1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "X86FrameLowering.h"
14 #include "MCTargetDesc/X86MCTargetDesc.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrInfo.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/EHPersonalities.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/WinEHFuncInfo.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCObjectFileInfo.h"
34 #include "llvm/MC/MCSymbol.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Target/TargetOptions.h"
37 #include <cstdlib>
38
39 #define DEBUG_TYPE "x86-fl"
40
41 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue");
42 STATISTIC(NumFrameExtraProbe,
43 "Number of extra stack probes generated in prologue");
44
45 using namespace llvm;
46
X86FrameLowering(const X86Subtarget & STI,MaybeAlign StackAlignOverride)47 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
48 MaybeAlign StackAlignOverride)
49 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(),
50 STI.is64Bit() ? -8 : -4),
51 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
52 // Cache a bunch of frame-related predicates for this subtarget.
53 SlotSize = TRI->getSlotSize();
54 Is64Bit = STI.is64Bit();
55 IsLP64 = STI.isTarget64BitLP64();
56 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
57 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
58 StackPtr = TRI->getStackRegister();
59 }
60
hasReservedCallFrame(const MachineFunction & MF) const61 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
62 return !MF.getFrameInfo().hasVarSizedObjects() &&
63 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() &&
64 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall();
65 }
66
67 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
68 /// call frame pseudos can be simplified. Having a FP, as in the default
69 /// implementation, is not sufficient here since we can't always use it.
70 /// Use a more nuanced condition.
71 bool
canSimplifyCallFramePseudos(const MachineFunction & MF) const72 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
73 return hasReservedCallFrame(MF) ||
74 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
75 (hasFP(MF) && !TRI->hasStackRealignment(MF)) ||
76 TRI->hasBasePointer(MF);
77 }
78
79 // needsFrameIndexResolution - Do we need to perform FI resolution for
80 // this function. Normally, this is required only when the function
81 // has any stack objects. However, FI resolution actually has another job,
82 // not apparent from the title - it resolves callframesetup/destroy
83 // that were not simplified earlier.
84 // So, this is required for x86 functions that have push sequences even
85 // when there are no stack objects.
86 bool
needsFrameIndexResolution(const MachineFunction & MF) const87 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
88 return MF.getFrameInfo().hasStackObjects() ||
89 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
90 }
91
92 /// hasFP - Return true if the specified function should have a dedicated frame
93 /// pointer register. This is true if the function has variable sized allocas
94 /// or if frame pointer elimination is disabled.
hasFP(const MachineFunction & MF) const95 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
96 const MachineFrameInfo &MFI = MF.getFrameInfo();
97 return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
98 TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
99 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
100 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
101 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
102 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
103 MFI.hasStackMap() || MFI.hasPatchPoint() ||
104 (isWin64Prologue(MF) && MFI.hasCopyImplyingStackAdjustment()));
105 }
106
getSUBriOpcode(bool IsLP64,int64_t Imm)107 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) {
108 if (IsLP64) {
109 if (isInt<8>(Imm))
110 return X86::SUB64ri8;
111 return X86::SUB64ri32;
112 } else {
113 if (isInt<8>(Imm))
114 return X86::SUB32ri8;
115 return X86::SUB32ri;
116 }
117 }
118
getADDriOpcode(bool IsLP64,int64_t Imm)119 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) {
120 if (IsLP64) {
121 if (isInt<8>(Imm))
122 return X86::ADD64ri8;
123 return X86::ADD64ri32;
124 } else {
125 if (isInt<8>(Imm))
126 return X86::ADD32ri8;
127 return X86::ADD32ri;
128 }
129 }
130
getSUBrrOpcode(bool IsLP64)131 static unsigned getSUBrrOpcode(bool IsLP64) {
132 return IsLP64 ? X86::SUB64rr : X86::SUB32rr;
133 }
134
getADDrrOpcode(bool IsLP64)135 static unsigned getADDrrOpcode(bool IsLP64) {
136 return IsLP64 ? X86::ADD64rr : X86::ADD32rr;
137 }
138
getANDriOpcode(bool IsLP64,int64_t Imm)139 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
140 if (IsLP64) {
141 if (isInt<8>(Imm))
142 return X86::AND64ri8;
143 return X86::AND64ri32;
144 }
145 if (isInt<8>(Imm))
146 return X86::AND32ri8;
147 return X86::AND32ri;
148 }
149
getLEArOpcode(bool IsLP64)150 static unsigned getLEArOpcode(bool IsLP64) {
151 return IsLP64 ? X86::LEA64r : X86::LEA32r;
152 }
153
getMOVriOpcode(bool Use64BitReg,int64_t Imm)154 static unsigned getMOVriOpcode(bool Use64BitReg, int64_t Imm) {
155 if (Use64BitReg) {
156 if (isUInt<32>(Imm))
157 return X86::MOV32ri64;
158 if (isInt<32>(Imm))
159 return X86::MOV64ri32;
160 return X86::MOV64ri;
161 }
162 return X86::MOV32ri;
163 }
164
isEAXLiveIn(MachineBasicBlock & MBB)165 static bool isEAXLiveIn(MachineBasicBlock &MBB) {
166 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
167 unsigned Reg = RegMask.PhysReg;
168
169 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
170 Reg == X86::AH || Reg == X86::AL)
171 return true;
172 }
173
174 return false;
175 }
176
177 /// Check if the flags need to be preserved before the terminators.
178 /// This would be the case, if the eflags is live-in of the region
179 /// composed by the terminators or live-out of that region, without
180 /// being defined by a terminator.
181 static bool
flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock & MBB)182 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
183 for (const MachineInstr &MI : MBB.terminators()) {
184 bool BreakNext = false;
185 for (const MachineOperand &MO : MI.operands()) {
186 if (!MO.isReg())
187 continue;
188 Register Reg = MO.getReg();
189 if (Reg != X86::EFLAGS)
190 continue;
191
192 // This terminator needs an eflags that is not defined
193 // by a previous another terminator:
194 // EFLAGS is live-in of the region composed by the terminators.
195 if (!MO.isDef())
196 return true;
197 // This terminator defines the eflags, i.e., we don't need to preserve it.
198 // However, we still need to check this specific terminator does not
199 // read a live-in value.
200 BreakNext = true;
201 }
202 // We found a definition of the eflags, no need to preserve them.
203 if (BreakNext)
204 return false;
205 }
206
207 // None of the terminators use or define the eflags.
208 // Check if they are live-out, that would imply we need to preserve them.
209 for (const MachineBasicBlock *Succ : MBB.successors())
210 if (Succ->isLiveIn(X86::EFLAGS))
211 return true;
212
213 return false;
214 }
215
216 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
217 /// stack pointer by a constant value.
emitSPUpdate(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const DebugLoc & DL,int64_t NumBytes,bool InEpilogue) const218 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
219 MachineBasicBlock::iterator &MBBI,
220 const DebugLoc &DL,
221 int64_t NumBytes, bool InEpilogue) const {
222 bool isSub = NumBytes < 0;
223 uint64_t Offset = isSub ? -NumBytes : NumBytes;
224 MachineInstr::MIFlag Flag =
225 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;
226
227 uint64_t Chunk = (1LL << 31) - 1;
228
229 MachineFunction &MF = *MBB.getParent();
230 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
231 const X86TargetLowering &TLI = *STI.getTargetLowering();
232 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
233
234 // It's ok to not take into account large chunks when probing, as the
235 // allocation is split in smaller chunks anyway.
236 if (EmitInlineStackProbe && !InEpilogue) {
237
238 // This pseudo-instruction is going to be expanded, potentially using a
239 // loop, by inlineStackProbe().
240 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset);
241 return;
242 } else if (Offset > Chunk) {
243 // Rather than emit a long series of instructions for large offsets,
244 // load the offset into a register and do one sub/add
245 unsigned Reg = 0;
246 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
247
248 if (isSub && !isEAXLiveIn(MBB))
249 Reg = Rax;
250 else
251 Reg = TRI->findDeadCallerSavedReg(MBB, MBBI);
252
253 unsigned AddSubRROpc =
254 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit);
255 if (Reg) {
256 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Reg)
257 .addImm(Offset)
258 .setMIFlag(Flag);
259 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
260 .addReg(StackPtr)
261 .addReg(Reg);
262 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
263 return;
264 } else if (Offset > 8 * Chunk) {
265 // If we would need more than 8 add or sub instructions (a >16GB stack
266 // frame), it's worth spilling RAX to materialize this immediate.
267 // pushq %rax
268 // movabsq +-$Offset+-SlotSize, %rax
269 // addq %rsp, %rax
270 // xchg %rax, (%rsp)
271 // movq (%rsp), %rsp
272 assert(Is64Bit && "can't have 32-bit 16GB stack frame");
273 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
274 .addReg(Rax, RegState::Kill)
275 .setMIFlag(Flag);
276 // Subtract is not commutative, so negate the offset and always use add.
277 // Subtract 8 less and add 8 more to account for the PUSH we just did.
278 if (isSub)
279 Offset = -(Offset - SlotSize);
280 else
281 Offset = Offset + SlotSize;
282 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Rax)
283 .addImm(Offset)
284 .setMIFlag(Flag);
285 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
286 .addReg(Rax)
287 .addReg(StackPtr);
288 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
289 // Exchange the new SP in RAX with the top of the stack.
290 addRegOffset(
291 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
292 StackPtr, false, 0);
293 // Load new SP from the top of the stack into RSP.
294 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
295 StackPtr, false, 0);
296 return;
297 }
298 }
299
300 while (Offset) {
301 uint64_t ThisVal = std::min(Offset, Chunk);
302 if (ThisVal == SlotSize) {
303 // Use push / pop for slot sized adjustments as a size optimization. We
304 // need to find a dead register when using pop.
305 unsigned Reg = isSub
306 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
307 : TRI->findDeadCallerSavedReg(MBB, MBBI);
308 if (Reg) {
309 unsigned Opc = isSub
310 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
311 : (Is64Bit ? X86::POP64r : X86::POP32r);
312 BuildMI(MBB, MBBI, DL, TII.get(Opc))
313 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub))
314 .setMIFlag(Flag);
315 Offset -= ThisVal;
316 continue;
317 }
318 }
319
320 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue)
321 .setMIFlag(Flag);
322
323 Offset -= ThisVal;
324 }
325 }
326
BuildStackAdjustment(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,int64_t Offset,bool InEpilogue) const327 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
328 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
329 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
330 assert(Offset != 0 && "zero offset stack adjustment requested");
331
332 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
333 // is tricky.
334 bool UseLEA;
335 if (!InEpilogue) {
336 // Check if inserting the prologue at the beginning
337 // of MBB would require to use LEA operations.
338 // We need to use LEA operations if EFLAGS is live in, because
339 // it means an instruction will read it before it gets defined.
340 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
341 } else {
342 // If we can use LEA for SP but we shouldn't, check that none
343 // of the terminators uses the eflags. Otherwise we will insert
344 // a ADD that will redefine the eflags and break the condition.
345 // Alternatively, we could move the ADD, but this may not be possible
346 // and is an optimization anyway.
347 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
348 if (UseLEA && !STI.useLeaForSP())
349 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
350 // If that assert breaks, that means we do not do the right thing
351 // in canUseAsEpilogue.
352 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
353 "We shouldn't have allowed this insertion point");
354 }
355
356 MachineInstrBuilder MI;
357 if (UseLEA) {
358 MI = addRegOffset(BuildMI(MBB, MBBI, DL,
359 TII.get(getLEArOpcode(Uses64BitFramePtr)),
360 StackPtr),
361 StackPtr, false, Offset);
362 } else {
363 bool IsSub = Offset < 0;
364 uint64_t AbsOffset = IsSub ? -Offset : Offset;
365 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
366 : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
367 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
368 .addReg(StackPtr)
369 .addImm(AbsOffset);
370 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
371 }
372 return MI;
373 }
374
mergeSPUpdates(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,bool doMergeWithPrevious) const375 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
376 MachineBasicBlock::iterator &MBBI,
377 bool doMergeWithPrevious) const {
378 if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
379 (!doMergeWithPrevious && MBBI == MBB.end()))
380 return 0;
381
382 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
383
384 PI = skipDebugInstructionsBackward(PI, MBB.begin());
385 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
386 // instruction, and that there are no DBG_VALUE or other instructions between
387 // ADD/SUB/LEA and its corresponding CFI instruction.
388 /* TODO: Add support for the case where there are multiple CFI instructions
389 below the ADD/SUB/LEA, e.g.:
390 ...
391 add
392 cfi_def_cfa_offset
393 cfi_offset
394 ...
395 */
396 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
397 PI = std::prev(PI);
398
399 unsigned Opc = PI->getOpcode();
400 int Offset = 0;
401
402 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
403 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
404 PI->getOperand(0).getReg() == StackPtr){
405 assert(PI->getOperand(1).getReg() == StackPtr);
406 Offset = PI->getOperand(2).getImm();
407 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
408 PI->getOperand(0).getReg() == StackPtr &&
409 PI->getOperand(1).getReg() == StackPtr &&
410 PI->getOperand(2).getImm() == 1 &&
411 PI->getOperand(3).getReg() == X86::NoRegister &&
412 PI->getOperand(5).getReg() == X86::NoRegister) {
413 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
414 Offset = PI->getOperand(4).getImm();
415 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
416 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
417 PI->getOperand(0).getReg() == StackPtr) {
418 assert(PI->getOperand(1).getReg() == StackPtr);
419 Offset = -PI->getOperand(2).getImm();
420 } else
421 return 0;
422
423 PI = MBB.erase(PI);
424 if (PI != MBB.end() && PI->isCFIInstruction()) {
425 auto CIs = MBB.getParent()->getFrameInstructions();
426 MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()];
427 if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset ||
428 CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset)
429 PI = MBB.erase(PI);
430 }
431 if (!doMergeWithPrevious)
432 MBBI = skipDebugInstructionsForward(PI, MBB.end());
433
434 return Offset;
435 }
436
BuildCFI(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,const MCCFIInstruction & CFIInst,MachineInstr::MIFlag Flag) const437 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
438 MachineBasicBlock::iterator MBBI,
439 const DebugLoc &DL,
440 const MCCFIInstruction &CFIInst,
441 MachineInstr::MIFlag Flag) const {
442 MachineFunction &MF = *MBB.getParent();
443 unsigned CFIIndex = MF.addFrameInst(CFIInst);
444 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
445 .addCFIIndex(CFIIndex)
446 .setMIFlag(Flag);
447 }
448
449 /// Emits Dwarf Info specifying offsets of callee saved registers and
450 /// frame pointer. This is called only when basic block sections are enabled.
emitCalleeSavedFrameMovesFullCFA(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI) const451 void X86FrameLowering::emitCalleeSavedFrameMovesFullCFA(
452 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
453 MachineFunction &MF = *MBB.getParent();
454 if (!hasFP(MF)) {
455 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
456 return;
457 }
458 const MachineModuleInfo &MMI = MF.getMMI();
459 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
460 const Register FramePtr = TRI->getFrameRegister(MF);
461 const Register MachineFramePtr =
462 STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64))
463 : FramePtr;
464 unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true);
465 // Offset = space for return address + size of the frame pointer itself.
466 unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4);
467 BuildCFI(MBB, MBBI, DebugLoc{},
468 MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset));
469 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
470 }
471
emitCalleeSavedFrameMoves(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool IsPrologue) const472 void X86FrameLowering::emitCalleeSavedFrameMoves(
473 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
474 const DebugLoc &DL, bool IsPrologue) const {
475 MachineFunction &MF = *MBB.getParent();
476 MachineFrameInfo &MFI = MF.getFrameInfo();
477 MachineModuleInfo &MMI = MF.getMMI();
478 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
479
480 // Add callee saved registers to move list.
481 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
482
483 // Calculate offsets.
484 for (const CalleeSavedInfo &I : CSI) {
485 int64_t Offset = MFI.getObjectOffset(I.getFrameIdx());
486 Register Reg = I.getReg();
487 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
488
489 if (IsPrologue) {
490 BuildCFI(MBB, MBBI, DL,
491 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
492 } else {
493 BuildCFI(MBB, MBBI, DL,
494 MCCFIInstruction::createRestore(nullptr, DwarfReg));
495 }
496 }
497 }
498
emitZeroCallUsedRegs(BitVector RegsToZero,MachineBasicBlock & MBB) const499 void X86FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero,
500 MachineBasicBlock &MBB) const {
501 const MachineFunction &MF = *MBB.getParent();
502
503 // Insertion point.
504 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
505
506 // Fake a debug loc.
507 DebugLoc DL;
508 if (MBBI != MBB.end())
509 DL = MBBI->getDebugLoc();
510
511 // Zero out FP stack if referenced. Do this outside of the loop below so that
512 // it's done only once.
513 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
514 for (MCRegister Reg : RegsToZero.set_bits()) {
515 if (!X86::RFP80RegClass.contains(Reg))
516 continue;
517
518 unsigned NumFPRegs = ST.is64Bit() ? 8 : 7;
519 for (unsigned i = 0; i != NumFPRegs; ++i)
520 BuildMI(MBB, MBBI, DL, TII.get(X86::LD_F0));
521
522 for (unsigned i = 0; i != NumFPRegs; ++i)
523 BuildMI(MBB, MBBI, DL, TII.get(X86::ST_FPrr)).addReg(X86::ST0);
524 break;
525 }
526
527 // For GPRs, we only care to clear out the 32-bit register.
528 BitVector GPRsToZero(TRI->getNumRegs());
529 for (MCRegister Reg : RegsToZero.set_bits())
530 if (TRI->isGeneralPurposeRegister(MF, Reg)) {
531 GPRsToZero.set(getX86SubSuperRegisterOrZero(Reg, 32));
532 RegsToZero.reset(Reg);
533 }
534
535 for (MCRegister Reg : GPRsToZero.set_bits())
536 BuildMI(MBB, MBBI, DL, TII.get(X86::XOR32rr), Reg)
537 .addReg(Reg, RegState::Undef)
538 .addReg(Reg, RegState::Undef);
539
540 // Zero out registers.
541 for (MCRegister Reg : RegsToZero.set_bits()) {
542 if (ST.hasMMX() && X86::VR64RegClass.contains(Reg))
543 // FIXME: Ignore MMX registers?
544 continue;
545
546 unsigned XorOp;
547 if (X86::VR128RegClass.contains(Reg)) {
548 // XMM#
549 if (!ST.hasSSE1())
550 continue;
551 XorOp = X86::PXORrr;
552 } else if (X86::VR256RegClass.contains(Reg)) {
553 // YMM#
554 if (!ST.hasAVX())
555 continue;
556 XorOp = X86::VPXORrr;
557 } else if (X86::VR512RegClass.contains(Reg)) {
558 // ZMM#
559 if (!ST.hasAVX512())
560 continue;
561 XorOp = X86::VPXORYrr;
562 } else if (X86::VK1RegClass.contains(Reg) ||
563 X86::VK2RegClass.contains(Reg) ||
564 X86::VK4RegClass.contains(Reg) ||
565 X86::VK8RegClass.contains(Reg) ||
566 X86::VK16RegClass.contains(Reg)) {
567 if (!ST.hasVLX())
568 continue;
569 XorOp = ST.hasBWI() ? X86::KXORQrr : X86::KXORWrr;
570 } else {
571 continue;
572 }
573
574 BuildMI(MBB, MBBI, DL, TII.get(XorOp), Reg)
575 .addReg(Reg, RegState::Undef)
576 .addReg(Reg, RegState::Undef);
577 }
578 }
579
emitStackProbe(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog,Optional<MachineFunction::DebugInstrOperandPair> InstrNum) const580 void X86FrameLowering::emitStackProbe(
581 MachineFunction &MF, MachineBasicBlock &MBB,
582 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog,
583 Optional<MachineFunction::DebugInstrOperandPair> InstrNum) const {
584 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
585 if (STI.isTargetWindowsCoreCLR()) {
586 if (InProlog) {
587 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING))
588 .addImm(0 /* no explicit stack size */);
589 } else {
590 emitStackProbeInline(MF, MBB, MBBI, DL, false);
591 }
592 } else {
593 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog, InstrNum);
594 }
595 }
596
stackProbeFunctionModifiesSP() const597 bool X86FrameLowering::stackProbeFunctionModifiesSP() const {
598 return STI.isOSWindows() && !STI.isTargetWin64();
599 }
600
inlineStackProbe(MachineFunction & MF,MachineBasicBlock & PrologMBB) const601 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
602 MachineBasicBlock &PrologMBB) const {
603 auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) {
604 return MI.getOpcode() == X86::STACKALLOC_W_PROBING;
605 });
606 if (Where != PrologMBB.end()) {
607 DebugLoc DL = PrologMBB.findDebugLoc(Where);
608 emitStackProbeInline(MF, PrologMBB, Where, DL, true);
609 Where->eraseFromParent();
610 }
611 }
612
emitStackProbeInline(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const613 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
614 MachineBasicBlock &MBB,
615 MachineBasicBlock::iterator MBBI,
616 const DebugLoc &DL,
617 bool InProlog) const {
618 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
619 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit())
620 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog);
621 else
622 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog);
623 }
624
emitStackProbeInlineGeneric(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const625 void X86FrameLowering::emitStackProbeInlineGeneric(
626 MachineFunction &MF, MachineBasicBlock &MBB,
627 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
628 MachineInstr &AllocWithProbe = *MBBI;
629 uint64_t Offset = AllocWithProbe.getOperand(0).getImm();
630
631 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
632 const X86TargetLowering &TLI = *STI.getTargetLowering();
633 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) &&
634 "different expansion expected for CoreCLR 64 bit");
635
636 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
637 uint64_t ProbeChunk = StackProbeSize * 8;
638
639 uint64_t MaxAlign =
640 TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0;
641
642 // Synthesize a loop or unroll it, depending on the number of iterations.
643 // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left
644 // between the unaligned rsp and current rsp.
645 if (Offset > ProbeChunk) {
646 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset,
647 MaxAlign % StackProbeSize);
648 } else {
649 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset,
650 MaxAlign % StackProbeSize);
651 }
652 }
653
emitStackProbeInlineGenericBlock(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,uint64_t Offset,uint64_t AlignOffset) const654 void X86FrameLowering::emitStackProbeInlineGenericBlock(
655 MachineFunction &MF, MachineBasicBlock &MBB,
656 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
657 uint64_t AlignOffset) const {
658
659 const bool NeedsDwarfCFI = needsDwarfCFI(MF);
660 const bool HasFP = hasFP(MF);
661 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
662 const X86TargetLowering &TLI = *STI.getTargetLowering();
663 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset);
664 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
665 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
666
667 uint64_t CurrentOffset = 0;
668
669 assert(AlignOffset < StackProbeSize);
670
671 // If the offset is so small it fits within a page, there's nothing to do.
672 if (StackProbeSize < Offset + AlignOffset) {
673
674 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
675 .addReg(StackPtr)
676 .addImm(StackProbeSize - AlignOffset)
677 .setMIFlag(MachineInstr::FrameSetup);
678 if (!HasFP && NeedsDwarfCFI) {
679 BuildCFI(MBB, MBBI, DL,
680 MCCFIInstruction::createAdjustCfaOffset(
681 nullptr, StackProbeSize - AlignOffset));
682 }
683 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
684
685 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
686 .setMIFlag(MachineInstr::FrameSetup),
687 StackPtr, false, 0)
688 .addImm(0)
689 .setMIFlag(MachineInstr::FrameSetup);
690 NumFrameExtraProbe++;
691 CurrentOffset = StackProbeSize - AlignOffset;
692 }
693
694 // For the next N - 1 pages, just probe. I tried to take advantage of
695 // natural probes but it implies much more logic and there was very few
696 // interesting natural probes to interleave.
697 while (CurrentOffset + StackProbeSize < Offset) {
698 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
699 .addReg(StackPtr)
700 .addImm(StackProbeSize)
701 .setMIFlag(MachineInstr::FrameSetup);
702 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
703
704 if (!HasFP && NeedsDwarfCFI) {
705 BuildCFI(
706 MBB, MBBI, DL,
707 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize));
708 }
709 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
710 .setMIFlag(MachineInstr::FrameSetup),
711 StackPtr, false, 0)
712 .addImm(0)
713 .setMIFlag(MachineInstr::FrameSetup);
714 NumFrameExtraProbe++;
715 CurrentOffset += StackProbeSize;
716 }
717
718 // No need to probe the tail, it is smaller than a Page.
719 uint64_t ChunkSize = Offset - CurrentOffset;
720 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
721 .addReg(StackPtr)
722 .addImm(ChunkSize)
723 .setMIFlag(MachineInstr::FrameSetup);
724 // No need to adjust Dwarf CFA offset here, the last position of the stack has
725 // been defined
726 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
727 }
728
emitStackProbeInlineGenericLoop(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,uint64_t Offset,uint64_t AlignOffset) const729 void X86FrameLowering::emitStackProbeInlineGenericLoop(
730 MachineFunction &MF, MachineBasicBlock &MBB,
731 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
732 uint64_t AlignOffset) const {
733 assert(Offset && "null offset");
734
735 const bool NeedsDwarfCFI = needsDwarfCFI(MF);
736 const bool HasFP = hasFP(MF);
737 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
738 const X86TargetLowering &TLI = *STI.getTargetLowering();
739 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
740 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
741
742 if (AlignOffset) {
743 if (AlignOffset < StackProbeSize) {
744 // Perform a first smaller allocation followed by a probe.
745 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, AlignOffset);
746 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), StackPtr)
747 .addReg(StackPtr)
748 .addImm(AlignOffset)
749 .setMIFlag(MachineInstr::FrameSetup);
750 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
751
752 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
753 .setMIFlag(MachineInstr::FrameSetup),
754 StackPtr, false, 0)
755 .addImm(0)
756 .setMIFlag(MachineInstr::FrameSetup);
757 NumFrameExtraProbe++;
758 Offset -= AlignOffset;
759 }
760 }
761
762 // Synthesize a loop
763 NumFrameLoopProbe++;
764 const BasicBlock *LLVM_BB = MBB.getBasicBlock();
765
766 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB);
767 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB);
768
769 MachineFunction::iterator MBBIter = ++MBB.getIterator();
770 MF.insert(MBBIter, testMBB);
771 MF.insert(MBBIter, tailMBB);
772
773 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11
774 : Is64Bit ? X86::R11D
775 : X86::EAX;
776
777 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
778 .addReg(StackPtr)
779 .setMIFlag(MachineInstr::FrameSetup);
780
781 // save loop bound
782 {
783 const unsigned BoundOffset = alignDown(Offset, StackProbeSize);
784 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, BoundOffset);
785 BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed)
786 .addReg(FinalStackProbed)
787 .addImm(BoundOffset)
788 .setMIFlag(MachineInstr::FrameSetup);
789
790 // while in the loop, use loop-invariant reg for CFI,
791 // instead of the stack pointer, which changes during the loop
792 if (!HasFP && NeedsDwarfCFI) {
793 // x32 uses the same DWARF register numbers as x86-64,
794 // so there isn't a register number for r11d, we must use r11 instead
795 const Register DwarfFinalStackProbed =
796 STI.isTarget64BitILP32()
797 ? Register(getX86SubSuperRegister(FinalStackProbed, 64))
798 : FinalStackProbed;
799
800 BuildCFI(MBB, MBBI, DL,
801 MCCFIInstruction::createDefCfaRegister(
802 nullptr, TRI->getDwarfRegNum(DwarfFinalStackProbed, true)));
803 BuildCFI(MBB, MBBI, DL,
804 MCCFIInstruction::createAdjustCfaOffset(nullptr, BoundOffset));
805 }
806 }
807
808 // allocate a page
809 {
810 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
811 BuildMI(testMBB, DL, TII.get(SUBOpc), StackPtr)
812 .addReg(StackPtr)
813 .addImm(StackProbeSize)
814 .setMIFlag(MachineInstr::FrameSetup);
815 }
816
817 // touch the page
818 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc))
819 .setMIFlag(MachineInstr::FrameSetup),
820 StackPtr, false, 0)
821 .addImm(0)
822 .setMIFlag(MachineInstr::FrameSetup);
823
824 // cmp with stack pointer bound
825 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
826 .addReg(StackPtr)
827 .addReg(FinalStackProbed)
828 .setMIFlag(MachineInstr::FrameSetup);
829
830 // jump
831 BuildMI(testMBB, DL, TII.get(X86::JCC_1))
832 .addMBB(testMBB)
833 .addImm(X86::COND_NE)
834 .setMIFlag(MachineInstr::FrameSetup);
835 testMBB->addSuccessor(testMBB);
836 testMBB->addSuccessor(tailMBB);
837
838 // BB management
839 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end());
840 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB);
841 MBB.addSuccessor(testMBB);
842
843 // handle tail
844 const unsigned TailOffset = Offset % StackProbeSize;
845 MachineBasicBlock::iterator TailMBBIter = tailMBB->begin();
846 if (TailOffset) {
847 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, TailOffset);
848 BuildMI(*tailMBB, TailMBBIter, DL, TII.get(Opc), StackPtr)
849 .addReg(StackPtr)
850 .addImm(TailOffset)
851 .setMIFlag(MachineInstr::FrameSetup);
852 }
853
854 // after the loop, switch back to stack pointer for CFI
855 if (!HasFP && NeedsDwarfCFI) {
856 // x32 uses the same DWARF register numbers as x86-64,
857 // so there isn't a register number for esp, we must use rsp instead
858 const Register DwarfStackPtr =
859 STI.isTarget64BitILP32()
860 ? Register(getX86SubSuperRegister(StackPtr, 64))
861 : Register(StackPtr);
862
863 BuildCFI(*tailMBB, TailMBBIter, DL,
864 MCCFIInstruction::createDefCfaRegister(
865 nullptr, TRI->getDwarfRegNum(DwarfStackPtr, true)));
866 }
867
868 // Update Live In information
869 recomputeLiveIns(*testMBB);
870 recomputeLiveIns(*tailMBB);
871 }
872
emitStackProbeInlineWindowsCoreCLR64(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const873 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64(
874 MachineFunction &MF, MachineBasicBlock &MBB,
875 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
876 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
877 assert(STI.is64Bit() && "different expansion needed for 32 bit");
878 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
879 const TargetInstrInfo &TII = *STI.getInstrInfo();
880 const BasicBlock *LLVM_BB = MBB.getBasicBlock();
881
882 // RAX contains the number of bytes of desired stack adjustment.
883 // The handling here assumes this value has already been updated so as to
884 // maintain stack alignment.
885 //
886 // We need to exit with RSP modified by this amount and execute suitable
887 // page touches to notify the OS that we're growing the stack responsibly.
888 // All stack probing must be done without modifying RSP.
889 //
890 // MBB:
891 // SizeReg = RAX;
892 // ZeroReg = 0
893 // CopyReg = RSP
894 // Flags, TestReg = CopyReg - SizeReg
895 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg
896 // LimitReg = gs magic thread env access
897 // if FinalReg >= LimitReg goto ContinueMBB
898 // RoundBB:
899 // RoundReg = page address of FinalReg
900 // LoopMBB:
901 // LoopReg = PHI(LimitReg,ProbeReg)
902 // ProbeReg = LoopReg - PageSize
903 // [ProbeReg] = 0
904 // if (ProbeReg > RoundReg) goto LoopMBB
905 // ContinueMBB:
906 // RSP = RSP - RAX
907 // [rest of original MBB]
908
909 // Set up the new basic blocks
910 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
911 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
912 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
913
914 MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
915 MF.insert(MBBIter, RoundMBB);
916 MF.insert(MBBIter, LoopMBB);
917 MF.insert(MBBIter, ContinueMBB);
918
919 // Split MBB and move the tail portion down to ContinueMBB.
920 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
921 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
922 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
923
924 // Some useful constants
925 const int64_t ThreadEnvironmentStackLimit = 0x10;
926 const int64_t PageSize = 0x1000;
927 const int64_t PageMask = ~(PageSize - 1);
928
929 // Registers we need. For the normal case we use virtual
930 // registers. For the prolog expansion we use RAX, RCX and RDX.
931 MachineRegisterInfo &MRI = MF.getRegInfo();
932 const TargetRegisterClass *RegClass = &X86::GR64RegClass;
933 const Register SizeReg = InProlog ? X86::RAX
934 : MRI.createVirtualRegister(RegClass),
935 ZeroReg = InProlog ? X86::RCX
936 : MRI.createVirtualRegister(RegClass),
937 CopyReg = InProlog ? X86::RDX
938 : MRI.createVirtualRegister(RegClass),
939 TestReg = InProlog ? X86::RDX
940 : MRI.createVirtualRegister(RegClass),
941 FinalReg = InProlog ? X86::RDX
942 : MRI.createVirtualRegister(RegClass),
943 RoundedReg = InProlog ? X86::RDX
944 : MRI.createVirtualRegister(RegClass),
945 LimitReg = InProlog ? X86::RCX
946 : MRI.createVirtualRegister(RegClass),
947 JoinReg = InProlog ? X86::RCX
948 : MRI.createVirtualRegister(RegClass),
949 ProbeReg = InProlog ? X86::RCX
950 : MRI.createVirtualRegister(RegClass);
951
952 // SP-relative offsets where we can save RCX and RDX.
953 int64_t RCXShadowSlot = 0;
954 int64_t RDXShadowSlot = 0;
955
956 // If inlining in the prolog, save RCX and RDX.
957 if (InProlog) {
958 // Compute the offsets. We need to account for things already
959 // pushed onto the stack at this point: return address, frame
960 // pointer (if used), and callee saves.
961 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
962 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
963 const bool HasFP = hasFP(MF);
964
965 // Check if we need to spill RCX and/or RDX.
966 // Here we assume that no earlier prologue instruction changes RCX and/or
967 // RDX, so checking the block live-ins is enough.
968 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX);
969 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX);
970 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
971 // Assign the initial slot to both registers, then change RDX's slot if both
972 // need to be spilled.
973 if (IsRCXLiveIn)
974 RCXShadowSlot = InitSlot;
975 if (IsRDXLiveIn)
976 RDXShadowSlot = InitSlot;
977 if (IsRDXLiveIn && IsRCXLiveIn)
978 RDXShadowSlot += 8;
979 // Emit the saves if needed.
980 if (IsRCXLiveIn)
981 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
982 RCXShadowSlot)
983 .addReg(X86::RCX);
984 if (IsRDXLiveIn)
985 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
986 RDXShadowSlot)
987 .addReg(X86::RDX);
988 } else {
989 // Not in the prolog. Copy RAX to a virtual reg.
990 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
991 }
992
993 // Add code to MBB to check for overflow and set the new target stack pointer
994 // to zero if so.
995 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
996 .addReg(ZeroReg, RegState::Undef)
997 .addReg(ZeroReg, RegState::Undef);
998 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
999 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
1000 .addReg(CopyReg)
1001 .addReg(SizeReg);
1002 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg)
1003 .addReg(TestReg)
1004 .addReg(ZeroReg)
1005 .addImm(X86::COND_B);
1006
1007 // FinalReg now holds final stack pointer value, or zero if
1008 // allocation would overflow. Compare against the current stack
1009 // limit from the thread environment block. Note this limit is the
1010 // lowest touched page on the stack, not the point at which the OS
1011 // will cause an overflow exception, so this is just an optimization
1012 // to avoid unnecessarily touching pages that are below the current
1013 // SP but already committed to the stack by the OS.
1014 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
1015 .addReg(0)
1016 .addImm(1)
1017 .addReg(0)
1018 .addImm(ThreadEnvironmentStackLimit)
1019 .addReg(X86::GS);
1020 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
1021 // Jump if the desired stack pointer is at or above the stack limit.
1022 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE);
1023
1024 // Add code to roundMBB to round the final stack pointer to a page boundary.
1025 RoundMBB->addLiveIn(FinalReg);
1026 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
1027 .addReg(FinalReg)
1028 .addImm(PageMask);
1029 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
1030
1031 // LimitReg now holds the current stack limit, RoundedReg page-rounded
1032 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
1033 // and probe until we reach RoundedReg.
1034 if (!InProlog) {
1035 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
1036 .addReg(LimitReg)
1037 .addMBB(RoundMBB)
1038 .addReg(ProbeReg)
1039 .addMBB(LoopMBB);
1040 }
1041
1042 LoopMBB->addLiveIn(JoinReg);
1043 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
1044 false, -PageSize);
1045
1046 // Probe by storing a byte onto the stack.
1047 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
1048 .addReg(ProbeReg)
1049 .addImm(1)
1050 .addReg(0)
1051 .addImm(0)
1052 .addReg(0)
1053 .addImm(0);
1054
1055 LoopMBB->addLiveIn(RoundedReg);
1056 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
1057 .addReg(RoundedReg)
1058 .addReg(ProbeReg);
1059 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE);
1060
1061 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
1062
1063 // If in prolog, restore RDX and RCX.
1064 if (InProlog) {
1065 if (RCXShadowSlot) // It means we spilled RCX in the prologue.
1066 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
1067 TII.get(X86::MOV64rm), X86::RCX),
1068 X86::RSP, false, RCXShadowSlot);
1069 if (RDXShadowSlot) // It means we spilled RDX in the prologue.
1070 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
1071 TII.get(X86::MOV64rm), X86::RDX),
1072 X86::RSP, false, RDXShadowSlot);
1073 }
1074
1075 // Now that the probing is done, add code to continueMBB to update
1076 // the stack pointer for real.
1077 ContinueMBB->addLiveIn(SizeReg);
1078 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
1079 .addReg(X86::RSP)
1080 .addReg(SizeReg);
1081
1082 // Add the control flow edges we need.
1083 MBB.addSuccessor(ContinueMBB);
1084 MBB.addSuccessor(RoundMBB);
1085 RoundMBB->addSuccessor(LoopMBB);
1086 LoopMBB->addSuccessor(ContinueMBB);
1087 LoopMBB->addSuccessor(LoopMBB);
1088
1089 // Mark all the instructions added to the prolog as frame setup.
1090 if (InProlog) {
1091 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
1092 BeforeMBBI->setFlag(MachineInstr::FrameSetup);
1093 }
1094 for (MachineInstr &MI : *RoundMBB) {
1095 MI.setFlag(MachineInstr::FrameSetup);
1096 }
1097 for (MachineInstr &MI : *LoopMBB) {
1098 MI.setFlag(MachineInstr::FrameSetup);
1099 }
1100 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
1101 CMBBI != ContinueMBBI; ++CMBBI) {
1102 CMBBI->setFlag(MachineInstr::FrameSetup);
1103 }
1104 }
1105 }
1106
emitStackProbeCall(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog,Optional<MachineFunction::DebugInstrOperandPair> InstrNum) const1107 void X86FrameLowering::emitStackProbeCall(
1108 MachineFunction &MF, MachineBasicBlock &MBB,
1109 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog,
1110 Optional<MachineFunction::DebugInstrOperandPair> InstrNum) const {
1111 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
1112
1113 // FIXME: Add indirect thunk support and remove this.
1114 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls())
1115 report_fatal_error("Emitting stack probe calls on 64-bit with the large "
1116 "code model and indirect thunks not yet implemented.");
1117
1118 unsigned CallOp;
1119 if (Is64Bit)
1120 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
1121 else
1122 CallOp = X86::CALLpcrel32;
1123
1124 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);
1125
1126 MachineInstrBuilder CI;
1127 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
1128
1129 // All current stack probes take AX and SP as input, clobber flags, and
1130 // preserve all registers. x86_64 probes leave RSP unmodified.
1131 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
1132 // For the large code model, we have to call through a register. Use R11,
1133 // as it is scratch in all supported calling conventions.
1134 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
1135 .addExternalSymbol(MF.createExternalSymbolName(Symbol));
1136 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
1137 } else {
1138 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
1139 .addExternalSymbol(MF.createExternalSymbolName(Symbol));
1140 }
1141
1142 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX;
1143 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP;
1144 CI.addReg(AX, RegState::Implicit)
1145 .addReg(SP, RegState::Implicit)
1146 .addReg(AX, RegState::Define | RegState::Implicit)
1147 .addReg(SP, RegState::Define | RegState::Implicit)
1148 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
1149
1150 MachineInstr *ModInst = CI;
1151 if (STI.isTargetWin64() || !STI.isOSWindows()) {
1152 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
1153 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
1154 // themselves. They also does not clobber %rax so we can reuse it when
1155 // adjusting %rsp.
1156 // All other platforms do not specify a particular ABI for the stack probe
1157 // function, so we arbitrarily define it to not adjust %esp/%rsp itself.
1158 ModInst =
1159 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP)
1160 .addReg(SP)
1161 .addReg(AX);
1162 }
1163
1164 // DebugInfo variable locations -- if there's an instruction number for the
1165 // allocation (i.e., DYN_ALLOC_*), substitute it for the instruction that
1166 // modifies SP.
1167 if (InstrNum) {
1168 if (STI.isTargetWin64() || !STI.isOSWindows()) {
1169 // Label destination operand of the subtract.
1170 MF.makeDebugValueSubstitution(*InstrNum,
1171 {ModInst->getDebugInstrNum(), 0});
1172 } else {
1173 // Label the call. The operand number is the penultimate operand, zero
1174 // based.
1175 unsigned SPDefOperand = ModInst->getNumOperands() - 2;
1176 MF.makeDebugValueSubstitution(
1177 *InstrNum, {ModInst->getDebugInstrNum(), SPDefOperand});
1178 }
1179 }
1180
1181 if (InProlog) {
1182 // Apply the frame setup flag to all inserted instrs.
1183 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
1184 ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
1185 }
1186 }
1187
calculateSetFPREG(uint64_t SPAdjust)1188 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
1189 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
1190 // and might require smaller successive adjustments.
1191 const uint64_t Win64MaxSEHOffset = 128;
1192 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
1193 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
1194 return SEHFrameOffset & -16;
1195 }
1196
1197 // If we're forcing a stack realignment we can't rely on just the frame
1198 // info, we need to know the ABI stack alignment as well in case we
1199 // have a call out. Otherwise just make sure we have some alignment - we'll
1200 // go with the minimum SlotSize.
calculateMaxStackAlign(const MachineFunction & MF) const1201 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
1202 const MachineFrameInfo &MFI = MF.getFrameInfo();
1203 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment.
1204 Align StackAlign = getStackAlign();
1205 if (MF.getFunction().hasFnAttribute("stackrealign")) {
1206 if (MFI.hasCalls())
1207 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
1208 else if (MaxAlign < SlotSize)
1209 MaxAlign = Align(SlotSize);
1210 }
1211 return MaxAlign.value();
1212 }
1213
BuildStackAlignAND(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,unsigned Reg,uint64_t MaxAlign) const1214 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
1215 MachineBasicBlock::iterator MBBI,
1216 const DebugLoc &DL, unsigned Reg,
1217 uint64_t MaxAlign) const {
1218 uint64_t Val = -MaxAlign;
1219 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
1220
1221 MachineFunction &MF = *MBB.getParent();
1222 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
1223 const X86TargetLowering &TLI = *STI.getTargetLowering();
1224 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
1225 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
1226
1227 // We want to make sure that (in worst case) less than StackProbeSize bytes
1228 // are not probed after the AND. This assumption is used in
1229 // emitStackProbeInlineGeneric.
1230 if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) {
1231 {
1232 NumFrameLoopProbe++;
1233 MachineBasicBlock *entryMBB =
1234 MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1235 MachineBasicBlock *headMBB =
1236 MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1237 MachineBasicBlock *bodyMBB =
1238 MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1239 MachineBasicBlock *footMBB =
1240 MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1241
1242 MachineFunction::iterator MBBIter = MBB.getIterator();
1243 MF.insert(MBBIter, entryMBB);
1244 MF.insert(MBBIter, headMBB);
1245 MF.insert(MBBIter, bodyMBB);
1246 MF.insert(MBBIter, footMBB);
1247 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
1248 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11
1249 : Is64Bit ? X86::R11D
1250 : X86::EAX;
1251
1252 // Setup entry block
1253 {
1254
1255 entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI);
1256 BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
1257 .addReg(StackPtr)
1258 .setMIFlag(MachineInstr::FrameSetup);
1259 MachineInstr *MI =
1260 BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed)
1261 .addReg(FinalStackProbed)
1262 .addImm(Val)
1263 .setMIFlag(MachineInstr::FrameSetup);
1264
1265 // The EFLAGS implicit def is dead.
1266 MI->getOperand(3).setIsDead();
1267
1268 BuildMI(entryMBB, DL,
1269 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1270 .addReg(FinalStackProbed)
1271 .addReg(StackPtr)
1272 .setMIFlag(MachineInstr::FrameSetup);
1273 BuildMI(entryMBB, DL, TII.get(X86::JCC_1))
1274 .addMBB(&MBB)
1275 .addImm(X86::COND_E)
1276 .setMIFlag(MachineInstr::FrameSetup);
1277 entryMBB->addSuccessor(headMBB);
1278 entryMBB->addSuccessor(&MBB);
1279 }
1280
1281 // Loop entry block
1282
1283 {
1284 const unsigned SUBOpc =
1285 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
1286 BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr)
1287 .addReg(StackPtr)
1288 .addImm(StackProbeSize)
1289 .setMIFlag(MachineInstr::FrameSetup);
1290
1291 BuildMI(headMBB, DL,
1292 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1293 .addReg(FinalStackProbed)
1294 .addReg(StackPtr)
1295 .setMIFlag(MachineInstr::FrameSetup);
1296
1297 // jump
1298 BuildMI(headMBB, DL, TII.get(X86::JCC_1))
1299 .addMBB(footMBB)
1300 .addImm(X86::COND_B)
1301 .setMIFlag(MachineInstr::FrameSetup);
1302
1303 headMBB->addSuccessor(bodyMBB);
1304 headMBB->addSuccessor(footMBB);
1305 }
1306
1307 // setup loop body
1308 {
1309 addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc))
1310 .setMIFlag(MachineInstr::FrameSetup),
1311 StackPtr, false, 0)
1312 .addImm(0)
1313 .setMIFlag(MachineInstr::FrameSetup);
1314
1315 const unsigned SUBOpc =
1316 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
1317 BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr)
1318 .addReg(StackPtr)
1319 .addImm(StackProbeSize)
1320 .setMIFlag(MachineInstr::FrameSetup);
1321
1322 // cmp with stack pointer bound
1323 BuildMI(bodyMBB, DL,
1324 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1325 .addReg(FinalStackProbed)
1326 .addReg(StackPtr)
1327 .setMIFlag(MachineInstr::FrameSetup);
1328
1329 // jump
1330 BuildMI(bodyMBB, DL, TII.get(X86::JCC_1))
1331 .addMBB(bodyMBB)
1332 .addImm(X86::COND_B)
1333 .setMIFlag(MachineInstr::FrameSetup);
1334 bodyMBB->addSuccessor(bodyMBB);
1335 bodyMBB->addSuccessor(footMBB);
1336 }
1337
1338 // setup loop footer
1339 {
1340 BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr)
1341 .addReg(FinalStackProbed)
1342 .setMIFlag(MachineInstr::FrameSetup);
1343 addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc))
1344 .setMIFlag(MachineInstr::FrameSetup),
1345 StackPtr, false, 0)
1346 .addImm(0)
1347 .setMIFlag(MachineInstr::FrameSetup);
1348 footMBB->addSuccessor(&MBB);
1349 }
1350
1351 recomputeLiveIns(*headMBB);
1352 recomputeLiveIns(*bodyMBB);
1353 recomputeLiveIns(*footMBB);
1354 recomputeLiveIns(MBB);
1355 }
1356 } else {
1357 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
1358 .addReg(Reg)
1359 .addImm(Val)
1360 .setMIFlag(MachineInstr::FrameSetup);
1361
1362 // The EFLAGS implicit def is dead.
1363 MI->getOperand(3).setIsDead();
1364 }
1365 }
1366
has128ByteRedZone(const MachineFunction & MF) const1367 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const {
1368 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be
1369 // clobbered by any interrupt handler.
1370 assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
1371 "MF used frame lowering for wrong subtarget");
1372 const Function &Fn = MF.getFunction();
1373 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv());
1374 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone);
1375 }
1376
1377 /// Return true if we need to use the restricted Windows x64 prologue and
1378 /// epilogue code patterns that can be described with WinCFI (.seh_*
1379 /// directives).
isWin64Prologue(const MachineFunction & MF) const1380 bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const {
1381 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1382 }
1383
needsDwarfCFI(const MachineFunction & MF) const1384 bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const {
1385 return !isWin64Prologue(MF) && MF.needsFrameMoves();
1386 }
1387
1388 /// emitPrologue - Push callee-saved registers onto the stack, which
1389 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
1390 /// space for local variables. Also emit labels used by the exception handler to
1391 /// generate the exception handling frames.
1392
1393 /*
1394 Here's a gist of what gets emitted:
1395
1396 ; Establish frame pointer, if needed
1397 [if needs FP]
1398 push %rbp
1399 .cfi_def_cfa_offset 16
1400 .cfi_offset %rbp, -16
1401 .seh_pushreg %rpb
1402 mov %rsp, %rbp
1403 .cfi_def_cfa_register %rbp
1404
1405 ; Spill general-purpose registers
1406 [for all callee-saved GPRs]
1407 pushq %<reg>
1408 [if not needs FP]
1409 .cfi_def_cfa_offset (offset from RETADDR)
1410 .seh_pushreg %<reg>
1411
1412 ; If the required stack alignment > default stack alignment
1413 ; rsp needs to be re-aligned. This creates a "re-alignment gap"
1414 ; of unknown size in the stack frame.
1415 [if stack needs re-alignment]
1416 and $MASK, %rsp
1417
1418 ; Allocate space for locals
1419 [if target is Windows and allocated space > 4096 bytes]
1420 ; Windows needs special care for allocations larger
1421 ; than one page.
1422 mov $NNN, %rax
1423 call ___chkstk_ms/___chkstk
1424 sub %rax, %rsp
1425 [else]
1426 sub $NNN, %rsp
1427
1428 [if needs FP]
1429 .seh_stackalloc (size of XMM spill slots)
1430 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
1431 [else]
1432 .seh_stackalloc NNN
1433
1434 ; Spill XMMs
1435 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
1436 ; they may get spilled on any platform, if the current function
1437 ; calls @llvm.eh.unwind.init
1438 [if needs FP]
1439 [for all callee-saved XMM registers]
1440 movaps %<xmm reg>, -MMM(%rbp)
1441 [for all callee-saved XMM registers]
1442 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
1443 ; i.e. the offset relative to (%rbp - SEHFrameOffset)
1444 [else]
1445 [for all callee-saved XMM registers]
1446 movaps %<xmm reg>, KKK(%rsp)
1447 [for all callee-saved XMM registers]
1448 .seh_savexmm %<xmm reg>, KKK
1449
1450 .seh_endprologue
1451
1452 [if needs base pointer]
1453 mov %rsp, %rbx
1454 [if needs to restore base pointer]
1455 mov %rsp, -MMM(%rbp)
1456
1457 ; Emit CFI info
1458 [if needs FP]
1459 [for all callee-saved registers]
1460 .cfi_offset %<reg>, (offset from %rbp)
1461 [else]
1462 .cfi_def_cfa_offset (offset from RETADDR)
1463 [for all callee-saved registers]
1464 .cfi_offset %<reg>, (offset from %rsp)
1465
1466 Notes:
1467 - .seh directives are emitted only for Windows 64 ABI
1468 - .cv_fpo directives are emitted on win32 when emitting CodeView
1469 - .cfi directives are emitted for all other ABIs
1470 - for 32-bit code, substitute %e?? registers for %r??
1471 */
1472
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const1473 void X86FrameLowering::emitPrologue(MachineFunction &MF,
1474 MachineBasicBlock &MBB) const {
1475 assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
1476 "MF used frame lowering for wrong subtarget");
1477 MachineBasicBlock::iterator MBBI = MBB.begin();
1478 MachineFrameInfo &MFI = MF.getFrameInfo();
1479 const Function &Fn = MF.getFunction();
1480 MachineModuleInfo &MMI = MF.getMMI();
1481 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1482 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
1483 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate.
1484 bool IsFunclet = MBB.isEHFuncletEntry();
1485 EHPersonality Personality = EHPersonality::Unknown;
1486 if (Fn.hasPersonalityFn())
1487 Personality = classifyEHPersonality(Fn.getPersonalityFn());
1488 bool FnHasClrFunclet =
1489 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
1490 bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
1491 bool HasFP = hasFP(MF);
1492 bool IsWin64Prologue = isWin64Prologue(MF);
1493 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
1494 // FIXME: Emit FPO data for EH funclets.
1495 bool NeedsWinFPO =
1496 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag();
1497 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
1498 bool NeedsDwarfCFI = needsDwarfCFI(MF);
1499 Register FramePtr = TRI->getFrameRegister(MF);
1500 const Register MachineFramePtr =
1501 STI.isTarget64BitILP32()
1502 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
1503 Register BasePtr = TRI->getBaseRegister();
1504 bool HasWinCFI = false;
1505
1506 // Debug location must be unknown since the first debug location is used
1507 // to determine the end of the prologue.
1508 DebugLoc DL;
1509
1510 // Space reserved for stack-based arguments when making a (ABI-guaranteed)
1511 // tail call.
1512 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta();
1513 if (TailCallArgReserveSize && IsWin64Prologue)
1514 report_fatal_error("Can't handle guaranteed tail call under win64 yet");
1515
1516 const bool EmitStackProbeCall =
1517 STI.getTargetLowering()->hasStackProbeSymbol(MF);
1518 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF);
1519
1520 if (HasFP && X86FI->hasSwiftAsyncContext()) {
1521 switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
1522 case SwiftAsyncFramePointerMode::DeploymentBased:
1523 if (STI.swiftAsyncContextIsDynamicallySet()) {
1524 // The special symbol below is absolute and has a *value* suitable to be
1525 // combined with the frame pointer directly.
1526 BuildMI(MBB, MBBI, DL, TII.get(X86::OR64rm), MachineFramePtr)
1527 .addUse(MachineFramePtr)
1528 .addUse(X86::RIP)
1529 .addImm(1)
1530 .addUse(X86::NoRegister)
1531 .addExternalSymbol("swift_async_extendedFramePointerFlags",
1532 X86II::MO_GOTPCREL)
1533 .addUse(X86::NoRegister);
1534 break;
1535 }
1536 LLVM_FALLTHROUGH;
1537
1538 case SwiftAsyncFramePointerMode::Always:
1539 BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8), MachineFramePtr)
1540 .addUse(MachineFramePtr)
1541 .addImm(60)
1542 .setMIFlag(MachineInstr::FrameSetup);
1543 break;
1544
1545 case SwiftAsyncFramePointerMode::Never:
1546 break;
1547 }
1548 }
1549
1550 // Re-align the stack on 64-bit if the x86-interrupt calling convention is
1551 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte
1552 // stack alignment.
1553 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
1554 Fn.arg_size() == 2) {
1555 StackSize += 8;
1556 MFI.setStackSize(StackSize);
1557 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false);
1558 }
1559
1560 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
1561 // function, and use up to 128 bytes of stack space, don't have a frame
1562 // pointer, calls, or dynamic alloca then we do not need to adjust the
1563 // stack pointer (we fit in the Red Zone). We also check that we don't
1564 // push and pop from the stack.
1565 if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) &&
1566 !MFI.hasVarSizedObjects() && // No dynamic alloca.
1567 !MFI.adjustsStack() && // No calls.
1568 !EmitStackProbeCall && // No stack probes.
1569 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
1570 !MF.shouldSplitStack()) { // Regular stack
1571 uint64_t MinSize =
1572 X86FI->getCalleeSavedFrameSize() - X86FI->getTCReturnAddrDelta();
1573 if (HasFP) MinSize += SlotSize;
1574 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
1575 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
1576 MFI.setStackSize(StackSize);
1577 }
1578
1579 // Insert stack pointer adjustment for later moving of return addr. Only
1580 // applies to tail call optimized functions where the callee argument stack
1581 // size is bigger than the callers.
1582 if (TailCallArgReserveSize != 0) {
1583 BuildStackAdjustment(MBB, MBBI, DL, -(int)TailCallArgReserveSize,
1584 /*InEpilogue=*/false)
1585 .setMIFlag(MachineInstr::FrameSetup);
1586 }
1587
1588 // Mapping for machine moves:
1589 //
1590 // DST: VirtualFP AND
1591 // SRC: VirtualFP => DW_CFA_def_cfa_offset
1592 // ELSE => DW_CFA_def_cfa
1593 //
1594 // SRC: VirtualFP AND
1595 // DST: Register => DW_CFA_def_cfa_register
1596 //
1597 // ELSE
1598 // OFFSET < 0 => DW_CFA_offset_extended_sf
1599 // REG < 64 => DW_CFA_offset + Reg
1600 // ELSE => DW_CFA_offset_extended
1601
1602 uint64_t NumBytes = 0;
1603 int stackGrowth = -SlotSize;
1604
1605 // Find the funclet establisher parameter
1606 Register Establisher = X86::NoRegister;
1607 if (IsClrFunclet)
1608 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1609 else if (IsFunclet)
1610 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1611
1612 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1613 // Immediately spill establisher into the home slot.
1614 // The runtime cares about this.
1615 // MOV64mr %rdx, 16(%rsp)
1616 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1617 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1618 .addReg(Establisher)
1619 .setMIFlag(MachineInstr::FrameSetup);
1620 MBB.addLiveIn(Establisher);
1621 }
1622
1623 if (HasFP) {
1624 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved");
1625
1626 // Calculate required stack adjustment.
1627 uint64_t FrameSize = StackSize - SlotSize;
1628 // If required, include space for extra hidden slot for stashing base pointer.
1629 if (X86FI->getRestoreBasePointer())
1630 FrameSize += SlotSize;
1631
1632 NumBytes = FrameSize -
1633 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize);
1634
1635 // Callee-saved registers are pushed on stack before the stack is realigned.
1636 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue)
1637 NumBytes = alignTo(NumBytes, MaxAlign);
1638
1639 // Save EBP/RBP into the appropriate stack slot.
1640 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1641 .addReg(MachineFramePtr, RegState::Kill)
1642 .setMIFlag(MachineInstr::FrameSetup);
1643
1644 if (NeedsDwarfCFI) {
1645 // Mark the place where EBP/RBP was saved.
1646 // Define the current CFA rule to use the provided offset.
1647 assert(StackSize);
1648 BuildCFI(MBB, MBBI, DL,
1649 MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth),
1650 MachineInstr::FrameSetup);
1651
1652 // Change the rule for the FramePtr to be an "offset" rule.
1653 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1654 BuildCFI(MBB, MBBI, DL,
1655 MCCFIInstruction::createOffset(nullptr, DwarfFramePtr,
1656 2 * stackGrowth),
1657 MachineInstr::FrameSetup);
1658 }
1659
1660 if (NeedsWinCFI) {
1661 HasWinCFI = true;
1662 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1663 .addImm(FramePtr)
1664 .setMIFlag(MachineInstr::FrameSetup);
1665 }
1666
1667 if (!IsFunclet) {
1668 if (X86FI->hasSwiftAsyncContext()) {
1669 const auto &Attrs = MF.getFunction().getAttributes();
1670
1671 // Before we update the live frame pointer we have to ensure there's a
1672 // valid (or null) asynchronous context in its slot just before FP in
1673 // the frame record, so store it now.
1674 if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) {
1675 // We have an initial context in r14, store it just before the frame
1676 // pointer.
1677 MBB.addLiveIn(X86::R14);
1678 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1679 .addReg(X86::R14)
1680 .setMIFlag(MachineInstr::FrameSetup);
1681 } else {
1682 // No initial context, store null so that there's no pointer that
1683 // could be misused.
1684 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i8))
1685 .addImm(0)
1686 .setMIFlag(MachineInstr::FrameSetup);
1687 }
1688
1689 if (NeedsWinCFI) {
1690 HasWinCFI = true;
1691 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1692 .addImm(X86::R14)
1693 .setMIFlag(MachineInstr::FrameSetup);
1694 }
1695
1696 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr)
1697 .addUse(X86::RSP)
1698 .addImm(1)
1699 .addUse(X86::NoRegister)
1700 .addImm(8)
1701 .addUse(X86::NoRegister)
1702 .setMIFlag(MachineInstr::FrameSetup);
1703 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri8), X86::RSP)
1704 .addUse(X86::RSP)
1705 .addImm(8)
1706 .setMIFlag(MachineInstr::FrameSetup);
1707 }
1708
1709 if (!IsWin64Prologue && !IsFunclet) {
1710 // Update EBP with the new base value.
1711 if (!X86FI->hasSwiftAsyncContext())
1712 BuildMI(MBB, MBBI, DL,
1713 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1714 FramePtr)
1715 .addReg(StackPtr)
1716 .setMIFlag(MachineInstr::FrameSetup);
1717
1718 if (NeedsDwarfCFI) {
1719 // Mark effective beginning of when frame pointer becomes valid.
1720 // Define the current CFA to use the EBP/RBP register.
1721 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1722 BuildCFI(
1723 MBB, MBBI, DL,
1724 MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr),
1725 MachineInstr::FrameSetup);
1726 }
1727
1728 if (NeedsWinFPO) {
1729 // .cv_fpo_setframe $FramePtr
1730 HasWinCFI = true;
1731 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1732 .addImm(FramePtr)
1733 .addImm(0)
1734 .setMIFlag(MachineInstr::FrameSetup);
1735 }
1736 }
1737 }
1738 } else {
1739 assert(!IsFunclet && "funclets without FPs not yet implemented");
1740 NumBytes = StackSize -
1741 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize);
1742 }
1743
1744 // Update the offset adjustment, which is mainly used by codeview to translate
1745 // from ESP to VFRAME relative local variable offsets.
1746 if (!IsFunclet) {
1747 if (HasFP && TRI->hasStackRealignment(MF))
1748 MFI.setOffsetAdjustment(-NumBytes);
1749 else
1750 MFI.setOffsetAdjustment(-StackSize);
1751 }
1752
1753 // For EH funclets, only allocate enough space for outgoing calls. Save the
1754 // NumBytes value that we would've used for the parent frame.
1755 unsigned ParentFrameNumBytes = NumBytes;
1756 if (IsFunclet)
1757 NumBytes = getWinEHFuncletFrameSize(MF);
1758
1759 // Skip the callee-saved push instructions.
1760 bool PushedRegs = false;
1761 int StackOffset = 2 * stackGrowth;
1762
1763 while (MBBI != MBB.end() &&
1764 MBBI->getFlag(MachineInstr::FrameSetup) &&
1765 (MBBI->getOpcode() == X86::PUSH32r ||
1766 MBBI->getOpcode() == X86::PUSH64r)) {
1767 PushedRegs = true;
1768 Register Reg = MBBI->getOperand(0).getReg();
1769 ++MBBI;
1770
1771 if (!HasFP && NeedsDwarfCFI) {
1772 // Mark callee-saved push instruction.
1773 // Define the current CFA rule to use the provided offset.
1774 assert(StackSize);
1775 BuildCFI(MBB, MBBI, DL,
1776 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset),
1777 MachineInstr::FrameSetup);
1778 StackOffset += stackGrowth;
1779 }
1780
1781 if (NeedsWinCFI) {
1782 HasWinCFI = true;
1783 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1784 .addImm(Reg)
1785 .setMIFlag(MachineInstr::FrameSetup);
1786 }
1787 }
1788
1789 // Realign stack after we pushed callee-saved registers (so that we'll be
1790 // able to calculate their offsets from the frame pointer).
1791 // Don't do this for Win64, it needs to realign the stack after the prologue.
1792 if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) {
1793 assert(HasFP && "There should be a frame pointer if stack is realigned.");
1794 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1795
1796 if (NeedsWinCFI) {
1797 HasWinCFI = true;
1798 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign))
1799 .addImm(MaxAlign)
1800 .setMIFlag(MachineInstr::FrameSetup);
1801 }
1802 }
1803
1804 // If there is an SUB32ri of ESP immediately before this instruction, merge
1805 // the two. This can be the case when tail call elimination is enabled and
1806 // the callee has more arguments then the caller.
1807 NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1808
1809 // Adjust stack pointer: ESP -= numbytes.
1810
1811 // Windows and cygwin/mingw require a prologue helper routine when allocating
1812 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw
1813 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the
1814 // stack and adjust the stack pointer in one go. The 64-bit version of
1815 // __chkstk is only responsible for probing the stack. The 64-bit prologue is
1816 // responsible for adjusting the stack pointer. Touching the stack at 4K
1817 // increments is necessary to ensure that the guard pages used by the OS
1818 // virtual memory manager are allocated in correct sequence.
1819 uint64_t AlignedNumBytes = NumBytes;
1820 if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF))
1821 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
1822 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) {
1823 assert(!X86FI->getUsesRedZone() &&
1824 "The Red Zone is not accounted for in stack probes");
1825
1826 // Check whether EAX is livein for this block.
1827 bool isEAXAlive = isEAXLiveIn(MBB);
1828
1829 if (isEAXAlive) {
1830 if (Is64Bit) {
1831 // Save RAX
1832 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1833 .addReg(X86::RAX, RegState::Kill)
1834 .setMIFlag(MachineInstr::FrameSetup);
1835 } else {
1836 // Save EAX
1837 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1838 .addReg(X86::EAX, RegState::Kill)
1839 .setMIFlag(MachineInstr::FrameSetup);
1840 }
1841 }
1842
1843 if (Is64Bit) {
1844 // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1845 // Function prologue is responsible for adjusting the stack pointer.
1846 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
1847 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Alloc)), X86::RAX)
1848 .addImm(Alloc)
1849 .setMIFlag(MachineInstr::FrameSetup);
1850 } else {
1851 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1852 // We'll also use 4 already allocated bytes for EAX.
1853 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1854 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1855 .setMIFlag(MachineInstr::FrameSetup);
1856 }
1857
1858 // Call __chkstk, __chkstk_ms, or __alloca.
1859 emitStackProbe(MF, MBB, MBBI, DL, true);
1860
1861 if (isEAXAlive) {
1862 // Restore RAX/EAX
1863 MachineInstr *MI;
1864 if (Is64Bit)
1865 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
1866 StackPtr, false, NumBytes - 8);
1867 else
1868 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1869 StackPtr, false, NumBytes - 4);
1870 MI->setFlag(MachineInstr::FrameSetup);
1871 MBB.insert(MBBI, MI);
1872 }
1873 } else if (NumBytes) {
1874 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false);
1875 }
1876
1877 if (NeedsWinCFI && NumBytes) {
1878 HasWinCFI = true;
1879 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1880 .addImm(NumBytes)
1881 .setMIFlag(MachineInstr::FrameSetup);
1882 }
1883
1884 int SEHFrameOffset = 0;
1885 unsigned SPOrEstablisher;
1886 if (IsFunclet) {
1887 if (IsClrFunclet) {
1888 // The establisher parameter passed to a CLR funclet is actually a pointer
1889 // to the (mostly empty) frame of its nearest enclosing funclet; we have
1890 // to find the root function establisher frame by loading the PSPSym from
1891 // the intermediate frame.
1892 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1893 MachinePointerInfo NoInfo;
1894 MBB.addLiveIn(Establisher);
1895 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1896 Establisher, false, PSPSlotOffset)
1897 .addMemOperand(MF.getMachineMemOperand(
1898 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize)));
1899 ;
1900 // Save the root establisher back into the current funclet's (mostly
1901 // empty) frame, in case a sub-funclet or the GC needs it.
1902 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
1903 false, PSPSlotOffset)
1904 .addReg(Establisher)
1905 .addMemOperand(MF.getMachineMemOperand(
1906 NoInfo,
1907 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1908 SlotSize, Align(SlotSize)));
1909 }
1910 SPOrEstablisher = Establisher;
1911 } else {
1912 SPOrEstablisher = StackPtr;
1913 }
1914
1915 if (IsWin64Prologue && HasFP) {
1916 // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1917 // this calculation on the incoming establisher, which holds the value of
1918 // RSP from the parent frame at the end of the prologue.
1919 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
1920 if (SEHFrameOffset)
1921 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
1922 SPOrEstablisher, false, SEHFrameOffset);
1923 else
1924 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
1925 .addReg(SPOrEstablisher);
1926
1927 // If this is not a funclet, emit the CFI describing our frame pointer.
1928 if (NeedsWinCFI && !IsFunclet) {
1929 assert(!NeedsWinFPO && "this setframe incompatible with FPO data");
1930 HasWinCFI = true;
1931 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1932 .addImm(FramePtr)
1933 .addImm(SEHFrameOffset)
1934 .setMIFlag(MachineInstr::FrameSetup);
1935 if (isAsynchronousEHPersonality(Personality))
1936 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
1937 }
1938 } else if (IsFunclet && STI.is32Bit()) {
1939 // Reset EBP / ESI to something good for funclets.
1940 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
1941 // If we're a catch funclet, we can be returned to via catchret. Save ESP
1942 // into the registration node so that the runtime will restore it for us.
1943 if (!MBB.isCleanupFuncletEntry()) {
1944 assert(Personality == EHPersonality::MSVC_CXX);
1945 Register FrameReg;
1946 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
1947 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed();
1948 // ESP is the first field, so no extra displacement is needed.
1949 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
1950 false, EHRegOffset)
1951 .addReg(X86::ESP);
1952 }
1953 }
1954
1955 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
1956 const MachineInstr &FrameInstr = *MBBI;
1957 ++MBBI;
1958
1959 if (NeedsWinCFI) {
1960 int FI;
1961 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
1962 if (X86::FR64RegClass.contains(Reg)) {
1963 int Offset;
1964 Register IgnoredFrameReg;
1965 if (IsWin64Prologue && IsFunclet)
1966 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg);
1967 else
1968 Offset =
1969 getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() +
1970 SEHFrameOffset;
1971
1972 HasWinCFI = true;
1973 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data");
1974 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
1975 .addImm(Reg)
1976 .addImm(Offset)
1977 .setMIFlag(MachineInstr::FrameSetup);
1978 }
1979 }
1980 }
1981 }
1982
1983 if (NeedsWinCFI && HasWinCFI)
1984 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
1985 .setMIFlag(MachineInstr::FrameSetup);
1986
1987 if (FnHasClrFunclet && !IsFunclet) {
1988 // Save the so-called Initial-SP (i.e. the value of the stack pointer
1989 // immediately after the prolog) into the PSPSlot so that funclets
1990 // and the GC can recover it.
1991 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1992 auto PSPInfo = MachinePointerInfo::getFixedStack(
1993 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
1994 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
1995 PSPSlotOffset)
1996 .addReg(StackPtr)
1997 .addMemOperand(MF.getMachineMemOperand(
1998 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1999 SlotSize, Align(SlotSize)));
2000 }
2001
2002 // Realign stack after we spilled callee-saved registers (so that we'll be
2003 // able to calculate their offsets from the frame pointer).
2004 // Win64 requires aligning the stack after the prologue.
2005 if (IsWin64Prologue && TRI->hasStackRealignment(MF)) {
2006 assert(HasFP && "There should be a frame pointer if stack is realigned.");
2007 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
2008 }
2009
2010 // We already dealt with stack realignment and funclets above.
2011 if (IsFunclet && STI.is32Bit())
2012 return;
2013
2014 // If we need a base pointer, set it up here. It's whatever the value
2015 // of the stack pointer is at this point. Any variable size objects
2016 // will be allocated after this, so we can still use the base pointer
2017 // to reference locals.
2018 if (TRI->hasBasePointer(MF)) {
2019 // Update the base pointer with the current stack pointer.
2020 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
2021 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
2022 .addReg(SPOrEstablisher)
2023 .setMIFlag(MachineInstr::FrameSetup);
2024 if (X86FI->getRestoreBasePointer()) {
2025 // Stash value of base pointer. Saving RSP instead of EBP shortens
2026 // dependence chain. Used by SjLj EH.
2027 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
2028 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
2029 FramePtr, true, X86FI->getRestoreBasePointerOffset())
2030 .addReg(SPOrEstablisher)
2031 .setMIFlag(MachineInstr::FrameSetup);
2032 }
2033
2034 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
2035 // Stash the value of the frame pointer relative to the base pointer for
2036 // Win32 EH. This supports Win32 EH, which does the inverse of the above:
2037 // it recovers the frame pointer from the base pointer rather than the
2038 // other way around.
2039 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
2040 Register UsedReg;
2041 int Offset =
2042 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg)
2043 .getFixed();
2044 assert(UsedReg == BasePtr);
2045 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
2046 .addReg(FramePtr)
2047 .setMIFlag(MachineInstr::FrameSetup);
2048 }
2049 }
2050
2051 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
2052 // Mark end of stack pointer adjustment.
2053 if (!HasFP && NumBytes) {
2054 // Define the current CFA rule to use the provided offset.
2055 assert(StackSize);
2056 BuildCFI(
2057 MBB, MBBI, DL,
2058 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth),
2059 MachineInstr::FrameSetup);
2060 }
2061
2062 // Emit DWARF info specifying the offsets of the callee-saved registers.
2063 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true);
2064 }
2065
2066 // X86 Interrupt handling function cannot assume anything about the direction
2067 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
2068 // in each prologue of interrupt handler function.
2069 //
2070 // FIXME: Create "cld" instruction only in these cases:
2071 // 1. The interrupt handling function uses any of the "rep" instructions.
2072 // 2. Interrupt handling function calls another function.
2073 //
2074 if (Fn.getCallingConv() == CallingConv::X86_INTR)
2075 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
2076 .setMIFlag(MachineInstr::FrameSetup);
2077
2078 // At this point we know if the function has WinCFI or not.
2079 MF.setHasWinCFI(HasWinCFI);
2080 }
2081
canUseLEAForSPInEpilogue(const MachineFunction & MF) const2082 bool X86FrameLowering::canUseLEAForSPInEpilogue(
2083 const MachineFunction &MF) const {
2084 // We can't use LEA instructions for adjusting the stack pointer if we don't
2085 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used
2086 // to deallocate the stack.
2087 // This means that we can use LEA for SP in two situations:
2088 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
2089 // 2. We *have* a frame pointer which means we are permitted to use LEA.
2090 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
2091 }
2092
isFuncletReturnInstr(MachineInstr & MI)2093 static bool isFuncletReturnInstr(MachineInstr &MI) {
2094 switch (MI.getOpcode()) {
2095 case X86::CATCHRET:
2096 case X86::CLEANUPRET:
2097 return true;
2098 default:
2099 return false;
2100 }
2101 llvm_unreachable("impossible");
2102 }
2103
2104 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
2105 // stack. It holds a pointer to the bottom of the root function frame. The
2106 // establisher frame pointer passed to a nested funclet may point to the
2107 // (mostly empty) frame of its parent funclet, but it will need to find
2108 // the frame of the root function to access locals. To facilitate this,
2109 // every funclet copies the pointer to the bottom of the root function
2110 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
2111 // same offset for the PSPSym in the root function frame that's used in the
2112 // funclets' frames allows each funclet to dynamically accept any ancestor
2113 // frame as its establisher argument (the runtime doesn't guarantee the
2114 // immediate parent for some reason lost to history), and also allows the GC,
2115 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
2116 // frame with only a single offset reported for the entire method.
2117 unsigned
getPSPSlotOffsetFromSP(const MachineFunction & MF) const2118 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
2119 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
2120 Register SPReg;
2121 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
2122 /*IgnoreSPUpdates*/ true)
2123 .getFixed();
2124 assert(Offset >= 0 && SPReg == TRI->getStackRegister());
2125 return static_cast<unsigned>(Offset);
2126 }
2127
2128 unsigned
getWinEHFuncletFrameSize(const MachineFunction & MF) const2129 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
2130 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2131 // This is the size of the pushed CSRs.
2132 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2133 // This is the size of callee saved XMMs.
2134 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2135 unsigned XMMSize = WinEHXMMSlotInfo.size() *
2136 TRI->getSpillSize(X86::VR128RegClass);
2137 // This is the amount of stack a funclet needs to allocate.
2138 unsigned UsedSize;
2139 EHPersonality Personality =
2140 classifyEHPersonality(MF.getFunction().getPersonalityFn());
2141 if (Personality == EHPersonality::CoreCLR) {
2142 // CLR funclets need to hold enough space to include the PSPSym, at the
2143 // same offset from the stack pointer (immediately after the prolog) as it
2144 // resides at in the main function.
2145 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
2146 } else {
2147 // Other funclets just need enough stack for outgoing call arguments.
2148 UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
2149 }
2150 // RBP is not included in the callee saved register block. After pushing RBP,
2151 // everything is 16 byte aligned. Everything we allocate before an outgoing
2152 // call must also be 16 byte aligned.
2153 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign());
2154 // Subtract out the size of the callee saved registers. This is how much stack
2155 // each funclet will allocate.
2156 return FrameSizeMinusRBP + XMMSize - CSSize;
2157 }
2158
isTailCallOpcode(unsigned Opc)2159 static bool isTailCallOpcode(unsigned Opc) {
2160 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
2161 Opc == X86::TCRETURNmi ||
2162 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
2163 Opc == X86::TCRETURNmi64;
2164 }
2165
emitEpilogue(MachineFunction & MF,MachineBasicBlock & MBB) const2166 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
2167 MachineBasicBlock &MBB) const {
2168 const MachineFrameInfo &MFI = MF.getFrameInfo();
2169 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2170 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
2171 MachineBasicBlock::iterator MBBI = Terminator;
2172 DebugLoc DL;
2173 if (MBBI != MBB.end())
2174 DL = MBBI->getDebugLoc();
2175 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
2176 const bool Is64BitILP32 = STI.isTarget64BitILP32();
2177 Register FramePtr = TRI->getFrameRegister(MF);
2178 Register MachineFramePtr =
2179 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
2180
2181 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2182 bool NeedsWin64CFI =
2183 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
2184 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
2185
2186 // Get the number of bytes to allocate from the FrameInfo.
2187 uint64_t StackSize = MFI.getStackSize();
2188 uint64_t MaxAlign = calculateMaxStackAlign(MF);
2189 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2190 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta();
2191 bool HasFP = hasFP(MF);
2192 uint64_t NumBytes = 0;
2193
2194 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() &&
2195 !MF.getTarget().getTargetTriple().isOSWindows()) &&
2196 MF.needsFrameMoves();
2197
2198 if (IsFunclet) {
2199 assert(HasFP && "EH funclets without FP not yet implemented");
2200 NumBytes = getWinEHFuncletFrameSize(MF);
2201 } else if (HasFP) {
2202 // Calculate required stack adjustment.
2203 uint64_t FrameSize = StackSize - SlotSize;
2204 NumBytes = FrameSize - CSSize - TailCallArgReserveSize;
2205
2206 // Callee-saved registers were pushed on stack before the stack was
2207 // realigned.
2208 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue)
2209 NumBytes = alignTo(FrameSize, MaxAlign);
2210 } else {
2211 NumBytes = StackSize - CSSize - TailCallArgReserveSize;
2212 }
2213 uint64_t SEHStackAllocAmt = NumBytes;
2214
2215 // AfterPop is the position to insert .cfi_restore.
2216 MachineBasicBlock::iterator AfterPop = MBBI;
2217 if (HasFP) {
2218 if (X86FI->hasSwiftAsyncContext()) {
2219 // Discard the context.
2220 int Offset = 16 + mergeSPUpdates(MBB, MBBI, true);
2221 emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/true);
2222 }
2223 // Pop EBP.
2224 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
2225 MachineFramePtr)
2226 .setMIFlag(MachineInstr::FrameDestroy);
2227
2228 // We need to reset FP to its untagged state on return. Bit 60 is currently
2229 // used to show the presence of an extended frame.
2230 if (X86FI->hasSwiftAsyncContext()) {
2231 BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8),
2232 MachineFramePtr)
2233 .addUse(MachineFramePtr)
2234 .addImm(60)
2235 .setMIFlag(MachineInstr::FrameDestroy);
2236 }
2237
2238 if (NeedsDwarfCFI) {
2239 unsigned DwarfStackPtr =
2240 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
2241 BuildCFI(MBB, MBBI, DL,
2242 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize),
2243 MachineInstr::FrameDestroy);
2244 if (!MBB.succ_empty() && !MBB.isReturnBlock()) {
2245 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
2246 BuildCFI(MBB, AfterPop, DL,
2247 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr),
2248 MachineInstr::FrameDestroy);
2249 --MBBI;
2250 --AfterPop;
2251 }
2252 --MBBI;
2253 }
2254 }
2255
2256 MachineBasicBlock::iterator FirstCSPop = MBBI;
2257 // Skip the callee-saved pop instructions.
2258 while (MBBI != MBB.begin()) {
2259 MachineBasicBlock::iterator PI = std::prev(MBBI);
2260 unsigned Opc = PI->getOpcode();
2261
2262 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
2263 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
2264 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
2265 (Opc != X86::BTR64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)) &&
2266 (Opc != X86::ADD64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)))
2267 break;
2268 FirstCSPop = PI;
2269 }
2270
2271 --MBBI;
2272 }
2273 MBBI = FirstCSPop;
2274
2275 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
2276 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator);
2277
2278 if (MBBI != MBB.end())
2279 DL = MBBI->getDebugLoc();
2280 // If there is an ADD32ri or SUB32ri of ESP immediately before this
2281 // instruction, merge the two instructions.
2282 if (NumBytes || MFI.hasVarSizedObjects())
2283 NumBytes += mergeSPUpdates(MBB, MBBI, true);
2284
2285 // If dynamic alloca is used, then reset esp to point to the last callee-saved
2286 // slot before popping them off! Same applies for the case, when stack was
2287 // realigned. Don't do this if this was a funclet epilogue, since the funclets
2288 // will not do realignment or dynamic stack allocation.
2289 if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) &&
2290 !IsFunclet) {
2291 if (TRI->hasStackRealignment(MF))
2292 MBBI = FirstCSPop;
2293 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
2294 uint64_t LEAAmount =
2295 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
2296
2297 if (X86FI->hasSwiftAsyncContext())
2298 LEAAmount -= 16;
2299
2300 // There are only two legal forms of epilogue:
2301 // - add SEHAllocationSize, %rsp
2302 // - lea SEHAllocationSize(%FramePtr), %rsp
2303 //
2304 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
2305 // However, we may use this sequence if we have a frame pointer because the
2306 // effects of the prologue can safely be undone.
2307 if (LEAAmount != 0) {
2308 unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
2309 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
2310 FramePtr, false, LEAAmount);
2311 --MBBI;
2312 } else {
2313 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
2314 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
2315 .addReg(FramePtr);
2316 --MBBI;
2317 }
2318 } else if (NumBytes) {
2319 // Adjust stack pointer back: ESP += numbytes.
2320 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
2321 if (!HasFP && NeedsDwarfCFI) {
2322 // Define the current CFA rule to use the provided offset.
2323 BuildCFI(MBB, MBBI, DL,
2324 MCCFIInstruction::cfiDefCfaOffset(
2325 nullptr, CSSize + TailCallArgReserveSize + SlotSize),
2326 MachineInstr::FrameDestroy);
2327 }
2328 --MBBI;
2329 }
2330
2331 // Windows unwinder will not invoke function's exception handler if IP is
2332 // either in prologue or in epilogue. This behavior causes a problem when a
2333 // call immediately precedes an epilogue, because the return address points
2334 // into the epilogue. To cope with that, we insert an epilogue marker here,
2335 // then replace it with a 'nop' if it ends up immediately after a CALL in the
2336 // final emitted code.
2337 if (NeedsWin64CFI && MF.hasWinCFI())
2338 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
2339
2340 if (!HasFP && NeedsDwarfCFI) {
2341 MBBI = FirstCSPop;
2342 int64_t Offset = -CSSize - SlotSize;
2343 // Mark callee-saved pop instruction.
2344 // Define the current CFA rule to use the provided offset.
2345 while (MBBI != MBB.end()) {
2346 MachineBasicBlock::iterator PI = MBBI;
2347 unsigned Opc = PI->getOpcode();
2348 ++MBBI;
2349 if (Opc == X86::POP32r || Opc == X86::POP64r) {
2350 Offset += SlotSize;
2351 BuildCFI(MBB, MBBI, DL,
2352 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset),
2353 MachineInstr::FrameDestroy);
2354 }
2355 }
2356 }
2357
2358 // Emit DWARF info specifying the restores of the callee-saved registers.
2359 // For epilogue with return inside or being other block without successor,
2360 // no need to generate .cfi_restore for callee-saved registers.
2361 if (NeedsDwarfCFI && !MBB.succ_empty())
2362 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false);
2363
2364 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) {
2365 // Add the return addr area delta back since we are not tail calling.
2366 int Offset = -1 * X86FI->getTCReturnAddrDelta();
2367 assert(Offset >= 0 && "TCDelta should never be positive");
2368 if (Offset) {
2369 // Check for possible merge with preceding ADD instruction.
2370 Offset += mergeSPUpdates(MBB, Terminator, true);
2371 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true);
2372 }
2373 }
2374
2375 // Emit tilerelease for AMX kernel.
2376 if (X86FI->hasVirtualTileReg())
2377 BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE));
2378 }
2379
getFrameIndexReference(const MachineFunction & MF,int FI,Register & FrameReg) const2380 StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF,
2381 int FI,
2382 Register &FrameReg) const {
2383 const MachineFrameInfo &MFI = MF.getFrameInfo();
2384
2385 bool IsFixed = MFI.isFixedObjectIndex(FI);
2386 // We can't calculate offset from frame pointer if the stack is realigned,
2387 // so enforce usage of stack/base pointer. The base pointer is used when we
2388 // have dynamic allocas in addition to dynamic realignment.
2389 if (TRI->hasBasePointer(MF))
2390 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
2391 else if (TRI->hasStackRealignment(MF))
2392 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
2393 else
2394 FrameReg = TRI->getFrameRegister(MF);
2395
2396 // Offset will hold the offset from the stack pointer at function entry to the
2397 // object.
2398 // We need to factor in additional offsets applied during the prologue to the
2399 // frame, base, and stack pointer depending on which is used.
2400 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
2401 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2402 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2403 uint64_t StackSize = MFI.getStackSize();
2404 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2405 int64_t FPDelta = 0;
2406
2407 // In an x86 interrupt, remove the offset we added to account for the return
2408 // address from any stack object allocated in the caller's frame. Interrupts
2409 // do not have a standard return address. Fixed objects in the current frame,
2410 // such as SSE register spills, should not get this treatment.
2411 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR &&
2412 Offset >= 0) {
2413 Offset += getOffsetOfLocalArea();
2414 }
2415
2416 if (IsWin64Prologue) {
2417 assert(!MFI.hasCalls() || (StackSize % 16) == 8);
2418
2419 // Calculate required stack adjustment.
2420 uint64_t FrameSize = StackSize - SlotSize;
2421 // If required, include space for extra hidden slot for stashing base pointer.
2422 if (X86FI->getRestoreBasePointer())
2423 FrameSize += SlotSize;
2424 uint64_t NumBytes = FrameSize - CSSize;
2425
2426 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
2427 if (FI && FI == X86FI->getFAIndex())
2428 return StackOffset::getFixed(-SEHFrameOffset);
2429
2430 // FPDelta is the offset from the "traditional" FP location of the old base
2431 // pointer followed by return address and the location required by the
2432 // restricted Win64 prologue.
2433 // Add FPDelta to all offsets below that go through the frame pointer.
2434 FPDelta = FrameSize - SEHFrameOffset;
2435 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
2436 "FPDelta isn't aligned per the Win64 ABI!");
2437 }
2438
2439 if (FrameReg == TRI->getFramePtr()) {
2440 // Skip saved EBP/RBP
2441 Offset += SlotSize;
2442
2443 // Account for restricted Windows prologue.
2444 Offset += FPDelta;
2445
2446 // Skip the RETADDR move area
2447 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2448 if (TailCallReturnAddrDelta < 0)
2449 Offset -= TailCallReturnAddrDelta;
2450
2451 return StackOffset::getFixed(Offset);
2452 }
2453
2454 // FrameReg is either the stack pointer or a base pointer. But the base is
2455 // located at the end of the statically known StackSize so the distinction
2456 // doesn't really matter.
2457 if (TRI->hasStackRealignment(MF) || TRI->hasBasePointer(MF))
2458 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize)));
2459 return StackOffset::getFixed(Offset + StackSize);
2460 }
2461
getWin64EHFrameIndexRef(const MachineFunction & MF,int FI,Register & FrameReg) const2462 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI,
2463 Register &FrameReg) const {
2464 const MachineFrameInfo &MFI = MF.getFrameInfo();
2465 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2466 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2467 const auto it = WinEHXMMSlotInfo.find(FI);
2468
2469 if (it == WinEHXMMSlotInfo.end())
2470 return getFrameIndexReference(MF, FI, FrameReg).getFixed();
2471
2472 FrameReg = TRI->getStackRegister();
2473 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) +
2474 it->second;
2475 }
2476
2477 StackOffset
getFrameIndexReferenceSP(const MachineFunction & MF,int FI,Register & FrameReg,int Adjustment) const2478 X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI,
2479 Register &FrameReg,
2480 int Adjustment) const {
2481 const MachineFrameInfo &MFI = MF.getFrameInfo();
2482 FrameReg = TRI->getStackRegister();
2483 return StackOffset::getFixed(MFI.getObjectOffset(FI) -
2484 getOffsetOfLocalArea() + Adjustment);
2485 }
2486
2487 StackOffset
getFrameIndexReferencePreferSP(const MachineFunction & MF,int FI,Register & FrameReg,bool IgnoreSPUpdates) const2488 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
2489 int FI, Register &FrameReg,
2490 bool IgnoreSPUpdates) const {
2491
2492 const MachineFrameInfo &MFI = MF.getFrameInfo();
2493 // Does not include any dynamic realign.
2494 const uint64_t StackSize = MFI.getStackSize();
2495 // LLVM arranges the stack as follows:
2496 // ...
2497 // ARG2
2498 // ARG1
2499 // RETADDR
2500 // PUSH RBP <-- RBP points here
2501 // PUSH CSRs
2502 // ~~~~~~~ <-- possible stack realignment (non-win64)
2503 // ...
2504 // STACK OBJECTS
2505 // ... <-- RSP after prologue points here
2506 // ~~~~~~~ <-- possible stack realignment (win64)
2507 //
2508 // if (hasVarSizedObjects()):
2509 // ... <-- "base pointer" (ESI/RBX) points here
2510 // DYNAMIC ALLOCAS
2511 // ... <-- RSP points here
2512 //
2513 // Case 1: In the simple case of no stack realignment and no dynamic
2514 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
2515 // with fixed offsets from RSP.
2516 //
2517 // Case 2: In the case of stack realignment with no dynamic allocas, fixed
2518 // stack objects are addressed with RBP and regular stack objects with RSP.
2519 //
2520 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
2521 // to address stack arguments for outgoing calls and nothing else. The "base
2522 // pointer" points to local variables, and RBP points to fixed objects.
2523 //
2524 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
2525 // answer we give is relative to the SP after the prologue, and not the
2526 // SP in the middle of the function.
2527
2528 if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) &&
2529 !STI.isTargetWin64())
2530 return getFrameIndexReference(MF, FI, FrameReg);
2531
2532 // If !hasReservedCallFrame the function might have SP adjustement in the
2533 // body. So, even though the offset is statically known, it depends on where
2534 // we are in the function.
2535 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF))
2536 return getFrameIndexReference(MF, FI, FrameReg);
2537
2538 // We don't handle tail calls, and shouldn't be seeing them either.
2539 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
2540 "we don't handle this case!");
2541
2542 // This is how the math works out:
2543 //
2544 // %rsp grows (i.e. gets lower) left to right. Each box below is
2545 // one word (eight bytes). Obj0 is the stack slot we're trying to
2546 // get to.
2547 //
2548 // ----------------------------------
2549 // | BP | Obj0 | Obj1 | ... | ObjN |
2550 // ----------------------------------
2551 // ^ ^ ^ ^
2552 // A B C E
2553 //
2554 // A is the incoming stack pointer.
2555 // (B - A) is the local area offset (-8 for x86-64) [1]
2556 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
2557 //
2558 // |(E - B)| is the StackSize (absolute value, positive). For a
2559 // stack that grown down, this works out to be (B - E). [3]
2560 //
2561 // E is also the value of %rsp after stack has been set up, and we
2562 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now
2563 // (C - E) == (C - A) - (B - A) + (B - E)
2564 // { Using [1], [2] and [3] above }
2565 // == getObjectOffset - LocalAreaOffset + StackSize
2566
2567 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize);
2568 }
2569
assignCalleeSavedSpillSlots(MachineFunction & MF,const TargetRegisterInfo * TRI,std::vector<CalleeSavedInfo> & CSI) const2570 bool X86FrameLowering::assignCalleeSavedSpillSlots(
2571 MachineFunction &MF, const TargetRegisterInfo *TRI,
2572 std::vector<CalleeSavedInfo> &CSI) const {
2573 MachineFrameInfo &MFI = MF.getFrameInfo();
2574 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2575
2576 unsigned CalleeSavedFrameSize = 0;
2577 unsigned XMMCalleeSavedFrameSize = 0;
2578 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2579 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
2580
2581 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2582
2583 if (TailCallReturnAddrDelta < 0) {
2584 // create RETURNADDR area
2585 // arg
2586 // arg
2587 // RETADDR
2588 // { ...
2589 // RETADDR area
2590 // ...
2591 // }
2592 // [EBP]
2593 MFI.CreateFixedObject(-TailCallReturnAddrDelta,
2594 TailCallReturnAddrDelta - SlotSize, true);
2595 }
2596
2597 // Spill the BasePtr if it's used.
2598 if (this->TRI->hasBasePointer(MF)) {
2599 // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
2600 if (MF.hasEHFunclets()) {
2601 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize));
2602 X86FI->setHasSEHFramePtrSave(true);
2603 X86FI->setSEHFramePtrSaveIndex(FI);
2604 }
2605 }
2606
2607 if (hasFP(MF)) {
2608 // emitPrologue always spills frame register the first thing.
2609 SpillSlotOffset -= SlotSize;
2610 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2611
2612 // The async context lives directly before the frame pointer, and we
2613 // allocate a second slot to preserve stack alignment.
2614 if (X86FI->hasSwiftAsyncContext()) {
2615 SpillSlotOffset -= SlotSize;
2616 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2617 SpillSlotOffset -= SlotSize;
2618 }
2619
2620 // Since emitPrologue and emitEpilogue will handle spilling and restoring of
2621 // the frame register, we can delete it from CSI list and not have to worry
2622 // about avoiding it later.
2623 Register FPReg = TRI->getFrameRegister(MF);
2624 for (unsigned i = 0; i < CSI.size(); ++i) {
2625 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
2626 CSI.erase(CSI.begin() + i);
2627 break;
2628 }
2629 }
2630 }
2631
2632 // Assign slots for GPRs. It increases frame size.
2633 for (CalleeSavedInfo &I : llvm::reverse(CSI)) {
2634 Register Reg = I.getReg();
2635
2636 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2637 continue;
2638
2639 SpillSlotOffset -= SlotSize;
2640 CalleeSavedFrameSize += SlotSize;
2641
2642 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2643 I.setFrameIdx(SlotIndex);
2644 }
2645
2646 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
2647 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize);
2648
2649 // Assign slots for XMMs.
2650 for (CalleeSavedInfo &I : llvm::reverse(CSI)) {
2651 Register Reg = I.getReg();
2652 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2653 continue;
2654
2655 // If this is k-register make sure we lookup via the largest legal type.
2656 MVT VT = MVT::Other;
2657 if (X86::VK16RegClass.contains(Reg))
2658 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2659
2660 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2661 unsigned Size = TRI->getSpillSize(*RC);
2662 Align Alignment = TRI->getSpillAlign(*RC);
2663 // ensure alignment
2664 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86");
2665 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment);
2666
2667 // spill into slot
2668 SpillSlotOffset -= Size;
2669 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
2670 I.setFrameIdx(SlotIndex);
2671 MFI.ensureMaxAlignment(Alignment);
2672
2673 // Save the start offset and size of XMM in stack frame for funclets.
2674 if (X86::VR128RegClass.contains(Reg)) {
2675 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize;
2676 XMMCalleeSavedFrameSize += Size;
2677 }
2678 }
2679
2680 return true;
2681 }
2682
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI) const2683 bool X86FrameLowering::spillCalleeSavedRegisters(
2684 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2685 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2686 DebugLoc DL = MBB.findDebugLoc(MI);
2687
2688 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
2689 // for us, and there are no XMM CSRs on Win32.
2690 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
2691 return true;
2692
2693 // Push GPRs. It increases frame size.
2694 const MachineFunction &MF = *MBB.getParent();
2695 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
2696 for (const CalleeSavedInfo &I : llvm::reverse(CSI)) {
2697 Register Reg = I.getReg();
2698
2699 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2700 continue;
2701
2702 const MachineRegisterInfo &MRI = MF.getRegInfo();
2703 bool isLiveIn = MRI.isLiveIn(Reg);
2704 if (!isLiveIn)
2705 MBB.addLiveIn(Reg);
2706
2707 // Decide whether we can add a kill flag to the use.
2708 bool CanKill = !isLiveIn;
2709 // Check if any subregister is live-in
2710 if (CanKill) {
2711 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
2712 if (MRI.isLiveIn(*AReg)) {
2713 CanKill = false;
2714 break;
2715 }
2716 }
2717 }
2718
2719 // Do not set a kill flag on values that are also marked as live-in. This
2720 // happens with the @llvm-returnaddress intrinsic and with arguments
2721 // passed in callee saved registers.
2722 // Omitting the kill flags is conservatively correct even if the live-in
2723 // is not used after all.
2724 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
2725 .setMIFlag(MachineInstr::FrameSetup);
2726 }
2727
2728 // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
2729 // It can be done by spilling XMMs to stack frame.
2730 for (const CalleeSavedInfo &I : llvm::reverse(CSI)) {
2731 Register Reg = I.getReg();
2732 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2733 continue;
2734
2735 // If this is k-register make sure we lookup via the largest legal type.
2736 MVT VT = MVT::Other;
2737 if (X86::VK16RegClass.contains(Reg))
2738 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2739
2740 // Add the callee-saved register as live-in. It's killed at the spill.
2741 MBB.addLiveIn(Reg);
2742 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2743
2744 TII.storeRegToStackSlot(MBB, MI, Reg, true, I.getFrameIdx(), RC, TRI);
2745 --MI;
2746 MI->setFlag(MachineInstr::FrameSetup);
2747 ++MI;
2748 }
2749
2750 return true;
2751 }
2752
emitCatchRetReturnValue(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,MachineInstr * CatchRet) const2753 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
2754 MachineBasicBlock::iterator MBBI,
2755 MachineInstr *CatchRet) const {
2756 // SEH shouldn't use catchret.
2757 assert(!isAsynchronousEHPersonality(classifyEHPersonality(
2758 MBB.getParent()->getFunction().getPersonalityFn())) &&
2759 "SEH should not use CATCHRET");
2760 const DebugLoc &DL = CatchRet->getDebugLoc();
2761 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB();
2762
2763 // Fill EAX/RAX with the address of the target block.
2764 if (STI.is64Bit()) {
2765 // LEA64r CatchRetTarget(%rip), %rax
2766 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
2767 .addReg(X86::RIP)
2768 .addImm(0)
2769 .addReg(0)
2770 .addMBB(CatchRetTarget)
2771 .addReg(0);
2772 } else {
2773 // MOV32ri $CatchRetTarget, %eax
2774 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
2775 .addMBB(CatchRetTarget);
2776 }
2777
2778 // Record that we've taken the address of CatchRetTarget and no longer just
2779 // reference it in a terminator.
2780 CatchRetTarget->setHasAddressTaken();
2781 }
2782
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,MutableArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI) const2783 bool X86FrameLowering::restoreCalleeSavedRegisters(
2784 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2785 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2786 if (CSI.empty())
2787 return false;
2788
2789 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
2790 // Don't restore CSRs in 32-bit EH funclets. Matches
2791 // spillCalleeSavedRegisters.
2792 if (STI.is32Bit())
2793 return true;
2794 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
2795 // funclets. emitEpilogue transforms these to normal jumps.
2796 if (MI->getOpcode() == X86::CATCHRET) {
2797 const Function &F = MBB.getParent()->getFunction();
2798 bool IsSEH = isAsynchronousEHPersonality(
2799 classifyEHPersonality(F.getPersonalityFn()));
2800 if (IsSEH)
2801 return true;
2802 }
2803 }
2804
2805 DebugLoc DL = MBB.findDebugLoc(MI);
2806
2807 // Reload XMMs from stack frame.
2808 for (const CalleeSavedInfo &I : CSI) {
2809 Register Reg = I.getReg();
2810 if (X86::GR64RegClass.contains(Reg) ||
2811 X86::GR32RegClass.contains(Reg))
2812 continue;
2813
2814 // If this is k-register make sure we lookup via the largest legal type.
2815 MVT VT = MVT::Other;
2816 if (X86::VK16RegClass.contains(Reg))
2817 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2818
2819 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2820 TII.loadRegFromStackSlot(MBB, MI, Reg, I.getFrameIdx(), RC, TRI);
2821 }
2822
2823 // POP GPRs.
2824 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
2825 for (const CalleeSavedInfo &I : CSI) {
2826 Register Reg = I.getReg();
2827 if (!X86::GR64RegClass.contains(Reg) &&
2828 !X86::GR32RegClass.contains(Reg))
2829 continue;
2830
2831 BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
2832 .setMIFlag(MachineInstr::FrameDestroy);
2833 }
2834 return true;
2835 }
2836
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const2837 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
2838 BitVector &SavedRegs,
2839 RegScavenger *RS) const {
2840 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2841
2842 // Spill the BasePtr if it's used.
2843 if (TRI->hasBasePointer(MF)){
2844 Register BasePtr = TRI->getBaseRegister();
2845 if (STI.isTarget64BitILP32())
2846 BasePtr = getX86SubSuperRegister(BasePtr, 64);
2847 SavedRegs.set(BasePtr);
2848 }
2849 }
2850
2851 static bool
HasNestArgument(const MachineFunction * MF)2852 HasNestArgument(const MachineFunction *MF) {
2853 const Function &F = MF->getFunction();
2854 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
2855 I != E; I++) {
2856 if (I->hasNestAttr() && !I->use_empty())
2857 return true;
2858 }
2859 return false;
2860 }
2861
2862 /// GetScratchRegister - Get a temp register for performing work in the
2863 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
2864 /// and the properties of the function either one or two registers will be
2865 /// needed. Set primary to true for the first register, false for the second.
2866 static unsigned
GetScratchRegister(bool Is64Bit,bool IsLP64,const MachineFunction & MF,bool Primary)2867 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
2868 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();
2869
2870 // Erlang stuff.
2871 if (CallingConvention == CallingConv::HiPE) {
2872 if (Is64Bit)
2873 return Primary ? X86::R14 : X86::R13;
2874 else
2875 return Primary ? X86::EBX : X86::EDI;
2876 }
2877
2878 if (Is64Bit) {
2879 if (IsLP64)
2880 return Primary ? X86::R11 : X86::R12;
2881 else
2882 return Primary ? X86::R11D : X86::R12D;
2883 }
2884
2885 bool IsNested = HasNestArgument(&MF);
2886
2887 if (CallingConvention == CallingConv::X86_FastCall ||
2888 CallingConvention == CallingConv::Fast ||
2889 CallingConvention == CallingConv::Tail) {
2890 if (IsNested)
2891 report_fatal_error("Segmented stacks does not support fastcall with "
2892 "nested function.");
2893 return Primary ? X86::EAX : X86::ECX;
2894 }
2895 if (IsNested)
2896 return Primary ? X86::EDX : X86::EAX;
2897 return Primary ? X86::ECX : X86::EAX;
2898 }
2899
2900 // The stack limit in the TCB is set to this many bytes above the actual stack
2901 // limit.
2902 static const uint64_t kSplitStackAvailable = 256;
2903
adjustForSegmentedStacks(MachineFunction & MF,MachineBasicBlock & PrologueMBB) const2904 void X86FrameLowering::adjustForSegmentedStacks(
2905 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2906 MachineFrameInfo &MFI = MF.getFrameInfo();
2907 uint64_t StackSize;
2908 unsigned TlsReg, TlsOffset;
2909 DebugLoc DL;
2910
2911 // To support shrink-wrapping we would need to insert the new blocks
2912 // at the right place and update the branches to PrologueMBB.
2913 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2914
2915 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2916 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2917 "Scratch register is live-in");
2918
2919 if (MF.getFunction().isVarArg())
2920 report_fatal_error("Segmented stacks do not support vararg functions.");
2921 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
2922 !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
2923 !STI.isTargetDragonFly())
2924 report_fatal_error("Segmented stacks not supported on this platform.");
2925
2926 // Eventually StackSize will be calculated by a link-time pass; which will
2927 // also decide whether checking code needs to be injected into this particular
2928 // prologue.
2929 StackSize = MFI.getStackSize();
2930
2931 if (!MFI.needsSplitStackProlog())
2932 return;
2933
2934 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
2935 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
2936 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2937 bool IsNested = false;
2938
2939 // We need to know if the function has a nest argument only in 64 bit mode.
2940 if (Is64Bit)
2941 IsNested = HasNestArgument(&MF);
2942
2943 // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2944 // allocMBB needs to be last (terminating) instruction.
2945
2946 for (const auto &LI : PrologueMBB.liveins()) {
2947 allocMBB->addLiveIn(LI);
2948 checkMBB->addLiveIn(LI);
2949 }
2950
2951 if (IsNested)
2952 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
2953
2954 MF.push_front(allocMBB);
2955 MF.push_front(checkMBB);
2956
2957 // When the frame size is less than 256 we just compare the stack
2958 // boundary directly to the value of the stack pointer, per gcc.
2959 bool CompareStackPointer = StackSize < kSplitStackAvailable;
2960
2961 // Read the limit off the current stacklet off the stack_guard location.
2962 if (Is64Bit) {
2963 if (STI.isTargetLinux()) {
2964 TlsReg = X86::FS;
2965 TlsOffset = IsLP64 ? 0x70 : 0x40;
2966 } else if (STI.isTargetDarwin()) {
2967 TlsReg = X86::GS;
2968 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2969 } else if (STI.isTargetWin64()) {
2970 TlsReg = X86::GS;
2971 TlsOffset = 0x28; // pvArbitrary, reserved for application use
2972 } else if (STI.isTargetFreeBSD()) {
2973 TlsReg = X86::FS;
2974 TlsOffset = 0x18;
2975 } else if (STI.isTargetDragonFly()) {
2976 TlsReg = X86::FS;
2977 TlsOffset = 0x20; // use tls_tcb.tcb_segstack
2978 } else {
2979 report_fatal_error("Segmented stacks not supported on this platform.");
2980 }
2981
2982 if (CompareStackPointer)
2983 ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
2984 else
2985 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
2986 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2987
2988 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
2989 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2990 } else {
2991 if (STI.isTargetLinux()) {
2992 TlsReg = X86::GS;
2993 TlsOffset = 0x30;
2994 } else if (STI.isTargetDarwin()) {
2995 TlsReg = X86::GS;
2996 TlsOffset = 0x48 + 90*4;
2997 } else if (STI.isTargetWin32()) {
2998 TlsReg = X86::FS;
2999 TlsOffset = 0x14; // pvArbitrary, reserved for application use
3000 } else if (STI.isTargetDragonFly()) {
3001 TlsReg = X86::FS;
3002 TlsOffset = 0x10; // use tls_tcb.tcb_segstack
3003 } else if (STI.isTargetFreeBSD()) {
3004 report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
3005 } else {
3006 report_fatal_error("Segmented stacks not supported on this platform.");
3007 }
3008
3009 if (CompareStackPointer)
3010 ScratchReg = X86::ESP;
3011 else
3012 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
3013 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
3014
3015 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
3016 STI.isTargetDragonFly()) {
3017 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
3018 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
3019 } else if (STI.isTargetDarwin()) {
3020
3021 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
3022 unsigned ScratchReg2;
3023 bool SaveScratch2;
3024 if (CompareStackPointer) {
3025 // The primary scratch register is available for holding the TLS offset.
3026 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
3027 SaveScratch2 = false;
3028 } else {
3029 // Need to use a second register to hold the TLS offset
3030 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
3031
3032 // Unfortunately, with fastcc the second scratch register may hold an
3033 // argument.
3034 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
3035 }
3036
3037 // If Scratch2 is live-in then it needs to be saved.
3038 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
3039 "Scratch register is live-in and not saved");
3040
3041 if (SaveScratch2)
3042 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
3043 .addReg(ScratchReg2, RegState::Kill);
3044
3045 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
3046 .addImm(TlsOffset);
3047 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
3048 .addReg(ScratchReg)
3049 .addReg(ScratchReg2).addImm(1).addReg(0)
3050 .addImm(0)
3051 .addReg(TlsReg);
3052
3053 if (SaveScratch2)
3054 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
3055 }
3056 }
3057
3058 // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
3059 // It jumps to normal execution of the function body.
3060 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A);
3061
3062 // On 32 bit we first push the arguments size and then the frame size. On 64
3063 // bit, we pass the stack frame size in r10 and the argument size in r11.
3064 if (Is64Bit) {
3065 // Functions with nested arguments use R10, so it needs to be saved across
3066 // the call to _morestack
3067
3068 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
3069 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
3070 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
3071 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
3072
3073 if (IsNested)
3074 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
3075
3076 BuildMI(allocMBB, DL, TII.get(getMOVriOpcode(IsLP64, StackSize)), Reg10)
3077 .addImm(StackSize);
3078 BuildMI(allocMBB, DL,
3079 TII.get(getMOVriOpcode(IsLP64, X86FI->getArgumentStackSize())),
3080 Reg11)
3081 .addImm(X86FI->getArgumentStackSize());
3082 } else {
3083 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
3084 .addImm(X86FI->getArgumentStackSize());
3085 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
3086 .addImm(StackSize);
3087 }
3088
3089 // __morestack is in libgcc
3090 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
3091 // Under the large code model, we cannot assume that __morestack lives
3092 // within 2^31 bytes of the call site, so we cannot use pc-relative
3093 // addressing. We cannot perform the call via a temporary register,
3094 // as the rax register may be used to store the static chain, and all
3095 // other suitable registers may be either callee-save or used for
3096 // parameter passing. We cannot use the stack at this point either
3097 // because __morestack manipulates the stack directly.
3098 //
3099 // To avoid these issues, perform an indirect call via a read-only memory
3100 // location containing the address.
3101 //
3102 // This solution is not perfect, as it assumes that the .rodata section
3103 // is laid out within 2^31 bytes of each function body, but this seems
3104 // to be sufficient for JIT.
3105 // FIXME: Add retpoline support and remove the error here..
3106 if (STI.useIndirectThunkCalls())
3107 report_fatal_error("Emitting morestack calls on 64-bit with the large "
3108 "code model and thunks not yet implemented.");
3109 BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
3110 .addReg(X86::RIP)
3111 .addImm(0)
3112 .addReg(0)
3113 .addExternalSymbol("__morestack_addr")
3114 .addReg(0);
3115 } else {
3116 if (Is64Bit)
3117 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
3118 .addExternalSymbol("__morestack");
3119 else
3120 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
3121 .addExternalSymbol("__morestack");
3122 }
3123
3124 if (IsNested)
3125 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
3126 else
3127 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
3128
3129 allocMBB->addSuccessor(&PrologueMBB);
3130
3131 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero());
3132 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne());
3133
3134 #ifdef EXPENSIVE_CHECKS
3135 MF.verify();
3136 #endif
3137 }
3138
3139 /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
3140 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
3141 /// to fields it needs, through a named metadata node "hipe.literals" containing
3142 /// name-value pairs.
getHiPELiteral(NamedMDNode * HiPELiteralsMD,const StringRef LiteralName)3143 static unsigned getHiPELiteral(
3144 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
3145 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
3146 MDNode *Node = HiPELiteralsMD->getOperand(i);
3147 if (Node->getNumOperands() != 2) continue;
3148 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
3149 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
3150 if (!NodeName || !NodeVal) continue;
3151 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
3152 if (ValConst && NodeName->getString() == LiteralName) {
3153 return ValConst->getZExtValue();
3154 }
3155 }
3156
3157 report_fatal_error("HiPE literal " + LiteralName
3158 + " required but not provided");
3159 }
3160
3161 // Return true if there are no non-ehpad successors to MBB and there are no
3162 // non-meta instructions between MBBI and MBB.end().
blockEndIsUnreachable(const MachineBasicBlock & MBB,MachineBasicBlock::const_iterator MBBI)3163 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB,
3164 MachineBasicBlock::const_iterator MBBI) {
3165 return llvm::all_of(
3166 MBB.successors(),
3167 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) &&
3168 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) {
3169 return MI.isMetaInstruction();
3170 });
3171 }
3172
3173 /// Erlang programs may need a special prologue to handle the stack size they
3174 /// might need at runtime. That is because Erlang/OTP does not implement a C
3175 /// stack but uses a custom implementation of hybrid stack/heap architecture.
3176 /// (for more information see Eric Stenman's Ph.D. thesis:
3177 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
3178 ///
3179 /// CheckStack:
3180 /// temp0 = sp - MaxStack
3181 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
3182 /// OldStart:
3183 /// ...
3184 /// IncStack:
3185 /// call inc_stack # doubles the stack space
3186 /// temp0 = sp - MaxStack
3187 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
adjustForHiPEPrologue(MachineFunction & MF,MachineBasicBlock & PrologueMBB) const3188 void X86FrameLowering::adjustForHiPEPrologue(
3189 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
3190 MachineFrameInfo &MFI = MF.getFrameInfo();
3191 DebugLoc DL;
3192
3193 // To support shrink-wrapping we would need to insert the new blocks
3194 // at the right place and update the branches to PrologueMBB.
3195 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
3196
3197 // HiPE-specific values
3198 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
3199 ->getNamedMetadata("hipe.literals");
3200 if (!HiPELiteralsMD)
3201 report_fatal_error(
3202 "Can't generate HiPE prologue without runtime parameters");
3203 const unsigned HipeLeafWords
3204 = getHiPELiteral(HiPELiteralsMD,
3205 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
3206 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
3207 const unsigned Guaranteed = HipeLeafWords * SlotSize;
3208 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ?
3209 MF.getFunction().arg_size() - CCRegisteredArgs : 0;
3210 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;
3211
3212 assert(STI.isTargetLinux() &&
3213 "HiPE prologue is only supported on Linux operating systems.");
3214
3215 // Compute the largest caller's frame that is needed to fit the callees'
3216 // frames. This 'MaxStack' is computed from:
3217 //
3218 // a) the fixed frame size, which is the space needed for all spilled temps,
3219 // b) outgoing on-stack parameter areas, and
3220 // c) the minimum stack space this function needs to make available for the
3221 // functions it calls (a tunable ABI property).
3222 if (MFI.hasCalls()) {
3223 unsigned MoreStackForCalls = 0;
3224
3225 for (auto &MBB : MF) {
3226 for (auto &MI : MBB) {
3227 if (!MI.isCall())
3228 continue;
3229
3230 // Get callee operand.
3231 const MachineOperand &MO = MI.getOperand(0);
3232
3233 // Only take account of global function calls (no closures etc.).
3234 if (!MO.isGlobal())
3235 continue;
3236
3237 const Function *F = dyn_cast<Function>(MO.getGlobal());
3238 if (!F)
3239 continue;
3240
3241 // Do not update 'MaxStack' for primitive and built-in functions
3242 // (encoded with names either starting with "erlang."/"bif_" or not
3243 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
3244 // "_", such as the BIF "suspend_0") as they are executed on another
3245 // stack.
3246 if (F->getName().contains("erlang.") || F->getName().contains("bif_") ||
3247 F->getName().find_first_of("._") == StringRef::npos)
3248 continue;
3249
3250 unsigned CalleeStkArity =
3251 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
3252 if (HipeLeafWords - 1 > CalleeStkArity)
3253 MoreStackForCalls = std::max(MoreStackForCalls,
3254 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
3255 }
3256 }
3257 MaxStack += MoreStackForCalls;
3258 }
3259
3260 // If the stack frame needed is larger than the guaranteed then runtime checks
3261 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
3262 if (MaxStack > Guaranteed) {
3263 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
3264 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
3265
3266 for (const auto &LI : PrologueMBB.liveins()) {
3267 stackCheckMBB->addLiveIn(LI);
3268 incStackMBB->addLiveIn(LI);
3269 }
3270
3271 MF.push_front(incStackMBB);
3272 MF.push_front(stackCheckMBB);
3273
3274 unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
3275 unsigned LEAop, CMPop, CALLop;
3276 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
3277 if (Is64Bit) {
3278 SPReg = X86::RSP;
3279 PReg = X86::RBP;
3280 LEAop = X86::LEA64r;
3281 CMPop = X86::CMP64rm;
3282 CALLop = X86::CALL64pcrel32;
3283 } else {
3284 SPReg = X86::ESP;
3285 PReg = X86::EBP;
3286 LEAop = X86::LEA32r;
3287 CMPop = X86::CMP32rm;
3288 CALLop = X86::CALLpcrel32;
3289 }
3290
3291 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
3292 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
3293 "HiPE prologue scratch register is live-in");
3294
3295 // Create new MBB for StackCheck:
3296 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
3297 SPReg, false, -MaxStack);
3298 // SPLimitOffset is in a fixed heap location (pointed by BP).
3299 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
3300 .addReg(ScratchReg), PReg, false, SPLimitOffset);
3301 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE);
3302
3303 // Create new MBB for IncStack:
3304 BuildMI(incStackMBB, DL, TII.get(CALLop)).
3305 addExternalSymbol("inc_stack_0");
3306 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
3307 SPReg, false, -MaxStack);
3308 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
3309 .addReg(ScratchReg), PReg, false, SPLimitOffset);
3310 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE);
3311
3312 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
3313 stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
3314 incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
3315 incStackMBB->addSuccessor(incStackMBB, {1, 100});
3316 }
3317 #ifdef EXPENSIVE_CHECKS
3318 MF.verify();
3319 #endif
3320 }
3321
adjustStackWithPops(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,int Offset) const3322 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
3323 MachineBasicBlock::iterator MBBI,
3324 const DebugLoc &DL,
3325 int Offset) const {
3326 if (Offset <= 0)
3327 return false;
3328
3329 if (Offset % SlotSize)
3330 return false;
3331
3332 int NumPops = Offset / SlotSize;
3333 // This is only worth it if we have at most 2 pops.
3334 if (NumPops != 1 && NumPops != 2)
3335 return false;
3336
3337 // Handle only the trivial case where the adjustment directly follows
3338 // a call. This is the most common one, anyway.
3339 if (MBBI == MBB.begin())
3340 return false;
3341 MachineBasicBlock::iterator Prev = std::prev(MBBI);
3342 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
3343 return false;
3344
3345 unsigned Regs[2];
3346 unsigned FoundRegs = 0;
3347
3348 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3349 const MachineOperand &RegMask = Prev->getOperand(1);
3350
3351 auto &RegClass =
3352 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
3353 // Try to find up to NumPops free registers.
3354 for (auto Candidate : RegClass) {
3355 // Poor man's liveness:
3356 // Since we're immediately after a call, any register that is clobbered
3357 // by the call and not defined by it can be considered dead.
3358 if (!RegMask.clobbersPhysReg(Candidate))
3359 continue;
3360
3361 // Don't clobber reserved registers
3362 if (MRI.isReserved(Candidate))
3363 continue;
3364
3365 bool IsDef = false;
3366 for (const MachineOperand &MO : Prev->implicit_operands()) {
3367 if (MO.isReg() && MO.isDef() &&
3368 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
3369 IsDef = true;
3370 break;
3371 }
3372 }
3373
3374 if (IsDef)
3375 continue;
3376
3377 Regs[FoundRegs++] = Candidate;
3378 if (FoundRegs == (unsigned)NumPops)
3379 break;
3380 }
3381
3382 if (FoundRegs == 0)
3383 return false;
3384
3385 // If we found only one free register, but need two, reuse the same one twice.
3386 while (FoundRegs < (unsigned)NumPops)
3387 Regs[FoundRegs++] = Regs[0];
3388
3389 for (int i = 0; i < NumPops; ++i)
3390 BuildMI(MBB, MBBI, DL,
3391 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
3392
3393 return true;
3394 }
3395
3396 MachineBasicBlock::iterator X86FrameLowering::
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const3397 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
3398 MachineBasicBlock::iterator I) const {
3399 bool reserveCallFrame = hasReservedCallFrame(MF);
3400 unsigned Opcode = I->getOpcode();
3401 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
3402 DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased.
3403 uint64_t Amount = TII.getFrameSize(*I);
3404 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0;
3405 I = MBB.erase(I);
3406 auto InsertPos = skipDebugInstructionsForward(I, MBB.end());
3407
3408 // Try to avoid emitting dead SP adjustments if the block end is unreachable,
3409 // typically because the function is marked noreturn (abort, throw,
3410 // assert_fail, etc).
3411 if (isDestroy && blockEndIsUnreachable(MBB, I))
3412 return I;
3413
3414 if (!reserveCallFrame) {
3415 // If the stack pointer can be changed after prologue, turn the
3416 // adjcallstackup instruction into a 'sub ESP, <amt>' and the
3417 // adjcallstackdown instruction into 'add ESP, <amt>'
3418
3419 // We need to keep the stack aligned properly. To do this, we round the
3420 // amount of space needed for the outgoing arguments up to the next
3421 // alignment boundary.
3422 Amount = alignTo(Amount, getStackAlign());
3423
3424 const Function &F = MF.getFunction();
3425 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
3426 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves();
3427
3428 // If we have any exception handlers in this function, and we adjust
3429 // the SP before calls, we may need to indicate this to the unwinder
3430 // using GNU_ARGS_SIZE. Note that this may be necessary even when
3431 // Amount == 0, because the preceding function may have set a non-0
3432 // GNU_ARGS_SIZE.
3433 // TODO: We don't need to reset this between subsequent functions,
3434 // if it didn't change.
3435 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();
3436
3437 if (HasDwarfEHHandlers && !isDestroy &&
3438 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
3439 BuildCFI(MBB, InsertPos, DL,
3440 MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
3441
3442 if (Amount == 0)
3443 return I;
3444
3445 // Factor out the amount that gets handled inside the sequence
3446 // (Pushes of argument for frame setup, callee pops for frame destroy)
3447 Amount -= InternalAmt;
3448
3449 // TODO: This is needed only if we require precise CFA.
3450 // If this is a callee-pop calling convention, emit a CFA adjust for
3451 // the amount the callee popped.
3452 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
3453 BuildCFI(MBB, InsertPos, DL,
3454 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
3455
3456 // Add Amount to SP to destroy a frame, or subtract to setup.
3457 int64_t StackAdjustment = isDestroy ? Amount : -Amount;
3458
3459 if (StackAdjustment) {
3460 // Merge with any previous or following adjustment instruction. Note: the
3461 // instructions merged with here do not have CFI, so their stack
3462 // adjustments do not feed into CfaAdjustment.
3463 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true);
3464 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false);
3465
3466 if (StackAdjustment) {
3467 if (!(F.hasMinSize() &&
3468 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment)))
3469 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment,
3470 /*InEpilogue=*/false);
3471 }
3472 }
3473
3474 if (DwarfCFI && !hasFP(MF)) {
3475 // If we don't have FP, but need to generate unwind information,
3476 // we need to set the correct CFA offset after the stack adjustment.
3477 // How much we adjust the CFA offset depends on whether we're emitting
3478 // CFI only for EH purposes or for debugging. EH only requires the CFA
3479 // offset to be correct at each call site, while for debugging we want
3480 // it to be more precise.
3481
3482 int64_t CfaAdjustment = -StackAdjustment;
3483 // TODO: When not using precise CFA, we also need to adjust for the
3484 // InternalAmt here.
3485 if (CfaAdjustment) {
3486 BuildCFI(MBB, InsertPos, DL,
3487 MCCFIInstruction::createAdjustCfaOffset(nullptr,
3488 CfaAdjustment));
3489 }
3490 }
3491
3492 return I;
3493 }
3494
3495 if (InternalAmt) {
3496 MachineBasicBlock::iterator CI = I;
3497 MachineBasicBlock::iterator B = MBB.begin();
3498 while (CI != B && !std::prev(CI)->isCall())
3499 --CI;
3500 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
3501 }
3502
3503 return I;
3504 }
3505
canUseAsPrologue(const MachineBasicBlock & MBB) const3506 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
3507 assert(MBB.getParent() && "Block is not attached to a function!");
3508 const MachineFunction &MF = *MBB.getParent();
3509 if (!MBB.isLiveIn(X86::EFLAGS))
3510 return true;
3511
3512 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3513 return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext();
3514 }
3515
canUseAsEpilogue(const MachineBasicBlock & MBB) const3516 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
3517 assert(MBB.getParent() && "Block is not attached to a function!");
3518
3519 // Win64 has strict requirements in terms of epilogue and we are
3520 // not taking a chance at messing with them.
3521 // I.e., unless this block is already an exit block, we can't use
3522 // it as an epilogue.
3523 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
3524 return false;
3525
3526 // Swift async context epilogue has a BTR instruction that clobbers parts of
3527 // EFLAGS.
3528 const MachineFunction &MF = *MBB.getParent();
3529 if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext())
3530 return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
3531
3532 if (canUseLEAForSPInEpilogue(*MBB.getParent()))
3533 return true;
3534
3535 // If we cannot use LEA to adjust SP, we may need to use ADD, which
3536 // clobbers the EFLAGS. Check that we do not need to preserve it,
3537 // otherwise, conservatively assume this is not
3538 // safe to insert the epilogue here.
3539 return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
3540 }
3541
enableShrinkWrapping(const MachineFunction & MF) const3542 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
3543 // If we may need to emit frameless compact unwind information, give
3544 // up as this is currently broken: PR25614.
3545 bool CompactUnwind =
3546 MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() !=
3547 nullptr;
3548 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) ||
3549 !CompactUnwind) &&
3550 // The lowering of segmented stack and HiPE only support entry
3551 // blocks as prologue blocks: PR26107. This limitation may be
3552 // lifted if we fix:
3553 // - adjustForSegmentedStacks
3554 // - adjustForHiPEPrologue
3555 MF.getFunction().getCallingConv() != CallingConv::HiPE &&
3556 !MF.shouldSplitStack();
3557 }
3558
restoreWin32EHStackPointers(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool RestoreSP) const3559 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
3560 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
3561 const DebugLoc &DL, bool RestoreSP) const {
3562 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
3563 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
3564 assert(STI.is32Bit() && !Uses64BitFramePtr &&
3565 "restoring EBP/ESI on non-32-bit target");
3566
3567 MachineFunction &MF = *MBB.getParent();
3568 Register FramePtr = TRI->getFrameRegister(MF);
3569 Register BasePtr = TRI->getBaseRegister();
3570 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
3571 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3572 MachineFrameInfo &MFI = MF.getFrameInfo();
3573
3574 // FIXME: Don't set FrameSetup flag in catchret case.
3575
3576 int FI = FuncInfo.EHRegNodeFrameIndex;
3577 int EHRegSize = MFI.getObjectSize(FI);
3578
3579 if (RestoreSP) {
3580 // MOV32rm -EHRegSize(%ebp), %esp
3581 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
3582 X86::EBP, true, -EHRegSize)
3583 .setMIFlag(MachineInstr::FrameSetup);
3584 }
3585
3586 Register UsedReg;
3587 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed();
3588 int EndOffset = -EHRegOffset - EHRegSize;
3589 FuncInfo.EHRegNodeEndOffset = EndOffset;
3590
3591 if (UsedReg == FramePtr) {
3592 // ADD $offset, %ebp
3593 unsigned ADDri = getADDriOpcode(false, EndOffset);
3594 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
3595 .addReg(FramePtr)
3596 .addImm(EndOffset)
3597 .setMIFlag(MachineInstr::FrameSetup)
3598 ->getOperand(3)
3599 .setIsDead();
3600 assert(EndOffset >= 0 &&
3601 "end of registration object above normal EBP position!");
3602 } else if (UsedReg == BasePtr) {
3603 // LEA offset(%ebp), %esi
3604 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
3605 FramePtr, false, EndOffset)
3606 .setMIFlag(MachineInstr::FrameSetup);
3607 // MOV32rm SavedEBPOffset(%esi), %ebp
3608 assert(X86FI->getHasSEHFramePtrSave());
3609 int Offset =
3610 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg)
3611 .getFixed();
3612 assert(UsedReg == BasePtr);
3613 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
3614 UsedReg, true, Offset)
3615 .setMIFlag(MachineInstr::FrameSetup);
3616 } else {
3617 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
3618 }
3619 return MBBI;
3620 }
3621
getInitialCFAOffset(const MachineFunction & MF) const3622 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
3623 return TRI->getSlotSize();
3624 }
3625
3626 Register
getInitialCFARegister(const MachineFunction & MF) const3627 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const {
3628 return TRI->getDwarfRegNum(StackPtr, true);
3629 }
3630
3631 namespace {
3632 // Struct used by orderFrameObjects to help sort the stack objects.
3633 struct X86FrameSortingObject {
3634 bool IsValid = false; // true if we care about this Object.
3635 unsigned ObjectIndex = 0; // Index of Object into MFI list.
3636 unsigned ObjectSize = 0; // Size of Object in bytes.
3637 Align ObjectAlignment = Align(1); // Alignment of Object in bytes.
3638 unsigned ObjectNumUses = 0; // Object static number of uses.
3639 };
3640
3641 // The comparison function we use for std::sort to order our local
3642 // stack symbols. The current algorithm is to use an estimated
3643 // "density". This takes into consideration the size and number of
3644 // uses each object has in order to roughly minimize code size.
3645 // So, for example, an object of size 16B that is referenced 5 times
3646 // will get higher priority than 4 4B objects referenced 1 time each.
3647 // It's not perfect and we may be able to squeeze a few more bytes out of
3648 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
3649 // fringe end can have special consideration, given their size is less
3650 // important, etc.), but the algorithmic complexity grows too much to be
3651 // worth the extra gains we get. This gets us pretty close.
3652 // The final order leaves us with objects with highest priority going
3653 // at the end of our list.
3654 struct X86FrameSortingComparator {
operator ()__anonb44061430411::X86FrameSortingComparator3655 inline bool operator()(const X86FrameSortingObject &A,
3656 const X86FrameSortingObject &B) const {
3657 uint64_t DensityAScaled, DensityBScaled;
3658
3659 // For consistency in our comparison, all invalid objects are placed
3660 // at the end. This also allows us to stop walking when we hit the
3661 // first invalid item after it's all sorted.
3662 if (!A.IsValid)
3663 return false;
3664 if (!B.IsValid)
3665 return true;
3666
3667 // The density is calculated by doing :
3668 // (double)DensityA = A.ObjectNumUses / A.ObjectSize
3669 // (double)DensityB = B.ObjectNumUses / B.ObjectSize
3670 // Since this approach may cause inconsistencies in
3671 // the floating point <, >, == comparisons, depending on the floating
3672 // point model with which the compiler was built, we're going
3673 // to scale both sides by multiplying with
3674 // A.ObjectSize * B.ObjectSize. This ends up factoring away
3675 // the division and, with it, the need for any floating point
3676 // arithmetic.
3677 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
3678 static_cast<uint64_t>(B.ObjectSize);
3679 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
3680 static_cast<uint64_t>(A.ObjectSize);
3681
3682 // If the two densities are equal, prioritize highest alignment
3683 // objects. This allows for similar alignment objects
3684 // to be packed together (given the same density).
3685 // There's room for improvement here, also, since we can pack
3686 // similar alignment (different density) objects next to each
3687 // other to save padding. This will also require further
3688 // complexity/iterations, and the overall gain isn't worth it,
3689 // in general. Something to keep in mind, though.
3690 if (DensityAScaled == DensityBScaled)
3691 return A.ObjectAlignment < B.ObjectAlignment;
3692
3693 return DensityAScaled < DensityBScaled;
3694 }
3695 };
3696 } // namespace
3697
3698 // Order the symbols in the local stack.
3699 // We want to place the local stack objects in some sort of sensible order.
3700 // The heuristic we use is to try and pack them according to static number
3701 // of uses and size of object in order to minimize code size.
orderFrameObjects(const MachineFunction & MF,SmallVectorImpl<int> & ObjectsToAllocate) const3702 void X86FrameLowering::orderFrameObjects(
3703 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3704 const MachineFrameInfo &MFI = MF.getFrameInfo();
3705
3706 // Don't waste time if there's nothing to do.
3707 if (ObjectsToAllocate.empty())
3708 return;
3709
3710 // Create an array of all MFI objects. We won't need all of these
3711 // objects, but we're going to create a full array of them to make
3712 // it easier to index into when we're counting "uses" down below.
3713 // We want to be able to easily/cheaply access an object by simply
3714 // indexing into it, instead of having to search for it every time.
3715 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
3716
3717 // Walk the objects we care about and mark them as such in our working
3718 // struct.
3719 for (auto &Obj : ObjectsToAllocate) {
3720 SortingObjects[Obj].IsValid = true;
3721 SortingObjects[Obj].ObjectIndex = Obj;
3722 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj);
3723 // Set the size.
3724 int ObjectSize = MFI.getObjectSize(Obj);
3725 if (ObjectSize == 0)
3726 // Variable size. Just use 4.
3727 SortingObjects[Obj].ObjectSize = 4;
3728 else
3729 SortingObjects[Obj].ObjectSize = ObjectSize;
3730 }
3731
3732 // Count the number of uses for each object.
3733 for (auto &MBB : MF) {
3734 for (auto &MI : MBB) {
3735 if (MI.isDebugInstr())
3736 continue;
3737 for (const MachineOperand &MO : MI.operands()) {
3738 // Check to see if it's a local stack symbol.
3739 if (!MO.isFI())
3740 continue;
3741 int Index = MO.getIndex();
3742 // Check to see if it falls within our range, and is tagged
3743 // to require ordering.
3744 if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
3745 SortingObjects[Index].IsValid)
3746 SortingObjects[Index].ObjectNumUses++;
3747 }
3748 }
3749 }
3750
3751 // Sort the objects using X86FrameSortingAlgorithm (see its comment for
3752 // info).
3753 llvm::stable_sort(SortingObjects, X86FrameSortingComparator());
3754
3755 // Now modify the original list to represent the final order that
3756 // we want. The order will depend on whether we're going to access them
3757 // from the stack pointer or the frame pointer. For SP, the list should
3758 // end up with the END containing objects that we want with smaller offsets.
3759 // For FP, it should be flipped.
3760 int i = 0;
3761 for (auto &Obj : SortingObjects) {
3762 // All invalid items are sorted at the end, so it's safe to stop.
3763 if (!Obj.IsValid)
3764 break;
3765 ObjectsToAllocate[i++] = Obj.ObjectIndex;
3766 }
3767
3768 // Flip it if we're accessing off of the FP.
3769 if (!TRI->hasStackRealignment(MF) && hasFP(MF))
3770 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
3771 }
3772
3773
getWinEHParentFrameOffset(const MachineFunction & MF) const3774 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
3775 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
3776 unsigned Offset = 16;
3777 // RBP is immediately pushed.
3778 Offset += SlotSize;
3779 // All callee-saved registers are then pushed.
3780 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
3781 // Every funclet allocates enough stack space for the largest outgoing call.
3782 Offset += getWinEHFuncletFrameSize(MF);
3783 return Offset;
3784 }
3785
processFunctionBeforeFrameFinalized(MachineFunction & MF,RegScavenger * RS) const3786 void X86FrameLowering::processFunctionBeforeFrameFinalized(
3787 MachineFunction &MF, RegScavenger *RS) const {
3788 // Mark the function as not having WinCFI. We will set it back to true in
3789 // emitPrologue if it gets called and emits CFI.
3790 MF.setHasWinCFI(false);
3791
3792 // If we are using Windows x64 CFI, ensure that the stack is always 8 byte
3793 // aligned. The format doesn't support misaligned stack adjustments.
3794 if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI())
3795 MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize));
3796
3797 // If this function isn't doing Win64-style C++ EH, we don't need to do
3798 // anything.
3799 if (STI.is64Bit() && MF.hasEHFunclets() &&
3800 classifyEHPersonality(MF.getFunction().getPersonalityFn()) ==
3801 EHPersonality::MSVC_CXX) {
3802 adjustFrameForMsvcCxxEh(MF);
3803 }
3804 }
3805
adjustFrameForMsvcCxxEh(MachineFunction & MF) const3806 void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const {
3807 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
3808 // relative to RSP after the prologue. Find the offset of the last fixed
3809 // object, so that we can allocate a slot immediately following it. If there
3810 // were no fixed objects, use offset -SlotSize, which is immediately after the
3811 // return address. Fixed objects have negative frame indices.
3812 MachineFrameInfo &MFI = MF.getFrameInfo();
3813 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3814 int64_t MinFixedObjOffset = -SlotSize;
3815 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
3816 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
3817
3818 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
3819 for (WinEHHandlerType &H : TBME.HandlerArray) {
3820 int FrameIndex = H.CatchObj.FrameIndex;
3821 if (FrameIndex != INT_MAX) {
3822 // Ensure alignment.
3823 unsigned Align = MFI.getObjectAlign(FrameIndex).value();
3824 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
3825 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
3826 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
3827 }
3828 }
3829 }
3830
3831 // Ensure alignment.
3832 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
3833 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
3834 int UnwindHelpFI =
3835 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false);
3836 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3837
3838 // Store -2 into UnwindHelp on function entry. We have to scan forwards past
3839 // other frame setup instructions.
3840 MachineBasicBlock &MBB = MF.front();
3841 auto MBBI = MBB.begin();
3842 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3843 ++MBBI;
3844
3845 DebugLoc DL = MBB.findDebugLoc(MBBI);
3846 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
3847 UnwindHelpFI)
3848 .addImm(-2);
3849 }
3850
processFunctionBeforeFrameIndicesReplaced(MachineFunction & MF,RegScavenger * RS) const3851 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced(
3852 MachineFunction &MF, RegScavenger *RS) const {
3853 if (STI.is32Bit() && MF.hasEHFunclets())
3854 restoreWinEHStackPointersInParent(MF);
3855 }
3856
restoreWinEHStackPointersInParent(MachineFunction & MF) const3857 void X86FrameLowering::restoreWinEHStackPointersInParent(
3858 MachineFunction &MF) const {
3859 // 32-bit functions have to restore stack pointers when control is transferred
3860 // back to the parent function. These blocks are identified as eh pads that
3861 // are not funclet entries.
3862 bool IsSEH = isAsynchronousEHPersonality(
3863 classifyEHPersonality(MF.getFunction().getPersonalityFn()));
3864 for (MachineBasicBlock &MBB : MF) {
3865 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry();
3866 if (NeedsRestore)
3867 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(),
3868 /*RestoreSP=*/IsSEH);
3869 }
3870 }
3871