1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86FrameLowering.h" 14 #include "X86InstrBuilder.h" 15 #include "X86InstrInfo.h" 16 #include "X86MachineFunctionInfo.h" 17 #include "X86Subtarget.h" 18 #include "X86TargetMachine.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/EHPersonalities.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/WinEHFuncInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/MC/MCAsmInfo.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Target/TargetOptions.h" 34 #include <cstdlib> 35 36 #define DEBUG_TYPE "x86-fl" 37 38 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue"); 39 STATISTIC(NumFrameExtraProbe, 40 "Number of extra stack probes generated in prologue"); 41 42 using namespace llvm; 43 44 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 45 MaybeAlign StackAlignOverride) 46 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), 47 STI.is64Bit() ? -8 : -4), 48 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { 49 // Cache a bunch of frame-related predicates for this subtarget. 50 SlotSize = TRI->getSlotSize(); 51 Is64Bit = STI.is64Bit(); 52 IsLP64 = STI.isTarget64BitLP64(); 53 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 54 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 55 StackPtr = TRI->getStackRegister(); 56 } 57 58 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 59 return !MF.getFrameInfo().hasVarSizedObjects() && 60 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 61 } 62 63 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 64 /// call frame pseudos can be simplified. Having a FP, as in the default 65 /// implementation, is not sufficient here since we can't always use it. 66 /// Use a more nuanced condition. 67 bool 68 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 69 return hasReservedCallFrame(MF) || 70 (hasFP(MF) && !TRI->needsStackRealignment(MF)) || 71 TRI->hasBasePointer(MF); 72 } 73 74 // needsFrameIndexResolution - Do we need to perform FI resolution for 75 // this function. Normally, this is required only when the function 76 // has any stack objects. However, FI resolution actually has another job, 77 // not apparent from the title - it resolves callframesetup/destroy 78 // that were not simplified earlier. 79 // So, this is required for x86 functions that have push sequences even 80 // when there are no stack objects. 81 bool 82 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 83 return MF.getFrameInfo().hasStackObjects() || 84 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 85 } 86 87 /// hasFP - Return true if the specified function should have a dedicated frame 88 /// pointer register. This is true if the function has variable sized allocas 89 /// or if frame pointer elimination is disabled. 90 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 91 const MachineFrameInfo &MFI = MF.getFrameInfo(); 92 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 93 TRI->needsStackRealignment(MF) || 94 MFI.hasVarSizedObjects() || 95 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 96 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 97 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 98 MFI.hasStackMap() || MFI.hasPatchPoint() || 99 MFI.hasCopyImplyingStackAdjustment()); 100 } 101 102 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) { 103 if (IsLP64) { 104 if (isInt<8>(Imm)) 105 return X86::SUB64ri8; 106 return X86::SUB64ri32; 107 } else { 108 if (isInt<8>(Imm)) 109 return X86::SUB32ri8; 110 return X86::SUB32ri; 111 } 112 } 113 114 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) { 115 if (IsLP64) { 116 if (isInt<8>(Imm)) 117 return X86::ADD64ri8; 118 return X86::ADD64ri32; 119 } else { 120 if (isInt<8>(Imm)) 121 return X86::ADD32ri8; 122 return X86::ADD32ri; 123 } 124 } 125 126 static unsigned getSUBrrOpcode(bool IsLP64) { 127 return IsLP64 ? X86::SUB64rr : X86::SUB32rr; 128 } 129 130 static unsigned getADDrrOpcode(bool IsLP64) { 131 return IsLP64 ? X86::ADD64rr : X86::ADD32rr; 132 } 133 134 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 135 if (IsLP64) { 136 if (isInt<8>(Imm)) 137 return X86::AND64ri8; 138 return X86::AND64ri32; 139 } 140 if (isInt<8>(Imm)) 141 return X86::AND32ri8; 142 return X86::AND32ri; 143 } 144 145 static unsigned getLEArOpcode(bool IsLP64) { 146 return IsLP64 ? X86::LEA64r : X86::LEA32r; 147 } 148 149 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live 150 /// when it reaches the "return" instruction. We can then pop a stack object 151 /// to this register without worry about clobbering it. 152 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB, 153 MachineBasicBlock::iterator &MBBI, 154 const X86RegisterInfo *TRI, 155 bool Is64Bit) { 156 const MachineFunction *MF = MBB.getParent(); 157 if (MF->callsEHReturn()) 158 return 0; 159 160 const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF); 161 162 if (MBBI == MBB.end()) 163 return 0; 164 165 switch (MBBI->getOpcode()) { 166 default: return 0; 167 case TargetOpcode::PATCHABLE_RET: 168 case X86::RET: 169 case X86::RETL: 170 case X86::RETQ: 171 case X86::RETIL: 172 case X86::RETIQ: 173 case X86::TCRETURNdi: 174 case X86::TCRETURNri: 175 case X86::TCRETURNmi: 176 case X86::TCRETURNdi64: 177 case X86::TCRETURNri64: 178 case X86::TCRETURNmi64: 179 case X86::EH_RETURN: 180 case X86::EH_RETURN64: { 181 SmallSet<uint16_t, 8> Uses; 182 for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) { 183 MachineOperand &MO = MBBI->getOperand(i); 184 if (!MO.isReg() || MO.isDef()) 185 continue; 186 Register Reg = MO.getReg(); 187 if (!Reg) 188 continue; 189 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 190 Uses.insert(*AI); 191 } 192 193 for (auto CS : AvailableRegs) 194 if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP && 195 CS != X86::ESP) 196 return CS; 197 } 198 } 199 200 return 0; 201 } 202 203 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 204 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 205 unsigned Reg = RegMask.PhysReg; 206 207 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 208 Reg == X86::AH || Reg == X86::AL) 209 return true; 210 } 211 212 return false; 213 } 214 215 /// Check if the flags need to be preserved before the terminators. 216 /// This would be the case, if the eflags is live-in of the region 217 /// composed by the terminators or live-out of that region, without 218 /// being defined by a terminator. 219 static bool 220 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 221 for (const MachineInstr &MI : MBB.terminators()) { 222 bool BreakNext = false; 223 for (const MachineOperand &MO : MI.operands()) { 224 if (!MO.isReg()) 225 continue; 226 Register Reg = MO.getReg(); 227 if (Reg != X86::EFLAGS) 228 continue; 229 230 // This terminator needs an eflags that is not defined 231 // by a previous another terminator: 232 // EFLAGS is live-in of the region composed by the terminators. 233 if (!MO.isDef()) 234 return true; 235 // This terminator defines the eflags, i.e., we don't need to preserve it. 236 // However, we still need to check this specific terminator does not 237 // read a live-in value. 238 BreakNext = true; 239 } 240 // We found a definition of the eflags, no need to preserve them. 241 if (BreakNext) 242 return false; 243 } 244 245 // None of the terminators use or define the eflags. 246 // Check if they are live-out, that would imply we need to preserve them. 247 for (const MachineBasicBlock *Succ : MBB.successors()) 248 if (Succ->isLiveIn(X86::EFLAGS)) 249 return true; 250 251 return false; 252 } 253 254 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 255 /// stack pointer by a constant value. 256 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 257 MachineBasicBlock::iterator &MBBI, 258 const DebugLoc &DL, 259 int64_t NumBytes, bool InEpilogue) const { 260 bool isSub = NumBytes < 0; 261 uint64_t Offset = isSub ? -NumBytes : NumBytes; 262 MachineInstr::MIFlag Flag = 263 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 264 265 uint64_t Chunk = (1LL << 31) - 1; 266 267 MachineFunction &MF = *MBB.getParent(); 268 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 269 const X86TargetLowering &TLI = *STI.getTargetLowering(); 270 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 271 272 // It's ok to not take into account large chunks when probing, as the 273 // allocation is split in smaller chunks anyway. 274 if (EmitInlineStackProbe && !InEpilogue) { 275 276 // stack probing may involve looping, and control flow generations is 277 // disallowed at this point. Rely to later processing through 278 // `inlineStackProbe`. 279 MachineInstr *Stub = emitStackProbeInlineStub(MF, MBB, MBBI, DL, true); 280 281 // Encode the static offset as a metadata attached to the stub. 282 LLVMContext &Context = MF.getFunction().getContext(); 283 MachineInstrBuilder(MF, Stub).addMetadata( 284 MDTuple::get(Context, {ConstantAsMetadata::get(ConstantInt::get( 285 IntegerType::get(Context, 64), Offset))})); 286 return; 287 } else if (Offset > Chunk) { 288 // Rather than emit a long series of instructions for large offsets, 289 // load the offset into a register and do one sub/add 290 unsigned Reg = 0; 291 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 292 293 if (isSub && !isEAXLiveIn(MBB)) 294 Reg = Rax; 295 else 296 Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 297 298 unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri; 299 unsigned AddSubRROpc = 300 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 301 if (Reg) { 302 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg) 303 .addImm(Offset) 304 .setMIFlag(Flag); 305 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 306 .addReg(StackPtr) 307 .addReg(Reg); 308 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 309 return; 310 } else if (Offset > 8 * Chunk) { 311 // If we would need more than 8 add or sub instructions (a >16GB stack 312 // frame), it's worth spilling RAX to materialize this immediate. 313 // pushq %rax 314 // movabsq +-$Offset+-SlotSize, %rax 315 // addq %rsp, %rax 316 // xchg %rax, (%rsp) 317 // movq (%rsp), %rsp 318 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 319 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 320 .addReg(Rax, RegState::Kill) 321 .setMIFlag(Flag); 322 // Subtract is not commutative, so negate the offset and always use add. 323 // Subtract 8 less and add 8 more to account for the PUSH we just did. 324 if (isSub) 325 Offset = -(Offset - SlotSize); 326 else 327 Offset = Offset + SlotSize; 328 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax) 329 .addImm(Offset) 330 .setMIFlag(Flag); 331 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 332 .addReg(Rax) 333 .addReg(StackPtr); 334 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 335 // Exchange the new SP in RAX with the top of the stack. 336 addRegOffset( 337 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 338 StackPtr, false, 0); 339 // Load new SP from the top of the stack into RSP. 340 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 341 StackPtr, false, 0); 342 return; 343 } 344 } 345 346 while (Offset) { 347 uint64_t ThisVal = std::min(Offset, Chunk); 348 if (ThisVal == SlotSize) { 349 // Use push / pop for slot sized adjustments as a size optimization. We 350 // need to find a dead register when using pop. 351 unsigned Reg = isSub 352 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 353 : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 354 if (Reg) { 355 unsigned Opc = isSub 356 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 357 : (Is64Bit ? X86::POP64r : X86::POP32r); 358 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 359 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 360 .setMIFlag(Flag); 361 Offset -= ThisVal; 362 continue; 363 } 364 } 365 366 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 367 .setMIFlag(Flag); 368 369 Offset -= ThisVal; 370 } 371 } 372 373 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 374 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 375 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 376 assert(Offset != 0 && "zero offset stack adjustment requested"); 377 378 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 379 // is tricky. 380 bool UseLEA; 381 if (!InEpilogue) { 382 // Check if inserting the prologue at the beginning 383 // of MBB would require to use LEA operations. 384 // We need to use LEA operations if EFLAGS is live in, because 385 // it means an instruction will read it before it gets defined. 386 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 387 } else { 388 // If we can use LEA for SP but we shouldn't, check that none 389 // of the terminators uses the eflags. Otherwise we will insert 390 // a ADD that will redefine the eflags and break the condition. 391 // Alternatively, we could move the ADD, but this may not be possible 392 // and is an optimization anyway. 393 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 394 if (UseLEA && !STI.useLeaForSP()) 395 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 396 // If that assert breaks, that means we do not do the right thing 397 // in canUseAsEpilogue. 398 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 399 "We shouldn't have allowed this insertion point"); 400 } 401 402 MachineInstrBuilder MI; 403 if (UseLEA) { 404 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 405 TII.get(getLEArOpcode(Uses64BitFramePtr)), 406 StackPtr), 407 StackPtr, false, Offset); 408 } else { 409 bool IsSub = Offset < 0; 410 uint64_t AbsOffset = IsSub ? -Offset : Offset; 411 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 412 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 413 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 414 .addReg(StackPtr) 415 .addImm(AbsOffset); 416 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 417 } 418 return MI; 419 } 420 421 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 422 MachineBasicBlock::iterator &MBBI, 423 bool doMergeWithPrevious) const { 424 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 425 (!doMergeWithPrevious && MBBI == MBB.end())) 426 return 0; 427 428 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 429 430 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 431 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 432 // instruction, and that there are no DBG_VALUE or other instructions between 433 // ADD/SUB/LEA and its corresponding CFI instruction. 434 /* TODO: Add support for the case where there are multiple CFI instructions 435 below the ADD/SUB/LEA, e.g.: 436 ... 437 add 438 cfi_def_cfa_offset 439 cfi_offset 440 ... 441 */ 442 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 443 PI = std::prev(PI); 444 445 unsigned Opc = PI->getOpcode(); 446 int Offset = 0; 447 448 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 449 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 450 PI->getOperand(0).getReg() == StackPtr){ 451 assert(PI->getOperand(1).getReg() == StackPtr); 452 Offset = PI->getOperand(2).getImm(); 453 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 454 PI->getOperand(0).getReg() == StackPtr && 455 PI->getOperand(1).getReg() == StackPtr && 456 PI->getOperand(2).getImm() == 1 && 457 PI->getOperand(3).getReg() == X86::NoRegister && 458 PI->getOperand(5).getReg() == X86::NoRegister) { 459 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 460 Offset = PI->getOperand(4).getImm(); 461 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 462 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 463 PI->getOperand(0).getReg() == StackPtr) { 464 assert(PI->getOperand(1).getReg() == StackPtr); 465 Offset = -PI->getOperand(2).getImm(); 466 } else 467 return 0; 468 469 PI = MBB.erase(PI); 470 if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI); 471 if (!doMergeWithPrevious) 472 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 473 474 return Offset; 475 } 476 477 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 478 MachineBasicBlock::iterator MBBI, 479 const DebugLoc &DL, 480 const MCCFIInstruction &CFIInst) const { 481 MachineFunction &MF = *MBB.getParent(); 482 unsigned CFIIndex = MF.addFrameInst(CFIInst); 483 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 484 .addCFIIndex(CFIIndex); 485 } 486 487 void X86FrameLowering::emitCalleeSavedFrameMoves( 488 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 489 const DebugLoc &DL, bool IsPrologue) const { 490 MachineFunction &MF = *MBB.getParent(); 491 MachineFrameInfo &MFI = MF.getFrameInfo(); 492 MachineModuleInfo &MMI = MF.getMMI(); 493 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 494 495 // Add callee saved registers to move list. 496 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 497 if (CSI.empty()) return; 498 499 // Calculate offsets. 500 for (std::vector<CalleeSavedInfo>::const_iterator 501 I = CSI.begin(), E = CSI.end(); I != E; ++I) { 502 int64_t Offset = MFI.getObjectOffset(I->getFrameIdx()); 503 unsigned Reg = I->getReg(); 504 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 505 506 if (IsPrologue) { 507 BuildCFI(MBB, MBBI, DL, 508 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 509 } else { 510 BuildCFI(MBB, MBBI, DL, 511 MCCFIInstruction::createRestore(nullptr, DwarfReg)); 512 } 513 } 514 } 515 516 void X86FrameLowering::emitStackProbe(MachineFunction &MF, 517 MachineBasicBlock &MBB, 518 MachineBasicBlock::iterator MBBI, 519 const DebugLoc &DL, bool InProlog) const { 520 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 521 if (STI.isTargetWindowsCoreCLR()) { 522 if (InProlog) { 523 emitStackProbeInlineStub(MF, MBB, MBBI, DL, true); 524 } else { 525 emitStackProbeInline(MF, MBB, MBBI, DL, false); 526 } 527 } else { 528 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog); 529 } 530 } 531 532 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 533 MachineBasicBlock &PrologMBB) const { 534 const StringRef ChkStkStubSymbol = "__chkstk_stub"; 535 MachineInstr *ChkStkStub = nullptr; 536 537 for (MachineInstr &MI : PrologMBB) { 538 if (MI.isCall() && MI.getOperand(0).isSymbol() && 539 ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) { 540 ChkStkStub = &MI; 541 break; 542 } 543 } 544 545 if (ChkStkStub != nullptr) { 546 assert(!ChkStkStub->isBundled() && 547 "Not expecting bundled instructions here"); 548 MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator()); 549 assert(std::prev(MBBI) == ChkStkStub && 550 "MBBI expected after __chkstk_stub."); 551 DebugLoc DL = PrologMBB.findDebugLoc(MBBI); 552 emitStackProbeInline(MF, PrologMBB, MBBI, DL, true); 553 ChkStkStub->eraseFromParent(); 554 } 555 } 556 557 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 558 MachineBasicBlock &MBB, 559 MachineBasicBlock::iterator MBBI, 560 const DebugLoc &DL, 561 bool InProlog) const { 562 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 563 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit()) 564 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog); 565 else 566 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog); 567 } 568 569 void X86FrameLowering::emitStackProbeInlineGeneric( 570 MachineFunction &MF, MachineBasicBlock &MBB, 571 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 572 MachineInstr &CallToInline = *std::prev(MBBI); 573 assert(CallToInline.getOperand(1).isMetadata() && 574 "no metadata attached to that probe"); 575 uint64_t Offset = 576 cast<ConstantInt>( 577 cast<ConstantAsMetadata>( 578 cast<MDTuple>(CallToInline.getOperand(1).getMetadata()) 579 ->getOperand(0)) 580 ->getValue()) 581 ->getZExtValue(); 582 583 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 584 const X86TargetLowering &TLI = *STI.getTargetLowering(); 585 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) && 586 "different expansion expected for CoreCLR 64 bit"); 587 588 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 589 uint64_t ProbeChunk = StackProbeSize * 8; 590 591 // Synthesize a loop or unroll it, depending on the number of iterations. 592 if (Offset > ProbeChunk) { 593 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset); 594 } else { 595 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset); 596 } 597 } 598 599 void X86FrameLowering::emitStackProbeInlineGenericBlock( 600 MachineFunction &MF, MachineBasicBlock &MBB, 601 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, 602 uint64_t Offset) const { 603 604 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 605 const X86TargetLowering &TLI = *STI.getTargetLowering(); 606 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset); 607 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 608 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 609 uint64_t CurrentOffset = 0; 610 // 0 Thanks to return address being saved on the stack 611 uint64_t CurrentProbeOffset = 0; 612 613 // For the first N - 1 pages, just probe. I tried to take advantage of 614 // natural probes but it implies much more logic and there was very few 615 // interesting natural probes to interleave. 616 while (CurrentOffset + StackProbeSize < Offset) { 617 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 618 .addReg(StackPtr) 619 .addImm(StackProbeSize) 620 .setMIFlag(MachineInstr::FrameSetup); 621 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 622 623 624 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 625 .setMIFlag(MachineInstr::FrameSetup), 626 StackPtr, false, 0) 627 .addImm(0) 628 .setMIFlag(MachineInstr::FrameSetup); 629 NumFrameExtraProbe++; 630 CurrentOffset += StackProbeSize; 631 CurrentProbeOffset += StackProbeSize; 632 } 633 634 uint64_t ChunkSize = Offset - CurrentOffset; 635 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 636 .addReg(StackPtr) 637 .addImm(ChunkSize) 638 .setMIFlag(MachineInstr::FrameSetup); 639 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 640 } 641 642 void X86FrameLowering::emitStackProbeInlineGenericLoop( 643 MachineFunction &MF, MachineBasicBlock &MBB, 644 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, 645 uint64_t Offset) const { 646 647 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 648 const X86TargetLowering &TLI = *STI.getTargetLowering(); 649 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 650 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 651 652 // Synthesize a loop 653 NumFrameLoopProbe++; 654 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 655 656 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB); 657 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB); 658 659 MachineFunction::iterator MBBIter = ++MBB.getIterator(); 660 MF.insert(MBBIter, testMBB); 661 MF.insert(MBBIter, tailMBB); 662 663 unsigned FinalStackPtr = Uses64BitFramePtr ? X86::R11 : X86::R11D; 664 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FinalStackPtr) 665 .addReg(StackPtr) 666 .setMIFlag(MachineInstr::FrameSetup); 667 668 // save loop bound 669 { 670 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset); 671 BuildMI(MBB, MBBI, DL, TII.get(Opc), FinalStackPtr) 672 .addReg(FinalStackPtr) 673 .addImm(Offset / StackProbeSize * StackProbeSize) 674 .setMIFlag(MachineInstr::FrameSetup); 675 } 676 677 // allocate a page 678 { 679 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 680 BuildMI(testMBB, DL, TII.get(Opc), StackPtr) 681 .addReg(StackPtr) 682 .addImm(StackProbeSize) 683 .setMIFlag(MachineInstr::FrameSetup); 684 } 685 686 // touch the page 687 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc)) 688 .setMIFlag(MachineInstr::FrameSetup), 689 StackPtr, false, 0) 690 .addImm(0) 691 .setMIFlag(MachineInstr::FrameSetup); 692 693 // cmp with stack pointer bound 694 BuildMI(testMBB, DL, TII.get(IsLP64 ? X86::CMP64rr : X86::CMP32rr)) 695 .addReg(StackPtr) 696 .addReg(FinalStackPtr) 697 .setMIFlag(MachineInstr::FrameSetup); 698 699 // jump 700 BuildMI(testMBB, DL, TII.get(X86::JCC_1)) 701 .addMBB(testMBB) 702 .addImm(X86::COND_NE) 703 .setMIFlag(MachineInstr::FrameSetup); 704 testMBB->addSuccessor(testMBB); 705 testMBB->addSuccessor(tailMBB); 706 testMBB->addLiveIn(FinalStackPtr); 707 708 // allocate a block and touch it 709 710 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end()); 711 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB); 712 MBB.addSuccessor(testMBB); 713 714 if (Offset % StackProbeSize) { 715 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset); 716 BuildMI(*tailMBB, tailMBB->begin(), DL, TII.get(Opc), StackPtr) 717 .addReg(StackPtr) 718 .addImm(Offset % StackProbeSize) 719 .setMIFlag(MachineInstr::FrameSetup); 720 } 721 } 722 723 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64( 724 MachineFunction &MF, MachineBasicBlock &MBB, 725 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 726 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 727 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 728 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 729 const TargetInstrInfo &TII = *STI.getInstrInfo(); 730 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 731 732 // RAX contains the number of bytes of desired stack adjustment. 733 // The handling here assumes this value has already been updated so as to 734 // maintain stack alignment. 735 // 736 // We need to exit with RSP modified by this amount and execute suitable 737 // page touches to notify the OS that we're growing the stack responsibly. 738 // All stack probing must be done without modifying RSP. 739 // 740 // MBB: 741 // SizeReg = RAX; 742 // ZeroReg = 0 743 // CopyReg = RSP 744 // Flags, TestReg = CopyReg - SizeReg 745 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 746 // LimitReg = gs magic thread env access 747 // if FinalReg >= LimitReg goto ContinueMBB 748 // RoundBB: 749 // RoundReg = page address of FinalReg 750 // LoopMBB: 751 // LoopReg = PHI(LimitReg,ProbeReg) 752 // ProbeReg = LoopReg - PageSize 753 // [ProbeReg] = 0 754 // if (ProbeReg > RoundReg) goto LoopMBB 755 // ContinueMBB: 756 // RSP = RSP - RAX 757 // [rest of original MBB] 758 759 // Set up the new basic blocks 760 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 761 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 762 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 763 764 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 765 MF.insert(MBBIter, RoundMBB); 766 MF.insert(MBBIter, LoopMBB); 767 MF.insert(MBBIter, ContinueMBB); 768 769 // Split MBB and move the tail portion down to ContinueMBB. 770 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 771 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 772 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 773 774 // Some useful constants 775 const int64_t ThreadEnvironmentStackLimit = 0x10; 776 const int64_t PageSize = 0x1000; 777 const int64_t PageMask = ~(PageSize - 1); 778 779 // Registers we need. For the normal case we use virtual 780 // registers. For the prolog expansion we use RAX, RCX and RDX. 781 MachineRegisterInfo &MRI = MF.getRegInfo(); 782 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 783 const Register SizeReg = InProlog ? X86::RAX 784 : MRI.createVirtualRegister(RegClass), 785 ZeroReg = InProlog ? X86::RCX 786 : MRI.createVirtualRegister(RegClass), 787 CopyReg = InProlog ? X86::RDX 788 : MRI.createVirtualRegister(RegClass), 789 TestReg = InProlog ? X86::RDX 790 : MRI.createVirtualRegister(RegClass), 791 FinalReg = InProlog ? X86::RDX 792 : MRI.createVirtualRegister(RegClass), 793 RoundedReg = InProlog ? X86::RDX 794 : MRI.createVirtualRegister(RegClass), 795 LimitReg = InProlog ? X86::RCX 796 : MRI.createVirtualRegister(RegClass), 797 JoinReg = InProlog ? X86::RCX 798 : MRI.createVirtualRegister(RegClass), 799 ProbeReg = InProlog ? X86::RCX 800 : MRI.createVirtualRegister(RegClass); 801 802 // SP-relative offsets where we can save RCX and RDX. 803 int64_t RCXShadowSlot = 0; 804 int64_t RDXShadowSlot = 0; 805 806 // If inlining in the prolog, save RCX and RDX. 807 if (InProlog) { 808 // Compute the offsets. We need to account for things already 809 // pushed onto the stack at this point: return address, frame 810 // pointer (if used), and callee saves. 811 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 812 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 813 const bool HasFP = hasFP(MF); 814 815 // Check if we need to spill RCX and/or RDX. 816 // Here we assume that no earlier prologue instruction changes RCX and/or 817 // RDX, so checking the block live-ins is enough. 818 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); 819 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); 820 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 821 // Assign the initial slot to both registers, then change RDX's slot if both 822 // need to be spilled. 823 if (IsRCXLiveIn) 824 RCXShadowSlot = InitSlot; 825 if (IsRDXLiveIn) 826 RDXShadowSlot = InitSlot; 827 if (IsRDXLiveIn && IsRCXLiveIn) 828 RDXShadowSlot += 8; 829 // Emit the saves if needed. 830 if (IsRCXLiveIn) 831 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 832 RCXShadowSlot) 833 .addReg(X86::RCX); 834 if (IsRDXLiveIn) 835 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 836 RDXShadowSlot) 837 .addReg(X86::RDX); 838 } else { 839 // Not in the prolog. Copy RAX to a virtual reg. 840 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 841 } 842 843 // Add code to MBB to check for overflow and set the new target stack pointer 844 // to zero if so. 845 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 846 .addReg(ZeroReg, RegState::Undef) 847 .addReg(ZeroReg, RegState::Undef); 848 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 849 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 850 .addReg(CopyReg) 851 .addReg(SizeReg); 852 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) 853 .addReg(TestReg) 854 .addReg(ZeroReg) 855 .addImm(X86::COND_B); 856 857 // FinalReg now holds final stack pointer value, or zero if 858 // allocation would overflow. Compare against the current stack 859 // limit from the thread environment block. Note this limit is the 860 // lowest touched page on the stack, not the point at which the OS 861 // will cause an overflow exception, so this is just an optimization 862 // to avoid unnecessarily touching pages that are below the current 863 // SP but already committed to the stack by the OS. 864 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 865 .addReg(0) 866 .addImm(1) 867 .addReg(0) 868 .addImm(ThreadEnvironmentStackLimit) 869 .addReg(X86::GS); 870 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 871 // Jump if the desired stack pointer is at or above the stack limit. 872 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); 873 874 // Add code to roundMBB to round the final stack pointer to a page boundary. 875 RoundMBB->addLiveIn(FinalReg); 876 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 877 .addReg(FinalReg) 878 .addImm(PageMask); 879 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 880 881 // LimitReg now holds the current stack limit, RoundedReg page-rounded 882 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 883 // and probe until we reach RoundedReg. 884 if (!InProlog) { 885 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 886 .addReg(LimitReg) 887 .addMBB(RoundMBB) 888 .addReg(ProbeReg) 889 .addMBB(LoopMBB); 890 } 891 892 LoopMBB->addLiveIn(JoinReg); 893 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 894 false, -PageSize); 895 896 // Probe by storing a byte onto the stack. 897 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 898 .addReg(ProbeReg) 899 .addImm(1) 900 .addReg(0) 901 .addImm(0) 902 .addReg(0) 903 .addImm(0); 904 905 LoopMBB->addLiveIn(RoundedReg); 906 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 907 .addReg(RoundedReg) 908 .addReg(ProbeReg); 909 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); 910 911 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 912 913 // If in prolog, restore RDX and RCX. 914 if (InProlog) { 915 if (RCXShadowSlot) // It means we spilled RCX in the prologue. 916 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 917 TII.get(X86::MOV64rm), X86::RCX), 918 X86::RSP, false, RCXShadowSlot); 919 if (RDXShadowSlot) // It means we spilled RDX in the prologue. 920 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 921 TII.get(X86::MOV64rm), X86::RDX), 922 X86::RSP, false, RDXShadowSlot); 923 } 924 925 // Now that the probing is done, add code to continueMBB to update 926 // the stack pointer for real. 927 ContinueMBB->addLiveIn(SizeReg); 928 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 929 .addReg(X86::RSP) 930 .addReg(SizeReg); 931 932 // Add the control flow edges we need. 933 MBB.addSuccessor(ContinueMBB); 934 MBB.addSuccessor(RoundMBB); 935 RoundMBB->addSuccessor(LoopMBB); 936 LoopMBB->addSuccessor(ContinueMBB); 937 LoopMBB->addSuccessor(LoopMBB); 938 939 // Mark all the instructions added to the prolog as frame setup. 940 if (InProlog) { 941 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 942 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 943 } 944 for (MachineInstr &MI : *RoundMBB) { 945 MI.setFlag(MachineInstr::FrameSetup); 946 } 947 for (MachineInstr &MI : *LoopMBB) { 948 MI.setFlag(MachineInstr::FrameSetup); 949 } 950 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); 951 CMBBI != ContinueMBBI; ++CMBBI) { 952 CMBBI->setFlag(MachineInstr::FrameSetup); 953 } 954 } 955 } 956 957 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF, 958 MachineBasicBlock &MBB, 959 MachineBasicBlock::iterator MBBI, 960 const DebugLoc &DL, 961 bool InProlog) const { 962 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 963 964 // FIXME: Add indirect thunk support and remove this. 965 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) 966 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 967 "code model and indirect thunks not yet implemented."); 968 969 unsigned CallOp; 970 if (Is64Bit) 971 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 972 else 973 CallOp = X86::CALLpcrel32; 974 975 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 976 977 MachineInstrBuilder CI; 978 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 979 980 // All current stack probes take AX and SP as input, clobber flags, and 981 // preserve all registers. x86_64 probes leave RSP unmodified. 982 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 983 // For the large code model, we have to call through a register. Use R11, 984 // as it is scratch in all supported calling conventions. 985 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 986 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 987 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 988 } else { 989 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 990 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 991 } 992 993 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; 994 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; 995 CI.addReg(AX, RegState::Implicit) 996 .addReg(SP, RegState::Implicit) 997 .addReg(AX, RegState::Define | RegState::Implicit) 998 .addReg(SP, RegState::Define | RegState::Implicit) 999 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 1000 1001 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1002 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 1003 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 1004 // themselves. They also does not clobber %rax so we can reuse it when 1005 // adjusting %rsp. 1006 // All other platforms do not specify a particular ABI for the stack probe 1007 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 1008 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) 1009 .addReg(SP) 1010 .addReg(AX); 1011 } 1012 1013 if (InProlog) { 1014 // Apply the frame setup flag to all inserted instrs. 1015 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 1016 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 1017 } 1018 } 1019 1020 MachineInstr *X86FrameLowering::emitStackProbeInlineStub( 1021 MachineFunction &MF, MachineBasicBlock &MBB, 1022 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 1023 1024 assert(InProlog && "ChkStkStub called outside prolog!"); 1025 1026 return BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32)) 1027 .addExternalSymbol("__chkstk_stub"); 1028 } 1029 1030 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 1031 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 1032 // and might require smaller successive adjustments. 1033 const uint64_t Win64MaxSEHOffset = 128; 1034 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 1035 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 1036 return SEHFrameOffset & -16; 1037 } 1038 1039 // If we're forcing a stack realignment we can't rely on just the frame 1040 // info, we need to know the ABI stack alignment as well in case we 1041 // have a call out. Otherwise just make sure we have some alignment - we'll 1042 // go with the minimum SlotSize. 1043 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 1044 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1045 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment. 1046 Align StackAlign = getStackAlign(); 1047 if (MF.getFunction().hasFnAttribute("stackrealign")) { 1048 if (MFI.hasCalls()) 1049 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 1050 else if (MaxAlign < SlotSize) 1051 MaxAlign = Align(SlotSize); 1052 } 1053 return MaxAlign.value(); 1054 } 1055 1056 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 1057 MachineBasicBlock::iterator MBBI, 1058 const DebugLoc &DL, unsigned Reg, 1059 uint64_t MaxAlign) const { 1060 uint64_t Val = -MaxAlign; 1061 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 1062 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 1063 .addReg(Reg) 1064 .addImm(Val) 1065 .setMIFlag(MachineInstr::FrameSetup); 1066 1067 // The EFLAGS implicit def is dead. 1068 MI->getOperand(3).setIsDead(); 1069 } 1070 1071 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { 1072 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be 1073 // clobbered by any interrupt handler. 1074 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1075 "MF used frame lowering for wrong subtarget"); 1076 const Function &Fn = MF.getFunction(); 1077 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 1078 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); 1079 } 1080 1081 1082 /// emitPrologue - Push callee-saved registers onto the stack, which 1083 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 1084 /// space for local variables. Also emit labels used by the exception handler to 1085 /// generate the exception handling frames. 1086 1087 /* 1088 Here's a gist of what gets emitted: 1089 1090 ; Establish frame pointer, if needed 1091 [if needs FP] 1092 push %rbp 1093 .cfi_def_cfa_offset 16 1094 .cfi_offset %rbp, -16 1095 .seh_pushreg %rpb 1096 mov %rsp, %rbp 1097 .cfi_def_cfa_register %rbp 1098 1099 ; Spill general-purpose registers 1100 [for all callee-saved GPRs] 1101 pushq %<reg> 1102 [if not needs FP] 1103 .cfi_def_cfa_offset (offset from RETADDR) 1104 .seh_pushreg %<reg> 1105 1106 ; If the required stack alignment > default stack alignment 1107 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 1108 ; of unknown size in the stack frame. 1109 [if stack needs re-alignment] 1110 and $MASK, %rsp 1111 1112 ; Allocate space for locals 1113 [if target is Windows and allocated space > 4096 bytes] 1114 ; Windows needs special care for allocations larger 1115 ; than one page. 1116 mov $NNN, %rax 1117 call ___chkstk_ms/___chkstk 1118 sub %rax, %rsp 1119 [else] 1120 sub $NNN, %rsp 1121 1122 [if needs FP] 1123 .seh_stackalloc (size of XMM spill slots) 1124 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 1125 [else] 1126 .seh_stackalloc NNN 1127 1128 ; Spill XMMs 1129 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 1130 ; they may get spilled on any platform, if the current function 1131 ; calls @llvm.eh.unwind.init 1132 [if needs FP] 1133 [for all callee-saved XMM registers] 1134 movaps %<xmm reg>, -MMM(%rbp) 1135 [for all callee-saved XMM registers] 1136 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 1137 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 1138 [else] 1139 [for all callee-saved XMM registers] 1140 movaps %<xmm reg>, KKK(%rsp) 1141 [for all callee-saved XMM registers] 1142 .seh_savexmm %<xmm reg>, KKK 1143 1144 .seh_endprologue 1145 1146 [if needs base pointer] 1147 mov %rsp, %rbx 1148 [if needs to restore base pointer] 1149 mov %rsp, -MMM(%rbp) 1150 1151 ; Emit CFI info 1152 [if needs FP] 1153 [for all callee-saved registers] 1154 .cfi_offset %<reg>, (offset from %rbp) 1155 [else] 1156 .cfi_def_cfa_offset (offset from RETADDR) 1157 [for all callee-saved registers] 1158 .cfi_offset %<reg>, (offset from %rsp) 1159 1160 Notes: 1161 - .seh directives are emitted only for Windows 64 ABI 1162 - .cv_fpo directives are emitted on win32 when emitting CodeView 1163 - .cfi directives are emitted for all other ABIs 1164 - for 32-bit code, substitute %e?? registers for %r?? 1165 */ 1166 1167 void X86FrameLowering::emitPrologue(MachineFunction &MF, 1168 MachineBasicBlock &MBB) const { 1169 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1170 "MF used frame lowering for wrong subtarget"); 1171 MachineBasicBlock::iterator MBBI = MBB.begin(); 1172 MachineFrameInfo &MFI = MF.getFrameInfo(); 1173 const Function &Fn = MF.getFunction(); 1174 MachineModuleInfo &MMI = MF.getMMI(); 1175 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1176 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 1177 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 1178 bool IsFunclet = MBB.isEHFuncletEntry(); 1179 EHPersonality Personality = EHPersonality::Unknown; 1180 if (Fn.hasPersonalityFn()) 1181 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 1182 bool FnHasClrFunclet = 1183 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 1184 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 1185 bool HasFP = hasFP(MF); 1186 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1187 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 1188 // FIXME: Emit FPO data for EH funclets. 1189 bool NeedsWinFPO = 1190 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); 1191 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 1192 bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves(); 1193 Register FramePtr = TRI->getFrameRegister(MF); 1194 const Register MachineFramePtr = 1195 STI.isTarget64BitILP32() 1196 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1197 Register BasePtr = TRI->getBaseRegister(); 1198 bool HasWinCFI = false; 1199 1200 // Debug location must be unknown since the first debug location is used 1201 // to determine the end of the prologue. 1202 DebugLoc DL; 1203 1204 // Add RETADDR move area to callee saved frame size. 1205 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1206 if (TailCallReturnAddrDelta && IsWin64Prologue) 1207 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 1208 1209 if (TailCallReturnAddrDelta < 0) 1210 X86FI->setCalleeSavedFrameSize( 1211 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); 1212 1213 const bool EmitStackProbeCall = 1214 STI.getTargetLowering()->hasStackProbeSymbol(MF); 1215 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); 1216 1217 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 1218 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1219 // stack alignment. 1220 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1221 Fn.arg_size() == 2) { 1222 StackSize += 8; 1223 MFI.setStackSize(StackSize); 1224 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); 1225 } 1226 1227 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1228 // function, and use up to 128 bytes of stack space, don't have a frame 1229 // pointer, calls, or dynamic alloca then we do not need to adjust the 1230 // stack pointer (we fit in the Red Zone). We also check that we don't 1231 // push and pop from the stack. 1232 if (has128ByteRedZone(MF) && !TRI->needsStackRealignment(MF) && 1233 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1234 !MFI.adjustsStack() && // No calls. 1235 !EmitStackProbeCall && // No stack probes. 1236 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1237 !MF.shouldSplitStack()) { // Regular stack 1238 uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); 1239 if (HasFP) MinSize += SlotSize; 1240 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1241 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1242 MFI.setStackSize(StackSize); 1243 } 1244 1245 // Insert stack pointer adjustment for later moving of return addr. Only 1246 // applies to tail call optimized functions where the callee argument stack 1247 // size is bigger than the callers. 1248 if (TailCallReturnAddrDelta < 0) { 1249 BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta, 1250 /*InEpilogue=*/false) 1251 .setMIFlag(MachineInstr::FrameSetup); 1252 } 1253 1254 // Mapping for machine moves: 1255 // 1256 // DST: VirtualFP AND 1257 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1258 // ELSE => DW_CFA_def_cfa 1259 // 1260 // SRC: VirtualFP AND 1261 // DST: Register => DW_CFA_def_cfa_register 1262 // 1263 // ELSE 1264 // OFFSET < 0 => DW_CFA_offset_extended_sf 1265 // REG < 64 => DW_CFA_offset + Reg 1266 // ELSE => DW_CFA_offset_extended 1267 1268 uint64_t NumBytes = 0; 1269 int stackGrowth = -SlotSize; 1270 1271 // Find the funclet establisher parameter 1272 Register Establisher = X86::NoRegister; 1273 if (IsClrFunclet) 1274 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1275 else if (IsFunclet) 1276 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1277 1278 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1279 // Immediately spill establisher into the home slot. 1280 // The runtime cares about this. 1281 // MOV64mr %rdx, 16(%rsp) 1282 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1283 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1284 .addReg(Establisher) 1285 .setMIFlag(MachineInstr::FrameSetup); 1286 MBB.addLiveIn(Establisher); 1287 } 1288 1289 if (HasFP) { 1290 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1291 1292 // Calculate required stack adjustment. 1293 uint64_t FrameSize = StackSize - SlotSize; 1294 // If required, include space for extra hidden slot for stashing base pointer. 1295 if (X86FI->getRestoreBasePointer()) 1296 FrameSize += SlotSize; 1297 1298 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); 1299 1300 // Callee-saved registers are pushed on stack before the stack is realigned. 1301 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1302 NumBytes = alignTo(NumBytes, MaxAlign); 1303 1304 // Save EBP/RBP into the appropriate stack slot. 1305 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1306 .addReg(MachineFramePtr, RegState::Kill) 1307 .setMIFlag(MachineInstr::FrameSetup); 1308 1309 if (NeedsDwarfCFI) { 1310 // Mark the place where EBP/RBP was saved. 1311 // Define the current CFA rule to use the provided offset. 1312 assert(StackSize); 1313 BuildCFI(MBB, MBBI, DL, 1314 MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth)); 1315 1316 // Change the rule for the FramePtr to be an "offset" rule. 1317 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1318 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset( 1319 nullptr, DwarfFramePtr, 2 * stackGrowth)); 1320 } 1321 1322 if (NeedsWinCFI) { 1323 HasWinCFI = true; 1324 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1325 .addImm(FramePtr) 1326 .setMIFlag(MachineInstr::FrameSetup); 1327 } 1328 1329 if (!IsWin64Prologue && !IsFunclet) { 1330 // Update EBP with the new base value. 1331 BuildMI(MBB, MBBI, DL, 1332 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1333 FramePtr) 1334 .addReg(StackPtr) 1335 .setMIFlag(MachineInstr::FrameSetup); 1336 1337 if (NeedsDwarfCFI) { 1338 // Mark effective beginning of when frame pointer becomes valid. 1339 // Define the current CFA to use the EBP/RBP register. 1340 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1341 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister( 1342 nullptr, DwarfFramePtr)); 1343 } 1344 1345 if (NeedsWinFPO) { 1346 // .cv_fpo_setframe $FramePtr 1347 HasWinCFI = true; 1348 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1349 .addImm(FramePtr) 1350 .addImm(0) 1351 .setMIFlag(MachineInstr::FrameSetup); 1352 } 1353 } 1354 } else { 1355 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1356 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); 1357 } 1358 1359 // Update the offset adjustment, which is mainly used by codeview to translate 1360 // from ESP to VFRAME relative local variable offsets. 1361 if (!IsFunclet) { 1362 if (HasFP && TRI->needsStackRealignment(MF)) 1363 MFI.setOffsetAdjustment(-NumBytes); 1364 else 1365 MFI.setOffsetAdjustment(-StackSize); 1366 } 1367 1368 // For EH funclets, only allocate enough space for outgoing calls. Save the 1369 // NumBytes value that we would've used for the parent frame. 1370 unsigned ParentFrameNumBytes = NumBytes; 1371 if (IsFunclet) 1372 NumBytes = getWinEHFuncletFrameSize(MF); 1373 1374 // Skip the callee-saved push instructions. 1375 bool PushedRegs = false; 1376 int StackOffset = 2 * stackGrowth; 1377 1378 while (MBBI != MBB.end() && 1379 MBBI->getFlag(MachineInstr::FrameSetup) && 1380 (MBBI->getOpcode() == X86::PUSH32r || 1381 MBBI->getOpcode() == X86::PUSH64r)) { 1382 PushedRegs = true; 1383 Register Reg = MBBI->getOperand(0).getReg(); 1384 ++MBBI; 1385 1386 if (!HasFP && NeedsDwarfCFI) { 1387 // Mark callee-saved push instruction. 1388 // Define the current CFA rule to use the provided offset. 1389 assert(StackSize); 1390 BuildCFI(MBB, MBBI, DL, 1391 MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset)); 1392 StackOffset += stackGrowth; 1393 } 1394 1395 if (NeedsWinCFI) { 1396 HasWinCFI = true; 1397 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1398 .addImm(Reg) 1399 .setMIFlag(MachineInstr::FrameSetup); 1400 } 1401 } 1402 1403 // Realign stack after we pushed callee-saved registers (so that we'll be 1404 // able to calculate their offsets from the frame pointer). 1405 // Don't do this for Win64, it needs to realign the stack after the prologue. 1406 if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) { 1407 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1408 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1409 1410 if (NeedsWinCFI) { 1411 HasWinCFI = true; 1412 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) 1413 .addImm(MaxAlign) 1414 .setMIFlag(MachineInstr::FrameSetup); 1415 } 1416 } 1417 1418 // If there is an SUB32ri of ESP immediately before this instruction, merge 1419 // the two. This can be the case when tail call elimination is enabled and 1420 // the callee has more arguments then the caller. 1421 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1422 1423 // Adjust stack pointer: ESP -= numbytes. 1424 1425 // Windows and cygwin/mingw require a prologue helper routine when allocating 1426 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1427 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1428 // stack and adjust the stack pointer in one go. The 64-bit version of 1429 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1430 // responsible for adjusting the stack pointer. Touching the stack at 4K 1431 // increments is necessary to ensure that the guard pages used by the OS 1432 // virtual memory manager are allocated in correct sequence. 1433 uint64_t AlignedNumBytes = NumBytes; 1434 if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) 1435 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1436 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) { 1437 assert(!X86FI->getUsesRedZone() && 1438 "The Red Zone is not accounted for in stack probes"); 1439 1440 // Check whether EAX is livein for this block. 1441 bool isEAXAlive = isEAXLiveIn(MBB); 1442 1443 if (isEAXAlive) { 1444 if (Is64Bit) { 1445 // Save RAX 1446 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1447 .addReg(X86::RAX, RegState::Kill) 1448 .setMIFlag(MachineInstr::FrameSetup); 1449 } else { 1450 // Save EAX 1451 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1452 .addReg(X86::EAX, RegState::Kill) 1453 .setMIFlag(MachineInstr::FrameSetup); 1454 } 1455 } 1456 1457 if (Is64Bit) { 1458 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1459 // Function prologue is responsible for adjusting the stack pointer. 1460 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1461 if (isUInt<32>(Alloc)) { 1462 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1463 .addImm(Alloc) 1464 .setMIFlag(MachineInstr::FrameSetup); 1465 } else if (isInt<32>(Alloc)) { 1466 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX) 1467 .addImm(Alloc) 1468 .setMIFlag(MachineInstr::FrameSetup); 1469 } else { 1470 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) 1471 .addImm(Alloc) 1472 .setMIFlag(MachineInstr::FrameSetup); 1473 } 1474 } else { 1475 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1476 // We'll also use 4 already allocated bytes for EAX. 1477 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1478 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1479 .setMIFlag(MachineInstr::FrameSetup); 1480 } 1481 1482 // Call __chkstk, __chkstk_ms, or __alloca. 1483 emitStackProbe(MF, MBB, MBBI, DL, true); 1484 1485 if (isEAXAlive) { 1486 // Restore RAX/EAX 1487 MachineInstr *MI; 1488 if (Is64Bit) 1489 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 1490 StackPtr, false, NumBytes - 8); 1491 else 1492 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1493 StackPtr, false, NumBytes - 4); 1494 MI->setFlag(MachineInstr::FrameSetup); 1495 MBB.insert(MBBI, MI); 1496 } 1497 } else if (NumBytes) { 1498 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 1499 } 1500 1501 if (NeedsWinCFI && NumBytes) { 1502 HasWinCFI = true; 1503 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1504 .addImm(NumBytes) 1505 .setMIFlag(MachineInstr::FrameSetup); 1506 } 1507 1508 int SEHFrameOffset = 0; 1509 unsigned SPOrEstablisher; 1510 if (IsFunclet) { 1511 if (IsClrFunclet) { 1512 // The establisher parameter passed to a CLR funclet is actually a pointer 1513 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1514 // to find the root function establisher frame by loading the PSPSym from 1515 // the intermediate frame. 1516 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1517 MachinePointerInfo NoInfo; 1518 MBB.addLiveIn(Establisher); 1519 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1520 Establisher, false, PSPSlotOffset) 1521 .addMemOperand(MF.getMachineMemOperand( 1522 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize))); 1523 ; 1524 // Save the root establisher back into the current funclet's (mostly 1525 // empty) frame, in case a sub-funclet or the GC needs it. 1526 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1527 false, PSPSlotOffset) 1528 .addReg(Establisher) 1529 .addMemOperand(MF.getMachineMemOperand( 1530 NoInfo, 1531 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1532 SlotSize, Align(SlotSize))); 1533 } 1534 SPOrEstablisher = Establisher; 1535 } else { 1536 SPOrEstablisher = StackPtr; 1537 } 1538 1539 if (IsWin64Prologue && HasFP) { 1540 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1541 // this calculation on the incoming establisher, which holds the value of 1542 // RSP from the parent frame at the end of the prologue. 1543 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1544 if (SEHFrameOffset) 1545 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1546 SPOrEstablisher, false, SEHFrameOffset); 1547 else 1548 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1549 .addReg(SPOrEstablisher); 1550 1551 // If this is not a funclet, emit the CFI describing our frame pointer. 1552 if (NeedsWinCFI && !IsFunclet) { 1553 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 1554 HasWinCFI = true; 1555 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1556 .addImm(FramePtr) 1557 .addImm(SEHFrameOffset) 1558 .setMIFlag(MachineInstr::FrameSetup); 1559 if (isAsynchronousEHPersonality(Personality)) 1560 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 1561 } 1562 } else if (IsFunclet && STI.is32Bit()) { 1563 // Reset EBP / ESI to something good for funclets. 1564 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 1565 // If we're a catch funclet, we can be returned to via catchret. Save ESP 1566 // into the registration node so that the runtime will restore it for us. 1567 if (!MBB.isCleanupFuncletEntry()) { 1568 assert(Personality == EHPersonality::MSVC_CXX); 1569 Register FrameReg; 1570 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 1571 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg); 1572 // ESP is the first field, so no extra displacement is needed. 1573 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 1574 false, EHRegOffset) 1575 .addReg(X86::ESP); 1576 } 1577 } 1578 1579 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 1580 const MachineInstr &FrameInstr = *MBBI; 1581 ++MBBI; 1582 1583 if (NeedsWinCFI) { 1584 int FI; 1585 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 1586 if (X86::FR64RegClass.contains(Reg)) { 1587 int Offset; 1588 Register IgnoredFrameReg; 1589 if (IsWin64Prologue && IsFunclet) 1590 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); 1591 else 1592 Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg) + 1593 SEHFrameOffset; 1594 1595 HasWinCFI = true; 1596 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 1597 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 1598 .addImm(Reg) 1599 .addImm(Offset) 1600 .setMIFlag(MachineInstr::FrameSetup); 1601 } 1602 } 1603 } 1604 } 1605 1606 if (NeedsWinCFI && HasWinCFI) 1607 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 1608 .setMIFlag(MachineInstr::FrameSetup); 1609 1610 if (FnHasClrFunclet && !IsFunclet) { 1611 // Save the so-called Initial-SP (i.e. the value of the stack pointer 1612 // immediately after the prolog) into the PSPSlot so that funclets 1613 // and the GC can recover it. 1614 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1615 auto PSPInfo = MachinePointerInfo::getFixedStack( 1616 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 1617 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 1618 PSPSlotOffset) 1619 .addReg(StackPtr) 1620 .addMemOperand(MF.getMachineMemOperand( 1621 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1622 SlotSize, Align(SlotSize))); 1623 } 1624 1625 // Realign stack after we spilled callee-saved registers (so that we'll be 1626 // able to calculate their offsets from the frame pointer). 1627 // Win64 requires aligning the stack after the prologue. 1628 if (IsWin64Prologue && TRI->needsStackRealignment(MF)) { 1629 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1630 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 1631 } 1632 1633 // We already dealt with stack realignment and funclets above. 1634 if (IsFunclet && STI.is32Bit()) 1635 return; 1636 1637 // If we need a base pointer, set it up here. It's whatever the value 1638 // of the stack pointer is at this point. Any variable size objects 1639 // will be allocated after this, so we can still use the base pointer 1640 // to reference locals. 1641 if (TRI->hasBasePointer(MF)) { 1642 // Update the base pointer with the current stack pointer. 1643 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 1644 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 1645 .addReg(SPOrEstablisher) 1646 .setMIFlag(MachineInstr::FrameSetup); 1647 if (X86FI->getRestoreBasePointer()) { 1648 // Stash value of base pointer. Saving RSP instead of EBP shortens 1649 // dependence chain. Used by SjLj EH. 1650 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1651 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 1652 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 1653 .addReg(SPOrEstablisher) 1654 .setMIFlag(MachineInstr::FrameSetup); 1655 } 1656 1657 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 1658 // Stash the value of the frame pointer relative to the base pointer for 1659 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 1660 // it recovers the frame pointer from the base pointer rather than the 1661 // other way around. 1662 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1663 Register UsedReg; 1664 int Offset = 1665 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 1666 assert(UsedReg == BasePtr); 1667 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 1668 .addReg(FramePtr) 1669 .setMIFlag(MachineInstr::FrameSetup); 1670 } 1671 } 1672 1673 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 1674 // Mark end of stack pointer adjustment. 1675 if (!HasFP && NumBytes) { 1676 // Define the current CFA rule to use the provided offset. 1677 assert(StackSize); 1678 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset( 1679 nullptr, -StackSize + stackGrowth)); 1680 } 1681 1682 // Emit DWARF info specifying the offsets of the callee-saved registers. 1683 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true); 1684 } 1685 1686 // X86 Interrupt handling function cannot assume anything about the direction 1687 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 1688 // in each prologue of interrupt handler function. 1689 // 1690 // FIXME: Create "cld" instruction only in these cases: 1691 // 1. The interrupt handling function uses any of the "rep" instructions. 1692 // 2. Interrupt handling function calls another function. 1693 // 1694 if (Fn.getCallingConv() == CallingConv::X86_INTR) 1695 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 1696 .setMIFlag(MachineInstr::FrameSetup); 1697 1698 // At this point we know if the function has WinCFI or not. 1699 MF.setHasWinCFI(HasWinCFI); 1700 } 1701 1702 bool X86FrameLowering::canUseLEAForSPInEpilogue( 1703 const MachineFunction &MF) const { 1704 // We can't use LEA instructions for adjusting the stack pointer if we don't 1705 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 1706 // to deallocate the stack. 1707 // This means that we can use LEA for SP in two situations: 1708 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 1709 // 2. We *have* a frame pointer which means we are permitted to use LEA. 1710 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 1711 } 1712 1713 static bool isFuncletReturnInstr(MachineInstr &MI) { 1714 switch (MI.getOpcode()) { 1715 case X86::CATCHRET: 1716 case X86::CLEANUPRET: 1717 return true; 1718 default: 1719 return false; 1720 } 1721 llvm_unreachable("impossible"); 1722 } 1723 1724 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 1725 // stack. It holds a pointer to the bottom of the root function frame. The 1726 // establisher frame pointer passed to a nested funclet may point to the 1727 // (mostly empty) frame of its parent funclet, but it will need to find 1728 // the frame of the root function to access locals. To facilitate this, 1729 // every funclet copies the pointer to the bottom of the root function 1730 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 1731 // same offset for the PSPSym in the root function frame that's used in the 1732 // funclets' frames allows each funclet to dynamically accept any ancestor 1733 // frame as its establisher argument (the runtime doesn't guarantee the 1734 // immediate parent for some reason lost to history), and also allows the GC, 1735 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 1736 // frame with only a single offset reported for the entire method. 1737 unsigned 1738 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 1739 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 1740 Register SPReg; 1741 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 1742 /*IgnoreSPUpdates*/ true); 1743 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 1744 return static_cast<unsigned>(Offset); 1745 } 1746 1747 unsigned 1748 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 1749 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1750 // This is the size of the pushed CSRs. 1751 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1752 // This is the size of callee saved XMMs. 1753 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 1754 unsigned XMMSize = WinEHXMMSlotInfo.size() * 1755 TRI->getSpillSize(X86::VR128RegClass); 1756 // This is the amount of stack a funclet needs to allocate. 1757 unsigned UsedSize; 1758 EHPersonality Personality = 1759 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 1760 if (Personality == EHPersonality::CoreCLR) { 1761 // CLR funclets need to hold enough space to include the PSPSym, at the 1762 // same offset from the stack pointer (immediately after the prolog) as it 1763 // resides at in the main function. 1764 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 1765 } else { 1766 // Other funclets just need enough stack for outgoing call arguments. 1767 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 1768 } 1769 // RBP is not included in the callee saved register block. After pushing RBP, 1770 // everything is 16 byte aligned. Everything we allocate before an outgoing 1771 // call must also be 16 byte aligned. 1772 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign()); 1773 // Subtract out the size of the callee saved registers. This is how much stack 1774 // each funclet will allocate. 1775 return FrameSizeMinusRBP + XMMSize - CSSize; 1776 } 1777 1778 static bool isTailCallOpcode(unsigned Opc) { 1779 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 1780 Opc == X86::TCRETURNmi || 1781 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 1782 Opc == X86::TCRETURNmi64; 1783 } 1784 1785 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 1786 MachineBasicBlock &MBB) const { 1787 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1788 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1789 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 1790 MachineBasicBlock::iterator MBBI = Terminator; 1791 DebugLoc DL; 1792 if (MBBI != MBB.end()) 1793 DL = MBBI->getDebugLoc(); 1794 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 1795 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 1796 Register FramePtr = TRI->getFrameRegister(MF); 1797 unsigned MachineFramePtr = 1798 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1799 1800 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1801 bool NeedsWin64CFI = 1802 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 1803 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 1804 1805 // Get the number of bytes to allocate from the FrameInfo. 1806 uint64_t StackSize = MFI.getStackSize(); 1807 uint64_t MaxAlign = calculateMaxStackAlign(MF); 1808 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1809 bool HasFP = hasFP(MF); 1810 uint64_t NumBytes = 0; 1811 1812 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && 1813 !MF.getTarget().getTargetTriple().isOSWindows()) && 1814 MF.needsFrameMoves(); 1815 1816 if (IsFunclet) { 1817 assert(HasFP && "EH funclets without FP not yet implemented"); 1818 NumBytes = getWinEHFuncletFrameSize(MF); 1819 } else if (HasFP) { 1820 // Calculate required stack adjustment. 1821 uint64_t FrameSize = StackSize - SlotSize; 1822 NumBytes = FrameSize - CSSize; 1823 1824 // Callee-saved registers were pushed on stack before the stack was 1825 // realigned. 1826 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1827 NumBytes = alignTo(FrameSize, MaxAlign); 1828 } else { 1829 NumBytes = StackSize - CSSize; 1830 } 1831 uint64_t SEHStackAllocAmt = NumBytes; 1832 1833 // AfterPop is the position to insert .cfi_restore. 1834 MachineBasicBlock::iterator AfterPop = MBBI; 1835 if (HasFP) { 1836 // Pop EBP. 1837 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 1838 MachineFramePtr) 1839 .setMIFlag(MachineInstr::FrameDestroy); 1840 if (NeedsDwarfCFI) { 1841 unsigned DwarfStackPtr = 1842 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 1843 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfa( 1844 nullptr, DwarfStackPtr, -SlotSize)); 1845 if (!MBB.succ_empty() && !MBB.isReturnBlock()) { 1846 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1847 BuildCFI(MBB, AfterPop, DL, 1848 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr)); 1849 --MBBI; 1850 --AfterPop; 1851 } 1852 --MBBI; 1853 } 1854 } 1855 1856 MachineBasicBlock::iterator FirstCSPop = MBBI; 1857 // Skip the callee-saved pop instructions. 1858 while (MBBI != MBB.begin()) { 1859 MachineBasicBlock::iterator PI = std::prev(MBBI); 1860 unsigned Opc = PI->getOpcode(); 1861 1862 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 1863 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 1864 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy))) 1865 break; 1866 FirstCSPop = PI; 1867 } 1868 1869 --MBBI; 1870 } 1871 MBBI = FirstCSPop; 1872 1873 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 1874 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 1875 1876 if (MBBI != MBB.end()) 1877 DL = MBBI->getDebugLoc(); 1878 1879 // If there is an ADD32ri or SUB32ri of ESP immediately before this 1880 // instruction, merge the two instructions. 1881 if (NumBytes || MFI.hasVarSizedObjects()) 1882 NumBytes += mergeSPUpdates(MBB, MBBI, true); 1883 1884 // If dynamic alloca is used, then reset esp to point to the last callee-saved 1885 // slot before popping them off! Same applies for the case, when stack was 1886 // realigned. Don't do this if this was a funclet epilogue, since the funclets 1887 // will not do realignment or dynamic stack allocation. 1888 if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) && 1889 !IsFunclet) { 1890 if (TRI->needsStackRealignment(MF)) 1891 MBBI = FirstCSPop; 1892 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 1893 uint64_t LEAAmount = 1894 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 1895 1896 // There are only two legal forms of epilogue: 1897 // - add SEHAllocationSize, %rsp 1898 // - lea SEHAllocationSize(%FramePtr), %rsp 1899 // 1900 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 1901 // However, we may use this sequence if we have a frame pointer because the 1902 // effects of the prologue can safely be undone. 1903 if (LEAAmount != 0) { 1904 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 1905 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 1906 FramePtr, false, LEAAmount); 1907 --MBBI; 1908 } else { 1909 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 1910 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 1911 .addReg(FramePtr); 1912 --MBBI; 1913 } 1914 } else if (NumBytes) { 1915 // Adjust stack pointer back: ESP += numbytes. 1916 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 1917 if (!hasFP(MF) && NeedsDwarfCFI) { 1918 // Define the current CFA rule to use the provided offset. 1919 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset( 1920 nullptr, -CSSize - SlotSize)); 1921 } 1922 --MBBI; 1923 } 1924 1925 // Windows unwinder will not invoke function's exception handler if IP is 1926 // either in prologue or in epilogue. This behavior causes a problem when a 1927 // call immediately precedes an epilogue, because the return address points 1928 // into the epilogue. To cope with that, we insert an epilogue marker here, 1929 // then replace it with a 'nop' if it ends up immediately after a CALL in the 1930 // final emitted code. 1931 if (NeedsWin64CFI && MF.hasWinCFI()) 1932 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 1933 1934 if (!hasFP(MF) && NeedsDwarfCFI) { 1935 MBBI = FirstCSPop; 1936 int64_t Offset = -CSSize - SlotSize; 1937 // Mark callee-saved pop instruction. 1938 // Define the current CFA rule to use the provided offset. 1939 while (MBBI != MBB.end()) { 1940 MachineBasicBlock::iterator PI = MBBI; 1941 unsigned Opc = PI->getOpcode(); 1942 ++MBBI; 1943 if (Opc == X86::POP32r || Opc == X86::POP64r) { 1944 Offset += SlotSize; 1945 BuildCFI(MBB, MBBI, DL, 1946 MCCFIInstruction::createDefCfaOffset(nullptr, Offset)); 1947 } 1948 } 1949 } 1950 1951 // Emit DWARF info specifying the restores of the callee-saved registers. 1952 // For epilogue with return inside or being other block without successor, 1953 // no need to generate .cfi_restore for callee-saved registers. 1954 if (NeedsDwarfCFI && !MBB.succ_empty() && !MBB.isReturnBlock()) { 1955 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false); 1956 } 1957 1958 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 1959 // Add the return addr area delta back since we are not tail calling. 1960 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 1961 assert(Offset >= 0 && "TCDelta should never be positive"); 1962 if (Offset) { 1963 // Check for possible merge with preceding ADD instruction. 1964 Offset += mergeSPUpdates(MBB, Terminator, true); 1965 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 1966 } 1967 } 1968 } 1969 1970 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 1971 Register &FrameReg) const { 1972 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1973 1974 bool IsFixed = MFI.isFixedObjectIndex(FI); 1975 // We can't calculate offset from frame pointer if the stack is realigned, 1976 // so enforce usage of stack/base pointer. The base pointer is used when we 1977 // have dynamic allocas in addition to dynamic realignment. 1978 if (TRI->hasBasePointer(MF)) 1979 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 1980 else if (TRI->needsStackRealignment(MF)) 1981 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 1982 else 1983 FrameReg = TRI->getFrameRegister(MF); 1984 1985 // Offset will hold the offset from the stack pointer at function entry to the 1986 // object. 1987 // We need to factor in additional offsets applied during the prologue to the 1988 // frame, base, and stack pointer depending on which is used. 1989 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 1990 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1991 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1992 uint64_t StackSize = MFI.getStackSize(); 1993 bool HasFP = hasFP(MF); 1994 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1995 int64_t FPDelta = 0; 1996 1997 // In an x86 interrupt, remove the offset we added to account for the return 1998 // address from any stack object allocated in the caller's frame. Interrupts 1999 // do not have a standard return address. Fixed objects in the current frame, 2000 // such as SSE register spills, should not get this treatment. 2001 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && 2002 Offset >= 0) { 2003 Offset += getOffsetOfLocalArea(); 2004 } 2005 2006 if (IsWin64Prologue) { 2007 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 2008 2009 // Calculate required stack adjustment. 2010 uint64_t FrameSize = StackSize - SlotSize; 2011 // If required, include space for extra hidden slot for stashing base pointer. 2012 if (X86FI->getRestoreBasePointer()) 2013 FrameSize += SlotSize; 2014 uint64_t NumBytes = FrameSize - CSSize; 2015 2016 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 2017 if (FI && FI == X86FI->getFAIndex()) 2018 return -SEHFrameOffset; 2019 2020 // FPDelta is the offset from the "traditional" FP location of the old base 2021 // pointer followed by return address and the location required by the 2022 // restricted Win64 prologue. 2023 // Add FPDelta to all offsets below that go through the frame pointer. 2024 FPDelta = FrameSize - SEHFrameOffset; 2025 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 2026 "FPDelta isn't aligned per the Win64 ABI!"); 2027 } 2028 2029 2030 if (TRI->hasBasePointer(MF)) { 2031 assert(HasFP && "VLAs and dynamic stack realign, but no FP?!"); 2032 if (FI < 0) { 2033 // Skip the saved EBP. 2034 return Offset + SlotSize + FPDelta; 2035 } else { 2036 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2037 return Offset + StackSize; 2038 } 2039 } else if (TRI->needsStackRealignment(MF)) { 2040 if (FI < 0) { 2041 // Skip the saved EBP. 2042 return Offset + SlotSize + FPDelta; 2043 } else { 2044 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2045 return Offset + StackSize; 2046 } 2047 // FIXME: Support tail calls 2048 } else { 2049 if (!HasFP) 2050 return Offset + StackSize; 2051 2052 // Skip the saved EBP. 2053 Offset += SlotSize; 2054 2055 // Skip the RETADDR move area 2056 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2057 if (TailCallReturnAddrDelta < 0) 2058 Offset -= TailCallReturnAddrDelta; 2059 } 2060 2061 return Offset + FPDelta; 2062 } 2063 2064 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, 2065 Register &FrameReg) const { 2066 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2067 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2068 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2069 const auto it = WinEHXMMSlotInfo.find(FI); 2070 2071 if (it == WinEHXMMSlotInfo.end()) 2072 return getFrameIndexReference(MF, FI, FrameReg); 2073 2074 FrameReg = TRI->getStackRegister(); 2075 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) + 2076 it->second; 2077 } 2078 2079 int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, 2080 int FI, Register &FrameReg, 2081 int Adjustment) const { 2082 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2083 FrameReg = TRI->getStackRegister(); 2084 return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment; 2085 } 2086 2087 int X86FrameLowering::getFrameIndexReferencePreferSP( 2088 const MachineFunction &MF, int FI, Register &FrameReg, 2089 bool IgnoreSPUpdates) const { 2090 2091 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2092 // Does not include any dynamic realign. 2093 const uint64_t StackSize = MFI.getStackSize(); 2094 // LLVM arranges the stack as follows: 2095 // ... 2096 // ARG2 2097 // ARG1 2098 // RETADDR 2099 // PUSH RBP <-- RBP points here 2100 // PUSH CSRs 2101 // ~~~~~~~ <-- possible stack realignment (non-win64) 2102 // ... 2103 // STACK OBJECTS 2104 // ... <-- RSP after prologue points here 2105 // ~~~~~~~ <-- possible stack realignment (win64) 2106 // 2107 // if (hasVarSizedObjects()): 2108 // ... <-- "base pointer" (ESI/RBX) points here 2109 // DYNAMIC ALLOCAS 2110 // ... <-- RSP points here 2111 // 2112 // Case 1: In the simple case of no stack realignment and no dynamic 2113 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 2114 // with fixed offsets from RSP. 2115 // 2116 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 2117 // stack objects are addressed with RBP and regular stack objects with RSP. 2118 // 2119 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 2120 // to address stack arguments for outgoing calls and nothing else. The "base 2121 // pointer" points to local variables, and RBP points to fixed objects. 2122 // 2123 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 2124 // answer we give is relative to the SP after the prologue, and not the 2125 // SP in the middle of the function. 2126 2127 if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) && 2128 !STI.isTargetWin64()) 2129 return getFrameIndexReference(MF, FI, FrameReg); 2130 2131 // If !hasReservedCallFrame the function might have SP adjustement in the 2132 // body. So, even though the offset is statically known, it depends on where 2133 // we are in the function. 2134 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) 2135 return getFrameIndexReference(MF, FI, FrameReg); 2136 2137 // We don't handle tail calls, and shouldn't be seeing them either. 2138 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 2139 "we don't handle this case!"); 2140 2141 // This is how the math works out: 2142 // 2143 // %rsp grows (i.e. gets lower) left to right. Each box below is 2144 // one word (eight bytes). Obj0 is the stack slot we're trying to 2145 // get to. 2146 // 2147 // ---------------------------------- 2148 // | BP | Obj0 | Obj1 | ... | ObjN | 2149 // ---------------------------------- 2150 // ^ ^ ^ ^ 2151 // A B C E 2152 // 2153 // A is the incoming stack pointer. 2154 // (B - A) is the local area offset (-8 for x86-64) [1] 2155 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 2156 // 2157 // |(E - B)| is the StackSize (absolute value, positive). For a 2158 // stack that grown down, this works out to be (B - E). [3] 2159 // 2160 // E is also the value of %rsp after stack has been set up, and we 2161 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 2162 // (C - E) == (C - A) - (B - A) + (B - E) 2163 // { Using [1], [2] and [3] above } 2164 // == getObjectOffset - LocalAreaOffset + StackSize 2165 2166 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 2167 } 2168 2169 bool X86FrameLowering::assignCalleeSavedSpillSlots( 2170 MachineFunction &MF, const TargetRegisterInfo *TRI, 2171 std::vector<CalleeSavedInfo> &CSI) const { 2172 MachineFrameInfo &MFI = MF.getFrameInfo(); 2173 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2174 2175 unsigned CalleeSavedFrameSize = 0; 2176 unsigned XMMCalleeSavedFrameSize = 0; 2177 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2178 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 2179 2180 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2181 2182 if (TailCallReturnAddrDelta < 0) { 2183 // create RETURNADDR area 2184 // arg 2185 // arg 2186 // RETADDR 2187 // { ... 2188 // RETADDR area 2189 // ... 2190 // } 2191 // [EBP] 2192 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 2193 TailCallReturnAddrDelta - SlotSize, true); 2194 } 2195 2196 // Spill the BasePtr if it's used. 2197 if (this->TRI->hasBasePointer(MF)) { 2198 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 2199 if (MF.hasEHFunclets()) { 2200 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize)); 2201 X86FI->setHasSEHFramePtrSave(true); 2202 X86FI->setSEHFramePtrSaveIndex(FI); 2203 } 2204 } 2205 2206 if (hasFP(MF)) { 2207 // emitPrologue always spills frame register the first thing. 2208 SpillSlotOffset -= SlotSize; 2209 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2210 2211 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 2212 // the frame register, we can delete it from CSI list and not have to worry 2213 // about avoiding it later. 2214 Register FPReg = TRI->getFrameRegister(MF); 2215 for (unsigned i = 0; i < CSI.size(); ++i) { 2216 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 2217 CSI.erase(CSI.begin() + i); 2218 break; 2219 } 2220 } 2221 } 2222 2223 // Assign slots for GPRs. It increases frame size. 2224 for (unsigned i = CSI.size(); i != 0; --i) { 2225 unsigned Reg = CSI[i - 1].getReg(); 2226 2227 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2228 continue; 2229 2230 SpillSlotOffset -= SlotSize; 2231 CalleeSavedFrameSize += SlotSize; 2232 2233 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2234 CSI[i - 1].setFrameIdx(SlotIndex); 2235 } 2236 2237 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 2238 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); 2239 2240 // Assign slots for XMMs. 2241 for (unsigned i = CSI.size(); i != 0; --i) { 2242 unsigned Reg = CSI[i - 1].getReg(); 2243 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2244 continue; 2245 2246 // If this is k-register make sure we lookup via the largest legal type. 2247 MVT VT = MVT::Other; 2248 if (X86::VK16RegClass.contains(Reg)) 2249 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2250 2251 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2252 unsigned Size = TRI->getSpillSize(*RC); 2253 Align Alignment = TRI->getSpillAlign(*RC); 2254 // ensure alignment 2255 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); 2256 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment); 2257 2258 // spill into slot 2259 SpillSlotOffset -= Size; 2260 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 2261 CSI[i - 1].setFrameIdx(SlotIndex); 2262 MFI.ensureMaxAlignment(Alignment); 2263 2264 // Save the start offset and size of XMM in stack frame for funclets. 2265 if (X86::VR128RegClass.contains(Reg)) { 2266 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; 2267 XMMCalleeSavedFrameSize += Size; 2268 } 2269 } 2270 2271 return true; 2272 } 2273 2274 bool X86FrameLowering::spillCalleeSavedRegisters( 2275 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2276 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2277 DebugLoc DL = MBB.findDebugLoc(MI); 2278 2279 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2280 // for us, and there are no XMM CSRs on Win32. 2281 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2282 return true; 2283 2284 // Push GPRs. It increases frame size. 2285 const MachineFunction &MF = *MBB.getParent(); 2286 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 2287 for (unsigned i = CSI.size(); i != 0; --i) { 2288 unsigned Reg = CSI[i - 1].getReg(); 2289 2290 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2291 continue; 2292 2293 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2294 bool isLiveIn = MRI.isLiveIn(Reg); 2295 if (!isLiveIn) 2296 MBB.addLiveIn(Reg); 2297 2298 // Decide whether we can add a kill flag to the use. 2299 bool CanKill = !isLiveIn; 2300 // Check if any subregister is live-in 2301 if (CanKill) { 2302 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 2303 if (MRI.isLiveIn(*AReg)) { 2304 CanKill = false; 2305 break; 2306 } 2307 } 2308 } 2309 2310 // Do not set a kill flag on values that are also marked as live-in. This 2311 // happens with the @llvm-returnaddress intrinsic and with arguments 2312 // passed in callee saved registers. 2313 // Omitting the kill flags is conservatively correct even if the live-in 2314 // is not used after all. 2315 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 2316 .setMIFlag(MachineInstr::FrameSetup); 2317 } 2318 2319 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 2320 // It can be done by spilling XMMs to stack frame. 2321 for (unsigned i = CSI.size(); i != 0; --i) { 2322 unsigned Reg = CSI[i-1].getReg(); 2323 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2324 continue; 2325 2326 // If this is k-register make sure we lookup via the largest legal type. 2327 MVT VT = MVT::Other; 2328 if (X86::VK16RegClass.contains(Reg)) 2329 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2330 2331 // Add the callee-saved register as live-in. It's killed at the spill. 2332 MBB.addLiveIn(Reg); 2333 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2334 2335 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC, 2336 TRI); 2337 --MI; 2338 MI->setFlag(MachineInstr::FrameSetup); 2339 ++MI; 2340 } 2341 2342 return true; 2343 } 2344 2345 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 2346 MachineBasicBlock::iterator MBBI, 2347 MachineInstr *CatchRet) const { 2348 // SEH shouldn't use catchret. 2349 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 2350 MBB.getParent()->getFunction().getPersonalityFn())) && 2351 "SEH should not use CATCHRET"); 2352 DebugLoc DL = CatchRet->getDebugLoc(); 2353 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 2354 2355 // Fill EAX/RAX with the address of the target block. 2356 if (STI.is64Bit()) { 2357 // LEA64r CatchRetTarget(%rip), %rax 2358 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 2359 .addReg(X86::RIP) 2360 .addImm(0) 2361 .addReg(0) 2362 .addMBB(CatchRetTarget) 2363 .addReg(0); 2364 } else { 2365 // MOV32ri $CatchRetTarget, %eax 2366 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2367 .addMBB(CatchRetTarget); 2368 } 2369 2370 // Record that we've taken the address of CatchRetTarget and no longer just 2371 // reference it in a terminator. 2372 CatchRetTarget->setHasAddressTaken(); 2373 } 2374 2375 bool X86FrameLowering::restoreCalleeSavedRegisters( 2376 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2377 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2378 if (CSI.empty()) 2379 return false; 2380 2381 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 2382 // Don't restore CSRs in 32-bit EH funclets. Matches 2383 // spillCalleeSavedRegisters. 2384 if (STI.is32Bit()) 2385 return true; 2386 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 2387 // funclets. emitEpilogue transforms these to normal jumps. 2388 if (MI->getOpcode() == X86::CATCHRET) { 2389 const Function &F = MBB.getParent()->getFunction(); 2390 bool IsSEH = isAsynchronousEHPersonality( 2391 classifyEHPersonality(F.getPersonalityFn())); 2392 if (IsSEH) 2393 return true; 2394 } 2395 } 2396 2397 DebugLoc DL = MBB.findDebugLoc(MI); 2398 2399 // Reload XMMs from stack frame. 2400 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2401 unsigned Reg = CSI[i].getReg(); 2402 if (X86::GR64RegClass.contains(Reg) || 2403 X86::GR32RegClass.contains(Reg)) 2404 continue; 2405 2406 // If this is k-register make sure we lookup via the largest legal type. 2407 MVT VT = MVT::Other; 2408 if (X86::VK16RegClass.contains(Reg)) 2409 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2410 2411 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2412 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); 2413 } 2414 2415 // POP GPRs. 2416 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 2417 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2418 unsigned Reg = CSI[i].getReg(); 2419 if (!X86::GR64RegClass.contains(Reg) && 2420 !X86::GR32RegClass.contains(Reg)) 2421 continue; 2422 2423 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 2424 .setMIFlag(MachineInstr::FrameDestroy); 2425 } 2426 return true; 2427 } 2428 2429 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 2430 BitVector &SavedRegs, 2431 RegScavenger *RS) const { 2432 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2433 2434 // Spill the BasePtr if it's used. 2435 if (TRI->hasBasePointer(MF)){ 2436 Register BasePtr = TRI->getBaseRegister(); 2437 if (STI.isTarget64BitILP32()) 2438 BasePtr = getX86SubSuperRegister(BasePtr, 64); 2439 SavedRegs.set(BasePtr); 2440 } 2441 } 2442 2443 static bool 2444 HasNestArgument(const MachineFunction *MF) { 2445 const Function &F = MF->getFunction(); 2446 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 2447 I != E; I++) { 2448 if (I->hasNestAttr() && !I->use_empty()) 2449 return true; 2450 } 2451 return false; 2452 } 2453 2454 /// GetScratchRegister - Get a temp register for performing work in the 2455 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2456 /// and the properties of the function either one or two registers will be 2457 /// needed. Set primary to true for the first register, false for the second. 2458 static unsigned 2459 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2460 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 2461 2462 // Erlang stuff. 2463 if (CallingConvention == CallingConv::HiPE) { 2464 if (Is64Bit) 2465 return Primary ? X86::R14 : X86::R13; 2466 else 2467 return Primary ? X86::EBX : X86::EDI; 2468 } 2469 2470 if (Is64Bit) { 2471 if (IsLP64) 2472 return Primary ? X86::R11 : X86::R12; 2473 else 2474 return Primary ? X86::R11D : X86::R12D; 2475 } 2476 2477 bool IsNested = HasNestArgument(&MF); 2478 2479 if (CallingConvention == CallingConv::X86_FastCall || 2480 CallingConvention == CallingConv::Fast || 2481 CallingConvention == CallingConv::Tail) { 2482 if (IsNested) 2483 report_fatal_error("Segmented stacks does not support fastcall with " 2484 "nested function."); 2485 return Primary ? X86::EAX : X86::ECX; 2486 } 2487 if (IsNested) 2488 return Primary ? X86::EDX : X86::EAX; 2489 return Primary ? X86::ECX : X86::EAX; 2490 } 2491 2492 // The stack limit in the TCB is set to this many bytes above the actual stack 2493 // limit. 2494 static const uint64_t kSplitStackAvailable = 256; 2495 2496 void X86FrameLowering::adjustForSegmentedStacks( 2497 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2498 MachineFrameInfo &MFI = MF.getFrameInfo(); 2499 uint64_t StackSize; 2500 unsigned TlsReg, TlsOffset; 2501 DebugLoc DL; 2502 2503 // To support shrink-wrapping we would need to insert the new blocks 2504 // at the right place and update the branches to PrologueMBB. 2505 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2506 2507 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2508 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2509 "Scratch register is live-in"); 2510 2511 if (MF.getFunction().isVarArg()) 2512 report_fatal_error("Segmented stacks do not support vararg functions."); 2513 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 2514 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 2515 !STI.isTargetDragonFly()) 2516 report_fatal_error("Segmented stacks not supported on this platform."); 2517 2518 // Eventually StackSize will be calculated by a link-time pass; which will 2519 // also decide whether checking code needs to be injected into this particular 2520 // prologue. 2521 StackSize = MFI.getStackSize(); 2522 2523 // Do not generate a prologue for leaf functions with a stack of size zero. 2524 // For non-leaf functions we have to allow for the possibility that the 2525 // callis to a non-split function, as in PR37807. This function could also 2526 // take the address of a non-split function. When the linker tries to adjust 2527 // its non-existent prologue, it would fail with an error. Mark the object 2528 // file so that such failures are not errors. See this Go language bug-report 2529 // https://go-review.googlesource.com/c/go/+/148819/ 2530 if (StackSize == 0 && !MFI.hasTailCall()) { 2531 MF.getMMI().setHasNosplitStack(true); 2532 return; 2533 } 2534 2535 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 2536 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 2537 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2538 bool IsNested = false; 2539 2540 // We need to know if the function has a nest argument only in 64 bit mode. 2541 if (Is64Bit) 2542 IsNested = HasNestArgument(&MF); 2543 2544 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 2545 // allocMBB needs to be last (terminating) instruction. 2546 2547 for (const auto &LI : PrologueMBB.liveins()) { 2548 allocMBB->addLiveIn(LI); 2549 checkMBB->addLiveIn(LI); 2550 } 2551 2552 if (IsNested) 2553 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 2554 2555 MF.push_front(allocMBB); 2556 MF.push_front(checkMBB); 2557 2558 // When the frame size is less than 256 we just compare the stack 2559 // boundary directly to the value of the stack pointer, per gcc. 2560 bool CompareStackPointer = StackSize < kSplitStackAvailable; 2561 2562 // Read the limit off the current stacklet off the stack_guard location. 2563 if (Is64Bit) { 2564 if (STI.isTargetLinux()) { 2565 TlsReg = X86::FS; 2566 TlsOffset = IsLP64 ? 0x70 : 0x40; 2567 } else if (STI.isTargetDarwin()) { 2568 TlsReg = X86::GS; 2569 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 2570 } else if (STI.isTargetWin64()) { 2571 TlsReg = X86::GS; 2572 TlsOffset = 0x28; // pvArbitrary, reserved for application use 2573 } else if (STI.isTargetFreeBSD()) { 2574 TlsReg = X86::FS; 2575 TlsOffset = 0x18; 2576 } else if (STI.isTargetDragonFly()) { 2577 TlsReg = X86::FS; 2578 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 2579 } else { 2580 report_fatal_error("Segmented stacks not supported on this platform."); 2581 } 2582 2583 if (CompareStackPointer) 2584 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 2585 else 2586 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 2587 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2588 2589 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 2590 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2591 } else { 2592 if (STI.isTargetLinux()) { 2593 TlsReg = X86::GS; 2594 TlsOffset = 0x30; 2595 } else if (STI.isTargetDarwin()) { 2596 TlsReg = X86::GS; 2597 TlsOffset = 0x48 + 90*4; 2598 } else if (STI.isTargetWin32()) { 2599 TlsReg = X86::FS; 2600 TlsOffset = 0x14; // pvArbitrary, reserved for application use 2601 } else if (STI.isTargetDragonFly()) { 2602 TlsReg = X86::FS; 2603 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 2604 } else if (STI.isTargetFreeBSD()) { 2605 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 2606 } else { 2607 report_fatal_error("Segmented stacks not supported on this platform."); 2608 } 2609 2610 if (CompareStackPointer) 2611 ScratchReg = X86::ESP; 2612 else 2613 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 2614 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2615 2616 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 2617 STI.isTargetDragonFly()) { 2618 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 2619 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2620 } else if (STI.isTargetDarwin()) { 2621 2622 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 2623 unsigned ScratchReg2; 2624 bool SaveScratch2; 2625 if (CompareStackPointer) { 2626 // The primary scratch register is available for holding the TLS offset. 2627 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2628 SaveScratch2 = false; 2629 } else { 2630 // Need to use a second register to hold the TLS offset 2631 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 2632 2633 // Unfortunately, with fastcc the second scratch register may hold an 2634 // argument. 2635 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 2636 } 2637 2638 // If Scratch2 is live-in then it needs to be saved. 2639 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 2640 "Scratch register is live-in and not saved"); 2641 2642 if (SaveScratch2) 2643 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 2644 .addReg(ScratchReg2, RegState::Kill); 2645 2646 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 2647 .addImm(TlsOffset); 2648 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 2649 .addReg(ScratchReg) 2650 .addReg(ScratchReg2).addImm(1).addReg(0) 2651 .addImm(0) 2652 .addReg(TlsReg); 2653 2654 if (SaveScratch2) 2655 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 2656 } 2657 } 2658 2659 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 2660 // It jumps to normal execution of the function body. 2661 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); 2662 2663 // On 32 bit we first push the arguments size and then the frame size. On 64 2664 // bit, we pass the stack frame size in r10 and the argument size in r11. 2665 if (Is64Bit) { 2666 // Functions with nested arguments use R10, so it needs to be saved across 2667 // the call to _morestack 2668 2669 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 2670 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 2671 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 2672 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 2673 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri; 2674 2675 if (IsNested) 2676 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 2677 2678 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10) 2679 .addImm(StackSize); 2680 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11) 2681 .addImm(X86FI->getArgumentStackSize()); 2682 } else { 2683 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2684 .addImm(X86FI->getArgumentStackSize()); 2685 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2686 .addImm(StackSize); 2687 } 2688 2689 // __morestack is in libgcc 2690 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 2691 // Under the large code model, we cannot assume that __morestack lives 2692 // within 2^31 bytes of the call site, so we cannot use pc-relative 2693 // addressing. We cannot perform the call via a temporary register, 2694 // as the rax register may be used to store the static chain, and all 2695 // other suitable registers may be either callee-save or used for 2696 // parameter passing. We cannot use the stack at this point either 2697 // because __morestack manipulates the stack directly. 2698 // 2699 // To avoid these issues, perform an indirect call via a read-only memory 2700 // location containing the address. 2701 // 2702 // This solution is not perfect, as it assumes that the .rodata section 2703 // is laid out within 2^31 bytes of each function body, but this seems 2704 // to be sufficient for JIT. 2705 // FIXME: Add retpoline support and remove the error here.. 2706 if (STI.useIndirectThunkCalls()) 2707 report_fatal_error("Emitting morestack calls on 64-bit with the large " 2708 "code model and thunks not yet implemented."); 2709 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 2710 .addReg(X86::RIP) 2711 .addImm(0) 2712 .addReg(0) 2713 .addExternalSymbol("__morestack_addr") 2714 .addReg(0); 2715 MF.getMMI().setUsesMorestackAddr(true); 2716 } else { 2717 if (Is64Bit) 2718 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 2719 .addExternalSymbol("__morestack"); 2720 else 2721 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 2722 .addExternalSymbol("__morestack"); 2723 } 2724 2725 if (IsNested) 2726 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 2727 else 2728 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 2729 2730 allocMBB->addSuccessor(&PrologueMBB); 2731 2732 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); 2733 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); 2734 2735 #ifdef EXPENSIVE_CHECKS 2736 MF.verify(); 2737 #endif 2738 } 2739 2740 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 2741 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 2742 /// to fields it needs, through a named metadata node "hipe.literals" containing 2743 /// name-value pairs. 2744 static unsigned getHiPELiteral( 2745 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 2746 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 2747 MDNode *Node = HiPELiteralsMD->getOperand(i); 2748 if (Node->getNumOperands() != 2) continue; 2749 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 2750 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 2751 if (!NodeName || !NodeVal) continue; 2752 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 2753 if (ValConst && NodeName->getString() == LiteralName) { 2754 return ValConst->getZExtValue(); 2755 } 2756 } 2757 2758 report_fatal_error("HiPE literal " + LiteralName 2759 + " required but not provided"); 2760 } 2761 2762 // Return true if there are no non-ehpad successors to MBB and there are no 2763 // non-meta instructions between MBBI and MBB.end(). 2764 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, 2765 MachineBasicBlock::const_iterator MBBI) { 2766 return std::all_of( 2767 MBB.succ_begin(), MBB.succ_end(), 2768 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && 2769 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { 2770 return MI.isMetaInstruction(); 2771 }); 2772 } 2773 2774 /// Erlang programs may need a special prologue to handle the stack size they 2775 /// might need at runtime. That is because Erlang/OTP does not implement a C 2776 /// stack but uses a custom implementation of hybrid stack/heap architecture. 2777 /// (for more information see Eric Stenman's Ph.D. thesis: 2778 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 2779 /// 2780 /// CheckStack: 2781 /// temp0 = sp - MaxStack 2782 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2783 /// OldStart: 2784 /// ... 2785 /// IncStack: 2786 /// call inc_stack # doubles the stack space 2787 /// temp0 = sp - MaxStack 2788 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2789 void X86FrameLowering::adjustForHiPEPrologue( 2790 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2791 MachineFrameInfo &MFI = MF.getFrameInfo(); 2792 DebugLoc DL; 2793 2794 // To support shrink-wrapping we would need to insert the new blocks 2795 // at the right place and update the branches to PrologueMBB. 2796 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2797 2798 // HiPE-specific values 2799 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 2800 ->getNamedMetadata("hipe.literals"); 2801 if (!HiPELiteralsMD) 2802 report_fatal_error( 2803 "Can't generate HiPE prologue without runtime parameters"); 2804 const unsigned HipeLeafWords 2805 = getHiPELiteral(HiPELiteralsMD, 2806 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 2807 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 2808 const unsigned Guaranteed = HipeLeafWords * SlotSize; 2809 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? 2810 MF.getFunction().arg_size() - CCRegisteredArgs : 0; 2811 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 2812 2813 assert(STI.isTargetLinux() && 2814 "HiPE prologue is only supported on Linux operating systems."); 2815 2816 // Compute the largest caller's frame that is needed to fit the callees' 2817 // frames. This 'MaxStack' is computed from: 2818 // 2819 // a) the fixed frame size, which is the space needed for all spilled temps, 2820 // b) outgoing on-stack parameter areas, and 2821 // c) the minimum stack space this function needs to make available for the 2822 // functions it calls (a tunable ABI property). 2823 if (MFI.hasCalls()) { 2824 unsigned MoreStackForCalls = 0; 2825 2826 for (auto &MBB : MF) { 2827 for (auto &MI : MBB) { 2828 if (!MI.isCall()) 2829 continue; 2830 2831 // Get callee operand. 2832 const MachineOperand &MO = MI.getOperand(0); 2833 2834 // Only take account of global function calls (no closures etc.). 2835 if (!MO.isGlobal()) 2836 continue; 2837 2838 const Function *F = dyn_cast<Function>(MO.getGlobal()); 2839 if (!F) 2840 continue; 2841 2842 // Do not update 'MaxStack' for primitive and built-in functions 2843 // (encoded with names either starting with "erlang."/"bif_" or not 2844 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 2845 // "_", such as the BIF "suspend_0") as they are executed on another 2846 // stack. 2847 if (F->getName().find("erlang.") != StringRef::npos || 2848 F->getName().find("bif_") != StringRef::npos || 2849 F->getName().find_first_of("._") == StringRef::npos) 2850 continue; 2851 2852 unsigned CalleeStkArity = 2853 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 2854 if (HipeLeafWords - 1 > CalleeStkArity) 2855 MoreStackForCalls = std::max(MoreStackForCalls, 2856 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 2857 } 2858 } 2859 MaxStack += MoreStackForCalls; 2860 } 2861 2862 // If the stack frame needed is larger than the guaranteed then runtime checks 2863 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 2864 if (MaxStack > Guaranteed) { 2865 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 2866 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 2867 2868 for (const auto &LI : PrologueMBB.liveins()) { 2869 stackCheckMBB->addLiveIn(LI); 2870 incStackMBB->addLiveIn(LI); 2871 } 2872 2873 MF.push_front(incStackMBB); 2874 MF.push_front(stackCheckMBB); 2875 2876 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 2877 unsigned LEAop, CMPop, CALLop; 2878 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 2879 if (Is64Bit) { 2880 SPReg = X86::RSP; 2881 PReg = X86::RBP; 2882 LEAop = X86::LEA64r; 2883 CMPop = X86::CMP64rm; 2884 CALLop = X86::CALL64pcrel32; 2885 } else { 2886 SPReg = X86::ESP; 2887 PReg = X86::EBP; 2888 LEAop = X86::LEA32r; 2889 CMPop = X86::CMP32rm; 2890 CALLop = X86::CALLpcrel32; 2891 } 2892 2893 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2894 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2895 "HiPE prologue scratch register is live-in"); 2896 2897 // Create new MBB for StackCheck: 2898 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 2899 SPReg, false, -MaxStack); 2900 // SPLimitOffset is in a fixed heap location (pointed by BP). 2901 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 2902 .addReg(ScratchReg), PReg, false, SPLimitOffset); 2903 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); 2904 2905 // Create new MBB for IncStack: 2906 BuildMI(incStackMBB, DL, TII.get(CALLop)). 2907 addExternalSymbol("inc_stack_0"); 2908 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 2909 SPReg, false, -MaxStack); 2910 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 2911 .addReg(ScratchReg), PReg, false, SPLimitOffset); 2912 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); 2913 2914 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 2915 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 2916 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 2917 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 2918 } 2919 #ifdef EXPENSIVE_CHECKS 2920 MF.verify(); 2921 #endif 2922 } 2923 2924 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 2925 MachineBasicBlock::iterator MBBI, 2926 const DebugLoc &DL, 2927 int Offset) const { 2928 2929 if (Offset <= 0) 2930 return false; 2931 2932 if (Offset % SlotSize) 2933 return false; 2934 2935 int NumPops = Offset / SlotSize; 2936 // This is only worth it if we have at most 2 pops. 2937 if (NumPops != 1 && NumPops != 2) 2938 return false; 2939 2940 // Handle only the trivial case where the adjustment directly follows 2941 // a call. This is the most common one, anyway. 2942 if (MBBI == MBB.begin()) 2943 return false; 2944 MachineBasicBlock::iterator Prev = std::prev(MBBI); 2945 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 2946 return false; 2947 2948 unsigned Regs[2]; 2949 unsigned FoundRegs = 0; 2950 2951 auto &MRI = MBB.getParent()->getRegInfo(); 2952 auto RegMask = Prev->getOperand(1); 2953 2954 auto &RegClass = 2955 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 2956 // Try to find up to NumPops free registers. 2957 for (auto Candidate : RegClass) { 2958 2959 // Poor man's liveness: 2960 // Since we're immediately after a call, any register that is clobbered 2961 // by the call and not defined by it can be considered dead. 2962 if (!RegMask.clobbersPhysReg(Candidate)) 2963 continue; 2964 2965 // Don't clobber reserved registers 2966 if (MRI.isReserved(Candidate)) 2967 continue; 2968 2969 bool IsDef = false; 2970 for (const MachineOperand &MO : Prev->implicit_operands()) { 2971 if (MO.isReg() && MO.isDef() && 2972 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 2973 IsDef = true; 2974 break; 2975 } 2976 } 2977 2978 if (IsDef) 2979 continue; 2980 2981 Regs[FoundRegs++] = Candidate; 2982 if (FoundRegs == (unsigned)NumPops) 2983 break; 2984 } 2985 2986 if (FoundRegs == 0) 2987 return false; 2988 2989 // If we found only one free register, but need two, reuse the same one twice. 2990 while (FoundRegs < (unsigned)NumPops) 2991 Regs[FoundRegs++] = Regs[0]; 2992 2993 for (int i = 0; i < NumPops; ++i) 2994 BuildMI(MBB, MBBI, DL, 2995 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 2996 2997 return true; 2998 } 2999 3000 MachineBasicBlock::iterator X86FrameLowering:: 3001 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 3002 MachineBasicBlock::iterator I) const { 3003 bool reserveCallFrame = hasReservedCallFrame(MF); 3004 unsigned Opcode = I->getOpcode(); 3005 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 3006 DebugLoc DL = I->getDebugLoc(); 3007 uint64_t Amount = TII.getFrameSize(*I); 3008 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 3009 I = MBB.erase(I); 3010 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 3011 3012 // Try to avoid emitting dead SP adjustments if the block end is unreachable, 3013 // typically because the function is marked noreturn (abort, throw, 3014 // assert_fail, etc). 3015 if (isDestroy && blockEndIsUnreachable(MBB, I)) 3016 return I; 3017 3018 if (!reserveCallFrame) { 3019 // If the stack pointer can be changed after prologue, turn the 3020 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 3021 // adjcallstackdown instruction into 'add ESP, <amt>' 3022 3023 // We need to keep the stack aligned properly. To do this, we round the 3024 // amount of space needed for the outgoing arguments up to the next 3025 // alignment boundary. 3026 Amount = alignTo(Amount, getStackAlign()); 3027 3028 const Function &F = MF.getFunction(); 3029 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 3030 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); 3031 3032 // If we have any exception handlers in this function, and we adjust 3033 // the SP before calls, we may need to indicate this to the unwinder 3034 // using GNU_ARGS_SIZE. Note that this may be necessary even when 3035 // Amount == 0, because the preceding function may have set a non-0 3036 // GNU_ARGS_SIZE. 3037 // TODO: We don't need to reset this between subsequent functions, 3038 // if it didn't change. 3039 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 3040 3041 if (HasDwarfEHHandlers && !isDestroy && 3042 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 3043 BuildCFI(MBB, InsertPos, DL, 3044 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 3045 3046 if (Amount == 0) 3047 return I; 3048 3049 // Factor out the amount that gets handled inside the sequence 3050 // (Pushes of argument for frame setup, callee pops for frame destroy) 3051 Amount -= InternalAmt; 3052 3053 // TODO: This is needed only if we require precise CFA. 3054 // If this is a callee-pop calling convention, emit a CFA adjust for 3055 // the amount the callee popped. 3056 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 3057 BuildCFI(MBB, InsertPos, DL, 3058 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 3059 3060 // Add Amount to SP to destroy a frame, or subtract to setup. 3061 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 3062 3063 if (StackAdjustment) { 3064 // Merge with any previous or following adjustment instruction. Note: the 3065 // instructions merged with here do not have CFI, so their stack 3066 // adjustments do not feed into CfaAdjustment. 3067 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 3068 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 3069 3070 if (StackAdjustment) { 3071 if (!(F.hasMinSize() && 3072 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 3073 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 3074 /*InEpilogue=*/false); 3075 } 3076 } 3077 3078 if (DwarfCFI && !hasFP(MF)) { 3079 // If we don't have FP, but need to generate unwind information, 3080 // we need to set the correct CFA offset after the stack adjustment. 3081 // How much we adjust the CFA offset depends on whether we're emitting 3082 // CFI only for EH purposes or for debugging. EH only requires the CFA 3083 // offset to be correct at each call site, while for debugging we want 3084 // it to be more precise. 3085 3086 int64_t CfaAdjustment = -StackAdjustment; 3087 // TODO: When not using precise CFA, we also need to adjust for the 3088 // InternalAmt here. 3089 if (CfaAdjustment) { 3090 BuildCFI(MBB, InsertPos, DL, 3091 MCCFIInstruction::createAdjustCfaOffset(nullptr, 3092 CfaAdjustment)); 3093 } 3094 } 3095 3096 return I; 3097 } 3098 3099 if (InternalAmt) { 3100 MachineBasicBlock::iterator CI = I; 3101 MachineBasicBlock::iterator B = MBB.begin(); 3102 while (CI != B && !std::prev(CI)->isCall()) 3103 --CI; 3104 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 3105 } 3106 3107 return I; 3108 } 3109 3110 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 3111 assert(MBB.getParent() && "Block is not attached to a function!"); 3112 const MachineFunction &MF = *MBB.getParent(); 3113 return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS); 3114 } 3115 3116 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 3117 assert(MBB.getParent() && "Block is not attached to a function!"); 3118 3119 // Win64 has strict requirements in terms of epilogue and we are 3120 // not taking a chance at messing with them. 3121 // I.e., unless this block is already an exit block, we can't use 3122 // it as an epilogue. 3123 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 3124 return false; 3125 3126 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 3127 return true; 3128 3129 // If we cannot use LEA to adjust SP, we may need to use ADD, which 3130 // clobbers the EFLAGS. Check that we do not need to preserve it, 3131 // otherwise, conservatively assume this is not 3132 // safe to insert the epilogue here. 3133 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3134 } 3135 3136 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 3137 // If we may need to emit frameless compact unwind information, give 3138 // up as this is currently broken: PR25614. 3139 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) && 3140 // The lowering of segmented stack and HiPE only support entry blocks 3141 // as prologue blocks: PR26107. 3142 // This limitation may be lifted if we fix: 3143 // - adjustForSegmentedStacks 3144 // - adjustForHiPEPrologue 3145 MF.getFunction().getCallingConv() != CallingConv::HiPE && 3146 !MF.shouldSplitStack(); 3147 } 3148 3149 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 3150 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3151 const DebugLoc &DL, bool RestoreSP) const { 3152 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 3153 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 3154 assert(STI.is32Bit() && !Uses64BitFramePtr && 3155 "restoring EBP/ESI on non-32-bit target"); 3156 3157 MachineFunction &MF = *MBB.getParent(); 3158 Register FramePtr = TRI->getFrameRegister(MF); 3159 Register BasePtr = TRI->getBaseRegister(); 3160 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 3161 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3162 MachineFrameInfo &MFI = MF.getFrameInfo(); 3163 3164 // FIXME: Don't set FrameSetup flag in catchret case. 3165 3166 int FI = FuncInfo.EHRegNodeFrameIndex; 3167 int EHRegSize = MFI.getObjectSize(FI); 3168 3169 if (RestoreSP) { 3170 // MOV32rm -EHRegSize(%ebp), %esp 3171 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 3172 X86::EBP, true, -EHRegSize) 3173 .setMIFlag(MachineInstr::FrameSetup); 3174 } 3175 3176 Register UsedReg; 3177 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg); 3178 int EndOffset = -EHRegOffset - EHRegSize; 3179 FuncInfo.EHRegNodeEndOffset = EndOffset; 3180 3181 if (UsedReg == FramePtr) { 3182 // ADD $offset, %ebp 3183 unsigned ADDri = getADDriOpcode(false, EndOffset); 3184 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 3185 .addReg(FramePtr) 3186 .addImm(EndOffset) 3187 .setMIFlag(MachineInstr::FrameSetup) 3188 ->getOperand(3) 3189 .setIsDead(); 3190 assert(EndOffset >= 0 && 3191 "end of registration object above normal EBP position!"); 3192 } else if (UsedReg == BasePtr) { 3193 // LEA offset(%ebp), %esi 3194 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 3195 FramePtr, false, EndOffset) 3196 .setMIFlag(MachineInstr::FrameSetup); 3197 // MOV32rm SavedEBPOffset(%esi), %ebp 3198 assert(X86FI->getHasSEHFramePtrSave()); 3199 int Offset = 3200 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 3201 assert(UsedReg == BasePtr); 3202 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 3203 UsedReg, true, Offset) 3204 .setMIFlag(MachineInstr::FrameSetup); 3205 } else { 3206 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 3207 } 3208 return MBBI; 3209 } 3210 3211 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 3212 return TRI->getSlotSize(); 3213 } 3214 3215 Register 3216 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const { 3217 return TRI->getDwarfRegNum(StackPtr, true); 3218 } 3219 3220 namespace { 3221 // Struct used by orderFrameObjects to help sort the stack objects. 3222 struct X86FrameSortingObject { 3223 bool IsValid = false; // true if we care about this Object. 3224 unsigned ObjectIndex = 0; // Index of Object into MFI list. 3225 unsigned ObjectSize = 0; // Size of Object in bytes. 3226 Align ObjectAlignment = Align(1); // Alignment of Object in bytes. 3227 unsigned ObjectNumUses = 0; // Object static number of uses. 3228 }; 3229 3230 // The comparison function we use for std::sort to order our local 3231 // stack symbols. The current algorithm is to use an estimated 3232 // "density". This takes into consideration the size and number of 3233 // uses each object has in order to roughly minimize code size. 3234 // So, for example, an object of size 16B that is referenced 5 times 3235 // will get higher priority than 4 4B objects referenced 1 time each. 3236 // It's not perfect and we may be able to squeeze a few more bytes out of 3237 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 3238 // fringe end can have special consideration, given their size is less 3239 // important, etc.), but the algorithmic complexity grows too much to be 3240 // worth the extra gains we get. This gets us pretty close. 3241 // The final order leaves us with objects with highest priority going 3242 // at the end of our list. 3243 struct X86FrameSortingComparator { 3244 inline bool operator()(const X86FrameSortingObject &A, 3245 const X86FrameSortingObject &B) { 3246 uint64_t DensityAScaled, DensityBScaled; 3247 3248 // For consistency in our comparison, all invalid objects are placed 3249 // at the end. This also allows us to stop walking when we hit the 3250 // first invalid item after it's all sorted. 3251 if (!A.IsValid) 3252 return false; 3253 if (!B.IsValid) 3254 return true; 3255 3256 // The density is calculated by doing : 3257 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 3258 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 3259 // Since this approach may cause inconsistencies in 3260 // the floating point <, >, == comparisons, depending on the floating 3261 // point model with which the compiler was built, we're going 3262 // to scale both sides by multiplying with 3263 // A.ObjectSize * B.ObjectSize. This ends up factoring away 3264 // the division and, with it, the need for any floating point 3265 // arithmetic. 3266 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 3267 static_cast<uint64_t>(B.ObjectSize); 3268 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 3269 static_cast<uint64_t>(A.ObjectSize); 3270 3271 // If the two densities are equal, prioritize highest alignment 3272 // objects. This allows for similar alignment objects 3273 // to be packed together (given the same density). 3274 // There's room for improvement here, also, since we can pack 3275 // similar alignment (different density) objects next to each 3276 // other to save padding. This will also require further 3277 // complexity/iterations, and the overall gain isn't worth it, 3278 // in general. Something to keep in mind, though. 3279 if (DensityAScaled == DensityBScaled) 3280 return A.ObjectAlignment < B.ObjectAlignment; 3281 3282 return DensityAScaled < DensityBScaled; 3283 } 3284 }; 3285 } // namespace 3286 3287 // Order the symbols in the local stack. 3288 // We want to place the local stack objects in some sort of sensible order. 3289 // The heuristic we use is to try and pack them according to static number 3290 // of uses and size of object in order to minimize code size. 3291 void X86FrameLowering::orderFrameObjects( 3292 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 3293 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3294 3295 // Don't waste time if there's nothing to do. 3296 if (ObjectsToAllocate.empty()) 3297 return; 3298 3299 // Create an array of all MFI objects. We won't need all of these 3300 // objects, but we're going to create a full array of them to make 3301 // it easier to index into when we're counting "uses" down below. 3302 // We want to be able to easily/cheaply access an object by simply 3303 // indexing into it, instead of having to search for it every time. 3304 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 3305 3306 // Walk the objects we care about and mark them as such in our working 3307 // struct. 3308 for (auto &Obj : ObjectsToAllocate) { 3309 SortingObjects[Obj].IsValid = true; 3310 SortingObjects[Obj].ObjectIndex = Obj; 3311 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj); 3312 // Set the size. 3313 int ObjectSize = MFI.getObjectSize(Obj); 3314 if (ObjectSize == 0) 3315 // Variable size. Just use 4. 3316 SortingObjects[Obj].ObjectSize = 4; 3317 else 3318 SortingObjects[Obj].ObjectSize = ObjectSize; 3319 } 3320 3321 // Count the number of uses for each object. 3322 for (auto &MBB : MF) { 3323 for (auto &MI : MBB) { 3324 if (MI.isDebugInstr()) 3325 continue; 3326 for (const MachineOperand &MO : MI.operands()) { 3327 // Check to see if it's a local stack symbol. 3328 if (!MO.isFI()) 3329 continue; 3330 int Index = MO.getIndex(); 3331 // Check to see if it falls within our range, and is tagged 3332 // to require ordering. 3333 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 3334 SortingObjects[Index].IsValid) 3335 SortingObjects[Index].ObjectNumUses++; 3336 } 3337 } 3338 } 3339 3340 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 3341 // info). 3342 llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); 3343 3344 // Now modify the original list to represent the final order that 3345 // we want. The order will depend on whether we're going to access them 3346 // from the stack pointer or the frame pointer. For SP, the list should 3347 // end up with the END containing objects that we want with smaller offsets. 3348 // For FP, it should be flipped. 3349 int i = 0; 3350 for (auto &Obj : SortingObjects) { 3351 // All invalid items are sorted at the end, so it's safe to stop. 3352 if (!Obj.IsValid) 3353 break; 3354 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3355 } 3356 3357 // Flip it if we're accessing off of the FP. 3358 if (!TRI->needsStackRealignment(MF) && hasFP(MF)) 3359 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 3360 } 3361 3362 3363 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 3364 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 3365 unsigned Offset = 16; 3366 // RBP is immediately pushed. 3367 Offset += SlotSize; 3368 // All callee-saved registers are then pushed. 3369 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 3370 // Every funclet allocates enough stack space for the largest outgoing call. 3371 Offset += getWinEHFuncletFrameSize(MF); 3372 return Offset; 3373 } 3374 3375 void X86FrameLowering::processFunctionBeforeFrameFinalized( 3376 MachineFunction &MF, RegScavenger *RS) const { 3377 // Mark the function as not having WinCFI. We will set it back to true in 3378 // emitPrologue if it gets called and emits CFI. 3379 MF.setHasWinCFI(false); 3380 3381 // If this function isn't doing Win64-style C++ EH, we don't need to do 3382 // anything. 3383 const Function &F = MF.getFunction(); 3384 if (!STI.is64Bit() || !MF.hasEHFunclets() || 3385 classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX) 3386 return; 3387 3388 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 3389 // relative to RSP after the prologue. Find the offset of the last fixed 3390 // object, so that we can allocate a slot immediately following it. If there 3391 // were no fixed objects, use offset -SlotSize, which is immediately after the 3392 // return address. Fixed objects have negative frame indices. 3393 MachineFrameInfo &MFI = MF.getFrameInfo(); 3394 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3395 int64_t MinFixedObjOffset = -SlotSize; 3396 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 3397 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 3398 3399 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 3400 for (WinEHHandlerType &H : TBME.HandlerArray) { 3401 int FrameIndex = H.CatchObj.FrameIndex; 3402 if (FrameIndex != INT_MAX) { 3403 // Ensure alignment. 3404 unsigned Align = MFI.getObjectAlign(FrameIndex).value(); 3405 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 3406 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 3407 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 3408 } 3409 } 3410 } 3411 3412 // Ensure alignment. 3413 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 3414 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 3415 int UnwindHelpFI = 3416 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); 3417 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3418 3419 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 3420 // other frame setup instructions. 3421 MachineBasicBlock &MBB = MF.front(); 3422 auto MBBI = MBB.begin(); 3423 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3424 ++MBBI; 3425 3426 DebugLoc DL = MBB.findDebugLoc(MBBI); 3427 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 3428 UnwindHelpFI) 3429 .addImm(-2); 3430 } 3431 3432 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced( 3433 MachineFunction &MF, RegScavenger *RS) const { 3434 if (STI.is32Bit() && MF.hasEHFunclets()) 3435 restoreWinEHStackPointersInParent(MF); 3436 } 3437 3438 void X86FrameLowering::restoreWinEHStackPointersInParent( 3439 MachineFunction &MF) const { 3440 // 32-bit functions have to restore stack pointers when control is transferred 3441 // back to the parent function. These blocks are identified as eh pads that 3442 // are not funclet entries. 3443 bool IsSEH = isAsynchronousEHPersonality( 3444 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 3445 for (MachineBasicBlock &MBB : MF) { 3446 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry(); 3447 if (NeedsRestore) 3448 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(), 3449 /*RestoreSP=*/IsSEH); 3450 } 3451 } 3452