1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86FrameLowering.h" 14 #include "X86InstrBuilder.h" 15 #include "X86InstrInfo.h" 16 #include "X86MachineFunctionInfo.h" 17 #include "X86Subtarget.h" 18 #include "X86TargetMachine.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/EHPersonalities.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineModuleInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/WinEHFuncInfo.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/MC/MCSymbol.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Target/TargetOptions.h" 33 #include <cstdlib> 34 35 using namespace llvm; 36 37 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 38 unsigned StackAlignOverride) 39 : TargetFrameLowering(StackGrowsDown, StackAlignOverride, 40 STI.is64Bit() ? -8 : -4), 41 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { 42 // Cache a bunch of frame-related predicates for this subtarget. 43 SlotSize = TRI->getSlotSize(); 44 Is64Bit = STI.is64Bit(); 45 IsLP64 = STI.isTarget64BitLP64(); 46 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 47 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 48 StackPtr = TRI->getStackRegister(); 49 } 50 51 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 52 return !MF.getFrameInfo().hasVarSizedObjects() && 53 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 54 } 55 56 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 57 /// call frame pseudos can be simplified. Having a FP, as in the default 58 /// implementation, is not sufficient here since we can't always use it. 59 /// Use a more nuanced condition. 60 bool 61 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 62 return hasReservedCallFrame(MF) || 63 (hasFP(MF) && !TRI->needsStackRealignment(MF)) || 64 TRI->hasBasePointer(MF); 65 } 66 67 // needsFrameIndexResolution - Do we need to perform FI resolution for 68 // this function. Normally, this is required only when the function 69 // has any stack objects. However, FI resolution actually has another job, 70 // not apparent from the title - it resolves callframesetup/destroy 71 // that were not simplified earlier. 72 // So, this is required for x86 functions that have push sequences even 73 // when there are no stack objects. 74 bool 75 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 76 return MF.getFrameInfo().hasStackObjects() || 77 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 78 } 79 80 /// hasFP - Return true if the specified function should have a dedicated frame 81 /// pointer register. This is true if the function has variable sized allocas 82 /// or if frame pointer elimination is disabled. 83 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 84 const MachineFrameInfo &MFI = MF.getFrameInfo(); 85 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 86 TRI->needsStackRealignment(MF) || 87 MFI.hasVarSizedObjects() || 88 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 89 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 90 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 91 MFI.hasStackMap() || MFI.hasPatchPoint() || 92 MFI.hasCopyImplyingStackAdjustment()); 93 } 94 95 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) { 96 if (IsLP64) { 97 if (isInt<8>(Imm)) 98 return X86::SUB64ri8; 99 return X86::SUB64ri32; 100 } else { 101 if (isInt<8>(Imm)) 102 return X86::SUB32ri8; 103 return X86::SUB32ri; 104 } 105 } 106 107 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) { 108 if (IsLP64) { 109 if (isInt<8>(Imm)) 110 return X86::ADD64ri8; 111 return X86::ADD64ri32; 112 } else { 113 if (isInt<8>(Imm)) 114 return X86::ADD32ri8; 115 return X86::ADD32ri; 116 } 117 } 118 119 static unsigned getSUBrrOpcode(unsigned isLP64) { 120 return isLP64 ? X86::SUB64rr : X86::SUB32rr; 121 } 122 123 static unsigned getADDrrOpcode(unsigned isLP64) { 124 return isLP64 ? X86::ADD64rr : X86::ADD32rr; 125 } 126 127 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 128 if (IsLP64) { 129 if (isInt<8>(Imm)) 130 return X86::AND64ri8; 131 return X86::AND64ri32; 132 } 133 if (isInt<8>(Imm)) 134 return X86::AND32ri8; 135 return X86::AND32ri; 136 } 137 138 static unsigned getLEArOpcode(unsigned IsLP64) { 139 return IsLP64 ? X86::LEA64r : X86::LEA32r; 140 } 141 142 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live 143 /// when it reaches the "return" instruction. We can then pop a stack object 144 /// to this register without worry about clobbering it. 145 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB, 146 MachineBasicBlock::iterator &MBBI, 147 const X86RegisterInfo *TRI, 148 bool Is64Bit) { 149 const MachineFunction *MF = MBB.getParent(); 150 if (MF->callsEHReturn()) 151 return 0; 152 153 const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF); 154 155 if (MBBI == MBB.end()) 156 return 0; 157 158 switch (MBBI->getOpcode()) { 159 default: return 0; 160 case TargetOpcode::PATCHABLE_RET: 161 case X86::RET: 162 case X86::RETL: 163 case X86::RETQ: 164 case X86::RETIL: 165 case X86::RETIQ: 166 case X86::TCRETURNdi: 167 case X86::TCRETURNri: 168 case X86::TCRETURNmi: 169 case X86::TCRETURNdi64: 170 case X86::TCRETURNri64: 171 case X86::TCRETURNmi64: 172 case X86::EH_RETURN: 173 case X86::EH_RETURN64: { 174 SmallSet<uint16_t, 8> Uses; 175 for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) { 176 MachineOperand &MO = MBBI->getOperand(i); 177 if (!MO.isReg() || MO.isDef()) 178 continue; 179 unsigned Reg = MO.getReg(); 180 if (!Reg) 181 continue; 182 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 183 Uses.insert(*AI); 184 } 185 186 for (auto CS : AvailableRegs) 187 if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP && 188 CS != X86::ESP) 189 return CS; 190 } 191 } 192 193 return 0; 194 } 195 196 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 197 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 198 unsigned Reg = RegMask.PhysReg; 199 200 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 201 Reg == X86::AH || Reg == X86::AL) 202 return true; 203 } 204 205 return false; 206 } 207 208 /// Check if the flags need to be preserved before the terminators. 209 /// This would be the case, if the eflags is live-in of the region 210 /// composed by the terminators or live-out of that region, without 211 /// being defined by a terminator. 212 static bool 213 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 214 for (const MachineInstr &MI : MBB.terminators()) { 215 bool BreakNext = false; 216 for (const MachineOperand &MO : MI.operands()) { 217 if (!MO.isReg()) 218 continue; 219 unsigned Reg = MO.getReg(); 220 if (Reg != X86::EFLAGS) 221 continue; 222 223 // This terminator needs an eflags that is not defined 224 // by a previous another terminator: 225 // EFLAGS is live-in of the region composed by the terminators. 226 if (!MO.isDef()) 227 return true; 228 // This terminator defines the eflags, i.e., we don't need to preserve it. 229 // However, we still need to check this specific terminator does not 230 // read a live-in value. 231 BreakNext = true; 232 } 233 // We found a definition of the eflags, no need to preserve them. 234 if (BreakNext) 235 return false; 236 } 237 238 // None of the terminators use or define the eflags. 239 // Check if they are live-out, that would imply we need to preserve them. 240 for (const MachineBasicBlock *Succ : MBB.successors()) 241 if (Succ->isLiveIn(X86::EFLAGS)) 242 return true; 243 244 return false; 245 } 246 247 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 248 /// stack pointer by a constant value. 249 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 250 MachineBasicBlock::iterator &MBBI, 251 const DebugLoc &DL, 252 int64_t NumBytes, bool InEpilogue) const { 253 bool isSub = NumBytes < 0; 254 uint64_t Offset = isSub ? -NumBytes : NumBytes; 255 MachineInstr::MIFlag Flag = 256 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 257 258 uint64_t Chunk = (1LL << 31) - 1; 259 260 if (Offset > Chunk) { 261 // Rather than emit a long series of instructions for large offsets, 262 // load the offset into a register and do one sub/add 263 unsigned Reg = 0; 264 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 265 266 if (isSub && !isEAXLiveIn(MBB)) 267 Reg = Rax; 268 else 269 Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 270 271 unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri; 272 unsigned AddSubRROpc = 273 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 274 if (Reg) { 275 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg) 276 .addImm(Offset) 277 .setMIFlag(Flag); 278 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 279 .addReg(StackPtr) 280 .addReg(Reg); 281 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 282 return; 283 } else if (Offset > 8 * Chunk) { 284 // If we would need more than 8 add or sub instructions (a >16GB stack 285 // frame), it's worth spilling RAX to materialize this immediate. 286 // pushq %rax 287 // movabsq +-$Offset+-SlotSize, %rax 288 // addq %rsp, %rax 289 // xchg %rax, (%rsp) 290 // movq (%rsp), %rsp 291 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 292 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 293 .addReg(Rax, RegState::Kill) 294 .setMIFlag(Flag); 295 // Subtract is not commutative, so negate the offset and always use add. 296 // Subtract 8 less and add 8 more to account for the PUSH we just did. 297 if (isSub) 298 Offset = -(Offset - SlotSize); 299 else 300 Offset = Offset + SlotSize; 301 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax) 302 .addImm(Offset) 303 .setMIFlag(Flag); 304 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 305 .addReg(Rax) 306 .addReg(StackPtr); 307 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 308 // Exchange the new SP in RAX with the top of the stack. 309 addRegOffset( 310 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 311 StackPtr, false, 0); 312 // Load new SP from the top of the stack into RSP. 313 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 314 StackPtr, false, 0); 315 return; 316 } 317 } 318 319 while (Offset) { 320 uint64_t ThisVal = std::min(Offset, Chunk); 321 if (ThisVal == SlotSize) { 322 // Use push / pop for slot sized adjustments as a size optimization. We 323 // need to find a dead register when using pop. 324 unsigned Reg = isSub 325 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 326 : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 327 if (Reg) { 328 unsigned Opc = isSub 329 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 330 : (Is64Bit ? X86::POP64r : X86::POP32r); 331 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 332 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 333 .setMIFlag(Flag); 334 Offset -= ThisVal; 335 continue; 336 } 337 } 338 339 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 340 .setMIFlag(Flag); 341 342 Offset -= ThisVal; 343 } 344 } 345 346 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 347 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 348 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 349 assert(Offset != 0 && "zero offset stack adjustment requested"); 350 351 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 352 // is tricky. 353 bool UseLEA; 354 if (!InEpilogue) { 355 // Check if inserting the prologue at the beginning 356 // of MBB would require to use LEA operations. 357 // We need to use LEA operations if EFLAGS is live in, because 358 // it means an instruction will read it before it gets defined. 359 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 360 } else { 361 // If we can use LEA for SP but we shouldn't, check that none 362 // of the terminators uses the eflags. Otherwise we will insert 363 // a ADD that will redefine the eflags and break the condition. 364 // Alternatively, we could move the ADD, but this may not be possible 365 // and is an optimization anyway. 366 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 367 if (UseLEA && !STI.useLeaForSP()) 368 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 369 // If that assert breaks, that means we do not do the right thing 370 // in canUseAsEpilogue. 371 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 372 "We shouldn't have allowed this insertion point"); 373 } 374 375 MachineInstrBuilder MI; 376 if (UseLEA) { 377 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 378 TII.get(getLEArOpcode(Uses64BitFramePtr)), 379 StackPtr), 380 StackPtr, false, Offset); 381 } else { 382 bool IsSub = Offset < 0; 383 uint64_t AbsOffset = IsSub ? -Offset : Offset; 384 unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 385 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 386 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 387 .addReg(StackPtr) 388 .addImm(AbsOffset); 389 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 390 } 391 return MI; 392 } 393 394 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 395 MachineBasicBlock::iterator &MBBI, 396 bool doMergeWithPrevious) const { 397 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 398 (!doMergeWithPrevious && MBBI == MBB.end())) 399 return 0; 400 401 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 402 403 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 404 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 405 // instruction, and that there are no DBG_VALUE or other instructions between 406 // ADD/SUB/LEA and its corresponding CFI instruction. 407 /* TODO: Add support for the case where there are multiple CFI instructions 408 below the ADD/SUB/LEA, e.g.: 409 ... 410 add 411 cfi_def_cfa_offset 412 cfi_offset 413 ... 414 */ 415 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 416 PI = std::prev(PI); 417 418 unsigned Opc = PI->getOpcode(); 419 int Offset = 0; 420 421 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 422 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 423 PI->getOperand(0).getReg() == StackPtr){ 424 assert(PI->getOperand(1).getReg() == StackPtr); 425 Offset = PI->getOperand(2).getImm(); 426 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 427 PI->getOperand(0).getReg() == StackPtr && 428 PI->getOperand(1).getReg() == StackPtr && 429 PI->getOperand(2).getImm() == 1 && 430 PI->getOperand(3).getReg() == X86::NoRegister && 431 PI->getOperand(5).getReg() == X86::NoRegister) { 432 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 433 Offset = PI->getOperand(4).getImm(); 434 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 435 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 436 PI->getOperand(0).getReg() == StackPtr) { 437 assert(PI->getOperand(1).getReg() == StackPtr); 438 Offset = -PI->getOperand(2).getImm(); 439 } else 440 return 0; 441 442 PI = MBB.erase(PI); 443 if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI); 444 if (!doMergeWithPrevious) 445 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 446 447 return Offset; 448 } 449 450 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 451 MachineBasicBlock::iterator MBBI, 452 const DebugLoc &DL, 453 const MCCFIInstruction &CFIInst) const { 454 MachineFunction &MF = *MBB.getParent(); 455 unsigned CFIIndex = MF.addFrameInst(CFIInst); 456 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 457 .addCFIIndex(CFIIndex); 458 } 459 460 void X86FrameLowering::emitCalleeSavedFrameMoves( 461 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 462 const DebugLoc &DL) const { 463 MachineFunction &MF = *MBB.getParent(); 464 MachineFrameInfo &MFI = MF.getFrameInfo(); 465 MachineModuleInfo &MMI = MF.getMMI(); 466 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 467 468 // Add callee saved registers to move list. 469 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 470 if (CSI.empty()) return; 471 472 // Calculate offsets. 473 for (std::vector<CalleeSavedInfo>::const_iterator 474 I = CSI.begin(), E = CSI.end(); I != E; ++I) { 475 int64_t Offset = MFI.getObjectOffset(I->getFrameIdx()); 476 unsigned Reg = I->getReg(); 477 478 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 479 BuildCFI(MBB, MBBI, DL, 480 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 481 } 482 } 483 484 void X86FrameLowering::emitStackProbe(MachineFunction &MF, 485 MachineBasicBlock &MBB, 486 MachineBasicBlock::iterator MBBI, 487 const DebugLoc &DL, bool InProlog) const { 488 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 489 if (STI.isTargetWindowsCoreCLR()) { 490 if (InProlog) { 491 emitStackProbeInlineStub(MF, MBB, MBBI, DL, true); 492 } else { 493 emitStackProbeInline(MF, MBB, MBBI, DL, false); 494 } 495 } else { 496 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog); 497 } 498 } 499 500 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 501 MachineBasicBlock &PrologMBB) const { 502 const StringRef ChkStkStubSymbol = "__chkstk_stub"; 503 MachineInstr *ChkStkStub = nullptr; 504 505 for (MachineInstr &MI : PrologMBB) { 506 if (MI.isCall() && MI.getOperand(0).isSymbol() && 507 ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) { 508 ChkStkStub = &MI; 509 break; 510 } 511 } 512 513 if (ChkStkStub != nullptr) { 514 assert(!ChkStkStub->isBundled() && 515 "Not expecting bundled instructions here"); 516 MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator()); 517 assert(std::prev(MBBI) == ChkStkStub && 518 "MBBI expected after __chkstk_stub."); 519 DebugLoc DL = PrologMBB.findDebugLoc(MBBI); 520 emitStackProbeInline(MF, PrologMBB, MBBI, DL, true); 521 ChkStkStub->eraseFromParent(); 522 } 523 } 524 525 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 526 MachineBasicBlock &MBB, 527 MachineBasicBlock::iterator MBBI, 528 const DebugLoc &DL, 529 bool InProlog) const { 530 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 531 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 532 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 533 const TargetInstrInfo &TII = *STI.getInstrInfo(); 534 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 535 536 // RAX contains the number of bytes of desired stack adjustment. 537 // The handling here assumes this value has already been updated so as to 538 // maintain stack alignment. 539 // 540 // We need to exit with RSP modified by this amount and execute suitable 541 // page touches to notify the OS that we're growing the stack responsibly. 542 // All stack probing must be done without modifying RSP. 543 // 544 // MBB: 545 // SizeReg = RAX; 546 // ZeroReg = 0 547 // CopyReg = RSP 548 // Flags, TestReg = CopyReg - SizeReg 549 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 550 // LimitReg = gs magic thread env access 551 // if FinalReg >= LimitReg goto ContinueMBB 552 // RoundBB: 553 // RoundReg = page address of FinalReg 554 // LoopMBB: 555 // LoopReg = PHI(LimitReg,ProbeReg) 556 // ProbeReg = LoopReg - PageSize 557 // [ProbeReg] = 0 558 // if (ProbeReg > RoundReg) goto LoopMBB 559 // ContinueMBB: 560 // RSP = RSP - RAX 561 // [rest of original MBB] 562 563 // Set up the new basic blocks 564 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 565 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 566 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 567 568 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 569 MF.insert(MBBIter, RoundMBB); 570 MF.insert(MBBIter, LoopMBB); 571 MF.insert(MBBIter, ContinueMBB); 572 573 // Split MBB and move the tail portion down to ContinueMBB. 574 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 575 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 576 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 577 578 // Some useful constants 579 const int64_t ThreadEnvironmentStackLimit = 0x10; 580 const int64_t PageSize = 0x1000; 581 const int64_t PageMask = ~(PageSize - 1); 582 583 // Registers we need. For the normal case we use virtual 584 // registers. For the prolog expansion we use RAX, RCX and RDX. 585 MachineRegisterInfo &MRI = MF.getRegInfo(); 586 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 587 const unsigned SizeReg = InProlog ? (unsigned)X86::RAX 588 : MRI.createVirtualRegister(RegClass), 589 ZeroReg = InProlog ? (unsigned)X86::RCX 590 : MRI.createVirtualRegister(RegClass), 591 CopyReg = InProlog ? (unsigned)X86::RDX 592 : MRI.createVirtualRegister(RegClass), 593 TestReg = InProlog ? (unsigned)X86::RDX 594 : MRI.createVirtualRegister(RegClass), 595 FinalReg = InProlog ? (unsigned)X86::RDX 596 : MRI.createVirtualRegister(RegClass), 597 RoundedReg = InProlog ? (unsigned)X86::RDX 598 : MRI.createVirtualRegister(RegClass), 599 LimitReg = InProlog ? (unsigned)X86::RCX 600 : MRI.createVirtualRegister(RegClass), 601 JoinReg = InProlog ? (unsigned)X86::RCX 602 : MRI.createVirtualRegister(RegClass), 603 ProbeReg = InProlog ? (unsigned)X86::RCX 604 : MRI.createVirtualRegister(RegClass); 605 606 // SP-relative offsets where we can save RCX and RDX. 607 int64_t RCXShadowSlot = 0; 608 int64_t RDXShadowSlot = 0; 609 610 // If inlining in the prolog, save RCX and RDX. 611 if (InProlog) { 612 // Compute the offsets. We need to account for things already 613 // pushed onto the stack at this point: return address, frame 614 // pointer (if used), and callee saves. 615 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 616 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 617 const bool HasFP = hasFP(MF); 618 619 // Check if we need to spill RCX and/or RDX. 620 // Here we assume that no earlier prologue instruction changes RCX and/or 621 // RDX, so checking the block live-ins is enough. 622 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); 623 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); 624 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 625 // Assign the initial slot to both registers, then change RDX's slot if both 626 // need to be spilled. 627 if (IsRCXLiveIn) 628 RCXShadowSlot = InitSlot; 629 if (IsRDXLiveIn) 630 RDXShadowSlot = InitSlot; 631 if (IsRDXLiveIn && IsRCXLiveIn) 632 RDXShadowSlot += 8; 633 // Emit the saves if needed. 634 if (IsRCXLiveIn) 635 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 636 RCXShadowSlot) 637 .addReg(X86::RCX); 638 if (IsRDXLiveIn) 639 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 640 RDXShadowSlot) 641 .addReg(X86::RDX); 642 } else { 643 // Not in the prolog. Copy RAX to a virtual reg. 644 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 645 } 646 647 // Add code to MBB to check for overflow and set the new target stack pointer 648 // to zero if so. 649 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 650 .addReg(ZeroReg, RegState::Undef) 651 .addReg(ZeroReg, RegState::Undef); 652 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 653 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 654 .addReg(CopyReg) 655 .addReg(SizeReg); 656 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) 657 .addReg(TestReg) 658 .addReg(ZeroReg) 659 .addImm(X86::COND_B); 660 661 // FinalReg now holds final stack pointer value, or zero if 662 // allocation would overflow. Compare against the current stack 663 // limit from the thread environment block. Note this limit is the 664 // lowest touched page on the stack, not the point at which the OS 665 // will cause an overflow exception, so this is just an optimization 666 // to avoid unnecessarily touching pages that are below the current 667 // SP but already committed to the stack by the OS. 668 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 669 .addReg(0) 670 .addImm(1) 671 .addReg(0) 672 .addImm(ThreadEnvironmentStackLimit) 673 .addReg(X86::GS); 674 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 675 // Jump if the desired stack pointer is at or above the stack limit. 676 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); 677 678 // Add code to roundMBB to round the final stack pointer to a page boundary. 679 RoundMBB->addLiveIn(FinalReg); 680 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 681 .addReg(FinalReg) 682 .addImm(PageMask); 683 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 684 685 // LimitReg now holds the current stack limit, RoundedReg page-rounded 686 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 687 // and probe until we reach RoundedReg. 688 if (!InProlog) { 689 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 690 .addReg(LimitReg) 691 .addMBB(RoundMBB) 692 .addReg(ProbeReg) 693 .addMBB(LoopMBB); 694 } 695 696 LoopMBB->addLiveIn(JoinReg); 697 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 698 false, -PageSize); 699 700 // Probe by storing a byte onto the stack. 701 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 702 .addReg(ProbeReg) 703 .addImm(1) 704 .addReg(0) 705 .addImm(0) 706 .addReg(0) 707 .addImm(0); 708 709 LoopMBB->addLiveIn(RoundedReg); 710 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 711 .addReg(RoundedReg) 712 .addReg(ProbeReg); 713 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); 714 715 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 716 717 // If in prolog, restore RDX and RCX. 718 if (InProlog) { 719 if (RCXShadowSlot) // It means we spilled RCX in the prologue. 720 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 721 TII.get(X86::MOV64rm), X86::RCX), 722 X86::RSP, false, RCXShadowSlot); 723 if (RDXShadowSlot) // It means we spilled RDX in the prologue. 724 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 725 TII.get(X86::MOV64rm), X86::RDX), 726 X86::RSP, false, RDXShadowSlot); 727 } 728 729 // Now that the probing is done, add code to continueMBB to update 730 // the stack pointer for real. 731 ContinueMBB->addLiveIn(SizeReg); 732 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 733 .addReg(X86::RSP) 734 .addReg(SizeReg); 735 736 // Add the control flow edges we need. 737 MBB.addSuccessor(ContinueMBB); 738 MBB.addSuccessor(RoundMBB); 739 RoundMBB->addSuccessor(LoopMBB); 740 LoopMBB->addSuccessor(ContinueMBB); 741 LoopMBB->addSuccessor(LoopMBB); 742 743 // Mark all the instructions added to the prolog as frame setup. 744 if (InProlog) { 745 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 746 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 747 } 748 for (MachineInstr &MI : *RoundMBB) { 749 MI.setFlag(MachineInstr::FrameSetup); 750 } 751 for (MachineInstr &MI : *LoopMBB) { 752 MI.setFlag(MachineInstr::FrameSetup); 753 } 754 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); 755 CMBBI != ContinueMBBI; ++CMBBI) { 756 CMBBI->setFlag(MachineInstr::FrameSetup); 757 } 758 } 759 } 760 761 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF, 762 MachineBasicBlock &MBB, 763 MachineBasicBlock::iterator MBBI, 764 const DebugLoc &DL, 765 bool InProlog) const { 766 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 767 768 // FIXME: Add retpoline support and remove this. 769 if (Is64Bit && IsLargeCodeModel && STI.useRetpolineIndirectCalls()) 770 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 771 "code model and retpoline not yet implemented."); 772 773 unsigned CallOp; 774 if (Is64Bit) 775 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 776 else 777 CallOp = X86::CALLpcrel32; 778 779 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 780 781 MachineInstrBuilder CI; 782 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 783 784 // All current stack probes take AX and SP as input, clobber flags, and 785 // preserve all registers. x86_64 probes leave RSP unmodified. 786 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 787 // For the large code model, we have to call through a register. Use R11, 788 // as it is scratch in all supported calling conventions. 789 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 790 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 791 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 792 } else { 793 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 794 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 795 } 796 797 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; 798 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; 799 CI.addReg(AX, RegState::Implicit) 800 .addReg(SP, RegState::Implicit) 801 .addReg(AX, RegState::Define | RegState::Implicit) 802 .addReg(SP, RegState::Define | RegState::Implicit) 803 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 804 805 if (STI.isTargetWin64() || !STI.isOSWindows()) { 806 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 807 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 808 // themselves. They also does not clobber %rax so we can reuse it when 809 // adjusting %rsp. 810 // All other platforms do not specify a particular ABI for the stack probe 811 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 812 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) 813 .addReg(SP) 814 .addReg(AX); 815 } 816 817 if (InProlog) { 818 // Apply the frame setup flag to all inserted instrs. 819 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 820 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 821 } 822 } 823 824 void X86FrameLowering::emitStackProbeInlineStub( 825 MachineFunction &MF, MachineBasicBlock &MBB, 826 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 827 828 assert(InProlog && "ChkStkStub called outside prolog!"); 829 830 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32)) 831 .addExternalSymbol("__chkstk_stub"); 832 } 833 834 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 835 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 836 // and might require smaller successive adjustments. 837 const uint64_t Win64MaxSEHOffset = 128; 838 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 839 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 840 return SEHFrameOffset & -16; 841 } 842 843 // If we're forcing a stack realignment we can't rely on just the frame 844 // info, we need to know the ABI stack alignment as well in case we 845 // have a call out. Otherwise just make sure we have some alignment - we'll 846 // go with the minimum SlotSize. 847 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 848 const MachineFrameInfo &MFI = MF.getFrameInfo(); 849 uint64_t MaxAlign = MFI.getMaxAlignment(); // Desired stack alignment. 850 unsigned StackAlign = getStackAlignment(); 851 if (MF.getFunction().hasFnAttribute("stackrealign")) { 852 if (MFI.hasCalls()) 853 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 854 else if (MaxAlign < SlotSize) 855 MaxAlign = SlotSize; 856 } 857 return MaxAlign; 858 } 859 860 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 861 MachineBasicBlock::iterator MBBI, 862 const DebugLoc &DL, unsigned Reg, 863 uint64_t MaxAlign) const { 864 uint64_t Val = -MaxAlign; 865 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 866 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 867 .addReg(Reg) 868 .addImm(Val) 869 .setMIFlag(MachineInstr::FrameSetup); 870 871 // The EFLAGS implicit def is dead. 872 MI->getOperand(3).setIsDead(); 873 } 874 875 /// emitPrologue - Push callee-saved registers onto the stack, which 876 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 877 /// space for local variables. Also emit labels used by the exception handler to 878 /// generate the exception handling frames. 879 880 /* 881 Here's a gist of what gets emitted: 882 883 ; Establish frame pointer, if needed 884 [if needs FP] 885 push %rbp 886 .cfi_def_cfa_offset 16 887 .cfi_offset %rbp, -16 888 .seh_pushreg %rpb 889 mov %rsp, %rbp 890 .cfi_def_cfa_register %rbp 891 892 ; Spill general-purpose registers 893 [for all callee-saved GPRs] 894 pushq %<reg> 895 [if not needs FP] 896 .cfi_def_cfa_offset (offset from RETADDR) 897 .seh_pushreg %<reg> 898 899 ; If the required stack alignment > default stack alignment 900 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 901 ; of unknown size in the stack frame. 902 [if stack needs re-alignment] 903 and $MASK, %rsp 904 905 ; Allocate space for locals 906 [if target is Windows and allocated space > 4096 bytes] 907 ; Windows needs special care for allocations larger 908 ; than one page. 909 mov $NNN, %rax 910 call ___chkstk_ms/___chkstk 911 sub %rax, %rsp 912 [else] 913 sub $NNN, %rsp 914 915 [if needs FP] 916 .seh_stackalloc (size of XMM spill slots) 917 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 918 [else] 919 .seh_stackalloc NNN 920 921 ; Spill XMMs 922 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 923 ; they may get spilled on any platform, if the current function 924 ; calls @llvm.eh.unwind.init 925 [if needs FP] 926 [for all callee-saved XMM registers] 927 movaps %<xmm reg>, -MMM(%rbp) 928 [for all callee-saved XMM registers] 929 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 930 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 931 [else] 932 [for all callee-saved XMM registers] 933 movaps %<xmm reg>, KKK(%rsp) 934 [for all callee-saved XMM registers] 935 .seh_savexmm %<xmm reg>, KKK 936 937 .seh_endprologue 938 939 [if needs base pointer] 940 mov %rsp, %rbx 941 [if needs to restore base pointer] 942 mov %rsp, -MMM(%rbp) 943 944 ; Emit CFI info 945 [if needs FP] 946 [for all callee-saved registers] 947 .cfi_offset %<reg>, (offset from %rbp) 948 [else] 949 .cfi_def_cfa_offset (offset from RETADDR) 950 [for all callee-saved registers] 951 .cfi_offset %<reg>, (offset from %rsp) 952 953 Notes: 954 - .seh directives are emitted only for Windows 64 ABI 955 - .cv_fpo directives are emitted on win32 when emitting CodeView 956 - .cfi directives are emitted for all other ABIs 957 - for 32-bit code, substitute %e?? registers for %r?? 958 */ 959 960 void X86FrameLowering::emitPrologue(MachineFunction &MF, 961 MachineBasicBlock &MBB) const { 962 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 963 "MF used frame lowering for wrong subtarget"); 964 MachineBasicBlock::iterator MBBI = MBB.begin(); 965 MachineFrameInfo &MFI = MF.getFrameInfo(); 966 const Function &Fn = MF.getFunction(); 967 MachineModuleInfo &MMI = MF.getMMI(); 968 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 969 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 970 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 971 bool IsFunclet = MBB.isEHFuncletEntry(); 972 EHPersonality Personality = EHPersonality::Unknown; 973 if (Fn.hasPersonalityFn()) 974 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 975 bool FnHasClrFunclet = 976 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 977 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 978 bool HasFP = hasFP(MF); 979 bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 980 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 981 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 982 // FIXME: Emit FPO data for EH funclets. 983 bool NeedsWinFPO = 984 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); 985 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 986 bool NeedsDwarfCFI = 987 !IsWin64Prologue && (MMI.hasDebugInfo() || Fn.needsUnwindTableEntry()); 988 unsigned FramePtr = TRI->getFrameRegister(MF); 989 const unsigned MachineFramePtr = 990 STI.isTarget64BitILP32() 991 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr; 992 unsigned BasePtr = TRI->getBaseRegister(); 993 bool HasWinCFI = false; 994 995 // Debug location must be unknown since the first debug location is used 996 // to determine the end of the prologue. 997 DebugLoc DL; 998 999 // Add RETADDR move area to callee saved frame size. 1000 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1001 if (TailCallReturnAddrDelta && IsWin64Prologue) 1002 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 1003 1004 if (TailCallReturnAddrDelta < 0) 1005 X86FI->setCalleeSavedFrameSize( 1006 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); 1007 1008 bool UseStackProbe = !STI.getTargetLowering()->getStackProbeSymbolName(MF).empty(); 1009 1010 // The default stack probe size is 4096 if the function has no stackprobesize 1011 // attribute. 1012 unsigned StackProbeSize = 4096; 1013 if (Fn.hasFnAttribute("stack-probe-size")) 1014 Fn.getFnAttribute("stack-probe-size") 1015 .getValueAsString() 1016 .getAsInteger(0, StackProbeSize); 1017 1018 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 1019 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1020 // stack alignment. 1021 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1022 Fn.arg_size() == 2) { 1023 StackSize += 8; 1024 MFI.setStackSize(StackSize); 1025 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); 1026 } 1027 1028 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1029 // function, and use up to 128 bytes of stack space, don't have a frame 1030 // pointer, calls, or dynamic alloca then we do not need to adjust the 1031 // stack pointer (we fit in the Red Zone). We also check that we don't 1032 // push and pop from the stack. 1033 if (Is64Bit && !Fn.hasFnAttribute(Attribute::NoRedZone) && 1034 !TRI->needsStackRealignment(MF) && 1035 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1036 !MFI.adjustsStack() && // No calls. 1037 !UseStackProbe && // No stack probes. 1038 !IsWin64CC && // Win64 has no Red Zone 1039 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1040 !MF.shouldSplitStack()) { // Regular stack 1041 uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); 1042 if (HasFP) MinSize += SlotSize; 1043 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1044 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1045 MFI.setStackSize(StackSize); 1046 } 1047 1048 // Insert stack pointer adjustment for later moving of return addr. Only 1049 // applies to tail call optimized functions where the callee argument stack 1050 // size is bigger than the callers. 1051 if (TailCallReturnAddrDelta < 0) { 1052 BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta, 1053 /*InEpilogue=*/false) 1054 .setMIFlag(MachineInstr::FrameSetup); 1055 } 1056 1057 // Mapping for machine moves: 1058 // 1059 // DST: VirtualFP AND 1060 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1061 // ELSE => DW_CFA_def_cfa 1062 // 1063 // SRC: VirtualFP AND 1064 // DST: Register => DW_CFA_def_cfa_register 1065 // 1066 // ELSE 1067 // OFFSET < 0 => DW_CFA_offset_extended_sf 1068 // REG < 64 => DW_CFA_offset + Reg 1069 // ELSE => DW_CFA_offset_extended 1070 1071 uint64_t NumBytes = 0; 1072 int stackGrowth = -SlotSize; 1073 1074 // Find the funclet establisher parameter 1075 unsigned Establisher = X86::NoRegister; 1076 if (IsClrFunclet) 1077 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1078 else if (IsFunclet) 1079 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1080 1081 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1082 // Immediately spill establisher into the home slot. 1083 // The runtime cares about this. 1084 // MOV64mr %rdx, 16(%rsp) 1085 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1086 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1087 .addReg(Establisher) 1088 .setMIFlag(MachineInstr::FrameSetup); 1089 MBB.addLiveIn(Establisher); 1090 } 1091 1092 if (HasFP) { 1093 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1094 1095 // Calculate required stack adjustment. 1096 uint64_t FrameSize = StackSize - SlotSize; 1097 // If required, include space for extra hidden slot for stashing base pointer. 1098 if (X86FI->getRestoreBasePointer()) 1099 FrameSize += SlotSize; 1100 1101 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); 1102 1103 // Callee-saved registers are pushed on stack before the stack is realigned. 1104 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1105 NumBytes = alignTo(NumBytes, MaxAlign); 1106 1107 // Save EBP/RBP into the appropriate stack slot. 1108 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1109 .addReg(MachineFramePtr, RegState::Kill) 1110 .setMIFlag(MachineInstr::FrameSetup); 1111 1112 if (NeedsDwarfCFI) { 1113 // Mark the place where EBP/RBP was saved. 1114 // Define the current CFA rule to use the provided offset. 1115 assert(StackSize); 1116 BuildCFI(MBB, MBBI, DL, 1117 MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth)); 1118 1119 // Change the rule for the FramePtr to be an "offset" rule. 1120 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1121 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset( 1122 nullptr, DwarfFramePtr, 2 * stackGrowth)); 1123 } 1124 1125 if (NeedsWinCFI) { 1126 HasWinCFI = true; 1127 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1128 .addImm(FramePtr) 1129 .setMIFlag(MachineInstr::FrameSetup); 1130 } 1131 1132 if (!IsWin64Prologue && !IsFunclet) { 1133 // Update EBP with the new base value. 1134 BuildMI(MBB, MBBI, DL, 1135 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1136 FramePtr) 1137 .addReg(StackPtr) 1138 .setMIFlag(MachineInstr::FrameSetup); 1139 1140 if (NeedsDwarfCFI) { 1141 // Mark effective beginning of when frame pointer becomes valid. 1142 // Define the current CFA to use the EBP/RBP register. 1143 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1144 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister( 1145 nullptr, DwarfFramePtr)); 1146 } 1147 1148 if (NeedsWinFPO) { 1149 // .cv_fpo_setframe $FramePtr 1150 HasWinCFI = true; 1151 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1152 .addImm(FramePtr) 1153 .addImm(0) 1154 .setMIFlag(MachineInstr::FrameSetup); 1155 } 1156 } 1157 } else { 1158 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1159 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); 1160 } 1161 1162 // Update the offset adjustment, which is mainly used by codeview to translate 1163 // from ESP to VFRAME relative local variable offsets. 1164 if (!IsFunclet) { 1165 if (HasFP && TRI->needsStackRealignment(MF)) 1166 MFI.setOffsetAdjustment(-NumBytes); 1167 else 1168 MFI.setOffsetAdjustment(-StackSize); 1169 } 1170 1171 // For EH funclets, only allocate enough space for outgoing calls. Save the 1172 // NumBytes value that we would've used for the parent frame. 1173 unsigned ParentFrameNumBytes = NumBytes; 1174 if (IsFunclet) 1175 NumBytes = getWinEHFuncletFrameSize(MF); 1176 1177 // Skip the callee-saved push instructions. 1178 bool PushedRegs = false; 1179 int StackOffset = 2 * stackGrowth; 1180 1181 while (MBBI != MBB.end() && 1182 MBBI->getFlag(MachineInstr::FrameSetup) && 1183 (MBBI->getOpcode() == X86::PUSH32r || 1184 MBBI->getOpcode() == X86::PUSH64r)) { 1185 PushedRegs = true; 1186 unsigned Reg = MBBI->getOperand(0).getReg(); 1187 ++MBBI; 1188 1189 if (!HasFP && NeedsDwarfCFI) { 1190 // Mark callee-saved push instruction. 1191 // Define the current CFA rule to use the provided offset. 1192 assert(StackSize); 1193 BuildCFI(MBB, MBBI, DL, 1194 MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset)); 1195 StackOffset += stackGrowth; 1196 } 1197 1198 if (NeedsWinCFI) { 1199 HasWinCFI = true; 1200 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1201 .addImm(Reg) 1202 .setMIFlag(MachineInstr::FrameSetup); 1203 } 1204 } 1205 1206 // Realign stack after we pushed callee-saved registers (so that we'll be 1207 // able to calculate their offsets from the frame pointer). 1208 // Don't do this for Win64, it needs to realign the stack after the prologue. 1209 if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) { 1210 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1211 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1212 1213 if (NeedsWinCFI) { 1214 HasWinCFI = true; 1215 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) 1216 .addImm(MaxAlign) 1217 .setMIFlag(MachineInstr::FrameSetup); 1218 } 1219 } 1220 1221 // If there is an SUB32ri of ESP immediately before this instruction, merge 1222 // the two. This can be the case when tail call elimination is enabled and 1223 // the callee has more arguments then the caller. 1224 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1225 1226 // Adjust stack pointer: ESP -= numbytes. 1227 1228 // Windows and cygwin/mingw require a prologue helper routine when allocating 1229 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1230 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1231 // stack and adjust the stack pointer in one go. The 64-bit version of 1232 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1233 // responsible for adjusting the stack pointer. Touching the stack at 4K 1234 // increments is necessary to ensure that the guard pages used by the OS 1235 // virtual memory manager are allocated in correct sequence. 1236 uint64_t AlignedNumBytes = NumBytes; 1237 if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) 1238 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1239 if (AlignedNumBytes >= StackProbeSize && UseStackProbe) { 1240 assert(!X86FI->getUsesRedZone() && 1241 "The Red Zone is not accounted for in stack probes"); 1242 1243 // Check whether EAX is livein for this block. 1244 bool isEAXAlive = isEAXLiveIn(MBB); 1245 1246 if (isEAXAlive) { 1247 if (Is64Bit) { 1248 // Save RAX 1249 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1250 .addReg(X86::RAX, RegState::Kill) 1251 .setMIFlag(MachineInstr::FrameSetup); 1252 } else { 1253 // Save EAX 1254 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1255 .addReg(X86::EAX, RegState::Kill) 1256 .setMIFlag(MachineInstr::FrameSetup); 1257 } 1258 } 1259 1260 if (Is64Bit) { 1261 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1262 // Function prologue is responsible for adjusting the stack pointer. 1263 int Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1264 if (isUInt<32>(Alloc)) { 1265 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1266 .addImm(Alloc) 1267 .setMIFlag(MachineInstr::FrameSetup); 1268 } else if (isInt<32>(Alloc)) { 1269 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX) 1270 .addImm(Alloc) 1271 .setMIFlag(MachineInstr::FrameSetup); 1272 } else { 1273 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) 1274 .addImm(Alloc) 1275 .setMIFlag(MachineInstr::FrameSetup); 1276 } 1277 } else { 1278 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1279 // We'll also use 4 already allocated bytes for EAX. 1280 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1281 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1282 .setMIFlag(MachineInstr::FrameSetup); 1283 } 1284 1285 // Call __chkstk, __chkstk_ms, or __alloca. 1286 emitStackProbe(MF, MBB, MBBI, DL, true); 1287 1288 if (isEAXAlive) { 1289 // Restore RAX/EAX 1290 MachineInstr *MI; 1291 if (Is64Bit) 1292 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 1293 StackPtr, false, NumBytes - 8); 1294 else 1295 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1296 StackPtr, false, NumBytes - 4); 1297 MI->setFlag(MachineInstr::FrameSetup); 1298 MBB.insert(MBBI, MI); 1299 } 1300 } else if (NumBytes) { 1301 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 1302 } 1303 1304 if (NeedsWinCFI && NumBytes) { 1305 HasWinCFI = true; 1306 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1307 .addImm(NumBytes) 1308 .setMIFlag(MachineInstr::FrameSetup); 1309 } 1310 1311 int SEHFrameOffset = 0; 1312 unsigned SPOrEstablisher; 1313 if (IsFunclet) { 1314 if (IsClrFunclet) { 1315 // The establisher parameter passed to a CLR funclet is actually a pointer 1316 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1317 // to find the root function establisher frame by loading the PSPSym from 1318 // the intermediate frame. 1319 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1320 MachinePointerInfo NoInfo; 1321 MBB.addLiveIn(Establisher); 1322 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1323 Establisher, false, PSPSlotOffset) 1324 .addMemOperand(MF.getMachineMemOperand( 1325 NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize)); 1326 ; 1327 // Save the root establisher back into the current funclet's (mostly 1328 // empty) frame, in case a sub-funclet or the GC needs it. 1329 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1330 false, PSPSlotOffset) 1331 .addReg(Establisher) 1332 .addMemOperand( 1333 MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore | 1334 MachineMemOperand::MOVolatile, 1335 SlotSize, SlotSize)); 1336 } 1337 SPOrEstablisher = Establisher; 1338 } else { 1339 SPOrEstablisher = StackPtr; 1340 } 1341 1342 if (IsWin64Prologue && HasFP) { 1343 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1344 // this calculation on the incoming establisher, which holds the value of 1345 // RSP from the parent frame at the end of the prologue. 1346 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1347 if (SEHFrameOffset) 1348 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1349 SPOrEstablisher, false, SEHFrameOffset); 1350 else 1351 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1352 .addReg(SPOrEstablisher); 1353 1354 // If this is not a funclet, emit the CFI describing our frame pointer. 1355 if (NeedsWinCFI && !IsFunclet) { 1356 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 1357 HasWinCFI = true; 1358 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1359 .addImm(FramePtr) 1360 .addImm(SEHFrameOffset) 1361 .setMIFlag(MachineInstr::FrameSetup); 1362 if (isAsynchronousEHPersonality(Personality)) 1363 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 1364 } 1365 } else if (IsFunclet && STI.is32Bit()) { 1366 // Reset EBP / ESI to something good for funclets. 1367 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 1368 // If we're a catch funclet, we can be returned to via catchret. Save ESP 1369 // into the registration node so that the runtime will restore it for us. 1370 if (!MBB.isCleanupFuncletEntry()) { 1371 assert(Personality == EHPersonality::MSVC_CXX); 1372 unsigned FrameReg; 1373 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 1374 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg); 1375 // ESP is the first field, so no extra displacement is needed. 1376 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 1377 false, EHRegOffset) 1378 .addReg(X86::ESP); 1379 } 1380 } 1381 1382 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 1383 const MachineInstr &FrameInstr = *MBBI; 1384 ++MBBI; 1385 1386 if (NeedsWinCFI) { 1387 int FI; 1388 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 1389 if (X86::FR64RegClass.contains(Reg)) { 1390 unsigned IgnoredFrameReg; 1391 int Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg); 1392 Offset += SEHFrameOffset; 1393 1394 HasWinCFI = true; 1395 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 1396 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 1397 .addImm(Reg) 1398 .addImm(Offset) 1399 .setMIFlag(MachineInstr::FrameSetup); 1400 } 1401 } 1402 } 1403 } 1404 1405 if (NeedsWinCFI && HasWinCFI) 1406 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 1407 .setMIFlag(MachineInstr::FrameSetup); 1408 1409 if (FnHasClrFunclet && !IsFunclet) { 1410 // Save the so-called Initial-SP (i.e. the value of the stack pointer 1411 // immediately after the prolog) into the PSPSlot so that funclets 1412 // and the GC can recover it. 1413 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1414 auto PSPInfo = MachinePointerInfo::getFixedStack( 1415 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 1416 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 1417 PSPSlotOffset) 1418 .addReg(StackPtr) 1419 .addMemOperand(MF.getMachineMemOperand( 1420 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1421 SlotSize, SlotSize)); 1422 } 1423 1424 // Realign stack after we spilled callee-saved registers (so that we'll be 1425 // able to calculate their offsets from the frame pointer). 1426 // Win64 requires aligning the stack after the prologue. 1427 if (IsWin64Prologue && TRI->needsStackRealignment(MF)) { 1428 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1429 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 1430 } 1431 1432 // We already dealt with stack realignment and funclets above. 1433 if (IsFunclet && STI.is32Bit()) 1434 return; 1435 1436 // If we need a base pointer, set it up here. It's whatever the value 1437 // of the stack pointer is at this point. Any variable size objects 1438 // will be allocated after this, so we can still use the base pointer 1439 // to reference locals. 1440 if (TRI->hasBasePointer(MF)) { 1441 // Update the base pointer with the current stack pointer. 1442 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 1443 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 1444 .addReg(SPOrEstablisher) 1445 .setMIFlag(MachineInstr::FrameSetup); 1446 if (X86FI->getRestoreBasePointer()) { 1447 // Stash value of base pointer. Saving RSP instead of EBP shortens 1448 // dependence chain. Used by SjLj EH. 1449 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1450 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 1451 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 1452 .addReg(SPOrEstablisher) 1453 .setMIFlag(MachineInstr::FrameSetup); 1454 } 1455 1456 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 1457 // Stash the value of the frame pointer relative to the base pointer for 1458 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 1459 // it recovers the frame pointer from the base pointer rather than the 1460 // other way around. 1461 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1462 unsigned UsedReg; 1463 int Offset = 1464 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 1465 assert(UsedReg == BasePtr); 1466 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 1467 .addReg(FramePtr) 1468 .setMIFlag(MachineInstr::FrameSetup); 1469 } 1470 } 1471 1472 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 1473 // Mark end of stack pointer adjustment. 1474 if (!HasFP && NumBytes) { 1475 // Define the current CFA rule to use the provided offset. 1476 assert(StackSize); 1477 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset( 1478 nullptr, -StackSize + stackGrowth)); 1479 } 1480 1481 // Emit DWARF info specifying the offsets of the callee-saved registers. 1482 emitCalleeSavedFrameMoves(MBB, MBBI, DL); 1483 } 1484 1485 // X86 Interrupt handling function cannot assume anything about the direction 1486 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 1487 // in each prologue of interrupt handler function. 1488 // 1489 // FIXME: Create "cld" instruction only in these cases: 1490 // 1. The interrupt handling function uses any of the "rep" instructions. 1491 // 2. Interrupt handling function calls another function. 1492 // 1493 if (Fn.getCallingConv() == CallingConv::X86_INTR) 1494 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 1495 .setMIFlag(MachineInstr::FrameSetup); 1496 1497 // At this point we know if the function has WinCFI or not. 1498 MF.setHasWinCFI(HasWinCFI); 1499 } 1500 1501 bool X86FrameLowering::canUseLEAForSPInEpilogue( 1502 const MachineFunction &MF) const { 1503 // We can't use LEA instructions for adjusting the stack pointer if we don't 1504 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 1505 // to deallocate the stack. 1506 // This means that we can use LEA for SP in two situations: 1507 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 1508 // 2. We *have* a frame pointer which means we are permitted to use LEA. 1509 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 1510 } 1511 1512 static bool isFuncletReturnInstr(MachineInstr &MI) { 1513 switch (MI.getOpcode()) { 1514 case X86::CATCHRET: 1515 case X86::CLEANUPRET: 1516 return true; 1517 default: 1518 return false; 1519 } 1520 llvm_unreachable("impossible"); 1521 } 1522 1523 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 1524 // stack. It holds a pointer to the bottom of the root function frame. The 1525 // establisher frame pointer passed to a nested funclet may point to the 1526 // (mostly empty) frame of its parent funclet, but it will need to find 1527 // the frame of the root function to access locals. To facilitate this, 1528 // every funclet copies the pointer to the bottom of the root function 1529 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 1530 // same offset for the PSPSym in the root function frame that's used in the 1531 // funclets' frames allows each funclet to dynamically accept any ancestor 1532 // frame as its establisher argument (the runtime doesn't guarantee the 1533 // immediate parent for some reason lost to history), and also allows the GC, 1534 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 1535 // frame with only a single offset reported for the entire method. 1536 unsigned 1537 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 1538 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 1539 unsigned SPReg; 1540 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 1541 /*IgnoreSPUpdates*/ true); 1542 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 1543 return static_cast<unsigned>(Offset); 1544 } 1545 1546 unsigned 1547 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 1548 // This is the size of the pushed CSRs. 1549 unsigned CSSize = 1550 MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 1551 // This is the amount of stack a funclet needs to allocate. 1552 unsigned UsedSize; 1553 EHPersonality Personality = 1554 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 1555 if (Personality == EHPersonality::CoreCLR) { 1556 // CLR funclets need to hold enough space to include the PSPSym, at the 1557 // same offset from the stack pointer (immediately after the prolog) as it 1558 // resides at in the main function. 1559 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 1560 } else { 1561 // Other funclets just need enough stack for outgoing call arguments. 1562 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 1563 } 1564 // RBP is not included in the callee saved register block. After pushing RBP, 1565 // everything is 16 byte aligned. Everything we allocate before an outgoing 1566 // call must also be 16 byte aligned. 1567 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment()); 1568 // Subtract out the size of the callee saved registers. This is how much stack 1569 // each funclet will allocate. 1570 return FrameSizeMinusRBP - CSSize; 1571 } 1572 1573 static bool isTailCallOpcode(unsigned Opc) { 1574 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 1575 Opc == X86::TCRETURNmi || 1576 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 1577 Opc == X86::TCRETURNmi64; 1578 } 1579 1580 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 1581 MachineBasicBlock &MBB) const { 1582 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1583 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1584 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 1585 MachineBasicBlock::iterator MBBI = Terminator; 1586 DebugLoc DL; 1587 if (MBBI != MBB.end()) 1588 DL = MBBI->getDebugLoc(); 1589 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 1590 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 1591 unsigned FramePtr = TRI->getFrameRegister(MF); 1592 unsigned MachineFramePtr = 1593 Is64BitILP32 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr; 1594 1595 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1596 bool NeedsWin64CFI = 1597 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 1598 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 1599 1600 // Get the number of bytes to allocate from the FrameInfo. 1601 uint64_t StackSize = MFI.getStackSize(); 1602 uint64_t MaxAlign = calculateMaxStackAlign(MF); 1603 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1604 bool HasFP = hasFP(MF); 1605 uint64_t NumBytes = 0; 1606 1607 bool NeedsDwarfCFI = 1608 (!MF.getTarget().getTargetTriple().isOSDarwin() && 1609 !MF.getTarget().getTargetTriple().isOSWindows()) && 1610 (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry()); 1611 1612 if (IsFunclet) { 1613 assert(HasFP && "EH funclets without FP not yet implemented"); 1614 NumBytes = getWinEHFuncletFrameSize(MF); 1615 } else if (HasFP) { 1616 // Calculate required stack adjustment. 1617 uint64_t FrameSize = StackSize - SlotSize; 1618 NumBytes = FrameSize - CSSize; 1619 1620 // Callee-saved registers were pushed on stack before the stack was 1621 // realigned. 1622 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1623 NumBytes = alignTo(FrameSize, MaxAlign); 1624 } else { 1625 NumBytes = StackSize - CSSize; 1626 } 1627 uint64_t SEHStackAllocAmt = NumBytes; 1628 1629 if (HasFP) { 1630 // Pop EBP. 1631 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 1632 MachineFramePtr) 1633 .setMIFlag(MachineInstr::FrameDestroy); 1634 if (NeedsDwarfCFI) { 1635 unsigned DwarfStackPtr = 1636 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 1637 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfa( 1638 nullptr, DwarfStackPtr, -SlotSize)); 1639 --MBBI; 1640 } 1641 } 1642 1643 MachineBasicBlock::iterator FirstCSPop = MBBI; 1644 // Skip the callee-saved pop instructions. 1645 while (MBBI != MBB.begin()) { 1646 MachineBasicBlock::iterator PI = std::prev(MBBI); 1647 unsigned Opc = PI->getOpcode(); 1648 1649 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 1650 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 1651 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy))) 1652 break; 1653 FirstCSPop = PI; 1654 } 1655 1656 --MBBI; 1657 } 1658 MBBI = FirstCSPop; 1659 1660 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 1661 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 1662 1663 if (MBBI != MBB.end()) 1664 DL = MBBI->getDebugLoc(); 1665 1666 // If there is an ADD32ri or SUB32ri of ESP immediately before this 1667 // instruction, merge the two instructions. 1668 if (NumBytes || MFI.hasVarSizedObjects()) 1669 NumBytes += mergeSPUpdates(MBB, MBBI, true); 1670 1671 // If dynamic alloca is used, then reset esp to point to the last callee-saved 1672 // slot before popping them off! Same applies for the case, when stack was 1673 // realigned. Don't do this if this was a funclet epilogue, since the funclets 1674 // will not do realignment or dynamic stack allocation. 1675 if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) && 1676 !IsFunclet) { 1677 if (TRI->needsStackRealignment(MF)) 1678 MBBI = FirstCSPop; 1679 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 1680 uint64_t LEAAmount = 1681 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 1682 1683 // There are only two legal forms of epilogue: 1684 // - add SEHAllocationSize, %rsp 1685 // - lea SEHAllocationSize(%FramePtr), %rsp 1686 // 1687 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 1688 // However, we may use this sequence if we have a frame pointer because the 1689 // effects of the prologue can safely be undone. 1690 if (LEAAmount != 0) { 1691 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 1692 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 1693 FramePtr, false, LEAAmount); 1694 --MBBI; 1695 } else { 1696 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 1697 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 1698 .addReg(FramePtr); 1699 --MBBI; 1700 } 1701 } else if (NumBytes) { 1702 // Adjust stack pointer back: ESP += numbytes. 1703 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 1704 if (!hasFP(MF) && NeedsDwarfCFI) { 1705 // Define the current CFA rule to use the provided offset. 1706 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset( 1707 nullptr, -CSSize - SlotSize)); 1708 } 1709 --MBBI; 1710 } 1711 1712 // Windows unwinder will not invoke function's exception handler if IP is 1713 // either in prologue or in epilogue. This behavior causes a problem when a 1714 // call immediately precedes an epilogue, because the return address points 1715 // into the epilogue. To cope with that, we insert an epilogue marker here, 1716 // then replace it with a 'nop' if it ends up immediately after a CALL in the 1717 // final emitted code. 1718 if (NeedsWin64CFI && MF.hasWinCFI()) 1719 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 1720 1721 if (!hasFP(MF) && NeedsDwarfCFI) { 1722 MBBI = FirstCSPop; 1723 int64_t Offset = -CSSize - SlotSize; 1724 // Mark callee-saved pop instruction. 1725 // Define the current CFA rule to use the provided offset. 1726 while (MBBI != MBB.end()) { 1727 MachineBasicBlock::iterator PI = MBBI; 1728 unsigned Opc = PI->getOpcode(); 1729 ++MBBI; 1730 if (Opc == X86::POP32r || Opc == X86::POP64r) { 1731 Offset += SlotSize; 1732 BuildCFI(MBB, MBBI, DL, 1733 MCCFIInstruction::createDefCfaOffset(nullptr, Offset)); 1734 } 1735 } 1736 } 1737 1738 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 1739 // Add the return addr area delta back since we are not tail calling. 1740 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 1741 assert(Offset >= 0 && "TCDelta should never be positive"); 1742 if (Offset) { 1743 // Check for possible merge with preceding ADD instruction. 1744 Offset += mergeSPUpdates(MBB, Terminator, true); 1745 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 1746 } 1747 } 1748 } 1749 1750 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 1751 unsigned &FrameReg) const { 1752 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1753 1754 bool IsFixed = MFI.isFixedObjectIndex(FI); 1755 // We can't calculate offset from frame pointer if the stack is realigned, 1756 // so enforce usage of stack/base pointer. The base pointer is used when we 1757 // have dynamic allocas in addition to dynamic realignment. 1758 if (TRI->hasBasePointer(MF)) 1759 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 1760 else if (TRI->needsStackRealignment(MF)) 1761 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 1762 else 1763 FrameReg = TRI->getFrameRegister(MF); 1764 1765 // Offset will hold the offset from the stack pointer at function entry to the 1766 // object. 1767 // We need to factor in additional offsets applied during the prologue to the 1768 // frame, base, and stack pointer depending on which is used. 1769 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 1770 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1771 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1772 uint64_t StackSize = MFI.getStackSize(); 1773 bool HasFP = hasFP(MF); 1774 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1775 int64_t FPDelta = 0; 1776 1777 // In an x86 interrupt, remove the offset we added to account for the return 1778 // address from any stack object allocated in the caller's frame. Interrupts 1779 // do not have a standard return address. Fixed objects in the current frame, 1780 // such as SSE register spills, should not get this treatment. 1781 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && 1782 Offset >= 0) { 1783 Offset += getOffsetOfLocalArea(); 1784 } 1785 1786 if (IsWin64Prologue) { 1787 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 1788 1789 // Calculate required stack adjustment. 1790 uint64_t FrameSize = StackSize - SlotSize; 1791 // If required, include space for extra hidden slot for stashing base pointer. 1792 if (X86FI->getRestoreBasePointer()) 1793 FrameSize += SlotSize; 1794 uint64_t NumBytes = FrameSize - CSSize; 1795 1796 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 1797 if (FI && FI == X86FI->getFAIndex()) 1798 return -SEHFrameOffset; 1799 1800 // FPDelta is the offset from the "traditional" FP location of the old base 1801 // pointer followed by return address and the location required by the 1802 // restricted Win64 prologue. 1803 // Add FPDelta to all offsets below that go through the frame pointer. 1804 FPDelta = FrameSize - SEHFrameOffset; 1805 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 1806 "FPDelta isn't aligned per the Win64 ABI!"); 1807 } 1808 1809 1810 if (TRI->hasBasePointer(MF)) { 1811 assert(HasFP && "VLAs and dynamic stack realign, but no FP?!"); 1812 if (FI < 0) { 1813 // Skip the saved EBP. 1814 return Offset + SlotSize + FPDelta; 1815 } else { 1816 assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0); 1817 return Offset + StackSize; 1818 } 1819 } else if (TRI->needsStackRealignment(MF)) { 1820 if (FI < 0) { 1821 // Skip the saved EBP. 1822 return Offset + SlotSize + FPDelta; 1823 } else { 1824 assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0); 1825 return Offset + StackSize; 1826 } 1827 // FIXME: Support tail calls 1828 } else { 1829 if (!HasFP) 1830 return Offset + StackSize; 1831 1832 // Skip the saved EBP. 1833 Offset += SlotSize; 1834 1835 // Skip the RETADDR move area 1836 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1837 if (TailCallReturnAddrDelta < 0) 1838 Offset -= TailCallReturnAddrDelta; 1839 } 1840 1841 return Offset + FPDelta; 1842 } 1843 1844 int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, 1845 int FI, unsigned &FrameReg, 1846 int Adjustment) const { 1847 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1848 FrameReg = TRI->getStackRegister(); 1849 return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment; 1850 } 1851 1852 int 1853 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, 1854 int FI, unsigned &FrameReg, 1855 bool IgnoreSPUpdates) const { 1856 1857 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1858 // Does not include any dynamic realign. 1859 const uint64_t StackSize = MFI.getStackSize(); 1860 // LLVM arranges the stack as follows: 1861 // ... 1862 // ARG2 1863 // ARG1 1864 // RETADDR 1865 // PUSH RBP <-- RBP points here 1866 // PUSH CSRs 1867 // ~~~~~~~ <-- possible stack realignment (non-win64) 1868 // ... 1869 // STACK OBJECTS 1870 // ... <-- RSP after prologue points here 1871 // ~~~~~~~ <-- possible stack realignment (win64) 1872 // 1873 // if (hasVarSizedObjects()): 1874 // ... <-- "base pointer" (ESI/RBX) points here 1875 // DYNAMIC ALLOCAS 1876 // ... <-- RSP points here 1877 // 1878 // Case 1: In the simple case of no stack realignment and no dynamic 1879 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 1880 // with fixed offsets from RSP. 1881 // 1882 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 1883 // stack objects are addressed with RBP and regular stack objects with RSP. 1884 // 1885 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 1886 // to address stack arguments for outgoing calls and nothing else. The "base 1887 // pointer" points to local variables, and RBP points to fixed objects. 1888 // 1889 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 1890 // answer we give is relative to the SP after the prologue, and not the 1891 // SP in the middle of the function. 1892 1893 if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) && 1894 !STI.isTargetWin64()) 1895 return getFrameIndexReference(MF, FI, FrameReg); 1896 1897 // If !hasReservedCallFrame the function might have SP adjustement in the 1898 // body. So, even though the offset is statically known, it depends on where 1899 // we are in the function. 1900 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 1901 if (!IgnoreSPUpdates && !TFI->hasReservedCallFrame(MF)) 1902 return getFrameIndexReference(MF, FI, FrameReg); 1903 1904 // We don't handle tail calls, and shouldn't be seeing them either. 1905 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 1906 "we don't handle this case!"); 1907 1908 // This is how the math works out: 1909 // 1910 // %rsp grows (i.e. gets lower) left to right. Each box below is 1911 // one word (eight bytes). Obj0 is the stack slot we're trying to 1912 // get to. 1913 // 1914 // ---------------------------------- 1915 // | BP | Obj0 | Obj1 | ... | ObjN | 1916 // ---------------------------------- 1917 // ^ ^ ^ ^ 1918 // A B C E 1919 // 1920 // A is the incoming stack pointer. 1921 // (B - A) is the local area offset (-8 for x86-64) [1] 1922 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 1923 // 1924 // |(E - B)| is the StackSize (absolute value, positive). For a 1925 // stack that grown down, this works out to be (B - E). [3] 1926 // 1927 // E is also the value of %rsp after stack has been set up, and we 1928 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 1929 // (C - E) == (C - A) - (B - A) + (B - E) 1930 // { Using [1], [2] and [3] above } 1931 // == getObjectOffset - LocalAreaOffset + StackSize 1932 1933 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 1934 } 1935 1936 bool X86FrameLowering::assignCalleeSavedSpillSlots( 1937 MachineFunction &MF, const TargetRegisterInfo *TRI, 1938 std::vector<CalleeSavedInfo> &CSI) const { 1939 MachineFrameInfo &MFI = MF.getFrameInfo(); 1940 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1941 1942 unsigned CalleeSavedFrameSize = 0; 1943 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 1944 1945 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1946 1947 if (TailCallReturnAddrDelta < 0) { 1948 // create RETURNADDR area 1949 // arg 1950 // arg 1951 // RETADDR 1952 // { ... 1953 // RETADDR area 1954 // ... 1955 // } 1956 // [EBP] 1957 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 1958 TailCallReturnAddrDelta - SlotSize, true); 1959 } 1960 1961 // Spill the BasePtr if it's used. 1962 if (this->TRI->hasBasePointer(MF)) { 1963 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 1964 if (MF.hasEHFunclets()) { 1965 int FI = MFI.CreateSpillStackObject(SlotSize, SlotSize); 1966 X86FI->setHasSEHFramePtrSave(true); 1967 X86FI->setSEHFramePtrSaveIndex(FI); 1968 } 1969 } 1970 1971 if (hasFP(MF)) { 1972 // emitPrologue always spills frame register the first thing. 1973 SpillSlotOffset -= SlotSize; 1974 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 1975 1976 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 1977 // the frame register, we can delete it from CSI list and not have to worry 1978 // about avoiding it later. 1979 unsigned FPReg = TRI->getFrameRegister(MF); 1980 for (unsigned i = 0; i < CSI.size(); ++i) { 1981 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 1982 CSI.erase(CSI.begin() + i); 1983 break; 1984 } 1985 } 1986 } 1987 1988 // Assign slots for GPRs. It increases frame size. 1989 for (unsigned i = CSI.size(); i != 0; --i) { 1990 unsigned Reg = CSI[i - 1].getReg(); 1991 1992 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 1993 continue; 1994 1995 SpillSlotOffset -= SlotSize; 1996 CalleeSavedFrameSize += SlotSize; 1997 1998 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 1999 CSI[i - 1].setFrameIdx(SlotIndex); 2000 } 2001 2002 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 2003 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); 2004 2005 // Assign slots for XMMs. 2006 for (unsigned i = CSI.size(); i != 0; --i) { 2007 unsigned Reg = CSI[i - 1].getReg(); 2008 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2009 continue; 2010 2011 // If this is k-register make sure we lookup via the largest legal type. 2012 MVT VT = MVT::Other; 2013 if (X86::VK16RegClass.contains(Reg)) 2014 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2015 2016 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2017 unsigned Size = TRI->getSpillSize(*RC); 2018 unsigned Align = TRI->getSpillAlignment(*RC); 2019 // ensure alignment 2020 SpillSlotOffset -= std::abs(SpillSlotOffset) % Align; 2021 // spill into slot 2022 SpillSlotOffset -= Size; 2023 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 2024 CSI[i - 1].setFrameIdx(SlotIndex); 2025 MFI.ensureMaxAlignment(Align); 2026 } 2027 2028 return true; 2029 } 2030 2031 bool X86FrameLowering::spillCalleeSavedRegisters( 2032 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2033 const std::vector<CalleeSavedInfo> &CSI, 2034 const TargetRegisterInfo *TRI) const { 2035 DebugLoc DL = MBB.findDebugLoc(MI); 2036 2037 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2038 // for us, and there are no XMM CSRs on Win32. 2039 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2040 return true; 2041 2042 // Push GPRs. It increases frame size. 2043 const MachineFunction &MF = *MBB.getParent(); 2044 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 2045 for (unsigned i = CSI.size(); i != 0; --i) { 2046 unsigned Reg = CSI[i - 1].getReg(); 2047 2048 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2049 continue; 2050 2051 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2052 bool isLiveIn = MRI.isLiveIn(Reg); 2053 if (!isLiveIn) 2054 MBB.addLiveIn(Reg); 2055 2056 // Decide whether we can add a kill flag to the use. 2057 bool CanKill = !isLiveIn; 2058 // Check if any subregister is live-in 2059 if (CanKill) { 2060 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 2061 if (MRI.isLiveIn(*AReg)) { 2062 CanKill = false; 2063 break; 2064 } 2065 } 2066 } 2067 2068 // Do not set a kill flag on values that are also marked as live-in. This 2069 // happens with the @llvm-returnaddress intrinsic and with arguments 2070 // passed in callee saved registers. 2071 // Omitting the kill flags is conservatively correct even if the live-in 2072 // is not used after all. 2073 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 2074 .setMIFlag(MachineInstr::FrameSetup); 2075 } 2076 2077 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 2078 // It can be done by spilling XMMs to stack frame. 2079 for (unsigned i = CSI.size(); i != 0; --i) { 2080 unsigned Reg = CSI[i-1].getReg(); 2081 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2082 continue; 2083 2084 // If this is k-register make sure we lookup via the largest legal type. 2085 MVT VT = MVT::Other; 2086 if (X86::VK16RegClass.contains(Reg)) 2087 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2088 2089 // Add the callee-saved register as live-in. It's killed at the spill. 2090 MBB.addLiveIn(Reg); 2091 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2092 2093 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC, 2094 TRI); 2095 --MI; 2096 MI->setFlag(MachineInstr::FrameSetup); 2097 ++MI; 2098 } 2099 2100 return true; 2101 } 2102 2103 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 2104 MachineBasicBlock::iterator MBBI, 2105 MachineInstr *CatchRet) const { 2106 // SEH shouldn't use catchret. 2107 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 2108 MBB.getParent()->getFunction().getPersonalityFn())) && 2109 "SEH should not use CATCHRET"); 2110 DebugLoc DL = CatchRet->getDebugLoc(); 2111 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 2112 2113 // Fill EAX/RAX with the address of the target block. 2114 if (STI.is64Bit()) { 2115 // LEA64r CatchRetTarget(%rip), %rax 2116 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 2117 .addReg(X86::RIP) 2118 .addImm(0) 2119 .addReg(0) 2120 .addMBB(CatchRetTarget) 2121 .addReg(0); 2122 } else { 2123 // MOV32ri $CatchRetTarget, %eax 2124 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2125 .addMBB(CatchRetTarget); 2126 } 2127 2128 // Record that we've taken the address of CatchRetTarget and no longer just 2129 // reference it in a terminator. 2130 CatchRetTarget->setHasAddressTaken(); 2131 } 2132 2133 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, 2134 MachineBasicBlock::iterator MI, 2135 std::vector<CalleeSavedInfo> &CSI, 2136 const TargetRegisterInfo *TRI) const { 2137 if (CSI.empty()) 2138 return false; 2139 2140 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 2141 // Don't restore CSRs in 32-bit EH funclets. Matches 2142 // spillCalleeSavedRegisters. 2143 if (STI.is32Bit()) 2144 return true; 2145 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 2146 // funclets. emitEpilogue transforms these to normal jumps. 2147 if (MI->getOpcode() == X86::CATCHRET) { 2148 const Function &F = MBB.getParent()->getFunction(); 2149 bool IsSEH = isAsynchronousEHPersonality( 2150 classifyEHPersonality(F.getPersonalityFn())); 2151 if (IsSEH) 2152 return true; 2153 } 2154 } 2155 2156 DebugLoc DL = MBB.findDebugLoc(MI); 2157 2158 // Reload XMMs from stack frame. 2159 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2160 unsigned Reg = CSI[i].getReg(); 2161 if (X86::GR64RegClass.contains(Reg) || 2162 X86::GR32RegClass.contains(Reg)) 2163 continue; 2164 2165 // If this is k-register make sure we lookup via the largest legal type. 2166 MVT VT = MVT::Other; 2167 if (X86::VK16RegClass.contains(Reg)) 2168 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2169 2170 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2171 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); 2172 } 2173 2174 // POP GPRs. 2175 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 2176 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2177 unsigned Reg = CSI[i].getReg(); 2178 if (!X86::GR64RegClass.contains(Reg) && 2179 !X86::GR32RegClass.contains(Reg)) 2180 continue; 2181 2182 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 2183 .setMIFlag(MachineInstr::FrameDestroy); 2184 } 2185 return true; 2186 } 2187 2188 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 2189 BitVector &SavedRegs, 2190 RegScavenger *RS) const { 2191 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2192 2193 // Spill the BasePtr if it's used. 2194 if (TRI->hasBasePointer(MF)){ 2195 unsigned BasePtr = TRI->getBaseRegister(); 2196 if (STI.isTarget64BitILP32()) 2197 BasePtr = getX86SubSuperRegister(BasePtr, 64); 2198 SavedRegs.set(BasePtr); 2199 } 2200 } 2201 2202 static bool 2203 HasNestArgument(const MachineFunction *MF) { 2204 const Function &F = MF->getFunction(); 2205 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 2206 I != E; I++) { 2207 if (I->hasNestAttr()) 2208 return true; 2209 } 2210 return false; 2211 } 2212 2213 /// GetScratchRegister - Get a temp register for performing work in the 2214 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2215 /// and the properties of the function either one or two registers will be 2216 /// needed. Set primary to true for the first register, false for the second. 2217 static unsigned 2218 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2219 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 2220 2221 // Erlang stuff. 2222 if (CallingConvention == CallingConv::HiPE) { 2223 if (Is64Bit) 2224 return Primary ? X86::R14 : X86::R13; 2225 else 2226 return Primary ? X86::EBX : X86::EDI; 2227 } 2228 2229 if (Is64Bit) { 2230 if (IsLP64) 2231 return Primary ? X86::R11 : X86::R12; 2232 else 2233 return Primary ? X86::R11D : X86::R12D; 2234 } 2235 2236 bool IsNested = HasNestArgument(&MF); 2237 2238 if (CallingConvention == CallingConv::X86_FastCall || 2239 CallingConvention == CallingConv::Fast) { 2240 if (IsNested) 2241 report_fatal_error("Segmented stacks does not support fastcall with " 2242 "nested function."); 2243 return Primary ? X86::EAX : X86::ECX; 2244 } 2245 if (IsNested) 2246 return Primary ? X86::EDX : X86::EAX; 2247 return Primary ? X86::ECX : X86::EAX; 2248 } 2249 2250 // The stack limit in the TCB is set to this many bytes above the actual stack 2251 // limit. 2252 static const uint64_t kSplitStackAvailable = 256; 2253 2254 void X86FrameLowering::adjustForSegmentedStacks( 2255 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2256 MachineFrameInfo &MFI = MF.getFrameInfo(); 2257 uint64_t StackSize; 2258 unsigned TlsReg, TlsOffset; 2259 DebugLoc DL; 2260 2261 // To support shrink-wrapping we would need to insert the new blocks 2262 // at the right place and update the branches to PrologueMBB. 2263 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2264 2265 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2266 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2267 "Scratch register is live-in"); 2268 2269 if (MF.getFunction().isVarArg()) 2270 report_fatal_error("Segmented stacks do not support vararg functions."); 2271 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 2272 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 2273 !STI.isTargetDragonFly()) 2274 report_fatal_error("Segmented stacks not supported on this platform."); 2275 2276 // Eventually StackSize will be calculated by a link-time pass; which will 2277 // also decide whether checking code needs to be injected into this particular 2278 // prologue. 2279 StackSize = MFI.getStackSize(); 2280 2281 // Do not generate a prologue for leaf functions with a stack of size zero. 2282 // For non-leaf functions we have to allow for the possibility that the 2283 // callis to a non-split function, as in PR37807. This function could also 2284 // take the address of a non-split function. When the linker tries to adjust 2285 // its non-existent prologue, it would fail with an error. Mark the object 2286 // file so that such failures are not errors. See this Go language bug-report 2287 // https://go-review.googlesource.com/c/go/+/148819/ 2288 if (StackSize == 0 && !MFI.hasTailCall()) { 2289 MF.getMMI().setHasNosplitStack(true); 2290 return; 2291 } 2292 2293 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 2294 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 2295 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2296 bool IsNested = false; 2297 2298 // We need to know if the function has a nest argument only in 64 bit mode. 2299 if (Is64Bit) 2300 IsNested = HasNestArgument(&MF); 2301 2302 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 2303 // allocMBB needs to be last (terminating) instruction. 2304 2305 for (const auto &LI : PrologueMBB.liveins()) { 2306 allocMBB->addLiveIn(LI); 2307 checkMBB->addLiveIn(LI); 2308 } 2309 2310 if (IsNested) 2311 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 2312 2313 MF.push_front(allocMBB); 2314 MF.push_front(checkMBB); 2315 2316 // When the frame size is less than 256 we just compare the stack 2317 // boundary directly to the value of the stack pointer, per gcc. 2318 bool CompareStackPointer = StackSize < kSplitStackAvailable; 2319 2320 // Read the limit off the current stacklet off the stack_guard location. 2321 if (Is64Bit) { 2322 if (STI.isTargetLinux()) { 2323 TlsReg = X86::FS; 2324 TlsOffset = IsLP64 ? 0x70 : 0x40; 2325 } else if (STI.isTargetDarwin()) { 2326 TlsReg = X86::GS; 2327 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 2328 } else if (STI.isTargetWin64()) { 2329 TlsReg = X86::GS; 2330 TlsOffset = 0x28; // pvArbitrary, reserved for application use 2331 } else if (STI.isTargetFreeBSD()) { 2332 TlsReg = X86::FS; 2333 TlsOffset = 0x18; 2334 } else if (STI.isTargetDragonFly()) { 2335 TlsReg = X86::FS; 2336 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 2337 } else { 2338 report_fatal_error("Segmented stacks not supported on this platform."); 2339 } 2340 2341 if (CompareStackPointer) 2342 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 2343 else 2344 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 2345 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2346 2347 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 2348 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2349 } else { 2350 if (STI.isTargetLinux()) { 2351 TlsReg = X86::GS; 2352 TlsOffset = 0x30; 2353 } else if (STI.isTargetDarwin()) { 2354 TlsReg = X86::GS; 2355 TlsOffset = 0x48 + 90*4; 2356 } else if (STI.isTargetWin32()) { 2357 TlsReg = X86::FS; 2358 TlsOffset = 0x14; // pvArbitrary, reserved for application use 2359 } else if (STI.isTargetDragonFly()) { 2360 TlsReg = X86::FS; 2361 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 2362 } else if (STI.isTargetFreeBSD()) { 2363 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 2364 } else { 2365 report_fatal_error("Segmented stacks not supported on this platform."); 2366 } 2367 2368 if (CompareStackPointer) 2369 ScratchReg = X86::ESP; 2370 else 2371 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 2372 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2373 2374 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 2375 STI.isTargetDragonFly()) { 2376 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 2377 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2378 } else if (STI.isTargetDarwin()) { 2379 2380 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 2381 unsigned ScratchReg2; 2382 bool SaveScratch2; 2383 if (CompareStackPointer) { 2384 // The primary scratch register is available for holding the TLS offset. 2385 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2386 SaveScratch2 = false; 2387 } else { 2388 // Need to use a second register to hold the TLS offset 2389 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 2390 2391 // Unfortunately, with fastcc the second scratch register may hold an 2392 // argument. 2393 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 2394 } 2395 2396 // If Scratch2 is live-in then it needs to be saved. 2397 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 2398 "Scratch register is live-in and not saved"); 2399 2400 if (SaveScratch2) 2401 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 2402 .addReg(ScratchReg2, RegState::Kill); 2403 2404 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 2405 .addImm(TlsOffset); 2406 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 2407 .addReg(ScratchReg) 2408 .addReg(ScratchReg2).addImm(1).addReg(0) 2409 .addImm(0) 2410 .addReg(TlsReg); 2411 2412 if (SaveScratch2) 2413 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 2414 } 2415 } 2416 2417 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 2418 // It jumps to normal execution of the function body. 2419 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); 2420 2421 // On 32 bit we first push the arguments size and then the frame size. On 64 2422 // bit, we pass the stack frame size in r10 and the argument size in r11. 2423 if (Is64Bit) { 2424 // Functions with nested arguments use R10, so it needs to be saved across 2425 // the call to _morestack 2426 2427 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 2428 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 2429 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 2430 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 2431 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri; 2432 2433 if (IsNested) 2434 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 2435 2436 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10) 2437 .addImm(StackSize); 2438 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11) 2439 .addImm(X86FI->getArgumentStackSize()); 2440 } else { 2441 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2442 .addImm(X86FI->getArgumentStackSize()); 2443 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2444 .addImm(StackSize); 2445 } 2446 2447 // __morestack is in libgcc 2448 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 2449 // Under the large code model, we cannot assume that __morestack lives 2450 // within 2^31 bytes of the call site, so we cannot use pc-relative 2451 // addressing. We cannot perform the call via a temporary register, 2452 // as the rax register may be used to store the static chain, and all 2453 // other suitable registers may be either callee-save or used for 2454 // parameter passing. We cannot use the stack at this point either 2455 // because __morestack manipulates the stack directly. 2456 // 2457 // To avoid these issues, perform an indirect call via a read-only memory 2458 // location containing the address. 2459 // 2460 // This solution is not perfect, as it assumes that the .rodata section 2461 // is laid out within 2^31 bytes of each function body, but this seems 2462 // to be sufficient for JIT. 2463 // FIXME: Add retpoline support and remove the error here.. 2464 if (STI.useRetpolineIndirectCalls()) 2465 report_fatal_error("Emitting morestack calls on 64-bit with the large " 2466 "code model and retpoline not yet implemented."); 2467 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 2468 .addReg(X86::RIP) 2469 .addImm(0) 2470 .addReg(0) 2471 .addExternalSymbol("__morestack_addr") 2472 .addReg(0); 2473 MF.getMMI().setUsesMorestackAddr(true); 2474 } else { 2475 if (Is64Bit) 2476 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 2477 .addExternalSymbol("__morestack"); 2478 else 2479 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 2480 .addExternalSymbol("__morestack"); 2481 } 2482 2483 if (IsNested) 2484 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 2485 else 2486 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 2487 2488 allocMBB->addSuccessor(&PrologueMBB); 2489 2490 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); 2491 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); 2492 2493 #ifdef EXPENSIVE_CHECKS 2494 MF.verify(); 2495 #endif 2496 } 2497 2498 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 2499 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 2500 /// to fields it needs, through a named metadata node "hipe.literals" containing 2501 /// name-value pairs. 2502 static unsigned getHiPELiteral( 2503 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 2504 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 2505 MDNode *Node = HiPELiteralsMD->getOperand(i); 2506 if (Node->getNumOperands() != 2) continue; 2507 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 2508 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 2509 if (!NodeName || !NodeVal) continue; 2510 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 2511 if (ValConst && NodeName->getString() == LiteralName) { 2512 return ValConst->getZExtValue(); 2513 } 2514 } 2515 2516 report_fatal_error("HiPE literal " + LiteralName 2517 + " required but not provided"); 2518 } 2519 2520 /// Erlang programs may need a special prologue to handle the stack size they 2521 /// might need at runtime. That is because Erlang/OTP does not implement a C 2522 /// stack but uses a custom implementation of hybrid stack/heap architecture. 2523 /// (for more information see Eric Stenman's Ph.D. thesis: 2524 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 2525 /// 2526 /// CheckStack: 2527 /// temp0 = sp - MaxStack 2528 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2529 /// OldStart: 2530 /// ... 2531 /// IncStack: 2532 /// call inc_stack # doubles the stack space 2533 /// temp0 = sp - MaxStack 2534 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2535 void X86FrameLowering::adjustForHiPEPrologue( 2536 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2537 MachineFrameInfo &MFI = MF.getFrameInfo(); 2538 DebugLoc DL; 2539 2540 // To support shrink-wrapping we would need to insert the new blocks 2541 // at the right place and update the branches to PrologueMBB. 2542 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2543 2544 // HiPE-specific values 2545 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 2546 ->getNamedMetadata("hipe.literals"); 2547 if (!HiPELiteralsMD) 2548 report_fatal_error( 2549 "Can't generate HiPE prologue without runtime parameters"); 2550 const unsigned HipeLeafWords 2551 = getHiPELiteral(HiPELiteralsMD, 2552 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 2553 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 2554 const unsigned Guaranteed = HipeLeafWords * SlotSize; 2555 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? 2556 MF.getFunction().arg_size() - CCRegisteredArgs : 0; 2557 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 2558 2559 assert(STI.isTargetLinux() && 2560 "HiPE prologue is only supported on Linux operating systems."); 2561 2562 // Compute the largest caller's frame that is needed to fit the callees' 2563 // frames. This 'MaxStack' is computed from: 2564 // 2565 // a) the fixed frame size, which is the space needed for all spilled temps, 2566 // b) outgoing on-stack parameter areas, and 2567 // c) the minimum stack space this function needs to make available for the 2568 // functions it calls (a tunable ABI property). 2569 if (MFI.hasCalls()) { 2570 unsigned MoreStackForCalls = 0; 2571 2572 for (auto &MBB : MF) { 2573 for (auto &MI : MBB) { 2574 if (!MI.isCall()) 2575 continue; 2576 2577 // Get callee operand. 2578 const MachineOperand &MO = MI.getOperand(0); 2579 2580 // Only take account of global function calls (no closures etc.). 2581 if (!MO.isGlobal()) 2582 continue; 2583 2584 const Function *F = dyn_cast<Function>(MO.getGlobal()); 2585 if (!F) 2586 continue; 2587 2588 // Do not update 'MaxStack' for primitive and built-in functions 2589 // (encoded with names either starting with "erlang."/"bif_" or not 2590 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 2591 // "_", such as the BIF "suspend_0") as they are executed on another 2592 // stack. 2593 if (F->getName().find("erlang.") != StringRef::npos || 2594 F->getName().find("bif_") != StringRef::npos || 2595 F->getName().find_first_of("._") == StringRef::npos) 2596 continue; 2597 2598 unsigned CalleeStkArity = 2599 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 2600 if (HipeLeafWords - 1 > CalleeStkArity) 2601 MoreStackForCalls = std::max(MoreStackForCalls, 2602 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 2603 } 2604 } 2605 MaxStack += MoreStackForCalls; 2606 } 2607 2608 // If the stack frame needed is larger than the guaranteed then runtime checks 2609 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 2610 if (MaxStack > Guaranteed) { 2611 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 2612 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 2613 2614 for (const auto &LI : PrologueMBB.liveins()) { 2615 stackCheckMBB->addLiveIn(LI); 2616 incStackMBB->addLiveIn(LI); 2617 } 2618 2619 MF.push_front(incStackMBB); 2620 MF.push_front(stackCheckMBB); 2621 2622 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 2623 unsigned LEAop, CMPop, CALLop; 2624 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 2625 if (Is64Bit) { 2626 SPReg = X86::RSP; 2627 PReg = X86::RBP; 2628 LEAop = X86::LEA64r; 2629 CMPop = X86::CMP64rm; 2630 CALLop = X86::CALL64pcrel32; 2631 } else { 2632 SPReg = X86::ESP; 2633 PReg = X86::EBP; 2634 LEAop = X86::LEA32r; 2635 CMPop = X86::CMP32rm; 2636 CALLop = X86::CALLpcrel32; 2637 } 2638 2639 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2640 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2641 "HiPE prologue scratch register is live-in"); 2642 2643 // Create new MBB for StackCheck: 2644 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 2645 SPReg, false, -MaxStack); 2646 // SPLimitOffset is in a fixed heap location (pointed by BP). 2647 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 2648 .addReg(ScratchReg), PReg, false, SPLimitOffset); 2649 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); 2650 2651 // Create new MBB for IncStack: 2652 BuildMI(incStackMBB, DL, TII.get(CALLop)). 2653 addExternalSymbol("inc_stack_0"); 2654 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 2655 SPReg, false, -MaxStack); 2656 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 2657 .addReg(ScratchReg), PReg, false, SPLimitOffset); 2658 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); 2659 2660 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 2661 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 2662 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 2663 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 2664 } 2665 #ifdef EXPENSIVE_CHECKS 2666 MF.verify(); 2667 #endif 2668 } 2669 2670 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 2671 MachineBasicBlock::iterator MBBI, 2672 const DebugLoc &DL, 2673 int Offset) const { 2674 2675 if (Offset <= 0) 2676 return false; 2677 2678 if (Offset % SlotSize) 2679 return false; 2680 2681 int NumPops = Offset / SlotSize; 2682 // This is only worth it if we have at most 2 pops. 2683 if (NumPops != 1 && NumPops != 2) 2684 return false; 2685 2686 // Handle only the trivial case where the adjustment directly follows 2687 // a call. This is the most common one, anyway. 2688 if (MBBI == MBB.begin()) 2689 return false; 2690 MachineBasicBlock::iterator Prev = std::prev(MBBI); 2691 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 2692 return false; 2693 2694 unsigned Regs[2]; 2695 unsigned FoundRegs = 0; 2696 2697 auto &MRI = MBB.getParent()->getRegInfo(); 2698 auto RegMask = Prev->getOperand(1); 2699 2700 auto &RegClass = 2701 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 2702 // Try to find up to NumPops free registers. 2703 for (auto Candidate : RegClass) { 2704 2705 // Poor man's liveness: 2706 // Since we're immediately after a call, any register that is clobbered 2707 // by the call and not defined by it can be considered dead. 2708 if (!RegMask.clobbersPhysReg(Candidate)) 2709 continue; 2710 2711 // Don't clobber reserved registers 2712 if (MRI.isReserved(Candidate)) 2713 continue; 2714 2715 bool IsDef = false; 2716 for (const MachineOperand &MO : Prev->implicit_operands()) { 2717 if (MO.isReg() && MO.isDef() && 2718 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 2719 IsDef = true; 2720 break; 2721 } 2722 } 2723 2724 if (IsDef) 2725 continue; 2726 2727 Regs[FoundRegs++] = Candidate; 2728 if (FoundRegs == (unsigned)NumPops) 2729 break; 2730 } 2731 2732 if (FoundRegs == 0) 2733 return false; 2734 2735 // If we found only one free register, but need two, reuse the same one twice. 2736 while (FoundRegs < (unsigned)NumPops) 2737 Regs[FoundRegs++] = Regs[0]; 2738 2739 for (int i = 0; i < NumPops; ++i) 2740 BuildMI(MBB, MBBI, DL, 2741 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 2742 2743 return true; 2744 } 2745 2746 MachineBasicBlock::iterator X86FrameLowering:: 2747 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 2748 MachineBasicBlock::iterator I) const { 2749 bool reserveCallFrame = hasReservedCallFrame(MF); 2750 unsigned Opcode = I->getOpcode(); 2751 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 2752 DebugLoc DL = I->getDebugLoc(); 2753 uint64_t Amount = !reserveCallFrame ? TII.getFrameSize(*I) : 0; 2754 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 2755 I = MBB.erase(I); 2756 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 2757 2758 if (!reserveCallFrame) { 2759 // If the stack pointer can be changed after prologue, turn the 2760 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 2761 // adjcallstackdown instruction into 'add ESP, <amt>' 2762 2763 // We need to keep the stack aligned properly. To do this, we round the 2764 // amount of space needed for the outgoing arguments up to the next 2765 // alignment boundary. 2766 unsigned StackAlign = getStackAlignment(); 2767 Amount = alignTo(Amount, StackAlign); 2768 2769 MachineModuleInfo &MMI = MF.getMMI(); 2770 const Function &F = MF.getFunction(); 2771 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2772 bool DwarfCFI = !WindowsCFI && 2773 (MMI.hasDebugInfo() || F.needsUnwindTableEntry()); 2774 2775 // If we have any exception handlers in this function, and we adjust 2776 // the SP before calls, we may need to indicate this to the unwinder 2777 // using GNU_ARGS_SIZE. Note that this may be necessary even when 2778 // Amount == 0, because the preceding function may have set a non-0 2779 // GNU_ARGS_SIZE. 2780 // TODO: We don't need to reset this between subsequent functions, 2781 // if it didn't change. 2782 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 2783 2784 if (HasDwarfEHHandlers && !isDestroy && 2785 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 2786 BuildCFI(MBB, InsertPos, DL, 2787 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 2788 2789 if (Amount == 0) 2790 return I; 2791 2792 // Factor out the amount that gets handled inside the sequence 2793 // (Pushes of argument for frame setup, callee pops for frame destroy) 2794 Amount -= InternalAmt; 2795 2796 // TODO: This is needed only if we require precise CFA. 2797 // If this is a callee-pop calling convention, emit a CFA adjust for 2798 // the amount the callee popped. 2799 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 2800 BuildCFI(MBB, InsertPos, DL, 2801 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 2802 2803 // Add Amount to SP to destroy a frame, or subtract to setup. 2804 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 2805 2806 if (StackAdjustment) { 2807 // Merge with any previous or following adjustment instruction. Note: the 2808 // instructions merged with here do not have CFI, so their stack 2809 // adjustments do not feed into CfaAdjustment. 2810 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 2811 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 2812 2813 if (StackAdjustment) { 2814 if (!(F.hasMinSize() && 2815 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 2816 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 2817 /*InEpilogue=*/false); 2818 } 2819 } 2820 2821 if (DwarfCFI && !hasFP(MF)) { 2822 // If we don't have FP, but need to generate unwind information, 2823 // we need to set the correct CFA offset after the stack adjustment. 2824 // How much we adjust the CFA offset depends on whether we're emitting 2825 // CFI only for EH purposes or for debugging. EH only requires the CFA 2826 // offset to be correct at each call site, while for debugging we want 2827 // it to be more precise. 2828 2829 int64_t CfaAdjustment = -StackAdjustment; 2830 // TODO: When not using precise CFA, we also need to adjust for the 2831 // InternalAmt here. 2832 if (CfaAdjustment) { 2833 BuildCFI(MBB, InsertPos, DL, 2834 MCCFIInstruction::createAdjustCfaOffset(nullptr, 2835 CfaAdjustment)); 2836 } 2837 } 2838 2839 return I; 2840 } 2841 2842 if (isDestroy && InternalAmt) { 2843 // If we are performing frame pointer elimination and if the callee pops 2844 // something off the stack pointer, add it back. We do this until we have 2845 // more advanced stack pointer tracking ability. 2846 // We are not tracking the stack pointer adjustment by the callee, so make 2847 // sure we restore the stack pointer immediately after the call, there may 2848 // be spill code inserted between the CALL and ADJCALLSTACKUP instructions. 2849 MachineBasicBlock::iterator CI = I; 2850 MachineBasicBlock::iterator B = MBB.begin(); 2851 while (CI != B && !std::prev(CI)->isCall()) 2852 --CI; 2853 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 2854 } 2855 2856 return I; 2857 } 2858 2859 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 2860 assert(MBB.getParent() && "Block is not attached to a function!"); 2861 const MachineFunction &MF = *MBB.getParent(); 2862 return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS); 2863 } 2864 2865 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 2866 assert(MBB.getParent() && "Block is not attached to a function!"); 2867 2868 // Win64 has strict requirements in terms of epilogue and we are 2869 // not taking a chance at messing with them. 2870 // I.e., unless this block is already an exit block, we can't use 2871 // it as an epilogue. 2872 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 2873 return false; 2874 2875 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 2876 return true; 2877 2878 // If we cannot use LEA to adjust SP, we may need to use ADD, which 2879 // clobbers the EFLAGS. Check that we do not need to preserve it, 2880 // otherwise, conservatively assume this is not 2881 // safe to insert the epilogue here. 2882 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 2883 } 2884 2885 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2886 // If we may need to emit frameless compact unwind information, give 2887 // up as this is currently broken: PR25614. 2888 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) && 2889 // The lowering of segmented stack and HiPE only support entry blocks 2890 // as prologue blocks: PR26107. 2891 // This limitation may be lifted if we fix: 2892 // - adjustForSegmentedStacks 2893 // - adjustForHiPEPrologue 2894 MF.getFunction().getCallingConv() != CallingConv::HiPE && 2895 !MF.shouldSplitStack(); 2896 } 2897 2898 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 2899 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 2900 const DebugLoc &DL, bool RestoreSP) const { 2901 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 2902 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 2903 assert(STI.is32Bit() && !Uses64BitFramePtr && 2904 "restoring EBP/ESI on non-32-bit target"); 2905 2906 MachineFunction &MF = *MBB.getParent(); 2907 unsigned FramePtr = TRI->getFrameRegister(MF); 2908 unsigned BasePtr = TRI->getBaseRegister(); 2909 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 2910 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2911 MachineFrameInfo &MFI = MF.getFrameInfo(); 2912 2913 // FIXME: Don't set FrameSetup flag in catchret case. 2914 2915 int FI = FuncInfo.EHRegNodeFrameIndex; 2916 int EHRegSize = MFI.getObjectSize(FI); 2917 2918 if (RestoreSP) { 2919 // MOV32rm -EHRegSize(%ebp), %esp 2920 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 2921 X86::EBP, true, -EHRegSize) 2922 .setMIFlag(MachineInstr::FrameSetup); 2923 } 2924 2925 unsigned UsedReg; 2926 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg); 2927 int EndOffset = -EHRegOffset - EHRegSize; 2928 FuncInfo.EHRegNodeEndOffset = EndOffset; 2929 2930 if (UsedReg == FramePtr) { 2931 // ADD $offset, %ebp 2932 unsigned ADDri = getADDriOpcode(false, EndOffset); 2933 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 2934 .addReg(FramePtr) 2935 .addImm(EndOffset) 2936 .setMIFlag(MachineInstr::FrameSetup) 2937 ->getOperand(3) 2938 .setIsDead(); 2939 assert(EndOffset >= 0 && 2940 "end of registration object above normal EBP position!"); 2941 } else if (UsedReg == BasePtr) { 2942 // LEA offset(%ebp), %esi 2943 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 2944 FramePtr, false, EndOffset) 2945 .setMIFlag(MachineInstr::FrameSetup); 2946 // MOV32rm SavedEBPOffset(%esi), %ebp 2947 assert(X86FI->getHasSEHFramePtrSave()); 2948 int Offset = 2949 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 2950 assert(UsedReg == BasePtr); 2951 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 2952 UsedReg, true, Offset) 2953 .setMIFlag(MachineInstr::FrameSetup); 2954 } else { 2955 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 2956 } 2957 return MBBI; 2958 } 2959 2960 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 2961 return TRI->getSlotSize(); 2962 } 2963 2964 unsigned X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) 2965 const { 2966 return TRI->getDwarfRegNum(StackPtr, true); 2967 } 2968 2969 namespace { 2970 // Struct used by orderFrameObjects to help sort the stack objects. 2971 struct X86FrameSortingObject { 2972 bool IsValid = false; // true if we care about this Object. 2973 unsigned ObjectIndex = 0; // Index of Object into MFI list. 2974 unsigned ObjectSize = 0; // Size of Object in bytes. 2975 unsigned ObjectAlignment = 1; // Alignment of Object in bytes. 2976 unsigned ObjectNumUses = 0; // Object static number of uses. 2977 }; 2978 2979 // The comparison function we use for std::sort to order our local 2980 // stack symbols. The current algorithm is to use an estimated 2981 // "density". This takes into consideration the size and number of 2982 // uses each object has in order to roughly minimize code size. 2983 // So, for example, an object of size 16B that is referenced 5 times 2984 // will get higher priority than 4 4B objects referenced 1 time each. 2985 // It's not perfect and we may be able to squeeze a few more bytes out of 2986 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 2987 // fringe end can have special consideration, given their size is less 2988 // important, etc.), but the algorithmic complexity grows too much to be 2989 // worth the extra gains we get. This gets us pretty close. 2990 // The final order leaves us with objects with highest priority going 2991 // at the end of our list. 2992 struct X86FrameSortingComparator { 2993 inline bool operator()(const X86FrameSortingObject &A, 2994 const X86FrameSortingObject &B) { 2995 uint64_t DensityAScaled, DensityBScaled; 2996 2997 // For consistency in our comparison, all invalid objects are placed 2998 // at the end. This also allows us to stop walking when we hit the 2999 // first invalid item after it's all sorted. 3000 if (!A.IsValid) 3001 return false; 3002 if (!B.IsValid) 3003 return true; 3004 3005 // The density is calculated by doing : 3006 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 3007 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 3008 // Since this approach may cause inconsistencies in 3009 // the floating point <, >, == comparisons, depending on the floating 3010 // point model with which the compiler was built, we're going 3011 // to scale both sides by multiplying with 3012 // A.ObjectSize * B.ObjectSize. This ends up factoring away 3013 // the division and, with it, the need for any floating point 3014 // arithmetic. 3015 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 3016 static_cast<uint64_t>(B.ObjectSize); 3017 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 3018 static_cast<uint64_t>(A.ObjectSize); 3019 3020 // If the two densities are equal, prioritize highest alignment 3021 // objects. This allows for similar alignment objects 3022 // to be packed together (given the same density). 3023 // There's room for improvement here, also, since we can pack 3024 // similar alignment (different density) objects next to each 3025 // other to save padding. This will also require further 3026 // complexity/iterations, and the overall gain isn't worth it, 3027 // in general. Something to keep in mind, though. 3028 if (DensityAScaled == DensityBScaled) 3029 return A.ObjectAlignment < B.ObjectAlignment; 3030 3031 return DensityAScaled < DensityBScaled; 3032 } 3033 }; 3034 } // namespace 3035 3036 // Order the symbols in the local stack. 3037 // We want to place the local stack objects in some sort of sensible order. 3038 // The heuristic we use is to try and pack them according to static number 3039 // of uses and size of object in order to minimize code size. 3040 void X86FrameLowering::orderFrameObjects( 3041 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 3042 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3043 3044 // Don't waste time if there's nothing to do. 3045 if (ObjectsToAllocate.empty()) 3046 return; 3047 3048 // Create an array of all MFI objects. We won't need all of these 3049 // objects, but we're going to create a full array of them to make 3050 // it easier to index into when we're counting "uses" down below. 3051 // We want to be able to easily/cheaply access an object by simply 3052 // indexing into it, instead of having to search for it every time. 3053 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 3054 3055 // Walk the objects we care about and mark them as such in our working 3056 // struct. 3057 for (auto &Obj : ObjectsToAllocate) { 3058 SortingObjects[Obj].IsValid = true; 3059 SortingObjects[Obj].ObjectIndex = Obj; 3060 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlignment(Obj); 3061 // Set the size. 3062 int ObjectSize = MFI.getObjectSize(Obj); 3063 if (ObjectSize == 0) 3064 // Variable size. Just use 4. 3065 SortingObjects[Obj].ObjectSize = 4; 3066 else 3067 SortingObjects[Obj].ObjectSize = ObjectSize; 3068 } 3069 3070 // Count the number of uses for each object. 3071 for (auto &MBB : MF) { 3072 for (auto &MI : MBB) { 3073 if (MI.isDebugInstr()) 3074 continue; 3075 for (const MachineOperand &MO : MI.operands()) { 3076 // Check to see if it's a local stack symbol. 3077 if (!MO.isFI()) 3078 continue; 3079 int Index = MO.getIndex(); 3080 // Check to see if it falls within our range, and is tagged 3081 // to require ordering. 3082 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 3083 SortingObjects[Index].IsValid) 3084 SortingObjects[Index].ObjectNumUses++; 3085 } 3086 } 3087 } 3088 3089 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 3090 // info). 3091 llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); 3092 3093 // Now modify the original list to represent the final order that 3094 // we want. The order will depend on whether we're going to access them 3095 // from the stack pointer or the frame pointer. For SP, the list should 3096 // end up with the END containing objects that we want with smaller offsets. 3097 // For FP, it should be flipped. 3098 int i = 0; 3099 for (auto &Obj : SortingObjects) { 3100 // All invalid items are sorted at the end, so it's safe to stop. 3101 if (!Obj.IsValid) 3102 break; 3103 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3104 } 3105 3106 // Flip it if we're accessing off of the FP. 3107 if (!TRI->needsStackRealignment(MF) && hasFP(MF)) 3108 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 3109 } 3110 3111 3112 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 3113 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 3114 unsigned Offset = 16; 3115 // RBP is immediately pushed. 3116 Offset += SlotSize; 3117 // All callee-saved registers are then pushed. 3118 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 3119 // Every funclet allocates enough stack space for the largest outgoing call. 3120 Offset += getWinEHFuncletFrameSize(MF); 3121 return Offset; 3122 } 3123 3124 void X86FrameLowering::processFunctionBeforeFrameFinalized( 3125 MachineFunction &MF, RegScavenger *RS) const { 3126 // Mark the function as not having WinCFI. We will set it back to true in 3127 // emitPrologue if it gets called and emits CFI. 3128 MF.setHasWinCFI(false); 3129 3130 // If this function isn't doing Win64-style C++ EH, we don't need to do 3131 // anything. 3132 const Function &F = MF.getFunction(); 3133 if (!STI.is64Bit() || !MF.hasEHFunclets() || 3134 classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX) 3135 return; 3136 3137 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 3138 // relative to RSP after the prologue. Find the offset of the last fixed 3139 // object, so that we can allocate a slot immediately following it. If there 3140 // were no fixed objects, use offset -SlotSize, which is immediately after the 3141 // return address. Fixed objects have negative frame indices. 3142 MachineFrameInfo &MFI = MF.getFrameInfo(); 3143 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3144 int64_t MinFixedObjOffset = -SlotSize; 3145 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 3146 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 3147 3148 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 3149 for (WinEHHandlerType &H : TBME.HandlerArray) { 3150 int FrameIndex = H.CatchObj.FrameIndex; 3151 if (FrameIndex != INT_MAX) { 3152 // Ensure alignment. 3153 unsigned Align = MFI.getObjectAlignment(FrameIndex); 3154 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 3155 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 3156 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 3157 } 3158 } 3159 } 3160 3161 // Ensure alignment. 3162 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 3163 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 3164 int UnwindHelpFI = 3165 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*Immutable=*/false); 3166 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3167 3168 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 3169 // other frame setup instructions. 3170 MachineBasicBlock &MBB = MF.front(); 3171 auto MBBI = MBB.begin(); 3172 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3173 ++MBBI; 3174 3175 DebugLoc DL = MBB.findDebugLoc(MBBI); 3176 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 3177 UnwindHelpFI) 3178 .addImm(-2); 3179 } 3180