer. 1885 // (B - A) is the local area offset (-8 for x86-64) [1] 1886 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 1887 // 1888 // |(E - B)| is the StackSize (absolute value, positive). For a 1889 // stack that grown down, this works out to be (B - E). [3] 1890 // 1891 // E is also the value of %rsp after stack has been set up, and we 1892 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 1893 // (C - E) == (C - A) - (B - A) + (B - E) 1894 // { Using [1], [2] and [3] above } 1895 // == getObjectOffset - LocalAreaOffset + StackSize 1896 1897 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 1898 } 1899 1900 bool X86FrameLowering::assignCalleeSavedSpillSlots( 1901 MachineFunction &MF, const TargetRegisterInfo *TRI, 1902 std::vector<CalleeSavedInfo> &CSI) const { 1903 MachineFrameInfo &MFI = MF.getFrameInfo(); 1904 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1905 1906 unsigned CalleeSavedFrameSize = 0; 1907 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 1908 1909 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1910 1911 if (TailCallReturnAddrDelta < 0) { 1912 // create RETURNADDR area 1913 // arg 1914 // arg 1915 // RETADDR 1916 // { ... 1917 // RETADDR area 1918 // ... 1919 // } 1920 // [EBP] 1921 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 1922 TailCallReturnAddrDelta - SlotSize, true); 1923 } 1924 1925 // Spill the BasePtr if it's used. 1926 if (this->TRI->hasBasePointer(MF)) { 1927 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 1928 if (MF.hasEHFunclets()) { 1929 int FI = MFI.CreateSpillStackObject(SlotSize, SlotSize); 1930 X86FI->setHasSEHFramePtrSave(true); 1931 X86FI->setSEHFramePtrSaveIndex(FI); 1932 } 1933 } 1934 1935 if (hasFP(MF)) { 1936 // emitPrologue always spills frame register the first thing. 1937 SpillSlotOffset -= SlotSize; 1938 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 1939 1940 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 1941 // the frame register, we can delete it from CSI list and not have to worry 1942 // about avoiding it later. 1943 unsigned FPReg = TRI->getFrameRegister(MF); 1944 for (unsigned i = 0; i < CSI.size(); ++i) { 1945 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 1946 CSI.erase(CSI.begin() + i); 1947 break; 1948 } 1949 } 1950 } 1951 1952 // Assign slots for GPRs. It increases frame size. 1953 for (unsigned i = CSI.size(); i != 0; --i) { 1954 unsigned Reg = CSI[i - 1].getReg(); 1955 1956 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 1957 continue; 1958 1959 SpillSlotOffset -= SlotSize; 1960 CalleeSavedFrameSize += SlotSize; 1961 1962 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 1963 CSI[i - 1].setFrameIdx(SlotIndex); 1964 } 1965 1966 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 1967 1968 // Assign slots for XMMs. 1969 for (unsigned i = CSI.size(); i != 0; --i) { 1970 unsigned Reg = CSI[i - 1].getReg(); 1971 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 1972 continue; 1973 1974 // If this is k-register make sure we lookup via the largest legal type. 1975 MVT VT = MVT::Other; 1976 if (X86::VK16RegClass.contains(Reg)) 1977 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 1978 1979 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 1980 unsigned Size = TRI->getSpillSize(*RC); 1981 unsigned Align = TRI->getSpillAlignment(*RC); 1982 // ensure alignment 1983 SpillSlotOffset -= std::abs(SpillSlotOffset) % Align; 1984 // spill into slot 1985 SpillSlotOffset -= Size; 1986 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 1987 CSI[i - 1].setFrameIdx(SlotIndex); 1988 MFI.ensureMaxAlignment(Align); 1989 } 1990 1991 return true; 1992 } 1993 1994 bool X86FrameLowering::spillCalleeSavedRegisters( 1995 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 1996 const std::vector<CalleeSavedInfo> &CSI, 1997 const TargetRegisterInfo *TRI) const { 1998 DebugLoc DL = MBB.findDebugLoc(MI); 1999 2000 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2001 // for us, and there are no XMM CSRs on Win32. 2002 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2003 return true; 2004 2005 // Push GPRs. It increases frame size. 2006 const MachineFunction &MF = *MBB.getParent(); 2007 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 2008 for (unsigned i = CSI.size(); i != 0; --i) { 2009 unsigned Reg = CSI[i - 1].getReg(); 2010 2011 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2012 continue; 2013 2014 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2015 bool isLiveIn = MRI.isLiveIn(Reg); 2016 if (!isLiveIn) 2017 MBB.addLiveIn(Reg); 2018 2019 // Decide whether we can add a kill flag to the use. 2020 bool CanKill = !isLiveIn; 2021 // Check if any subregister is live-in 2022 if (CanKill) { 2023 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 2024 if (MRI.isLiveIn(*AReg)) { 2025 CanKill = false; 2026 break; 2027 } 2028 } 2029 } 2030 2031 // Do not set a kill flag on values that are also marked as live-in. This 2032 // happens with the @llvm-returnaddress intrinsic and with arguments 2033 // passed in callee saved registers. 2034 // Omitting the kill flags is conservatively correct even if the live-in 2035 // is not used after all. 2036 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 2037 .setMIFlag(MachineInstr::FrameSetup); 2038 } 2039 2040 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 2041 // It can be done by spilling XMMs to stack frame. 2042 for (unsigned i = CSI.size(); i != 0; --i) { 2043 unsigned Reg = CSI[i-1].getReg(); 2044 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2045 continue; 2046 2047 // If this is k-register make sure we lookup via the largest legal type. 2048 MVT VT = MVT::Other; 2049 if (X86::VK16RegClass.contains(Reg)) 2050 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2051 2052 // Add the callee-saved register as live-in. It's killed at the spill. 2053 MBB.addLiveIn(Reg); 2054 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2055 2056 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC, 2057 TRI); 2058 --MI; 2059 MI->setFlag(MachineInstr::FrameSetup); 2060 ++MI; 2061 } 2062 2063 return true; 2064 } 2065 2066 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 2067 MachineBasicBlock::iterator MBBI, 2068 MachineInstr *CatchRet) const { 2069 // SEH shouldn't use catchret. 2070 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 2071 MBB.getParent()->getFunction().getPersonalityFn())) && 2072 "SEH should not use CATCHRET"); 2073 DebugLoc DL = CatchRet->getDebugLoc(); 2074 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 2075 2076 // Fill EAX/RAX with the address of the target block. 2077 if (STI.is64Bit()) { 2078 // LEA64r CatchRetTarget(%rip), %rax 2079 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 2080 .addReg(X86::RIP) 2081 .addImm(0) 2082 .addReg(0) 2083 .addMBB(CatchRetTarget) 2084 .addReg(0); 2085 } else { 2086 // MOV32ri $CatchRetTarget, %eax 2087 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2088 .addMBB(CatchRetTarget); 2089 } 2090 2091 // Record that we've taken the address of CatchRetTarget and no longer just 2092 // reference it in a terminator. 2093 CatchRetTarget->setHasAddressTaken(); 2094 } 2095 2096 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, 2097 MachineBasicBlock::iterator MI, 2098 std::vector<CalleeSavedInfo> &CSI, 2099 const TargetRegisterInfo *TRI) const { 2100 if (CSI.empty()) 2101 return false; 2102 2103 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 2104 // Don't restore CSRs in 32-bit EH funclets. Matches 2105 // spillCalleeSavedRegisters. 2106 if (STI.is32Bit()) 2107 return true; 2108 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 2109 // funclets. emitEpilogue transforms these to normal jumps. 2110 if (MI->getOpcode() == X86::CATCHRET) { 2111 const Function &F = MBB.getParent()->getFunction(); 2112 bool IsSEH = isAsynchronousEHPersonality( 2113 classifyEHPersonality(F.getPersonalityFn())); 2114 if (IsSEH) 2115 return true; 2116 } 2117 } 2118 2119 DebugLoc DL = MBB.findDebugLoc(MI); 2120 2121 // Reload XMMs from stack frame. 2122 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2123 unsigned Reg = CSI[i].getReg(); 2124 if (X86::GR64RegClass.contains(Reg) || 2125 X86::GR32RegClass.contains(Reg)) 2126 continue; 2127 2128 // If this is k-register make sure we lookup via the largest legal type. 2129 MVT VT = MVT::Other; 2130 if (X86::VK16RegClass.contains(Reg)) 2131 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2132 2133 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2134 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); 2135 } 2136 2137 // POP GPRs. 2138 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 2139 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2140 unsigned Reg = CSI[i].getReg(); 2141 if (!X86::GR64RegClass.contains(Reg) && 2142 !X86::GR32RegClass.contains(Reg)) 2143 continue; 2144 2145 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 2146 .setMIFlag(MachineInstr::FrameDestroy); 2147 } 2148 return true; 2149 } 2150 2151 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 2152 BitVector &SavedRegs, 2153 RegScavenger *RS) const { 2154 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2155 2156 // Spill the BasePtr if it's used. 2157 if (TRI->hasBasePointer(MF)){ 2158 unsigned BasePtr = TRI->getBaseRegister(); 2159 if (STI.isTarget64BitILP32()) 2160 BasePtr = getX86SubSuperRegister(BasePtr, 64); 2161 SavedRegs.set(BasePtr); 2162 } 2163 } 2164 2165 static bool 2166 HasNestArgument(const MachineFunction *MF) { 2167 const Function &F = MF->getFunction(); 2168 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 2169 I != E; I++) { 2170 if (I->hasNestAttr()) 2171 return true; 2172 } 2173 return false; 2174 } 2175 2176 /// GetScratchRegister - Get a temp register for performing work in the 2177 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2178 /// and the properties of the function either one or two registers will be 2179 /// needed. Set primary to true for the first register, false for the second. 2180 static unsigned 2181 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2182 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 2183 2184 // Erlang stuff. 2185 if (CallingConvention == CallingConv::HiPE) { 2186 if (Is64Bit) 2187 return Primary ? X86::R14 : X86::R13; 2188 else 2189 return Primary ? X86::EBX : X86::EDI; 2190 } 2191 2192 if (Is64Bit) { 2193 if (IsLP64) 2194 return Primary ? X86::R11 : X86::R12; 2195 else 2196 return Primary ? X86::R11D : X86::R12D; 2197 } 2198 2199 bool IsNested = HasNestArgument(&MF); 2200 2201 if (CallingConvention == CallingConv::X86_FastCall || 2202 CallingConvention == CallingConv::Fast) { 2203 if (IsNested) 2204 report_fatal_error("Segmented stacks does not support fastcall with " 2205 "nested function."); 2206 return Primary ? X86::EAX : X86::ECX; 2207 } 2208 if (IsNested) 2209 return Primary ? X86::EDX : X86::EAX; 2210 return Primary ? X86::ECX : X86::EAX; 2211 } 2212 2213 // The stack limit in the TCB is set to this many bytes above the actual stack 2214 // limit. 2215 static const uint64_t kSplitStackAvailable = 256; 2216 2217 void X86FrameLowering::adjustForSegmentedStacks( 2218 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2219 MachineFrameInfo &MFI = MF.getFrameInfo(); 2220 uint64_t StackSize; 2221 unsigned TlsReg, TlsOffset; 2222 DebugLoc DL; 2223 2224 // To support shrink-wrapping we would need to insert the new blocks 2225 // at the right place and update the branches to PrologueMBB. 2226 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2227 2228 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2229 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2230 "Scratch register is live-in"); 2231 2232 if (MF.getFunction().isVarArg()) 2233 report_fatal_error("Segmented stacks do not support vararg functions."); 2234 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 2235 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 2236 !STI.isTargetDragonFly()) 2237 report_fatal_error("Segmented stacks not supported on this platform."); 2238 2239 // Eventually StackSize will be calculated by a link-time pass; which will 2240 // also decide whether checking code needs to be injected into this particular 2241 // prologue. 2242 StackSize = MFI.getStackSize(); 2243 2244 // Do not generate a prologue for functions with a stack of size zero 2245 if (StackSize == 0) 2246 return; 2247 2248 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 2249 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 2250 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2251 bool IsNested = false; 2252 2253 // We need to know if the function has a nest argument only in 64 bit mode. 2254 if (Is64Bit) 2255 IsNested = HasNestArgument(&MF); 2256 2257 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 2258 // allocMBB needs to be last (terminating) instruction. 2259 2260 for (const auto &LI : PrologueMBB.liveins()) { 2261 allocMBB->addLiveIn(LI); 2262 checkMBB->addLiveIn(LI); 2263 } 2264 2265 if (IsNested) 2266 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 2267 2268 MF.push_front(allocMBB); 2269 MF.push_front(checkMBB); 2270 2271 // When the frame size is less than 256 we just compare the stack 2272 // boundary directly to the value of the stack pointer, per gcc. 2273 bool CompareStackPointer = StackSize < kSplitStackAvailable; 2274 2275 // Read the limit off the current stacklet off the stack_guard location. 2276 if (Is64Bit) { 2277 if (STI.isTargetLinux()) { 2278 TlsReg = X86::FS; 2279 TlsOffset = IsLP64 ? 0x70 : 0x40; 2280 } else if (STI.isTargetDarwin()) { 2281 TlsReg = X86::GS; 2282 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 2283 } else if (STI.isTargetWin64()) { 2284 TlsReg = X86::GS; 2285 TlsOffset = 0x28; // pvArbitrary, reserved for application use 2286 } else if (STI.isTargetFreeBSD()) { 2287 TlsReg = X86::FS; 2288 TlsOffset = 0x18; 2289 } else if (STI.isTargetDragonFly()) { 2290 TlsReg = X86::FS; 2291 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 2292 } else { 2293 report_fatal_error("Segmented stacks not supported on this platform."); 2294 } 2295 2296 if (CompareStackPointer) 2297 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 2298 else 2299 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 2300 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2301 2302 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 2303 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2304 } else { 2305 if (STI.isTargetLinux()) { 2306 TlsReg = X86::GS; 2307 TlsOffset = 0x30; 2308 } else if (STI.isTargetDarwin()) { 2309 TlsReg = X86::GS; 2310 TlsOffset = 0x48 + 90*4; 2311 } else if (STI.isTargetWin32()) { 2312 TlsReg = X86::FS; 2313 TlsOffset = 0x14; // pvArbitrary, reserved for application use 2314 } else if (STI.isTargetDragonFly()) { 2315 TlsReg = X86::FS; 2316 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 2317 } else if (STI.isTargetFreeBSD()) { 2318 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 2319 } else { 2320 report_fatal_error("Segmented stacks not supported on this platform."); 2321 } 2322 2323 if (CompareStackPointer) 2324 ScratchReg = X86::ESP; 2325 else 2326 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 2327 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2328 2329 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 2330 STI.isTargetDragonFly()) { 2331 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 2332 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2333 } else if (STI.isTargetDarwin()) { 2334 2335 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 2336 unsigned ScratchReg2; 2337 bool SaveScratch2; 2338 if (CompareStackPointer) { 2339 // The primary scratch register is available for holding the TLS offset. 2340 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2341 SaveScratch2 = false; 2342 } else { 2343 // Need to use a second register to hold the TLS offset 2344 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 2345 2346 // Unfortunately, with fastcc the second scratch register may hold an 2347 // argument. 2348 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 2349 } 2350 2351 // If Scratch2 is live-in then it needs to be saved. 2352 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 2353 "Scratch register is live-in and not saved"); 2354 2355 if (SaveScratch2) 2356 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 2357 .addReg(ScratchReg2, RegState::Kill); 2358 2359 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 2360 .addImm(TlsOffset); 2361 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 2362 .addReg(ScratchReg) 2363 .addReg(ScratchReg2).addImm(1).addReg(0) 2364 .addImm(0) 2365 .addReg(TlsReg); 2366 2367 if (SaveScratch2) 2368 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 2369 } 2370 } 2371 2372 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 2373 // It jumps to normal execution of the function body. 2374 BuildMI(checkMBB, DL, TII.get(X86::JA_1)).addMBB(&PrologueMBB); 2375 2376 // On 32 bit we first push the arguments size and then the frame size. On 64 2377 // bit, we pass the stack frame size in r10 and the argument size in r11. 2378 if (Is64Bit) { 2379 // Functions with nested arguments use R10, so it needs to be saved across 2380 // the call to _morestack 2381 2382 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 2383 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 2384 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 2385 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 2386 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri; 2387 2388 if (IsNested) 2389 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 2390 2391 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10) 2392 .addImm(StackSize); 2393 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11) 2394 .addImm(X86FI->getArgumentStackSize()); 2395 } else { 2396 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2397 .addImm(X86FI->getArgumentStackSize()); 2398 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2399 .addImm(StackSize); 2400 } 2401 2402 // __morestack is in libgcc 2403 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 2404 // Under the large code model, we cannot assume that __morestack lives 2405 // within 2^31 bytes of the call site, so we cannot use pc-relative 2406 // addressing. We cannot perform the call via a temporary register, 2407 // as the rax register may be used to store the static chain, and all 2408 // other suitable registers may be either callee-save or used for 2409 // parameter passing. We cannot use the stack at this point either 2410 // because __morestack manipulates the stack directly. 2411 // 2412 // To avoid these issues, perform an indirect call via a read-only memory 2413 // location containing the address. 2414 // 2415 // This solution is not perfect, as it assumes that the .rodata section 2416 // is laid out within 2^31 bytes of each function body, but this seems 2417 // to be sufficient for JIT. 2418 // FIXME: Add retpoline support and remove the error here.. 2419 if (STI.useRetpoline()) 2420 report_fatal_error("Emitting morestack calls on 64-bit with the large " 2421 "code model and retpoline not yet implemented."); 2422 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 2423 .addReg(X86::RIP) 2424 .addImm(0) 2425 .addReg(0) 2426 .addExternalSymbol("__morestack_addr") 2427 .addReg(0); 2428 MF.getMMI().setUsesMorestackAddr(true); 2429 } else { 2430 if (Is64Bit) 2431 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 2432 .addExternalSymbol("__morestack"); 2433 else 2434 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 2435 .addExternalSymbol("__morestack"); 2436 } 2437 2438 if (IsNested) 2439 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 2440 else 2441 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 2442 2443 allocMBB->addSuccessor(&PrologueMBB); 2444 2445 checkMBB->addSuccessor(allocMBB); 2446 checkMBB->addSuccessor(&PrologueMBB); 2447 2448 #ifdef EXPENSIVE_CHECKS 2449 MF.verify(); 2450 #endif 2451 } 2452 2453 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 2454 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 2455 /// to fields it needs, through a named metadata node "hipe.literals" containing 2456 /// name-value pairs. 2457 static unsigned getHiPELiteral( 2458 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 2459 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 2460 MDNode *Node = HiPELiteralsMD->getOperand(i); 2461 if (Node->getNumOperands() != 2) continue; 2462 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 2463 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 2464 if (!NodeName || !NodeVal) continue; 2465 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 2466 if (ValConst && NodeName->getString() == LiteralName) { 2467 return ValConst->getZExtValue(); 2468 } 2469 } 2470 2471 report_fatal_error("HiPE literal " + LiteralName 2472 + " required but not provided"); 2473 } 2474 2475 /// Erlang programs may need a special prologue to handle the stack size they 2476 /// might need at runtime. That is because Erlang/OTP does not implement a C 2477 /// stack but uses a custom implementation of hybrid stack/heap architecture. 2478 /// (for more information see Eric Stenman's Ph.D. thesis: 2479 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 2480 /// 2481 /// CheckStack: 2482 /// temp0 = sp - MaxStack 2483 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2484 /// OldStart: 2485 /// ... 2486 /// IncStack: 2487 /// call inc_stack # doubles the stack space 2488 /// temp0 = sp - MaxStack 2489 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2490 void X86FrameLowering::adjustForHiPEPrologue( 2491 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2492 MachineFrameInfo &MFI = MF.getFrameInfo(); 2493 DebugLoc DL; 2494 2495 // To support shrink-wrapping we would need to insert the new blocks 2496 // at the right place and update the branches to PrologueMBB. 2497 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2498 2499 // HiPE-specific values 2500 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 2501 ->getNamedMetadata("hipe.literals"); 2502 if (!HiPELiteralsMD) 2503 report_fatal_error( 2504 "Can't generate HiPE prologue without runtime parameters"); 2505 const unsigned HipeLeafWords 2506 = getHiPELiteral(HiPELiteralsMD, 2507 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 2508 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 2509 const unsigned Guaranteed = HipeLeafWords * SlotSize; 2510 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? 2511 MF.getFunction().arg_size() - CCRegisteredArgs : 0; 2512 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 2513 2514 assert(STI.isTargetLinux() && 2515 "HiPE prologue is only supported on Linux operating systems."); 2516 2517 // Compute the largest caller's frame that is needed to fit the callees' 2518 // frames. This 'MaxStack' is computed from: 2519 // 2520 // a) the fixed frame size, which is the space needed for all spilled temps, 2521 // b) outgoing on-stack parameter areas, and 2522 // c) the minimum stack space this function needs to make available for the 2523 // functions it calls (a tunable ABI property). 2524 if (MFI.hasCalls()) { 2525 unsigned MoreStackForCalls = 0; 2526 2527 for (auto &MBB : MF) { 2528 for (auto &MI : MBB) { 2529 if (!MI.isCall()) 2530 continue; 2531 2532 // Get callee operand. 2533 const MachineOperand &MO = MI.getOperand(0); 2534 2535 // Only take account of global function calls (no closures etc.). 2536 if (!MO.isGlobal()) 2537 continue; 2538 2539 const Function *F = dyn_cast<Function>(MO.getGlobal()); 2540 if (!F) 2541 continue; 2542 2543 // Do not update 'MaxStack' for primitive and built-in functions 2544 // (encoded with names either starting with "erlang."/"bif_" or not 2545 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 2546 // "_", such as the BIF "suspend_0") as they are executed on another 2547 // stack. 2548 if (F->getName().find("erlang.") != StringRef::npos || 2549 F->getName().find("bif_") != StringRef::npos || 2550 F->getName().find_first_of("._") == StringRef::npos) 2551 continue; 2552 2553 unsigned CalleeStkArity = 2554 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 2555 if (HipeLeafWords - 1 > CalleeStkArity) 2556 MoreStackForCalls = std::max(MoreStackForCalls, 2557 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 2558 } 2559 } 2560 MaxStack += MoreStackForCalls; 2561 } 2562 2563 // If the stack frame needed is larger than the guaranteed then runtime checks 2564 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 2565 if (MaxStack > Guaranteed) { 2566 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 2567 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 2568 2569 for (const auto &LI : PrologueMBB.liveins()) { 2570 stackCheckMBB->addLiveIn(LI); 2571 incStackMBB->addLiveIn(LI); 2572 } 2573 2574 MF.push_front(incStackMBB); 2575 MF.push_front(stackCheckMBB); 2576 2577 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 2578 unsigned LEAop, CMPop, CALLop; 2579 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 2580 if (Is64Bit) { 2581 SPReg = X86::RSP; 2582 PReg = X86::RBP; 2583 LEAop = X86::LEA64r; 2584 CMPop = X86::CMP64rm; 2585 CALLop = X86::CALL64pcrel32; 2586 } else { 2587 SPReg = X86::ESP; 2588 PReg = X86::EBP; 2589 LEAop = X86::LEA32r; 2590 CMPop = X86::CMP32rm; 2591 CALLop = X86::CALLpcrel32; 2592 } 2593 2594 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2595 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2596 "HiPE prologue scratch register is live-in"); 2597 2598 // Create new MBB for StackCheck: 2599 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 2600 SPReg, false, -MaxStack); 2601 // SPLimitOffset is in a fixed heap location (pointed by BP). 2602 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 2603 .addReg(ScratchReg), PReg, false, SPLimitOffset); 2604 BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_1)).addMBB(&PrologueMBB); 2605 2606 // Create new MBB for IncStack: 2607 BuildMI(incStackMBB, DL, TII.get(CALLop)). 2608 addExternalSymbol("inc_stack_0"); 2609 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 2610 SPReg, false, -MaxStack); 2611 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 2612 .addReg(ScratchReg), PReg, false, SPLimitOffset); 2613 BuildMI(incStackMBB, DL, TII.get(X86::JLE_1)).addMBB(incStackMBB); 2614 2615 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 2616 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 2617 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 2618 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 2619 } 2620 #ifdef EXPENSIVE_CHECKS 2621 MF.verify(); 2622 #endif 2623 } 2624 2625 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 2626 MachineBasicBlock::iterator MBBI, 2627 const DebugLoc &DL, 2628 int Offset) const { 2629 2630 if (Offset <= 0) 2631 return false; 2632 2633 if (Offset % SlotSize) 2634 return false; 2635 2636 int NumPops = Offset / SlotSize; 2637 // This is only worth it if we have at most 2 pops. 2638 if (NumPops != 1 && NumPops != 2) 2639 return false; 2640 2641 // Handle only the trivial case where the adjustment directly follows 2642 // a call. This is the most common one, anyway. 2643 if (MBBI == MBB.begin()) 2644 return false; 2645 MachineBasicBlock::iterator Prev = std::prev(MBBI); 2646 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 2647 return false; 2648 2649 unsigned Regs[2]; 2650 unsigned FoundRegs = 0; 2651 2652 auto &MRI = MBB.getParent()->getRegInfo(); 2653 auto RegMask = Prev->getOperand(1); 2654 2655 auto &RegClass = 2656 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 2657 // Try to find up to NumPops free registers. 2658 for (auto Candidate : RegClass) { 2659 2660 // Poor man's liveness: 2661 // Since we're immediately after a call, any register that is clobbered 2662 // by the call and not defined by it can be considered dead. 2663 if (!RegMask.clobbersPhysReg(Candidate)) 2664 continue; 2665 2666 // Don't clobber reserved registers 2667 if (MRI.isReserved(Candidate)) 2668 continue; 2669 2670 bool IsDef = false; 2671 for (const MachineOperand &MO : Prev->implicit_operands()) { 2672 if (MO.isReg() && MO.isDef() && 2673 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 2674 IsDef = true; 2675 break; 2676 } 2677 } 2678 2679 if (IsDef) 2680 continue; 2681 2682 Regs[FoundRegs++] = Candidate; 2683 if (FoundRegs == (unsigned)NumPops) 2684 break; 2685 } 2686 2687 if (FoundRegs == 0) 2688 return false; 2689 2690 // If we found only one free register, but need two, reuse the same one twice. 2691 while (FoundRegs < (unsigned)NumPops) 2692 Regs[FoundRegs++] = Regs[0]; 2693 2694 for (int i = 0; i < NumPops; ++i) 2695 BuildMI(MBB, MBBI, DL, 2696 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 2697 2698 return true; 2699 } 2700 2701 MachineBasicBlock::iterator X86FrameLowering:: 2702 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 2703 MachineBasicBlock::iterator I) const { 2704 bool reserveCallFrame = hasReservedCallFrame(MF); 2705 unsigned Opcode = I->getOpcode(); 2706 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 2707 DebugLoc DL = I->getDebugLoc(); 2708 uint64_t Amount = !reserveCallFrame ? TII.getFrameSize(*I) : 0; 2709 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 2710 I = MBB.erase(I); 2711 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 2712 2713 if (!reserveCallFrame) { 2714 // If the stack pointer can be changed after prologue, turn the 2715 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 2716 // adjcallstackdown instruction into 'add ESP, <amt>' 2717 2718 // We need to keep the stack aligned properly. To do this, we round the 2719 // amount of space needed for the outgoing arguments up to the next 2720 // alignment boundary. 2721 unsigned StackAlign = getStackAlignment(); 2722 Amount = alignTo(Amount, StackAlign); 2723 2724 MachineModuleInfo &MMI = MF.getMMI(); 2725 const Function &F = MF.getFunction(); 2726 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2727 bool DwarfCFI = !WindowsCFI && 2728 (MMI.hasDebugInfo() || F.needsUnwindTableEntry()); 2729 2730 // If we have any exception handlers in this function, and we adjust 2731 // the SP before calls, we may need to indicate this to the unwinder 2732 // using GNU_ARGS_SIZE. Note that this may be necessary even when 2733 // Amount == 0, because the preceding function may have set a non-0 2734 // GNU_ARGS_SIZE. 2735 // TODO: We don't need to reset this between subsequent functions, 2736 // if it didn't change. 2737 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 2738 2739 if (HasDwarfEHHandlers && !isDestroy && 2740 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 2741 BuildCFI(MBB, InsertPos, DL, 2742 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 2743 2744 if (Amount == 0) 2745 return I; 2746 2747 // Factor out the amount that gets handled inside the sequence 2748 // (Pushes of argument for frame setup, callee pops for frame destroy) 2749 Amount -= InternalAmt; 2750 2751 // TODO: This is needed only if we require precise CFA. 2752 // If this is a callee-pop calling convention, emit a CFA adjust for 2753 // the amount the callee popped. 2754 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 2755 BuildCFI(MBB, InsertPos, DL, 2756 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 2757 2758 // Add Amount to SP to destroy a frame, or subtract to setup. 2759 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 2760 2761 if (StackAdjustment) { 2762 // Merge with any previous or following adjustment instruction. Note: the 2763 // instructions merged with here do not have CFI, so their stack 2764 // adjustments do not feed into CfaAdjustment. 2765 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 2766 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 2767 2768 if (StackAdjustment) { 2769 if (!(F.optForMinSize() && 2770 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 2771 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 2772 /*InEpilogue=*/false); 2773 } 2774 } 2775 2776 if (DwarfCFI && !hasFP(MF)) { 2777 // If we don't have FP, but need to generate unwind information, 2778 // we need to set the correct CFA offset after the stack adjustment. 2779 // How much we adjust the CFA offset depends on whether we're emitting 2780 // CFI only for EH purposes or for debugging. EH only requires the CFA 2781 // offset to be correct at each call site, while for debugging we want 2782 // it to be more precise. 2783 2784 int64_t CfaAdjustment = -StackAdjustment; 2785 // TODO: When not using precise CFA, we also need to adjust for the 2786 // InternalAmt here. 2787 if (CfaAdjustment) { 2788 BuildCFI(MBB, InsertPos, DL, 2789 MCCFIInstruction::createAdjustCfaOffset(nullptr, 2790 CfaAdjustment)); 2791 } 2792 } 2793 2794 return I; 2795 } 2796 2797 if (isDestroy && InternalAmt) { 2798 // If we are performing frame pointer elimination and if the callee pops 2799 // something off the stack pointer, add it back. We do this until we have 2800 // more advanced stack pointer tracking ability. 2801 // We are not tracking the stack pointer adjustment by the callee, so make 2802 // sure we restore the stack pointer immediately after the call, there may 2803 // be spill code inserted between the CALL and ADJCALLSTACKUP instructions. 2804 MachineBasicBlock::iterator CI = I; 2805 MachineBasicBlock::iterator B = MBB.begin(); 2806 while (CI != B && !std::prev(CI)->isCall()) 2807 --CI; 2808 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 2809 } 2810 2811 return I; 2812 } 2813 2814 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 2815 assert(MBB.getParent() && "Block is not attached to a function!"); 2816 const MachineFunction &MF = *MBB.getParent(); 2817 return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS); 2818 } 2819 2820 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 2821 assert(MBB.getParent() && "Block is not attached to a function!"); 2822 2823 // Win64 has strict requirements in terms of epilogue and we are 2824 // not taking a chance at messing with them. 2825 // I.e., unless this block is already an exit block, we can't use 2826 // it as an epilogue. 2827 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 2828 return false; 2829 2830 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 2831 return true; 2832 2833 // If we cannot use LEA to adjust SP, we may need to use ADD, which 2834 // clobbers the EFLAGS. Check that we do not need to preserve it, 2835 // otherwise, conservatively assume this is not 2836 // safe to insert the epilogue here. 2837 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 2838 } 2839 2840 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2841 // If we may need to emit frameless compact unwind information, give 2842 // up as this is currently broken: PR25614. 2843 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) && 2844 // The lowering of segmented stack and HiPE only support entry blocks 2845 // as prologue blocks: PR26107. 2846 // This limitation may be lifted if we fix: 2847 // - adjustForSegmentedStacks 2848 // - adjustForHiPEPrologue 2849 MF.getFunction().getCallingConv() != CallingConv::HiPE && 2850 !MF.shouldSplitStack(); 2851 } 2852 2853 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 2854 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 2855 const DebugLoc &DL, bool RestoreSP) const { 2856 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 2857 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 2858 assert(STI.is32Bit() && !Uses64BitFramePtr && 2859 "restoring EBP/ESI on non-32-bit target"); 2860 2861 MachineFunction &MF = *MBB.getParent(); 2862 unsigned FramePtr = TRI->getFrameRegister(MF); 2863 unsigned BasePtr = TRI->getBaseRegister(); 2864 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 2865 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2866 MachineFrameInfo &MFI = MF.getFrameInfo(); 2867 2868 // FIXME: Don't set FrameSetup flag in catchret case. 2869 2870 int FI = FuncInfo.EHRegNodeFrameIndex; 2871 int EHRegSize = MFI.getObjectSize(FI); 2872 2873 if (RestoreSP) { 2874 // MOV32rm -EHRegSize(%ebp), %esp 2875 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 2876 X86::EBP, true, -EHRegSize) 2877 .setMIFlag(MachineInstr::FrameSetup); 2878 } 2879 2880 unsigned UsedReg; 2881 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg); 2882 int EndOffset = -EHRegOffset - EHRegSize; 2883 FuncInfo.EHRegNodeEndOffset = EndOffset; 2884 2885 if (UsedReg == FramePtr) { 2886 // ADD $offset, %ebp 2887 unsigned ADDri = getADDriOpcode(false, EndOffset); 2888 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 2889 .addReg(FramePtr) 2890 .addImm(EndOffset) 2891 .setMIFlag(MachineInstr::FrameSetup) 2892 ->getOperand(3) 2893 .setIsDead(); 2894 assert(EndOffset >= 0 && 2895 "end of registration object above normal EBP position!"); 2896 } else if (UsedReg == BasePtr) { 2897 // LEA offset(%ebp), %esi 2898 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 2899 FramePtr, false, EndOffset) 2900 .setMIFlag(MachineInstr::FrameSetup); 2901 // MOV32rm SavedEBPOffset(%esi), %ebp 2902 assert(X86FI->getHasSEHFramePtrSave()); 2903 int Offset = 2904 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 2905 assert(UsedReg == BasePtr); 2906 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 2907 UsedReg, true, Offset) 2908 .setMIFlag(MachineInstr::FrameSetup); 2909 } else { 2910 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 2911 } 2912 return MBBI; 2913 } 2914 2915 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 2916 return TRI->getSlotSize(); 2917 } 2918 2919 unsigned X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) 2920 const { 2921 return TRI->getDwarfRegNum(StackPtr, true); 2922 } 2923 2924 namespace { 2925 // Struct used by orderFrameObjects to help sort the stack objects. 2926 struct X86FrameSortingObject { 2927 bool IsValid = false; // true if we care about this Object. 2928 unsigned ObjectIndex = 0; // Index of Object into MFI list. 2929 unsigned ObjectSize = 0; // Size of Object in bytes. 2930 unsigned ObjectAlignment = 1; // Alignment of Object in bytes. 2931 unsigned ObjectNumUses = 0; // Object static number of uses. 2932 }; 2933 2934 // The comparison function we use for std::sort to order our local 2935 // stack symbols. The current algorithm is to use an estimated 2936 // "density". This takes into consideration the size and number of 2937 // uses each object has in order to roughly minimize code size. 2938 // So, for example, an object of size 16B that is referenced 5 times 2939 // will get higher priority than 4 4B objects referenced 1 time each. 2940 // It's not perfect and we may be able to squeeze a few more bytes out of 2941 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 2942 // fringe end can have special consideration, given their size is less 2943 // important, etc.), but the algorithmic complexity grows too much to be 2944 // worth the extra gains we get. This gets us pretty close. 2945 // The final order leaves us with objects with highest priority going 2946 // at the end of our list. 2947 struct X86FrameSortingComparator { 2948 inline bool operator()(const X86FrameSortingObject &A, 2949 const X86FrameSortingObject &B) { 2950 uint64_t DensityAScaled, DensityBScaled; 2951 2952 // For consistency in our comparison, all invalid objects are placed 2953 // at the end. This also allows us to stop walking when we hit the 2954 // first invalid item after it's all sorted. 2955 if (!A.IsValid) 2956 return false; 2957 if (!B.IsValid) 2958 return true; 2959 2960 // The density is calculated by doing : 2961 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 2962 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 2963 // Since this approach may cause inconsistencies in 2964 // the floating point <, >, == comparisons, depending on the floating 2965 // point model with which the compiler was built, we're going 2966 // to scale both sides by multiplying with 2967 // A.ObjectSize * B.ObjectSize. This ends up factoring away 2968 // the division and, with it, the need for any floating point 2969 // arithmetic. 2970 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 2971 static_cast<uint64_t>(B.ObjectSize); 2972 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 2973 static_cast<uint64_t>(A.ObjectSize); 2974 2975 // If the two densities are equal, prioritize highest alignment 2976 // objects. This allows for similar alignment objects 2977 // to be packed together (given the same density). 2978 // There's room for improvement here, also, since we can pack 2979 // similar alignment (different density) objects next to each 2980 // other to save padding. This will also require further 2981 // complexity/iterations, and the overall gain isn't worth it, 2982 // in general. Something to keep in mind, though. 2983 if (DensityAScaled == DensityBScaled) 2984 return A.ObjectAlignment < B.ObjectAlignment; 2985 2986 return DensityAScaled < DensityBScaled; 2987 } 2988 }; 2989 } // namespace 2990 2991 // Order the symbols in the local stack. 2992 // We want to place the local stack objects in some sort of sensible order. 2993 // The heuristic we use is to try and pack them according to static number 2994 // of uses and size of object in order to minimize code size. 2995 void X86FrameLowering::orderFrameObjects( 2996 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 2997 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2998 2999 // Don't waste time if there's nothing to do. 3000 if (ObjectsToAllocate.empty()) 3001 return; 3002 3003 // Create an array of all MFI objects. We won't need all of these 3004 // objects, but we're going to create a full array of them to make 3005 // it easier to index into when we're counting "uses" down below. 3006 // We want to be able to easily/cheaply access an object by simply 3007 // indexing into it, instead of having to search for it every time. 3008 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 3009 3010 // Walk the objects we care about and mark them as such in our working 3011 // struct. 3012 for (auto &Obj : ObjectsToAllocate) { 3013 SortingObjects[Obj].IsValid = true; 3014 SortingObjects[Obj].ObjectIndex = Obj; 3015 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlignment(Obj); 3016 // Set the size. 3017 int ObjectSize = MFI.getObjectSize(Obj); 3018 if (ObjectSize == 0) 3019 // Variable size. Just use 4. 3020 SortingObjects[Obj].ObjectSize = 4; 3021 else 3022 SortingObjects[Obj].ObjectSize = ObjectSize; 3023 } 3024 3025 // Count the number of uses for each object. 3026 for (auto &MBB : MF) { 3027 for (auto &MI : MBB) { 3028 if (MI.isDebugInstr()) 3029 continue; 3030 for (const MachineOperand &MO : MI.operands()) { 3031 // Check to see if it's a local stack symbol. 3032 if (!MO.isFI()) 3033 continue; 3034 int Index = MO.getIndex(); 3035 // Check to see if it falls within our range, and is tagged 3036 // to require ordering. 3037 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 3038 SortingObjects[Index].IsValid) 3039 SortingObjects[Index].ObjectNumUses++; 3040 } 3041 } 3042 } 3043 3044 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 3045 // info). 3046 std::stable_sort(SortingObjects.begin(), SortingObjects.end(), 3047 X86FrameSortingComparator()); 3048 3049 // Now modify the original list to represent the final order that 3050 // we want. The order will depend on whether we're going to access them 3051 // from the stack pointer or the frame pointer. For SP, the list should 3052 // end up with the END containing objects that we want with smaller offsets. 3053 // For FP, it should be flipped. 3054 int i = 0; 3055 for (auto &Obj : SortingObjects) { 3056 // All invalid items are sorted at the end, so it's safe to stop. 3057 if (!Obj.IsValid) 3058 break; 3059 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3060 } 3061 3062 // Flip it if we're accessing off of the FP. 3063 if (!TRI->needsStackRealignment(MF) && hasFP(MF)) 3064 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 3065 } 3066 3067 3068 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 3069 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 3070 unsigned Offset = 16; 3071 // RBP is immediately pushed. 3072 Offset += SlotSize; 3073 // All callee-saved registers are then pushed. 3074 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 3075 // Every funclet allocates enough stack space for the largest outgoing call. 3076 Offset += getWinEHFuncletFrameSize(MF); 3077 return Offset; 3078 } 3079 3080 void X86FrameLowering::processFunctionBeforeFrameFinalized( 3081 MachineFunction &MF, RegScavenger *RS) const { 3082 // Mark the function as not having WinCFI. We will set it back to true in 3083 // emitPrologue if it gets called and emits CFI. 3084 MF.setHasWinCFI(false); 3085 3086 // If this function isn't doing Win64-style C++ EH, we don't need to do 3087 // anything. 3088 const Function &F = MF.getFunction(); 3089 if (!STI.is64Bit() || !MF.hasEHFunclets() || 3090 classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX) 3091 return; 3092 3093 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 3094 // relative to RSP after the prologue. Find the offset of the last fixed 3095 // object, so that we can allocate a slot immediately following it. If there 3096 // were no fixed objects, use offset -SlotSize, which is immediately after the 3097 // return address. Fixed objects have negative frame indices. 3098 MachineFrameInfo &MFI = MF.getFrameInfo(); 3099 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3100 int64_t MinFixedObjOffset = -SlotSize; 3101 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 3102 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 3103 3104 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 3105 for (WinEHHandlerType &H : TBME.HandlerArray) { 3106 int FrameIndex = H.CatchObj.FrameIndex; 3107 if (FrameIndex != INT_MAX) { 3108 // Ensure alignment. 3109 unsigned Align = MFI.getObjectAlignment(FrameIndex); 3110 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 3111 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 3112 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 3113 } 3114 } 3115 } 3116 3117 // Ensure alignment. 3118 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 3119 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 3120 int UnwindHelpFI = 3121 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*Immutable=*/false); 3122 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3123 3124 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 3125 // other frame setup instructions. 3126 MachineBasicBlock &MBB = MF.front(); 3127 auto MBBI = MBB.begin(); 3128 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3129 ++MBBI; 3130 3131 DebugLoc DL = MBB.findDebugLoc(MBBI); 3132 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 3133 UnwindHelpFI) 3134 .addImm(-2); 3135 } 3136