1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86FrameLowering.h" 14 #include "X86InstrBuilder.h" 15 #include "X86InstrInfo.h" 16 #include "X86MachineFunctionInfo.h" 17 #include "X86Subtarget.h" 18 #include "X86TargetMachine.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/EHPersonalities.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/WinEHFuncInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/MC/MCAsmInfo.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Target/TargetOptions.h" 34 #include <cstdlib> 35 36 #define DEBUG_TYPE "x86-fl" 37 38 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue"); 39 STATISTIC(NumFrameExtraProbe, 40 "Number of extra stack probes generated in prologue"); 41 42 using namespace llvm; 43 44 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 45 MaybeAlign StackAlignOverride) 46 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), 47 STI.is64Bit() ? -8 : -4), 48 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { 49 // Cache a bunch of frame-related predicates for this subtarget. 50 SlotSize = TRI->getSlotSize(); 51 Is64Bit = STI.is64Bit(); 52 IsLP64 = STI.isTarget64BitLP64(); 53 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 54 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 55 StackPtr = TRI->getStackRegister(); 56 } 57 58 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 59 return !MF.getFrameInfo().hasVarSizedObjects() && 60 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() && 61 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall(); 62 } 63 64 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 65 /// call frame pseudos can be simplified. Having a FP, as in the default 66 /// implementation, is not sufficient here since we can't always use it. 67 /// Use a more nuanced condition. 68 bool 69 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 70 return hasReservedCallFrame(MF) || 71 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 72 (hasFP(MF) && !TRI->needsStackRealignment(MF)) || 73 TRI->hasBasePointer(MF); 74 } 75 76 // needsFrameIndexResolution - Do we need to perform FI resolution for 77 // this function. Normally, this is required only when the function 78 // has any stack objects. However, FI resolution actually has another job, 79 // not apparent from the title - it resolves callframesetup/destroy 80 // that were not simplified earlier. 81 // So, this is required for x86 functions that have push sequences even 82 // when there are no stack objects. 83 bool 84 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 85 return MF.getFrameInfo().hasStackObjects() || 86 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 87 } 88 89 /// hasFP - Return true if the specified function should have a dedicated frame 90 /// pointer register. This is true if the function has variable sized allocas 91 /// or if frame pointer elimination is disabled. 92 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 93 const MachineFrameInfo &MFI = MF.getFrameInfo(); 94 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 95 TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects() || 96 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 97 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 98 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 99 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 100 MFI.hasStackMap() || MFI.hasPatchPoint() || 101 MFI.hasCopyImplyingStackAdjustment()); 102 } 103 104 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) { 105 if (IsLP64) { 106 if (isInt<8>(Imm)) 107 return X86::SUB64ri8; 108 return X86::SUB64ri32; 109 } else { 110 if (isInt<8>(Imm)) 111 return X86::SUB32ri8; 112 return X86::SUB32ri; 113 } 114 } 115 116 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) { 117 if (IsLP64) { 118 if (isInt<8>(Imm)) 119 return X86::ADD64ri8; 120 return X86::ADD64ri32; 121 } else { 122 if (isInt<8>(Imm)) 123 return X86::ADD32ri8; 124 return X86::ADD32ri; 125 } 126 } 127 128 static unsigned getSUBrrOpcode(bool IsLP64) { 129 return IsLP64 ? X86::SUB64rr : X86::SUB32rr; 130 } 131 132 static unsigned getADDrrOpcode(bool IsLP64) { 133 return IsLP64 ? X86::ADD64rr : X86::ADD32rr; 134 } 135 136 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 137 if (IsLP64) { 138 if (isInt<8>(Imm)) 139 return X86::AND64ri8; 140 return X86::AND64ri32; 141 } 142 if (isInt<8>(Imm)) 143 return X86::AND32ri8; 144 return X86::AND32ri; 145 } 146 147 static unsigned getLEArOpcode(bool IsLP64) { 148 return IsLP64 ? X86::LEA64r : X86::LEA32r; 149 } 150 151 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live 152 /// when it reaches the "return" instruction. We can then pop a stack object 153 /// to this register without worry about clobbering it. 154 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB, 155 MachineBasicBlock::iterator &MBBI, 156 const X86RegisterInfo *TRI, 157 bool Is64Bit) { 158 const MachineFunction *MF = MBB.getParent(); 159 if (MF->callsEHReturn()) 160 return 0; 161 162 const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF); 163 164 if (MBBI == MBB.end()) 165 return 0; 166 167 switch (MBBI->getOpcode()) { 168 default: return 0; 169 case TargetOpcode::PATCHABLE_RET: 170 case X86::RET: 171 case X86::RETL: 172 case X86::RETQ: 173 case X86::RETIL: 174 case X86::RETIQ: 175 case X86::TCRETURNdi: 176 case X86::TCRETURNri: 177 case X86::TCRETURNmi: 178 case X86::TCRETURNdi64: 179 case X86::TCRETURNri64: 180 case X86::TCRETURNmi64: 181 case X86::EH_RETURN: 182 case X86::EH_RETURN64: { 183 SmallSet<uint16_t, 8> Uses; 184 for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) { 185 MachineOperand &MO = MBBI->getOperand(i); 186 if (!MO.isReg() || MO.isDef()) 187 continue; 188 Register Reg = MO.getReg(); 189 if (!Reg) 190 continue; 191 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 192 Uses.insert(*AI); 193 } 194 195 for (auto CS : AvailableRegs) 196 if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP && 197 CS != X86::ESP) 198 return CS; 199 } 200 } 201 202 return 0; 203 } 204 205 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 206 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 207 unsigned Reg = RegMask.PhysReg; 208 209 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 210 Reg == X86::AH || Reg == X86::AL) 211 return true; 212 } 213 214 return false; 215 } 216 217 /// Check if the flags need to be preserved before the terminators. 218 /// This would be the case, if the eflags is live-in of the region 219 /// composed by the terminators or live-out of that region, without 220 /// being defined by a terminator. 221 static bool 222 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 223 for (const MachineInstr &MI : MBB.terminators()) { 224 bool BreakNext = false; 225 for (const MachineOperand &MO : MI.operands()) { 226 if (!MO.isReg()) 227 continue; 228 Register Reg = MO.getReg(); 229 if (Reg != X86::EFLAGS) 230 continue; 231 232 // This terminator needs an eflags that is not defined 233 // by a previous another terminator: 234 // EFLAGS is live-in of the region composed by the terminators. 235 if (!MO.isDef()) 236 return true; 237 // This terminator defines the eflags, i.e., we don't need to preserve it. 238 // However, we still need to check this specific terminator does not 239 // read a live-in value. 240 BreakNext = true; 241 } 242 // We found a definition of the eflags, no need to preserve them. 243 if (BreakNext) 244 return false; 245 } 246 247 // None of the terminators use or define the eflags. 248 // Check if they are live-out, that would imply we need to preserve them. 249 for (const MachineBasicBlock *Succ : MBB.successors()) 250 if (Succ->isLiveIn(X86::EFLAGS)) 251 return true; 252 253 return false; 254 } 255 256 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 257 /// stack pointer by a constant value. 258 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 259 MachineBasicBlock::iterator &MBBI, 260 const DebugLoc &DL, 261 int64_t NumBytes, bool InEpilogue) const { 262 bool isSub = NumBytes < 0; 263 uint64_t Offset = isSub ? -NumBytes : NumBytes; 264 MachineInstr::MIFlag Flag = 265 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 266 267 uint64_t Chunk = (1LL << 31) - 1; 268 269 MachineFunction &MF = *MBB.getParent(); 270 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 271 const X86TargetLowering &TLI = *STI.getTargetLowering(); 272 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 273 274 // It's ok to not take into account large chunks when probing, as the 275 // allocation is split in smaller chunks anyway. 276 if (EmitInlineStackProbe && !InEpilogue) { 277 278 // This pseudo-instruction is going to be expanded, potentially using a 279 // loop, by inlineStackProbe(). 280 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset); 281 return; 282 } else if (Offset > Chunk) { 283 // Rather than emit a long series of instructions for large offsets, 284 // load the offset into a register and do one sub/add 285 unsigned Reg = 0; 286 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 287 288 if (isSub && !isEAXLiveIn(MBB)) 289 Reg = Rax; 290 else 291 Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 292 293 unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri; 294 unsigned AddSubRROpc = 295 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 296 if (Reg) { 297 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg) 298 .addImm(Offset) 299 .setMIFlag(Flag); 300 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 301 .addReg(StackPtr) 302 .addReg(Reg); 303 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 304 return; 305 } else if (Offset > 8 * Chunk) { 306 // If we would need more than 8 add or sub instructions (a >16GB stack 307 // frame), it's worth spilling RAX to materialize this immediate. 308 // pushq %rax 309 // movabsq +-$Offset+-SlotSize, %rax 310 // addq %rsp, %rax 311 // xchg %rax, (%rsp) 312 // movq (%rsp), %rsp 313 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 314 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 315 .addReg(Rax, RegState::Kill) 316 .setMIFlag(Flag); 317 // Subtract is not commutative, so negate the offset and always use add. 318 // Subtract 8 less and add 8 more to account for the PUSH we just did. 319 if (isSub) 320 Offset = -(Offset - SlotSize); 321 else 322 Offset = Offset + SlotSize; 323 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax) 324 .addImm(Offset) 325 .setMIFlag(Flag); 326 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 327 .addReg(Rax) 328 .addReg(StackPtr); 329 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 330 // Exchange the new SP in RAX with the top of the stack. 331 addRegOffset( 332 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 333 StackPtr, false, 0); 334 // Load new SP from the top of the stack into RSP. 335 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 336 StackPtr, false, 0); 337 return; 338 } 339 } 340 341 while (Offset) { 342 uint64_t ThisVal = std::min(Offset, Chunk); 343 if (ThisVal == SlotSize) { 344 // Use push / pop for slot sized adjustments as a size optimization. We 345 // need to find a dead register when using pop. 346 unsigned Reg = isSub 347 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 348 : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 349 if (Reg) { 350 unsigned Opc = isSub 351 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 352 : (Is64Bit ? X86::POP64r : X86::POP32r); 353 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 354 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 355 .setMIFlag(Flag); 356 Offset -= ThisVal; 357 continue; 358 } 359 } 360 361 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 362 .setMIFlag(Flag); 363 364 Offset -= ThisVal; 365 } 366 } 367 368 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 369 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 370 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 371 assert(Offset != 0 && "zero offset stack adjustment requested"); 372 373 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 374 // is tricky. 375 bool UseLEA; 376 if (!InEpilogue) { 377 // Check if inserting the prologue at the beginning 378 // of MBB would require to use LEA operations. 379 // We need to use LEA operations if EFLAGS is live in, because 380 // it means an instruction will read it before it gets defined. 381 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 382 } else { 383 // If we can use LEA for SP but we shouldn't, check that none 384 // of the terminators uses the eflags. Otherwise we will insert 385 // a ADD that will redefine the eflags and break the condition. 386 // Alternatively, we could move the ADD, but this may not be possible 387 // and is an optimization anyway. 388 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 389 if (UseLEA && !STI.useLeaForSP()) 390 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 391 // If that assert breaks, that means we do not do the right thing 392 // in canUseAsEpilogue. 393 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 394 "We shouldn't have allowed this insertion point"); 395 } 396 397 MachineInstrBuilder MI; 398 if (UseLEA) { 399 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 400 TII.get(getLEArOpcode(Uses64BitFramePtr)), 401 StackPtr), 402 StackPtr, false, Offset); 403 } else { 404 bool IsSub = Offset < 0; 405 uint64_t AbsOffset = IsSub ? -Offset : Offset; 406 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 407 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 408 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 409 .addReg(StackPtr) 410 .addImm(AbsOffset); 411 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 412 } 413 return MI; 414 } 415 416 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 417 MachineBasicBlock::iterator &MBBI, 418 bool doMergeWithPrevious) const { 419 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 420 (!doMergeWithPrevious && MBBI == MBB.end())) 421 return 0; 422 423 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 424 425 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 426 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 427 // instruction, and that there are no DBG_VALUE or other instructions between 428 // ADD/SUB/LEA and its corresponding CFI instruction. 429 /* TODO: Add support for the case where there are multiple CFI instructions 430 below the ADD/SUB/LEA, e.g.: 431 ... 432 add 433 cfi_def_cfa_offset 434 cfi_offset 435 ... 436 */ 437 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 438 PI = std::prev(PI); 439 440 unsigned Opc = PI->getOpcode(); 441 int Offset = 0; 442 443 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 444 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 445 PI->getOperand(0).getReg() == StackPtr){ 446 assert(PI->getOperand(1).getReg() == StackPtr); 447 Offset = PI->getOperand(2).getImm(); 448 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 449 PI->getOperand(0).getReg() == StackPtr && 450 PI->getOperand(1).getReg() == StackPtr && 451 PI->getOperand(2).getImm() == 1 && 452 PI->getOperand(3).getReg() == X86::NoRegister && 453 PI->getOperand(5).getReg() == X86::NoRegister) { 454 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 455 Offset = PI->getOperand(4).getImm(); 456 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 457 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 458 PI->getOperand(0).getReg() == StackPtr) { 459 assert(PI->getOperand(1).getReg() == StackPtr); 460 Offset = -PI->getOperand(2).getImm(); 461 } else 462 return 0; 463 464 PI = MBB.erase(PI); 465 if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI); 466 if (!doMergeWithPrevious) 467 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 468 469 return Offset; 470 } 471 472 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 473 MachineBasicBlock::iterator MBBI, 474 const DebugLoc &DL, 475 const MCCFIInstruction &CFIInst) const { 476 MachineFunction &MF = *MBB.getParent(); 477 unsigned CFIIndex = MF.addFrameInst(CFIInst); 478 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 479 .addCFIIndex(CFIIndex); 480 } 481 482 void X86FrameLowering::emitCalleeSavedFrameMoves( 483 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 484 const DebugLoc &DL, bool IsPrologue) const { 485 MachineFunction &MF = *MBB.getParent(); 486 MachineFrameInfo &MFI = MF.getFrameInfo(); 487 MachineModuleInfo &MMI = MF.getMMI(); 488 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 489 490 // Add callee saved registers to move list. 491 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 492 if (CSI.empty()) return; 493 494 // Calculate offsets. 495 for (std::vector<CalleeSavedInfo>::const_iterator 496 I = CSI.begin(), E = CSI.end(); I != E; ++I) { 497 int64_t Offset = MFI.getObjectOffset(I->getFrameIdx()); 498 unsigned Reg = I->getReg(); 499 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 500 501 if (IsPrologue) { 502 BuildCFI(MBB, MBBI, DL, 503 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 504 } else { 505 BuildCFI(MBB, MBBI, DL, 506 MCCFIInstruction::createRestore(nullptr, DwarfReg)); 507 } 508 } 509 } 510 511 void X86FrameLowering::emitStackProbe(MachineFunction &MF, 512 MachineBasicBlock &MBB, 513 MachineBasicBlock::iterator MBBI, 514 const DebugLoc &DL, bool InProlog) const { 515 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 516 if (STI.isTargetWindowsCoreCLR()) { 517 if (InProlog) { 518 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)) 519 .addImm(0 /* no explicit stack size */); 520 } else { 521 emitStackProbeInline(MF, MBB, MBBI, DL, false); 522 } 523 } else { 524 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog); 525 } 526 } 527 528 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 529 MachineBasicBlock &PrologMBB) const { 530 auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 531 return MI.getOpcode() == X86::STACKALLOC_W_PROBING; 532 }); 533 if (Where != PrologMBB.end()) { 534 DebugLoc DL = PrologMBB.findDebugLoc(Where); 535 emitStackProbeInline(MF, PrologMBB, Where, DL, true); 536 Where->eraseFromParent(); 537 } 538 } 539 540 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 541 MachineBasicBlock &MBB, 542 MachineBasicBlock::iterator MBBI, 543 const DebugLoc &DL, 544 bool InProlog) const { 545 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 546 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit()) 547 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog); 548 else 549 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog); 550 } 551 552 void X86FrameLowering::emitStackProbeInlineGeneric( 553 MachineFunction &MF, MachineBasicBlock &MBB, 554 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 555 MachineInstr &AllocWithProbe = *MBBI; 556 uint64_t Offset = AllocWithProbe.getOperand(0).getImm(); 557 558 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 559 const X86TargetLowering &TLI = *STI.getTargetLowering(); 560 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) && 561 "different expansion expected for CoreCLR 64 bit"); 562 563 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 564 uint64_t ProbeChunk = StackProbeSize * 8; 565 566 // Synthesize a loop or unroll it, depending on the number of iterations. 567 if (Offset > ProbeChunk) { 568 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset); 569 } else { 570 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset); 571 } 572 } 573 574 void X86FrameLowering::emitStackProbeInlineGenericBlock( 575 MachineFunction &MF, MachineBasicBlock &MBB, 576 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, 577 uint64_t Offset) const { 578 579 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 580 const X86TargetLowering &TLI = *STI.getTargetLowering(); 581 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset); 582 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 583 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 584 uint64_t CurrentOffset = 0; 585 // 0 Thanks to return address being saved on the stack 586 uint64_t CurrentProbeOffset = 0; 587 588 // For the first N - 1 pages, just probe. I tried to take advantage of 589 // natural probes but it implies much more logic and there was very few 590 // interesting natural probes to interleave. 591 while (CurrentOffset + StackProbeSize < Offset) { 592 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 593 .addReg(StackPtr) 594 .addImm(StackProbeSize) 595 .setMIFlag(MachineInstr::FrameSetup); 596 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 597 598 599 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 600 .setMIFlag(MachineInstr::FrameSetup), 601 StackPtr, false, 0) 602 .addImm(0) 603 .setMIFlag(MachineInstr::FrameSetup); 604 NumFrameExtraProbe++; 605 CurrentOffset += StackProbeSize; 606 CurrentProbeOffset += StackProbeSize; 607 } 608 609 uint64_t ChunkSize = Offset - CurrentOffset; 610 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 611 .addReg(StackPtr) 612 .addImm(ChunkSize) 613 .setMIFlag(MachineInstr::FrameSetup); 614 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 615 } 616 617 void X86FrameLowering::emitStackProbeInlineGenericLoop( 618 MachineFunction &MF, MachineBasicBlock &MBB, 619 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, 620 uint64_t Offset) const { 621 assert(Offset && "null offset"); 622 623 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 624 const X86TargetLowering &TLI = *STI.getTargetLowering(); 625 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 626 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 627 628 // Synthesize a loop 629 NumFrameLoopProbe++; 630 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 631 632 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB); 633 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB); 634 635 MachineFunction::iterator MBBIter = ++MBB.getIterator(); 636 MF.insert(MBBIter, testMBB); 637 MF.insert(MBBIter, tailMBB); 638 639 Register FinalStackPtr = Uses64BitFramePtr ? X86::R11 : X86::R11D; 640 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackPtr) 641 .addReg(StackPtr) 642 .setMIFlag(MachineInstr::FrameSetup); 643 644 // save loop bound 645 { 646 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset); 647 BuildMI(MBB, MBBI, DL, TII.get(Opc), FinalStackPtr) 648 .addReg(FinalStackPtr) 649 .addImm(Offset / StackProbeSize * StackProbeSize) 650 .setMIFlag(MachineInstr::FrameSetup); 651 } 652 653 // allocate a page 654 { 655 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 656 BuildMI(testMBB, DL, TII.get(Opc), StackPtr) 657 .addReg(StackPtr) 658 .addImm(StackProbeSize) 659 .setMIFlag(MachineInstr::FrameSetup); 660 } 661 662 // touch the page 663 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc)) 664 .setMIFlag(MachineInstr::FrameSetup), 665 StackPtr, false, 0) 666 .addImm(0) 667 .setMIFlag(MachineInstr::FrameSetup); 668 669 // cmp with stack pointer bound 670 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 671 .addReg(StackPtr) 672 .addReg(FinalStackPtr) 673 .setMIFlag(MachineInstr::FrameSetup); 674 675 // jump 676 BuildMI(testMBB, DL, TII.get(X86::JCC_1)) 677 .addMBB(testMBB) 678 .addImm(X86::COND_L) 679 .setMIFlag(MachineInstr::FrameSetup); 680 testMBB->addSuccessor(testMBB); 681 testMBB->addSuccessor(tailMBB); 682 683 // BB management 684 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end()); 685 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB); 686 MBB.addSuccessor(testMBB); 687 688 // handle tail 689 if (Offset % StackProbeSize) { 690 BuildMI(*tailMBB, tailMBB->begin(), DL, TII.get(TargetOpcode::COPY), 691 StackPtr) 692 .addReg(FinalStackPtr) 693 .setMIFlag(MachineInstr::FrameSetup); 694 } 695 696 // Update Live In information 697 recomputeLiveIns(*testMBB); 698 recomputeLiveIns(*tailMBB); 699 } 700 701 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64( 702 MachineFunction &MF, MachineBasicBlock &MBB, 703 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 704 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 705 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 706 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 707 const TargetInstrInfo &TII = *STI.getInstrInfo(); 708 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 709 710 // RAX contains the number of bytes of desired stack adjustment. 711 // The handling here assumes this value has already been updated so as to 712 // maintain stack alignment. 713 // 714 // We need to exit with RSP modified by this amount and execute suitable 715 // page touches to notify the OS that we're growing the stack responsibly. 716 // All stack probing must be done without modifying RSP. 717 // 718 // MBB: 719 // SizeReg = RAX; 720 // ZeroReg = 0 721 // CopyReg = RSP 722 // Flags, TestReg = CopyReg - SizeReg 723 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 724 // LimitReg = gs magic thread env access 725 // if FinalReg >= LimitReg goto ContinueMBB 726 // RoundBB: 727 // RoundReg = page address of FinalReg 728 // LoopMBB: 729 // LoopReg = PHI(LimitReg,ProbeReg) 730 // ProbeReg = LoopReg - PageSize 731 // [ProbeReg] = 0 732 // if (ProbeReg > RoundReg) goto LoopMBB 733 // ContinueMBB: 734 // RSP = RSP - RAX 735 // [rest of original MBB] 736 737 // Set up the new basic blocks 738 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 739 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 740 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 741 742 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 743 MF.insert(MBBIter, RoundMBB); 744 MF.insert(MBBIter, LoopMBB); 745 MF.insert(MBBIter, ContinueMBB); 746 747 // Split MBB and move the tail portion down to ContinueMBB. 748 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 749 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 750 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 751 752 // Some useful constants 753 const int64_t ThreadEnvironmentStackLimit = 0x10; 754 const int64_t PageSize = 0x1000; 755 const int64_t PageMask = ~(PageSize - 1); 756 757 // Registers we need. For the normal case we use virtual 758 // registers. For the prolog expansion we use RAX, RCX and RDX. 759 MachineRegisterInfo &MRI = MF.getRegInfo(); 760 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 761 const Register SizeReg = InProlog ? X86::RAX 762 : MRI.createVirtualRegister(RegClass), 763 ZeroReg = InProlog ? X86::RCX 764 : MRI.createVirtualRegister(RegClass), 765 CopyReg = InProlog ? X86::RDX 766 : MRI.createVirtualRegister(RegClass), 767 TestReg = InProlog ? X86::RDX 768 : MRI.createVirtualRegister(RegClass), 769 FinalReg = InProlog ? X86::RDX 770 : MRI.createVirtualRegister(RegClass), 771 RoundedReg = InProlog ? X86::RDX 772 : MRI.createVirtualRegister(RegClass), 773 LimitReg = InProlog ? X86::RCX 774 : MRI.createVirtualRegister(RegClass), 775 JoinReg = InProlog ? X86::RCX 776 : MRI.createVirtualRegister(RegClass), 777 ProbeReg = InProlog ? X86::RCX 778 : MRI.createVirtualRegister(RegClass); 779 780 // SP-relative offsets where we can save RCX and RDX. 781 int64_t RCXShadowSlot = 0; 782 int64_t RDXShadowSlot = 0; 783 784 // If inlining in the prolog, save RCX and RDX. 785 if (InProlog) { 786 // Compute the offsets. We need to account for things already 787 // pushed onto the stack at this point: return address, frame 788 // pointer (if used), and callee saves. 789 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 790 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 791 const bool HasFP = hasFP(MF); 792 793 // Check if we need to spill RCX and/or RDX. 794 // Here we assume that no earlier prologue instruction changes RCX and/or 795 // RDX, so checking the block live-ins is enough. 796 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); 797 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); 798 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 799 // Assign the initial slot to both registers, then change RDX's slot if both 800 // need to be spilled. 801 if (IsRCXLiveIn) 802 RCXShadowSlot = InitSlot; 803 if (IsRDXLiveIn) 804 RDXShadowSlot = InitSlot; 805 if (IsRDXLiveIn && IsRCXLiveIn) 806 RDXShadowSlot += 8; 807 // Emit the saves if needed. 808 if (IsRCXLiveIn) 809 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 810 RCXShadowSlot) 811 .addReg(X86::RCX); 812 if (IsRDXLiveIn) 813 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 814 RDXShadowSlot) 815 .addReg(X86::RDX); 816 } else { 817 // Not in the prolog. Copy RAX to a virtual reg. 818 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 819 } 820 821 // Add code to MBB to check for overflow and set the new target stack pointer 822 // to zero if so. 823 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 824 .addReg(ZeroReg, RegState::Undef) 825 .addReg(ZeroReg, RegState::Undef); 826 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 827 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 828 .addReg(CopyReg) 829 .addReg(SizeReg); 830 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) 831 .addReg(TestReg) 832 .addReg(ZeroReg) 833 .addImm(X86::COND_B); 834 835 // FinalReg now holds final stack pointer value, or zero if 836 // allocation would overflow. Compare against the current stack 837 // limit from the thread environment block. Note this limit is the 838 // lowest touched page on the stack, not the point at which the OS 839 // will cause an overflow exception, so this is just an optimization 840 // to avoid unnecessarily touching pages that are below the current 841 // SP but already committed to the stack by the OS. 842 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 843 .addReg(0) 844 .addImm(1) 845 .addReg(0) 846 .addImm(ThreadEnvironmentStackLimit) 847 .addReg(X86::GS); 848 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 849 // Jump if the desired stack pointer is at or above the stack limit. 850 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); 851 852 // Add code to roundMBB to round the final stack pointer to a page boundary. 853 RoundMBB->addLiveIn(FinalReg); 854 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 855 .addReg(FinalReg) 856 .addImm(PageMask); 857 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 858 859 // LimitReg now holds the current stack limit, RoundedReg page-rounded 860 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 861 // and probe until we reach RoundedReg. 862 if (!InProlog) { 863 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 864 .addReg(LimitReg) 865 .addMBB(RoundMBB) 866 .addReg(ProbeReg) 867 .addMBB(LoopMBB); 868 } 869 870 LoopMBB->addLiveIn(JoinReg); 871 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 872 false, -PageSize); 873 874 // Probe by storing a byte onto the stack. 875 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 876 .addReg(ProbeReg) 877 .addImm(1) 878 .addReg(0) 879 .addImm(0) 880 .addReg(0) 881 .addImm(0); 882 883 LoopMBB->addLiveIn(RoundedReg); 884 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 885 .addReg(RoundedReg) 886 .addReg(ProbeReg); 887 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); 888 889 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 890 891 // If in prolog, restore RDX and RCX. 892 if (InProlog) { 893 if (RCXShadowSlot) // It means we spilled RCX in the prologue. 894 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 895 TII.get(X86::MOV64rm), X86::RCX), 896 X86::RSP, false, RCXShadowSlot); 897 if (RDXShadowSlot) // It means we spilled RDX in the prologue. 898 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 899 TII.get(X86::MOV64rm), X86::RDX), 900 X86::RSP, false, RDXShadowSlot); 901 } 902 903 // Now that the probing is done, add code to continueMBB to update 904 // the stack pointer for real. 905 ContinueMBB->addLiveIn(SizeReg); 906 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 907 .addReg(X86::RSP) 908 .addReg(SizeReg); 909 910 // Add the control flow edges we need. 911 MBB.addSuccessor(ContinueMBB); 912 MBB.addSuccessor(RoundMBB); 913 RoundMBB->addSuccessor(LoopMBB); 914 LoopMBB->addSuccessor(ContinueMBB); 915 LoopMBB->addSuccessor(LoopMBB); 916 917 // Mark all the instructions added to the prolog as frame setup. 918 if (InProlog) { 919 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 920 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 921 } 922 for (MachineInstr &MI : *RoundMBB) { 923 MI.setFlag(MachineInstr::FrameSetup); 924 } 925 for (MachineInstr &MI : *LoopMBB) { 926 MI.setFlag(MachineInstr::FrameSetup); 927 } 928 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); 929 CMBBI != ContinueMBBI; ++CMBBI) { 930 CMBBI->setFlag(MachineInstr::FrameSetup); 931 } 932 } 933 } 934 935 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF, 936 MachineBasicBlock &MBB, 937 MachineBasicBlock::iterator MBBI, 938 const DebugLoc &DL, 939 bool InProlog) const { 940 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 941 942 // FIXME: Add indirect thunk support and remove this. 943 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) 944 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 945 "code model and indirect thunks not yet implemented."); 946 947 unsigned CallOp; 948 if (Is64Bit) 949 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 950 else 951 CallOp = X86::CALLpcrel32; 952 953 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 954 955 MachineInstrBuilder CI; 956 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 957 958 // All current stack probes take AX and SP as input, clobber flags, and 959 // preserve all registers. x86_64 probes leave RSP unmodified. 960 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 961 // For the large code model, we have to call through a register. Use R11, 962 // as it is scratch in all supported calling conventions. 963 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 964 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 965 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 966 } else { 967 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 968 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 969 } 970 971 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; 972 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; 973 CI.addReg(AX, RegState::Implicit) 974 .addReg(SP, RegState::Implicit) 975 .addReg(AX, RegState::Define | RegState::Implicit) 976 .addReg(SP, RegState::Define | RegState::Implicit) 977 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 978 979 if (STI.isTargetWin64() || !STI.isOSWindows()) { 980 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 981 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 982 // themselves. They also does not clobber %rax so we can reuse it when 983 // adjusting %rsp. 984 // All other platforms do not specify a particular ABI for the stack probe 985 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 986 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) 987 .addReg(SP) 988 .addReg(AX); 989 } 990 991 if (InProlog) { 992 // Apply the frame setup flag to all inserted instrs. 993 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 994 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 995 } 996 } 997 998 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 999 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 1000 // and might require smaller successive adjustments. 1001 const uint64_t Win64MaxSEHOffset = 128; 1002 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 1003 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 1004 return SEHFrameOffset & -16; 1005 } 1006 1007 // If we're forcing a stack realignment we can't rely on just the frame 1008 // info, we need to know the ABI stack alignment as well in case we 1009 // have a call out. Otherwise just make sure we have some alignment - we'll 1010 // go with the minimum SlotSize. 1011 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 1012 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1013 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment. 1014 Align StackAlign = getStackAlign(); 1015 if (MF.getFunction().hasFnAttribute("stackrealign")) { 1016 if (MFI.hasCalls()) 1017 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 1018 else if (MaxAlign < SlotSize) 1019 MaxAlign = Align(SlotSize); 1020 } 1021 return MaxAlign.value(); 1022 } 1023 1024 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 1025 MachineBasicBlock::iterator MBBI, 1026 const DebugLoc &DL, unsigned Reg, 1027 uint64_t MaxAlign) const { 1028 uint64_t Val = -MaxAlign; 1029 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 1030 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 1031 .addReg(Reg) 1032 .addImm(Val) 1033 .setMIFlag(MachineInstr::FrameSetup); 1034 1035 // The EFLAGS implicit def is dead. 1036 MI->getOperand(3).setIsDead(); 1037 } 1038 1039 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { 1040 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be 1041 // clobbered by any interrupt handler. 1042 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1043 "MF used frame lowering for wrong subtarget"); 1044 const Function &Fn = MF.getFunction(); 1045 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 1046 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); 1047 } 1048 1049 1050 /// emitPrologue - Push callee-saved registers onto the stack, which 1051 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 1052 /// space for local variables. Also emit labels used by the exception handler to 1053 /// generate the exception handling frames. 1054 1055 /* 1056 Here's a gist of what gets emitted: 1057 1058 ; Establish frame pointer, if needed 1059 [if needs FP] 1060 push %rbp 1061 .cfi_def_cfa_offset 16 1062 .cfi_offset %rbp, -16 1063 .seh_pushreg %rpb 1064 mov %rsp, %rbp 1065 .cfi_def_cfa_register %rbp 1066 1067 ; Spill general-purpose registers 1068 [for all callee-saved GPRs] 1069 pushq %<reg> 1070 [if not needs FP] 1071 .cfi_def_cfa_offset (offset from RETADDR) 1072 .seh_pushreg %<reg> 1073 1074 ; If the required stack alignment > default stack alignment 1075 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 1076 ; of unknown size in the stack frame. 1077 [if stack needs re-alignment] 1078 and $MASK, %rsp 1079 1080 ; Allocate space for locals 1081 [if target is Windows and allocated space > 4096 bytes] 1082 ; Windows needs special care for allocations larger 1083 ; than one page. 1084 mov $NNN, %rax 1085 call ___chkstk_ms/___chkstk 1086 sub %rax, %rsp 1087 [else] 1088 sub $NNN, %rsp 1089 1090 [if needs FP] 1091 .seh_stackalloc (size of XMM spill slots) 1092 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 1093 [else] 1094 .seh_stackalloc NNN 1095 1096 ; Spill XMMs 1097 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 1098 ; they may get spilled on any platform, if the current function 1099 ; calls @llvm.eh.unwind.init 1100 [if needs FP] 1101 [for all callee-saved XMM registers] 1102 movaps %<xmm reg>, -MMM(%rbp) 1103 [for all callee-saved XMM registers] 1104 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 1105 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 1106 [else] 1107 [for all callee-saved XMM registers] 1108 movaps %<xmm reg>, KKK(%rsp) 1109 [for all callee-saved XMM registers] 1110 .seh_savexmm %<xmm reg>, KKK 1111 1112 .seh_endprologue 1113 1114 [if needs base pointer] 1115 mov %rsp, %rbx 1116 [if needs to restore base pointer] 1117 mov %rsp, -MMM(%rbp) 1118 1119 ; Emit CFI info 1120 [if needs FP] 1121 [for all callee-saved registers] 1122 .cfi_offset %<reg>, (offset from %rbp) 1123 [else] 1124 .cfi_def_cfa_offset (offset from RETADDR) 1125 [for all callee-saved registers] 1126 .cfi_offset %<reg>, (offset from %rsp) 1127 1128 Notes: 1129 - .seh directives are emitted only for Windows 64 ABI 1130 - .cv_fpo directives are emitted on win32 when emitting CodeView 1131 - .cfi directives are emitted for all other ABIs 1132 - for 32-bit code, substitute %e?? registers for %r?? 1133 */ 1134 1135 void X86FrameLowering::emitPrologue(MachineFunction &MF, 1136 MachineBasicBlock &MBB) const { 1137 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1138 "MF used frame lowering for wrong subtarget"); 1139 MachineBasicBlock::iterator MBBI = MBB.begin(); 1140 MachineFrameInfo &MFI = MF.getFrameInfo(); 1141 const Function &Fn = MF.getFunction(); 1142 MachineModuleInfo &MMI = MF.getMMI(); 1143 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1144 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 1145 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 1146 bool IsFunclet = MBB.isEHFuncletEntry(); 1147 EHPersonality Personality = EHPersonality::Unknown; 1148 if (Fn.hasPersonalityFn()) 1149 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 1150 bool FnHasClrFunclet = 1151 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 1152 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 1153 bool HasFP = hasFP(MF); 1154 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1155 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 1156 // FIXME: Emit FPO data for EH funclets. 1157 bool NeedsWinFPO = 1158 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); 1159 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 1160 bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves(); 1161 Register FramePtr = TRI->getFrameRegister(MF); 1162 const Register MachineFramePtr = 1163 STI.isTarget64BitILP32() 1164 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1165 Register BasePtr = TRI->getBaseRegister(); 1166 bool HasWinCFI = false; 1167 1168 // Debug location must be unknown since the first debug location is used 1169 // to determine the end of the prologue. 1170 DebugLoc DL; 1171 1172 // Add RETADDR move area to callee saved frame size. 1173 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1174 if (TailCallReturnAddrDelta && IsWin64Prologue) 1175 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 1176 1177 if (TailCallReturnAddrDelta < 0) 1178 X86FI->setCalleeSavedFrameSize( 1179 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); 1180 1181 const bool EmitStackProbeCall = 1182 STI.getTargetLowering()->hasStackProbeSymbol(MF); 1183 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); 1184 1185 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 1186 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1187 // stack alignment. 1188 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1189 Fn.arg_size() == 2) { 1190 StackSize += 8; 1191 MFI.setStackSize(StackSize); 1192 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); 1193 } 1194 1195 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1196 // function, and use up to 128 bytes of stack space, don't have a frame 1197 // pointer, calls, or dynamic alloca then we do not need to adjust the 1198 // stack pointer (we fit in the Red Zone). We also check that we don't 1199 // push and pop from the stack. 1200 if (has128ByteRedZone(MF) && !TRI->needsStackRealignment(MF) && 1201 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1202 !MFI.adjustsStack() && // No calls. 1203 !EmitStackProbeCall && // No stack probes. 1204 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1205 !MF.shouldSplitStack()) { // Regular stack 1206 uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); 1207 if (HasFP) MinSize += SlotSize; 1208 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1209 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1210 MFI.setStackSize(StackSize); 1211 } 1212 1213 // Insert stack pointer adjustment for later moving of return addr. Only 1214 // applies to tail call optimized functions where the callee argument stack 1215 // size is bigger than the callers. 1216 if (TailCallReturnAddrDelta < 0) { 1217 BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta, 1218 /*InEpilogue=*/false) 1219 .setMIFlag(MachineInstr::FrameSetup); 1220 } 1221 1222 // Mapping for machine moves: 1223 // 1224 // DST: VirtualFP AND 1225 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1226 // ELSE => DW_CFA_def_cfa 1227 // 1228 // SRC: VirtualFP AND 1229 // DST: Register => DW_CFA_def_cfa_register 1230 // 1231 // ELSE 1232 // OFFSET < 0 => DW_CFA_offset_extended_sf 1233 // REG < 64 => DW_CFA_offset + Reg 1234 // ELSE => DW_CFA_offset_extended 1235 1236 uint64_t NumBytes = 0; 1237 int stackGrowth = -SlotSize; 1238 1239 // Find the funclet establisher parameter 1240 Register Establisher = X86::NoRegister; 1241 if (IsClrFunclet) 1242 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1243 else if (IsFunclet) 1244 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1245 1246 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1247 // Immediately spill establisher into the home slot. 1248 // The runtime cares about this. 1249 // MOV64mr %rdx, 16(%rsp) 1250 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1251 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1252 .addReg(Establisher) 1253 .setMIFlag(MachineInstr::FrameSetup); 1254 MBB.addLiveIn(Establisher); 1255 } 1256 1257 if (HasFP) { 1258 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1259 1260 // Calculate required stack adjustment. 1261 uint64_t FrameSize = StackSize - SlotSize; 1262 // If required, include space for extra hidden slot for stashing base pointer. 1263 if (X86FI->getRestoreBasePointer()) 1264 FrameSize += SlotSize; 1265 1266 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); 1267 1268 // Callee-saved registers are pushed on stack before the stack is realigned. 1269 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1270 NumBytes = alignTo(NumBytes, MaxAlign); 1271 1272 // Save EBP/RBP into the appropriate stack slot. 1273 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1274 .addReg(MachineFramePtr, RegState::Kill) 1275 .setMIFlag(MachineInstr::FrameSetup); 1276 1277 if (NeedsDwarfCFI) { 1278 // Mark the place where EBP/RBP was saved. 1279 // Define the current CFA rule to use the provided offset. 1280 assert(StackSize); 1281 BuildCFI(MBB, MBBI, DL, 1282 MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth)); 1283 1284 // Change the rule for the FramePtr to be an "offset" rule. 1285 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1286 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset( 1287 nullptr, DwarfFramePtr, 2 * stackGrowth)); 1288 } 1289 1290 if (NeedsWinCFI) { 1291 HasWinCFI = true; 1292 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1293 .addImm(FramePtr) 1294 .setMIFlag(MachineInstr::FrameSetup); 1295 } 1296 1297 if (!IsWin64Prologue && !IsFunclet) { 1298 // Update EBP with the new base value. 1299 BuildMI(MBB, MBBI, DL, 1300 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1301 FramePtr) 1302 .addReg(StackPtr) 1303 .setMIFlag(MachineInstr::FrameSetup); 1304 1305 if (NeedsDwarfCFI) { 1306 // Mark effective beginning of when frame pointer becomes valid. 1307 // Define the current CFA to use the EBP/RBP register. 1308 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1309 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister( 1310 nullptr, DwarfFramePtr)); 1311 } 1312 1313 if (NeedsWinFPO) { 1314 // .cv_fpo_setframe $FramePtr 1315 HasWinCFI = true; 1316 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1317 .addImm(FramePtr) 1318 .addImm(0) 1319 .setMIFlag(MachineInstr::FrameSetup); 1320 } 1321 } 1322 } else { 1323 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1324 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); 1325 } 1326 1327 // Update the offset adjustment, which is mainly used by codeview to translate 1328 // from ESP to VFRAME relative local variable offsets. 1329 if (!IsFunclet) { 1330 if (HasFP && TRI->needsStackRealignment(MF)) 1331 MFI.setOffsetAdjustment(-NumBytes); 1332 else 1333 MFI.setOffsetAdjustment(-StackSize); 1334 } 1335 1336 // For EH funclets, only allocate enough space for outgoing calls. Save the 1337 // NumBytes value that we would've used for the parent frame. 1338 unsigned ParentFrameNumBytes = NumBytes; 1339 if (IsFunclet) 1340 NumBytes = getWinEHFuncletFrameSize(MF); 1341 1342 // Skip the callee-saved push instructions. 1343 bool PushedRegs = false; 1344 int StackOffset = 2 * stackGrowth; 1345 1346 while (MBBI != MBB.end() && 1347 MBBI->getFlag(MachineInstr::FrameSetup) && 1348 (MBBI->getOpcode() == X86::PUSH32r || 1349 MBBI->getOpcode() == X86::PUSH64r)) { 1350 PushedRegs = true; 1351 Register Reg = MBBI->getOperand(0).getReg(); 1352 ++MBBI; 1353 1354 if (!HasFP && NeedsDwarfCFI) { 1355 // Mark callee-saved push instruction. 1356 // Define the current CFA rule to use the provided offset. 1357 assert(StackSize); 1358 BuildCFI(MBB, MBBI, DL, 1359 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset)); 1360 StackOffset += stackGrowth; 1361 } 1362 1363 if (NeedsWinCFI) { 1364 HasWinCFI = true; 1365 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1366 .addImm(Reg) 1367 .setMIFlag(MachineInstr::FrameSetup); 1368 } 1369 } 1370 1371 // Realign stack after we pushed callee-saved registers (so that we'll be 1372 // able to calculate their offsets from the frame pointer). 1373 // Don't do this for Win64, it needs to realign the stack after the prologue. 1374 if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) { 1375 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1376 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1377 1378 if (NeedsWinCFI) { 1379 HasWinCFI = true; 1380 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) 1381 .addImm(MaxAlign) 1382 .setMIFlag(MachineInstr::FrameSetup); 1383 } 1384 } 1385 1386 // If there is an SUB32ri of ESP immediately before this instruction, merge 1387 // the two. This can be the case when tail call elimination is enabled and 1388 // the callee has more arguments then the caller. 1389 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1390 1391 // Adjust stack pointer: ESP -= numbytes. 1392 1393 // Windows and cygwin/mingw require a prologue helper routine when allocating 1394 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1395 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1396 // stack and adjust the stack pointer in one go. The 64-bit version of 1397 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1398 // responsible for adjusting the stack pointer. Touching the stack at 4K 1399 // increments is necessary to ensure that the guard pages used by the OS 1400 // virtual memory manager are allocated in correct sequence. 1401 uint64_t AlignedNumBytes = NumBytes; 1402 if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) 1403 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1404 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) { 1405 assert(!X86FI->getUsesRedZone() && 1406 "The Red Zone is not accounted for in stack probes"); 1407 1408 // Check whether EAX is livein for this block. 1409 bool isEAXAlive = isEAXLiveIn(MBB); 1410 1411 if (isEAXAlive) { 1412 if (Is64Bit) { 1413 // Save RAX 1414 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1415 .addReg(X86::RAX, RegState::Kill) 1416 .setMIFlag(MachineInstr::FrameSetup); 1417 } else { 1418 // Save EAX 1419 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1420 .addReg(X86::EAX, RegState::Kill) 1421 .setMIFlag(MachineInstr::FrameSetup); 1422 } 1423 } 1424 1425 if (Is64Bit) { 1426 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1427 // Function prologue is responsible for adjusting the stack pointer. 1428 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1429 if (isUInt<32>(Alloc)) { 1430 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1431 .addImm(Alloc) 1432 .setMIFlag(MachineInstr::FrameSetup); 1433 } else if (isInt<32>(Alloc)) { 1434 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX) 1435 .addImm(Alloc) 1436 .setMIFlag(MachineInstr::FrameSetup); 1437 } else { 1438 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) 1439 .addImm(Alloc) 1440 .setMIFlag(MachineInstr::FrameSetup); 1441 } 1442 } else { 1443 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1444 // We'll also use 4 already allocated bytes for EAX. 1445 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1446 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1447 .setMIFlag(MachineInstr::FrameSetup); 1448 } 1449 1450 // Call __chkstk, __chkstk_ms, or __alloca. 1451 emitStackProbe(MF, MBB, MBBI, DL, true); 1452 1453 if (isEAXAlive) { 1454 // Restore RAX/EAX 1455 MachineInstr *MI; 1456 if (Is64Bit) 1457 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 1458 StackPtr, false, NumBytes - 8); 1459 else 1460 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1461 StackPtr, false, NumBytes - 4); 1462 MI->setFlag(MachineInstr::FrameSetup); 1463 MBB.insert(MBBI, MI); 1464 } 1465 } else if (NumBytes) { 1466 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 1467 } 1468 1469 if (NeedsWinCFI && NumBytes) { 1470 HasWinCFI = true; 1471 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1472 .addImm(NumBytes) 1473 .setMIFlag(MachineInstr::FrameSetup); 1474 } 1475 1476 int SEHFrameOffset = 0; 1477 unsigned SPOrEstablisher; 1478 if (IsFunclet) { 1479 if (IsClrFunclet) { 1480 // The establisher parameter passed to a CLR funclet is actually a pointer 1481 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1482 // to find the root function establisher frame by loading the PSPSym from 1483 // the intermediate frame. 1484 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1485 MachinePointerInfo NoInfo; 1486 MBB.addLiveIn(Establisher); 1487 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1488 Establisher, false, PSPSlotOffset) 1489 .addMemOperand(MF.getMachineMemOperand( 1490 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize))); 1491 ; 1492 // Save the root establisher back into the current funclet's (mostly 1493 // empty) frame, in case a sub-funclet or the GC needs it. 1494 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1495 false, PSPSlotOffset) 1496 .addReg(Establisher) 1497 .addMemOperand(MF.getMachineMemOperand( 1498 NoInfo, 1499 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1500 SlotSize, Align(SlotSize))); 1501 } 1502 SPOrEstablisher = Establisher; 1503 } else { 1504 SPOrEstablisher = StackPtr; 1505 } 1506 1507 if (IsWin64Prologue && HasFP) { 1508 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1509 // this calculation on the incoming establisher, which holds the value of 1510 // RSP from the parent frame at the end of the prologue. 1511 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1512 if (SEHFrameOffset) 1513 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1514 SPOrEstablisher, false, SEHFrameOffset); 1515 else 1516 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1517 .addReg(SPOrEstablisher); 1518 1519 // If this is not a funclet, emit the CFI describing our frame pointer. 1520 if (NeedsWinCFI && !IsFunclet) { 1521 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 1522 HasWinCFI = true; 1523 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1524 .addImm(FramePtr) 1525 .addImm(SEHFrameOffset) 1526 .setMIFlag(MachineInstr::FrameSetup); 1527 if (isAsynchronousEHPersonality(Personality)) 1528 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 1529 } 1530 } else if (IsFunclet && STI.is32Bit()) { 1531 // Reset EBP / ESI to something good for funclets. 1532 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 1533 // If we're a catch funclet, we can be returned to via catchret. Save ESP 1534 // into the registration node so that the runtime will restore it for us. 1535 if (!MBB.isCleanupFuncletEntry()) { 1536 assert(Personality == EHPersonality::MSVC_CXX); 1537 Register FrameReg; 1538 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 1539 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg); 1540 // ESP is the first field, so no extra displacement is needed. 1541 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 1542 false, EHRegOffset) 1543 .addReg(X86::ESP); 1544 } 1545 } 1546 1547 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 1548 const MachineInstr &FrameInstr = *MBBI; 1549 ++MBBI; 1550 1551 if (NeedsWinCFI) { 1552 int FI; 1553 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 1554 if (X86::FR64RegClass.contains(Reg)) { 1555 int Offset; 1556 Register IgnoredFrameReg; 1557 if (IsWin64Prologue && IsFunclet) 1558 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); 1559 else 1560 Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg) + 1561 SEHFrameOffset; 1562 1563 HasWinCFI = true; 1564 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 1565 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 1566 .addImm(Reg) 1567 .addImm(Offset) 1568 .setMIFlag(MachineInstr::FrameSetup); 1569 } 1570 } 1571 } 1572 } 1573 1574 if (NeedsWinCFI && HasWinCFI) 1575 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 1576 .setMIFlag(MachineInstr::FrameSetup); 1577 1578 if (FnHasClrFunclet && !IsFunclet) { 1579 // Save the so-called Initial-SP (i.e. the value of the stack pointer 1580 // immediately after the prolog) into the PSPSlot so that funclets 1581 // and the GC can recover it. 1582 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1583 auto PSPInfo = MachinePointerInfo::getFixedStack( 1584 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 1585 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 1586 PSPSlotOffset) 1587 .addReg(StackPtr) 1588 .addMemOperand(MF.getMachineMemOperand( 1589 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1590 SlotSize, Align(SlotSize))); 1591 } 1592 1593 // Realign stack after we spilled callee-saved registers (so that we'll be 1594 // able to calculate their offsets from the frame pointer). 1595 // Win64 requires aligning the stack after the prologue. 1596 if (IsWin64Prologue && TRI->needsStackRealignment(MF)) { 1597 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1598 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 1599 } 1600 1601 // We already dealt with stack realignment and funclets above. 1602 if (IsFunclet && STI.is32Bit()) 1603 return; 1604 1605 // If we need a base pointer, set it up here. It's whatever the value 1606 // of the stack pointer is at this point. Any variable size objects 1607 // will be allocated after this, so we can still use the base pointer 1608 // to reference locals. 1609 if (TRI->hasBasePointer(MF)) { 1610 // Update the base pointer with the current stack pointer. 1611 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 1612 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 1613 .addReg(SPOrEstablisher) 1614 .setMIFlag(MachineInstr::FrameSetup); 1615 if (X86FI->getRestoreBasePointer()) { 1616 // Stash value of base pointer. Saving RSP instead of EBP shortens 1617 // dependence chain. Used by SjLj EH. 1618 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1619 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 1620 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 1621 .addReg(SPOrEstablisher) 1622 .setMIFlag(MachineInstr::FrameSetup); 1623 } 1624 1625 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 1626 // Stash the value of the frame pointer relative to the base pointer for 1627 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 1628 // it recovers the frame pointer from the base pointer rather than the 1629 // other way around. 1630 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1631 Register UsedReg; 1632 int Offset = 1633 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 1634 assert(UsedReg == BasePtr); 1635 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 1636 .addReg(FramePtr) 1637 .setMIFlag(MachineInstr::FrameSetup); 1638 } 1639 } 1640 1641 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 1642 // Mark end of stack pointer adjustment. 1643 if (!HasFP && NumBytes) { 1644 // Define the current CFA rule to use the provided offset. 1645 assert(StackSize); 1646 BuildCFI( 1647 MBB, MBBI, DL, 1648 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth)); 1649 } 1650 1651 // Emit DWARF info specifying the offsets of the callee-saved registers. 1652 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true); 1653 } 1654 1655 // X86 Interrupt handling function cannot assume anything about the direction 1656 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 1657 // in each prologue of interrupt handler function. 1658 // 1659 // FIXME: Create "cld" instruction only in these cases: 1660 // 1. The interrupt handling function uses any of the "rep" instructions. 1661 // 2. Interrupt handling function calls another function. 1662 // 1663 if (Fn.getCallingConv() == CallingConv::X86_INTR) 1664 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 1665 .setMIFlag(MachineInstr::FrameSetup); 1666 1667 // At this point we know if the function has WinCFI or not. 1668 MF.setHasWinCFI(HasWinCFI); 1669 } 1670 1671 bool X86FrameLowering::canUseLEAForSPInEpilogue( 1672 const MachineFunction &MF) const { 1673 // We can't use LEA instructions for adjusting the stack pointer if we don't 1674 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 1675 // to deallocate the stack. 1676 // This means that we can use LEA for SP in two situations: 1677 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 1678 // 2. We *have* a frame pointer which means we are permitted to use LEA. 1679 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 1680 } 1681 1682 static bool isFuncletReturnInstr(MachineInstr &MI) { 1683 switch (MI.getOpcode()) { 1684 case X86::CATCHRET: 1685 case X86::CLEANUPRET: 1686 return true; 1687 default: 1688 return false; 1689 } 1690 llvm_unreachable("impossible"); 1691 } 1692 1693 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 1694 // stack. It holds a pointer to the bottom of the root function frame. The 1695 // establisher frame pointer passed to a nested funclet may point to the 1696 // (mostly empty) frame of its parent funclet, but it will need to find 1697 // the frame of the root function to access locals. To facilitate this, 1698 // every funclet copies the pointer to the bottom of the root function 1699 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 1700 // same offset for the PSPSym in the root function frame that's used in the 1701 // funclets' frames allows each funclet to dynamically accept any ancestor 1702 // frame as its establisher argument (the runtime doesn't guarantee the 1703 // immediate parent for some reason lost to history), and also allows the GC, 1704 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 1705 // frame with only a single offset reported for the entire method. 1706 unsigned 1707 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 1708 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 1709 Register SPReg; 1710 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 1711 /*IgnoreSPUpdates*/ true); 1712 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 1713 return static_cast<unsigned>(Offset); 1714 } 1715 1716 unsigned 1717 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 1718 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1719 // This is the size of the pushed CSRs. 1720 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1721 // This is the size of callee saved XMMs. 1722 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 1723 unsigned XMMSize = WinEHXMMSlotInfo.size() * 1724 TRI->getSpillSize(X86::VR128RegClass); 1725 // This is the amount of stack a funclet needs to allocate. 1726 unsigned UsedSize; 1727 EHPersonality Personality = 1728 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 1729 if (Personality == EHPersonality::CoreCLR) { 1730 // CLR funclets need to hold enough space to include the PSPSym, at the 1731 // same offset from the stack pointer (immediately after the prolog) as it 1732 // resides at in the main function. 1733 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 1734 } else { 1735 // Other funclets just need enough stack for outgoing call arguments. 1736 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 1737 } 1738 // RBP is not included in the callee saved register block. After pushing RBP, 1739 // everything is 16 byte aligned. Everything we allocate before an outgoing 1740 // call must also be 16 byte aligned. 1741 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign()); 1742 // Subtract out the size of the callee saved registers. This is how much stack 1743 // each funclet will allocate. 1744 return FrameSizeMinusRBP + XMMSize - CSSize; 1745 } 1746 1747 static bool isTailCallOpcode(unsigned Opc) { 1748 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 1749 Opc == X86::TCRETURNmi || 1750 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 1751 Opc == X86::TCRETURNmi64; 1752 } 1753 1754 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 1755 MachineBasicBlock &MBB) const { 1756 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1757 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1758 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 1759 MachineBasicBlock::iterator MBBI = Terminator; 1760 DebugLoc DL; 1761 if (MBBI != MBB.end()) 1762 DL = MBBI->getDebugLoc(); 1763 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 1764 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 1765 Register FramePtr = TRI->getFrameRegister(MF); 1766 unsigned MachineFramePtr = 1767 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1768 1769 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1770 bool NeedsWin64CFI = 1771 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 1772 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 1773 1774 // Get the number of bytes to allocate from the FrameInfo. 1775 uint64_t StackSize = MFI.getStackSize(); 1776 uint64_t MaxAlign = calculateMaxStackAlign(MF); 1777 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1778 bool HasFP = hasFP(MF); 1779 uint64_t NumBytes = 0; 1780 1781 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && 1782 !MF.getTarget().getTargetTriple().isOSWindows()) && 1783 MF.needsFrameMoves(); 1784 1785 if (IsFunclet) { 1786 assert(HasFP && "EH funclets without FP not yet implemented"); 1787 NumBytes = getWinEHFuncletFrameSize(MF); 1788 } else if (HasFP) { 1789 // Calculate required stack adjustment. 1790 uint64_t FrameSize = StackSize - SlotSize; 1791 NumBytes = FrameSize - CSSize; 1792 1793 // Callee-saved registers were pushed on stack before the stack was 1794 // realigned. 1795 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1796 NumBytes = alignTo(FrameSize, MaxAlign); 1797 } else { 1798 NumBytes = StackSize - CSSize; 1799 } 1800 uint64_t SEHStackAllocAmt = NumBytes; 1801 1802 // AfterPop is the position to insert .cfi_restore. 1803 MachineBasicBlock::iterator AfterPop = MBBI; 1804 if (HasFP) { 1805 // Pop EBP. 1806 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 1807 MachineFramePtr) 1808 .setMIFlag(MachineInstr::FrameDestroy); 1809 if (NeedsDwarfCFI) { 1810 unsigned DwarfStackPtr = 1811 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 1812 BuildCFI(MBB, MBBI, DL, 1813 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize)); 1814 if (!MBB.succ_empty() && !MBB.isReturnBlock()) { 1815 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1816 BuildCFI(MBB, AfterPop, DL, 1817 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr)); 1818 --MBBI; 1819 --AfterPop; 1820 } 1821 --MBBI; 1822 } 1823 } 1824 1825 MachineBasicBlock::iterator FirstCSPop = MBBI; 1826 // Skip the callee-saved pop instructions. 1827 while (MBBI != MBB.begin()) { 1828 MachineBasicBlock::iterator PI = std::prev(MBBI); 1829 unsigned Opc = PI->getOpcode(); 1830 1831 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 1832 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 1833 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy))) 1834 break; 1835 FirstCSPop = PI; 1836 } 1837 1838 --MBBI; 1839 } 1840 MBBI = FirstCSPop; 1841 1842 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 1843 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 1844 1845 if (MBBI != MBB.end()) 1846 DL = MBBI->getDebugLoc(); 1847 1848 // If there is an ADD32ri or SUB32ri of ESP immediately before this 1849 // instruction, merge the two instructions. 1850 if (NumBytes || MFI.hasVarSizedObjects()) 1851 NumBytes += mergeSPUpdates(MBB, MBBI, true); 1852 1853 // If dynamic alloca is used, then reset esp to point to the last callee-saved 1854 // slot before popping them off! Same applies for the case, when stack was 1855 // realigned. Don't do this if this was a funclet epilogue, since the funclets 1856 // will not do realignment or dynamic stack allocation. 1857 if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) && 1858 !IsFunclet) { 1859 if (TRI->needsStackRealignment(MF)) 1860 MBBI = FirstCSPop; 1861 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 1862 uint64_t LEAAmount = 1863 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 1864 1865 // There are only two legal forms of epilogue: 1866 // - add SEHAllocationSize, %rsp 1867 // - lea SEHAllocationSize(%FramePtr), %rsp 1868 // 1869 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 1870 // However, we may use this sequence if we have a frame pointer because the 1871 // effects of the prologue can safely be undone. 1872 if (LEAAmount != 0) { 1873 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 1874 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 1875 FramePtr, false, LEAAmount); 1876 --MBBI; 1877 } else { 1878 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 1879 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 1880 .addReg(FramePtr); 1881 --MBBI; 1882 } 1883 } else if (NumBytes) { 1884 // Adjust stack pointer back: ESP += numbytes. 1885 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 1886 if (!hasFP(MF) && NeedsDwarfCFI) { 1887 // Define the current CFA rule to use the provided offset. 1888 BuildCFI(MBB, MBBI, DL, 1889 MCCFIInstruction::cfiDefCfaOffset(nullptr, CSSize + SlotSize)); 1890 } 1891 --MBBI; 1892 } 1893 1894 // Windows unwinder will not invoke function's exception handler if IP is 1895 // either in prologue or in epilogue. This behavior causes a problem when a 1896 // call immediately precedes an epilogue, because the return address points 1897 // into the epilogue. To cope with that, we insert an epilogue marker here, 1898 // then replace it with a 'nop' if it ends up immediately after a CALL in the 1899 // final emitted code. 1900 if (NeedsWin64CFI && MF.hasWinCFI()) 1901 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 1902 1903 if (!hasFP(MF) && NeedsDwarfCFI) { 1904 MBBI = FirstCSPop; 1905 int64_t Offset = -CSSize - SlotSize; 1906 // Mark callee-saved pop instruction. 1907 // Define the current CFA rule to use the provided offset. 1908 while (MBBI != MBB.end()) { 1909 MachineBasicBlock::iterator PI = MBBI; 1910 unsigned Opc = PI->getOpcode(); 1911 ++MBBI; 1912 if (Opc == X86::POP32r || Opc == X86::POP64r) { 1913 Offset += SlotSize; 1914 BuildCFI(MBB, MBBI, DL, 1915 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset)); 1916 } 1917 } 1918 } 1919 1920 // Emit DWARF info specifying the restores of the callee-saved registers. 1921 // For epilogue with return inside or being other block without successor, 1922 // no need to generate .cfi_restore for callee-saved registers. 1923 if (NeedsDwarfCFI && !MBB.succ_empty() && !MBB.isReturnBlock()) { 1924 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false); 1925 } 1926 1927 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 1928 // Add the return addr area delta back since we are not tail calling. 1929 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 1930 assert(Offset >= 0 && "TCDelta should never be positive"); 1931 if (Offset) { 1932 // Check for possible merge with preceding ADD instruction. 1933 Offset += mergeSPUpdates(MBB, Terminator, true); 1934 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 1935 } 1936 } 1937 } 1938 1939 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 1940 Register &FrameReg) const { 1941 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1942 1943 bool IsFixed = MFI.isFixedObjectIndex(FI); 1944 // We can't calculate offset from frame pointer if the stack is realigned, 1945 // so enforce usage of stack/base pointer. The base pointer is used when we 1946 // have dynamic allocas in addition to dynamic realignment. 1947 if (TRI->hasBasePointer(MF)) 1948 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 1949 else if (TRI->needsStackRealignment(MF)) 1950 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 1951 else 1952 FrameReg = TRI->getFrameRegister(MF); 1953 1954 // Offset will hold the offset from the stack pointer at function entry to the 1955 // object. 1956 // We need to factor in additional offsets applied during the prologue to the 1957 // frame, base, and stack pointer depending on which is used. 1958 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 1959 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1960 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1961 uint64_t StackSize = MFI.getStackSize(); 1962 bool HasFP = hasFP(MF); 1963 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1964 int64_t FPDelta = 0; 1965 1966 // In an x86 interrupt, remove the offset we added to account for the return 1967 // address from any stack object allocated in the caller's frame. Interrupts 1968 // do not have a standard return address. Fixed objects in the current frame, 1969 // such as SSE register spills, should not get this treatment. 1970 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && 1971 Offset >= 0) { 1972 Offset += getOffsetOfLocalArea(); 1973 } 1974 1975 if (IsWin64Prologue) { 1976 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 1977 1978 // Calculate required stack adjustment. 1979 uint64_t FrameSize = StackSize - SlotSize; 1980 // If required, include space for extra hidden slot for stashing base pointer. 1981 if (X86FI->getRestoreBasePointer()) 1982 FrameSize += SlotSize; 1983 uint64_t NumBytes = FrameSize - CSSize; 1984 1985 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 1986 if (FI && FI == X86FI->getFAIndex()) 1987 return -SEHFrameOffset; 1988 1989 // FPDelta is the offset from the "traditional" FP location of the old base 1990 // pointer followed by return address and the location required by the 1991 // restricted Win64 prologue. 1992 // Add FPDelta to all offsets below that go through the frame pointer. 1993 FPDelta = FrameSize - SEHFrameOffset; 1994 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 1995 "FPDelta isn't aligned per the Win64 ABI!"); 1996 } 1997 1998 1999 if (TRI->hasBasePointer(MF)) { 2000 assert(HasFP && "VLAs and dynamic stack realign, but no FP?!"); 2001 if (FI < 0) { 2002 // Skip the saved EBP. 2003 return Offset + SlotSize + FPDelta; 2004 } else { 2005 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2006 return Offset + StackSize; 2007 } 2008 } else if (TRI->needsStackRealignment(MF)) { 2009 if (FI < 0) { 2010 // Skip the saved EBP. 2011 return Offset + SlotSize + FPDelta; 2012 } else { 2013 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2014 return Offset + StackSize; 2015 } 2016 // FIXME: Support tail calls 2017 } else { 2018 if (!HasFP) 2019 return Offset + StackSize; 2020 2021 // Skip the saved EBP. 2022 Offset += SlotSize; 2023 2024 // Skip the RETADDR move area 2025 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2026 if (TailCallReturnAddrDelta < 0) 2027 Offset -= TailCallReturnAddrDelta; 2028 } 2029 2030 return Offset + FPDelta; 2031 } 2032 2033 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, 2034 Register &FrameReg) const { 2035 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2036 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2037 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2038 const auto it = WinEHXMMSlotInfo.find(FI); 2039 2040 if (it == WinEHXMMSlotInfo.end()) 2041 return getFrameIndexReference(MF, FI, FrameReg); 2042 2043 FrameReg = TRI->getStackRegister(); 2044 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) + 2045 it->second; 2046 } 2047 2048 int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, 2049 int FI, Register &FrameReg, 2050 int Adjustment) const { 2051 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2052 FrameReg = TRI->getStackRegister(); 2053 return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment; 2054 } 2055 2056 int X86FrameLowering::getFrameIndexReferencePreferSP( 2057 const MachineFunction &MF, int FI, Register &FrameReg, 2058 bool IgnoreSPUpdates) const { 2059 2060 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2061 // Does not include any dynamic realign. 2062 const uint64_t StackSize = MFI.getStackSize(); 2063 // LLVM arranges the stack as follows: 2064 // ... 2065 // ARG2 2066 // ARG1 2067 // RETADDR 2068 // PUSH RBP <-- RBP points here 2069 // PUSH CSRs 2070 // ~~~~~~~ <-- possible stack realignment (non-win64) 2071 // ... 2072 // STACK OBJECTS 2073 // ... <-- RSP after prologue points here 2074 // ~~~~~~~ <-- possible stack realignment (win64) 2075 // 2076 // if (hasVarSizedObjects()): 2077 // ... <-- "base pointer" (ESI/RBX) points here 2078 // DYNAMIC ALLOCAS 2079 // ... <-- RSP points here 2080 // 2081 // Case 1: In the simple case of no stack realignment and no dynamic 2082 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 2083 // with fixed offsets from RSP. 2084 // 2085 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 2086 // stack objects are addressed with RBP and regular stack objects with RSP. 2087 // 2088 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 2089 // to address stack arguments for outgoing calls and nothing else. The "base 2090 // pointer" points to local variables, and RBP points to fixed objects. 2091 // 2092 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 2093 // answer we give is relative to the SP after the prologue, and not the 2094 // SP in the middle of the function. 2095 2096 if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) && 2097 !STI.isTargetWin64()) 2098 return getFrameIndexReference(MF, FI, FrameReg); 2099 2100 // If !hasReservedCallFrame the function might have SP adjustement in the 2101 // body. So, even though the offset is statically known, it depends on where 2102 // we are in the function. 2103 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) 2104 return getFrameIndexReference(MF, FI, FrameReg); 2105 2106 // We don't handle tail calls, and shouldn't be seeing them either. 2107 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 2108 "we don't handle this case!"); 2109 2110 // This is how the math works out: 2111 // 2112 // %rsp grows (i.e. gets lower) left to right. Each box below is 2113 // one word (eight bytes). Obj0 is the stack slot we're trying to 2114 // get to. 2115 // 2116 // ---------------------------------- 2117 // | BP | Obj0 | Obj1 | ... | ObjN | 2118 // ---------------------------------- 2119 // ^ ^ ^ ^ 2120 // A B C E 2121 // 2122 // A is the incoming stack pointer. 2123 // (B - A) is the local area offset (-8 for x86-64) [1] 2124 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 2125 // 2126 // |(E - B)| is the StackSize (absolute value, positive). For a 2127 // stack that grown down, this works out to be (B - E). [3] 2128 // 2129 // E is also the value of %rsp after stack has been set up, and we 2130 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 2131 // (C - E) == (C - A) - (B - A) + (B - E) 2132 // { Using [1], [2] and [3] above } 2133 // == getObjectOffset - LocalAreaOffset + StackSize 2134 2135 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 2136 } 2137 2138 bool X86FrameLowering::assignCalleeSavedSpillSlots( 2139 MachineFunction &MF, const TargetRegisterInfo *TRI, 2140 std::vector<CalleeSavedInfo> &CSI) const { 2141 MachineFrameInfo &MFI = MF.getFrameInfo(); 2142 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2143 2144 unsigned CalleeSavedFrameSize = 0; 2145 unsigned XMMCalleeSavedFrameSize = 0; 2146 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2147 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 2148 2149 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2150 2151 if (TailCallReturnAddrDelta < 0) { 2152 // create RETURNADDR area 2153 // arg 2154 // arg 2155 // RETADDR 2156 // { ... 2157 // RETADDR area 2158 // ... 2159 // } 2160 // [EBP] 2161 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 2162 TailCallReturnAddrDelta - SlotSize, true); 2163 } 2164 2165 // Spill the BasePtr if it's used. 2166 if (this->TRI->hasBasePointer(MF)) { 2167 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 2168 if (MF.hasEHFunclets()) { 2169 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize)); 2170 X86FI->setHasSEHFramePtrSave(true); 2171 X86FI->setSEHFramePtrSaveIndex(FI); 2172 } 2173 } 2174 2175 if (hasFP(MF)) { 2176 // emitPrologue always spills frame register the first thing. 2177 SpillSlotOffset -= SlotSize; 2178 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2179 2180 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 2181 // the frame register, we can delete it from CSI list and not have to worry 2182 // about avoiding it later. 2183 Register FPReg = TRI->getFrameRegister(MF); 2184 for (unsigned i = 0; i < CSI.size(); ++i) { 2185 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 2186 CSI.erase(CSI.begin() + i); 2187 break; 2188 } 2189 } 2190 } 2191 2192 // Assign slots for GPRs. It increases frame size. 2193 for (unsigned i = CSI.size(); i != 0; --i) { 2194 unsigned Reg = CSI[i - 1].getReg(); 2195 2196 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2197 continue; 2198 2199 SpillSlotOffset -= SlotSize; 2200 CalleeSavedFrameSize += SlotSize; 2201 2202 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2203 CSI[i - 1].setFrameIdx(SlotIndex); 2204 } 2205 2206 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 2207 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); 2208 2209 // Assign slots for XMMs. 2210 for (unsigned i = CSI.size(); i != 0; --i) { 2211 unsigned Reg = CSI[i - 1].getReg(); 2212 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2213 continue; 2214 2215 // If this is k-register make sure we lookup via the largest legal type. 2216 MVT VT = MVT::Other; 2217 if (X86::VK16RegClass.contains(Reg)) 2218 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2219 2220 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2221 unsigned Size = TRI->getSpillSize(*RC); 2222 Align Alignment = TRI->getSpillAlign(*RC); 2223 // ensure alignment 2224 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); 2225 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment); 2226 2227 // spill into slot 2228 SpillSlotOffset -= Size; 2229 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 2230 CSI[i - 1].setFrameIdx(SlotIndex); 2231 MFI.ensureMaxAlignment(Alignment); 2232 2233 // Save the start offset and size of XMM in stack frame for funclets. 2234 if (X86::VR128RegClass.contains(Reg)) { 2235 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; 2236 XMMCalleeSavedFrameSize += Size; 2237 } 2238 } 2239 2240 return true; 2241 } 2242 2243 bool X86FrameLowering::spillCalleeSavedRegisters( 2244 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2245 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2246 DebugLoc DL = MBB.findDebugLoc(MI); 2247 2248 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2249 // for us, and there are no XMM CSRs on Win32. 2250 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2251 return true; 2252 2253 // Push GPRs. It increases frame size. 2254 const MachineFunction &MF = *MBB.getParent(); 2255 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 2256 for (unsigned i = CSI.size(); i != 0; --i) { 2257 unsigned Reg = CSI[i - 1].getReg(); 2258 2259 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2260 continue; 2261 2262 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2263 bool isLiveIn = MRI.isLiveIn(Reg); 2264 if (!isLiveIn) 2265 MBB.addLiveIn(Reg); 2266 2267 // Decide whether we can add a kill flag to the use. 2268 bool CanKill = !isLiveIn; 2269 // Check if any subregister is live-in 2270 if (CanKill) { 2271 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 2272 if (MRI.isLiveIn(*AReg)) { 2273 CanKill = false; 2274 break; 2275 } 2276 } 2277 } 2278 2279 // Do not set a kill flag on values that are also marked as live-in. This 2280 // happens with the @llvm-returnaddress intrinsic and with arguments 2281 // passed in callee saved registers. 2282 // Omitting the kill flags is conservatively correct even if the live-in 2283 // is not used after all. 2284 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 2285 .setMIFlag(MachineInstr::FrameSetup); 2286 } 2287 2288 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 2289 // It can be done by spilling XMMs to stack frame. 2290 for (unsigned i = CSI.size(); i != 0; --i) { 2291 unsigned Reg = CSI[i-1].getReg(); 2292 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2293 continue; 2294 2295 // If this is k-register make sure we lookup via the largest legal type. 2296 MVT VT = MVT::Other; 2297 if (X86::VK16RegClass.contains(Reg)) 2298 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2299 2300 // Add the callee-saved register as live-in. It's killed at the spill. 2301 MBB.addLiveIn(Reg); 2302 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2303 2304 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC, 2305 TRI); 2306 --MI; 2307 MI->setFlag(MachineInstr::FrameSetup); 2308 ++MI; 2309 } 2310 2311 return true; 2312 } 2313 2314 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 2315 MachineBasicBlock::iterator MBBI, 2316 MachineInstr *CatchRet) const { 2317 // SEH shouldn't use catchret. 2318 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 2319 MBB.getParent()->getFunction().getPersonalityFn())) && 2320 "SEH should not use CATCHRET"); 2321 DebugLoc DL = CatchRet->getDebugLoc(); 2322 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 2323 2324 // Fill EAX/RAX with the address of the target block. 2325 if (STI.is64Bit()) { 2326 // LEA64r CatchRetTarget(%rip), %rax 2327 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 2328 .addReg(X86::RIP) 2329 .addImm(0) 2330 .addReg(0) 2331 .addMBB(CatchRetTarget) 2332 .addReg(0); 2333 } else { 2334 // MOV32ri $CatchRetTarget, %eax 2335 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2336 .addMBB(CatchRetTarget); 2337 } 2338 2339 // Record that we've taken the address of CatchRetTarget and no longer just 2340 // reference it in a terminator. 2341 CatchRetTarget->setHasAddressTaken(); 2342 } 2343 2344 bool X86FrameLowering::restoreCalleeSavedRegisters( 2345 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2346 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2347 if (CSI.empty()) 2348 return false; 2349 2350 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 2351 // Don't restore CSRs in 32-bit EH funclets. Matches 2352 // spillCalleeSavedRegisters. 2353 if (STI.is32Bit()) 2354 return true; 2355 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 2356 // funclets. emitEpilogue transforms these to normal jumps. 2357 if (MI->getOpcode() == X86::CATCHRET) { 2358 const Function &F = MBB.getParent()->getFunction(); 2359 bool IsSEH = isAsynchronousEHPersonality( 2360 classifyEHPersonality(F.getPersonalityFn())); 2361 if (IsSEH) 2362 return true; 2363 } 2364 } 2365 2366 DebugLoc DL = MBB.findDebugLoc(MI); 2367 2368 // Reload XMMs from stack frame. 2369 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2370 unsigned Reg = CSI[i].getReg(); 2371 if (X86::GR64RegClass.contains(Reg) || 2372 X86::GR32RegClass.contains(Reg)) 2373 continue; 2374 2375 // If this is k-register make sure we lookup via the largest legal type. 2376 MVT VT = MVT::Other; 2377 if (X86::VK16RegClass.contains(Reg)) 2378 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2379 2380 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2381 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); 2382 } 2383 2384 // POP GPRs. 2385 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 2386 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2387 unsigned Reg = CSI[i].getReg(); 2388 if (!X86::GR64RegClass.contains(Reg) && 2389 !X86::GR32RegClass.contains(Reg)) 2390 continue; 2391 2392 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 2393 .setMIFlag(MachineInstr::FrameDestroy); 2394 } 2395 return true; 2396 } 2397 2398 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 2399 BitVector &SavedRegs, 2400 RegScavenger *RS) const { 2401 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2402 2403 // Spill the BasePtr if it's used. 2404 if (TRI->hasBasePointer(MF)){ 2405 Register BasePtr = TRI->getBaseRegister(); 2406 if (STI.isTarget64BitILP32()) 2407 BasePtr = getX86SubSuperRegister(BasePtr, 64); 2408 SavedRegs.set(BasePtr); 2409 } 2410 } 2411 2412 static bool 2413 HasNestArgument(const MachineFunction *MF) { 2414 const Function &F = MF->getFunction(); 2415 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 2416 I != E; I++) { 2417 if (I->hasNestAttr() && !I->use_empty()) 2418 return true; 2419 } 2420 return false; 2421 } 2422 2423 /// GetScratchRegister - Get a temp register for performing work in the 2424 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2425 /// and the properties of the function either one or two registers will be 2426 /// needed. Set primary to true for the first register, false for the second. 2427 static unsigned 2428 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2429 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 2430 2431 // Erlang stuff. 2432 if (CallingConvention == CallingConv::HiPE) { 2433 if (Is64Bit) 2434 return Primary ? X86::R14 : X86::R13; 2435 else 2436 return Primary ? X86::EBX : X86::EDI; 2437 } 2438 2439 if (Is64Bit) { 2440 if (IsLP64) 2441 return Primary ? X86::R11 : X86::R12; 2442 else 2443 return Primary ? X86::R11D : X86::R12D; 2444 } 2445 2446 bool IsNested = HasNestArgument(&MF); 2447 2448 if (CallingConvention == CallingConv::X86_FastCall || 2449 CallingConvention == CallingConv::Fast || 2450 CallingConvention == CallingConv::Tail) { 2451 if (IsNested) 2452 report_fatal_error("Segmented stacks does not support fastcall with " 2453 "nested function."); 2454 return Primary ? X86::EAX : X86::ECX; 2455 } 2456 if (IsNested) 2457 return Primary ? X86::EDX : X86::EAX; 2458 return Primary ? X86::ECX : X86::EAX; 2459 } 2460 2461 // The stack limit in the TCB is set to this many bytes above the actual stack 2462 // limit. 2463 static const uint64_t kSplitStackAvailable = 256; 2464 2465 void X86FrameLowering::adjustForSegmentedStacks( 2466 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2467 MachineFrameInfo &MFI = MF.getFrameInfo(); 2468 uint64_t StackSize; 2469 unsigned TlsReg, TlsOffset; 2470 DebugLoc DL; 2471 2472 // To support shrink-wrapping we would need to insert the new blocks 2473 // at the right place and update the branches to PrologueMBB. 2474 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2475 2476 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2477 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2478 "Scratch register is live-in"); 2479 2480 if (MF.getFunction().isVarArg()) 2481 report_fatal_error("Segmented stacks do not support vararg functions."); 2482 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 2483 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 2484 !STI.isTargetDragonFly()) 2485 report_fatal_error("Segmented stacks not supported on this platform."); 2486 2487 // Eventually StackSize will be calculated by a link-time pass; which will 2488 // also decide whether checking code needs to be injected into this particular 2489 // prologue. 2490 StackSize = MFI.getStackSize(); 2491 2492 // Do not generate a prologue for leaf functions with a stack of size zero. 2493 // For non-leaf functions we have to allow for the possibility that the 2494 // callis to a non-split function, as in PR37807. This function could also 2495 // take the address of a non-split function. When the linker tries to adjust 2496 // its non-existent prologue, it would fail with an error. Mark the object 2497 // file so that such failures are not errors. See this Go language bug-report 2498 // https://go-review.googlesource.com/c/go/+/148819/ 2499 if (StackSize == 0 && !MFI.hasTailCall()) { 2500 MF.getMMI().setHasNosplitStack(true); 2501 return; 2502 } 2503 2504 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 2505 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 2506 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2507 bool IsNested = false; 2508 2509 // We need to know if the function has a nest argument only in 64 bit mode. 2510 if (Is64Bit) 2511 IsNested = HasNestArgument(&MF); 2512 2513 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 2514 // allocMBB needs to be last (terminating) instruction. 2515 2516 for (const auto &LI : PrologueMBB.liveins()) { 2517 allocMBB->addLiveIn(LI); 2518 checkMBB->addLiveIn(LI); 2519 } 2520 2521 if (IsNested) 2522 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 2523 2524 MF.push_front(allocMBB); 2525 MF.push_front(checkMBB); 2526 2527 // When the frame size is less than 256 we just compare the stack 2528 // boundary directly to the value of the stack pointer, per gcc. 2529 bool CompareStackPointer = StackSize < kSplitStackAvailable; 2530 2531 // Read the limit off the current stacklet off the stack_guard location. 2532 if (Is64Bit) { 2533 if (STI.isTargetLinux()) { 2534 TlsReg = X86::FS; 2535 TlsOffset = IsLP64 ? 0x70 : 0x40; 2536 } else if (STI.isTargetDarwin()) { 2537 TlsReg = X86::GS; 2538 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 2539 } else if (STI.isTargetWin64()) { 2540 TlsReg = X86::GS; 2541 TlsOffset = 0x28; // pvArbitrary, reserved for application use 2542 } else if (STI.isTargetFreeBSD()) { 2543 TlsReg = X86::FS; 2544 TlsOffset = 0x18; 2545 } else if (STI.isTargetDragonFly()) { 2546 TlsReg = X86::FS; 2547 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 2548 } else { 2549 report_fatal_error("Segmented stacks not supported on this platform."); 2550 } 2551 2552 if (CompareStackPointer) 2553 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 2554 else 2555 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 2556 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2557 2558 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 2559 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2560 } else { 2561 if (STI.isTargetLinux()) { 2562 TlsReg = X86::GS; 2563 TlsOffset = 0x30; 2564 } else if (STI.isTargetDarwin()) { 2565 TlsReg = X86::GS; 2566 TlsOffset = 0x48 + 90*4; 2567 } else if (STI.isTargetWin32()) { 2568 TlsReg = X86::FS; 2569 TlsOffset = 0x14; // pvArbitrary, reserved for application use 2570 } else if (STI.isTargetDragonFly()) { 2571 TlsReg = X86::FS; 2572 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 2573 } else if (STI.isTargetFreeBSD()) { 2574 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 2575 } else { 2576 report_fatal_error("Segmented stacks not supported on this platform."); 2577 } 2578 2579 if (CompareStackPointer) 2580 ScratchReg = X86::ESP; 2581 else 2582 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 2583 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2584 2585 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 2586 STI.isTargetDragonFly()) { 2587 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 2588 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2589 } else if (STI.isTargetDarwin()) { 2590 2591 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 2592 unsigned ScratchReg2; 2593 bool SaveScratch2; 2594 if (CompareStackPointer) { 2595 // The primary scratch register is available for holding the TLS offset. 2596 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2597 SaveScratch2 = false; 2598 } else { 2599 // Need to use a second register to hold the TLS offset 2600 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 2601 2602 // Unfortunately, with fastcc the second scratch register may hold an 2603 // argument. 2604 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 2605 } 2606 2607 // If Scratch2 is live-in then it needs to be saved. 2608 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 2609 "Scratch register is live-in and not saved"); 2610 2611 if (SaveScratch2) 2612 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 2613 .addReg(ScratchReg2, RegState::Kill); 2614 2615 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 2616 .addImm(TlsOffset); 2617 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 2618 .addReg(ScratchReg) 2619 .addReg(ScratchReg2).addImm(1).addReg(0) 2620 .addImm(0) 2621 .addReg(TlsReg); 2622 2623 if (SaveScratch2) 2624 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 2625 } 2626 } 2627 2628 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 2629 // It jumps to normal execution of the function body. 2630 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); 2631 2632 // On 32 bit we first push the arguments size and then the frame size. On 64 2633 // bit, we pass the stack frame size in r10 and the argument size in r11. 2634 if (Is64Bit) { 2635 // Functions with nested arguments use R10, so it needs to be saved across 2636 // the call to _morestack 2637 2638 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 2639 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 2640 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 2641 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 2642 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri; 2643 2644 if (IsNested) 2645 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 2646 2647 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10) 2648 .addImm(StackSize); 2649 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11) 2650 .addImm(X86FI->getArgumentStackSize()); 2651 } else { 2652 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2653 .addImm(X86FI->getArgumentStackSize()); 2654 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2655 .addImm(StackSize); 2656 } 2657 2658 // __morestack is in libgcc 2659 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 2660 // Under the large code model, we cannot assume that __morestack lives 2661 // within 2^31 bytes of the call site, so we cannot use pc-relative 2662 // addressing. We cannot perform the call via a temporary register, 2663 // as the rax register may be used to store the static chain, and all 2664 // other suitable registers may be either callee-save or used for 2665 // parameter passing. We cannot use the stack at this point either 2666 // because __morestack manipulates the stack directly. 2667 // 2668 // To avoid these issues, perform an indirect call via a read-only memory 2669 // location containing the address. 2670 // 2671 // This solution is not perfect, as it assumes that the .rodata section 2672 // is laid out within 2^31 bytes of each function body, but this seems 2673 // to be sufficient for JIT. 2674 // FIXME: Add retpoline support and remove the error here.. 2675 if (STI.useIndirectThunkCalls()) 2676 report_fatal_error("Emitting morestack calls on 64-bit with the large " 2677 "code model and thunks not yet implemented."); 2678 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 2679 .addReg(X86::RIP) 2680 .addImm(0) 2681 .addReg(0) 2682 .addExternalSymbol("__morestack_addr") 2683 .addReg(0); 2684 MF.getMMI().setUsesMorestackAddr(true); 2685 } else { 2686 if (Is64Bit) 2687 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 2688 .addExternalSymbol("__morestack"); 2689 else 2690 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 2691 .addExternalSymbol("__morestack"); 2692 } 2693 2694 if (IsNested) 2695 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 2696 else 2697 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 2698 2699 allocMBB->addSuccessor(&PrologueMBB); 2700 2701 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); 2702 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); 2703 2704 #ifdef EXPENSIVE_CHECKS 2705 MF.verify(); 2706 #endif 2707 } 2708 2709 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 2710 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 2711 /// to fields it needs, through a named metadata node "hipe.literals" containing 2712 /// name-value pairs. 2713 static unsigned getHiPELiteral( 2714 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 2715 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 2716 MDNode *Node = HiPELiteralsMD->getOperand(i); 2717 if (Node->getNumOperands() != 2) continue; 2718 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 2719 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 2720 if (!NodeName || !NodeVal) continue; 2721 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 2722 if (ValConst && NodeName->getString() == LiteralName) { 2723 return ValConst->getZExtValue(); 2724 } 2725 } 2726 2727 report_fatal_error("HiPE literal " + LiteralName 2728 + " required but not provided"); 2729 } 2730 2731 // Return true if there are no non-ehpad successors to MBB and there are no 2732 // non-meta instructions between MBBI and MBB.end(). 2733 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, 2734 MachineBasicBlock::const_iterator MBBI) { 2735 return std::all_of( 2736 MBB.succ_begin(), MBB.succ_end(), 2737 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && 2738 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { 2739 return MI.isMetaInstruction(); 2740 }); 2741 } 2742 2743 /// Erlang programs may need a special prologue to handle the stack size they 2744 /// might need at runtime. That is because Erlang/OTP does not implement a C 2745 /// stack but uses a custom implementation of hybrid stack/heap architecture. 2746 /// (for more information see Eric Stenman's Ph.D. thesis: 2747 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 2748 /// 2749 /// CheckStack: 2750 /// temp0 = sp - MaxStack 2751 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2752 /// OldStart: 2753 /// ... 2754 /// IncStack: 2755 /// call inc_stack # doubles the stack space 2756 /// temp0 = sp - MaxStack 2757 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2758 void X86FrameLowering::adjustForHiPEPrologue( 2759 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2760 MachineFrameInfo &MFI = MF.getFrameInfo(); 2761 DebugLoc DL; 2762 2763 // To support shrink-wrapping we would need to insert the new blocks 2764 // at the right place and update the branches to PrologueMBB. 2765 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2766 2767 // HiPE-specific values 2768 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 2769 ->getNamedMetadata("hipe.literals"); 2770 if (!HiPELiteralsMD) 2771 report_fatal_error( 2772 "Can't generate HiPE prologue without runtime parameters"); 2773 const unsigned HipeLeafWords 2774 = getHiPELiteral(HiPELiteralsMD, 2775 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 2776 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 2777 const unsigned Guaranteed = HipeLeafWords * SlotSize; 2778 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? 2779 MF.getFunction().arg_size() - CCRegisteredArgs : 0; 2780 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 2781 2782 assert(STI.isTargetLinux() && 2783 "HiPE prologue is only supported on Linux operating systems."); 2784 2785 // Compute the largest caller's frame that is needed to fit the callees' 2786 // frames. This 'MaxStack' is computed from: 2787 // 2788 // a) the fixed frame size, which is the space needed for all spilled temps, 2789 // b) outgoing on-stack parameter areas, and 2790 // c) the minimum stack space this function needs to make available for the 2791 // functions it calls (a tunable ABI property). 2792 if (MFI.hasCalls()) { 2793 unsigned MoreStackForCalls = 0; 2794 2795 for (auto &MBB : MF) { 2796 for (auto &MI : MBB) { 2797 if (!MI.isCall()) 2798 continue; 2799 2800 // Get callee operand. 2801 const MachineOperand &MO = MI.getOperand(0); 2802 2803 // Only take account of global function calls (no closures etc.). 2804 if (!MO.isGlobal()) 2805 continue; 2806 2807 const Function *F = dyn_cast<Function>(MO.getGlobal()); 2808 if (!F) 2809 continue; 2810 2811 // Do not update 'MaxStack' for primitive and built-in functions 2812 // (encoded with names either starting with "erlang."/"bif_" or not 2813 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 2814 // "_", such as the BIF "suspend_0") as they are executed on another 2815 // stack. 2816 if (F->getName().find("erlang.") != StringRef::npos || 2817 F->getName().find("bif_") != StringRef::npos || 2818 F->getName().find_first_of("._") == StringRef::npos) 2819 continue; 2820 2821 unsigned CalleeStkArity = 2822 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 2823 if (HipeLeafWords - 1 > CalleeStkArity) 2824 MoreStackForCalls = std::max(MoreStackForCalls, 2825 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 2826 } 2827 } 2828 MaxStack += MoreStackForCalls; 2829 } 2830 2831 // If the stack frame needed is larger than the guaranteed then runtime checks 2832 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 2833 if (MaxStack > Guaranteed) { 2834 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 2835 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 2836 2837 for (const auto &LI : PrologueMBB.liveins()) { 2838 stackCheckMBB->addLiveIn(LI); 2839 incStackMBB->addLiveIn(LI); 2840 } 2841 2842 MF.push_front(incStackMBB); 2843 MF.push_front(stackCheckMBB); 2844 2845 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 2846 unsigned LEAop, CMPop, CALLop; 2847 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 2848 if (Is64Bit) { 2849 SPReg = X86::RSP; 2850 PReg = X86::RBP; 2851 LEAop = X86::LEA64r; 2852 CMPop = X86::CMP64rm; 2853 CALLop = X86::CALL64pcrel32; 2854 } else { 2855 SPReg = X86::ESP; 2856 PReg = X86::EBP; 2857 LEAop = X86::LEA32r; 2858 CMPop = X86::CMP32rm; 2859 CALLop = X86::CALLpcrel32; 2860 } 2861 2862 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2863 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2864 "HiPE prologue scratch register is live-in"); 2865 2866 // Create new MBB for StackCheck: 2867 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 2868 SPReg, false, -MaxStack); 2869 // SPLimitOffset is in a fixed heap location (pointed by BP). 2870 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 2871 .addReg(ScratchReg), PReg, false, SPLimitOffset); 2872 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); 2873 2874 // Create new MBB for IncStack: 2875 BuildMI(incStackMBB, DL, TII.get(CALLop)). 2876 addExternalSymbol("inc_stack_0"); 2877 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 2878 SPReg, false, -MaxStack); 2879 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 2880 .addReg(ScratchReg), PReg, false, SPLimitOffset); 2881 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); 2882 2883 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 2884 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 2885 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 2886 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 2887 } 2888 #ifdef EXPENSIVE_CHECKS 2889 MF.verify(); 2890 #endif 2891 } 2892 2893 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 2894 MachineBasicBlock::iterator MBBI, 2895 const DebugLoc &DL, 2896 int Offset) const { 2897 2898 if (Offset <= 0) 2899 return false; 2900 2901 if (Offset % SlotSize) 2902 return false; 2903 2904 int NumPops = Offset / SlotSize; 2905 // This is only worth it if we have at most 2 pops. 2906 if (NumPops != 1 && NumPops != 2) 2907 return false; 2908 2909 // Handle only the trivial case where the adjustment directly follows 2910 // a call. This is the most common one, anyway. 2911 if (MBBI == MBB.begin()) 2912 return false; 2913 MachineBasicBlock::iterator Prev = std::prev(MBBI); 2914 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 2915 return false; 2916 2917 unsigned Regs[2]; 2918 unsigned FoundRegs = 0; 2919 2920 auto &MRI = MBB.getParent()->getRegInfo(); 2921 auto RegMask = Prev->getOperand(1); 2922 2923 auto &RegClass = 2924 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 2925 // Try to find up to NumPops free registers. 2926 for (auto Candidate : RegClass) { 2927 2928 // Poor man's liveness: 2929 // Since we're immediately after a call, any register that is clobbered 2930 // by the call and not defined by it can be considered dead. 2931 if (!RegMask.clobbersPhysReg(Candidate)) 2932 continue; 2933 2934 // Don't clobber reserved registers 2935 if (MRI.isReserved(Candidate)) 2936 continue; 2937 2938 bool IsDef = false; 2939 for (const MachineOperand &MO : Prev->implicit_operands()) { 2940 if (MO.isReg() && MO.isDef() && 2941 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 2942 IsDef = true; 2943 break; 2944 } 2945 } 2946 2947 if (IsDef) 2948 continue; 2949 2950 Regs[FoundRegs++] = Candidate; 2951 if (FoundRegs == (unsigned)NumPops) 2952 break; 2953 } 2954 2955 if (FoundRegs == 0) 2956 return false; 2957 2958 // If we found only one free register, but need two, reuse the same one twice. 2959 while (FoundRegs < (unsigned)NumPops) 2960 Regs[FoundRegs++] = Regs[0]; 2961 2962 for (int i = 0; i < NumPops; ++i) 2963 BuildMI(MBB, MBBI, DL, 2964 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 2965 2966 return true; 2967 } 2968 2969 MachineBasicBlock::iterator X86FrameLowering:: 2970 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 2971 MachineBasicBlock::iterator I) const { 2972 bool reserveCallFrame = hasReservedCallFrame(MF); 2973 unsigned Opcode = I->getOpcode(); 2974 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 2975 DebugLoc DL = I->getDebugLoc(); 2976 uint64_t Amount = TII.getFrameSize(*I); 2977 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 2978 I = MBB.erase(I); 2979 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 2980 2981 // Try to avoid emitting dead SP adjustments if the block end is unreachable, 2982 // typically because the function is marked noreturn (abort, throw, 2983 // assert_fail, etc). 2984 if (isDestroy && blockEndIsUnreachable(MBB, I)) 2985 return I; 2986 2987 if (!reserveCallFrame) { 2988 // If the stack pointer can be changed after prologue, turn the 2989 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 2990 // adjcallstackdown instruction into 'add ESP, <amt>' 2991 2992 // We need to keep the stack aligned properly. To do this, we round the 2993 // amount of space needed for the outgoing arguments up to the next 2994 // alignment boundary. 2995 Amount = alignTo(Amount, getStackAlign()); 2996 2997 const Function &F = MF.getFunction(); 2998 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2999 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); 3000 3001 // If we have any exception handlers in this function, and we adjust 3002 // the SP before calls, we may need to indicate this to the unwinder 3003 // using GNU_ARGS_SIZE. Note that this may be necessary even when 3004 // Amount == 0, because the preceding function may have set a non-0 3005 // GNU_ARGS_SIZE. 3006 // TODO: We don't need to reset this between subsequent functions, 3007 // if it didn't change. 3008 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 3009 3010 if (HasDwarfEHHandlers && !isDestroy && 3011 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 3012 BuildCFI(MBB, InsertPos, DL, 3013 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 3014 3015 if (Amount == 0) 3016 return I; 3017 3018 // Factor out the amount that gets handled inside the sequence 3019 // (Pushes of argument for frame setup, callee pops for frame destroy) 3020 Amount -= InternalAmt; 3021 3022 // TODO: This is needed only if we require precise CFA. 3023 // If this is a callee-pop calling convention, emit a CFA adjust for 3024 // the amount the callee popped. 3025 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 3026 BuildCFI(MBB, InsertPos, DL, 3027 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 3028 3029 // Add Amount to SP to destroy a frame, or subtract to setup. 3030 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 3031 3032 if (StackAdjustment) { 3033 // Merge with any previous or following adjustment instruction. Note: the 3034 // instructions merged with here do not have CFI, so their stack 3035 // adjustments do not feed into CfaAdjustment. 3036 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 3037 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 3038 3039 if (StackAdjustment) { 3040 if (!(F.hasMinSize() && 3041 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 3042 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 3043 /*InEpilogue=*/false); 3044 } 3045 } 3046 3047 if (DwarfCFI && !hasFP(MF)) { 3048 // If we don't have FP, but need to generate unwind information, 3049 // we need to set the correct CFA offset after the stack adjustment. 3050 // How much we adjust the CFA offset depends on whether we're emitting 3051 // CFI only for EH purposes or for debugging. EH only requires the CFA 3052 // offset to be correct at each call site, while for debugging we want 3053 // it to be more precise. 3054 3055 int64_t CfaAdjustment = -StackAdjustment; 3056 // TODO: When not using precise CFA, we also need to adjust for the 3057 // InternalAmt here. 3058 if (CfaAdjustment) { 3059 BuildCFI(MBB, InsertPos, DL, 3060 MCCFIInstruction::createAdjustCfaOffset(nullptr, 3061 CfaAdjustment)); 3062 } 3063 } 3064 3065 return I; 3066 } 3067 3068 if (InternalAmt) { 3069 MachineBasicBlock::iterator CI = I; 3070 MachineBasicBlock::iterator B = MBB.begin(); 3071 while (CI != B && !std::prev(CI)->isCall()) 3072 --CI; 3073 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 3074 } 3075 3076 return I; 3077 } 3078 3079 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 3080 assert(MBB.getParent() && "Block is not attached to a function!"); 3081 const MachineFunction &MF = *MBB.getParent(); 3082 return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS); 3083 } 3084 3085 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 3086 assert(MBB.getParent() && "Block is not attached to a function!"); 3087 3088 // Win64 has strict requirements in terms of epilogue and we are 3089 // not taking a chance at messing with them. 3090 // I.e., unless this block is already an exit block, we can't use 3091 // it as an epilogue. 3092 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 3093 return false; 3094 3095 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 3096 return true; 3097 3098 // If we cannot use LEA to adjust SP, we may need to use ADD, which 3099 // clobbers the EFLAGS. Check that we do not need to preserve it, 3100 // otherwise, conservatively assume this is not 3101 // safe to insert the epilogue here. 3102 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3103 } 3104 3105 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 3106 // If we may need to emit frameless compact unwind information, give 3107 // up as this is currently broken: PR25614. 3108 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) && 3109 // The lowering of segmented stack and HiPE only support entry blocks 3110 // as prologue blocks: PR26107. 3111 // This limitation may be lifted if we fix: 3112 // - adjustForSegmentedStacks 3113 // - adjustForHiPEPrologue 3114 MF.getFunction().getCallingConv() != CallingConv::HiPE && 3115 !MF.shouldSplitStack(); 3116 } 3117 3118 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 3119 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3120 const DebugLoc &DL, bool RestoreSP) const { 3121 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 3122 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 3123 assert(STI.is32Bit() && !Uses64BitFramePtr && 3124 "restoring EBP/ESI on non-32-bit target"); 3125 3126 MachineFunction &MF = *MBB.getParent(); 3127 Register FramePtr = TRI->getFrameRegister(MF); 3128 Register BasePtr = TRI->getBaseRegister(); 3129 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 3130 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3131 MachineFrameInfo &MFI = MF.getFrameInfo(); 3132 3133 // FIXME: Don't set FrameSetup flag in catchret case. 3134 3135 int FI = FuncInfo.EHRegNodeFrameIndex; 3136 int EHRegSize = MFI.getObjectSize(FI); 3137 3138 if (RestoreSP) { 3139 // MOV32rm -EHRegSize(%ebp), %esp 3140 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 3141 X86::EBP, true, -EHRegSize) 3142 .setMIFlag(MachineInstr::FrameSetup); 3143 } 3144 3145 Register UsedReg; 3146 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg); 3147 int EndOffset = -EHRegOffset - EHRegSize; 3148 FuncInfo.EHRegNodeEndOffset = EndOffset; 3149 3150 if (UsedReg == FramePtr) { 3151 // ADD $offset, %ebp 3152 unsigned ADDri = getADDriOpcode(false, EndOffset); 3153 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 3154 .addReg(FramePtr) 3155 .addImm(EndOffset) 3156 .setMIFlag(MachineInstr::FrameSetup) 3157 ->getOperand(3) 3158 .setIsDead(); 3159 assert(EndOffset >= 0 && 3160 "end of registration object above normal EBP position!"); 3161 } else if (UsedReg == BasePtr) { 3162 // LEA offset(%ebp), %esi 3163 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 3164 FramePtr, false, EndOffset) 3165 .setMIFlag(MachineInstr::FrameSetup); 3166 // MOV32rm SavedEBPOffset(%esi), %ebp 3167 assert(X86FI->getHasSEHFramePtrSave()); 3168 int Offset = 3169 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 3170 assert(UsedReg == BasePtr); 3171 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 3172 UsedReg, true, Offset) 3173 .setMIFlag(MachineInstr::FrameSetup); 3174 } else { 3175 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 3176 } 3177 return MBBI; 3178 } 3179 3180 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 3181 return TRI->getSlotSize(); 3182 } 3183 3184 Register 3185 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const { 3186 return TRI->getDwarfRegNum(StackPtr, true); 3187 } 3188 3189 namespace { 3190 // Struct used by orderFrameObjects to help sort the stack objects. 3191 struct X86FrameSortingObject { 3192 bool IsValid = false; // true if we care about this Object. 3193 unsigned ObjectIndex = 0; // Index of Object into MFI list. 3194 unsigned ObjectSize = 0; // Size of Object in bytes. 3195 Align ObjectAlignment = Align(1); // Alignment of Object in bytes. 3196 unsigned ObjectNumUses = 0; // Object static number of uses. 3197 }; 3198 3199 // The comparison function we use for std::sort to order our local 3200 // stack symbols. The current algorithm is to use an estimated 3201 // "density". This takes into consideration the size and number of 3202 // uses each object has in order to roughly minimize code size. 3203 // So, for example, an object of size 16B that is referenced 5 times 3204 // will get higher priority than 4 4B objects referenced 1 time each. 3205 // It's not perfect and we may be able to squeeze a few more bytes out of 3206 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 3207 // fringe end can have special consideration, given their size is less 3208 // important, etc.), but the algorithmic complexity grows too much to be 3209 // worth the extra gains we get. This gets us pretty close. 3210 // The final order leaves us with objects with highest priority going 3211 // at the end of our list. 3212 struct X86FrameSortingComparator { 3213 inline bool operator()(const X86FrameSortingObject &A, 3214 const X86FrameSortingObject &B) { 3215 uint64_t DensityAScaled, DensityBScaled; 3216 3217 // For consistency in our comparison, all invalid objects are placed 3218 // at the end. This also allows us to stop walking when we hit the 3219 // first invalid item after it's all sorted. 3220 if (!A.IsValid) 3221 return false; 3222 if (!B.IsValid) 3223 return true; 3224 3225 // The density is calculated by doing : 3226 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 3227 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 3228 // Since this approach may cause inconsistencies in 3229 // the floating point <, >, == comparisons, depending on the floating 3230 // point model with which the compiler was built, we're going 3231 // to scale both sides by multiplying with 3232 // A.ObjectSize * B.ObjectSize. This ends up factoring away 3233 // the division and, with it, the need for any floating point 3234 // arithmetic. 3235 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 3236 static_cast<uint64_t>(B.ObjectSize); 3237 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 3238 static_cast<uint64_t>(A.ObjectSize); 3239 3240 // If the two densities are equal, prioritize highest alignment 3241 // objects. This allows for similar alignment objects 3242 // to be packed together (given the same density). 3243 // There's room for improvement here, also, since we can pack 3244 // similar alignment (different density) objects next to each 3245 // other to save padding. This will also require further 3246 // complexity/iterations, and the overall gain isn't worth it, 3247 // in general. Something to keep in mind, though. 3248 if (DensityAScaled == DensityBScaled) 3249 return A.ObjectAlignment < B.ObjectAlignment; 3250 3251 return DensityAScaled < DensityBScaled; 3252 } 3253 }; 3254 } // namespace 3255 3256 // Order the symbols in the local stack. 3257 // We want to place the local stack objects in some sort of sensible order. 3258 // The heuristic we use is to try and pack them according to static number 3259 // of uses and size of object in order to minimize code size. 3260 void X86FrameLowering::orderFrameObjects( 3261 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 3262 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3263 3264 // Don't waste time if there's nothing to do. 3265 if (ObjectsToAllocate.empty()) 3266 return; 3267 3268 // Create an array of all MFI objects. We won't need all of these 3269 // objects, but we're going to create a full array of them to make 3270 // it easier to index into when we're counting "uses" down below. 3271 // We want to be able to easily/cheaply access an object by simply 3272 // indexing into it, instead of having to search for it every time. 3273 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 3274 3275 // Walk the objects we care about and mark them as such in our working 3276 // struct. 3277 for (auto &Obj : ObjectsToAllocate) { 3278 SortingObjects[Obj].IsValid = true; 3279 SortingObjects[Obj].ObjectIndex = Obj; 3280 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj); 3281 // Set the size. 3282 int ObjectSize = MFI.getObjectSize(Obj); 3283 if (ObjectSize == 0) 3284 // Variable size. Just use 4. 3285 SortingObjects[Obj].ObjectSize = 4; 3286 else 3287 SortingObjects[Obj].ObjectSize = ObjectSize; 3288 } 3289 3290 // Count the number of uses for each object. 3291 for (auto &MBB : MF) { 3292 for (auto &MI : MBB) { 3293 if (MI.isDebugInstr()) 3294 continue; 3295 for (const MachineOperand &MO : MI.operands()) { 3296 // Check to see if it's a local stack symbol. 3297 if (!MO.isFI()) 3298 continue; 3299 int Index = MO.getIndex(); 3300 // Check to see if it falls within our range, and is tagged 3301 // to require ordering. 3302 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 3303 SortingObjects[Index].IsValid) 3304 SortingObjects[Index].ObjectNumUses++; 3305 } 3306 } 3307 } 3308 3309 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 3310 // info). 3311 llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); 3312 3313 // Now modify the original list to represent the final order that 3314 // we want. The order will depend on whether we're going to access them 3315 // from the stack pointer or the frame pointer. For SP, the list should 3316 // end up with the END containing objects that we want with smaller offsets. 3317 // For FP, it should be flipped. 3318 int i = 0; 3319 for (auto &Obj : SortingObjects) { 3320 // All invalid items are sorted at the end, so it's safe to stop. 3321 if (!Obj.IsValid) 3322 break; 3323 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3324 } 3325 3326 // Flip it if we're accessing off of the FP. 3327 if (!TRI->needsStackRealignment(MF) && hasFP(MF)) 3328 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 3329 } 3330 3331 3332 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 3333 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 3334 unsigned Offset = 16; 3335 // RBP is immediately pushed. 3336 Offset += SlotSize; 3337 // All callee-saved registers are then pushed. 3338 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 3339 // Every funclet allocates enough stack space for the largest outgoing call. 3340 Offset += getWinEHFuncletFrameSize(MF); 3341 return Offset; 3342 } 3343 3344 void X86FrameLowering::processFunctionBeforeFrameFinalized( 3345 MachineFunction &MF, RegScavenger *RS) const { 3346 // Mark the function as not having WinCFI. We will set it back to true in 3347 // emitPrologue if it gets called and emits CFI. 3348 MF.setHasWinCFI(false); 3349 3350 // If this function isn't doing Win64-style C++ EH, we don't need to do 3351 // anything. 3352 const Function &F = MF.getFunction(); 3353 if (!STI.is64Bit() || !MF.hasEHFunclets() || 3354 classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX) 3355 return; 3356 3357 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 3358 // relative to RSP after the prologue. Find the offset of the last fixed 3359 // object, so that we can allocate a slot immediately following it. If there 3360 // were no fixed objects, use offset -SlotSize, which is immediately after the 3361 // return address. Fixed objects have negative frame indices. 3362 MachineFrameInfo &MFI = MF.getFrameInfo(); 3363 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3364 int64_t MinFixedObjOffset = -SlotSize; 3365 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 3366 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 3367 3368 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 3369 for (WinEHHandlerType &H : TBME.HandlerArray) { 3370 int FrameIndex = H.CatchObj.FrameIndex; 3371 if (FrameIndex != INT_MAX) { 3372 // Ensure alignment. 3373 unsigned Align = MFI.getObjectAlign(FrameIndex).value(); 3374 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 3375 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 3376 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 3377 } 3378 } 3379 } 3380 3381 // Ensure alignment. 3382 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 3383 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 3384 int UnwindHelpFI = 3385 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); 3386 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3387 3388 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 3389 // other frame setup instructions. 3390 MachineBasicBlock &MBB = MF.front(); 3391 auto MBBI = MBB.begin(); 3392 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3393 ++MBBI; 3394 3395 DebugLoc DL = MBB.findDebugLoc(MBBI); 3396 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 3397 UnwindHelpFI) 3398 .addImm(-2); 3399 } 3400 3401 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced( 3402 MachineFunction &MF, RegScavenger *RS) const { 3403 if (STI.is32Bit() && MF.hasEHFunclets()) 3404 restoreWinEHStackPointersInParent(MF); 3405 } 3406 3407 void X86FrameLowering::restoreWinEHStackPointersInParent( 3408 MachineFunction &MF) const { 3409 // 32-bit functions have to restore stack pointers when control is transferred 3410 // back to the parent function. These blocks are identified as eh pads that 3411 // are not funclet entries. 3412 bool IsSEH = isAsynchronousEHPersonality( 3413 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 3414 for (MachineBasicBlock &MBB : MF) { 3415 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry(); 3416 if (NeedsRestore) 3417 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(), 3418 /*RestoreSP=*/IsSEH); 3419 } 3420 } 3421