1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86FrameLowering.h" 14 #include "X86InstrBuilder.h" 15 #include "X86InstrInfo.h" 16 #include "X86MachineFunctionInfo.h" 17 #include "X86Subtarget.h" 18 #include "X86TargetMachine.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/EHPersonalities.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/WinEHFuncInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/MC/MCAsmInfo.h" 31 #include "llvm/MC/MCObjectFileInfo.h" 32 #include "llvm/MC/MCSymbol.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Target/TargetOptions.h" 35 #include <cstdlib> 36 37 #define DEBUG_TYPE "x86-fl" 38 39 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue"); 40 STATISTIC(NumFrameExtraProbe, 41 "Number of extra stack probes generated in prologue"); 42 43 using namespace llvm; 44 45 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 46 MaybeAlign StackAlignOverride) 47 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), 48 STI.is64Bit() ? -8 : -4), 49 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { 50 // Cache a bunch of frame-related predicates for this subtarget. 51 SlotSize = TRI->getSlotSize(); 52 Is64Bit = STI.is64Bit(); 53 IsLP64 = STI.isTarget64BitLP64(); 54 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 55 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 56 StackPtr = TRI->getStackRegister(); 57 } 58 59 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 60 return !MF.getFrameInfo().hasVarSizedObjects() && 61 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() && 62 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall(); 63 } 64 65 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 66 /// call frame pseudos can be simplified. Having a FP, as in the default 67 /// implementation, is not sufficient here since we can't always use it. 68 /// Use a more nuanced condition. 69 bool 70 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 71 return hasReservedCallFrame(MF) || 72 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 73 (hasFP(MF) && !TRI->hasStackRealignment(MF)) || 74 TRI->hasBasePointer(MF); 75 } 76 77 // needsFrameIndexResolution - Do we need to perform FI resolution for 78 // this function. Normally, this is required only when the function 79 // has any stack objects. However, FI resolution actually has another job, 80 // not apparent from the title - it resolves callframesetup/destroy 81 // that were not simplified earlier. 82 // So, this is required for x86 functions that have push sequences even 83 // when there are no stack objects. 84 bool 85 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 86 return MF.getFrameInfo().hasStackObjects() || 87 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 88 } 89 90 /// hasFP - Return true if the specified function should have a dedicated frame 91 /// pointer register. This is true if the function has variable sized allocas 92 /// or if frame pointer elimination is disabled. 93 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 94 const MachineFrameInfo &MFI = MF.getFrameInfo(); 95 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 96 TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 97 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 98 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 99 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 100 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 101 MFI.hasStackMap() || MFI.hasPatchPoint() || 102 MFI.hasCopyImplyingStackAdjustment()); 103 } 104 105 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) { 106 if (IsLP64) { 107 if (isInt<8>(Imm)) 108 return X86::SUB64ri8; 109 return X86::SUB64ri32; 110 } else { 111 if (isInt<8>(Imm)) 112 return X86::SUB32ri8; 113 return X86::SUB32ri; 114 } 115 } 116 117 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) { 118 if (IsLP64) { 119 if (isInt<8>(Imm)) 120 return X86::ADD64ri8; 121 return X86::ADD64ri32; 122 } else { 123 if (isInt<8>(Imm)) 124 return X86::ADD32ri8; 125 return X86::ADD32ri; 126 } 127 } 128 129 static unsigned getSUBrrOpcode(bool IsLP64) { 130 return IsLP64 ? X86::SUB64rr : X86::SUB32rr; 131 } 132 133 static unsigned getADDrrOpcode(bool IsLP64) { 134 return IsLP64 ? X86::ADD64rr : X86::ADD32rr; 135 } 136 137 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 138 if (IsLP64) { 139 if (isInt<8>(Imm)) 140 return X86::AND64ri8; 141 return X86::AND64ri32; 142 } 143 if (isInt<8>(Imm)) 144 return X86::AND32ri8; 145 return X86::AND32ri; 146 } 147 148 static unsigned getLEArOpcode(bool IsLP64) { 149 return IsLP64 ? X86::LEA64r : X86::LEA32r; 150 } 151 152 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 153 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 154 unsigned Reg = RegMask.PhysReg; 155 156 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 157 Reg == X86::AH || Reg == X86::AL) 158 return true; 159 } 160 161 return false; 162 } 163 164 /// Check if the flags need to be preserved before the terminators. 165 /// This would be the case, if the eflags is live-in of the region 166 /// composed by the terminators or live-out of that region, without 167 /// being defined by a terminator. 168 static bool 169 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 170 for (const MachineInstr &MI : MBB.terminators()) { 171 bool BreakNext = false; 172 for (const MachineOperand &MO : MI.operands()) { 173 if (!MO.isReg()) 174 continue; 175 Register Reg = MO.getReg(); 176 if (Reg != X86::EFLAGS) 177 continue; 178 179 // This terminator needs an eflags that is not defined 180 // by a previous another terminator: 181 // EFLAGS is live-in of the region composed by the terminators. 182 if (!MO.isDef()) 183 return true; 184 // This terminator defines the eflags, i.e., we don't need to preserve it. 185 // However, we still need to check this specific terminator does not 186 // read a live-in value. 187 BreakNext = true; 188 } 189 // We found a definition of the eflags, no need to preserve them. 190 if (BreakNext) 191 return false; 192 } 193 194 // None of the terminators use or define the eflags. 195 // Check if they are live-out, that would imply we need to preserve them. 196 for (const MachineBasicBlock *Succ : MBB.successors()) 197 if (Succ->isLiveIn(X86::EFLAGS)) 198 return true; 199 200 return false; 201 } 202 203 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 204 /// stack pointer by a constant value. 205 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 206 MachineBasicBlock::iterator &MBBI, 207 const DebugLoc &DL, 208 int64_t NumBytes, bool InEpilogue) const { 209 bool isSub = NumBytes < 0; 210 uint64_t Offset = isSub ? -NumBytes : NumBytes; 211 MachineInstr::MIFlag Flag = 212 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 213 214 uint64_t Chunk = (1LL << 31) - 1; 215 216 MachineFunction &MF = *MBB.getParent(); 217 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 218 const X86TargetLowering &TLI = *STI.getTargetLowering(); 219 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 220 221 // It's ok to not take into account large chunks when probing, as the 222 // allocation is split in smaller chunks anyway. 223 if (EmitInlineStackProbe && !InEpilogue) { 224 225 // This pseudo-instruction is going to be expanded, potentially using a 226 // loop, by inlineStackProbe(). 227 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset); 228 return; 229 } else if (Offset > Chunk) { 230 // Rather than emit a long series of instructions for large offsets, 231 // load the offset into a register and do one sub/add 232 unsigned Reg = 0; 233 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 234 235 if (isSub && !isEAXLiveIn(MBB)) 236 Reg = Rax; 237 else 238 Reg = TRI->findDeadCallerSavedReg(MBB, MBBI); 239 240 unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri; 241 unsigned AddSubRROpc = 242 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 243 if (Reg) { 244 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg) 245 .addImm(Offset) 246 .setMIFlag(Flag); 247 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 248 .addReg(StackPtr) 249 .addReg(Reg); 250 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 251 return; 252 } else if (Offset > 8 * Chunk) { 253 // If we would need more than 8 add or sub instructions (a >16GB stack 254 // frame), it's worth spilling RAX to materialize this immediate. 255 // pushq %rax 256 // movabsq +-$Offset+-SlotSize, %rax 257 // addq %rsp, %rax 258 // xchg %rax, (%rsp) 259 // movq (%rsp), %rsp 260 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 261 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 262 .addReg(Rax, RegState::Kill) 263 .setMIFlag(Flag); 264 // Subtract is not commutative, so negate the offset and always use add. 265 // Subtract 8 less and add 8 more to account for the PUSH we just did. 266 if (isSub) 267 Offset = -(Offset - SlotSize); 268 else 269 Offset = Offset + SlotSize; 270 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax) 271 .addImm(Offset) 272 .setMIFlag(Flag); 273 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 274 .addReg(Rax) 275 .addReg(StackPtr); 276 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 277 // Exchange the new SP in RAX with the top of the stack. 278 addRegOffset( 279 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 280 StackPtr, false, 0); 281 // Load new SP from the top of the stack into RSP. 282 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 283 StackPtr, false, 0); 284 return; 285 } 286 } 287 288 while (Offset) { 289 uint64_t ThisVal = std::min(Offset, Chunk); 290 if (ThisVal == SlotSize) { 291 // Use push / pop for slot sized adjustments as a size optimization. We 292 // need to find a dead register when using pop. 293 unsigned Reg = isSub 294 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 295 : TRI->findDeadCallerSavedReg(MBB, MBBI); 296 if (Reg) { 297 unsigned Opc = isSub 298 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 299 : (Is64Bit ? X86::POP64r : X86::POP32r); 300 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 301 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 302 .setMIFlag(Flag); 303 Offset -= ThisVal; 304 continue; 305 } 306 } 307 308 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 309 .setMIFlag(Flag); 310 311 Offset -= ThisVal; 312 } 313 } 314 315 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 316 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 317 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 318 assert(Offset != 0 && "zero offset stack adjustment requested"); 319 320 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 321 // is tricky. 322 bool UseLEA; 323 if (!InEpilogue) { 324 // Check if inserting the prologue at the beginning 325 // of MBB would require to use LEA operations. 326 // We need to use LEA operations if EFLAGS is live in, because 327 // it means an instruction will read it before it gets defined. 328 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 329 } else { 330 // If we can use LEA for SP but we shouldn't, check that none 331 // of the terminators uses the eflags. Otherwise we will insert 332 // a ADD that will redefine the eflags and break the condition. 333 // Alternatively, we could move the ADD, but this may not be possible 334 // and is an optimization anyway. 335 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 336 if (UseLEA && !STI.useLeaForSP()) 337 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 338 // If that assert breaks, that means we do not do the right thing 339 // in canUseAsEpilogue. 340 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 341 "We shouldn't have allowed this insertion point"); 342 } 343 344 MachineInstrBuilder MI; 345 if (UseLEA) { 346 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 347 TII.get(getLEArOpcode(Uses64BitFramePtr)), 348 StackPtr), 349 StackPtr, false, Offset); 350 } else { 351 bool IsSub = Offset < 0; 352 uint64_t AbsOffset = IsSub ? -Offset : Offset; 353 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 354 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 355 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 356 .addReg(StackPtr) 357 .addImm(AbsOffset); 358 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 359 } 360 return MI; 361 } 362 363 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 364 MachineBasicBlock::iterator &MBBI, 365 bool doMergeWithPrevious) const { 366 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 367 (!doMergeWithPrevious && MBBI == MBB.end())) 368 return 0; 369 370 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 371 372 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 373 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 374 // instruction, and that there are no DBG_VALUE or other instructions between 375 // ADD/SUB/LEA and its corresponding CFI instruction. 376 /* TODO: Add support for the case where there are multiple CFI instructions 377 below the ADD/SUB/LEA, e.g.: 378 ... 379 add 380 cfi_def_cfa_offset 381 cfi_offset 382 ... 383 */ 384 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 385 PI = std::prev(PI); 386 387 unsigned Opc = PI->getOpcode(); 388 int Offset = 0; 389 390 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 391 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 392 PI->getOperand(0).getReg() == StackPtr){ 393 assert(PI->getOperand(1).getReg() == StackPtr); 394 Offset = PI->getOperand(2).getImm(); 395 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 396 PI->getOperand(0).getReg() == StackPtr && 397 PI->getOperand(1).getReg() == StackPtr && 398 PI->getOperand(2).getImm() == 1 && 399 PI->getOperand(3).getReg() == X86::NoRegister && 400 PI->getOperand(5).getReg() == X86::NoRegister) { 401 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 402 Offset = PI->getOperand(4).getImm(); 403 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 404 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 405 PI->getOperand(0).getReg() == StackPtr) { 406 assert(PI->getOperand(1).getReg() == StackPtr); 407 Offset = -PI->getOperand(2).getImm(); 408 } else 409 return 0; 410 411 PI = MBB.erase(PI); 412 if (PI != MBB.end() && PI->isCFIInstruction()) { 413 auto CIs = MBB.getParent()->getFrameInstructions(); 414 MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()]; 415 if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset || 416 CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset) 417 PI = MBB.erase(PI); 418 } 419 if (!doMergeWithPrevious) 420 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 421 422 return Offset; 423 } 424 425 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 426 MachineBasicBlock::iterator MBBI, 427 const DebugLoc &DL, 428 const MCCFIInstruction &CFIInst) const { 429 MachineFunction &MF = *MBB.getParent(); 430 unsigned CFIIndex = MF.addFrameInst(CFIInst); 431 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 432 .addCFIIndex(CFIIndex); 433 } 434 435 /// Emits Dwarf Info specifying offsets of callee saved registers and 436 /// frame pointer. This is called only when basic block sections are enabled. 437 void X86FrameLowering::emitCalleeSavedFrameMoves( 438 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 439 MachineFunction &MF = *MBB.getParent(); 440 if (!hasFP(MF)) { 441 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 442 return; 443 } 444 const MachineModuleInfo &MMI = MF.getMMI(); 445 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 446 const Register FramePtr = TRI->getFrameRegister(MF); 447 const Register MachineFramePtr = 448 STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64)) 449 : FramePtr; 450 unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true); 451 // Offset = space for return address + size of the frame pointer itself. 452 unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4); 453 BuildCFI(MBB, MBBI, DebugLoc{}, 454 MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset)); 455 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 456 } 457 458 void X86FrameLowering::emitCalleeSavedFrameMoves( 459 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 460 const DebugLoc &DL, bool IsPrologue) const { 461 MachineFunction &MF = *MBB.getParent(); 462 MachineFrameInfo &MFI = MF.getFrameInfo(); 463 MachineModuleInfo &MMI = MF.getMMI(); 464 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 465 466 // Add callee saved registers to move list. 467 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 468 if (CSI.empty()) return; 469 470 // Calculate offsets. 471 for (std::vector<CalleeSavedInfo>::const_iterator 472 I = CSI.begin(), E = CSI.end(); I != E; ++I) { 473 int64_t Offset = MFI.getObjectOffset(I->getFrameIdx()); 474 unsigned Reg = I->getReg(); 475 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 476 477 if (IsPrologue) { 478 BuildCFI(MBB, MBBI, DL, 479 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 480 } else { 481 BuildCFI(MBB, MBBI, DL, 482 MCCFIInstruction::createRestore(nullptr, DwarfReg)); 483 } 484 } 485 } 486 487 void X86FrameLowering::emitStackProbe(MachineFunction &MF, 488 MachineBasicBlock &MBB, 489 MachineBasicBlock::iterator MBBI, 490 const DebugLoc &DL, bool InProlog) const { 491 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 492 if (STI.isTargetWindowsCoreCLR()) { 493 if (InProlog) { 494 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)) 495 .addImm(0 /* no explicit stack size */); 496 } else { 497 emitStackProbeInline(MF, MBB, MBBI, DL, false); 498 } 499 } else { 500 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog); 501 } 502 } 503 504 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 505 MachineBasicBlock &PrologMBB) const { 506 auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 507 return MI.getOpcode() == X86::STACKALLOC_W_PROBING; 508 }); 509 if (Where != PrologMBB.end()) { 510 DebugLoc DL = PrologMBB.findDebugLoc(Where); 511 emitStackProbeInline(MF, PrologMBB, Where, DL, true); 512 Where->eraseFromParent(); 513 } 514 } 515 516 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 517 MachineBasicBlock &MBB, 518 MachineBasicBlock::iterator MBBI, 519 const DebugLoc &DL, 520 bool InProlog) const { 521 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 522 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit()) 523 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog); 524 else 525 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog); 526 } 527 528 void X86FrameLowering::emitStackProbeInlineGeneric( 529 MachineFunction &MF, MachineBasicBlock &MBB, 530 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 531 MachineInstr &AllocWithProbe = *MBBI; 532 uint64_t Offset = AllocWithProbe.getOperand(0).getImm(); 533 534 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 535 const X86TargetLowering &TLI = *STI.getTargetLowering(); 536 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) && 537 "different expansion expected for CoreCLR 64 bit"); 538 539 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 540 uint64_t ProbeChunk = StackProbeSize * 8; 541 542 uint64_t MaxAlign = 543 TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0; 544 545 // Synthesize a loop or unroll it, depending on the number of iterations. 546 // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left 547 // between the unaligned rsp and current rsp. 548 if (Offset > ProbeChunk) { 549 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset, 550 MaxAlign % StackProbeSize); 551 } else { 552 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset, 553 MaxAlign % StackProbeSize); 554 } 555 } 556 557 void X86FrameLowering::emitStackProbeInlineGenericBlock( 558 MachineFunction &MF, MachineBasicBlock &MBB, 559 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 560 uint64_t AlignOffset) const { 561 562 const bool NeedsDwarfCFI = needsDwarfCFI(MF); 563 const bool HasFP = hasFP(MF); 564 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 565 const X86TargetLowering &TLI = *STI.getTargetLowering(); 566 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset); 567 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 568 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 569 570 uint64_t CurrentOffset = 0; 571 572 assert(AlignOffset < StackProbeSize); 573 574 // If the offset is so small it fits within a page, there's nothing to do. 575 if (StackProbeSize < Offset + AlignOffset) { 576 577 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 578 .addReg(StackPtr) 579 .addImm(StackProbeSize - AlignOffset) 580 .setMIFlag(MachineInstr::FrameSetup); 581 if (!HasFP && NeedsDwarfCFI) { 582 BuildCFI(MBB, MBBI, DL, 583 MCCFIInstruction::createAdjustCfaOffset( 584 nullptr, StackProbeSize - AlignOffset)); 585 } 586 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 587 588 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 589 .setMIFlag(MachineInstr::FrameSetup), 590 StackPtr, false, 0) 591 .addImm(0) 592 .setMIFlag(MachineInstr::FrameSetup); 593 NumFrameExtraProbe++; 594 CurrentOffset = StackProbeSize - AlignOffset; 595 } 596 597 // For the next N - 1 pages, just probe. I tried to take advantage of 598 // natural probes but it implies much more logic and there was very few 599 // interesting natural probes to interleave. 600 while (CurrentOffset + StackProbeSize < Offset) { 601 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 602 .addReg(StackPtr) 603 .addImm(StackProbeSize) 604 .setMIFlag(MachineInstr::FrameSetup); 605 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 606 607 if (!HasFP && NeedsDwarfCFI) { 608 BuildCFI( 609 MBB, MBBI, DL, 610 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize)); 611 } 612 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 613 .setMIFlag(MachineInstr::FrameSetup), 614 StackPtr, false, 0) 615 .addImm(0) 616 .setMIFlag(MachineInstr::FrameSetup); 617 NumFrameExtraProbe++; 618 CurrentOffset += StackProbeSize; 619 } 620 621 // No need to probe the tail, it is smaller than a Page. 622 uint64_t ChunkSize = Offset - CurrentOffset; 623 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 624 .addReg(StackPtr) 625 .addImm(ChunkSize) 626 .setMIFlag(MachineInstr::FrameSetup); 627 // No need to adjust Dwarf CFA offset here, the last position of the stack has 628 // been defined 629 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 630 } 631 632 void X86FrameLowering::emitStackProbeInlineGenericLoop( 633 MachineFunction &MF, MachineBasicBlock &MBB, 634 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 635 uint64_t AlignOffset) const { 636 assert(Offset && "null offset"); 637 638 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 639 const X86TargetLowering &TLI = *STI.getTargetLowering(); 640 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 641 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 642 643 if (AlignOffset) { 644 if (AlignOffset < StackProbeSize) { 645 // Perform a first smaller allocation followed by a probe. 646 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, AlignOffset); 647 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), StackPtr) 648 .addReg(StackPtr) 649 .addImm(AlignOffset) 650 .setMIFlag(MachineInstr::FrameSetup); 651 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 652 653 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 654 .setMIFlag(MachineInstr::FrameSetup), 655 StackPtr, false, 0) 656 .addImm(0) 657 .setMIFlag(MachineInstr::FrameSetup); 658 NumFrameExtraProbe++; 659 Offset -= AlignOffset; 660 } 661 } 662 663 // Synthesize a loop 664 NumFrameLoopProbe++; 665 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 666 667 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB); 668 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB); 669 670 MachineFunction::iterator MBBIter = ++MBB.getIterator(); 671 MF.insert(MBBIter, testMBB); 672 MF.insert(MBBIter, tailMBB); 673 674 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 675 : Is64Bit ? X86::R11D 676 : X86::EAX; 677 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 678 .addReg(StackPtr) 679 .setMIFlag(MachineInstr::FrameSetup); 680 681 // save loop bound 682 { 683 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, Offset); 684 BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed) 685 .addReg(FinalStackProbed) 686 .addImm(Offset / StackProbeSize * StackProbeSize) 687 .setMIFlag(MachineInstr::FrameSetup); 688 } 689 690 // allocate a page 691 { 692 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 693 BuildMI(testMBB, DL, TII.get(SUBOpc), StackPtr) 694 .addReg(StackPtr) 695 .addImm(StackProbeSize) 696 .setMIFlag(MachineInstr::FrameSetup); 697 } 698 699 // touch the page 700 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc)) 701 .setMIFlag(MachineInstr::FrameSetup), 702 StackPtr, false, 0) 703 .addImm(0) 704 .setMIFlag(MachineInstr::FrameSetup); 705 706 // cmp with stack pointer bound 707 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 708 .addReg(StackPtr) 709 .addReg(FinalStackProbed) 710 .setMIFlag(MachineInstr::FrameSetup); 711 712 // jump 713 BuildMI(testMBB, DL, TII.get(X86::JCC_1)) 714 .addMBB(testMBB) 715 .addImm(X86::COND_NE) 716 .setMIFlag(MachineInstr::FrameSetup); 717 testMBB->addSuccessor(testMBB); 718 testMBB->addSuccessor(tailMBB); 719 720 // BB management 721 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end()); 722 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB); 723 MBB.addSuccessor(testMBB); 724 725 // handle tail 726 unsigned TailOffset = Offset % StackProbeSize; 727 if (TailOffset) { 728 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, TailOffset); 729 BuildMI(*tailMBB, tailMBB->begin(), DL, TII.get(Opc), StackPtr) 730 .addReg(StackPtr) 731 .addImm(TailOffset) 732 .setMIFlag(MachineInstr::FrameSetup); 733 } 734 735 // Update Live In information 736 recomputeLiveIns(*testMBB); 737 recomputeLiveIns(*tailMBB); 738 } 739 740 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64( 741 MachineFunction &MF, MachineBasicBlock &MBB, 742 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 743 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 744 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 745 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 746 const TargetInstrInfo &TII = *STI.getInstrInfo(); 747 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 748 749 // RAX contains the number of bytes of desired stack adjustment. 750 // The handling here assumes this value has already been updated so as to 751 // maintain stack alignment. 752 // 753 // We need to exit with RSP modified by this amount and execute suitable 754 // page touches to notify the OS that we're growing the stack responsibly. 755 // All stack probing must be done without modifying RSP. 756 // 757 // MBB: 758 // SizeReg = RAX; 759 // ZeroReg = 0 760 // CopyReg = RSP 761 // Flags, TestReg = CopyReg - SizeReg 762 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 763 // LimitReg = gs magic thread env access 764 // if FinalReg >= LimitReg goto ContinueMBB 765 // RoundBB: 766 // RoundReg = page address of FinalReg 767 // LoopMBB: 768 // LoopReg = PHI(LimitReg,ProbeReg) 769 // ProbeReg = LoopReg - PageSize 770 // [ProbeReg] = 0 771 // if (ProbeReg > RoundReg) goto LoopMBB 772 // ContinueMBB: 773 // RSP = RSP - RAX 774 // [rest of original MBB] 775 776 // Set up the new basic blocks 777 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 778 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 779 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 780 781 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 782 MF.insert(MBBIter, RoundMBB); 783 MF.insert(MBBIter, LoopMBB); 784 MF.insert(MBBIter, ContinueMBB); 785 786 // Split MBB and move the tail portion down to ContinueMBB. 787 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 788 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 789 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 790 791 // Some useful constants 792 const int64_t ThreadEnvironmentStackLimit = 0x10; 793 const int64_t PageSize = 0x1000; 794 const int64_t PageMask = ~(PageSize - 1); 795 796 // Registers we need. For the normal case we use virtual 797 // registers. For the prolog expansion we use RAX, RCX and RDX. 798 MachineRegisterInfo &MRI = MF.getRegInfo(); 799 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 800 const Register SizeReg = InProlog ? X86::RAX 801 : MRI.createVirtualRegister(RegClass), 802 ZeroReg = InProlog ? X86::RCX 803 : MRI.createVirtualRegister(RegClass), 804 CopyReg = InProlog ? X86::RDX 805 : MRI.createVirtualRegister(RegClass), 806 TestReg = InProlog ? X86::RDX 807 : MRI.createVirtualRegister(RegClass), 808 FinalReg = InProlog ? X86::RDX 809 : MRI.createVirtualRegister(RegClass), 810 RoundedReg = InProlog ? X86::RDX 811 : MRI.createVirtualRegister(RegClass), 812 LimitReg = InProlog ? X86::RCX 813 : MRI.createVirtualRegister(RegClass), 814 JoinReg = InProlog ? X86::RCX 815 : MRI.createVirtualRegister(RegClass), 816 ProbeReg = InProlog ? X86::RCX 817 : MRI.createVirtualRegister(RegClass); 818 819 // SP-relative offsets where we can save RCX and RDX. 820 int64_t RCXShadowSlot = 0; 821 int64_t RDXShadowSlot = 0; 822 823 // If inlining in the prolog, save RCX and RDX. 824 if (InProlog) { 825 // Compute the offsets. We need to account for things already 826 // pushed onto the stack at this point: return address, frame 827 // pointer (if used), and callee saves. 828 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 829 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 830 const bool HasFP = hasFP(MF); 831 832 // Check if we need to spill RCX and/or RDX. 833 // Here we assume that no earlier prologue instruction changes RCX and/or 834 // RDX, so checking the block live-ins is enough. 835 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); 836 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); 837 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 838 // Assign the initial slot to both registers, then change RDX's slot if both 839 // need to be spilled. 840 if (IsRCXLiveIn) 841 RCXShadowSlot = InitSlot; 842 if (IsRDXLiveIn) 843 RDXShadowSlot = InitSlot; 844 if (IsRDXLiveIn && IsRCXLiveIn) 845 RDXShadowSlot += 8; 846 // Emit the saves if needed. 847 if (IsRCXLiveIn) 848 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 849 RCXShadowSlot) 850 .addReg(X86::RCX); 851 if (IsRDXLiveIn) 852 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 853 RDXShadowSlot) 854 .addReg(X86::RDX); 855 } else { 856 // Not in the prolog. Copy RAX to a virtual reg. 857 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 858 } 859 860 // Add code to MBB to check for overflow and set the new target stack pointer 861 // to zero if so. 862 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 863 .addReg(ZeroReg, RegState::Undef) 864 .addReg(ZeroReg, RegState::Undef); 865 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 866 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 867 .addReg(CopyReg) 868 .addReg(SizeReg); 869 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) 870 .addReg(TestReg) 871 .addReg(ZeroReg) 872 .addImm(X86::COND_B); 873 874 // FinalReg now holds final stack pointer value, or zero if 875 // allocation would overflow. Compare against the current stack 876 // limit from the thread environment block. Note this limit is the 877 // lowest touched page on the stack, not the point at which the OS 878 // will cause an overflow exception, so this is just an optimization 879 // to avoid unnecessarily touching pages that are below the current 880 // SP but already committed to the stack by the OS. 881 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 882 .addReg(0) 883 .addImm(1) 884 .addReg(0) 885 .addImm(ThreadEnvironmentStackLimit) 886 .addReg(X86::GS); 887 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 888 // Jump if the desired stack pointer is at or above the stack limit. 889 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); 890 891 // Add code to roundMBB to round the final stack pointer to a page boundary. 892 RoundMBB->addLiveIn(FinalReg); 893 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 894 .addReg(FinalReg) 895 .addImm(PageMask); 896 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 897 898 // LimitReg now holds the current stack limit, RoundedReg page-rounded 899 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 900 // and probe until we reach RoundedReg. 901 if (!InProlog) { 902 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 903 .addReg(LimitReg) 904 .addMBB(RoundMBB) 905 .addReg(ProbeReg) 906 .addMBB(LoopMBB); 907 } 908 909 LoopMBB->addLiveIn(JoinReg); 910 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 911 false, -PageSize); 912 913 // Probe by storing a byte onto the stack. 914 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 915 .addReg(ProbeReg) 916 .addImm(1) 917 .addReg(0) 918 .addImm(0) 919 .addReg(0) 920 .addImm(0); 921 922 LoopMBB->addLiveIn(RoundedReg); 923 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 924 .addReg(RoundedReg) 925 .addReg(ProbeReg); 926 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); 927 928 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 929 930 // If in prolog, restore RDX and RCX. 931 if (InProlog) { 932 if (RCXShadowSlot) // It means we spilled RCX in the prologue. 933 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 934 TII.get(X86::MOV64rm), X86::RCX), 935 X86::RSP, false, RCXShadowSlot); 936 if (RDXShadowSlot) // It means we spilled RDX in the prologue. 937 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 938 TII.get(X86::MOV64rm), X86::RDX), 939 X86::RSP, false, RDXShadowSlot); 940 } 941 942 // Now that the probing is done, add code to continueMBB to update 943 // the stack pointer for real. 944 ContinueMBB->addLiveIn(SizeReg); 945 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 946 .addReg(X86::RSP) 947 .addReg(SizeReg); 948 949 // Add the control flow edges we need. 950 MBB.addSuccessor(ContinueMBB); 951 MBB.addSuccessor(RoundMBB); 952 RoundMBB->addSuccessor(LoopMBB); 953 LoopMBB->addSuccessor(ContinueMBB); 954 LoopMBB->addSuccessor(LoopMBB); 955 956 // Mark all the instructions added to the prolog as frame setup. 957 if (InProlog) { 958 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 959 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 960 } 961 for (MachineInstr &MI : *RoundMBB) { 962 MI.setFlag(MachineInstr::FrameSetup); 963 } 964 for (MachineInstr &MI : *LoopMBB) { 965 MI.setFlag(MachineInstr::FrameSetup); 966 } 967 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); 968 CMBBI != ContinueMBBI; ++CMBBI) { 969 CMBBI->setFlag(MachineInstr::FrameSetup); 970 } 971 } 972 } 973 974 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF, 975 MachineBasicBlock &MBB, 976 MachineBasicBlock::iterator MBBI, 977 const DebugLoc &DL, 978 bool InProlog) const { 979 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 980 981 // FIXME: Add indirect thunk support and remove this. 982 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) 983 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 984 "code model and indirect thunks not yet implemented."); 985 986 unsigned CallOp; 987 if (Is64Bit) 988 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 989 else 990 CallOp = X86::CALLpcrel32; 991 992 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 993 994 MachineInstrBuilder CI; 995 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 996 997 // All current stack probes take AX and SP as input, clobber flags, and 998 // preserve all registers. x86_64 probes leave RSP unmodified. 999 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 1000 // For the large code model, we have to call through a register. Use R11, 1001 // as it is scratch in all supported calling conventions. 1002 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 1003 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1004 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 1005 } else { 1006 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 1007 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1008 } 1009 1010 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; 1011 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; 1012 CI.addReg(AX, RegState::Implicit) 1013 .addReg(SP, RegState::Implicit) 1014 .addReg(AX, RegState::Define | RegState::Implicit) 1015 .addReg(SP, RegState::Define | RegState::Implicit) 1016 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 1017 1018 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1019 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 1020 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 1021 // themselves. They also does not clobber %rax so we can reuse it when 1022 // adjusting %rsp. 1023 // All other platforms do not specify a particular ABI for the stack probe 1024 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 1025 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) 1026 .addReg(SP) 1027 .addReg(AX); 1028 } 1029 1030 if (InProlog) { 1031 // Apply the frame setup flag to all inserted instrs. 1032 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 1033 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 1034 } 1035 } 1036 1037 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 1038 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 1039 // and might require smaller successive adjustments. 1040 const uint64_t Win64MaxSEHOffset = 128; 1041 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 1042 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 1043 return SEHFrameOffset & -16; 1044 } 1045 1046 // If we're forcing a stack realignment we can't rely on just the frame 1047 // info, we need to know the ABI stack alignment as well in case we 1048 // have a call out. Otherwise just make sure we have some alignment - we'll 1049 // go with the minimum SlotSize. 1050 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 1051 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1052 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment. 1053 Align StackAlign = getStackAlign(); 1054 if (MF.getFunction().hasFnAttribute("stackrealign")) { 1055 if (MFI.hasCalls()) 1056 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 1057 else if (MaxAlign < SlotSize) 1058 MaxAlign = Align(SlotSize); 1059 } 1060 return MaxAlign.value(); 1061 } 1062 1063 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 1064 MachineBasicBlock::iterator MBBI, 1065 const DebugLoc &DL, unsigned Reg, 1066 uint64_t MaxAlign) const { 1067 uint64_t Val = -MaxAlign; 1068 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 1069 1070 MachineFunction &MF = *MBB.getParent(); 1071 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 1072 const X86TargetLowering &TLI = *STI.getTargetLowering(); 1073 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 1074 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 1075 1076 // We want to make sure that (in worst case) less than StackProbeSize bytes 1077 // are not probed after the AND. This assumption is used in 1078 // emitStackProbeInlineGeneric. 1079 if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) { 1080 { 1081 NumFrameLoopProbe++; 1082 MachineBasicBlock *entryMBB = 1083 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1084 MachineBasicBlock *headMBB = 1085 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1086 MachineBasicBlock *bodyMBB = 1087 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1088 MachineBasicBlock *footMBB = 1089 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1090 1091 MachineFunction::iterator MBBIter = MBB.getIterator(); 1092 MF.insert(MBBIter, entryMBB); 1093 MF.insert(MBBIter, headMBB); 1094 MF.insert(MBBIter, bodyMBB); 1095 MF.insert(MBBIter, footMBB); 1096 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 1097 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 1098 : Is64Bit ? X86::R11D 1099 : X86::EAX; 1100 1101 // Setup entry block 1102 { 1103 1104 entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI); 1105 BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 1106 .addReg(StackPtr) 1107 .setMIFlag(MachineInstr::FrameSetup); 1108 MachineInstr *MI = 1109 BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed) 1110 .addReg(FinalStackProbed) 1111 .addImm(Val) 1112 .setMIFlag(MachineInstr::FrameSetup); 1113 1114 // The EFLAGS implicit def is dead. 1115 MI->getOperand(3).setIsDead(); 1116 1117 BuildMI(entryMBB, DL, 1118 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1119 .addReg(FinalStackProbed) 1120 .addReg(StackPtr) 1121 .setMIFlag(MachineInstr::FrameSetup); 1122 BuildMI(entryMBB, DL, TII.get(X86::JCC_1)) 1123 .addMBB(&MBB) 1124 .addImm(X86::COND_E) 1125 .setMIFlag(MachineInstr::FrameSetup); 1126 entryMBB->addSuccessor(headMBB); 1127 entryMBB->addSuccessor(&MBB); 1128 } 1129 1130 // Loop entry block 1131 1132 { 1133 const unsigned SUBOpc = 1134 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1135 BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr) 1136 .addReg(StackPtr) 1137 .addImm(StackProbeSize) 1138 .setMIFlag(MachineInstr::FrameSetup); 1139 1140 BuildMI(headMBB, DL, 1141 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1142 .addReg(FinalStackProbed) 1143 .addReg(StackPtr) 1144 .setMIFlag(MachineInstr::FrameSetup); 1145 1146 // jump 1147 BuildMI(headMBB, DL, TII.get(X86::JCC_1)) 1148 .addMBB(footMBB) 1149 .addImm(X86::COND_B) 1150 .setMIFlag(MachineInstr::FrameSetup); 1151 1152 headMBB->addSuccessor(bodyMBB); 1153 headMBB->addSuccessor(footMBB); 1154 } 1155 1156 // setup loop body 1157 { 1158 addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc)) 1159 .setMIFlag(MachineInstr::FrameSetup), 1160 StackPtr, false, 0) 1161 .addImm(0) 1162 .setMIFlag(MachineInstr::FrameSetup); 1163 1164 const unsigned SUBOpc = 1165 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1166 BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr) 1167 .addReg(StackPtr) 1168 .addImm(StackProbeSize) 1169 .setMIFlag(MachineInstr::FrameSetup); 1170 1171 // cmp with stack pointer bound 1172 BuildMI(bodyMBB, DL, 1173 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1174 .addReg(FinalStackProbed) 1175 .addReg(StackPtr) 1176 .setMIFlag(MachineInstr::FrameSetup); 1177 1178 // jump 1179 BuildMI(bodyMBB, DL, TII.get(X86::JCC_1)) 1180 .addMBB(bodyMBB) 1181 .addImm(X86::COND_B) 1182 .setMIFlag(MachineInstr::FrameSetup); 1183 bodyMBB->addSuccessor(bodyMBB); 1184 bodyMBB->addSuccessor(footMBB); 1185 } 1186 1187 // setup loop footer 1188 { 1189 BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr) 1190 .addReg(FinalStackProbed) 1191 .setMIFlag(MachineInstr::FrameSetup); 1192 addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc)) 1193 .setMIFlag(MachineInstr::FrameSetup), 1194 StackPtr, false, 0) 1195 .addImm(0) 1196 .setMIFlag(MachineInstr::FrameSetup); 1197 footMBB->addSuccessor(&MBB); 1198 } 1199 1200 recomputeLiveIns(*headMBB); 1201 recomputeLiveIns(*bodyMBB); 1202 recomputeLiveIns(*footMBB); 1203 recomputeLiveIns(MBB); 1204 } 1205 } else { 1206 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 1207 .addReg(Reg) 1208 .addImm(Val) 1209 .setMIFlag(MachineInstr::FrameSetup); 1210 1211 // The EFLAGS implicit def is dead. 1212 MI->getOperand(3).setIsDead(); 1213 } 1214 } 1215 1216 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { 1217 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be 1218 // clobbered by any interrupt handler. 1219 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1220 "MF used frame lowering for wrong subtarget"); 1221 const Function &Fn = MF.getFunction(); 1222 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 1223 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); 1224 } 1225 1226 bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const { 1227 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1228 } 1229 1230 bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const { 1231 return !isWin64Prologue(MF) && MF.needsFrameMoves(); 1232 } 1233 1234 /// emitPrologue - Push callee-saved registers onto the stack, which 1235 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 1236 /// space for local variables. Also emit labels used by the exception handler to 1237 /// generate the exception handling frames. 1238 1239 /* 1240 Here's a gist of what gets emitted: 1241 1242 ; Establish frame pointer, if needed 1243 [if needs FP] 1244 push %rbp 1245 .cfi_def_cfa_offset 16 1246 .cfi_offset %rbp, -16 1247 .seh_pushreg %rpb 1248 mov %rsp, %rbp 1249 .cfi_def_cfa_register %rbp 1250 1251 ; Spill general-purpose registers 1252 [for all callee-saved GPRs] 1253 pushq %<reg> 1254 [if not needs FP] 1255 .cfi_def_cfa_offset (offset from RETADDR) 1256 .seh_pushreg %<reg> 1257 1258 ; If the required stack alignment > default stack alignment 1259 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 1260 ; of unknown size in the stack frame. 1261 [if stack needs re-alignment] 1262 and $MASK, %rsp 1263 1264 ; Allocate space for locals 1265 [if target is Windows and allocated space > 4096 bytes] 1266 ; Windows needs special care for allocations larger 1267 ; than one page. 1268 mov $NNN, %rax 1269 call ___chkstk_ms/___chkstk 1270 sub %rax, %rsp 1271 [else] 1272 sub $NNN, %rsp 1273 1274 [if needs FP] 1275 .seh_stackalloc (size of XMM spill slots) 1276 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 1277 [else] 1278 .seh_stackalloc NNN 1279 1280 ; Spill XMMs 1281 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 1282 ; they may get spilled on any platform, if the current function 1283 ; calls @llvm.eh.unwind.init 1284 [if needs FP] 1285 [for all callee-saved XMM registers] 1286 movaps %<xmm reg>, -MMM(%rbp) 1287 [for all callee-saved XMM registers] 1288 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 1289 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 1290 [else] 1291 [for all callee-saved XMM registers] 1292 movaps %<xmm reg>, KKK(%rsp) 1293 [for all callee-saved XMM registers] 1294 .seh_savexmm %<xmm reg>, KKK 1295 1296 .seh_endprologue 1297 1298 [if needs base pointer] 1299 mov %rsp, %rbx 1300 [if needs to restore base pointer] 1301 mov %rsp, -MMM(%rbp) 1302 1303 ; Emit CFI info 1304 [if needs FP] 1305 [for all callee-saved registers] 1306 .cfi_offset %<reg>, (offset from %rbp) 1307 [else] 1308 .cfi_def_cfa_offset (offset from RETADDR) 1309 [for all callee-saved registers] 1310 .cfi_offset %<reg>, (offset from %rsp) 1311 1312 Notes: 1313 - .seh directives are emitted only for Windows 64 ABI 1314 - .cv_fpo directives are emitted on win32 when emitting CodeView 1315 - .cfi directives are emitted for all other ABIs 1316 - for 32-bit code, substitute %e?? registers for %r?? 1317 */ 1318 1319 void X86FrameLowering::emitPrologue(MachineFunction &MF, 1320 MachineBasicBlock &MBB) const { 1321 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1322 "MF used frame lowering for wrong subtarget"); 1323 MachineBasicBlock::iterator MBBI = MBB.begin(); 1324 MachineFrameInfo &MFI = MF.getFrameInfo(); 1325 const Function &Fn = MF.getFunction(); 1326 MachineModuleInfo &MMI = MF.getMMI(); 1327 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1328 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 1329 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 1330 bool IsFunclet = MBB.isEHFuncletEntry(); 1331 EHPersonality Personality = EHPersonality::Unknown; 1332 if (Fn.hasPersonalityFn()) 1333 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 1334 bool FnHasClrFunclet = 1335 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 1336 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 1337 bool HasFP = hasFP(MF); 1338 bool IsWin64Prologue = isWin64Prologue(MF); 1339 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 1340 // FIXME: Emit FPO data for EH funclets. 1341 bool NeedsWinFPO = 1342 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); 1343 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 1344 bool NeedsDwarfCFI = needsDwarfCFI(MF); 1345 Register FramePtr = TRI->getFrameRegister(MF); 1346 const Register MachineFramePtr = 1347 STI.isTarget64BitILP32() 1348 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1349 Register BasePtr = TRI->getBaseRegister(); 1350 bool HasWinCFI = false; 1351 1352 // Debug location must be unknown since the first debug location is used 1353 // to determine the end of the prologue. 1354 DebugLoc DL; 1355 1356 // Space reserved for stack-based arguments when making a (ABI-guaranteed) 1357 // tail call. 1358 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 1359 if (TailCallArgReserveSize && IsWin64Prologue) 1360 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 1361 1362 const bool EmitStackProbeCall = 1363 STI.getTargetLowering()->hasStackProbeSymbol(MF); 1364 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); 1365 1366 if (HasFP && X86FI->hasSwiftAsyncContext()) { 1367 switch (MF.getTarget().Options.SwiftAsyncFramePointer) { 1368 case SwiftAsyncFramePointerMode::DeploymentBased: 1369 if (STI.swiftAsyncContextIsDynamicallySet()) { 1370 // The special symbol below is absolute and has a *value* suitable to be 1371 // combined with the frame pointer directly. 1372 BuildMI(MBB, MBBI, DL, TII.get(X86::OR64rm), MachineFramePtr) 1373 .addUse(MachineFramePtr) 1374 .addUse(X86::RIP) 1375 .addImm(1) 1376 .addUse(X86::NoRegister) 1377 .addExternalSymbol("swift_async_extendedFramePointerFlags", 1378 X86II::MO_GOTPCREL) 1379 .addUse(X86::NoRegister); 1380 break; 1381 } 1382 LLVM_FALLTHROUGH; 1383 1384 case SwiftAsyncFramePointerMode::Always: 1385 BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8), MachineFramePtr) 1386 .addUse(MachineFramePtr) 1387 .addImm(60) 1388 .setMIFlag(MachineInstr::FrameSetup); 1389 break; 1390 1391 case SwiftAsyncFramePointerMode::Never: 1392 break; 1393 } 1394 } 1395 1396 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 1397 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1398 // stack alignment. 1399 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1400 Fn.arg_size() == 2) { 1401 StackSize += 8; 1402 MFI.setStackSize(StackSize); 1403 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); 1404 } 1405 1406 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1407 // function, and use up to 128 bytes of stack space, don't have a frame 1408 // pointer, calls, or dynamic alloca then we do not need to adjust the 1409 // stack pointer (we fit in the Red Zone). We also check that we don't 1410 // push and pop from the stack. 1411 if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) && 1412 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1413 !MFI.adjustsStack() && // No calls. 1414 !EmitStackProbeCall && // No stack probes. 1415 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1416 !MF.shouldSplitStack()) { // Regular stack 1417 uint64_t MinSize = 1418 X86FI->getCalleeSavedFrameSize() - X86FI->getTCReturnAddrDelta(); 1419 if (HasFP) MinSize += SlotSize; 1420 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1421 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1422 MFI.setStackSize(StackSize); 1423 } 1424 1425 // Insert stack pointer adjustment for later moving of return addr. Only 1426 // applies to tail call optimized functions where the callee argument stack 1427 // size is bigger than the callers. 1428 if (TailCallArgReserveSize != 0) { 1429 BuildStackAdjustment(MBB, MBBI, DL, -(int)TailCallArgReserveSize, 1430 /*InEpilogue=*/false) 1431 .setMIFlag(MachineInstr::FrameSetup); 1432 } 1433 1434 // Mapping for machine moves: 1435 // 1436 // DST: VirtualFP AND 1437 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1438 // ELSE => DW_CFA_def_cfa 1439 // 1440 // SRC: VirtualFP AND 1441 // DST: Register => DW_CFA_def_cfa_register 1442 // 1443 // ELSE 1444 // OFFSET < 0 => DW_CFA_offset_extended_sf 1445 // REG < 64 => DW_CFA_offset + Reg 1446 // ELSE => DW_CFA_offset_extended 1447 1448 uint64_t NumBytes = 0; 1449 int stackGrowth = -SlotSize; 1450 1451 // Find the funclet establisher parameter 1452 Register Establisher = X86::NoRegister; 1453 if (IsClrFunclet) 1454 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1455 else if (IsFunclet) 1456 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1457 1458 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1459 // Immediately spill establisher into the home slot. 1460 // The runtime cares about this. 1461 // MOV64mr %rdx, 16(%rsp) 1462 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1463 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1464 .addReg(Establisher) 1465 .setMIFlag(MachineInstr::FrameSetup); 1466 MBB.addLiveIn(Establisher); 1467 } 1468 1469 if (HasFP) { 1470 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1471 1472 // Calculate required stack adjustment. 1473 uint64_t FrameSize = StackSize - SlotSize; 1474 // If required, include space for extra hidden slot for stashing base pointer. 1475 if (X86FI->getRestoreBasePointer()) 1476 FrameSize += SlotSize; 1477 1478 NumBytes = FrameSize - 1479 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1480 1481 // Callee-saved registers are pushed on stack before the stack is realigned. 1482 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 1483 NumBytes = alignTo(NumBytes, MaxAlign); 1484 1485 // Save EBP/RBP into the appropriate stack slot. 1486 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1487 .addReg(MachineFramePtr, RegState::Kill) 1488 .setMIFlag(MachineInstr::FrameSetup); 1489 1490 if (NeedsDwarfCFI) { 1491 // Mark the place where EBP/RBP was saved. 1492 // Define the current CFA rule to use the provided offset. 1493 assert(StackSize); 1494 BuildCFI(MBB, MBBI, DL, 1495 MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth)); 1496 1497 // Change the rule for the FramePtr to be an "offset" rule. 1498 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1499 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset( 1500 nullptr, DwarfFramePtr, 2 * stackGrowth)); 1501 } 1502 1503 if (NeedsWinCFI) { 1504 HasWinCFI = true; 1505 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1506 .addImm(FramePtr) 1507 .setMIFlag(MachineInstr::FrameSetup); 1508 } 1509 1510 if (!IsFunclet) { 1511 if (X86FI->hasSwiftAsyncContext()) { 1512 const auto &Attrs = MF.getFunction().getAttributes(); 1513 1514 // Before we update the live frame pointer we have to ensure there's a 1515 // valid (or null) asynchronous context in its slot just before FP in 1516 // the frame record, so store it now. 1517 if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) { 1518 // We have an initial context in r14, store it just before the frame 1519 // pointer. 1520 MBB.addLiveIn(X86::R14); 1521 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1522 .addReg(X86::R14) 1523 .setMIFlag(MachineInstr::FrameSetup); 1524 } else { 1525 // No initial context, store null so that there's no pointer that 1526 // could be misused. 1527 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i8)) 1528 .addImm(0) 1529 .setMIFlag(MachineInstr::FrameSetup); 1530 } 1531 1532 if (NeedsWinCFI) { 1533 HasWinCFI = true; 1534 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1535 .addImm(X86::R14) 1536 .setMIFlag(MachineInstr::FrameSetup); 1537 } 1538 1539 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr) 1540 .addUse(X86::RSP) 1541 .addImm(1) 1542 .addUse(X86::NoRegister) 1543 .addImm(8) 1544 .addUse(X86::NoRegister) 1545 .setMIFlag(MachineInstr::FrameSetup); 1546 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri8), X86::RSP) 1547 .addUse(X86::RSP) 1548 .addImm(8) 1549 .setMIFlag(MachineInstr::FrameSetup); 1550 } 1551 1552 if (!IsWin64Prologue && !IsFunclet) { 1553 // Update EBP with the new base value. 1554 if (!X86FI->hasSwiftAsyncContext()) 1555 BuildMI(MBB, MBBI, DL, 1556 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1557 FramePtr) 1558 .addReg(StackPtr) 1559 .setMIFlag(MachineInstr::FrameSetup); 1560 1561 if (NeedsDwarfCFI) { 1562 // Mark effective beginning of when frame pointer becomes valid. 1563 // Define the current CFA to use the EBP/RBP register. 1564 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1565 BuildCFI( 1566 MBB, MBBI, DL, 1567 MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr)); 1568 } 1569 1570 if (NeedsWinFPO) { 1571 // .cv_fpo_setframe $FramePtr 1572 HasWinCFI = true; 1573 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1574 .addImm(FramePtr) 1575 .addImm(0) 1576 .setMIFlag(MachineInstr::FrameSetup); 1577 } 1578 } 1579 } 1580 } else { 1581 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1582 NumBytes = StackSize - 1583 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1584 } 1585 1586 // Update the offset adjustment, which is mainly used by codeview to translate 1587 // from ESP to VFRAME relative local variable offsets. 1588 if (!IsFunclet) { 1589 if (HasFP && TRI->hasStackRealignment(MF)) 1590 MFI.setOffsetAdjustment(-NumBytes); 1591 else 1592 MFI.setOffsetAdjustment(-StackSize); 1593 } 1594 1595 // For EH funclets, only allocate enough space for outgoing calls. Save the 1596 // NumBytes value that we would've used for the parent frame. 1597 unsigned ParentFrameNumBytes = NumBytes; 1598 if (IsFunclet) 1599 NumBytes = getWinEHFuncletFrameSize(MF); 1600 1601 // Skip the callee-saved push instructions. 1602 bool PushedRegs = false; 1603 int StackOffset = 2 * stackGrowth; 1604 1605 while (MBBI != MBB.end() && 1606 MBBI->getFlag(MachineInstr::FrameSetup) && 1607 (MBBI->getOpcode() == X86::PUSH32r || 1608 MBBI->getOpcode() == X86::PUSH64r)) { 1609 PushedRegs = true; 1610 Register Reg = MBBI->getOperand(0).getReg(); 1611 ++MBBI; 1612 1613 if (!HasFP && NeedsDwarfCFI) { 1614 // Mark callee-saved push instruction. 1615 // Define the current CFA rule to use the provided offset. 1616 assert(StackSize); 1617 BuildCFI(MBB, MBBI, DL, 1618 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset)); 1619 StackOffset += stackGrowth; 1620 } 1621 1622 if (NeedsWinCFI) { 1623 HasWinCFI = true; 1624 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1625 .addImm(Reg) 1626 .setMIFlag(MachineInstr::FrameSetup); 1627 } 1628 } 1629 1630 // Realign stack after we pushed callee-saved registers (so that we'll be 1631 // able to calculate their offsets from the frame pointer). 1632 // Don't do this for Win64, it needs to realign the stack after the prologue. 1633 if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) { 1634 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1635 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1636 1637 if (NeedsWinCFI) { 1638 HasWinCFI = true; 1639 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) 1640 .addImm(MaxAlign) 1641 .setMIFlag(MachineInstr::FrameSetup); 1642 } 1643 } 1644 1645 // If there is an SUB32ri of ESP immediately before this instruction, merge 1646 // the two. This can be the case when tail call elimination is enabled and 1647 // the callee has more arguments then the caller. 1648 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1649 1650 // Adjust stack pointer: ESP -= numbytes. 1651 1652 // Windows and cygwin/mingw require a prologue helper routine when allocating 1653 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1654 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1655 // stack and adjust the stack pointer in one go. The 64-bit version of 1656 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1657 // responsible for adjusting the stack pointer. Touching the stack at 4K 1658 // increments is necessary to ensure that the guard pages used by the OS 1659 // virtual memory manager are allocated in correct sequence. 1660 uint64_t AlignedNumBytes = NumBytes; 1661 if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) 1662 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1663 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) { 1664 assert(!X86FI->getUsesRedZone() && 1665 "The Red Zone is not accounted for in stack probes"); 1666 1667 // Check whether EAX is livein for this block. 1668 bool isEAXAlive = isEAXLiveIn(MBB); 1669 1670 if (isEAXAlive) { 1671 if (Is64Bit) { 1672 // Save RAX 1673 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1674 .addReg(X86::RAX, RegState::Kill) 1675 .setMIFlag(MachineInstr::FrameSetup); 1676 } else { 1677 // Save EAX 1678 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1679 .addReg(X86::EAX, RegState::Kill) 1680 .setMIFlag(MachineInstr::FrameSetup); 1681 } 1682 } 1683 1684 if (Is64Bit) { 1685 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1686 // Function prologue is responsible for adjusting the stack pointer. 1687 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1688 if (isUInt<32>(Alloc)) { 1689 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1690 .addImm(Alloc) 1691 .setMIFlag(MachineInstr::FrameSetup); 1692 } else if (isInt<32>(Alloc)) { 1693 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX) 1694 .addImm(Alloc) 1695 .setMIFlag(MachineInstr::FrameSetup); 1696 } else { 1697 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) 1698 .addImm(Alloc) 1699 .setMIFlag(MachineInstr::FrameSetup); 1700 } 1701 } else { 1702 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1703 // We'll also use 4 already allocated bytes for EAX. 1704 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1705 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1706 .setMIFlag(MachineInstr::FrameSetup); 1707 } 1708 1709 // Call __chkstk, __chkstk_ms, or __alloca. 1710 emitStackProbe(MF, MBB, MBBI, DL, true); 1711 1712 if (isEAXAlive) { 1713 // Restore RAX/EAX 1714 MachineInstr *MI; 1715 if (Is64Bit) 1716 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 1717 StackPtr, false, NumBytes - 8); 1718 else 1719 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1720 StackPtr, false, NumBytes - 4); 1721 MI->setFlag(MachineInstr::FrameSetup); 1722 MBB.insert(MBBI, MI); 1723 } 1724 } else if (NumBytes) { 1725 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 1726 } 1727 1728 if (NeedsWinCFI && NumBytes) { 1729 HasWinCFI = true; 1730 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1731 .addImm(NumBytes) 1732 .setMIFlag(MachineInstr::FrameSetup); 1733 } 1734 1735 int SEHFrameOffset = 0; 1736 unsigned SPOrEstablisher; 1737 if (IsFunclet) { 1738 if (IsClrFunclet) { 1739 // The establisher parameter passed to a CLR funclet is actually a pointer 1740 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1741 // to find the root function establisher frame by loading the PSPSym from 1742 // the intermediate frame. 1743 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1744 MachinePointerInfo NoInfo; 1745 MBB.addLiveIn(Establisher); 1746 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1747 Establisher, false, PSPSlotOffset) 1748 .addMemOperand(MF.getMachineMemOperand( 1749 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize))); 1750 ; 1751 // Save the root establisher back into the current funclet's (mostly 1752 // empty) frame, in case a sub-funclet or the GC needs it. 1753 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1754 false, PSPSlotOffset) 1755 .addReg(Establisher) 1756 .addMemOperand(MF.getMachineMemOperand( 1757 NoInfo, 1758 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1759 SlotSize, Align(SlotSize))); 1760 } 1761 SPOrEstablisher = Establisher; 1762 } else { 1763 SPOrEstablisher = StackPtr; 1764 } 1765 1766 if (IsWin64Prologue && HasFP) { 1767 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1768 // this calculation on the incoming establisher, which holds the value of 1769 // RSP from the parent frame at the end of the prologue. 1770 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1771 if (SEHFrameOffset) 1772 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1773 SPOrEstablisher, false, SEHFrameOffset); 1774 else 1775 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1776 .addReg(SPOrEstablisher); 1777 1778 // If this is not a funclet, emit the CFI describing our frame pointer. 1779 if (NeedsWinCFI && !IsFunclet) { 1780 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 1781 HasWinCFI = true; 1782 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1783 .addImm(FramePtr) 1784 .addImm(SEHFrameOffset) 1785 .setMIFlag(MachineInstr::FrameSetup); 1786 if (isAsynchronousEHPersonality(Personality)) 1787 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 1788 } 1789 } else if (IsFunclet && STI.is32Bit()) { 1790 // Reset EBP / ESI to something good for funclets. 1791 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 1792 // If we're a catch funclet, we can be returned to via catchret. Save ESP 1793 // into the registration node so that the runtime will restore it for us. 1794 if (!MBB.isCleanupFuncletEntry()) { 1795 assert(Personality == EHPersonality::MSVC_CXX); 1796 Register FrameReg; 1797 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 1798 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed(); 1799 // ESP is the first field, so no extra displacement is needed. 1800 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 1801 false, EHRegOffset) 1802 .addReg(X86::ESP); 1803 } 1804 } 1805 1806 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 1807 const MachineInstr &FrameInstr = *MBBI; 1808 ++MBBI; 1809 1810 if (NeedsWinCFI) { 1811 int FI; 1812 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 1813 if (X86::FR64RegClass.contains(Reg)) { 1814 int Offset; 1815 Register IgnoredFrameReg; 1816 if (IsWin64Prologue && IsFunclet) 1817 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); 1818 else 1819 Offset = 1820 getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() + 1821 SEHFrameOffset; 1822 1823 HasWinCFI = true; 1824 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 1825 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 1826 .addImm(Reg) 1827 .addImm(Offset) 1828 .setMIFlag(MachineInstr::FrameSetup); 1829 } 1830 } 1831 } 1832 } 1833 1834 if (NeedsWinCFI && HasWinCFI) 1835 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 1836 .setMIFlag(MachineInstr::FrameSetup); 1837 1838 if (FnHasClrFunclet && !IsFunclet) { 1839 // Save the so-called Initial-SP (i.e. the value of the stack pointer 1840 // immediately after the prolog) into the PSPSlot so that funclets 1841 // and the GC can recover it. 1842 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1843 auto PSPInfo = MachinePointerInfo::getFixedStack( 1844 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 1845 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 1846 PSPSlotOffset) 1847 .addReg(StackPtr) 1848 .addMemOperand(MF.getMachineMemOperand( 1849 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1850 SlotSize, Align(SlotSize))); 1851 } 1852 1853 // Realign stack after we spilled callee-saved registers (so that we'll be 1854 // able to calculate their offsets from the frame pointer). 1855 // Win64 requires aligning the stack after the prologue. 1856 if (IsWin64Prologue && TRI->hasStackRealignment(MF)) { 1857 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1858 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 1859 } 1860 1861 // We already dealt with stack realignment and funclets above. 1862 if (IsFunclet && STI.is32Bit()) 1863 return; 1864 1865 // If we need a base pointer, set it up here. It's whatever the value 1866 // of the stack pointer is at this point. Any variable size objects 1867 // will be allocated after this, so we can still use the base pointer 1868 // to reference locals. 1869 if (TRI->hasBasePointer(MF)) { 1870 // Update the base pointer with the current stack pointer. 1871 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 1872 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 1873 .addReg(SPOrEstablisher) 1874 .setMIFlag(MachineInstr::FrameSetup); 1875 if (X86FI->getRestoreBasePointer()) { 1876 // Stash value of base pointer. Saving RSP instead of EBP shortens 1877 // dependence chain. Used by SjLj EH. 1878 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1879 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 1880 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 1881 .addReg(SPOrEstablisher) 1882 .setMIFlag(MachineInstr::FrameSetup); 1883 } 1884 1885 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 1886 // Stash the value of the frame pointer relative to the base pointer for 1887 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 1888 // it recovers the frame pointer from the base pointer rather than the 1889 // other way around. 1890 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1891 Register UsedReg; 1892 int Offset = 1893 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 1894 .getFixed(); 1895 assert(UsedReg == BasePtr); 1896 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 1897 .addReg(FramePtr) 1898 .setMIFlag(MachineInstr::FrameSetup); 1899 } 1900 } 1901 1902 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 1903 // Mark end of stack pointer adjustment. 1904 if (!HasFP && NumBytes) { 1905 // Define the current CFA rule to use the provided offset. 1906 assert(StackSize); 1907 BuildCFI( 1908 MBB, MBBI, DL, 1909 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth)); 1910 } 1911 1912 // Emit DWARF info specifying the offsets of the callee-saved registers. 1913 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true); 1914 } 1915 1916 // X86 Interrupt handling function cannot assume anything about the direction 1917 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 1918 // in each prologue of interrupt handler function. 1919 // 1920 // FIXME: Create "cld" instruction only in these cases: 1921 // 1. The interrupt handling function uses any of the "rep" instructions. 1922 // 2. Interrupt handling function calls another function. 1923 // 1924 if (Fn.getCallingConv() == CallingConv::X86_INTR) 1925 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 1926 .setMIFlag(MachineInstr::FrameSetup); 1927 1928 // At this point we know if the function has WinCFI or not. 1929 MF.setHasWinCFI(HasWinCFI); 1930 } 1931 1932 bool X86FrameLowering::canUseLEAForSPInEpilogue( 1933 const MachineFunction &MF) const { 1934 // We can't use LEA instructions for adjusting the stack pointer if we don't 1935 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 1936 // to deallocate the stack. 1937 // This means that we can use LEA for SP in two situations: 1938 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 1939 // 2. We *have* a frame pointer which means we are permitted to use LEA. 1940 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 1941 } 1942 1943 static bool isFuncletReturnInstr(MachineInstr &MI) { 1944 switch (MI.getOpcode()) { 1945 case X86::CATCHRET: 1946 case X86::CLEANUPRET: 1947 return true; 1948 default: 1949 return false; 1950 } 1951 llvm_unreachable("impossible"); 1952 } 1953 1954 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 1955 // stack. It holds a pointer to the bottom of the root function frame. The 1956 // establisher frame pointer passed to a nested funclet may point to the 1957 // (mostly empty) frame of its parent funclet, but it will need to find 1958 // the frame of the root function to access locals. To facilitate this, 1959 // every funclet copies the pointer to the bottom of the root function 1960 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 1961 // same offset for the PSPSym in the root function frame that's used in the 1962 // funclets' frames allows each funclet to dynamically accept any ancestor 1963 // frame as its establisher argument (the runtime doesn't guarantee the 1964 // immediate parent for some reason lost to history), and also allows the GC, 1965 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 1966 // frame with only a single offset reported for the entire method. 1967 unsigned 1968 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 1969 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 1970 Register SPReg; 1971 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 1972 /*IgnoreSPUpdates*/ true) 1973 .getFixed(); 1974 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 1975 return static_cast<unsigned>(Offset); 1976 } 1977 1978 unsigned 1979 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 1980 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1981 // This is the size of the pushed CSRs. 1982 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1983 // This is the size of callee saved XMMs. 1984 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 1985 unsigned XMMSize = WinEHXMMSlotInfo.size() * 1986 TRI->getSpillSize(X86::VR128RegClass); 1987 // This is the amount of stack a funclet needs to allocate. 1988 unsigned UsedSize; 1989 EHPersonality Personality = 1990 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 1991 if (Personality == EHPersonality::CoreCLR) { 1992 // CLR funclets need to hold enough space to include the PSPSym, at the 1993 // same offset from the stack pointer (immediately after the prolog) as it 1994 // resides at in the main function. 1995 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 1996 } else { 1997 // Other funclets just need enough stack for outgoing call arguments. 1998 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 1999 } 2000 // RBP is not included in the callee saved register block. After pushing RBP, 2001 // everything is 16 byte aligned. Everything we allocate before an outgoing 2002 // call must also be 16 byte aligned. 2003 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign()); 2004 // Subtract out the size of the callee saved registers. This is how much stack 2005 // each funclet will allocate. 2006 return FrameSizeMinusRBP + XMMSize - CSSize; 2007 } 2008 2009 static bool isTailCallOpcode(unsigned Opc) { 2010 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 2011 Opc == X86::TCRETURNmi || 2012 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 2013 Opc == X86::TCRETURNmi64; 2014 } 2015 2016 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 2017 MachineBasicBlock &MBB) const { 2018 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2019 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2020 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 2021 MachineBasicBlock::iterator MBBI = Terminator; 2022 DebugLoc DL; 2023 if (MBBI != MBB.end()) 2024 DL = MBBI->getDebugLoc(); 2025 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 2026 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 2027 Register FramePtr = TRI->getFrameRegister(MF); 2028 Register MachineFramePtr = 2029 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 2030 2031 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2032 bool NeedsWin64CFI = 2033 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 2034 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 2035 2036 // Get the number of bytes to allocate from the FrameInfo. 2037 uint64_t StackSize = MFI.getStackSize(); 2038 uint64_t MaxAlign = calculateMaxStackAlign(MF); 2039 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2040 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 2041 bool HasFP = hasFP(MF); 2042 uint64_t NumBytes = 0; 2043 2044 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && 2045 !MF.getTarget().getTargetTriple().isOSWindows()) && 2046 MF.needsFrameMoves(); 2047 2048 if (IsFunclet) { 2049 assert(HasFP && "EH funclets without FP not yet implemented"); 2050 NumBytes = getWinEHFuncletFrameSize(MF); 2051 } else if (HasFP) { 2052 // Calculate required stack adjustment. 2053 uint64_t FrameSize = StackSize - SlotSize; 2054 NumBytes = FrameSize - CSSize - TailCallArgReserveSize; 2055 2056 // Callee-saved registers were pushed on stack before the stack was 2057 // realigned. 2058 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 2059 NumBytes = alignTo(FrameSize, MaxAlign); 2060 } else { 2061 NumBytes = StackSize - CSSize - TailCallArgReserveSize; 2062 } 2063 uint64_t SEHStackAllocAmt = NumBytes; 2064 2065 // AfterPop is the position to insert .cfi_restore. 2066 MachineBasicBlock::iterator AfterPop = MBBI; 2067 if (HasFP) { 2068 if (X86FI->hasSwiftAsyncContext()) { 2069 // Discard the context. 2070 int Offset = 16 + mergeSPUpdates(MBB, MBBI, true); 2071 emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/true); 2072 } 2073 // Pop EBP. 2074 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 2075 MachineFramePtr) 2076 .setMIFlag(MachineInstr::FrameDestroy); 2077 2078 // We need to reset FP to its untagged state on return. Bit 60 is currently 2079 // used to show the presence of an extended frame. 2080 if (X86FI->hasSwiftAsyncContext()) { 2081 BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8), 2082 MachineFramePtr) 2083 .addUse(MachineFramePtr) 2084 .addImm(60) 2085 .setMIFlag(MachineInstr::FrameDestroy); 2086 } 2087 2088 if (NeedsDwarfCFI) { 2089 unsigned DwarfStackPtr = 2090 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 2091 BuildCFI(MBB, MBBI, DL, 2092 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize)); 2093 if (!MBB.succ_empty() && !MBB.isReturnBlock()) { 2094 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 2095 BuildCFI(MBB, AfterPop, DL, 2096 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr)); 2097 --MBBI; 2098 --AfterPop; 2099 } 2100 --MBBI; 2101 } 2102 } 2103 2104 MachineBasicBlock::iterator FirstCSPop = MBBI; 2105 // Skip the callee-saved pop instructions. 2106 while (MBBI != MBB.begin()) { 2107 MachineBasicBlock::iterator PI = std::prev(MBBI); 2108 unsigned Opc = PI->getOpcode(); 2109 2110 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 2111 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2112 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2113 (Opc != X86::BTR64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)) && 2114 (Opc != X86::ADD64ri8 || !PI->getFlag(MachineInstr::FrameDestroy))) 2115 break; 2116 FirstCSPop = PI; 2117 } 2118 2119 --MBBI; 2120 } 2121 MBBI = FirstCSPop; 2122 2123 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 2124 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 2125 2126 if (MBBI != MBB.end()) 2127 DL = MBBI->getDebugLoc(); 2128 // If there is an ADD32ri or SUB32ri of ESP immediately before this 2129 // instruction, merge the two instructions. 2130 if (NumBytes || MFI.hasVarSizedObjects()) 2131 NumBytes += mergeSPUpdates(MBB, MBBI, true); 2132 2133 // If dynamic alloca is used, then reset esp to point to the last callee-saved 2134 // slot before popping them off! Same applies for the case, when stack was 2135 // realigned. Don't do this if this was a funclet epilogue, since the funclets 2136 // will not do realignment or dynamic stack allocation. 2137 if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) && 2138 !IsFunclet) { 2139 if (TRI->hasStackRealignment(MF)) 2140 MBBI = FirstCSPop; 2141 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 2142 uint64_t LEAAmount = 2143 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 2144 2145 if (X86FI->hasSwiftAsyncContext()) 2146 LEAAmount -= 16; 2147 2148 // There are only two legal forms of epilogue: 2149 // - add SEHAllocationSize, %rsp 2150 // - lea SEHAllocationSize(%FramePtr), %rsp 2151 // 2152 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 2153 // However, we may use this sequence if we have a frame pointer because the 2154 // effects of the prologue can safely be undone. 2155 if (LEAAmount != 0) { 2156 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 2157 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 2158 FramePtr, false, LEAAmount); 2159 --MBBI; 2160 } else { 2161 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 2162 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 2163 .addReg(FramePtr); 2164 --MBBI; 2165 } 2166 } else if (NumBytes) { 2167 // Adjust stack pointer back: ESP += numbytes. 2168 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 2169 if (!HasFP && NeedsDwarfCFI) { 2170 // Define the current CFA rule to use the provided offset. 2171 BuildCFI(MBB, MBBI, DL, 2172 MCCFIInstruction::cfiDefCfaOffset( 2173 nullptr, CSSize + TailCallArgReserveSize + SlotSize)); 2174 } 2175 --MBBI; 2176 } 2177 2178 // Windows unwinder will not invoke function's exception handler if IP is 2179 // either in prologue or in epilogue. This behavior causes a problem when a 2180 // call immediately precedes an epilogue, because the return address points 2181 // into the epilogue. To cope with that, we insert an epilogue marker here, 2182 // then replace it with a 'nop' if it ends up immediately after a CALL in the 2183 // final emitted code. 2184 if (NeedsWin64CFI && MF.hasWinCFI()) 2185 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 2186 2187 if (!HasFP && NeedsDwarfCFI) { 2188 MBBI = FirstCSPop; 2189 int64_t Offset = -CSSize - SlotSize; 2190 // Mark callee-saved pop instruction. 2191 // Define the current CFA rule to use the provided offset. 2192 while (MBBI != MBB.end()) { 2193 MachineBasicBlock::iterator PI = MBBI; 2194 unsigned Opc = PI->getOpcode(); 2195 ++MBBI; 2196 if (Opc == X86::POP32r || Opc == X86::POP64r) { 2197 Offset += SlotSize; 2198 BuildCFI(MBB, MBBI, DL, 2199 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset)); 2200 } 2201 } 2202 } 2203 2204 // Emit DWARF info specifying the restores of the callee-saved registers. 2205 // For epilogue with return inside or being other block without successor, 2206 // no need to generate .cfi_restore for callee-saved registers. 2207 if (NeedsDwarfCFI && !MBB.succ_empty()) 2208 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false); 2209 2210 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 2211 // Add the return addr area delta back since we are not tail calling. 2212 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 2213 assert(Offset >= 0 && "TCDelta should never be positive"); 2214 if (Offset) { 2215 // Check for possible merge with preceding ADD instruction. 2216 Offset += mergeSPUpdates(MBB, Terminator, true); 2217 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 2218 } 2219 } 2220 2221 // Emit tilerelease for AMX kernel. 2222 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2223 const TargetRegisterClass *RC = TRI->getRegClass(X86::TILERegClassID); 2224 for (unsigned I = 0; I < RC->getNumRegs(); I++) 2225 if (!MRI.reg_nodbg_empty(X86::TMM0 + I)) { 2226 BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE)); 2227 break; 2228 } 2229 } 2230 2231 StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, 2232 int FI, 2233 Register &FrameReg) const { 2234 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2235 2236 bool IsFixed = MFI.isFixedObjectIndex(FI); 2237 // We can't calculate offset from frame pointer if the stack is realigned, 2238 // so enforce usage of stack/base pointer. The base pointer is used when we 2239 // have dynamic allocas in addition to dynamic realignment. 2240 if (TRI->hasBasePointer(MF)) 2241 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 2242 else if (TRI->hasStackRealignment(MF)) 2243 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 2244 else 2245 FrameReg = TRI->getFrameRegister(MF); 2246 2247 // Offset will hold the offset from the stack pointer at function entry to the 2248 // object. 2249 // We need to factor in additional offsets applied during the prologue to the 2250 // frame, base, and stack pointer depending on which is used. 2251 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 2252 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2253 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2254 uint64_t StackSize = MFI.getStackSize(); 2255 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2256 int64_t FPDelta = 0; 2257 2258 // In an x86 interrupt, remove the offset we added to account for the return 2259 // address from any stack object allocated in the caller's frame. Interrupts 2260 // do not have a standard return address. Fixed objects in the current frame, 2261 // such as SSE register spills, should not get this treatment. 2262 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && 2263 Offset >= 0) { 2264 Offset += getOffsetOfLocalArea(); 2265 } 2266 2267 if (IsWin64Prologue) { 2268 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 2269 2270 // Calculate required stack adjustment. 2271 uint64_t FrameSize = StackSize - SlotSize; 2272 // If required, include space for extra hidden slot for stashing base pointer. 2273 if (X86FI->getRestoreBasePointer()) 2274 FrameSize += SlotSize; 2275 uint64_t NumBytes = FrameSize - CSSize; 2276 2277 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 2278 if (FI && FI == X86FI->getFAIndex()) 2279 return StackOffset::getFixed(-SEHFrameOffset); 2280 2281 // FPDelta is the offset from the "traditional" FP location of the old base 2282 // pointer followed by return address and the location required by the 2283 // restricted Win64 prologue. 2284 // Add FPDelta to all offsets below that go through the frame pointer. 2285 FPDelta = FrameSize - SEHFrameOffset; 2286 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 2287 "FPDelta isn't aligned per the Win64 ABI!"); 2288 } 2289 2290 if (FrameReg == TRI->getFramePtr()) { 2291 // Skip saved EBP/RBP 2292 Offset += SlotSize; 2293 2294 // Account for restricted Windows prologue. 2295 Offset += FPDelta; 2296 2297 // Skip the RETADDR move area 2298 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2299 if (TailCallReturnAddrDelta < 0) 2300 Offset -= TailCallReturnAddrDelta; 2301 2302 return StackOffset::getFixed(Offset); 2303 } 2304 2305 // FrameReg is either the stack pointer or a base pointer. But the base is 2306 // located at the end of the statically known StackSize so the distinction 2307 // doesn't really matter. 2308 if (TRI->hasStackRealignment(MF) || TRI->hasBasePointer(MF)) 2309 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2310 return StackOffset::getFixed(Offset + StackSize); 2311 } 2312 2313 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, 2314 Register &FrameReg) const { 2315 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2316 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2317 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2318 const auto it = WinEHXMMSlotInfo.find(FI); 2319 2320 if (it == WinEHXMMSlotInfo.end()) 2321 return getFrameIndexReference(MF, FI, FrameReg).getFixed(); 2322 2323 FrameReg = TRI->getStackRegister(); 2324 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) + 2325 it->second; 2326 } 2327 2328 StackOffset 2329 X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI, 2330 Register &FrameReg, 2331 int Adjustment) const { 2332 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2333 FrameReg = TRI->getStackRegister(); 2334 return StackOffset::getFixed(MFI.getObjectOffset(FI) - 2335 getOffsetOfLocalArea() + Adjustment); 2336 } 2337 2338 StackOffset 2339 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, 2340 int FI, Register &FrameReg, 2341 bool IgnoreSPUpdates) const { 2342 2343 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2344 // Does not include any dynamic realign. 2345 const uint64_t StackSize = MFI.getStackSize(); 2346 // LLVM arranges the stack as follows: 2347 // ... 2348 // ARG2 2349 // ARG1 2350 // RETADDR 2351 // PUSH RBP <-- RBP points here 2352 // PUSH CSRs 2353 // ~~~~~~~ <-- possible stack realignment (non-win64) 2354 // ... 2355 // STACK OBJECTS 2356 // ... <-- RSP after prologue points here 2357 // ~~~~~~~ <-- possible stack realignment (win64) 2358 // 2359 // if (hasVarSizedObjects()): 2360 // ... <-- "base pointer" (ESI/RBX) points here 2361 // DYNAMIC ALLOCAS 2362 // ... <-- RSP points here 2363 // 2364 // Case 1: In the simple case of no stack realignment and no dynamic 2365 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 2366 // with fixed offsets from RSP. 2367 // 2368 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 2369 // stack objects are addressed with RBP and regular stack objects with RSP. 2370 // 2371 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 2372 // to address stack arguments for outgoing calls and nothing else. The "base 2373 // pointer" points to local variables, and RBP points to fixed objects. 2374 // 2375 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 2376 // answer we give is relative to the SP after the prologue, and not the 2377 // SP in the middle of the function. 2378 2379 if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) && 2380 !STI.isTargetWin64()) 2381 return getFrameIndexReference(MF, FI, FrameReg); 2382 2383 // If !hasReservedCallFrame the function might have SP adjustement in the 2384 // body. So, even though the offset is statically known, it depends on where 2385 // we are in the function. 2386 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) 2387 return getFrameIndexReference(MF, FI, FrameReg); 2388 2389 // We don't handle tail calls, and shouldn't be seeing them either. 2390 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 2391 "we don't handle this case!"); 2392 2393 // This is how the math works out: 2394 // 2395 // %rsp grows (i.e. gets lower) left to right. Each box below is 2396 // one word (eight bytes). Obj0 is the stack slot we're trying to 2397 // get to. 2398 // 2399 // ---------------------------------- 2400 // | BP | Obj0 | Obj1 | ... | ObjN | 2401 // ---------------------------------- 2402 // ^ ^ ^ ^ 2403 // A B C E 2404 // 2405 // A is the incoming stack pointer. 2406 // (B - A) is the local area offset (-8 for x86-64) [1] 2407 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 2408 // 2409 // |(E - B)| is the StackSize (absolute value, positive). For a 2410 // stack that grown down, this works out to be (B - E). [3] 2411 // 2412 // E is also the value of %rsp after stack has been set up, and we 2413 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 2414 // (C - E) == (C - A) - (B - A) + (B - E) 2415 // { Using [1], [2] and [3] above } 2416 // == getObjectOffset - LocalAreaOffset + StackSize 2417 2418 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 2419 } 2420 2421 bool X86FrameLowering::assignCalleeSavedSpillSlots( 2422 MachineFunction &MF, const TargetRegisterInfo *TRI, 2423 std::vector<CalleeSavedInfo> &CSI) const { 2424 MachineFrameInfo &MFI = MF.getFrameInfo(); 2425 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2426 2427 unsigned CalleeSavedFrameSize = 0; 2428 unsigned XMMCalleeSavedFrameSize = 0; 2429 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2430 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 2431 2432 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2433 2434 if (TailCallReturnAddrDelta < 0) { 2435 // create RETURNADDR area 2436 // arg 2437 // arg 2438 // RETADDR 2439 // { ... 2440 // RETADDR area 2441 // ... 2442 // } 2443 // [EBP] 2444 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 2445 TailCallReturnAddrDelta - SlotSize, true); 2446 } 2447 2448 // Spill the BasePtr if it's used. 2449 if (this->TRI->hasBasePointer(MF)) { 2450 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 2451 if (MF.hasEHFunclets()) { 2452 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize)); 2453 X86FI->setHasSEHFramePtrSave(true); 2454 X86FI->setSEHFramePtrSaveIndex(FI); 2455 } 2456 } 2457 2458 if (hasFP(MF)) { 2459 // emitPrologue always spills frame register the first thing. 2460 SpillSlotOffset -= SlotSize; 2461 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2462 2463 // The async context lives directly before the frame pointer, and we 2464 // allocate a second slot to preserve stack alignment. 2465 if (X86FI->hasSwiftAsyncContext()) { 2466 SpillSlotOffset -= SlotSize; 2467 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2468 SpillSlotOffset -= SlotSize; 2469 } 2470 2471 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 2472 // the frame register, we can delete it from CSI list and not have to worry 2473 // about avoiding it later. 2474 Register FPReg = TRI->getFrameRegister(MF); 2475 for (unsigned i = 0; i < CSI.size(); ++i) { 2476 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 2477 CSI.erase(CSI.begin() + i); 2478 break; 2479 } 2480 } 2481 } 2482 2483 // Assign slots for GPRs. It increases frame size. 2484 for (unsigned i = CSI.size(); i != 0; --i) { 2485 unsigned Reg = CSI[i - 1].getReg(); 2486 2487 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2488 continue; 2489 2490 SpillSlotOffset -= SlotSize; 2491 CalleeSavedFrameSize += SlotSize; 2492 2493 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2494 CSI[i - 1].setFrameIdx(SlotIndex); 2495 } 2496 2497 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 2498 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); 2499 2500 // Assign slots for XMMs. 2501 for (unsigned i = CSI.size(); i != 0; --i) { 2502 unsigned Reg = CSI[i - 1].getReg(); 2503 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2504 continue; 2505 2506 // If this is k-register make sure we lookup via the largest legal type. 2507 MVT VT = MVT::Other; 2508 if (X86::VK16RegClass.contains(Reg)) 2509 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2510 2511 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2512 unsigned Size = TRI->getSpillSize(*RC); 2513 Align Alignment = TRI->getSpillAlign(*RC); 2514 // ensure alignment 2515 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); 2516 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment); 2517 2518 // spill into slot 2519 SpillSlotOffset -= Size; 2520 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 2521 CSI[i - 1].setFrameIdx(SlotIndex); 2522 MFI.ensureMaxAlignment(Alignment); 2523 2524 // Save the start offset and size of XMM in stack frame for funclets. 2525 if (X86::VR128RegClass.contains(Reg)) { 2526 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; 2527 XMMCalleeSavedFrameSize += Size; 2528 } 2529 } 2530 2531 return true; 2532 } 2533 2534 bool X86FrameLowering::spillCalleeSavedRegisters( 2535 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2536 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2537 DebugLoc DL = MBB.findDebugLoc(MI); 2538 2539 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2540 // for us, and there are no XMM CSRs on Win32. 2541 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2542 return true; 2543 2544 // Push GPRs. It increases frame size. 2545 const MachineFunction &MF = *MBB.getParent(); 2546 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 2547 for (unsigned i = CSI.size(); i != 0; --i) { 2548 unsigned Reg = CSI[i - 1].getReg(); 2549 2550 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2551 continue; 2552 2553 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2554 bool isLiveIn = MRI.isLiveIn(Reg); 2555 if (!isLiveIn) 2556 MBB.addLiveIn(Reg); 2557 2558 // Decide whether we can add a kill flag to the use. 2559 bool CanKill = !isLiveIn; 2560 // Check if any subregister is live-in 2561 if (CanKill) { 2562 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 2563 if (MRI.isLiveIn(*AReg)) { 2564 CanKill = false; 2565 break; 2566 } 2567 } 2568 } 2569 2570 // Do not set a kill flag on values that are also marked as live-in. This 2571 // happens with the @llvm-returnaddress intrinsic and with arguments 2572 // passed in callee saved registers. 2573 // Omitting the kill flags is conservatively correct even if the live-in 2574 // is not used after all. 2575 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 2576 .setMIFlag(MachineInstr::FrameSetup); 2577 } 2578 2579 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 2580 // It can be done by spilling XMMs to stack frame. 2581 for (unsigned i = CSI.size(); i != 0; --i) { 2582 unsigned Reg = CSI[i-1].getReg(); 2583 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2584 continue; 2585 2586 // If this is k-register make sure we lookup via the largest legal type. 2587 MVT VT = MVT::Other; 2588 if (X86::VK16RegClass.contains(Reg)) 2589 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2590 2591 // Add the callee-saved register as live-in. It's killed at the spill. 2592 MBB.addLiveIn(Reg); 2593 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2594 2595 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC, 2596 TRI); 2597 --MI; 2598 MI->setFlag(MachineInstr::FrameSetup); 2599 ++MI; 2600 } 2601 2602 return true; 2603 } 2604 2605 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 2606 MachineBasicBlock::iterator MBBI, 2607 MachineInstr *CatchRet) const { 2608 // SEH shouldn't use catchret. 2609 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 2610 MBB.getParent()->getFunction().getPersonalityFn())) && 2611 "SEH should not use CATCHRET"); 2612 const DebugLoc &DL = CatchRet->getDebugLoc(); 2613 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 2614 2615 // Fill EAX/RAX with the address of the target block. 2616 if (STI.is64Bit()) { 2617 // LEA64r CatchRetTarget(%rip), %rax 2618 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 2619 .addReg(X86::RIP) 2620 .addImm(0) 2621 .addReg(0) 2622 .addMBB(CatchRetTarget) 2623 .addReg(0); 2624 } else { 2625 // MOV32ri $CatchRetTarget, %eax 2626 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2627 .addMBB(CatchRetTarget); 2628 } 2629 2630 // Record that we've taken the address of CatchRetTarget and no longer just 2631 // reference it in a terminator. 2632 CatchRetTarget->setHasAddressTaken(); 2633 } 2634 2635 bool X86FrameLowering::restoreCalleeSavedRegisters( 2636 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2637 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2638 if (CSI.empty()) 2639 return false; 2640 2641 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 2642 // Don't restore CSRs in 32-bit EH funclets. Matches 2643 // spillCalleeSavedRegisters. 2644 if (STI.is32Bit()) 2645 return true; 2646 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 2647 // funclets. emitEpilogue transforms these to normal jumps. 2648 if (MI->getOpcode() == X86::CATCHRET) { 2649 const Function &F = MBB.getParent()->getFunction(); 2650 bool IsSEH = isAsynchronousEHPersonality( 2651 classifyEHPersonality(F.getPersonalityFn())); 2652 if (IsSEH) 2653 return true; 2654 } 2655 } 2656 2657 DebugLoc DL = MBB.findDebugLoc(MI); 2658 2659 // Reload XMMs from stack frame. 2660 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2661 unsigned Reg = CSI[i].getReg(); 2662 if (X86::GR64RegClass.contains(Reg) || 2663 X86::GR32RegClass.contains(Reg)) 2664 continue; 2665 2666 // If this is k-register make sure we lookup via the largest legal type. 2667 MVT VT = MVT::Other; 2668 if (X86::VK16RegClass.contains(Reg)) 2669 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2670 2671 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2672 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); 2673 } 2674 2675 // POP GPRs. 2676 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 2677 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2678 unsigned Reg = CSI[i].getReg(); 2679 if (!X86::GR64RegClass.contains(Reg) && 2680 !X86::GR32RegClass.contains(Reg)) 2681 continue; 2682 2683 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 2684 .setMIFlag(MachineInstr::FrameDestroy); 2685 } 2686 return true; 2687 } 2688 2689 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 2690 BitVector &SavedRegs, 2691 RegScavenger *RS) const { 2692 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2693 2694 // Spill the BasePtr if it's used. 2695 if (TRI->hasBasePointer(MF)){ 2696 Register BasePtr = TRI->getBaseRegister(); 2697 if (STI.isTarget64BitILP32()) 2698 BasePtr = getX86SubSuperRegister(BasePtr, 64); 2699 SavedRegs.set(BasePtr); 2700 } 2701 } 2702 2703 static bool 2704 HasNestArgument(const MachineFunction *MF) { 2705 const Function &F = MF->getFunction(); 2706 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 2707 I != E; I++) { 2708 if (I->hasNestAttr() && !I->use_empty()) 2709 return true; 2710 } 2711 return false; 2712 } 2713 2714 /// GetScratchRegister - Get a temp register for performing work in the 2715 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2716 /// and the properties of the function either one or two registers will be 2717 /// needed. Set primary to true for the first register, false for the second. 2718 static unsigned 2719 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2720 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 2721 2722 // Erlang stuff. 2723 if (CallingConvention == CallingConv::HiPE) { 2724 if (Is64Bit) 2725 return Primary ? X86::R14 : X86::R13; 2726 else 2727 return Primary ? X86::EBX : X86::EDI; 2728 } 2729 2730 if (Is64Bit) { 2731 if (IsLP64) 2732 return Primary ? X86::R11 : X86::R12; 2733 else 2734 return Primary ? X86::R11D : X86::R12D; 2735 } 2736 2737 bool IsNested = HasNestArgument(&MF); 2738 2739 if (CallingConvention == CallingConv::X86_FastCall || 2740 CallingConvention == CallingConv::Fast || 2741 CallingConvention == CallingConv::Tail) { 2742 if (IsNested) 2743 report_fatal_error("Segmented stacks does not support fastcall with " 2744 "nested function."); 2745 return Primary ? X86::EAX : X86::ECX; 2746 } 2747 if (IsNested) 2748 return Primary ? X86::EDX : X86::EAX; 2749 return Primary ? X86::ECX : X86::EAX; 2750 } 2751 2752 // The stack limit in the TCB is set to this many bytes above the actual stack 2753 // limit. 2754 static const uint64_t kSplitStackAvailable = 256; 2755 2756 void X86FrameLowering::adjustForSegmentedStacks( 2757 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2758 MachineFrameInfo &MFI = MF.getFrameInfo(); 2759 uint64_t StackSize; 2760 unsigned TlsReg, TlsOffset; 2761 DebugLoc DL; 2762 2763 // To support shrink-wrapping we would need to insert the new blocks 2764 // at the right place and update the branches to PrologueMBB. 2765 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2766 2767 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2768 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2769 "Scratch register is live-in"); 2770 2771 if (MF.getFunction().isVarArg()) 2772 report_fatal_error("Segmented stacks do not support vararg functions."); 2773 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 2774 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 2775 !STI.isTargetDragonFly()) 2776 report_fatal_error("Segmented stacks not supported on this platform."); 2777 2778 // Eventually StackSize will be calculated by a link-time pass; which will 2779 // also decide whether checking code needs to be injected into this particular 2780 // prologue. 2781 StackSize = MFI.getStackSize(); 2782 2783 // Do not generate a prologue for leaf functions with a stack of size zero. 2784 // For non-leaf functions we have to allow for the possibility that the 2785 // callis to a non-split function, as in PR37807. This function could also 2786 // take the address of a non-split function. When the linker tries to adjust 2787 // its non-existent prologue, it would fail with an error. Mark the object 2788 // file so that such failures are not errors. See this Go language bug-report 2789 // https://go-review.googlesource.com/c/go/+/148819/ 2790 if (StackSize == 0 && !MFI.hasTailCall()) { 2791 MF.getMMI().setHasNosplitStack(true); 2792 return; 2793 } 2794 2795 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 2796 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 2797 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2798 bool IsNested = false; 2799 2800 // We need to know if the function has a nest argument only in 64 bit mode. 2801 if (Is64Bit) 2802 IsNested = HasNestArgument(&MF); 2803 2804 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 2805 // allocMBB needs to be last (terminating) instruction. 2806 2807 for (const auto &LI : PrologueMBB.liveins()) { 2808 allocMBB->addLiveIn(LI); 2809 checkMBB->addLiveIn(LI); 2810 } 2811 2812 if (IsNested) 2813 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 2814 2815 MF.push_front(allocMBB); 2816 MF.push_front(checkMBB); 2817 2818 // When the frame size is less than 256 we just compare the stack 2819 // boundary directly to the value of the stack pointer, per gcc. 2820 bool CompareStackPointer = StackSize < kSplitStackAvailable; 2821 2822 // Read the limit off the current stacklet off the stack_guard location. 2823 if (Is64Bit) { 2824 if (STI.isTargetLinux()) { 2825 TlsReg = X86::FS; 2826 TlsOffset = IsLP64 ? 0x70 : 0x40; 2827 } else if (STI.isTargetDarwin()) { 2828 TlsReg = X86::GS; 2829 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 2830 } else if (STI.isTargetWin64()) { 2831 TlsReg = X86::GS; 2832 TlsOffset = 0x28; // pvArbitrary, reserved for application use 2833 } else if (STI.isTargetFreeBSD()) { 2834 TlsReg = X86::FS; 2835 TlsOffset = 0x18; 2836 } else if (STI.isTargetDragonFly()) { 2837 TlsReg = X86::FS; 2838 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 2839 } else { 2840 report_fatal_error("Segmented stacks not supported on this platform."); 2841 } 2842 2843 if (CompareStackPointer) 2844 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 2845 else 2846 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 2847 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2848 2849 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 2850 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2851 } else { 2852 if (STI.isTargetLinux()) { 2853 TlsReg = X86::GS; 2854 TlsOffset = 0x30; 2855 } else if (STI.isTargetDarwin()) { 2856 TlsReg = X86::GS; 2857 TlsOffset = 0x48 + 90*4; 2858 } else if (STI.isTargetWin32()) { 2859 TlsReg = X86::FS; 2860 TlsOffset = 0x14; // pvArbitrary, reserved for application use 2861 } else if (STI.isTargetDragonFly()) { 2862 TlsReg = X86::FS; 2863 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 2864 } else if (STI.isTargetFreeBSD()) { 2865 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 2866 } else { 2867 report_fatal_error("Segmented stacks not supported on this platform."); 2868 } 2869 2870 if (CompareStackPointer) 2871 ScratchReg = X86::ESP; 2872 else 2873 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 2874 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2875 2876 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 2877 STI.isTargetDragonFly()) { 2878 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 2879 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2880 } else if (STI.isTargetDarwin()) { 2881 2882 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 2883 unsigned ScratchReg2; 2884 bool SaveScratch2; 2885 if (CompareStackPointer) { 2886 // The primary scratch register is available for holding the TLS offset. 2887 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2888 SaveScratch2 = false; 2889 } else { 2890 // Need to use a second register to hold the TLS offset 2891 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 2892 2893 // Unfortunately, with fastcc the second scratch register may hold an 2894 // argument. 2895 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 2896 } 2897 2898 // If Scratch2 is live-in then it needs to be saved. 2899 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 2900 "Scratch register is live-in and not saved"); 2901 2902 if (SaveScratch2) 2903 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 2904 .addReg(ScratchReg2, RegState::Kill); 2905 2906 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 2907 .addImm(TlsOffset); 2908 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 2909 .addReg(ScratchReg) 2910 .addReg(ScratchReg2).addImm(1).addReg(0) 2911 .addImm(0) 2912 .addReg(TlsReg); 2913 2914 if (SaveScratch2) 2915 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 2916 } 2917 } 2918 2919 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 2920 // It jumps to normal execution of the function body. 2921 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); 2922 2923 // On 32 bit we first push the arguments size and then the frame size. On 64 2924 // bit, we pass the stack frame size in r10 and the argument size in r11. 2925 if (Is64Bit) { 2926 // Functions with nested arguments use R10, so it needs to be saved across 2927 // the call to _morestack 2928 2929 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 2930 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 2931 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 2932 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 2933 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri; 2934 2935 if (IsNested) 2936 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 2937 2938 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10) 2939 .addImm(StackSize); 2940 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11) 2941 .addImm(X86FI->getArgumentStackSize()); 2942 } else { 2943 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2944 .addImm(X86FI->getArgumentStackSize()); 2945 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2946 .addImm(StackSize); 2947 } 2948 2949 // __morestack is in libgcc 2950 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 2951 // Under the large code model, we cannot assume that __morestack lives 2952 // within 2^31 bytes of the call site, so we cannot use pc-relative 2953 // addressing. We cannot perform the call via a temporary register, 2954 // as the rax register may be used to store the static chain, and all 2955 // other suitable registers may be either callee-save or used for 2956 // parameter passing. We cannot use the stack at this point either 2957 // because __morestack manipulates the stack directly. 2958 // 2959 // To avoid these issues, perform an indirect call via a read-only memory 2960 // location containing the address. 2961 // 2962 // This solution is not perfect, as it assumes that the .rodata section 2963 // is laid out within 2^31 bytes of each function body, but this seems 2964 // to be sufficient for JIT. 2965 // FIXME: Add retpoline support and remove the error here.. 2966 if (STI.useIndirectThunkCalls()) 2967 report_fatal_error("Emitting morestack calls on 64-bit with the large " 2968 "code model and thunks not yet implemented."); 2969 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 2970 .addReg(X86::RIP) 2971 .addImm(0) 2972 .addReg(0) 2973 .addExternalSymbol("__morestack_addr") 2974 .addReg(0); 2975 MF.getMMI().setUsesMorestackAddr(true); 2976 } else { 2977 if (Is64Bit) 2978 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 2979 .addExternalSymbol("__morestack"); 2980 else 2981 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 2982 .addExternalSymbol("__morestack"); 2983 } 2984 2985 if (IsNested) 2986 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 2987 else 2988 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 2989 2990 allocMBB->addSuccessor(&PrologueMBB); 2991 2992 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); 2993 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); 2994 2995 #ifdef EXPENSIVE_CHECKS 2996 MF.verify(); 2997 #endif 2998 } 2999 3000 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 3001 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 3002 /// to fields it needs, through a named metadata node "hipe.literals" containing 3003 /// name-value pairs. 3004 static unsigned getHiPELiteral( 3005 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 3006 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 3007 MDNode *Node = HiPELiteralsMD->getOperand(i); 3008 if (Node->getNumOperands() != 2) continue; 3009 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 3010 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 3011 if (!NodeName || !NodeVal) continue; 3012 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 3013 if (ValConst && NodeName->getString() == LiteralName) { 3014 return ValConst->getZExtValue(); 3015 } 3016 } 3017 3018 report_fatal_error("HiPE literal " + LiteralName 3019 + " required but not provided"); 3020 } 3021 3022 // Return true if there are no non-ehpad successors to MBB and there are no 3023 // non-meta instructions between MBBI and MBB.end(). 3024 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, 3025 MachineBasicBlock::const_iterator MBBI) { 3026 return llvm::all_of( 3027 MBB.successors(), 3028 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && 3029 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { 3030 return MI.isMetaInstruction(); 3031 }); 3032 } 3033 3034 /// Erlang programs may need a special prologue to handle the stack size they 3035 /// might need at runtime. That is because Erlang/OTP does not implement a C 3036 /// stack but uses a custom implementation of hybrid stack/heap architecture. 3037 /// (for more information see Eric Stenman's Ph.D. thesis: 3038 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 3039 /// 3040 /// CheckStack: 3041 /// temp0 = sp - MaxStack 3042 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3043 /// OldStart: 3044 /// ... 3045 /// IncStack: 3046 /// call inc_stack # doubles the stack space 3047 /// temp0 = sp - MaxStack 3048 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3049 void X86FrameLowering::adjustForHiPEPrologue( 3050 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3051 MachineFrameInfo &MFI = MF.getFrameInfo(); 3052 DebugLoc DL; 3053 3054 // To support shrink-wrapping we would need to insert the new blocks 3055 // at the right place and update the branches to PrologueMBB. 3056 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 3057 3058 // HiPE-specific values 3059 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 3060 ->getNamedMetadata("hipe.literals"); 3061 if (!HiPELiteralsMD) 3062 report_fatal_error( 3063 "Can't generate HiPE prologue without runtime parameters"); 3064 const unsigned HipeLeafWords 3065 = getHiPELiteral(HiPELiteralsMD, 3066 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 3067 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 3068 const unsigned Guaranteed = HipeLeafWords * SlotSize; 3069 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? 3070 MF.getFunction().arg_size() - CCRegisteredArgs : 0; 3071 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 3072 3073 assert(STI.isTargetLinux() && 3074 "HiPE prologue is only supported on Linux operating systems."); 3075 3076 // Compute the largest caller's frame that is needed to fit the callees' 3077 // frames. This 'MaxStack' is computed from: 3078 // 3079 // a) the fixed frame size, which is the space needed for all spilled temps, 3080 // b) outgoing on-stack parameter areas, and 3081 // c) the minimum stack space this function needs to make available for the 3082 // functions it calls (a tunable ABI property). 3083 if (MFI.hasCalls()) { 3084 unsigned MoreStackForCalls = 0; 3085 3086 for (auto &MBB : MF) { 3087 for (auto &MI : MBB) { 3088 if (!MI.isCall()) 3089 continue; 3090 3091 // Get callee operand. 3092 const MachineOperand &MO = MI.getOperand(0); 3093 3094 // Only take account of global function calls (no closures etc.). 3095 if (!MO.isGlobal()) 3096 continue; 3097 3098 const Function *F = dyn_cast<Function>(MO.getGlobal()); 3099 if (!F) 3100 continue; 3101 3102 // Do not update 'MaxStack' for primitive and built-in functions 3103 // (encoded with names either starting with "erlang."/"bif_" or not 3104 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 3105 // "_", such as the BIF "suspend_0") as they are executed on another 3106 // stack. 3107 if (F->getName().find("erlang.") != StringRef::npos || 3108 F->getName().find("bif_") != StringRef::npos || 3109 F->getName().find_first_of("._") == StringRef::npos) 3110 continue; 3111 3112 unsigned CalleeStkArity = 3113 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 3114 if (HipeLeafWords - 1 > CalleeStkArity) 3115 MoreStackForCalls = std::max(MoreStackForCalls, 3116 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 3117 } 3118 } 3119 MaxStack += MoreStackForCalls; 3120 } 3121 3122 // If the stack frame needed is larger than the guaranteed then runtime checks 3123 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 3124 if (MaxStack > Guaranteed) { 3125 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 3126 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 3127 3128 for (const auto &LI : PrologueMBB.liveins()) { 3129 stackCheckMBB->addLiveIn(LI); 3130 incStackMBB->addLiveIn(LI); 3131 } 3132 3133 MF.push_front(incStackMBB); 3134 MF.push_front(stackCheckMBB); 3135 3136 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 3137 unsigned LEAop, CMPop, CALLop; 3138 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 3139 if (Is64Bit) { 3140 SPReg = X86::RSP; 3141 PReg = X86::RBP; 3142 LEAop = X86::LEA64r; 3143 CMPop = X86::CMP64rm; 3144 CALLop = X86::CALL64pcrel32; 3145 } else { 3146 SPReg = X86::ESP; 3147 PReg = X86::EBP; 3148 LEAop = X86::LEA32r; 3149 CMPop = X86::CMP32rm; 3150 CALLop = X86::CALLpcrel32; 3151 } 3152 3153 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3154 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 3155 "HiPE prologue scratch register is live-in"); 3156 3157 // Create new MBB for StackCheck: 3158 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 3159 SPReg, false, -MaxStack); 3160 // SPLimitOffset is in a fixed heap location (pointed by BP). 3161 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 3162 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3163 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); 3164 3165 // Create new MBB for IncStack: 3166 BuildMI(incStackMBB, DL, TII.get(CALLop)). 3167 addExternalSymbol("inc_stack_0"); 3168 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 3169 SPReg, false, -MaxStack); 3170 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 3171 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3172 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); 3173 3174 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 3175 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 3176 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 3177 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 3178 } 3179 #ifdef EXPENSIVE_CHECKS 3180 MF.verify(); 3181 #endif 3182 } 3183 3184 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 3185 MachineBasicBlock::iterator MBBI, 3186 const DebugLoc &DL, 3187 int Offset) const { 3188 if (Offset <= 0) 3189 return false; 3190 3191 if (Offset % SlotSize) 3192 return false; 3193 3194 int NumPops = Offset / SlotSize; 3195 // This is only worth it if we have at most 2 pops. 3196 if (NumPops != 1 && NumPops != 2) 3197 return false; 3198 3199 // Handle only the trivial case where the adjustment directly follows 3200 // a call. This is the most common one, anyway. 3201 if (MBBI == MBB.begin()) 3202 return false; 3203 MachineBasicBlock::iterator Prev = std::prev(MBBI); 3204 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 3205 return false; 3206 3207 unsigned Regs[2]; 3208 unsigned FoundRegs = 0; 3209 3210 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3211 const MachineOperand &RegMask = Prev->getOperand(1); 3212 3213 auto &RegClass = 3214 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 3215 // Try to find up to NumPops free registers. 3216 for (auto Candidate : RegClass) { 3217 // Poor man's liveness: 3218 // Since we're immediately after a call, any register that is clobbered 3219 // by the call and not defined by it can be considered dead. 3220 if (!RegMask.clobbersPhysReg(Candidate)) 3221 continue; 3222 3223 // Don't clobber reserved registers 3224 if (MRI.isReserved(Candidate)) 3225 continue; 3226 3227 bool IsDef = false; 3228 for (const MachineOperand &MO : Prev->implicit_operands()) { 3229 if (MO.isReg() && MO.isDef() && 3230 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 3231 IsDef = true; 3232 break; 3233 } 3234 } 3235 3236 if (IsDef) 3237 continue; 3238 3239 Regs[FoundRegs++] = Candidate; 3240 if (FoundRegs == (unsigned)NumPops) 3241 break; 3242 } 3243 3244 if (FoundRegs == 0) 3245 return false; 3246 3247 // If we found only one free register, but need two, reuse the same one twice. 3248 while (FoundRegs < (unsigned)NumPops) 3249 Regs[FoundRegs++] = Regs[0]; 3250 3251 for (int i = 0; i < NumPops; ++i) 3252 BuildMI(MBB, MBBI, DL, 3253 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 3254 3255 return true; 3256 } 3257 3258 MachineBasicBlock::iterator X86FrameLowering:: 3259 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 3260 MachineBasicBlock::iterator I) const { 3261 bool reserveCallFrame = hasReservedCallFrame(MF); 3262 unsigned Opcode = I->getOpcode(); 3263 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 3264 DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased. 3265 uint64_t Amount = TII.getFrameSize(*I); 3266 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 3267 I = MBB.erase(I); 3268 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 3269 3270 // Try to avoid emitting dead SP adjustments if the block end is unreachable, 3271 // typically because the function is marked noreturn (abort, throw, 3272 // assert_fail, etc). 3273 if (isDestroy && blockEndIsUnreachable(MBB, I)) 3274 return I; 3275 3276 if (!reserveCallFrame) { 3277 // If the stack pointer can be changed after prologue, turn the 3278 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 3279 // adjcallstackdown instruction into 'add ESP, <amt>' 3280 3281 // We need to keep the stack aligned properly. To do this, we round the 3282 // amount of space needed for the outgoing arguments up to the next 3283 // alignment boundary. 3284 Amount = alignTo(Amount, getStackAlign()); 3285 3286 const Function &F = MF.getFunction(); 3287 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 3288 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); 3289 3290 // If we have any exception handlers in this function, and we adjust 3291 // the SP before calls, we may need to indicate this to the unwinder 3292 // using GNU_ARGS_SIZE. Note that this may be necessary even when 3293 // Amount == 0, because the preceding function may have set a non-0 3294 // GNU_ARGS_SIZE. 3295 // TODO: We don't need to reset this between subsequent functions, 3296 // if it didn't change. 3297 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 3298 3299 if (HasDwarfEHHandlers && !isDestroy && 3300 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 3301 BuildCFI(MBB, InsertPos, DL, 3302 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 3303 3304 if (Amount == 0) 3305 return I; 3306 3307 // Factor out the amount that gets handled inside the sequence 3308 // (Pushes of argument for frame setup, callee pops for frame destroy) 3309 Amount -= InternalAmt; 3310 3311 // TODO: This is needed only if we require precise CFA. 3312 // If this is a callee-pop calling convention, emit a CFA adjust for 3313 // the amount the callee popped. 3314 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 3315 BuildCFI(MBB, InsertPos, DL, 3316 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 3317 3318 // Add Amount to SP to destroy a frame, or subtract to setup. 3319 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 3320 3321 if (StackAdjustment) { 3322 // Merge with any previous or following adjustment instruction. Note: the 3323 // instructions merged with here do not have CFI, so their stack 3324 // adjustments do not feed into CfaAdjustment. 3325 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 3326 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 3327 3328 if (StackAdjustment) { 3329 if (!(F.hasMinSize() && 3330 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 3331 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 3332 /*InEpilogue=*/false); 3333 } 3334 } 3335 3336 if (DwarfCFI && !hasFP(MF)) { 3337 // If we don't have FP, but need to generate unwind information, 3338 // we need to set the correct CFA offset after the stack adjustment. 3339 // How much we adjust the CFA offset depends on whether we're emitting 3340 // CFI only for EH purposes or for debugging. EH only requires the CFA 3341 // offset to be correct at each call site, while for debugging we want 3342 // it to be more precise. 3343 3344 int64_t CfaAdjustment = -StackAdjustment; 3345 // TODO: When not using precise CFA, we also need to adjust for the 3346 // InternalAmt here. 3347 if (CfaAdjustment) { 3348 BuildCFI(MBB, InsertPos, DL, 3349 MCCFIInstruction::createAdjustCfaOffset(nullptr, 3350 CfaAdjustment)); 3351 } 3352 } 3353 3354 return I; 3355 } 3356 3357 if (InternalAmt) { 3358 MachineBasicBlock::iterator CI = I; 3359 MachineBasicBlock::iterator B = MBB.begin(); 3360 while (CI != B && !std::prev(CI)->isCall()) 3361 --CI; 3362 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 3363 } 3364 3365 return I; 3366 } 3367 3368 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 3369 assert(MBB.getParent() && "Block is not attached to a function!"); 3370 const MachineFunction &MF = *MBB.getParent(); 3371 if (!MBB.isLiveIn(X86::EFLAGS)) 3372 return true; 3373 3374 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3375 return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext(); 3376 } 3377 3378 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 3379 assert(MBB.getParent() && "Block is not attached to a function!"); 3380 3381 // Win64 has strict requirements in terms of epilogue and we are 3382 // not taking a chance at messing with them. 3383 // I.e., unless this block is already an exit block, we can't use 3384 // it as an epilogue. 3385 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 3386 return false; 3387 3388 // Swift async context epilogue has a BTR instruction that clobbers parts of 3389 // EFLAGS. 3390 const MachineFunction &MF = *MBB.getParent(); 3391 if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext()) 3392 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3393 3394 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 3395 return true; 3396 3397 // If we cannot use LEA to adjust SP, we may need to use ADD, which 3398 // clobbers the EFLAGS. Check that we do not need to preserve it, 3399 // otherwise, conservatively assume this is not 3400 // safe to insert the epilogue here. 3401 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3402 } 3403 3404 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 3405 // If we may need to emit frameless compact unwind information, give 3406 // up as this is currently broken: PR25614. 3407 bool CompactUnwind = 3408 MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() != 3409 nullptr; 3410 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) || 3411 !CompactUnwind) && 3412 // The lowering of segmented stack and HiPE only support entry 3413 // blocks as prologue blocks: PR26107. This limitation may be 3414 // lifted if we fix: 3415 // - adjustForSegmentedStacks 3416 // - adjustForHiPEPrologue 3417 MF.getFunction().getCallingConv() != CallingConv::HiPE && 3418 !MF.shouldSplitStack(); 3419 } 3420 3421 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 3422 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3423 const DebugLoc &DL, bool RestoreSP) const { 3424 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 3425 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 3426 assert(STI.is32Bit() && !Uses64BitFramePtr && 3427 "restoring EBP/ESI on non-32-bit target"); 3428 3429 MachineFunction &MF = *MBB.getParent(); 3430 Register FramePtr = TRI->getFrameRegister(MF); 3431 Register BasePtr = TRI->getBaseRegister(); 3432 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 3433 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3434 MachineFrameInfo &MFI = MF.getFrameInfo(); 3435 3436 // FIXME: Don't set FrameSetup flag in catchret case. 3437 3438 int FI = FuncInfo.EHRegNodeFrameIndex; 3439 int EHRegSize = MFI.getObjectSize(FI); 3440 3441 if (RestoreSP) { 3442 // MOV32rm -EHRegSize(%ebp), %esp 3443 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 3444 X86::EBP, true, -EHRegSize) 3445 .setMIFlag(MachineInstr::FrameSetup); 3446 } 3447 3448 Register UsedReg; 3449 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed(); 3450 int EndOffset = -EHRegOffset - EHRegSize; 3451 FuncInfo.EHRegNodeEndOffset = EndOffset; 3452 3453 if (UsedReg == FramePtr) { 3454 // ADD $offset, %ebp 3455 unsigned ADDri = getADDriOpcode(false, EndOffset); 3456 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 3457 .addReg(FramePtr) 3458 .addImm(EndOffset) 3459 .setMIFlag(MachineInstr::FrameSetup) 3460 ->getOperand(3) 3461 .setIsDead(); 3462 assert(EndOffset >= 0 && 3463 "end of registration object above normal EBP position!"); 3464 } else if (UsedReg == BasePtr) { 3465 // LEA offset(%ebp), %esi 3466 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 3467 FramePtr, false, EndOffset) 3468 .setMIFlag(MachineInstr::FrameSetup); 3469 // MOV32rm SavedEBPOffset(%esi), %ebp 3470 assert(X86FI->getHasSEHFramePtrSave()); 3471 int Offset = 3472 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 3473 .getFixed(); 3474 assert(UsedReg == BasePtr); 3475 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 3476 UsedReg, true, Offset) 3477 .setMIFlag(MachineInstr::FrameSetup); 3478 } else { 3479 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 3480 } 3481 return MBBI; 3482 } 3483 3484 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 3485 return TRI->getSlotSize(); 3486 } 3487 3488 Register 3489 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const { 3490 return TRI->getDwarfRegNum(StackPtr, true); 3491 } 3492 3493 namespace { 3494 // Struct used by orderFrameObjects to help sort the stack objects. 3495 struct X86FrameSortingObject { 3496 bool IsValid = false; // true if we care about this Object. 3497 unsigned ObjectIndex = 0; // Index of Object into MFI list. 3498 unsigned ObjectSize = 0; // Size of Object in bytes. 3499 Align ObjectAlignment = Align(1); // Alignment of Object in bytes. 3500 unsigned ObjectNumUses = 0; // Object static number of uses. 3501 }; 3502 3503 // The comparison function we use for std::sort to order our local 3504 // stack symbols. The current algorithm is to use an estimated 3505 // "density". This takes into consideration the size and number of 3506 // uses each object has in order to roughly minimize code size. 3507 // So, for example, an object of size 16B that is referenced 5 times 3508 // will get higher priority than 4 4B objects referenced 1 time each. 3509 // It's not perfect and we may be able to squeeze a few more bytes out of 3510 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 3511 // fringe end can have special consideration, given their size is less 3512 // important, etc.), but the algorithmic complexity grows too much to be 3513 // worth the extra gains we get. This gets us pretty close. 3514 // The final order leaves us with objects with highest priority going 3515 // at the end of our list. 3516 struct X86FrameSortingComparator { 3517 inline bool operator()(const X86FrameSortingObject &A, 3518 const X86FrameSortingObject &B) const { 3519 uint64_t DensityAScaled, DensityBScaled; 3520 3521 // For consistency in our comparison, all invalid objects are placed 3522 // at the end. This also allows us to stop walking when we hit the 3523 // first invalid item after it's all sorted. 3524 if (!A.IsValid) 3525 return false; 3526 if (!B.IsValid) 3527 return true; 3528 3529 // The density is calculated by doing : 3530 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 3531 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 3532 // Since this approach may cause inconsistencies in 3533 // the floating point <, >, == comparisons, depending on the floating 3534 // point model with which the compiler was built, we're going 3535 // to scale both sides by multiplying with 3536 // A.ObjectSize * B.ObjectSize. This ends up factoring away 3537 // the division and, with it, the need for any floating point 3538 // arithmetic. 3539 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 3540 static_cast<uint64_t>(B.ObjectSize); 3541 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 3542 static_cast<uint64_t>(A.ObjectSize); 3543 3544 // If the two densities are equal, prioritize highest alignment 3545 // objects. This allows for similar alignment objects 3546 // to be packed together (given the same density). 3547 // There's room for improvement here, also, since we can pack 3548 // similar alignment (different density) objects next to each 3549 // other to save padding. This will also require further 3550 // complexity/iterations, and the overall gain isn't worth it, 3551 // in general. Something to keep in mind, though. 3552 if (DensityAScaled == DensityBScaled) 3553 return A.ObjectAlignment < B.ObjectAlignment; 3554 3555 return DensityAScaled < DensityBScaled; 3556 } 3557 }; 3558 } // namespace 3559 3560 // Order the symbols in the local stack. 3561 // We want to place the local stack objects in some sort of sensible order. 3562 // The heuristic we use is to try and pack them according to static number 3563 // of uses and size of object in order to minimize code size. 3564 void X86FrameLowering::orderFrameObjects( 3565 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 3566 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3567 3568 // Don't waste time if there's nothing to do. 3569 if (ObjectsToAllocate.empty()) 3570 return; 3571 3572 // Create an array of all MFI objects. We won't need all of these 3573 // objects, but we're going to create a full array of them to make 3574 // it easier to index into when we're counting "uses" down below. 3575 // We want to be able to easily/cheaply access an object by simply 3576 // indexing into it, instead of having to search for it every time. 3577 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 3578 3579 // Walk the objects we care about and mark them as such in our working 3580 // struct. 3581 for (auto &Obj : ObjectsToAllocate) { 3582 SortingObjects[Obj].IsValid = true; 3583 SortingObjects[Obj].ObjectIndex = Obj; 3584 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj); 3585 // Set the size. 3586 int ObjectSize = MFI.getObjectSize(Obj); 3587 if (ObjectSize == 0) 3588 // Variable size. Just use 4. 3589 SortingObjects[Obj].ObjectSize = 4; 3590 else 3591 SortingObjects[Obj].ObjectSize = ObjectSize; 3592 } 3593 3594 // Count the number of uses for each object. 3595 for (auto &MBB : MF) { 3596 for (auto &MI : MBB) { 3597 if (MI.isDebugInstr()) 3598 continue; 3599 for (const MachineOperand &MO : MI.operands()) { 3600 // Check to see if it's a local stack symbol. 3601 if (!MO.isFI()) 3602 continue; 3603 int Index = MO.getIndex(); 3604 // Check to see if it falls within our range, and is tagged 3605 // to require ordering. 3606 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 3607 SortingObjects[Index].IsValid) 3608 SortingObjects[Index].ObjectNumUses++; 3609 } 3610 } 3611 } 3612 3613 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 3614 // info). 3615 llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); 3616 3617 // Now modify the original list to represent the final order that 3618 // we want. The order will depend on whether we're going to access them 3619 // from the stack pointer or the frame pointer. For SP, the list should 3620 // end up with the END containing objects that we want with smaller offsets. 3621 // For FP, it should be flipped. 3622 int i = 0; 3623 for (auto &Obj : SortingObjects) { 3624 // All invalid items are sorted at the end, so it's safe to stop. 3625 if (!Obj.IsValid) 3626 break; 3627 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3628 } 3629 3630 // Flip it if we're accessing off of the FP. 3631 if (!TRI->hasStackRealignment(MF) && hasFP(MF)) 3632 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 3633 } 3634 3635 3636 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 3637 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 3638 unsigned Offset = 16; 3639 // RBP is immediately pushed. 3640 Offset += SlotSize; 3641 // All callee-saved registers are then pushed. 3642 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 3643 // Every funclet allocates enough stack space for the largest outgoing call. 3644 Offset += getWinEHFuncletFrameSize(MF); 3645 return Offset; 3646 } 3647 3648 void X86FrameLowering::processFunctionBeforeFrameFinalized( 3649 MachineFunction &MF, RegScavenger *RS) const { 3650 // Mark the function as not having WinCFI. We will set it back to true in 3651 // emitPrologue if it gets called and emits CFI. 3652 MF.setHasWinCFI(false); 3653 3654 // If we are using Windows x64 CFI, ensure that the stack is always 8 byte 3655 // aligned. The format doesn't support misaligned stack adjustments. 3656 if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) 3657 MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize)); 3658 3659 // If this function isn't doing Win64-style C++ EH, we don't need to do 3660 // anything. 3661 if (STI.is64Bit() && MF.hasEHFunclets() && 3662 classifyEHPersonality(MF.getFunction().getPersonalityFn()) == 3663 EHPersonality::MSVC_CXX) { 3664 adjustFrameForMsvcCxxEh(MF); 3665 } 3666 } 3667 3668 void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const { 3669 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 3670 // relative to RSP after the prologue. Find the offset of the last fixed 3671 // object, so that we can allocate a slot immediately following it. If there 3672 // were no fixed objects, use offset -SlotSize, which is immediately after the 3673 // return address. Fixed objects have negative frame indices. 3674 MachineFrameInfo &MFI = MF.getFrameInfo(); 3675 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3676 int64_t MinFixedObjOffset = -SlotSize; 3677 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 3678 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 3679 3680 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 3681 for (WinEHHandlerType &H : TBME.HandlerArray) { 3682 int FrameIndex = H.CatchObj.FrameIndex; 3683 if (FrameIndex != INT_MAX) { 3684 // Ensure alignment. 3685 unsigned Align = MFI.getObjectAlign(FrameIndex).value(); 3686 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 3687 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 3688 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 3689 } 3690 } 3691 } 3692 3693 // Ensure alignment. 3694 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 3695 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 3696 int UnwindHelpFI = 3697 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); 3698 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3699 3700 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 3701 // other frame setup instructions. 3702 MachineBasicBlock &MBB = MF.front(); 3703 auto MBBI = MBB.begin(); 3704 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3705 ++MBBI; 3706 3707 DebugLoc DL = MBB.findDebugLoc(MBBI); 3708 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 3709 UnwindHelpFI) 3710 .addImm(-2); 3711 } 3712 3713 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced( 3714 MachineFunction &MF, RegScavenger *RS) const { 3715 if (STI.is32Bit() && MF.hasEHFunclets()) 3716 restoreWinEHStackPointersInParent(MF); 3717 } 3718 3719 void X86FrameLowering::restoreWinEHStackPointersInParent( 3720 MachineFunction &MF) const { 3721 // 32-bit functions have to restore stack pointers when control is transferred 3722 // back to the parent function. These blocks are identified as eh pads that 3723 // are not funclet entries. 3724 bool IsSEH = isAsynchronousEHPersonality( 3725 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 3726 for (MachineBasicBlock &MBB : MF) { 3727 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry(); 3728 if (NeedsRestore) 3729 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(), 3730 /*RestoreSP=*/IsSEH); 3731 } 3732 } 3733