1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86FrameLowering.h" 14 #include "X86InstrBuilder.h" 15 #include "X86InstrInfo.h" 16 #include "X86MachineFunctionInfo.h" 17 #include "X86Subtarget.h" 18 #include "X86TargetMachine.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/EHPersonalities.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/WinEHFuncInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/MC/MCAsmInfo.h" 31 #include "llvm/MC/MCObjectFileInfo.h" 32 #include "llvm/MC/MCSymbol.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Target/TargetOptions.h" 35 #include <cstdlib> 36 37 #define DEBUG_TYPE "x86-fl" 38 39 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue"); 40 STATISTIC(NumFrameExtraProbe, 41 "Number of extra stack probes generated in prologue"); 42 43 using namespace llvm; 44 45 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 46 MaybeAlign StackAlignOverride) 47 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), 48 STI.is64Bit() ? -8 : -4), 49 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { 50 // Cache a bunch of frame-related predicates for this subtarget. 51 SlotSize = TRI->getSlotSize(); 52 Is64Bit = STI.is64Bit(); 53 IsLP64 = STI.isTarget64BitLP64(); 54 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 55 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 56 StackPtr = TRI->getStackRegister(); 57 } 58 59 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 60 return !MF.getFrameInfo().hasVarSizedObjects() && 61 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() && 62 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall(); 63 } 64 65 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 66 /// call frame pseudos can be simplified. Having a FP, as in the default 67 /// implementation, is not sufficient here since we can't always use it. 68 /// Use a more nuanced condition. 69 bool 70 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 71 return hasReservedCallFrame(MF) || 72 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 73 (hasFP(MF) && !TRI->hasStackRealignment(MF)) || 74 TRI->hasBasePointer(MF); 75 } 76 77 // needsFrameIndexResolution - Do we need to perform FI resolution for 78 // this function. Normally, this is required only when the function 79 // has any stack objects. However, FI resolution actually has another job, 80 // not apparent from the title - it resolves callframesetup/destroy 81 // that were not simplified earlier. 82 // So, this is required for x86 functions that have push sequences even 83 // when there are no stack objects. 84 bool 85 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 86 return MF.getFrameInfo().hasStackObjects() || 87 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 88 } 89 90 /// hasFP - Return true if the specified function should have a dedicated frame 91 /// pointer register. This is true if the function has variable sized allocas 92 /// or if frame pointer elimination is disabled. 93 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 94 const MachineFrameInfo &MFI = MF.getFrameInfo(); 95 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 96 TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 97 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 98 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 99 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 100 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 101 MFI.hasStackMap() || MFI.hasPatchPoint() || 102 MFI.hasCopyImplyingStackAdjustment()); 103 } 104 105 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) { 106 if (IsLP64) { 107 if (isInt<8>(Imm)) 108 return X86::SUB64ri8; 109 return X86::SUB64ri32; 110 } else { 111 if (isInt<8>(Imm)) 112 return X86::SUB32ri8; 113 return X86::SUB32ri; 114 } 115 } 116 117 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) { 118 if (IsLP64) { 119 if (isInt<8>(Imm)) 120 return X86::ADD64ri8; 121 return X86::ADD64ri32; 122 } else { 123 if (isInt<8>(Imm)) 124 return X86::ADD32ri8; 125 return X86::ADD32ri; 126 } 127 } 128 129 static unsigned getSUBrrOpcode(bool IsLP64) { 130 return IsLP64 ? X86::SUB64rr : X86::SUB32rr; 131 } 132 133 static unsigned getADDrrOpcode(bool IsLP64) { 134 return IsLP64 ? X86::ADD64rr : X86::ADD32rr; 135 } 136 137 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 138 if (IsLP64) { 139 if (isInt<8>(Imm)) 140 return X86::AND64ri8; 141 return X86::AND64ri32; 142 } 143 if (isInt<8>(Imm)) 144 return X86::AND32ri8; 145 return X86::AND32ri; 146 } 147 148 static unsigned getLEArOpcode(bool IsLP64) { 149 return IsLP64 ? X86::LEA64r : X86::LEA32r; 150 } 151 152 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 153 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 154 unsigned Reg = RegMask.PhysReg; 155 156 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 157 Reg == X86::AH || Reg == X86::AL) 158 return true; 159 } 160 161 return false; 162 } 163 164 /// Check if the flags need to be preserved before the terminators. 165 /// This would be the case, if the eflags is live-in of the region 166 /// composed by the terminators or live-out of that region, without 167 /// being defined by a terminator. 168 static bool 169 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 170 for (const MachineInstr &MI : MBB.terminators()) { 171 bool BreakNext = false; 172 for (const MachineOperand &MO : MI.operands()) { 173 if (!MO.isReg()) 174 continue; 175 Register Reg = MO.getReg(); 176 if (Reg != X86::EFLAGS) 177 continue; 178 179 // This terminator needs an eflags that is not defined 180 // by a previous another terminator: 181 // EFLAGS is live-in of the region composed by the terminators. 182 if (!MO.isDef()) 183 return true; 184 // This terminator defines the eflags, i.e., we don't need to preserve it. 185 // However, we still need to check this specific terminator does not 186 // read a live-in value. 187 BreakNext = true; 188 } 189 // We found a definition of the eflags, no need to preserve them. 190 if (BreakNext) 191 return false; 192 } 193 194 // None of the terminators use or define the eflags. 195 // Check if they are live-out, that would imply we need to preserve them. 196 for (const MachineBasicBlock *Succ : MBB.successors()) 197 if (Succ->isLiveIn(X86::EFLAGS)) 198 return true; 199 200 return false; 201 } 202 203 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 204 /// stack pointer by a constant value. 205 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 206 MachineBasicBlock::iterator &MBBI, 207 const DebugLoc &DL, 208 int64_t NumBytes, bool InEpilogue) const { 209 bool isSub = NumBytes < 0; 210 uint64_t Offset = isSub ? -NumBytes : NumBytes; 211 MachineInstr::MIFlag Flag = 212 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 213 214 uint64_t Chunk = (1LL << 31) - 1; 215 216 MachineFunction &MF = *MBB.getParent(); 217 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 218 const X86TargetLowering &TLI = *STI.getTargetLowering(); 219 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 220 221 // It's ok to not take into account large chunks when probing, as the 222 // allocation is split in smaller chunks anyway. 223 if (EmitInlineStackProbe && !InEpilogue) { 224 225 // This pseudo-instruction is going to be expanded, potentially using a 226 // loop, by inlineStackProbe(). 227 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset); 228 return; 229 } else if (Offset > Chunk) { 230 // Rather than emit a long series of instructions for large offsets, 231 // load the offset into a register and do one sub/add 232 unsigned Reg = 0; 233 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 234 235 if (isSub && !isEAXLiveIn(MBB)) 236 Reg = Rax; 237 else 238 Reg = TRI->findDeadCallerSavedReg(MBB, MBBI); 239 240 unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri; 241 unsigned AddSubRROpc = 242 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 243 if (Reg) { 244 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg) 245 .addImm(Offset) 246 .setMIFlag(Flag); 247 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 248 .addReg(StackPtr) 249 .addReg(Reg); 250 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 251 return; 252 } else if (Offset > 8 * Chunk) { 253 // If we would need more than 8 add or sub instructions (a >16GB stack 254 // frame), it's worth spilling RAX to materialize this immediate. 255 // pushq %rax 256 // movabsq +-$Offset+-SlotSize, %rax 257 // addq %rsp, %rax 258 // xchg %rax, (%rsp) 259 // movq (%rsp), %rsp 260 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 261 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 262 .addReg(Rax, RegState::Kill) 263 .setMIFlag(Flag); 264 // Subtract is not commutative, so negate the offset and always use add. 265 // Subtract 8 less and add 8 more to account for the PUSH we just did. 266 if (isSub) 267 Offset = -(Offset - SlotSize); 268 else 269 Offset = Offset + SlotSize; 270 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax) 271 .addImm(Offset) 272 .setMIFlag(Flag); 273 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 274 .addReg(Rax) 275 .addReg(StackPtr); 276 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 277 // Exchange the new SP in RAX with the top of the stack. 278 addRegOffset( 279 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 280 StackPtr, false, 0); 281 // Load new SP from the top of the stack into RSP. 282 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 283 StackPtr, false, 0); 284 return; 285 } 286 } 287 288 while (Offset) { 289 uint64_t ThisVal = std::min(Offset, Chunk); 290 if (ThisVal == SlotSize) { 291 // Use push / pop for slot sized adjustments as a size optimization. We 292 // need to find a dead register when using pop. 293 unsigned Reg = isSub 294 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 295 : TRI->findDeadCallerSavedReg(MBB, MBBI); 296 if (Reg) { 297 unsigned Opc = isSub 298 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 299 : (Is64Bit ? X86::POP64r : X86::POP32r); 300 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 301 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 302 .setMIFlag(Flag); 303 Offset -= ThisVal; 304 continue; 305 } 306 } 307 308 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 309 .setMIFlag(Flag); 310 311 Offset -= ThisVal; 312 } 313 } 314 315 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 316 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 317 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 318 assert(Offset != 0 && "zero offset stack adjustment requested"); 319 320 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 321 // is tricky. 322 bool UseLEA; 323 if (!InEpilogue) { 324 // Check if inserting the prologue at the beginning 325 // of MBB would require to use LEA operations. 326 // We need to use LEA operations if EFLAGS is live in, because 327 // it means an instruction will read it before it gets defined. 328 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 329 } else { 330 // If we can use LEA for SP but we shouldn't, check that none 331 // of the terminators uses the eflags. Otherwise we will insert 332 // a ADD that will redefine the eflags and break the condition. 333 // Alternatively, we could move the ADD, but this may not be possible 334 // and is an optimization anyway. 335 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 336 if (UseLEA && !STI.useLeaForSP()) 337 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 338 // If that assert breaks, that means we do not do the right thing 339 // in canUseAsEpilogue. 340 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 341 "We shouldn't have allowed this insertion point"); 342 } 343 344 MachineInstrBuilder MI; 345 if (UseLEA) { 346 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 347 TII.get(getLEArOpcode(Uses64BitFramePtr)), 348 StackPtr), 349 StackPtr, false, Offset); 350 } else { 351 bool IsSub = Offset < 0; 352 uint64_t AbsOffset = IsSub ? -Offset : Offset; 353 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 354 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 355 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 356 .addReg(StackPtr) 357 .addImm(AbsOffset); 358 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 359 } 360 return MI; 361 } 362 363 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 364 MachineBasicBlock::iterator &MBBI, 365 bool doMergeWithPrevious) const { 366 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 367 (!doMergeWithPrevious && MBBI == MBB.end())) 368 return 0; 369 370 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 371 372 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 373 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 374 // instruction, and that there are no DBG_VALUE or other instructions between 375 // ADD/SUB/LEA and its corresponding CFI instruction. 376 /* TODO: Add support for the case where there are multiple CFI instructions 377 below the ADD/SUB/LEA, e.g.: 378 ... 379 add 380 cfi_def_cfa_offset 381 cfi_offset 382 ... 383 */ 384 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 385 PI = std::prev(PI); 386 387 unsigned Opc = PI->getOpcode(); 388 int Offset = 0; 389 390 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 391 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 392 PI->getOperand(0).getReg() == StackPtr){ 393 assert(PI->getOperand(1).getReg() == StackPtr); 394 Offset = PI->getOperand(2).getImm(); 395 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 396 PI->getOperand(0).getReg() == StackPtr && 397 PI->getOperand(1).getReg() == StackPtr && 398 PI->getOperand(2).getImm() == 1 && 399 PI->getOperand(3).getReg() == X86::NoRegister && 400 PI->getOperand(5).getReg() == X86::NoRegister) { 401 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 402 Offset = PI->getOperand(4).getImm(); 403 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 404 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 405 PI->getOperand(0).getReg() == StackPtr) { 406 assert(PI->getOperand(1).getReg() == StackPtr); 407 Offset = -PI->getOperand(2).getImm(); 408 } else 409 return 0; 410 411 PI = MBB.erase(PI); 412 if (PI != MBB.end() && PI->isCFIInstruction()) { 413 auto CIs = MBB.getParent()->getFrameInstructions(); 414 MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()]; 415 if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset || 416 CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset) 417 PI = MBB.erase(PI); 418 } 419 if (!doMergeWithPrevious) 420 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 421 422 return Offset; 423 } 424 425 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 426 MachineBasicBlock::iterator MBBI, 427 const DebugLoc &DL, 428 const MCCFIInstruction &CFIInst) const { 429 MachineFunction &MF = *MBB.getParent(); 430 unsigned CFIIndex = MF.addFrameInst(CFIInst); 431 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 432 .addCFIIndex(CFIIndex); 433 } 434 435 /// Emits Dwarf Info specifying offsets of callee saved registers and 436 /// frame pointer. This is called only when basic block sections are enabled. 437 void X86FrameLowering::emitCalleeSavedFrameMoves( 438 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 439 MachineFunction &MF = *MBB.getParent(); 440 if (!hasFP(MF)) { 441 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 442 return; 443 } 444 const MachineModuleInfo &MMI = MF.getMMI(); 445 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 446 const Register FramePtr = TRI->getFrameRegister(MF); 447 const Register MachineFramePtr = 448 STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64)) 449 : FramePtr; 450 unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true); 451 // Offset = space for return address + size of the frame pointer itself. 452 unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4); 453 BuildCFI(MBB, MBBI, DebugLoc{}, 454 MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset)); 455 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 456 } 457 458 void X86FrameLowering::emitCalleeSavedFrameMoves( 459 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 460 const DebugLoc &DL, bool IsPrologue) const { 461 MachineFunction &MF = *MBB.getParent(); 462 MachineFrameInfo &MFI = MF.getFrameInfo(); 463 MachineModuleInfo &MMI = MF.getMMI(); 464 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 465 466 // Add callee saved registers to move list. 467 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 468 if (CSI.empty()) return; 469 470 // Calculate offsets. 471 for (std::vector<CalleeSavedInfo>::const_iterator 472 I = CSI.begin(), E = CSI.end(); I != E; ++I) { 473 int64_t Offset = MFI.getObjectOffset(I->getFrameIdx()); 474 unsigned Reg = I->getReg(); 475 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 476 477 if (IsPrologue) { 478 BuildCFI(MBB, MBBI, DL, 479 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 480 } else { 481 BuildCFI(MBB, MBBI, DL, 482 MCCFIInstruction::createRestore(nullptr, DwarfReg)); 483 } 484 } 485 } 486 487 void X86FrameLowering::emitStackProbe(MachineFunction &MF, 488 MachineBasicBlock &MBB, 489 MachineBasicBlock::iterator MBBI, 490 const DebugLoc &DL, bool InProlog) const { 491 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 492 if (STI.isTargetWindowsCoreCLR()) { 493 if (InProlog) { 494 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)) 495 .addImm(0 /* no explicit stack size */); 496 } else { 497 emitStackProbeInline(MF, MBB, MBBI, DL, false); 498 } 499 } else { 500 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog); 501 } 502 } 503 504 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 505 MachineBasicBlock &PrologMBB) const { 506 auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 507 return MI.getOpcode() == X86::STACKALLOC_W_PROBING; 508 }); 509 if (Where != PrologMBB.end()) { 510 DebugLoc DL = PrologMBB.findDebugLoc(Where); 511 emitStackProbeInline(MF, PrologMBB, Where, DL, true); 512 Where->eraseFromParent(); 513 } 514 } 515 516 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 517 MachineBasicBlock &MBB, 518 MachineBasicBlock::iterator MBBI, 519 const DebugLoc &DL, 520 bool InProlog) const { 521 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 522 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit()) 523 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog); 524 else 525 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog); 526 } 527 528 void X86FrameLowering::emitStackProbeInlineGeneric( 529 MachineFunction &MF, MachineBasicBlock &MBB, 530 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 531 MachineInstr &AllocWithProbe = *MBBI; 532 uint64_t Offset = AllocWithProbe.getOperand(0).getImm(); 533 534 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 535 const X86TargetLowering &TLI = *STI.getTargetLowering(); 536 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) && 537 "different expansion expected for CoreCLR 64 bit"); 538 539 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 540 uint64_t ProbeChunk = StackProbeSize * 8; 541 542 uint64_t MaxAlign = 543 TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0; 544 545 // Synthesize a loop or unroll it, depending on the number of iterations. 546 // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left 547 // between the unaligned rsp and current rsp. 548 if (Offset > ProbeChunk) { 549 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset, 550 MaxAlign % StackProbeSize); 551 } else { 552 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset, 553 MaxAlign % StackProbeSize); 554 } 555 } 556 557 void X86FrameLowering::emitStackProbeInlineGenericBlock( 558 MachineFunction &MF, MachineBasicBlock &MBB, 559 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 560 uint64_t AlignOffset) const { 561 562 const bool NeedsDwarfCFI = needsDwarfCFI(MF); 563 const bool HasFP = hasFP(MF); 564 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 565 const X86TargetLowering &TLI = *STI.getTargetLowering(); 566 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset); 567 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 568 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 569 570 uint64_t CurrentOffset = 0; 571 572 assert(AlignOffset < StackProbeSize); 573 574 // If the offset is so small it fits within a page, there's nothing to do. 575 if (StackProbeSize < Offset + AlignOffset) { 576 577 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 578 .addReg(StackPtr) 579 .addImm(StackProbeSize - AlignOffset) 580 .setMIFlag(MachineInstr::FrameSetup); 581 if (!HasFP && NeedsDwarfCFI) { 582 BuildCFI(MBB, MBBI, DL, 583 MCCFIInstruction::createAdjustCfaOffset( 584 nullptr, StackProbeSize - AlignOffset)); 585 } 586 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 587 588 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 589 .setMIFlag(MachineInstr::FrameSetup), 590 StackPtr, false, 0) 591 .addImm(0) 592 .setMIFlag(MachineInstr::FrameSetup); 593 NumFrameExtraProbe++; 594 CurrentOffset = StackProbeSize - AlignOffset; 595 } 596 597 // For the next N - 1 pages, just probe. I tried to take advantage of 598 // natural probes but it implies much more logic and there was very few 599 // interesting natural probes to interleave. 600 while (CurrentOffset + StackProbeSize < Offset) { 601 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 602 .addReg(StackPtr) 603 .addImm(StackProbeSize) 604 .setMIFlag(MachineInstr::FrameSetup); 605 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 606 607 if (!HasFP && NeedsDwarfCFI) { 608 BuildCFI( 609 MBB, MBBI, DL, 610 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize)); 611 } 612 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 613 .setMIFlag(MachineInstr::FrameSetup), 614 StackPtr, false, 0) 615 .addImm(0) 616 .setMIFlag(MachineInstr::FrameSetup); 617 NumFrameExtraProbe++; 618 CurrentOffset += StackProbeSize; 619 } 620 621 // No need to probe the tail, it is smaller than a Page. 622 uint64_t ChunkSize = Offset - CurrentOffset; 623 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 624 .addReg(StackPtr) 625 .addImm(ChunkSize) 626 .setMIFlag(MachineInstr::FrameSetup); 627 // No need to adjust Dwarf CFA offset here, the last position of the stack has 628 // been defined 629 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 630 } 631 632 void X86FrameLowering::emitStackProbeInlineGenericLoop( 633 MachineFunction &MF, MachineBasicBlock &MBB, 634 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 635 uint64_t AlignOffset) const { 636 assert(Offset && "null offset"); 637 638 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 639 const X86TargetLowering &TLI = *STI.getTargetLowering(); 640 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 641 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 642 643 if (AlignOffset) { 644 if (AlignOffset < StackProbeSize) { 645 // Perform a first smaller allocation followed by a probe. 646 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, AlignOffset); 647 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), StackPtr) 648 .addReg(StackPtr) 649 .addImm(AlignOffset) 650 .setMIFlag(MachineInstr::FrameSetup); 651 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 652 653 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 654 .setMIFlag(MachineInstr::FrameSetup), 655 StackPtr, false, 0) 656 .addImm(0) 657 .setMIFlag(MachineInstr::FrameSetup); 658 NumFrameExtraProbe++; 659 Offset -= AlignOffset; 660 } 661 } 662 663 // Synthesize a loop 664 NumFrameLoopProbe++; 665 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 666 667 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB); 668 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB); 669 670 MachineFunction::iterator MBBIter = ++MBB.getIterator(); 671 MF.insert(MBBIter, testMBB); 672 MF.insert(MBBIter, tailMBB); 673 674 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 675 : Is64Bit ? X86::R11D 676 : X86::EAX; 677 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 678 .addReg(StackPtr) 679 .setMIFlag(MachineInstr::FrameSetup); 680 681 // save loop bound 682 { 683 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, Offset); 684 BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed) 685 .addReg(FinalStackProbed) 686 .addImm(Offset / StackProbeSize * StackProbeSize) 687 .setMIFlag(MachineInstr::FrameSetup); 688 } 689 690 // allocate a page 691 { 692 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 693 BuildMI(testMBB, DL, TII.get(SUBOpc), StackPtr) 694 .addReg(StackPtr) 695 .addImm(StackProbeSize) 696 .setMIFlag(MachineInstr::FrameSetup); 697 } 698 699 // touch the page 700 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc)) 701 .setMIFlag(MachineInstr::FrameSetup), 702 StackPtr, false, 0) 703 .addImm(0) 704 .setMIFlag(MachineInstr::FrameSetup); 705 706 // cmp with stack pointer bound 707 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 708 .addReg(StackPtr) 709 .addReg(FinalStackProbed) 710 .setMIFlag(MachineInstr::FrameSetup); 711 712 // jump 713 BuildMI(testMBB, DL, TII.get(X86::JCC_1)) 714 .addMBB(testMBB) 715 .addImm(X86::COND_NE) 716 .setMIFlag(MachineInstr::FrameSetup); 717 testMBB->addSuccessor(testMBB); 718 testMBB->addSuccessor(tailMBB); 719 720 // BB management 721 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end()); 722 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB); 723 MBB.addSuccessor(testMBB); 724 725 // handle tail 726 unsigned TailOffset = Offset % StackProbeSize; 727 if (TailOffset) { 728 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, TailOffset); 729 BuildMI(*tailMBB, tailMBB->begin(), DL, TII.get(Opc), StackPtr) 730 .addReg(StackPtr) 731 .addImm(TailOffset) 732 .setMIFlag(MachineInstr::FrameSetup); 733 } 734 735 // Update Live In information 736 recomputeLiveIns(*testMBB); 737 recomputeLiveIns(*tailMBB); 738 } 739 740 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64( 741 MachineFunction &MF, MachineBasicBlock &MBB, 742 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 743 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 744 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 745 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 746 const TargetInstrInfo &TII = *STI.getInstrInfo(); 747 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 748 749 // RAX contains the number of bytes of desired stack adjustment. 750 // The handling here assumes this value has already been updated so as to 751 // maintain stack alignment. 752 // 753 // We need to exit with RSP modified by this amount and execute suitable 754 // page touches to notify the OS that we're growing the stack responsibly. 755 // All stack probing must be done without modifying RSP. 756 // 757 // MBB: 758 // SizeReg = RAX; 759 // ZeroReg = 0 760 // CopyReg = RSP 761 // Flags, TestReg = CopyReg - SizeReg 762 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 763 // LimitReg = gs magic thread env access 764 // if FinalReg >= LimitReg goto ContinueMBB 765 // RoundBB: 766 // RoundReg = page address of FinalReg 767 // LoopMBB: 768 // LoopReg = PHI(LimitReg,ProbeReg) 769 // ProbeReg = LoopReg - PageSize 770 // [ProbeReg] = 0 771 // if (ProbeReg > RoundReg) goto LoopMBB 772 // ContinueMBB: 773 // RSP = RSP - RAX 774 // [rest of original MBB] 775 776 // Set up the new basic blocks 777 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 778 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 779 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 780 781 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 782 MF.insert(MBBIter, RoundMBB); 783 MF.insert(MBBIter, LoopMBB); 784 MF.insert(MBBIter, ContinueMBB); 785 786 // Split MBB and move the tail portion down to ContinueMBB. 787 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 788 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 789 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 790 791 // Some useful constants 792 const int64_t ThreadEnvironmentStackLimit = 0x10; 793 const int64_t PageSize = 0x1000; 794 const int64_t PageMask = ~(PageSize - 1); 795 796 // Registers we need. For the normal case we use virtual 797 // registers. For the prolog expansion we use RAX, RCX and RDX. 798 MachineRegisterInfo &MRI = MF.getRegInfo(); 799 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 800 const Register SizeReg = InProlog ? X86::RAX 801 : MRI.createVirtualRegister(RegClass), 802 ZeroReg = InProlog ? X86::RCX 803 : MRI.createVirtualRegister(RegClass), 804 CopyReg = InProlog ? X86::RDX 805 : MRI.createVirtualRegister(RegClass), 806 TestReg = InProlog ? X86::RDX 807 : MRI.createVirtualRegister(RegClass), 808 FinalReg = InProlog ? X86::RDX 809 : MRI.createVirtualRegister(RegClass), 810 RoundedReg = InProlog ? X86::RDX 811 : MRI.createVirtualRegister(RegClass), 812 LimitReg = InProlog ? X86::RCX 813 : MRI.createVirtualRegister(RegClass), 814 JoinReg = InProlog ? X86::RCX 815 : MRI.createVirtualRegister(RegClass), 816 ProbeReg = InProlog ? X86::RCX 817 : MRI.createVirtualRegister(RegClass); 818 819 // SP-relative offsets where we can save RCX and RDX. 820 int64_t RCXShadowSlot = 0; 821 int64_t RDXShadowSlot = 0; 822 823 // If inlining in the prolog, save RCX and RDX. 824 if (InProlog) { 825 // Compute the offsets. We need to account for things already 826 // pushed onto the stack at this point: return address, frame 827 // pointer (if used), and callee saves. 828 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 829 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 830 const bool HasFP = hasFP(MF); 831 832 // Check if we need to spill RCX and/or RDX. 833 // Here we assume that no earlier prologue instruction changes RCX and/or 834 // RDX, so checking the block live-ins is enough. 835 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); 836 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); 837 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 838 // Assign the initial slot to both registers, then change RDX's slot if both 839 // need to be spilled. 840 if (IsRCXLiveIn) 841 RCXShadowSlot = InitSlot; 842 if (IsRDXLiveIn) 843 RDXShadowSlot = InitSlot; 844 if (IsRDXLiveIn && IsRCXLiveIn) 845 RDXShadowSlot += 8; 846 // Emit the saves if needed. 847 if (IsRCXLiveIn) 848 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 849 RCXShadowSlot) 850 .addReg(X86::RCX); 851 if (IsRDXLiveIn) 852 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 853 RDXShadowSlot) 854 .addReg(X86::RDX); 855 } else { 856 // Not in the prolog. Copy RAX to a virtual reg. 857 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 858 } 859 860 // Add code to MBB to check for overflow and set the new target stack pointer 861 // to zero if so. 862 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 863 .addReg(ZeroReg, RegState::Undef) 864 .addReg(ZeroReg, RegState::Undef); 865 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 866 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 867 .addReg(CopyReg) 868 .addReg(SizeReg); 869 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) 870 .addReg(TestReg) 871 .addReg(ZeroReg) 872 .addImm(X86::COND_B); 873 874 // FinalReg now holds final stack pointer value, or zero if 875 // allocation would overflow. Compare against the current stack 876 // limit from the thread environment block. Note this limit is the 877 // lowest touched page on the stack, not the point at which the OS 878 // will cause an overflow exception, so this is just an optimization 879 // to avoid unnecessarily touching pages that are below the current 880 // SP but already committed to the stack by the OS. 881 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 882 .addReg(0) 883 .addImm(1) 884 .addReg(0) 885 .addImm(ThreadEnvironmentStackLimit) 886 .addReg(X86::GS); 887 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 888 // Jump if the desired stack pointer is at or above the stack limit. 889 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); 890 891 // Add code to roundMBB to round the final stack pointer to a page boundary. 892 RoundMBB->addLiveIn(FinalReg); 893 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 894 .addReg(FinalReg) 895 .addImm(PageMask); 896 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 897 898 // LimitReg now holds the current stack limit, RoundedReg page-rounded 899 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 900 // and probe until we reach RoundedReg. 901 if (!InProlog) { 902 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 903 .addReg(LimitReg) 904 .addMBB(RoundMBB) 905 .addReg(ProbeReg) 906 .addMBB(LoopMBB); 907 } 908 909 LoopMBB->addLiveIn(JoinReg); 910 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 911 false, -PageSize); 912 913 // Probe by storing a byte onto the stack. 914 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 915 .addReg(ProbeReg) 916 .addImm(1) 917 .addReg(0) 918 .addImm(0) 919 .addReg(0) 920 .addImm(0); 921 922 LoopMBB->addLiveIn(RoundedReg); 923 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 924 .addReg(RoundedReg) 925 .addReg(ProbeReg); 926 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); 927 928 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 929 930 // If in prolog, restore RDX and RCX. 931 if (InProlog) { 932 if (RCXShadowSlot) // It means we spilled RCX in the prologue. 933 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 934 TII.get(X86::MOV64rm), X86::RCX), 935 X86::RSP, false, RCXShadowSlot); 936 if (RDXShadowSlot) // It means we spilled RDX in the prologue. 937 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 938 TII.get(X86::MOV64rm), X86::RDX), 939 X86::RSP, false, RDXShadowSlot); 940 } 941 942 // Now that the probing is done, add code to continueMBB to update 943 // the stack pointer for real. 944 ContinueMBB->addLiveIn(SizeReg); 945 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 946 .addReg(X86::RSP) 947 .addReg(SizeReg); 948 949 // Add the control flow edges we need. 950 MBB.addSuccessor(ContinueMBB); 951 MBB.addSuccessor(RoundMBB); 952 RoundMBB->addSuccessor(LoopMBB); 953 LoopMBB->addSuccessor(ContinueMBB); 954 LoopMBB->addSuccessor(LoopMBB); 955 956 // Mark all the instructions added to the prolog as frame setup. 957 if (InProlog) { 958 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 959 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 960 } 961 for (MachineInstr &MI : *RoundMBB) { 962 MI.setFlag(MachineInstr::FrameSetup); 963 } 964 for (MachineInstr &MI : *LoopMBB) { 965 MI.setFlag(MachineInstr::FrameSetup); 966 } 967 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); 968 CMBBI != ContinueMBBI; ++CMBBI) { 969 CMBBI->setFlag(MachineInstr::FrameSetup); 970 } 971 } 972 } 973 974 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF, 975 MachineBasicBlock &MBB, 976 MachineBasicBlock::iterator MBBI, 977 const DebugLoc &DL, 978 bool InProlog) const { 979 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 980 981 // FIXME: Add indirect thunk support and remove this. 982 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) 983 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 984 "code model and indirect thunks not yet implemented."); 985 986 unsigned CallOp; 987 if (Is64Bit) 988 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 989 else 990 CallOp = X86::CALLpcrel32; 991 992 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 993 994 MachineInstrBuilder CI; 995 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 996 997 // All current stack probes take AX and SP as input, clobber flags, and 998 // preserve all registers. x86_64 probes leave RSP unmodified. 999 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 1000 // For the large code model, we have to call through a register. Use R11, 1001 // as it is scratch in all supported calling conventions. 1002 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 1003 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1004 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 1005 } else { 1006 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 1007 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1008 } 1009 1010 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; 1011 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; 1012 CI.addReg(AX, RegState::Implicit) 1013 .addReg(SP, RegState::Implicit) 1014 .addReg(AX, RegState::Define | RegState::Implicit) 1015 .addReg(SP, RegState::Define | RegState::Implicit) 1016 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 1017 1018 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1019 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 1020 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 1021 // themselves. They also does not clobber %rax so we can reuse it when 1022 // adjusting %rsp. 1023 // All other platforms do not specify a particular ABI for the stack probe 1024 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 1025 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) 1026 .addReg(SP) 1027 .addReg(AX); 1028 } 1029 1030 if (InProlog) { 1031 // Apply the frame setup flag to all inserted instrs. 1032 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 1033 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 1034 } 1035 } 1036 1037 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 1038 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 1039 // and might require smaller successive adjustments. 1040 const uint64_t Win64MaxSEHOffset = 128; 1041 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 1042 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 1043 return SEHFrameOffset & -16; 1044 } 1045 1046 // If we're forcing a stack realignment we can't rely on just the frame 1047 // info, we need to know the ABI stack alignment as well in case we 1048 // have a call out. Otherwise just make sure we have some alignment - we'll 1049 // go with the minimum SlotSize. 1050 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 1051 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1052 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment. 1053 Align StackAlign = getStackAlign(); 1054 if (MF.getFunction().hasFnAttribute("stackrealign")) { 1055 if (MFI.hasCalls()) 1056 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 1057 else if (MaxAlign < SlotSize) 1058 MaxAlign = Align(SlotSize); 1059 } 1060 return MaxAlign.value(); 1061 } 1062 1063 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 1064 MachineBasicBlock::iterator MBBI, 1065 const DebugLoc &DL, unsigned Reg, 1066 uint64_t MaxAlign) const { 1067 uint64_t Val = -MaxAlign; 1068 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 1069 1070 MachineFunction &MF = *MBB.getParent(); 1071 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 1072 const X86TargetLowering &TLI = *STI.getTargetLowering(); 1073 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 1074 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 1075 1076 // We want to make sure that (in worst case) less than StackProbeSize bytes 1077 // are not probed after the AND. This assumption is used in 1078 // emitStackProbeInlineGeneric. 1079 if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) { 1080 { 1081 NumFrameLoopProbe++; 1082 MachineBasicBlock *entryMBB = 1083 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1084 MachineBasicBlock *headMBB = 1085 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1086 MachineBasicBlock *bodyMBB = 1087 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1088 MachineBasicBlock *footMBB = 1089 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1090 1091 MachineFunction::iterator MBBIter = MBB.getIterator(); 1092 MF.insert(MBBIter, entryMBB); 1093 MF.insert(MBBIter, headMBB); 1094 MF.insert(MBBIter, bodyMBB); 1095 MF.insert(MBBIter, footMBB); 1096 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 1097 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 1098 : Is64Bit ? X86::R11D 1099 : X86::EAX; 1100 1101 // Setup entry block 1102 { 1103 1104 entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI); 1105 BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 1106 .addReg(StackPtr) 1107 .setMIFlag(MachineInstr::FrameSetup); 1108 MachineInstr *MI = 1109 BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed) 1110 .addReg(FinalStackProbed) 1111 .addImm(Val) 1112 .setMIFlag(MachineInstr::FrameSetup); 1113 1114 // The EFLAGS implicit def is dead. 1115 MI->getOperand(3).setIsDead(); 1116 1117 BuildMI(entryMBB, DL, 1118 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1119 .addReg(FinalStackProbed) 1120 .addReg(StackPtr) 1121 .setMIFlag(MachineInstr::FrameSetup); 1122 BuildMI(entryMBB, DL, TII.get(X86::JCC_1)) 1123 .addMBB(&MBB) 1124 .addImm(X86::COND_E) 1125 .setMIFlag(MachineInstr::FrameSetup); 1126 entryMBB->addSuccessor(headMBB); 1127 entryMBB->addSuccessor(&MBB); 1128 } 1129 1130 // Loop entry block 1131 1132 { 1133 const unsigned SUBOpc = 1134 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1135 BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr) 1136 .addReg(StackPtr) 1137 .addImm(StackProbeSize) 1138 .setMIFlag(MachineInstr::FrameSetup); 1139 1140 BuildMI(headMBB, DL, 1141 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1142 .addReg(FinalStackProbed) 1143 .addReg(StackPtr) 1144 .setMIFlag(MachineInstr::FrameSetup); 1145 1146 // jump 1147 BuildMI(headMBB, DL, TII.get(X86::JCC_1)) 1148 .addMBB(footMBB) 1149 .addImm(X86::COND_B) 1150 .setMIFlag(MachineInstr::FrameSetup); 1151 1152 headMBB->addSuccessor(bodyMBB); 1153 headMBB->addSuccessor(footMBB); 1154 } 1155 1156 // setup loop body 1157 { 1158 addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc)) 1159 .setMIFlag(MachineInstr::FrameSetup), 1160 StackPtr, false, 0) 1161 .addImm(0) 1162 .setMIFlag(MachineInstr::FrameSetup); 1163 1164 const unsigned SUBOpc = 1165 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1166 BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr) 1167 .addReg(StackPtr) 1168 .addImm(StackProbeSize) 1169 .setMIFlag(MachineInstr::FrameSetup); 1170 1171 // cmp with stack pointer bound 1172 BuildMI(bodyMBB, DL, 1173 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1174 .addReg(FinalStackProbed) 1175 .addReg(StackPtr) 1176 .setMIFlag(MachineInstr::FrameSetup); 1177 1178 // jump 1179 BuildMI(bodyMBB, DL, TII.get(X86::JCC_1)) 1180 .addMBB(bodyMBB) 1181 .addImm(X86::COND_B) 1182 .setMIFlag(MachineInstr::FrameSetup); 1183 bodyMBB->addSuccessor(bodyMBB); 1184 bodyMBB->addSuccessor(footMBB); 1185 } 1186 1187 // setup loop footer 1188 { 1189 BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr) 1190 .addReg(FinalStackProbed) 1191 .setMIFlag(MachineInstr::FrameSetup); 1192 addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc)) 1193 .setMIFlag(MachineInstr::FrameSetup), 1194 StackPtr, false, 0) 1195 .addImm(0) 1196 .setMIFlag(MachineInstr::FrameSetup); 1197 footMBB->addSuccessor(&MBB); 1198 } 1199 1200 recomputeLiveIns(*headMBB); 1201 recomputeLiveIns(*bodyMBB); 1202 recomputeLiveIns(*footMBB); 1203 recomputeLiveIns(MBB); 1204 } 1205 } else { 1206 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 1207 .addReg(Reg) 1208 .addImm(Val) 1209 .setMIFlag(MachineInstr::FrameSetup); 1210 1211 // The EFLAGS implicit def is dead. 1212 MI->getOperand(3).setIsDead(); 1213 } 1214 } 1215 1216 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { 1217 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be 1218 // clobbered by any interrupt handler. 1219 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1220 "MF used frame lowering for wrong subtarget"); 1221 const Function &Fn = MF.getFunction(); 1222 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 1223 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); 1224 } 1225 1226 bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const { 1227 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1228 } 1229 1230 bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const { 1231 return !isWin64Prologue(MF) && MF.needsFrameMoves(); 1232 } 1233 1234 /// emitPrologue - Push callee-saved registers onto the stack, which 1235 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 1236 /// space for local variables. Also emit labels used by the exception handler to 1237 /// generate the exception handling frames. 1238 1239 /* 1240 Here's a gist of what gets emitted: 1241 1242 ; Establish frame pointer, if needed 1243 [if needs FP] 1244 push %rbp 1245 .cfi_def_cfa_offset 16 1246 .cfi_offset %rbp, -16 1247 .seh_pushreg %rpb 1248 mov %rsp, %rbp 1249 .cfi_def_cfa_register %rbp 1250 1251 ; Spill general-purpose registers 1252 [for all callee-saved GPRs] 1253 pushq %<reg> 1254 [if not needs FP] 1255 .cfi_def_cfa_offset (offset from RETADDR) 1256 .seh_pushreg %<reg> 1257 1258 ; If the required stack alignment > default stack alignment 1259 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 1260 ; of unknown size in the stack frame. 1261 [if stack needs re-alignment] 1262 and $MASK, %rsp 1263 1264 ; Allocate space for locals 1265 [if target is Windows and allocated space > 4096 bytes] 1266 ; Windows needs special care for allocations larger 1267 ; than one page. 1268 mov $NNN, %rax 1269 call ___chkstk_ms/___chkstk 1270 sub %rax, %rsp 1271 [else] 1272 sub $NNN, %rsp 1273 1274 [if needs FP] 1275 .seh_stackalloc (size of XMM spill slots) 1276 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 1277 [else] 1278 .seh_stackalloc NNN 1279 1280 ; Spill XMMs 1281 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 1282 ; they may get spilled on any platform, if the current function 1283 ; calls @llvm.eh.unwind.init 1284 [if needs FP] 1285 [for all callee-saved XMM registers] 1286 movaps %<xmm reg>, -MMM(%rbp) 1287 [for all callee-saved XMM registers] 1288 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 1289 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 1290 [else] 1291 [for all callee-saved XMM registers] 1292 movaps %<xmm reg>, KKK(%rsp) 1293 [for all callee-saved XMM registers] 1294 .seh_savexmm %<xmm reg>, KKK 1295 1296 .seh_endprologue 1297 1298 [if needs base pointer] 1299 mov %rsp, %rbx 1300 [if needs to restore base pointer] 1301 mov %rsp, -MMM(%rbp) 1302 1303 ; Emit CFI info 1304 [if needs FP] 1305 [for all callee-saved registers] 1306 .cfi_offset %<reg>, (offset from %rbp) 1307 [else] 1308 .cfi_def_cfa_offset (offset from RETADDR) 1309 [for all callee-saved registers] 1310 .cfi_offset %<reg>, (offset from %rsp) 1311 1312 Notes: 1313 - .seh directives are emitted only for Windows 64 ABI 1314 - .cv_fpo directives are emitted on win32 when emitting CodeView 1315 - .cfi directives are emitted for all other ABIs 1316 - for 32-bit code, substitute %e?? registers for %r?? 1317 */ 1318 1319 void X86FrameLowering::emitPrologue(MachineFunction &MF, 1320 MachineBasicBlock &MBB) const { 1321 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1322 "MF used frame lowering for wrong subtarget"); 1323 MachineBasicBlock::iterator MBBI = MBB.begin(); 1324 MachineFrameInfo &MFI = MF.getFrameInfo(); 1325 const Function &Fn = MF.getFunction(); 1326 MachineModuleInfo &MMI = MF.getMMI(); 1327 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1328 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 1329 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 1330 bool IsFunclet = MBB.isEHFuncletEntry(); 1331 EHPersonality Personality = EHPersonality::Unknown; 1332 if (Fn.hasPersonalityFn()) 1333 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 1334 bool FnHasClrFunclet = 1335 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 1336 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 1337 bool HasFP = hasFP(MF); 1338 bool IsWin64Prologue = isWin64Prologue(MF); 1339 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 1340 // FIXME: Emit FPO data for EH funclets. 1341 bool NeedsWinFPO = 1342 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); 1343 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 1344 bool NeedsDwarfCFI = needsDwarfCFI(MF); 1345 Register FramePtr = TRI->getFrameRegister(MF); 1346 const Register MachineFramePtr = 1347 STI.isTarget64BitILP32() 1348 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1349 Register BasePtr = TRI->getBaseRegister(); 1350 bool HasWinCFI = false; 1351 1352 // Debug location must be unknown since the first debug location is used 1353 // to determine the end of the prologue. 1354 DebugLoc DL; 1355 1356 // Space reserved for stack-based arguments when making a (ABI-guaranteed) 1357 // tail call. 1358 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 1359 if (TailCallArgReserveSize && IsWin64Prologue) 1360 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 1361 1362 const bool EmitStackProbeCall = 1363 STI.getTargetLowering()->hasStackProbeSymbol(MF); 1364 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); 1365 1366 if (HasFP && X86FI->hasSwiftAsyncContext()) { 1367 if (STI.swiftAsyncContextIsDynamicallySet()) { 1368 // The special symbol below is absolute and has a *value* suitable to be 1369 // combined with the frame pointer directly. 1370 BuildMI(MBB, MBBI, DL, TII.get(X86::OR64rm), MachineFramePtr) 1371 .addUse(MachineFramePtr) 1372 .addUse(X86::RIP) 1373 .addImm(1) 1374 .addUse(X86::NoRegister) 1375 .addExternalSymbol("swift_async_extendedFramePointerFlags", 1376 X86II::MO_GOTPCREL) 1377 .addUse(X86::NoRegister); 1378 } else { 1379 BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8), MachineFramePtr) 1380 .addUse(MachineFramePtr) 1381 .addImm(60) 1382 .setMIFlag(MachineInstr::FrameSetup); 1383 } 1384 } 1385 1386 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 1387 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1388 // stack alignment. 1389 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1390 Fn.arg_size() == 2) { 1391 StackSize += 8; 1392 MFI.setStackSize(StackSize); 1393 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); 1394 } 1395 1396 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1397 // function, and use up to 128 bytes of stack space, don't have a frame 1398 // pointer, calls, or dynamic alloca then we do not need to adjust the 1399 // stack pointer (we fit in the Red Zone). We also check that we don't 1400 // push and pop from the stack. 1401 if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) && 1402 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1403 !MFI.adjustsStack() && // No calls. 1404 !EmitStackProbeCall && // No stack probes. 1405 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1406 !MF.shouldSplitStack()) { // Regular stack 1407 uint64_t MinSize = 1408 X86FI->getCalleeSavedFrameSize() - X86FI->getTCReturnAddrDelta(); 1409 if (HasFP) MinSize += SlotSize; 1410 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1411 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1412 MFI.setStackSize(StackSize); 1413 } 1414 1415 // Insert stack pointer adjustment for later moving of return addr. Only 1416 // applies to tail call optimized functions where the callee argument stack 1417 // size is bigger than the callers. 1418 if (TailCallArgReserveSize != 0) { 1419 BuildStackAdjustment(MBB, MBBI, DL, -(int)TailCallArgReserveSize, 1420 /*InEpilogue=*/false) 1421 .setMIFlag(MachineInstr::FrameSetup); 1422 } 1423 1424 // Mapping for machine moves: 1425 // 1426 // DST: VirtualFP AND 1427 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1428 // ELSE => DW_CFA_def_cfa 1429 // 1430 // SRC: VirtualFP AND 1431 // DST: Register => DW_CFA_def_cfa_register 1432 // 1433 // ELSE 1434 // OFFSET < 0 => DW_CFA_offset_extended_sf 1435 // REG < 64 => DW_CFA_offset + Reg 1436 // ELSE => DW_CFA_offset_extended 1437 1438 uint64_t NumBytes = 0; 1439 int stackGrowth = -SlotSize; 1440 1441 // Find the funclet establisher parameter 1442 Register Establisher = X86::NoRegister; 1443 if (IsClrFunclet) 1444 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1445 else if (IsFunclet) 1446 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1447 1448 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1449 // Immediately spill establisher into the home slot. 1450 // The runtime cares about this. 1451 // MOV64mr %rdx, 16(%rsp) 1452 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1453 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1454 .addReg(Establisher) 1455 .setMIFlag(MachineInstr::FrameSetup); 1456 MBB.addLiveIn(Establisher); 1457 } 1458 1459 if (HasFP) { 1460 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1461 1462 // Calculate required stack adjustment. 1463 uint64_t FrameSize = StackSize - SlotSize; 1464 // If required, include space for extra hidden slot for stashing base pointer. 1465 if (X86FI->getRestoreBasePointer()) 1466 FrameSize += SlotSize; 1467 1468 NumBytes = FrameSize - 1469 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1470 1471 // Callee-saved registers are pushed on stack before the stack is realigned. 1472 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 1473 NumBytes = alignTo(NumBytes, MaxAlign); 1474 1475 // Save EBP/RBP into the appropriate stack slot. 1476 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1477 .addReg(MachineFramePtr, RegState::Kill) 1478 .setMIFlag(MachineInstr::FrameSetup); 1479 1480 if (NeedsDwarfCFI) { 1481 // Mark the place where EBP/RBP was saved. 1482 // Define the current CFA rule to use the provided offset. 1483 assert(StackSize); 1484 BuildCFI(MBB, MBBI, DL, 1485 MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth)); 1486 1487 // Change the rule for the FramePtr to be an "offset" rule. 1488 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1489 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset( 1490 nullptr, DwarfFramePtr, 2 * stackGrowth)); 1491 } 1492 1493 if (NeedsWinCFI) { 1494 HasWinCFI = true; 1495 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1496 .addImm(FramePtr) 1497 .setMIFlag(MachineInstr::FrameSetup); 1498 } 1499 1500 if (!IsFunclet) { 1501 if (X86FI->hasSwiftAsyncContext()) { 1502 const auto &Attrs = MF.getFunction().getAttributes(); 1503 1504 // Before we update the live frame pointer we have to ensure there's a 1505 // valid (or null) asynchronous context in its slot just before FP in 1506 // the frame record, so store it now. 1507 if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) { 1508 // We have an initial context in r14, store it just before the frame 1509 // pointer. 1510 MBB.addLiveIn(X86::R14); 1511 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1512 .addReg(X86::R14) 1513 .setMIFlag(MachineInstr::FrameSetup); 1514 } else { 1515 // No initial context, store null so that there's no pointer that 1516 // could be misused. 1517 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i8)) 1518 .addImm(0) 1519 .setMIFlag(MachineInstr::FrameSetup); 1520 } 1521 1522 if (NeedsWinCFI) { 1523 HasWinCFI = true; 1524 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1525 .addImm(X86::R14) 1526 .setMIFlag(MachineInstr::FrameSetup); 1527 } 1528 1529 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr) 1530 .addUse(X86::RSP) 1531 .addImm(1) 1532 .addUse(X86::NoRegister) 1533 .addImm(8) 1534 .addUse(X86::NoRegister) 1535 .setMIFlag(MachineInstr::FrameSetup); 1536 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri8), X86::RSP) 1537 .addUse(X86::RSP) 1538 .addImm(8) 1539 .setMIFlag(MachineInstr::FrameSetup); 1540 } 1541 1542 if (!IsWin64Prologue && !IsFunclet) { 1543 // Update EBP with the new base value. 1544 if (!X86FI->hasSwiftAsyncContext()) 1545 BuildMI(MBB, MBBI, DL, 1546 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1547 FramePtr) 1548 .addReg(StackPtr) 1549 .setMIFlag(MachineInstr::FrameSetup); 1550 1551 if (NeedsDwarfCFI) { 1552 // Mark effective beginning of when frame pointer becomes valid. 1553 // Define the current CFA to use the EBP/RBP register. 1554 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1555 BuildCFI( 1556 MBB, MBBI, DL, 1557 MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr)); 1558 } 1559 1560 if (NeedsWinFPO) { 1561 // .cv_fpo_setframe $FramePtr 1562 HasWinCFI = true; 1563 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1564 .addImm(FramePtr) 1565 .addImm(0) 1566 .setMIFlag(MachineInstr::FrameSetup); 1567 } 1568 } 1569 } 1570 } else { 1571 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1572 NumBytes = StackSize - 1573 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1574 } 1575 1576 // Update the offset adjustment, which is mainly used by codeview to translate 1577 // from ESP to VFRAME relative local variable offsets. 1578 if (!IsFunclet) { 1579 if (HasFP && TRI->hasStackRealignment(MF)) 1580 MFI.setOffsetAdjustment(-NumBytes); 1581 else 1582 MFI.setOffsetAdjustment(-StackSize); 1583 } 1584 1585 // For EH funclets, only allocate enough space for outgoing calls. Save the 1586 // NumBytes value that we would've used for the parent frame. 1587 unsigned ParentFrameNumBytes = NumBytes; 1588 if (IsFunclet) 1589 NumBytes = getWinEHFuncletFrameSize(MF); 1590 1591 // Skip the callee-saved push instructions. 1592 bool PushedRegs = false; 1593 int StackOffset = 2 * stackGrowth; 1594 1595 while (MBBI != MBB.end() && 1596 MBBI->getFlag(MachineInstr::FrameSetup) && 1597 (MBBI->getOpcode() == X86::PUSH32r || 1598 MBBI->getOpcode() == X86::PUSH64r)) { 1599 PushedRegs = true; 1600 Register Reg = MBBI->getOperand(0).getReg(); 1601 ++MBBI; 1602 1603 if (!HasFP && NeedsDwarfCFI) { 1604 // Mark callee-saved push instruction. 1605 // Define the current CFA rule to use the provided offset. 1606 assert(StackSize); 1607 BuildCFI(MBB, MBBI, DL, 1608 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset)); 1609 StackOffset += stackGrowth; 1610 } 1611 1612 if (NeedsWinCFI) { 1613 HasWinCFI = true; 1614 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1615 .addImm(Reg) 1616 .setMIFlag(MachineInstr::FrameSetup); 1617 } 1618 } 1619 1620 // Realign stack after we pushed callee-saved registers (so that we'll be 1621 // able to calculate their offsets from the frame pointer). 1622 // Don't do this for Win64, it needs to realign the stack after the prologue. 1623 if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) { 1624 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1625 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1626 1627 if (NeedsWinCFI) { 1628 HasWinCFI = true; 1629 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) 1630 .addImm(MaxAlign) 1631 .setMIFlag(MachineInstr::FrameSetup); 1632 } 1633 } 1634 1635 // If there is an SUB32ri of ESP immediately before this instruction, merge 1636 // the two. This can be the case when tail call elimination is enabled and 1637 // the callee has more arguments then the caller. 1638 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1639 1640 // Adjust stack pointer: ESP -= numbytes. 1641 1642 // Windows and cygwin/mingw require a prologue helper routine when allocating 1643 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1644 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1645 // stack and adjust the stack pointer in one go. The 64-bit version of 1646 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1647 // responsible for adjusting the stack pointer. Touching the stack at 4K 1648 // increments is necessary to ensure that the guard pages used by the OS 1649 // virtual memory manager are allocated in correct sequence. 1650 uint64_t AlignedNumBytes = NumBytes; 1651 if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) 1652 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1653 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) { 1654 assert(!X86FI->getUsesRedZone() && 1655 "The Red Zone is not accounted for in stack probes"); 1656 1657 // Check whether EAX is livein for this block. 1658 bool isEAXAlive = isEAXLiveIn(MBB); 1659 1660 if (isEAXAlive) { 1661 if (Is64Bit) { 1662 // Save RAX 1663 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1664 .addReg(X86::RAX, RegState::Kill) 1665 .setMIFlag(MachineInstr::FrameSetup); 1666 } else { 1667 // Save EAX 1668 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1669 .addReg(X86::EAX, RegState::Kill) 1670 .setMIFlag(MachineInstr::FrameSetup); 1671 } 1672 } 1673 1674 if (Is64Bit) { 1675 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1676 // Function prologue is responsible for adjusting the stack pointer. 1677 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1678 if (isUInt<32>(Alloc)) { 1679 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1680 .addImm(Alloc) 1681 .setMIFlag(MachineInstr::FrameSetup); 1682 } else if (isInt<32>(Alloc)) { 1683 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX) 1684 .addImm(Alloc) 1685 .setMIFlag(MachineInstr::FrameSetup); 1686 } else { 1687 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) 1688 .addImm(Alloc) 1689 .setMIFlag(MachineInstr::FrameSetup); 1690 } 1691 } else { 1692 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1693 // We'll also use 4 already allocated bytes for EAX. 1694 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1695 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1696 .setMIFlag(MachineInstr::FrameSetup); 1697 } 1698 1699 // Call __chkstk, __chkstk_ms, or __alloca. 1700 emitStackProbe(MF, MBB, MBBI, DL, true); 1701 1702 if (isEAXAlive) { 1703 // Restore RAX/EAX 1704 MachineInstr *MI; 1705 if (Is64Bit) 1706 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 1707 StackPtr, false, NumBytes - 8); 1708 else 1709 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1710 StackPtr, false, NumBytes - 4); 1711 MI->setFlag(MachineInstr::FrameSetup); 1712 MBB.insert(MBBI, MI); 1713 } 1714 } else if (NumBytes) { 1715 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 1716 } 1717 1718 if (NeedsWinCFI && NumBytes) { 1719 HasWinCFI = true; 1720 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1721 .addImm(NumBytes) 1722 .setMIFlag(MachineInstr::FrameSetup); 1723 } 1724 1725 int SEHFrameOffset = 0; 1726 unsigned SPOrEstablisher; 1727 if (IsFunclet) { 1728 if (IsClrFunclet) { 1729 // The establisher parameter passed to a CLR funclet is actually a pointer 1730 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1731 // to find the root function establisher frame by loading the PSPSym from 1732 // the intermediate frame. 1733 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1734 MachinePointerInfo NoInfo; 1735 MBB.addLiveIn(Establisher); 1736 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1737 Establisher, false, PSPSlotOffset) 1738 .addMemOperand(MF.getMachineMemOperand( 1739 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize))); 1740 ; 1741 // Save the root establisher back into the current funclet's (mostly 1742 // empty) frame, in case a sub-funclet or the GC needs it. 1743 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1744 false, PSPSlotOffset) 1745 .addReg(Establisher) 1746 .addMemOperand(MF.getMachineMemOperand( 1747 NoInfo, 1748 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1749 SlotSize, Align(SlotSize))); 1750 } 1751 SPOrEstablisher = Establisher; 1752 } else { 1753 SPOrEstablisher = StackPtr; 1754 } 1755 1756 if (IsWin64Prologue && HasFP) { 1757 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1758 // this calculation on the incoming establisher, which holds the value of 1759 // RSP from the parent frame at the end of the prologue. 1760 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1761 if (SEHFrameOffset) 1762 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1763 SPOrEstablisher, false, SEHFrameOffset); 1764 else 1765 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1766 .addReg(SPOrEstablisher); 1767 1768 // If this is not a funclet, emit the CFI describing our frame pointer. 1769 if (NeedsWinCFI && !IsFunclet) { 1770 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 1771 HasWinCFI = true; 1772 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1773 .addImm(FramePtr) 1774 .addImm(SEHFrameOffset) 1775 .setMIFlag(MachineInstr::FrameSetup); 1776 if (isAsynchronousEHPersonality(Personality)) 1777 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 1778 } 1779 } else if (IsFunclet && STI.is32Bit()) { 1780 // Reset EBP / ESI to something good for funclets. 1781 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 1782 // If we're a catch funclet, we can be returned to via catchret. Save ESP 1783 // into the registration node so that the runtime will restore it for us. 1784 if (!MBB.isCleanupFuncletEntry()) { 1785 assert(Personality == EHPersonality::MSVC_CXX); 1786 Register FrameReg; 1787 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 1788 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed(); 1789 // ESP is the first field, so no extra displacement is needed. 1790 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 1791 false, EHRegOffset) 1792 .addReg(X86::ESP); 1793 } 1794 } 1795 1796 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 1797 const MachineInstr &FrameInstr = *MBBI; 1798 ++MBBI; 1799 1800 if (NeedsWinCFI) { 1801 int FI; 1802 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 1803 if (X86::FR64RegClass.contains(Reg)) { 1804 int Offset; 1805 Register IgnoredFrameReg; 1806 if (IsWin64Prologue && IsFunclet) 1807 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); 1808 else 1809 Offset = 1810 getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() + 1811 SEHFrameOffset; 1812 1813 HasWinCFI = true; 1814 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 1815 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 1816 .addImm(Reg) 1817 .addImm(Offset) 1818 .setMIFlag(MachineInstr::FrameSetup); 1819 } 1820 } 1821 } 1822 } 1823 1824 if (NeedsWinCFI && HasWinCFI) 1825 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 1826 .setMIFlag(MachineInstr::FrameSetup); 1827 1828 if (FnHasClrFunclet && !IsFunclet) { 1829 // Save the so-called Initial-SP (i.e. the value of the stack pointer 1830 // immediately after the prolog) into the PSPSlot so that funclets 1831 // and the GC can recover it. 1832 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1833 auto PSPInfo = MachinePointerInfo::getFixedStack( 1834 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 1835 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 1836 PSPSlotOffset) 1837 .addReg(StackPtr) 1838 .addMemOperand(MF.getMachineMemOperand( 1839 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1840 SlotSize, Align(SlotSize))); 1841 } 1842 1843 // Realign stack after we spilled callee-saved registers (so that we'll be 1844 // able to calculate their offsets from the frame pointer). 1845 // Win64 requires aligning the stack after the prologue. 1846 if (IsWin64Prologue && TRI->hasStackRealignment(MF)) { 1847 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1848 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 1849 } 1850 1851 // We already dealt with stack realignment and funclets above. 1852 if (IsFunclet && STI.is32Bit()) 1853 return; 1854 1855 // If we need a base pointer, set it up here. It's whatever the value 1856 // of the stack pointer is at this point. Any variable size objects 1857 // will be allocated after this, so we can still use the base pointer 1858 // to reference locals. 1859 if (TRI->hasBasePointer(MF)) { 1860 // Update the base pointer with the current stack pointer. 1861 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 1862 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 1863 .addReg(SPOrEstablisher) 1864 .setMIFlag(MachineInstr::FrameSetup); 1865 if (X86FI->getRestoreBasePointer()) { 1866 // Stash value of base pointer. Saving RSP instead of EBP shortens 1867 // dependence chain. Used by SjLj EH. 1868 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1869 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 1870 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 1871 .addReg(SPOrEstablisher) 1872 .setMIFlag(MachineInstr::FrameSetup); 1873 } 1874 1875 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 1876 // Stash the value of the frame pointer relative to the base pointer for 1877 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 1878 // it recovers the frame pointer from the base pointer rather than the 1879 // other way around. 1880 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1881 Register UsedReg; 1882 int Offset = 1883 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 1884 .getFixed(); 1885 assert(UsedReg == BasePtr); 1886 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 1887 .addReg(FramePtr) 1888 .setMIFlag(MachineInstr::FrameSetup); 1889 } 1890 } 1891 1892 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 1893 // Mark end of stack pointer adjustment. 1894 if (!HasFP && NumBytes) { 1895 // Define the current CFA rule to use the provided offset. 1896 assert(StackSize); 1897 BuildCFI( 1898 MBB, MBBI, DL, 1899 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth)); 1900 } 1901 1902 // Emit DWARF info specifying the offsets of the callee-saved registers. 1903 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true); 1904 } 1905 1906 // X86 Interrupt handling function cannot assume anything about the direction 1907 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 1908 // in each prologue of interrupt handler function. 1909 // 1910 // FIXME: Create "cld" instruction only in these cases: 1911 // 1. The interrupt handling function uses any of the "rep" instructions. 1912 // 2. Interrupt handling function calls another function. 1913 // 1914 if (Fn.getCallingConv() == CallingConv::X86_INTR) 1915 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 1916 .setMIFlag(MachineInstr::FrameSetup); 1917 1918 // At this point we know if the function has WinCFI or not. 1919 MF.setHasWinCFI(HasWinCFI); 1920 } 1921 1922 bool X86FrameLowering::canUseLEAForSPInEpilogue( 1923 const MachineFunction &MF) const { 1924 // We can't use LEA instructions for adjusting the stack pointer if we don't 1925 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 1926 // to deallocate the stack. 1927 // This means that we can use LEA for SP in two situations: 1928 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 1929 // 2. We *have* a frame pointer which means we are permitted to use LEA. 1930 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 1931 } 1932 1933 static bool isFuncletReturnInstr(MachineInstr &MI) { 1934 switch (MI.getOpcode()) { 1935 case X86::CATCHRET: 1936 case X86::CLEANUPRET: 1937 return true; 1938 default: 1939 return false; 1940 } 1941 llvm_unreachable("impossible"); 1942 } 1943 1944 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 1945 // stack. It holds a pointer to the bottom of the root function frame. The 1946 // establisher frame pointer passed to a nested funclet may point to the 1947 // (mostly empty) frame of its parent funclet, but it will need to find 1948 // the frame of the root function to access locals. To facilitate this, 1949 // every funclet copies the pointer to the bottom of the root function 1950 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 1951 // same offset for the PSPSym in the root function frame that's used in the 1952 // funclets' frames allows each funclet to dynamically accept any ancestor 1953 // frame as its establisher argument (the runtime doesn't guarantee the 1954 // immediate parent for some reason lost to history), and also allows the GC, 1955 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 1956 // frame with only a single offset reported for the entire method. 1957 unsigned 1958 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 1959 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 1960 Register SPReg; 1961 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 1962 /*IgnoreSPUpdates*/ true) 1963 .getFixed(); 1964 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 1965 return static_cast<unsigned>(Offset); 1966 } 1967 1968 unsigned 1969 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 1970 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1971 // This is the size of the pushed CSRs. 1972 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1973 // This is the size of callee saved XMMs. 1974 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 1975 unsigned XMMSize = WinEHXMMSlotInfo.size() * 1976 TRI->getSpillSize(X86::VR128RegClass); 1977 // This is the amount of stack a funclet needs to allocate. 1978 unsigned UsedSize; 1979 EHPersonality Personality = 1980 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 1981 if (Personality == EHPersonality::CoreCLR) { 1982 // CLR funclets need to hold enough space to include the PSPSym, at the 1983 // same offset from the stack pointer (immediately after the prolog) as it 1984 // resides at in the main function. 1985 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 1986 } else { 1987 // Other funclets just need enough stack for outgoing call arguments. 1988 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 1989 } 1990 // RBP is not included in the callee saved register block. After pushing RBP, 1991 // everything is 16 byte aligned. Everything we allocate before an outgoing 1992 // call must also be 16 byte aligned. 1993 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign()); 1994 // Subtract out the size of the callee saved registers. This is how much stack 1995 // each funclet will allocate. 1996 return FrameSizeMinusRBP + XMMSize - CSSize; 1997 } 1998 1999 static bool isTailCallOpcode(unsigned Opc) { 2000 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 2001 Opc == X86::TCRETURNmi || 2002 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 2003 Opc == X86::TCRETURNmi64; 2004 } 2005 2006 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 2007 MachineBasicBlock &MBB) const { 2008 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2009 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2010 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 2011 MachineBasicBlock::iterator MBBI = Terminator; 2012 DebugLoc DL; 2013 if (MBBI != MBB.end()) 2014 DL = MBBI->getDebugLoc(); 2015 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 2016 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 2017 Register FramePtr = TRI->getFrameRegister(MF); 2018 Register MachineFramePtr = 2019 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 2020 2021 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2022 bool NeedsWin64CFI = 2023 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 2024 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 2025 2026 // Get the number of bytes to allocate from the FrameInfo. 2027 uint64_t StackSize = MFI.getStackSize(); 2028 uint64_t MaxAlign = calculateMaxStackAlign(MF); 2029 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2030 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 2031 bool HasFP = hasFP(MF); 2032 uint64_t NumBytes = 0; 2033 2034 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && 2035 !MF.getTarget().getTargetTriple().isOSWindows()) && 2036 MF.needsFrameMoves(); 2037 2038 if (IsFunclet) { 2039 assert(HasFP && "EH funclets without FP not yet implemented"); 2040 NumBytes = getWinEHFuncletFrameSize(MF); 2041 } else if (HasFP) { 2042 // Calculate required stack adjustment. 2043 uint64_t FrameSize = StackSize - SlotSize; 2044 NumBytes = FrameSize - CSSize - TailCallArgReserveSize; 2045 2046 // Callee-saved registers were pushed on stack before the stack was 2047 // realigned. 2048 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 2049 NumBytes = alignTo(FrameSize, MaxAlign); 2050 } else { 2051 NumBytes = StackSize - CSSize - TailCallArgReserveSize; 2052 } 2053 uint64_t SEHStackAllocAmt = NumBytes; 2054 2055 // AfterPop is the position to insert .cfi_restore. 2056 MachineBasicBlock::iterator AfterPop = MBBI; 2057 if (HasFP) { 2058 if (X86FI->hasSwiftAsyncContext()) { 2059 // Discard the context. 2060 int Offset = 16 + mergeSPUpdates(MBB, MBBI, true); 2061 emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/true); 2062 } 2063 // Pop EBP. 2064 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 2065 MachineFramePtr) 2066 .setMIFlag(MachineInstr::FrameDestroy); 2067 2068 // We need to reset FP to its untagged state on return. Bit 60 is currently 2069 // used to show the presence of an extended frame. 2070 if (X86FI->hasSwiftAsyncContext()) { 2071 BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8), 2072 MachineFramePtr) 2073 .addUse(MachineFramePtr) 2074 .addImm(60) 2075 .setMIFlag(MachineInstr::FrameDestroy); 2076 } 2077 2078 if (NeedsDwarfCFI) { 2079 unsigned DwarfStackPtr = 2080 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 2081 BuildCFI(MBB, MBBI, DL, 2082 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize)); 2083 if (!MBB.succ_empty() && !MBB.isReturnBlock()) { 2084 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 2085 BuildCFI(MBB, AfterPop, DL, 2086 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr)); 2087 --MBBI; 2088 --AfterPop; 2089 } 2090 --MBBI; 2091 } 2092 } 2093 2094 MachineBasicBlock::iterator FirstCSPop = MBBI; 2095 // Skip the callee-saved pop instructions. 2096 while (MBBI != MBB.begin()) { 2097 MachineBasicBlock::iterator PI = std::prev(MBBI); 2098 unsigned Opc = PI->getOpcode(); 2099 2100 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 2101 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2102 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2103 (Opc != X86::BTR64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)) && 2104 (Opc != X86::ADD64ri8 || !PI->getFlag(MachineInstr::FrameDestroy))) 2105 break; 2106 FirstCSPop = PI; 2107 } 2108 2109 --MBBI; 2110 } 2111 MBBI = FirstCSPop; 2112 2113 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 2114 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 2115 2116 if (MBBI != MBB.end()) 2117 DL = MBBI->getDebugLoc(); 2118 // If there is an ADD32ri or SUB32ri of ESP immediately before this 2119 // instruction, merge the two instructions. 2120 if (NumBytes || MFI.hasVarSizedObjects()) 2121 NumBytes += mergeSPUpdates(MBB, MBBI, true); 2122 2123 // If dynamic alloca is used, then reset esp to point to the last callee-saved 2124 // slot before popping them off! Same applies for the case, when stack was 2125 // realigned. Don't do this if this was a funclet epilogue, since the funclets 2126 // will not do realignment or dynamic stack allocation. 2127 if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) && 2128 !IsFunclet) { 2129 if (TRI->hasStackRealignment(MF)) 2130 MBBI = FirstCSPop; 2131 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 2132 uint64_t LEAAmount = 2133 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 2134 2135 if (X86FI->hasSwiftAsyncContext()) 2136 LEAAmount -= 16; 2137 2138 // There are only two legal forms of epilogue: 2139 // - add SEHAllocationSize, %rsp 2140 // - lea SEHAllocationSize(%FramePtr), %rsp 2141 // 2142 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 2143 // However, we may use this sequence if we have a frame pointer because the 2144 // effects of the prologue can safely be undone. 2145 if (LEAAmount != 0) { 2146 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 2147 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 2148 FramePtr, false, LEAAmount); 2149 --MBBI; 2150 } else { 2151 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 2152 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 2153 .addReg(FramePtr); 2154 --MBBI; 2155 } 2156 } else if (NumBytes) { 2157 // Adjust stack pointer back: ESP += numbytes. 2158 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 2159 if (!HasFP && NeedsDwarfCFI) { 2160 // Define the current CFA rule to use the provided offset. 2161 BuildCFI(MBB, MBBI, DL, 2162 MCCFIInstruction::cfiDefCfaOffset( 2163 nullptr, CSSize + TailCallArgReserveSize + SlotSize)); 2164 } 2165 --MBBI; 2166 } 2167 2168 // Windows unwinder will not invoke function's exception handler if IP is 2169 // either in prologue or in epilogue. This behavior causes a problem when a 2170 // call immediately precedes an epilogue, because the return address points 2171 // into the epilogue. To cope with that, we insert an epilogue marker here, 2172 // then replace it with a 'nop' if it ends up immediately after a CALL in the 2173 // final emitted code. 2174 if (NeedsWin64CFI && MF.hasWinCFI()) 2175 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 2176 2177 if (!HasFP && NeedsDwarfCFI) { 2178 MBBI = FirstCSPop; 2179 int64_t Offset = -CSSize - SlotSize; 2180 // Mark callee-saved pop instruction. 2181 // Define the current CFA rule to use the provided offset. 2182 while (MBBI != MBB.end()) { 2183 MachineBasicBlock::iterator PI = MBBI; 2184 unsigned Opc = PI->getOpcode(); 2185 ++MBBI; 2186 if (Opc == X86::POP32r || Opc == X86::POP64r) { 2187 Offset += SlotSize; 2188 BuildCFI(MBB, MBBI, DL, 2189 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset)); 2190 } 2191 } 2192 } 2193 2194 // Emit DWARF info specifying the restores of the callee-saved registers. 2195 // For epilogue with return inside or being other block without successor, 2196 // no need to generate .cfi_restore for callee-saved registers. 2197 if (NeedsDwarfCFI && !MBB.succ_empty()) 2198 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false); 2199 2200 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 2201 // Add the return addr area delta back since we are not tail calling. 2202 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 2203 assert(Offset >= 0 && "TCDelta should never be positive"); 2204 if (Offset) { 2205 // Check for possible merge with preceding ADD instruction. 2206 Offset += mergeSPUpdates(MBB, Terminator, true); 2207 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 2208 } 2209 } 2210 2211 // Emit tilerelease for AMX kernel. 2212 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2213 const TargetRegisterClass *RC = TRI->getRegClass(X86::TILERegClassID); 2214 for (unsigned I = 0; I < RC->getNumRegs(); I++) 2215 if (!MRI.reg_nodbg_empty(X86::TMM0 + I)) { 2216 BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE)); 2217 break; 2218 } 2219 } 2220 2221 StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, 2222 int FI, 2223 Register &FrameReg) const { 2224 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2225 2226 bool IsFixed = MFI.isFixedObjectIndex(FI); 2227 // We can't calculate offset from frame pointer if the stack is realigned, 2228 // so enforce usage of stack/base pointer. The base pointer is used when we 2229 // have dynamic allocas in addition to dynamic realignment. 2230 if (TRI->hasBasePointer(MF)) 2231 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 2232 else if (TRI->hasStackRealignment(MF)) 2233 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 2234 else 2235 FrameReg = TRI->getFrameRegister(MF); 2236 2237 // Offset will hold the offset from the stack pointer at function entry to the 2238 // object. 2239 // We need to factor in additional offsets applied during the prologue to the 2240 // frame, base, and stack pointer depending on which is used. 2241 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 2242 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2243 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2244 uint64_t StackSize = MFI.getStackSize(); 2245 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2246 int64_t FPDelta = 0; 2247 2248 // In an x86 interrupt, remove the offset we added to account for the return 2249 // address from any stack object allocated in the caller's frame. Interrupts 2250 // do not have a standard return address. Fixed objects in the current frame, 2251 // such as SSE register spills, should not get this treatment. 2252 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && 2253 Offset >= 0) { 2254 Offset += getOffsetOfLocalArea(); 2255 } 2256 2257 if (IsWin64Prologue) { 2258 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 2259 2260 // Calculate required stack adjustment. 2261 uint64_t FrameSize = StackSize - SlotSize; 2262 // If required, include space for extra hidden slot for stashing base pointer. 2263 if (X86FI->getRestoreBasePointer()) 2264 FrameSize += SlotSize; 2265 uint64_t NumBytes = FrameSize - CSSize; 2266 2267 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 2268 if (FI && FI == X86FI->getFAIndex()) 2269 return StackOffset::getFixed(-SEHFrameOffset); 2270 2271 // FPDelta is the offset from the "traditional" FP location of the old base 2272 // pointer followed by return address and the location required by the 2273 // restricted Win64 prologue. 2274 // Add FPDelta to all offsets below that go through the frame pointer. 2275 FPDelta = FrameSize - SEHFrameOffset; 2276 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 2277 "FPDelta isn't aligned per the Win64 ABI!"); 2278 } 2279 2280 if (FrameReg == TRI->getFramePtr()) { 2281 // Skip saved EBP/RBP 2282 Offset += SlotSize; 2283 2284 // Account for restricted Windows prologue. 2285 Offset += FPDelta; 2286 2287 // Skip the RETADDR move area 2288 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2289 if (TailCallReturnAddrDelta < 0) 2290 Offset -= TailCallReturnAddrDelta; 2291 2292 return StackOffset::getFixed(Offset); 2293 } 2294 2295 // FrameReg is either the stack pointer or a base pointer. But the base is 2296 // located at the end of the statically known StackSize so the distinction 2297 // doesn't really matter. 2298 if (TRI->hasStackRealignment(MF) || TRI->hasBasePointer(MF)) 2299 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2300 return StackOffset::getFixed(Offset + StackSize); 2301 } 2302 2303 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, 2304 Register &FrameReg) const { 2305 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2306 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2307 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2308 const auto it = WinEHXMMSlotInfo.find(FI); 2309 2310 if (it == WinEHXMMSlotInfo.end()) 2311 return getFrameIndexReference(MF, FI, FrameReg).getFixed(); 2312 2313 FrameReg = TRI->getStackRegister(); 2314 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) + 2315 it->second; 2316 } 2317 2318 StackOffset 2319 X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI, 2320 Register &FrameReg, 2321 int Adjustment) const { 2322 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2323 FrameReg = TRI->getStackRegister(); 2324 return StackOffset::getFixed(MFI.getObjectOffset(FI) - 2325 getOffsetOfLocalArea() + Adjustment); 2326 } 2327 2328 StackOffset 2329 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, 2330 int FI, Register &FrameReg, 2331 bool IgnoreSPUpdates) const { 2332 2333 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2334 // Does not include any dynamic realign. 2335 const uint64_t StackSize = MFI.getStackSize(); 2336 // LLVM arranges the stack as follows: 2337 // ... 2338 // ARG2 2339 // ARG1 2340 // RETADDR 2341 // PUSH RBP <-- RBP points here 2342 // PUSH CSRs 2343 // ~~~~~~~ <-- possible stack realignment (non-win64) 2344 // ... 2345 // STACK OBJECTS 2346 // ... <-- RSP after prologue points here 2347 // ~~~~~~~ <-- possible stack realignment (win64) 2348 // 2349 // if (hasVarSizedObjects()): 2350 // ... <-- "base pointer" (ESI/RBX) points here 2351 // DYNAMIC ALLOCAS 2352 // ... <-- RSP points here 2353 // 2354 // Case 1: In the simple case of no stack realignment and no dynamic 2355 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 2356 // with fixed offsets from RSP. 2357 // 2358 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 2359 // stack objects are addressed with RBP and regular stack objects with RSP. 2360 // 2361 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 2362 // to address stack arguments for outgoing calls and nothing else. The "base 2363 // pointer" points to local variables, and RBP points to fixed objects. 2364 // 2365 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 2366 // answer we give is relative to the SP after the prologue, and not the 2367 // SP in the middle of the function. 2368 2369 if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) && 2370 !STI.isTargetWin64()) 2371 return getFrameIndexReference(MF, FI, FrameReg); 2372 2373 // If !hasReservedCallFrame the function might have SP adjustement in the 2374 // body. So, even though the offset is statically known, it depends on where 2375 // we are in the function. 2376 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) 2377 return getFrameIndexReference(MF, FI, FrameReg); 2378 2379 // We don't handle tail calls, and shouldn't be seeing them either. 2380 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 2381 "we don't handle this case!"); 2382 2383 // This is how the math works out: 2384 // 2385 // %rsp grows (i.e. gets lower) left to right. Each box below is 2386 // one word (eight bytes). Obj0 is the stack slot we're trying to 2387 // get to. 2388 // 2389 // ---------------------------------- 2390 // | BP | Obj0 | Obj1 | ... | ObjN | 2391 // ---------------------------------- 2392 // ^ ^ ^ ^ 2393 // A B C E 2394 // 2395 // A is the incoming stack pointer. 2396 // (B - A) is the local area offset (-8 for x86-64) [1] 2397 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 2398 // 2399 // |(E - B)| is the StackSize (absolute value, positive). For a 2400 // stack that grown down, this works out to be (B - E). [3] 2401 // 2402 // E is also the value of %rsp after stack has been set up, and we 2403 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 2404 // (C - E) == (C - A) - (B - A) + (B - E) 2405 // { Using [1], [2] and [3] above } 2406 // == getObjectOffset - LocalAreaOffset + StackSize 2407 2408 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 2409 } 2410 2411 bool X86FrameLowering::assignCalleeSavedSpillSlots( 2412 MachineFunction &MF, const TargetRegisterInfo *TRI, 2413 std::vector<CalleeSavedInfo> &CSI) const { 2414 MachineFrameInfo &MFI = MF.getFrameInfo(); 2415 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2416 2417 unsigned CalleeSavedFrameSize = 0; 2418 unsigned XMMCalleeSavedFrameSize = 0; 2419 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2420 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 2421 2422 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2423 2424 if (TailCallReturnAddrDelta < 0) { 2425 // create RETURNADDR area 2426 // arg 2427 // arg 2428 // RETADDR 2429 // { ... 2430 // RETADDR area 2431 // ... 2432 // } 2433 // [EBP] 2434 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 2435 TailCallReturnAddrDelta - SlotSize, true); 2436 } 2437 2438 // Spill the BasePtr if it's used. 2439 if (this->TRI->hasBasePointer(MF)) { 2440 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 2441 if (MF.hasEHFunclets()) { 2442 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize)); 2443 X86FI->setHasSEHFramePtrSave(true); 2444 X86FI->setSEHFramePtrSaveIndex(FI); 2445 } 2446 } 2447 2448 if (hasFP(MF)) { 2449 // emitPrologue always spills frame register the first thing. 2450 SpillSlotOffset -= SlotSize; 2451 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2452 2453 // The async context lives directly before the frame pointer, and we 2454 // allocate a second slot to preserve stack alignment. 2455 if (X86FI->hasSwiftAsyncContext()) { 2456 SpillSlotOffset -= SlotSize; 2457 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2458 SpillSlotOffset -= SlotSize; 2459 } 2460 2461 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 2462 // the frame register, we can delete it from CSI list and not have to worry 2463 // about avoiding it later. 2464 Register FPReg = TRI->getFrameRegister(MF); 2465 for (unsigned i = 0; i < CSI.size(); ++i) { 2466 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 2467 CSI.erase(CSI.begin() + i); 2468 break; 2469 } 2470 } 2471 } 2472 2473 // Assign slots for GPRs. It increases frame size. 2474 for (unsigned i = CSI.size(); i != 0; --i) { 2475 unsigned Reg = CSI[i - 1].getReg(); 2476 2477 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2478 continue; 2479 2480 SpillSlotOffset -= SlotSize; 2481 CalleeSavedFrameSize += SlotSize; 2482 2483 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2484 CSI[i - 1].setFrameIdx(SlotIndex); 2485 } 2486 2487 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 2488 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); 2489 2490 // Assign slots for XMMs. 2491 for (unsigned i = CSI.size(); i != 0; --i) { 2492 unsigned Reg = CSI[i - 1].getReg(); 2493 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2494 continue; 2495 2496 // If this is k-register make sure we lookup via the largest legal type. 2497 MVT VT = MVT::Other; 2498 if (X86::VK16RegClass.contains(Reg)) 2499 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2500 2501 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2502 unsigned Size = TRI->getSpillSize(*RC); 2503 Align Alignment = TRI->getSpillAlign(*RC); 2504 // ensure alignment 2505 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); 2506 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment); 2507 2508 // spill into slot 2509 SpillSlotOffset -= Size; 2510 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 2511 CSI[i - 1].setFrameIdx(SlotIndex); 2512 MFI.ensureMaxAlignment(Alignment); 2513 2514 // Save the start offset and size of XMM in stack frame for funclets. 2515 if (X86::VR128RegClass.contains(Reg)) { 2516 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; 2517 XMMCalleeSavedFrameSize += Size; 2518 } 2519 } 2520 2521 return true; 2522 } 2523 2524 bool X86FrameLowering::spillCalleeSavedRegisters( 2525 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2526 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2527 DebugLoc DL = MBB.findDebugLoc(MI); 2528 2529 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2530 // for us, and there are no XMM CSRs on Win32. 2531 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2532 return true; 2533 2534 // Push GPRs. It increases frame size. 2535 const MachineFunction &MF = *MBB.getParent(); 2536 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 2537 for (unsigned i = CSI.size(); i != 0; --i) { 2538 unsigned Reg = CSI[i - 1].getReg(); 2539 2540 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2541 continue; 2542 2543 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2544 bool isLiveIn = MRI.isLiveIn(Reg); 2545 if (!isLiveIn) 2546 MBB.addLiveIn(Reg); 2547 2548 // Decide whether we can add a kill flag to the use. 2549 bool CanKill = !isLiveIn; 2550 // Check if any subregister is live-in 2551 if (CanKill) { 2552 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 2553 if (MRI.isLiveIn(*AReg)) { 2554 CanKill = false; 2555 break; 2556 } 2557 } 2558 } 2559 2560 // Do not set a kill flag on values that are also marked as live-in. This 2561 // happens with the @llvm-returnaddress intrinsic and with arguments 2562 // passed in callee saved registers. 2563 // Omitting the kill flags is conservatively correct even if the live-in 2564 // is not used after all. 2565 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 2566 .setMIFlag(MachineInstr::FrameSetup); 2567 } 2568 2569 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 2570 // It can be done by spilling XMMs to stack frame. 2571 for (unsigned i = CSI.size(); i != 0; --i) { 2572 unsigned Reg = CSI[i-1].getReg(); 2573 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2574 continue; 2575 2576 // If this is k-register make sure we lookup via the largest legal type. 2577 MVT VT = MVT::Other; 2578 if (X86::VK16RegClass.contains(Reg)) 2579 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2580 2581 // Add the callee-saved register as live-in. It's killed at the spill. 2582 MBB.addLiveIn(Reg); 2583 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2584 2585 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC, 2586 TRI); 2587 --MI; 2588 MI->setFlag(MachineInstr::FrameSetup); 2589 ++MI; 2590 } 2591 2592 return true; 2593 } 2594 2595 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 2596 MachineBasicBlock::iterator MBBI, 2597 MachineInstr *CatchRet) const { 2598 // SEH shouldn't use catchret. 2599 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 2600 MBB.getParent()->getFunction().getPersonalityFn())) && 2601 "SEH should not use CATCHRET"); 2602 const DebugLoc &DL = CatchRet->getDebugLoc(); 2603 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 2604 2605 // Fill EAX/RAX with the address of the target block. 2606 if (STI.is64Bit()) { 2607 // LEA64r CatchRetTarget(%rip), %rax 2608 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 2609 .addReg(X86::RIP) 2610 .addImm(0) 2611 .addReg(0) 2612 .addMBB(CatchRetTarget) 2613 .addReg(0); 2614 } else { 2615 // MOV32ri $CatchRetTarget, %eax 2616 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2617 .addMBB(CatchRetTarget); 2618 } 2619 2620 // Record that we've taken the address of CatchRetTarget and no longer just 2621 // reference it in a terminator. 2622 CatchRetTarget->setHasAddressTaken(); 2623 } 2624 2625 bool X86FrameLowering::restoreCalleeSavedRegisters( 2626 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2627 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2628 if (CSI.empty()) 2629 return false; 2630 2631 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 2632 // Don't restore CSRs in 32-bit EH funclets. Matches 2633 // spillCalleeSavedRegisters. 2634 if (STI.is32Bit()) 2635 return true; 2636 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 2637 // funclets. emitEpilogue transforms these to normal jumps. 2638 if (MI->getOpcode() == X86::CATCHRET) { 2639 const Function &F = MBB.getParent()->getFunction(); 2640 bool IsSEH = isAsynchronousEHPersonality( 2641 classifyEHPersonality(F.getPersonalityFn())); 2642 if (IsSEH) 2643 return true; 2644 } 2645 } 2646 2647 DebugLoc DL = MBB.findDebugLoc(MI); 2648 2649 // Reload XMMs from stack frame. 2650 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2651 unsigned Reg = CSI[i].getReg(); 2652 if (X86::GR64RegClass.contains(Reg) || 2653 X86::GR32RegClass.contains(Reg)) 2654 continue; 2655 2656 // If this is k-register make sure we lookup via the largest legal type. 2657 MVT VT = MVT::Other; 2658 if (X86::VK16RegClass.contains(Reg)) 2659 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2660 2661 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2662 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); 2663 } 2664 2665 // POP GPRs. 2666 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 2667 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2668 unsigned Reg = CSI[i].getReg(); 2669 if (!X86::GR64RegClass.contains(Reg) && 2670 !X86::GR32RegClass.contains(Reg)) 2671 continue; 2672 2673 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 2674 .setMIFlag(MachineInstr::FrameDestroy); 2675 } 2676 return true; 2677 } 2678 2679 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 2680 BitVector &SavedRegs, 2681 RegScavenger *RS) const { 2682 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2683 2684 // Spill the BasePtr if it's used. 2685 if (TRI->hasBasePointer(MF)){ 2686 Register BasePtr = TRI->getBaseRegister(); 2687 if (STI.isTarget64BitILP32()) 2688 BasePtr = getX86SubSuperRegister(BasePtr, 64); 2689 SavedRegs.set(BasePtr); 2690 } 2691 } 2692 2693 static bool 2694 HasNestArgument(const MachineFunction *MF) { 2695 const Function &F = MF->getFunction(); 2696 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 2697 I != E; I++) { 2698 if (I->hasNestAttr() && !I->use_empty()) 2699 return true; 2700 } 2701 return false; 2702 } 2703 2704 /// GetScratchRegister - Get a temp register for performing work in the 2705 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2706 /// and the properties of the function either one or two registers will be 2707 /// needed. Set primary to true for the first register, false for the second. 2708 static unsigned 2709 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2710 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 2711 2712 // Erlang stuff. 2713 if (CallingConvention == CallingConv::HiPE) { 2714 if (Is64Bit) 2715 return Primary ? X86::R14 : X86::R13; 2716 else 2717 return Primary ? X86::EBX : X86::EDI; 2718 } 2719 2720 if (Is64Bit) { 2721 if (IsLP64) 2722 return Primary ? X86::R11 : X86::R12; 2723 else 2724 return Primary ? X86::R11D : X86::R12D; 2725 } 2726 2727 bool IsNested = HasNestArgument(&MF); 2728 2729 if (CallingConvention == CallingConv::X86_FastCall || 2730 CallingConvention == CallingConv::Fast || 2731 CallingConvention == CallingConv::Tail) { 2732 if (IsNested) 2733 report_fatal_error("Segmented stacks does not support fastcall with " 2734 "nested function."); 2735 return Primary ? X86::EAX : X86::ECX; 2736 } 2737 if (IsNested) 2738 return Primary ? X86::EDX : X86::EAX; 2739 return Primary ? X86::ECX : X86::EAX; 2740 } 2741 2742 // The stack limit in the TCB is set to this many bytes above the actual stack 2743 // limit. 2744 static const uint64_t kSplitStackAvailable = 256; 2745 2746 void X86FrameLowering::adjustForSegmentedStacks( 2747 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2748 MachineFrameInfo &MFI = MF.getFrameInfo(); 2749 uint64_t StackSize; 2750 unsigned TlsReg, TlsOffset; 2751 DebugLoc DL; 2752 2753 // To support shrink-wrapping we would need to insert the new blocks 2754 // at the right place and update the branches to PrologueMBB. 2755 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2756 2757 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2758 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2759 "Scratch register is live-in"); 2760 2761 if (MF.getFunction().isVarArg()) 2762 report_fatal_error("Segmented stacks do not support vararg functions."); 2763 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 2764 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 2765 !STI.isTargetDragonFly()) 2766 report_fatal_error("Segmented stacks not supported on this platform."); 2767 2768 // Eventually StackSize will be calculated by a link-time pass; which will 2769 // also decide whether checking code needs to be injected into this particular 2770 // prologue. 2771 StackSize = MFI.getStackSize(); 2772 2773 // Do not generate a prologue for leaf functions with a stack of size zero. 2774 // For non-leaf functions we have to allow for the possibility that the 2775 // callis to a non-split function, as in PR37807. This function could also 2776 // take the address of a non-split function. When the linker tries to adjust 2777 // its non-existent prologue, it would fail with an error. Mark the object 2778 // file so that such failures are not errors. See this Go language bug-report 2779 // https://go-review.googlesource.com/c/go/+/148819/ 2780 if (StackSize == 0 && !MFI.hasTailCall()) { 2781 MF.getMMI().setHasNosplitStack(true); 2782 return; 2783 } 2784 2785 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 2786 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 2787 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2788 bool IsNested = false; 2789 2790 // We need to know if the function has a nest argument only in 64 bit mode. 2791 if (Is64Bit) 2792 IsNested = HasNestArgument(&MF); 2793 2794 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 2795 // allocMBB needs to be last (terminating) instruction. 2796 2797 for (const auto &LI : PrologueMBB.liveins()) { 2798 allocMBB->addLiveIn(LI); 2799 checkMBB->addLiveIn(LI); 2800 } 2801 2802 if (IsNested) 2803 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 2804 2805 MF.push_front(allocMBB); 2806 MF.push_front(checkMBB); 2807 2808 // When the frame size is less than 256 we just compare the stack 2809 // boundary directly to the value of the stack pointer, per gcc. 2810 bool CompareStackPointer = StackSize < kSplitStackAvailable; 2811 2812 // Read the limit off the current stacklet off the stack_guard location. 2813 if (Is64Bit) { 2814 if (STI.isTargetLinux()) { 2815 TlsReg = X86::FS; 2816 TlsOffset = IsLP64 ? 0x70 : 0x40; 2817 } else if (STI.isTargetDarwin()) { 2818 TlsReg = X86::GS; 2819 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 2820 } else if (STI.isTargetWin64()) { 2821 TlsReg = X86::GS; 2822 TlsOffset = 0x28; // pvArbitrary, reserved for application use 2823 } else if (STI.isTargetFreeBSD()) { 2824 TlsReg = X86::FS; 2825 TlsOffset = 0x18; 2826 } else if (STI.isTargetDragonFly()) { 2827 TlsReg = X86::FS; 2828 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 2829 } else { 2830 report_fatal_error("Segmented stacks not supported on this platform."); 2831 } 2832 2833 if (CompareStackPointer) 2834 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 2835 else 2836 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 2837 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2838 2839 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 2840 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2841 } else { 2842 if (STI.isTargetLinux()) { 2843 TlsReg = X86::GS; 2844 TlsOffset = 0x30; 2845 } else if (STI.isTargetDarwin()) { 2846 TlsReg = X86::GS; 2847 TlsOffset = 0x48 + 90*4; 2848 } else if (STI.isTargetWin32()) { 2849 TlsReg = X86::FS; 2850 TlsOffset = 0x14; // pvArbitrary, reserved for application use 2851 } else if (STI.isTargetDragonFly()) { 2852 TlsReg = X86::FS; 2853 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 2854 } else if (STI.isTargetFreeBSD()) { 2855 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 2856 } else { 2857 report_fatal_error("Segmented stacks not supported on this platform."); 2858 } 2859 2860 if (CompareStackPointer) 2861 ScratchReg = X86::ESP; 2862 else 2863 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 2864 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2865 2866 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 2867 STI.isTargetDragonFly()) { 2868 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 2869 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2870 } else if (STI.isTargetDarwin()) { 2871 2872 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 2873 unsigned ScratchReg2; 2874 bool SaveScratch2; 2875 if (CompareStackPointer) { 2876 // The primary scratch register is available for holding the TLS offset. 2877 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2878 SaveScratch2 = false; 2879 } else { 2880 // Need to use a second register to hold the TLS offset 2881 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 2882 2883 // Unfortunately, with fastcc the second scratch register may hold an 2884 // argument. 2885 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 2886 } 2887 2888 // If Scratch2 is live-in then it needs to be saved. 2889 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 2890 "Scratch register is live-in and not saved"); 2891 2892 if (SaveScratch2) 2893 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 2894 .addReg(ScratchReg2, RegState::Kill); 2895 2896 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 2897 .addImm(TlsOffset); 2898 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 2899 .addReg(ScratchReg) 2900 .addReg(ScratchReg2).addImm(1).addReg(0) 2901 .addImm(0) 2902 .addReg(TlsReg); 2903 2904 if (SaveScratch2) 2905 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 2906 } 2907 } 2908 2909 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 2910 // It jumps to normal execution of the function body. 2911 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); 2912 2913 // On 32 bit we first push the arguments size and then the frame size. On 64 2914 // bit, we pass the stack frame size in r10 and the argument size in r11. 2915 if (Is64Bit) { 2916 // Functions with nested arguments use R10, so it needs to be saved across 2917 // the call to _morestack 2918 2919 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 2920 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 2921 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 2922 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 2923 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri; 2924 2925 if (IsNested) 2926 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 2927 2928 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10) 2929 .addImm(StackSize); 2930 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11) 2931 .addImm(X86FI->getArgumentStackSize()); 2932 } else { 2933 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2934 .addImm(X86FI->getArgumentStackSize()); 2935 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2936 .addImm(StackSize); 2937 } 2938 2939 // __morestack is in libgcc 2940 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 2941 // Under the large code model, we cannot assume that __morestack lives 2942 // within 2^31 bytes of the call site, so we cannot use pc-relative 2943 // addressing. We cannot perform the call via a temporary register, 2944 // as the rax register may be used to store the static chain, and all 2945 // other suitable registers may be either callee-save or used for 2946 // parameter passing. We cannot use the stack at this point either 2947 // because __morestack manipulates the stack directly. 2948 // 2949 // To avoid these issues, perform an indirect call via a read-only memory 2950 // location containing the address. 2951 // 2952 // This solution is not perfect, as it assumes that the .rodata section 2953 // is laid out within 2^31 bytes of each function body, but this seems 2954 // to be sufficient for JIT. 2955 // FIXME: Add retpoline support and remove the error here.. 2956 if (STI.useIndirectThunkCalls()) 2957 report_fatal_error("Emitting morestack calls on 64-bit with the large " 2958 "code model and thunks not yet implemented."); 2959 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 2960 .addReg(X86::RIP) 2961 .addImm(0) 2962 .addReg(0) 2963 .addExternalSymbol("__morestack_addr") 2964 .addReg(0); 2965 MF.getMMI().setUsesMorestackAddr(true); 2966 } else { 2967 if (Is64Bit) 2968 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 2969 .addExternalSymbol("__morestack"); 2970 else 2971 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 2972 .addExternalSymbol("__morestack"); 2973 } 2974 2975 if (IsNested) 2976 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 2977 else 2978 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 2979 2980 allocMBB->addSuccessor(&PrologueMBB); 2981 2982 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); 2983 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); 2984 2985 #ifdef EXPENSIVE_CHECKS 2986 MF.verify(); 2987 #endif 2988 } 2989 2990 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 2991 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 2992 /// to fields it needs, through a named metadata node "hipe.literals" containing 2993 /// name-value pairs. 2994 static unsigned getHiPELiteral( 2995 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 2996 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 2997 MDNode *Node = HiPELiteralsMD->getOperand(i); 2998 if (Node->getNumOperands() != 2) continue; 2999 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 3000 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 3001 if (!NodeName || !NodeVal) continue; 3002 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 3003 if (ValConst && NodeName->getString() == LiteralName) { 3004 return ValConst->getZExtValue(); 3005 } 3006 } 3007 3008 report_fatal_error("HiPE literal " + LiteralName 3009 + " required but not provided"); 3010 } 3011 3012 // Return true if there are no non-ehpad successors to MBB and there are no 3013 // non-meta instructions between MBBI and MBB.end(). 3014 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, 3015 MachineBasicBlock::const_iterator MBBI) { 3016 return llvm::all_of( 3017 MBB.successors(), 3018 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && 3019 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { 3020 return MI.isMetaInstruction(); 3021 }); 3022 } 3023 3024 /// Erlang programs may need a special prologue to handle the stack size they 3025 /// might need at runtime. That is because Erlang/OTP does not implement a C 3026 /// stack but uses a custom implementation of hybrid stack/heap architecture. 3027 /// (for more information see Eric Stenman's Ph.D. thesis: 3028 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 3029 /// 3030 /// CheckStack: 3031 /// temp0 = sp - MaxStack 3032 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3033 /// OldStart: 3034 /// ... 3035 /// IncStack: 3036 /// call inc_stack # doubles the stack space 3037 /// temp0 = sp - MaxStack 3038 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3039 void X86FrameLowering::adjustForHiPEPrologue( 3040 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3041 MachineFrameInfo &MFI = MF.getFrameInfo(); 3042 DebugLoc DL; 3043 3044 // To support shrink-wrapping we would need to insert the new blocks 3045 // at the right place and update the branches to PrologueMBB. 3046 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 3047 3048 // HiPE-specific values 3049 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 3050 ->getNamedMetadata("hipe.literals"); 3051 if (!HiPELiteralsMD) 3052 report_fatal_error( 3053 "Can't generate HiPE prologue without runtime parameters"); 3054 const unsigned HipeLeafWords 3055 = getHiPELiteral(HiPELiteralsMD, 3056 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 3057 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 3058 const unsigned Guaranteed = HipeLeafWords * SlotSize; 3059 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? 3060 MF.getFunction().arg_size() - CCRegisteredArgs : 0; 3061 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 3062 3063 assert(STI.isTargetLinux() && 3064 "HiPE prologue is only supported on Linux operating systems."); 3065 3066 // Compute the largest caller's frame that is needed to fit the callees' 3067 // frames. This 'MaxStack' is computed from: 3068 // 3069 // a) the fixed frame size, which is the space needed for all spilled temps, 3070 // b) outgoing on-stack parameter areas, and 3071 // c) the minimum stack space this function needs to make available for the 3072 // functions it calls (a tunable ABI property). 3073 if (MFI.hasCalls()) { 3074 unsigned MoreStackForCalls = 0; 3075 3076 for (auto &MBB : MF) { 3077 for (auto &MI : MBB) { 3078 if (!MI.isCall()) 3079 continue; 3080 3081 // Get callee operand. 3082 const MachineOperand &MO = MI.getOperand(0); 3083 3084 // Only take account of global function calls (no closures etc.). 3085 if (!MO.isGlobal()) 3086 continue; 3087 3088 const Function *F = dyn_cast<Function>(MO.getGlobal()); 3089 if (!F) 3090 continue; 3091 3092 // Do not update 'MaxStack' for primitive and built-in functions 3093 // (encoded with names either starting with "erlang."/"bif_" or not 3094 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 3095 // "_", such as the BIF "suspend_0") as they are executed on another 3096 // stack. 3097 if (F->getName().find("erlang.") != StringRef::npos || 3098 F->getName().find("bif_") != StringRef::npos || 3099 F->getName().find_first_of("._") == StringRef::npos) 3100 continue; 3101 3102 unsigned CalleeStkArity = 3103 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 3104 if (HipeLeafWords - 1 > CalleeStkArity) 3105 MoreStackForCalls = std::max(MoreStackForCalls, 3106 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 3107 } 3108 } 3109 MaxStack += MoreStackForCalls; 3110 } 3111 3112 // If the stack frame needed is larger than the guaranteed then runtime checks 3113 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 3114 if (MaxStack > Guaranteed) { 3115 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 3116 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 3117 3118 for (const auto &LI : PrologueMBB.liveins()) { 3119 stackCheckMBB->addLiveIn(LI); 3120 incStackMBB->addLiveIn(LI); 3121 } 3122 3123 MF.push_front(incStackMBB); 3124 MF.push_front(stackCheckMBB); 3125 3126 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 3127 unsigned LEAop, CMPop, CALLop; 3128 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 3129 if (Is64Bit) { 3130 SPReg = X86::RSP; 3131 PReg = X86::RBP; 3132 LEAop = X86::LEA64r; 3133 CMPop = X86::CMP64rm; 3134 CALLop = X86::CALL64pcrel32; 3135 } else { 3136 SPReg = X86::ESP; 3137 PReg = X86::EBP; 3138 LEAop = X86::LEA32r; 3139 CMPop = X86::CMP32rm; 3140 CALLop = X86::CALLpcrel32; 3141 } 3142 3143 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3144 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 3145 "HiPE prologue scratch register is live-in"); 3146 3147 // Create new MBB for StackCheck: 3148 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 3149 SPReg, false, -MaxStack); 3150 // SPLimitOffset is in a fixed heap location (pointed by BP). 3151 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 3152 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3153 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); 3154 3155 // Create new MBB for IncStack: 3156 BuildMI(incStackMBB, DL, TII.get(CALLop)). 3157 addExternalSymbol("inc_stack_0"); 3158 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 3159 SPReg, false, -MaxStack); 3160 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 3161 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3162 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); 3163 3164 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 3165 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 3166 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 3167 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 3168 } 3169 #ifdef EXPENSIVE_CHECKS 3170 MF.verify(); 3171 #endif 3172 } 3173 3174 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 3175 MachineBasicBlock::iterator MBBI, 3176 const DebugLoc &DL, 3177 int Offset) const { 3178 if (Offset <= 0) 3179 return false; 3180 3181 if (Offset % SlotSize) 3182 return false; 3183 3184 int NumPops = Offset / SlotSize; 3185 // This is only worth it if we have at most 2 pops. 3186 if (NumPops != 1 && NumPops != 2) 3187 return false; 3188 3189 // Handle only the trivial case where the adjustment directly follows 3190 // a call. This is the most common one, anyway. 3191 if (MBBI == MBB.begin()) 3192 return false; 3193 MachineBasicBlock::iterator Prev = std::prev(MBBI); 3194 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 3195 return false; 3196 3197 unsigned Regs[2]; 3198 unsigned FoundRegs = 0; 3199 3200 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3201 const MachineOperand &RegMask = Prev->getOperand(1); 3202 3203 auto &RegClass = 3204 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 3205 // Try to find up to NumPops free registers. 3206 for (auto Candidate : RegClass) { 3207 // Poor man's liveness: 3208 // Since we're immediately after a call, any register that is clobbered 3209 // by the call and not defined by it can be considered dead. 3210 if (!RegMask.clobbersPhysReg(Candidate)) 3211 continue; 3212 3213 // Don't clobber reserved registers 3214 if (MRI.isReserved(Candidate)) 3215 continue; 3216 3217 bool IsDef = false; 3218 for (const MachineOperand &MO : Prev->implicit_operands()) { 3219 if (MO.isReg() && MO.isDef() && 3220 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 3221 IsDef = true; 3222 break; 3223 } 3224 } 3225 3226 if (IsDef) 3227 continue; 3228 3229 Regs[FoundRegs++] = Candidate; 3230 if (FoundRegs == (unsigned)NumPops) 3231 break; 3232 } 3233 3234 if (FoundRegs == 0) 3235 return false; 3236 3237 // If we found only one free register, but need two, reuse the same one twice. 3238 while (FoundRegs < (unsigned)NumPops) 3239 Regs[FoundRegs++] = Regs[0]; 3240 3241 for (int i = 0; i < NumPops; ++i) 3242 BuildMI(MBB, MBBI, DL, 3243 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 3244 3245 return true; 3246 } 3247 3248 MachineBasicBlock::iterator X86FrameLowering:: 3249 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 3250 MachineBasicBlock::iterator I) const { 3251 bool reserveCallFrame = hasReservedCallFrame(MF); 3252 unsigned Opcode = I->getOpcode(); 3253 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 3254 DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased. 3255 uint64_t Amount = TII.getFrameSize(*I); 3256 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 3257 I = MBB.erase(I); 3258 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 3259 3260 // Try to avoid emitting dead SP adjustments if the block end is unreachable, 3261 // typically because the function is marked noreturn (abort, throw, 3262 // assert_fail, etc). 3263 if (isDestroy && blockEndIsUnreachable(MBB, I)) 3264 return I; 3265 3266 if (!reserveCallFrame) { 3267 // If the stack pointer can be changed after prologue, turn the 3268 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 3269 // adjcallstackdown instruction into 'add ESP, <amt>' 3270 3271 // We need to keep the stack aligned properly. To do this, we round the 3272 // amount of space needed for the outgoing arguments up to the next 3273 // alignment boundary. 3274 Amount = alignTo(Amount, getStackAlign()); 3275 3276 const Function &F = MF.getFunction(); 3277 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 3278 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); 3279 3280 // If we have any exception handlers in this function, and we adjust 3281 // the SP before calls, we may need to indicate this to the unwinder 3282 // using GNU_ARGS_SIZE. Note that this may be necessary even when 3283 // Amount == 0, because the preceding function may have set a non-0 3284 // GNU_ARGS_SIZE. 3285 // TODO: We don't need to reset this between subsequent functions, 3286 // if it didn't change. 3287 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 3288 3289 if (HasDwarfEHHandlers && !isDestroy && 3290 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 3291 BuildCFI(MBB, InsertPos, DL, 3292 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 3293 3294 if (Amount == 0) 3295 return I; 3296 3297 // Factor out the amount that gets handled inside the sequence 3298 // (Pushes of argument for frame setup, callee pops for frame destroy) 3299 Amount -= InternalAmt; 3300 3301 // TODO: This is needed only if we require precise CFA. 3302 // If this is a callee-pop calling convention, emit a CFA adjust for 3303 // the amount the callee popped. 3304 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 3305 BuildCFI(MBB, InsertPos, DL, 3306 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 3307 3308 // Add Amount to SP to destroy a frame, or subtract to setup. 3309 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 3310 3311 if (StackAdjustment) { 3312 // Merge with any previous or following adjustment instruction. Note: the 3313 // instructions merged with here do not have CFI, so their stack 3314 // adjustments do not feed into CfaAdjustment. 3315 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 3316 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 3317 3318 if (StackAdjustment) { 3319 if (!(F.hasMinSize() && 3320 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 3321 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 3322 /*InEpilogue=*/false); 3323 } 3324 } 3325 3326 if (DwarfCFI && !hasFP(MF)) { 3327 // If we don't have FP, but need to generate unwind information, 3328 // we need to set the correct CFA offset after the stack adjustment. 3329 // How much we adjust the CFA offset depends on whether we're emitting 3330 // CFI only for EH purposes or for debugging. EH only requires the CFA 3331 // offset to be correct at each call site, while for debugging we want 3332 // it to be more precise. 3333 3334 int64_t CfaAdjustment = -StackAdjustment; 3335 // TODO: When not using precise CFA, we also need to adjust for the 3336 // InternalAmt here. 3337 if (CfaAdjustment) { 3338 BuildCFI(MBB, InsertPos, DL, 3339 MCCFIInstruction::createAdjustCfaOffset(nullptr, 3340 CfaAdjustment)); 3341 } 3342 } 3343 3344 return I; 3345 } 3346 3347 if (InternalAmt) { 3348 MachineBasicBlock::iterator CI = I; 3349 MachineBasicBlock::iterator B = MBB.begin(); 3350 while (CI != B && !std::prev(CI)->isCall()) 3351 --CI; 3352 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 3353 } 3354 3355 return I; 3356 } 3357 3358 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 3359 assert(MBB.getParent() && "Block is not attached to a function!"); 3360 const MachineFunction &MF = *MBB.getParent(); 3361 if (!MBB.isLiveIn(X86::EFLAGS)) 3362 return true; 3363 3364 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3365 return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext(); 3366 } 3367 3368 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 3369 assert(MBB.getParent() && "Block is not attached to a function!"); 3370 3371 // Win64 has strict requirements in terms of epilogue and we are 3372 // not taking a chance at messing with them. 3373 // I.e., unless this block is already an exit block, we can't use 3374 // it as an epilogue. 3375 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 3376 return false; 3377 3378 // Swift async context epilogue has a BTR instruction that clobbers parts of 3379 // EFLAGS. 3380 const MachineFunction &MF = *MBB.getParent(); 3381 if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext()) 3382 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3383 3384 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 3385 return true; 3386 3387 // If we cannot use LEA to adjust SP, we may need to use ADD, which 3388 // clobbers the EFLAGS. Check that we do not need to preserve it, 3389 // otherwise, conservatively assume this is not 3390 // safe to insert the epilogue here. 3391 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3392 } 3393 3394 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 3395 // If we may need to emit frameless compact unwind information, give 3396 // up as this is currently broken: PR25614. 3397 bool CompactUnwind = 3398 MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() != 3399 nullptr; 3400 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) || 3401 !CompactUnwind) && 3402 // The lowering of segmented stack and HiPE only support entry 3403 // blocks as prologue blocks: PR26107. This limitation may be 3404 // lifted if we fix: 3405 // - adjustForSegmentedStacks 3406 // - adjustForHiPEPrologue 3407 MF.getFunction().getCallingConv() != CallingConv::HiPE && 3408 !MF.shouldSplitStack(); 3409 } 3410 3411 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 3412 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3413 const DebugLoc &DL, bool RestoreSP) const { 3414 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 3415 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 3416 assert(STI.is32Bit() && !Uses64BitFramePtr && 3417 "restoring EBP/ESI on non-32-bit target"); 3418 3419 MachineFunction &MF = *MBB.getParent(); 3420 Register FramePtr = TRI->getFrameRegister(MF); 3421 Register BasePtr = TRI->getBaseRegister(); 3422 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 3423 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3424 MachineFrameInfo &MFI = MF.getFrameInfo(); 3425 3426 // FIXME: Don't set FrameSetup flag in catchret case. 3427 3428 int FI = FuncInfo.EHRegNodeFrameIndex; 3429 int EHRegSize = MFI.getObjectSize(FI); 3430 3431 if (RestoreSP) { 3432 // MOV32rm -EHRegSize(%ebp), %esp 3433 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 3434 X86::EBP, true, -EHRegSize) 3435 .setMIFlag(MachineInstr::FrameSetup); 3436 } 3437 3438 Register UsedReg; 3439 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed(); 3440 int EndOffset = -EHRegOffset - EHRegSize; 3441 FuncInfo.EHRegNodeEndOffset = EndOffset; 3442 3443 if (UsedReg == FramePtr) { 3444 // ADD $offset, %ebp 3445 unsigned ADDri = getADDriOpcode(false, EndOffset); 3446 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 3447 .addReg(FramePtr) 3448 .addImm(EndOffset) 3449 .setMIFlag(MachineInstr::FrameSetup) 3450 ->getOperand(3) 3451 .setIsDead(); 3452 assert(EndOffset >= 0 && 3453 "end of registration object above normal EBP position!"); 3454 } else if (UsedReg == BasePtr) { 3455 // LEA offset(%ebp), %esi 3456 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 3457 FramePtr, false, EndOffset) 3458 .setMIFlag(MachineInstr::FrameSetup); 3459 // MOV32rm SavedEBPOffset(%esi), %ebp 3460 assert(X86FI->getHasSEHFramePtrSave()); 3461 int Offset = 3462 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 3463 .getFixed(); 3464 assert(UsedReg == BasePtr); 3465 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 3466 UsedReg, true, Offset) 3467 .setMIFlag(MachineInstr::FrameSetup); 3468 } else { 3469 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 3470 } 3471 return MBBI; 3472 } 3473 3474 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 3475 return TRI->getSlotSize(); 3476 } 3477 3478 Register 3479 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const { 3480 return TRI->getDwarfRegNum(StackPtr, true); 3481 } 3482 3483 namespace { 3484 // Struct used by orderFrameObjects to help sort the stack objects. 3485 struct X86FrameSortingObject { 3486 bool IsValid = false; // true if we care about this Object. 3487 unsigned ObjectIndex = 0; // Index of Object into MFI list. 3488 unsigned ObjectSize = 0; // Size of Object in bytes. 3489 Align ObjectAlignment = Align(1); // Alignment of Object in bytes. 3490 unsigned ObjectNumUses = 0; // Object static number of uses. 3491 }; 3492 3493 // The comparison function we use for std::sort to order our local 3494 // stack symbols. The current algorithm is to use an estimated 3495 // "density". This takes into consideration the size and number of 3496 // uses each object has in order to roughly minimize code size. 3497 // So, for example, an object of size 16B that is referenced 5 times 3498 // will get higher priority than 4 4B objects referenced 1 time each. 3499 // It's not perfect and we may be able to squeeze a few more bytes out of 3500 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 3501 // fringe end can have special consideration, given their size is less 3502 // important, etc.), but the algorithmic complexity grows too much to be 3503 // worth the extra gains we get. This gets us pretty close. 3504 // The final order leaves us with objects with highest priority going 3505 // at the end of our list. 3506 struct X86FrameSortingComparator { 3507 inline bool operator()(const X86FrameSortingObject &A, 3508 const X86FrameSortingObject &B) const { 3509 uint64_t DensityAScaled, DensityBScaled; 3510 3511 // For consistency in our comparison, all invalid objects are placed 3512 // at the end. This also allows us to stop walking when we hit the 3513 // first invalid item after it's all sorted. 3514 if (!A.IsValid) 3515 return false; 3516 if (!B.IsValid) 3517 return true; 3518 3519 // The density is calculated by doing : 3520 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 3521 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 3522 // Since this approach may cause inconsistencies in 3523 // the floating point <, >, == comparisons, depending on the floating 3524 // point model with which the compiler was built, we're going 3525 // to scale both sides by multiplying with 3526 // A.ObjectSize * B.ObjectSize. This ends up factoring away 3527 // the division and, with it, the need for any floating point 3528 // arithmetic. 3529 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 3530 static_cast<uint64_t>(B.ObjectSize); 3531 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 3532 static_cast<uint64_t>(A.ObjectSize); 3533 3534 // If the two densities are equal, prioritize highest alignment 3535 // objects. This allows for similar alignment objects 3536 // to be packed together (given the same density). 3537 // There's room for improvement here, also, since we can pack 3538 // similar alignment (different density) objects next to each 3539 // other to save padding. This will also require further 3540 // complexity/iterations, and the overall gain isn't worth it, 3541 // in general. Something to keep in mind, though. 3542 if (DensityAScaled == DensityBScaled) 3543 return A.ObjectAlignment < B.ObjectAlignment; 3544 3545 return DensityAScaled < DensityBScaled; 3546 } 3547 }; 3548 } // namespace 3549 3550 // Order the symbols in the local stack. 3551 // We want to place the local stack objects in some sort of sensible order. 3552 // The heuristic we use is to try and pack them according to static number 3553 // of uses and size of object in order to minimize code size. 3554 void X86FrameLowering::orderFrameObjects( 3555 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 3556 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3557 3558 // Don't waste time if there's nothing to do. 3559 if (ObjectsToAllocate.empty()) 3560 return; 3561 3562 // Create an array of all MFI objects. We won't need all of these 3563 // objects, but we're going to create a full array of them to make 3564 // it easier to index into when we're counting "uses" down below. 3565 // We want to be able to easily/cheaply access an object by simply 3566 // indexing into it, instead of having to search for it every time. 3567 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 3568 3569 // Walk the objects we care about and mark them as such in our working 3570 // struct. 3571 for (auto &Obj : ObjectsToAllocate) { 3572 SortingObjects[Obj].IsValid = true; 3573 SortingObjects[Obj].ObjectIndex = Obj; 3574 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj); 3575 // Set the size. 3576 int ObjectSize = MFI.getObjectSize(Obj); 3577 if (ObjectSize == 0) 3578 // Variable size. Just use 4. 3579 SortingObjects[Obj].ObjectSize = 4; 3580 else 3581 SortingObjects[Obj].ObjectSize = ObjectSize; 3582 } 3583 3584 // Count the number of uses for each object. 3585 for (auto &MBB : MF) { 3586 for (auto &MI : MBB) { 3587 if (MI.isDebugInstr()) 3588 continue; 3589 for (const MachineOperand &MO : MI.operands()) { 3590 // Check to see if it's a local stack symbol. 3591 if (!MO.isFI()) 3592 continue; 3593 int Index = MO.getIndex(); 3594 // Check to see if it falls within our range, and is tagged 3595 // to require ordering. 3596 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 3597 SortingObjects[Index].IsValid) 3598 SortingObjects[Index].ObjectNumUses++; 3599 } 3600 } 3601 } 3602 3603 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 3604 // info). 3605 llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); 3606 3607 // Now modify the original list to represent the final order that 3608 // we want. The order will depend on whether we're going to access them 3609 // from the stack pointer or the frame pointer. For SP, the list should 3610 // end up with the END containing objects that we want with smaller offsets. 3611 // For FP, it should be flipped. 3612 int i = 0; 3613 for (auto &Obj : SortingObjects) { 3614 // All invalid items are sorted at the end, so it's safe to stop. 3615 if (!Obj.IsValid) 3616 break; 3617 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3618 } 3619 3620 // Flip it if we're accessing off of the FP. 3621 if (!TRI->hasStackRealignment(MF) && hasFP(MF)) 3622 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 3623 } 3624 3625 3626 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 3627 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 3628 unsigned Offset = 16; 3629 // RBP is immediately pushed. 3630 Offset += SlotSize; 3631 // All callee-saved registers are then pushed. 3632 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 3633 // Every funclet allocates enough stack space for the largest outgoing call. 3634 Offset += getWinEHFuncletFrameSize(MF); 3635 return Offset; 3636 } 3637 3638 void X86FrameLowering::processFunctionBeforeFrameFinalized( 3639 MachineFunction &MF, RegScavenger *RS) const { 3640 // Mark the function as not having WinCFI. We will set it back to true in 3641 // emitPrologue if it gets called and emits CFI. 3642 MF.setHasWinCFI(false); 3643 3644 // If we are using Windows x64 CFI, ensure that the stack is always 8 byte 3645 // aligned. The format doesn't support misaligned stack adjustments. 3646 if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) 3647 MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize)); 3648 3649 // If this function isn't doing Win64-style C++ EH, we don't need to do 3650 // anything. 3651 if (STI.is64Bit() && MF.hasEHFunclets() && 3652 classifyEHPersonality(MF.getFunction().getPersonalityFn()) == 3653 EHPersonality::MSVC_CXX) { 3654 adjustFrameForMsvcCxxEh(MF); 3655 } 3656 } 3657 3658 void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const { 3659 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 3660 // relative to RSP after the prologue. Find the offset of the last fixed 3661 // object, so that we can allocate a slot immediately following it. If there 3662 // were no fixed objects, use offset -SlotSize, which is immediately after the 3663 // return address. Fixed objects have negative frame indices. 3664 MachineFrameInfo &MFI = MF.getFrameInfo(); 3665 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3666 int64_t MinFixedObjOffset = -SlotSize; 3667 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 3668 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 3669 3670 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 3671 for (WinEHHandlerType &H : TBME.HandlerArray) { 3672 int FrameIndex = H.CatchObj.FrameIndex; 3673 if (FrameIndex != INT_MAX) { 3674 // Ensure alignment. 3675 unsigned Align = MFI.getObjectAlign(FrameIndex).value(); 3676 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 3677 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 3678 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 3679 } 3680 } 3681 } 3682 3683 // Ensure alignment. 3684 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 3685 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 3686 int UnwindHelpFI = 3687 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); 3688 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3689 3690 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 3691 // other frame setup instructions. 3692 MachineBasicBlock &MBB = MF.front(); 3693 auto MBBI = MBB.begin(); 3694 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3695 ++MBBI; 3696 3697 DebugLoc DL = MBB.findDebugLoc(MBBI); 3698 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 3699 UnwindHelpFI) 3700 .addImm(-2); 3701 } 3702 3703 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced( 3704 MachineFunction &MF, RegScavenger *RS) const { 3705 if (STI.is32Bit() && MF.hasEHFunclets()) 3706 restoreWinEHStackPointersInParent(MF); 3707 } 3708 3709 void X86FrameLowering::restoreWinEHStackPointersInParent( 3710 MachineFunction &MF) const { 3711 // 32-bit functions have to restore stack pointers when control is transferred 3712 // back to the parent function. These blocks are identified as eh pads that 3713 // are not funclet entries. 3714 bool IsSEH = isAsynchronousEHPersonality( 3715 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 3716 for (MachineBasicBlock &MBB : MF) { 3717 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry(); 3718 if (NeedsRestore) 3719 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(), 3720 /*RestoreSP=*/IsSEH); 3721 } 3722 } 3723