1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the X86 implementation of TargetFrameLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "X86FrameLowering.h" 15 #include "X86InstrBuilder.h" 16 #include "X86InstrInfo.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/Analysis/EHPersonalities.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/WinEHFuncInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/MC/MCAsmInfo.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Target/TargetOptions.h" 34 #include <cstdlib> 35 36 using namespace llvm; 37 38 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 39 unsigned StackAlignOverride) 40 : TargetFrameLowering(StackGrowsDown, StackAlignOverride, 41 STI.is64Bit() ? -8 : -4), 42 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { 43 // Cache a bunch of frame-related predicates for this subtarget. 44 SlotSize = TRI->getSlotSize(); 45 Is64Bit = STI.is64Bit(); 46 IsLP64 = STI.isTarget64BitLP64(); 47 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 48 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 49 StackPtr = TRI->getStackRegister(); 50 } 51 52 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 53 return !MF.getFrameInfo().hasVarSizedObjects() && 54 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 55 } 56 57 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 58 /// call frame pseudos can be simplified. Having a FP, as in the default 59 /// implementation, is not sufficient here since we can't always use it. 60 /// Use a more nuanced condition. 61 bool 62 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 63 return hasReservedCallFrame(MF) || 64 (hasFP(MF) && !TRI->needsStackRealignment(MF)) || 65 TRI->hasBasePointer(MF); 66 } 67 68 // needsFrameIndexResolution - Do we need to perform FI resolution for 69 // this function. Normally, this is required only when the function 70 // has any stack objects. However, FI resolution actually has another job, 71 // not apparent from the title - it resolves callframesetup/destroy 72 // that were not simplified earlier. 73 // So, this is required for x86 functions that have push sequences even 74 // when there are no stack objects. 75 bool 76 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 77 return MF.getFrameInfo().hasStackObjects() || 78 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 79 } 80 81 /// hasFP - Return true if the specified function should have a dedicated frame 82 /// pointer register. This is true if the function has variable sized allocas 83 /// or if frame pointer elimination is disabled. 84 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 85 const MachineFrameInfo &MFI = MF.getFrameInfo(); 86 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 87 TRI->needsStackRealignment(MF) || 88 MFI.hasVarSizedObjects() || 89 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 90 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 91 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 92 MFI.hasStackMap() || MFI.hasPatchPoint() || 93 MFI.hasCopyImplyingStackAdjustment()); 94 } 95 96 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) { 97 if (IsLP64) { 98 if (isInt<8>(Imm)) 99 return X86::SUB64ri8; 100 return X86::SUB64ri32; 101 } else { 102 if (isInt<8>(Imm)) 103 return X86::SUB32ri8; 104 return X86::SUB32ri; 105 } 106 } 107 108 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) { 109 if (IsLP64) { 110 if (isInt<8>(Imm)) 111 return X86::ADD64ri8; 112 return X86::ADD64ri32; 113 } else { 114 if (isInt<8>(Imm)) 115 return X86::ADD32ri8; 116 return X86::ADD32ri; 117 } 118 } 119 120 static unsigned getSUBrrOpcode(unsigned isLP64) { 121 return isLP64 ? X86::SUB64rr : X86::SUB32rr; 122 } 123 124 static unsigned getADDrrOpcode(unsigned isLP64) { 125 return isLP64 ? X86::ADD64rr : X86::ADD32rr; 126 } 127 128 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 129 if (IsLP64) { 130 if (isInt<8>(Imm)) 131 return X86::AND64ri8; 132 return X86::AND64ri32; 133 } 134 if (isInt<8>(Imm)) 135 return X86::AND32ri8; 136 return X86::AND32ri; 137 } 138 139 static unsigned getLEArOpcode(unsigned IsLP64) { 140 return IsLP64 ? X86::LEA64r : X86::LEA32r; 141 } 142 143 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live 144 /// when it reaches the "return" instruction. We can then pop a stack object 145 /// to this register without worry about clobbering it. 146 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB, 147 MachineBasicBlock::iterator &MBBI, 148 const X86RegisterInfo *TRI, 149 bool Is64Bit) { 150 const MachineFunction *MF = MBB.getParent(); 151 if (MF->callsEHReturn()) 152 return 0; 153 154 const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF); 155 156 if (MBBI == MBB.end()) 157 return 0; 158 159 switch (MBBI->getOpcode()) { 160 default: return 0; 161 case TargetOpcode::PATCHABLE_RET: 162 case X86::RET: 163 case X86::RETL: 164 case X86::RETQ: 165 case X86::RETIL: 166 case X86::RETIQ: 167 case X86::TCRETURNdi: 168 case X86::TCRETURNri: 169 case X86::TCRETURNmi: 170 case X86::TCRETURNdi64: 171 case X86::TCRETURNri64: 172 case X86::TCRETURNmi64: 173 case X86::EH_RETURN: 174 case X86::EH_RETURN64: { 175 SmallSet<uint16_t, 8> Uses; 176 for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) { 177 MachineOperand &MO = MBBI->getOperand(i); 178 if (!MO.isReg() || MO.isDef()) 179 continue; 180 unsigned Reg = MO.getReg(); 181 if (!Reg) 182 continue; 183 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 184 Uses.insert(*AI); 185 } 186 187 for (auto CS : AvailableRegs) 188 if (!Uses.count(CS) && CS != X86::RIP) 189 return CS; 190 } 191 } 192 193 return 0; 194 } 195 196 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 197 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 198 unsigned Reg = RegMask.PhysReg; 199 200 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 201 Reg == X86::AH || Reg == X86::AL) 202 return true; 203 } 204 205 return false; 206 } 207 208 /// Check if the flags need to be preserved before the terminators. 209 /// This would be the case, if the eflags is live-in of the region 210 /// composed by the terminators or live-out of that region, without 211 /// being defined by a terminator. 212 static bool 213 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 214 for (const MachineInstr &MI : MBB.terminators()) { 215 bool BreakNext = false; 216 for (const MachineOperand &MO : MI.operands()) { 217 if (!MO.isReg()) 218 continue; 219 unsigned Reg = MO.getReg(); 220 if (Reg != X86::EFLAGS) 221 continue; 222 223 // This terminator needs an eflags that is not defined 224 // by a previous another terminator: 225 // EFLAGS is live-in of the region composed by the terminators. 226 if (!MO.isDef()) 227 return true; 228 // This terminator defines the eflags, i.e., we don't need to preserve it. 229 // However, we still need to check this specific terminator does not 230 // read a live-in value. 231 BreakNext = true; 232 } 233 // We found a definition of the eflags, no need to preserve them. 234 if (BreakNext) 235 return false; 236 } 237 238 // None of the terminators use or define the eflags. 239 // Check if they are live-out, that would imply we need to preserve them. 240 for (const MachineBasicBlock *Succ : MBB.successors()) 241 if (Succ->isLiveIn(X86::EFLAGS)) 242 return true; 243 244 return false; 245 } 246 247 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 248 /// stack pointer by a constant value. 249 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 250 MachineBasicBlock::iterator &MBBI, 251 const DebugLoc &DL, 252 int64_t NumBytes, bool InEpilogue) const { 253 bool isSub = NumBytes < 0; 254 uint64_t Offset = isSub ? -NumBytes : NumBytes; 255 MachineInstr::MIFlag Flag = 256 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 257 258 uint64_t Chunk = (1LL << 31) - 1; 259 260 if (Offset > Chunk) { 261 // Rather than emit a long series of instructions for large offsets, 262 // load the offset into a register and do one sub/add 263 unsigned Reg = 0; 264 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 265 266 if (isSub && !isEAXLiveIn(MBB)) 267 Reg = Rax; 268 else 269 Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 270 271 unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri; 272 unsigned AddSubRROpc = 273 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 274 if (Reg) { 275 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg) 276 .addImm(Offset) 277 .setMIFlag(Flag); 278 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 279 .addReg(StackPtr) 280 .addReg(Reg); 281 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 282 return; 283 } else if (Offset > 8 * Chunk) { 284 // If we would need more than 8 add or sub instructions (a >16GB stack 285 // frame), it's worth spilling RAX to materialize this immediate. 286 // pushq %rax 287 // movabsq +-$Offset+-SlotSize, %rax 288 // addq %rsp, %rax 289 // xchg %rax, (%rsp) 290 // movq (%rsp), %rsp 291 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 292 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 293 .addReg(Rax, RegState::Kill) 294 .setMIFlag(Flag); 295 // Subtract is not commutative, so negate the offset and always use add. 296 // Subtract 8 less and add 8 more to account for the PUSH we just did. 297 if (isSub) 298 Offset = -(Offset - SlotSize); 299 else 300 Offset = Offset + SlotSize; 301 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax) 302 .addImm(Offset) 303 .setMIFlag(Flag); 304 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 305 .addReg(Rax) 306 .addReg(StackPtr); 307 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 308 // Exchange the new SP in RAX with the top of the stack. 309 addRegOffset( 310 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 311 StackPtr, false, 0); 312 // Load new SP from the top of the stack into RSP. 313 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 314 StackPtr, false, 0); 315 return; 316 } 317 } 318 319 while (Offset) { 320 uint64_t ThisVal = std::min(Offset, Chunk); 321 if (ThisVal == SlotSize) { 322 // Use push / pop for slot sized adjustments as a size optimization. We 323 // need to find a dead register when using pop. 324 unsigned Reg = isSub 325 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 326 : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 327 if (Reg) { 328 unsigned Opc = isSub 329 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 330 : (Is64Bit ? X86::POP64r : X86::POP32r); 331 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 332 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 333 .setMIFlag(Flag); 334 Offset -= ThisVal; 335 continue; 336 } 337 } 338 339 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 340 .setMIFlag(Flag); 341 342 Offset -= ThisVal; 343 } 344 } 345 346 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 347 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 348 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 349 assert(Offset != 0 && "zero offset stack adjustment requested"); 350 351 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 352 // is tricky. 353 bool UseLEA; 354 if (!InEpilogue) { 355 // Check if inserting the prologue at the beginning 356 // of MBB would require to use LEA operations. 357 // We need to use LEA operations if EFLAGS is live in, because 358 // it means an instruction will read it before it gets defined. 359 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 360 } else { 361 // If we can use LEA for SP but we shouldn't, check that none 362 // of the terminators uses the eflags. Otherwise we will insert 363 // a ADD that will redefine the eflags and break the condition. 364 // Alternatively, we could move the ADD, but this may not be possible 365 // and is an optimization anyway. 366 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 367 if (UseLEA && !STI.useLeaForSP()) 368 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 369 // If that assert breaks, that means we do not do the right thing 370 // in canUseAsEpilogue. 371 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 372 "We shouldn't have allowed this insertion point"); 373 } 374 375 MachineInstrBuilder MI; 376 if (UseLEA) { 377 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 378 TII.get(getLEArOpcode(Uses64BitFramePtr)), 379 StackPtr), 380 StackPtr, false, Offset); 381 } else { 382 bool IsSub = Offset < 0; 383 uint64_t AbsOffset = IsSub ? -Offset : Offset; 384 unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 385 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 386 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 387 .addReg(StackPtr) 388 .addImm(AbsOffset); 389 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 390 } 391 return MI; 392 } 393 394 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 395 MachineBasicBlock::iterator &MBBI, 396 bool doMergeWithPrevious) const { 397 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 398 (!doMergeWithPrevious && MBBI == MBB.end())) 399 return 0; 400 401 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 402 MachineBasicBlock::iterator NI = doMergeWithPrevious ? nullptr 403 : std::next(MBBI); 404 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 405 if (NI != nullptr) 406 NI = skipDebugInstructionsForward(NI, MBB.end()); 407 408 unsigned Opc = PI->getOpcode(); 409 int Offset = 0; 410 411 if (!doMergeWithPrevious && NI != MBB.end() && 412 NI->getOpcode() == TargetOpcode::CFI_INSTRUCTION) { 413 // Don't merge with the next instruction if it has CFI. 414 return Offset; 415 } 416 417 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 418 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 419 PI->getOperand(0).getReg() == StackPtr){ 420 assert(PI->getOperand(1).getReg() == StackPtr); 421 Offset += PI->getOperand(2).getImm(); 422 MBB.erase(PI); 423 if (!doMergeWithPrevious) MBBI = NI; 424 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 425 PI->getOperand(0).getReg() == StackPtr && 426 PI->getOperand(1).getReg() == StackPtr && 427 PI->getOperand(2).getImm() == 1 && 428 PI->getOperand(3).getReg() == X86::NoRegister && 429 PI->getOperand(5).getReg() == X86::NoRegister) { 430 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 431 Offset += PI->getOperand(4).getImm(); 432 MBB.erase(PI); 433 if (!doMergeWithPrevious) MBBI = NI; 434 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 435 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 436 PI->getOperand(0).getReg() == StackPtr) { 437 assert(PI->getOperand(1).getReg() == StackPtr); 438 Offset -= PI->getOperand(2).getImm(); 439 MBB.erase(PI); 440 if (!doMergeWithPrevious) MBBI = NI; 441 } 442 443 return Offset; 444 } 445 446 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 447 MachineBasicBlock::iterator MBBI, 448 const DebugLoc &DL, 449 const MCCFIInstruction &CFIInst) const { 450 MachineFunction &MF = *MBB.getParent(); 451 unsigned CFIIndex = MF.addFrameInst(CFIInst); 452 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 453 .addCFIIndex(CFIIndex); 454 } 455 456 void X86FrameLowering::emitCalleeSavedFrameMoves( 457 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 458 const DebugLoc &DL) const { 459 MachineFunction &MF = *MBB.getParent(); 460 MachineFrameInfo &MFI = MF.getFrameInfo(); 461 MachineModuleInfo &MMI = MF.getMMI(); 462 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 463 464 // Add callee saved registers to move list. 465 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 466 if (CSI.empty()) return; 467 468 // Calculate offsets. 469 for (std::vector<CalleeSavedInfo>::const_iterator 470 I = CSI.begin(), E = CSI.end(); I != E; ++I) { 471 int64_t Offset = MFI.getObjectOffset(I->getFrameIdx()); 472 unsigned Reg = I->getReg(); 473 474 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 475 BuildCFI(MBB, MBBI, DL, 476 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 477 } 478 } 479 480 void X86FrameLowering::emitStackProbe(MachineFunction &MF, 481 MachineBasicBlock &MBB, 482 MachineBasicBlock::iterator MBBI, 483 const DebugLoc &DL, bool InProlog) const { 484 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 485 if (STI.isTargetWindowsCoreCLR()) { 486 if (InProlog) { 487 emitStackProbeInlineStub(MF, MBB, MBBI, DL, true); 488 } else { 489 emitStackProbeInline(MF, MBB, MBBI, DL, false); 490 } 491 } else { 492 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog); 493 } 494 } 495 496 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 497 MachineBasicBlock &PrologMBB) const { 498 const StringRef ChkStkStubSymbol = "__chkstk_stub"; 499 MachineInstr *ChkStkStub = nullptr; 500 501 for (MachineInstr &MI : PrologMBB) { 502 if (MI.isCall() && MI.getOperand(0).isSymbol() && 503 ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) { 504 ChkStkStub = &MI; 505 break; 506 } 507 } 508 509 if (ChkStkStub != nullptr) { 510 assert(!ChkStkStub->isBundled() && 511 "Not expecting bundled instructions here"); 512 MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator()); 513 assert(std::prev(MBBI) == ChkStkStub && 514 "MBBI expected after __chkstk_stub."); 515 DebugLoc DL = PrologMBB.findDebugLoc(MBBI); 516 emitStackProbeInline(MF, PrologMBB, MBBI, DL, true); 517 ChkStkStub->eraseFromParent(); 518 } 519 } 520 521 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 522 MachineBasicBlock &MBB, 523 MachineBasicBlock::iterator MBBI, 524 const DebugLoc &DL, 525 bool InProlog) const { 526 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 527 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 528 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 529 const TargetInstrInfo &TII = *STI.getInstrInfo(); 530 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 531 532 // RAX contains the number of bytes of desired stack adjustment. 533 // The handling here assumes this value has already been updated so as to 534 // maintain stack alignment. 535 // 536 // We need to exit with RSP modified by this amount and execute suitable 537 // page touches to notify the OS that we're growing the stack responsibly. 538 // All stack probing must be done without modifying RSP. 539 // 540 // MBB: 541 // SizeReg = RAX; 542 // ZeroReg = 0 543 // CopyReg = RSP 544 // Flags, TestReg = CopyReg - SizeReg 545 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 546 // LimitReg = gs magic thread env access 547 // if FinalReg >= LimitReg goto ContinueMBB 548 // RoundBB: 549 // RoundReg = page address of FinalReg 550 // LoopMBB: 551 // LoopReg = PHI(LimitReg,ProbeReg) 552 // ProbeReg = LoopReg - PageSize 553 // [ProbeReg] = 0 554 // if (ProbeReg > RoundReg) goto LoopMBB 555 // ContinueMBB: 556 // RSP = RSP - RAX 557 // [rest of original MBB] 558 559 // Set up the new basic blocks 560 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 561 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 562 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 563 564 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 565 MF.insert(MBBIter, RoundMBB); 566 MF.insert(MBBIter, LoopMBB); 567 MF.insert(MBBIter, ContinueMBB); 568 569 // Split MBB and move the tail portion down to ContinueMBB. 570 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 571 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 572 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 573 574 // Some useful constants 575 const int64_t ThreadEnvironmentStackLimit = 0x10; 576 const int64_t PageSize = 0x1000; 577 const int64_t PageMask = ~(PageSize - 1); 578 579 // Registers we need. For the normal case we use virtual 580 // registers. For the prolog expansion we use RAX, RCX and RDX. 581 MachineRegisterInfo &MRI = MF.getRegInfo(); 582 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 583 const unsigned SizeReg = InProlog ? (unsigned)X86::RAX 584 : MRI.createVirtualRegister(RegClass), 585 ZeroReg = InProlog ? (unsigned)X86::RCX 586 : MRI.createVirtualRegister(RegClass), 587 CopyReg = InProlog ? (unsigned)X86::RDX 588 : MRI.createVirtualRegister(RegClass), 589 TestReg = InProlog ? (unsigned)X86::RDX 590 : MRI.createVirtualRegister(RegClass), 591 FinalReg = InProlog ? (unsigned)X86::RDX 592 : MRI.createVirtualRegister(RegClass), 593 RoundedReg = InProlog ? (unsigned)X86::RDX 594 : MRI.createVirtualRegister(RegClass), 595 LimitReg = InProlog ? (unsigned)X86::RCX 596 : MRI.createVirtualRegister(RegClass), 597 JoinReg = InProlog ? (unsigned)X86::RCX 598 : MRI.createVirtualRegister(RegClass), 599 ProbeReg = InProlog ? (unsigned)X86::RCX 600 : MRI.createVirtualRegister(RegClass); 601 602 // SP-relative offsets where we can save RCX and RDX. 603 int64_t RCXShadowSlot = 0; 604 int64_t RDXShadowSlot = 0; 605 606 // If inlining in the prolog, save RCX and RDX. 607 // Future optimization: don't save or restore if not live in. 608 if (InProlog) { 609 // Compute the offsets. We need to account for things already 610 // pushed onto the stack at this point: return address, frame 611 // pointer (if used), and callee saves. 612 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 613 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 614 const bool HasFP = hasFP(MF); 615 RCXShadowSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 616 RDXShadowSlot = RCXShadowSlot + 8; 617 // Emit the saves. 618 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 619 RCXShadowSlot) 620 .addReg(X86::RCX); 621 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 622 RDXShadowSlot) 623 .addReg(X86::RDX); 624 } else { 625 // Not in the prolog. Copy RAX to a virtual reg. 626 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 627 } 628 629 // Add code to MBB to check for overflow and set the new target stack pointer 630 // to zero if so. 631 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 632 .addReg(ZeroReg, RegState::Undef) 633 .addReg(ZeroReg, RegState::Undef); 634 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 635 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 636 .addReg(CopyReg) 637 .addReg(SizeReg); 638 BuildMI(&MBB, DL, TII.get(X86::CMOVB64rr), FinalReg) 639 .addReg(TestReg) 640 .addReg(ZeroReg); 641 642 // FinalReg now holds final stack pointer value, or zero if 643 // allocation would overflow. Compare against the current stack 644 // limit from the thread environment block. Note this limit is the 645 // lowest touched page on the stack, not the point at which the OS 646 // will cause an overflow exception, so this is just an optimization 647 // to avoid unnecessarily touching pages that are below the current 648 // SP but already committed to the stack by the OS. 649 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 650 .addReg(0) 651 .addImm(1) 652 .addReg(0) 653 .addImm(ThreadEnvironmentStackLimit) 654 .addReg(X86::GS); 655 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 656 // Jump if the desired stack pointer is at or above the stack limit. 657 BuildMI(&MBB, DL, TII.get(X86::JAE_1)).addMBB(ContinueMBB); 658 659 // Add code to roundMBB to round the final stack pointer to a page boundary. 660 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 661 .addReg(FinalReg) 662 .addImm(PageMask); 663 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 664 665 // LimitReg now holds the current stack limit, RoundedReg page-rounded 666 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 667 // and probe until we reach RoundedReg. 668 if (!InProlog) { 669 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 670 .addReg(LimitReg) 671 .addMBB(RoundMBB) 672 .addReg(ProbeReg) 673 .addMBB(LoopMBB); 674 } 675 676 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 677 false, -PageSize); 678 679 // Probe by storing a byte onto the stack. 680 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 681 .addReg(ProbeReg) 682 .addImm(1) 683 .addReg(0) 684 .addImm(0) 685 .addReg(0) 686 .addImm(0); 687 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 688 .addReg(RoundedReg) 689 .addReg(ProbeReg); 690 BuildMI(LoopMBB, DL, TII.get(X86::JNE_1)).addMBB(LoopMBB); 691 692 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 693 694 // If in prolog, restore RDX and RCX. 695 if (InProlog) { 696 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm), 697 X86::RCX), 698 X86::RSP, false, RCXShadowSlot); 699 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm), 700 X86::RDX), 701 X86::RSP, false, RDXShadowSlot); 702 } 703 704 // Now that the probing is done, add code to continueMBB to update 705 // the stack pointer for real. 706 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 707 .addReg(X86::RSP) 708 .addReg(SizeReg); 709 710 // Add the control flow edges we need. 711 MBB.addSuccessor(ContinueMBB); 712 MBB.addSuccessor(RoundMBB); 713 RoundMBB->addSuccessor(LoopMBB); 714 LoopMBB->addSuccessor(ContinueMBB); 715 LoopMBB->addSuccessor(LoopMBB); 716 717 // Mark all the instructions added to the prolog as frame setup. 718 if (InProlog) { 719 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 720 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 721 } 722 for (MachineInstr &MI : *RoundMBB) { 723 MI.setFlag(MachineInstr::FrameSetup); 724 } 725 for (MachineInstr &MI : *LoopMBB) { 726 MI.setFlag(MachineInstr::FrameSetup); 727 } 728 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); 729 CMBBI != ContinueMBBI; ++CMBBI) { 730 CMBBI->setFlag(MachineInstr::FrameSetup); 731 } 732 } 733 734 // Possible TODO: physreg liveness for InProlog case. 735 } 736 737 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF, 738 MachineBasicBlock &MBB, 739 MachineBasicBlock::iterator MBBI, 740 const DebugLoc &DL, 741 bool InProlog) const { 742 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 743 744 // FIXME: Add retpoline support and remove this. 745 if (Is64Bit && IsLargeCodeModel && STI.useRetpoline()) 746 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 747 "code model and retpoline not yet implemented."); 748 749 unsigned CallOp; 750 if (Is64Bit) 751 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 752 else 753 CallOp = X86::CALLpcrel32; 754 755 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 756 757 MachineInstrBuilder CI; 758 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 759 760 // All current stack probes take AX and SP as input, clobber flags, and 761 // preserve all registers. x86_64 probes leave RSP unmodified. 762 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 763 // For the large code model, we have to call through a register. Use R11, 764 // as it is scratch in all supported calling conventions. 765 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 766 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 767 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 768 } else { 769 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 770 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 771 } 772 773 unsigned AX = Is64Bit ? X86::RAX : X86::EAX; 774 unsigned SP = Is64Bit ? X86::RSP : X86::ESP; 775 CI.addReg(AX, RegState::Implicit) 776 .addReg(SP, RegState::Implicit) 777 .addReg(AX, RegState::Define | RegState::Implicit) 778 .addReg(SP, RegState::Define | RegState::Implicit) 779 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 780 781 if (STI.isTargetWin64() || !STI.isOSWindows()) { 782 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 783 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 784 // themselves. They also does not clobber %rax so we can reuse it when 785 // adjusting %rsp. 786 // All other platforms do not specify a particular ABI for the stack probe 787 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 788 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Is64Bit)), SP) 789 .addReg(SP) 790 .addReg(AX); 791 } 792 793 if (InProlog) { 794 // Apply the frame setup flag to all inserted instrs. 795 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 796 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 797 } 798 } 799 800 void X86FrameLowering::emitStackProbeInlineStub( 801 MachineFunction &MF, MachineBasicBlock &MBB, 802 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 803 804 assert(InProlog && "ChkStkStub called outside prolog!"); 805 806 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32)) 807 .addExternalSymbol("__chkstk_stub"); 808 } 809 810 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 811 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 812 // and might require smaller successive adjustments. 813 const uint64_t Win64MaxSEHOffset = 128; 814 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 815 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 816 return SEHFrameOffset & -16; 817 } 818 819 // If we're forcing a stack realignment we can't rely on just the frame 820 // info, we need to know the ABI stack alignment as well in case we 821 // have a call out. Otherwise just make sure we have some alignment - we'll 822 // go with the minimum SlotSize. 823 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 824 const MachineFrameInfo &MFI = MF.getFrameInfo(); 825 uint64_t MaxAlign = MFI.getMaxAlignment(); // Desired stack alignment. 826 unsigned StackAlign = getStackAlignment(); 827 if (MF.getFunction().hasFnAttribute("stackrealign")) { 828 if (MFI.hasCalls()) 829 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 830 else if (MaxAlign < SlotSize) 831 MaxAlign = SlotSize; 832 } 833 return MaxAlign; 834 } 835 836 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 837 MachineBasicBlock::iterator MBBI, 838 const DebugLoc &DL, unsigned Reg, 839 uint64_t MaxAlign) const { 840 uint64_t Val = -MaxAlign; 841 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 842 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 843 .addReg(Reg) 844 .addImm(Val) 845 .setMIFlag(MachineInstr::FrameSetup); 846 847 // The EFLAGS implicit def is dead. 848 MI->getOperand(3).setIsDead(); 849 } 850 851 /// emitPrologue - Push callee-saved registers onto the stack, which 852 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 853 /// space for local variables. Also emit labels used by the exception handler to 854 /// generate the exception handling frames. 855 856 /* 857 Here's a gist of what gets emitted: 858 859 ; Establish frame pointer, if needed 860 [if needs FP] 861 push %rbp 862 .cfi_def_cfa_offset 16 863 .cfi_offset %rbp, -16 864 .seh_pushreg %rpb 865 mov %rsp, %rbp 866 .cfi_def_cfa_register %rbp 867 868 ; Spill general-purpose registers 869 [for all callee-saved GPRs] 870 pushq %<reg> 871 [if not needs FP] 872 .cfi_def_cfa_offset (offset from RETADDR) 873 .seh_pushreg %<reg> 874 875 ; If the required stack alignment > default stack alignment 876 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 877 ; of unknown size in the stack frame. 878 [if stack needs re-alignment] 879 and $MASK, %rsp 880 881 ; Allocate space for locals 882 [if target is Windows and allocated space > 4096 bytes] 883 ; Windows needs special care for allocations larger 884 ; than one page. 885 mov $NNN, %rax 886 call ___chkstk_ms/___chkstk 887 sub %rax, %rsp 888 [else] 889 sub $NNN, %rsp 890 891 [if needs FP] 892 .seh_stackalloc (size of XMM spill slots) 893 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 894 [else] 895 .seh_stackalloc NNN 896 897 ; Spill XMMs 898 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 899 ; they may get spilled on any platform, if the current function 900 ; calls @llvm.eh.unwind.init 901 [if needs FP] 902 [for all callee-saved XMM registers] 903 movaps %<xmm reg>, -MMM(%rbp) 904 [for all callee-saved XMM registers] 905 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 906 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 907 [else] 908 [for all callee-saved XMM registers] 909 movaps %<xmm reg>, KKK(%rsp) 910 [for all callee-saved XMM registers] 911 .seh_savexmm %<xmm reg>, KKK 912 913 .seh_endprologue 914 915 [if needs base pointer] 916 mov %rsp, %rbx 917 [if needs to restore base pointer] 918 mov %rsp, -MMM(%rbp) 919 920 ; Emit CFI info 921 [if needs FP] 922 [for all callee-saved registers] 923 .cfi_offset %<reg>, (offset from %rbp) 924 [else] 925 .cfi_def_cfa_offset (offset from RETADDR) 926 [for all callee-saved registers] 927 .cfi_offset %<reg>, (offset from %rsp) 928 929 Notes: 930 - .seh directives are emitted only for Windows 64 ABI 931 - .cv_fpo directives are emitted on win32 when emitting CodeView 932 - .cfi directives are emitted for all other ABIs 933 - for 32-bit code, substitute %e?? registers for %r?? 934 */ 935 936 void X86FrameLowering::emitPrologue(MachineFunction &MF, 937 MachineBasicBlock &MBB) const { 938 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 939 "MF used frame lowering for wrong subtarget"); 940 MachineBasicBlock::iterator MBBI = MBB.begin(); 941 MachineFrameInfo &MFI = MF.getFrameInfo(); 942 const Function &Fn = MF.getFunction(); 943 MachineModuleInfo &MMI = MF.getMMI(); 944 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 945 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 946 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 947 bool IsFunclet = MBB.isEHFuncletEntry(); 948 EHPersonality Personality = EHPersonality::Unknown; 949 if (Fn.hasPersonalityFn()) 950 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 951 bool FnHasClrFunclet = 952 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 953 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 954 bool HasFP = hasFP(MF); 955 bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 956 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 957 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 958 // FIXME: Emit FPO data for EH funclets. 959 bool NeedsWinFPO = 960 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); 961 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 962 bool NeedsDwarfCFI = 963 !IsWin64Prologue && (MMI.hasDebugInfo() || Fn.needsUnwindTableEntry()); 964 unsigned FramePtr = TRI->getFrameRegister(MF); 965 const unsigned MachineFramePtr = 966 STI.isTarget64BitILP32() 967 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr; 968 unsigned BasePtr = TRI->getBaseRegister(); 969 bool HasWinCFI = false; 970 971 // Debug location must be unknown since the first debug location is used 972 // to determine the end of the prologue. 973 DebugLoc DL; 974 975 // Add RETADDR move area to callee saved frame size. 976 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 977 if (TailCallReturnAddrDelta && IsWin64Prologue) 978 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 979 980 if (TailCallReturnAddrDelta < 0) 981 X86FI->setCalleeSavedFrameSize( 982 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); 983 984 bool UseStackProbe = !STI.getTargetLowering()->getStackProbeSymbolName(MF).empty(); 985 986 // The default stack probe size is 4096 if the function has no stackprobesize 987 // attribute. 988 unsigned StackProbeSize = 4096; 989 if (Fn.hasFnAttribute("stack-probe-size")) 990 Fn.getFnAttribute("stack-probe-size") 991 .getValueAsString() 992 .getAsInteger(0, StackProbeSize); 993 994 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 995 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 996 // stack alignment. 997 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 998 Fn.arg_size() == 2) { 999 StackSize += 8; 1000 MFI.setStackSize(StackSize); 1001 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); 1002 } 1003 1004 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1005 // function, and use up to 128 bytes of stack space, don't have a frame 1006 // pointer, calls, or dynamic alloca then we do not need to adjust the 1007 // stack pointer (we fit in the Red Zone). We also check that we don't 1008 // push and pop from the stack. 1009 if (Is64Bit && !Fn.hasFnAttribute(Attribute::NoRedZone) && 1010 !TRI->needsStackRealignment(MF) && 1011 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1012 !MFI.adjustsStack() && // No calls. 1013 !UseStackProbe && // No stack probes. 1014 !IsWin64CC && // Win64 has no Red Zone 1015 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1016 !MF.shouldSplitStack()) { // Regular stack 1017 uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); 1018 if (HasFP) MinSize += SlotSize; 1019 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1020 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1021 MFI.setStackSize(StackSize); 1022 } 1023 1024 // Insert stack pointer adjustment for later moving of return addr. Only 1025 // applies to tail call optimized functions where the callee argument stack 1026 // size is bigger than the callers. 1027 if (TailCallReturnAddrDelta < 0) { 1028 BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta, 1029 /*InEpilogue=*/false) 1030 .setMIFlag(MachineInstr::FrameSetup); 1031 } 1032 1033 // Mapping for machine moves: 1034 // 1035 // DST: VirtualFP AND 1036 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1037 // ELSE => DW_CFA_def_cfa 1038 // 1039 // SRC: VirtualFP AND 1040 // DST: Register => DW_CFA_def_cfa_register 1041 // 1042 // ELSE 1043 // OFFSET < 0 => DW_CFA_offset_extended_sf 1044 // REG < 64 => DW_CFA_offset + Reg 1045 // ELSE => DW_CFA_offset_extended 1046 1047 uint64_t NumBytes = 0; 1048 int stackGrowth = -SlotSize; 1049 1050 // Find the funclet establisher parameter 1051 unsigned Establisher = X86::NoRegister; 1052 if (IsClrFunclet) 1053 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1054 else if (IsFunclet) 1055 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1056 1057 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1058 // Immediately spill establisher into the home slot. 1059 // The runtime cares about this. 1060 // MOV64mr %rdx, 16(%rsp) 1061 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1062 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1063 .addReg(Establisher) 1064 .setMIFlag(MachineInstr::FrameSetup); 1065 MBB.addLiveIn(Establisher); 1066 } 1067 1068 if (HasFP) { 1069 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1070 1071 // Calculate required stack adjustment. 1072 uint64_t FrameSize = StackSize - SlotSize; 1073 // If required, include space for extra hidden slot for stashing base pointer. 1074 if (X86FI->getRestoreBasePointer()) 1075 FrameSize += SlotSize; 1076 1077 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); 1078 1079 // Callee-saved registers are pushed on stack before the stack is realigned. 1080 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1081 NumBytes = alignTo(NumBytes, MaxAlign); 1082 1083 // Get the offset of the stack slot for the EBP register, which is 1084 // guaranteed to be the last slot by processFunctionBeforeFrameFinalized. 1085 // Update the frame offset adjustment. 1086 if (!IsFunclet) 1087 MFI.setOffsetAdjustment(-NumBytes); 1088 else 1089 assert(MFI.getOffsetAdjustment() == -(int)NumBytes && 1090 "should calculate same local variable offset for funclets"); 1091 1092 // Save EBP/RBP into the appropriate stack slot. 1093 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1094 .addReg(MachineFramePtr, RegState::Kill) 1095 .setMIFlag(MachineInstr::FrameSetup); 1096 1097 if (NeedsDwarfCFI) { 1098 // Mark the place where EBP/RBP was saved. 1099 // Define the current CFA rule to use the provided offset. 1100 assert(StackSize); 1101 BuildCFI(MBB, MBBI, DL, 1102 MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth)); 1103 1104 // Change the rule for the FramePtr to be an "offset" rule. 1105 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1106 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset( 1107 nullptr, DwarfFramePtr, 2 * stackGrowth)); 1108 } 1109 1110 if (NeedsWinCFI) { 1111 HasWinCFI = true; 1112 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1113 .addImm(FramePtr) 1114 .setMIFlag(MachineInstr::FrameSetup); 1115 } 1116 1117 if (!IsWin64Prologue && !IsFunclet) { 1118 // Update EBP with the new base value. 1119 BuildMI(MBB, MBBI, DL, 1120 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1121 FramePtr) 1122 .addReg(StackPtr) 1123 .setMIFlag(MachineInstr::FrameSetup); 1124 1125 if (NeedsDwarfCFI) { 1126 // Mark effective beginning of when frame pointer becomes valid. 1127 // Define the current CFA to use the EBP/RBP register. 1128 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1129 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister( 1130 nullptr, DwarfFramePtr)); 1131 } 1132 1133 if (NeedsWinFPO) { 1134 // .cv_fpo_setframe $FramePtr 1135 HasWinCFI = true; 1136 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1137 .addImm(FramePtr) 1138 .addImm(0) 1139 .setMIFlag(MachineInstr::FrameSetup); 1140 } 1141 } 1142 } else { 1143 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1144 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); 1145 } 1146 1147 // For EH funclets, only allocate enough space for outgoing calls. Save the 1148 // NumBytes value that we would've used for the parent frame. 1149 unsigned ParentFrameNumBytes = NumBytes; 1150 if (IsFunclet) 1151 NumBytes = getWinEHFuncletFrameSize(MF); 1152 1153 // Skip the callee-saved push instructions. 1154 bool PushedRegs = false; 1155 int StackOffset = 2 * stackGrowth; 1156 1157 while (MBBI != MBB.end() && 1158 MBBI->getFlag(MachineInstr::FrameSetup) && 1159 (MBBI->getOpcode() == X86::PUSH32r || 1160 MBBI->getOpcode() == X86::PUSH64r)) { 1161 PushedRegs = true; 1162 unsigned Reg = MBBI->getOperand(0).getReg(); 1163 ++MBBI; 1164 1165 if (!HasFP && NeedsDwarfCFI) { 1166 // Mark callee-saved push instruction. 1167 // Define the current CFA rule to use the provided offset. 1168 assert(StackSize); 1169 BuildCFI(MBB, MBBI, DL, 1170 MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset)); 1171 StackOffset += stackGrowth; 1172 } 1173 1174 if (NeedsWinCFI) { 1175 HasWinCFI = true; 1176 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1177 .addImm(Reg) 1178 .setMIFlag(MachineInstr::FrameSetup); 1179 } 1180 } 1181 1182 // Realign stack after we pushed callee-saved registers (so that we'll be 1183 // able to calculate their offsets from the frame pointer). 1184 // Don't do this for Win64, it needs to realign the stack after the prologue. 1185 if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) { 1186 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1187 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1188 } 1189 1190 // If there is an SUB32ri of ESP immediately before this instruction, merge 1191 // the two. This can be the case when tail call elimination is enabled and 1192 // the callee has more arguments then the caller. 1193 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1194 1195 // Adjust stack pointer: ESP -= numbytes. 1196 1197 // Windows and cygwin/mingw require a prologue helper routine when allocating 1198 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1199 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1200 // stack and adjust the stack pointer in one go. The 64-bit version of 1201 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1202 // responsible for adjusting the stack pointer. Touching the stack at 4K 1203 // increments is necessary to ensure that the guard pages used by the OS 1204 // virtual memory manager are allocated in correct sequence. 1205 uint64_t AlignedNumBytes = NumBytes; 1206 if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) 1207 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1208 if (AlignedNumBytes >= StackProbeSize && UseStackProbe) { 1209 assert(!X86FI->getUsesRedZone() && 1210 "The Red Zone is not accounted for in stack probes"); 1211 1212 // Check whether EAX is livein for this block. 1213 bool isEAXAlive = isEAXLiveIn(MBB); 1214 1215 if (isEAXAlive) { 1216 if (Is64Bit) { 1217 // Save RAX 1218 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1219 .addReg(X86::RAX, RegState::Kill) 1220 .setMIFlag(MachineInstr::FrameSetup); 1221 } else { 1222 // Save EAX 1223 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1224 .addReg(X86::EAX, RegState::Kill) 1225 .setMIFlag(MachineInstr::FrameSetup); 1226 } 1227 } 1228 1229 if (Is64Bit) { 1230 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1231 // Function prologue is responsible for adjusting the stack pointer. 1232 int Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1233 if (isUInt<32>(Alloc)) { 1234 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1235 .addImm(Alloc) 1236 .setMIFlag(MachineInstr::FrameSetup); 1237 } else if (isInt<32>(Alloc)) { 1238 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX) 1239 .addImm(Alloc) 1240 .setMIFlag(MachineInstr::FrameSetup); 1241 } else { 1242 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) 1243 .addImm(Alloc) 1244 .setMIFlag(MachineInstr::FrameSetup); 1245 } 1246 } else { 1247 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1248 // We'll also use 4 already allocated bytes for EAX. 1249 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1250 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1251 .setMIFlag(MachineInstr::FrameSetup); 1252 } 1253 1254 // Call __chkstk, __chkstk_ms, or __alloca. 1255 emitStackProbe(MF, MBB, MBBI, DL, true); 1256 1257 if (isEAXAlive) { 1258 // Restore RAX/EAX 1259 MachineInstr *MI; 1260 if (Is64Bit) 1261 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 1262 StackPtr, false, NumBytes - 8); 1263 else 1264 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1265 StackPtr, false, NumBytes - 4); 1266 MI->setFlag(MachineInstr::FrameSetup); 1267 MBB.insert(MBBI, MI); 1268 } 1269 } else if (NumBytes) { 1270 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 1271 } 1272 1273 if (NeedsWinCFI && NumBytes) { 1274 HasWinCFI = true; 1275 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1276 .addImm(NumBytes) 1277 .setMIFlag(MachineInstr::FrameSetup); 1278 } 1279 1280 int SEHFrameOffset = 0; 1281 unsigned SPOrEstablisher; 1282 if (IsFunclet) { 1283 if (IsClrFunclet) { 1284 // The establisher parameter passed to a CLR funclet is actually a pointer 1285 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1286 // to find the root function establisher frame by loading the PSPSym from 1287 // the intermediate frame. 1288 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1289 MachinePointerInfo NoInfo; 1290 MBB.addLiveIn(Establisher); 1291 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1292 Establisher, false, PSPSlotOffset) 1293 .addMemOperand(MF.getMachineMemOperand( 1294 NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize)); 1295 ; 1296 // Save the root establisher back into the current funclet's (mostly 1297 // empty) frame, in case a sub-funclet or the GC needs it. 1298 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1299 false, PSPSlotOffset) 1300 .addReg(Establisher) 1301 .addMemOperand( 1302 MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore | 1303 MachineMemOperand::MOVolatile, 1304 SlotSize, SlotSize)); 1305 } 1306 SPOrEstablisher = Establisher; 1307 } else { 1308 SPOrEstablisher = StackPtr; 1309 } 1310 1311 if (IsWin64Prologue && HasFP) { 1312 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1313 // this calculation on the incoming establisher, which holds the value of 1314 // RSP from the parent frame at the end of the prologue. 1315 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1316 if (SEHFrameOffset) 1317 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1318 SPOrEstablisher, false, SEHFrameOffset); 1319 else 1320 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1321 .addReg(SPOrEstablisher); 1322 1323 // If this is not a funclet, emit the CFI describing our frame pointer. 1324 if (NeedsWinCFI && !IsFunclet) { 1325 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 1326 HasWinCFI = true; 1327 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1328 .addImm(FramePtr) 1329 .addImm(SEHFrameOffset) 1330 .setMIFlag(MachineInstr::FrameSetup); 1331 if (isAsynchronousEHPersonality(Personality)) 1332 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 1333 } 1334 } else if (IsFunclet && STI.is32Bit()) { 1335 // Reset EBP / ESI to something good for funclets. 1336 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 1337 // If we're a catch funclet, we can be returned to via catchret. Save ESP 1338 // into the registration node so that the runtime will restore it for us. 1339 if (!MBB.isCleanupFuncletEntry()) { 1340 assert(Personality == EHPersonality::MSVC_CXX); 1341 unsigned FrameReg; 1342 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 1343 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg); 1344 // ESP is the first field, so no extra displacement is needed. 1345 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 1346 false, EHRegOffset) 1347 .addReg(X86::ESP); 1348 } 1349 } 1350 1351 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 1352 const MachineInstr &FrameInstr = *MBBI; 1353 ++MBBI; 1354 1355 if (NeedsWinCFI) { 1356 int FI; 1357 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 1358 if (X86::FR64RegClass.contains(Reg)) { 1359 unsigned IgnoredFrameReg; 1360 int Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg); 1361 Offset += SEHFrameOffset; 1362 1363 HasWinCFI = true; 1364 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 1365 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 1366 .addImm(Reg) 1367 .addImm(Offset) 1368 .setMIFlag(MachineInstr::FrameSetup); 1369 } 1370 } 1371 } 1372 } 1373 1374 if (NeedsWinCFI && HasWinCFI) 1375 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 1376 .setMIFlag(MachineInstr::FrameSetup); 1377 1378 if (FnHasClrFunclet && !IsFunclet) { 1379 // Save the so-called Initial-SP (i.e. the value of the stack pointer 1380 // immediately after the prolog) into the PSPSlot so that funclets 1381 // and the GC can recover it. 1382 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1383 auto PSPInfo = MachinePointerInfo::getFixedStack( 1384 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 1385 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 1386 PSPSlotOffset) 1387 .addReg(StackPtr) 1388 .addMemOperand(MF.getMachineMemOperand( 1389 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1390 SlotSize, SlotSize)); 1391 } 1392 1393 // Realign stack after we spilled callee-saved registers (so that we'll be 1394 // able to calculate their offsets from the frame pointer). 1395 // Win64 requires aligning the stack after the prologue. 1396 if (IsWin64Prologue && TRI->needsStackRealignment(MF)) { 1397 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1398 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 1399 } 1400 1401 // We already dealt with stack realignment and funclets above. 1402 if (IsFunclet && STI.is32Bit()) 1403 return; 1404 1405 // If we need a base pointer, set it up here. It's whatever the value 1406 // of the stack pointer is at this point. Any variable size objects 1407 // will be allocated after this, so we can still use the base pointer 1408 // to reference locals. 1409 if (TRI->hasBasePointer(MF)) { 1410 // Update the base pointer with the current stack pointer. 1411 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 1412 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 1413 .addReg(SPOrEstablisher) 1414 .setMIFlag(MachineInstr::FrameSetup); 1415 if (X86FI->getRestoreBasePointer()) { 1416 // Stash value of base pointer. Saving RSP instead of EBP shortens 1417 // dependence chain. Used by SjLj EH. 1418 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1419 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 1420 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 1421 .addReg(SPOrEstablisher) 1422 .setMIFlag(MachineInstr::FrameSetup); 1423 } 1424 1425 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 1426 // Stash the value of the frame pointer relative to the base pointer for 1427 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 1428 // it recovers the frame pointer from the base pointer rather than the 1429 // other way around. 1430 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1431 unsigned UsedReg; 1432 int Offset = 1433 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 1434 assert(UsedReg == BasePtr); 1435 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 1436 .addReg(FramePtr) 1437 .setMIFlag(MachineInstr::FrameSetup); 1438 } 1439 } 1440 1441 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 1442 // Mark end of stack pointer adjustment. 1443 if (!HasFP && NumBytes) { 1444 // Define the current CFA rule to use the provided offset. 1445 assert(StackSize); 1446 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset( 1447 nullptr, -StackSize + stackGrowth)); 1448 } 1449 1450 // Emit DWARF info specifying the offsets of the callee-saved registers. 1451 emitCalleeSavedFrameMoves(MBB, MBBI, DL); 1452 } 1453 1454 // X86 Interrupt handling function cannot assume anything about the direction 1455 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 1456 // in each prologue of interrupt handler function. 1457 // 1458 // FIXME: Create "cld" instruction only in these cases: 1459 // 1. The interrupt handling function uses any of the "rep" instructions. 1460 // 2. Interrupt handling function calls another function. 1461 // 1462 if (Fn.getCallingConv() == CallingConv::X86_INTR) 1463 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 1464 .setMIFlag(MachineInstr::FrameSetup); 1465 1466 // At this point we know if the function has WinCFI or not. 1467 MF.setHasWinCFI(HasWinCFI); 1468 } 1469 1470 bool X86FrameLowering::canUseLEAForSPInEpilogue( 1471 const MachineFunction &MF) const { 1472 // We can't use LEA instructions for adjusting the stack pointer if we don't 1473 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 1474 // to deallocate the stack. 1475 // This means that we can use LEA for SP in two situations: 1476 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 1477 // 2. We *have* a frame pointer which means we are permitted to use LEA. 1478 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 1479 } 1480 1481 static bool isFuncletReturnInstr(MachineInstr &MI) { 1482 switch (MI.getOpcode()) { 1483 case X86::CATCHRET: 1484 case X86::CLEANUPRET: 1485 return true; 1486 default: 1487 return false; 1488 } 1489 llvm_unreachable("impossible"); 1490 } 1491 1492 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 1493 // stack. It holds a pointer to the bottom of the root function frame. The 1494 // establisher frame pointer passed to a nested funclet may point to the 1495 // (mostly empty) frame of its parent funclet, but it will need to find 1496 // the frame of the root function to access locals. To facilitate this, 1497 // every funclet copies the pointer to the bottom of the root function 1498 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 1499 // same offset for the PSPSym in the root function frame that's used in the 1500 // funclets' frames allows each funclet to dynamically accept any ancestor 1501 // frame as its establisher argument (the runtime doesn't guarantee the 1502 // immediate parent for some reason lost to history), and also allows the GC, 1503 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 1504 // frame with only a single offset reported for the entire method. 1505 unsigned 1506 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 1507 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 1508 unsigned SPReg; 1509 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 1510 /*IgnoreSPUpdates*/ true); 1511 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 1512 return static_cast<unsigned>(Offset); 1513 } 1514 1515 unsigned 1516 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 1517 // This is the size of the pushed CSRs. 1518 unsigned CSSize = 1519 MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 1520 // This is the amount of stack a funclet needs to allocate. 1521 unsigned UsedSize; 1522 EHPersonality Personality = 1523 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 1524 if (Personality == EHPersonality::CoreCLR) { 1525 // CLR funclets need to hold enough space to include the PSPSym, at the 1526 // same offset from the stack pointer (immediately after the prolog) as it 1527 // resides at in the main function. 1528 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 1529 } else { 1530 // Other funclets just need enough stack for outgoing call arguments. 1531 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 1532 } 1533 // RBP is not included in the callee saved register block. After pushing RBP, 1534 // everything is 16 byte aligned. Everything we allocate before an outgoing 1535 // call must also be 16 byte aligned. 1536 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment()); 1537 // Subtract out the size of the callee saved registers. This is how much stack 1538 // each funclet will allocate. 1539 return FrameSizeMinusRBP - CSSize; 1540 } 1541 1542 static bool isTailCallOpcode(unsigned Opc) { 1543 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 1544 Opc == X86::TCRETURNmi || 1545 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 1546 Opc == X86::TCRETURNmi64; 1547 } 1548 1549 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 1550 MachineBasicBlock &MBB) const { 1551 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1552 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1553 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 1554 MachineBasicBlock::iterator MBBI = Terminator; 1555 DebugLoc DL; 1556 if (MBBI != MBB.end()) 1557 DL = MBBI->getDebugLoc(); 1558 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 1559 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 1560 unsigned FramePtr = TRI->getFrameRegister(MF); 1561 unsigned MachineFramePtr = 1562 Is64BitILP32 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr; 1563 1564 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1565 bool NeedsWin64CFI = 1566 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 1567 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 1568 1569 // Get the number of bytes to allocate from the FrameInfo. 1570 uint64_t StackSize = MFI.getStackSize(); 1571 uint64_t MaxAlign = calculateMaxStackAlign(MF); 1572 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1573 bool HasFP = hasFP(MF); 1574 uint64_t NumBytes = 0; 1575 1576 if (IsFunclet) { 1577 assert(HasFP && "EH funclets without FP not yet implemented"); 1578 NumBytes = getWinEHFuncletFrameSize(MF); 1579 } else if (HasFP) { 1580 // Calculate required stack adjustment. 1581 uint64_t FrameSize = StackSize - SlotSize; 1582 NumBytes = FrameSize - CSSize; 1583 1584 // Callee-saved registers were pushed on stack before the stack was 1585 // realigned. 1586 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1587 NumBytes = alignTo(FrameSize, MaxAlign); 1588 } else { 1589 NumBytes = StackSize - CSSize; 1590 } 1591 uint64_t SEHStackAllocAmt = NumBytes; 1592 1593 if (HasFP) { 1594 // Pop EBP. 1595 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 1596 MachineFramePtr) 1597 .setMIFlag(MachineInstr::FrameDestroy); 1598 } 1599 1600 MachineBasicBlock::iterator FirstCSPop = MBBI; 1601 // Skip the callee-saved pop instructions. 1602 while (MBBI != MBB.begin()) { 1603 MachineBasicBlock::iterator PI = std::prev(MBBI); 1604 unsigned Opc = PI->getOpcode(); 1605 1606 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 1607 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 1608 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy))) 1609 break; 1610 FirstCSPop = PI; 1611 } 1612 1613 --MBBI; 1614 } 1615 MBBI = FirstCSPop; 1616 1617 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 1618 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 1619 1620 if (MBBI != MBB.end()) 1621 DL = MBBI->getDebugLoc(); 1622 1623 // If there is an ADD32ri or SUB32ri of ESP immediately before this 1624 // instruction, merge the two instructions. 1625 if (NumBytes || MFI.hasVarSizedObjects()) 1626 NumBytes += mergeSPUpdates(MBB, MBBI, true); 1627 1628 // If dynamic alloca is used, then reset esp to point to the last callee-saved 1629 // slot before popping them off! Same applies for the case, when stack was 1630 // realigned. Don't do this if this was a funclet epilogue, since the funclets 1631 // will not do realignment or dynamic stack allocation. 1632 if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) && 1633 !IsFunclet) { 1634 if (TRI->needsStackRealignment(MF)) 1635 MBBI = FirstCSPop; 1636 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 1637 uint64_t LEAAmount = 1638 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 1639 1640 // There are only two legal forms of epilogue: 1641 // - add SEHAllocationSize, %rsp 1642 // - lea SEHAllocationSize(%FramePtr), %rsp 1643 // 1644 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 1645 // However, we may use this sequence if we have a frame pointer because the 1646 // effects of the prologue can safely be undone. 1647 if (LEAAmount != 0) { 1648 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 1649 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 1650 FramePtr, false, LEAAmount); 1651 --MBBI; 1652 } else { 1653 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 1654 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 1655 .addReg(FramePtr); 1656 --MBBI; 1657 } 1658 } else if (NumBytes) { 1659 // Adjust stack pointer back: ESP += numbytes. 1660 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 1661 --MBBI; 1662 } 1663 1664 // Windows unwinder will not invoke function's exception handler if IP is 1665 // either in prologue or in epilogue. This behavior causes a problem when a 1666 // call immediately precedes an epilogue, because the return address points 1667 // into the epilogue. To cope with that, we insert an epilogue marker here, 1668 // then replace it with a 'nop' if it ends up immediately after a CALL in the 1669 // final emitted code. 1670 if (NeedsWin64CFI && MF.hasWinCFI()) 1671 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 1672 1673 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 1674 // Add the return addr area delta back since we are not tail calling. 1675 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 1676 assert(Offset >= 0 && "TCDelta should never be positive"); 1677 if (Offset) { 1678 // Check for possible merge with preceding ADD instruction. 1679 Offset += mergeSPUpdates(MBB, Terminator, true); 1680 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 1681 } 1682 } 1683 } 1684 1685 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 1686 unsigned &FrameReg) const { 1687 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1688 1689 bool IsFixed = MFI.isFixedObjectIndex(FI); 1690 // We can't calculate offset from frame pointer if the stack is realigned, 1691 // so enforce usage of stack/base pointer. The base pointer is used when we 1692 // have dynamic allocas in addition to dynamic realignment. 1693 if (TRI->hasBasePointer(MF)) 1694 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 1695 else if (TRI->needsStackRealignment(MF)) 1696 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 1697 else 1698 FrameReg = TRI->getFrameRegister(MF); 1699 1700 // Offset will hold the offset from the stack pointer at function entry to the 1701 // object. 1702 // We need to factor in additional offsets applied during the prologue to the 1703 // frame, base, and stack pointer depending on which is used. 1704 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 1705 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1706 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1707 uint64_t StackSize = MFI.getStackSize(); 1708 bool HasFP = hasFP(MF); 1709 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1710 int64_t FPDelta = 0; 1711 1712 if (IsWin64Prologue) { 1713 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 1714 1715 // Calculate required stack adjustment. 1716 uint64_t FrameSize = StackSize - SlotSize; 1717 // If required, include space for extra hidden slot for stashing base pointer. 1718 if (X86FI->getRestoreBasePointer()) 1719 FrameSize += SlotSize; 1720 uint64_t NumBytes = FrameSize - CSSize; 1721 1722 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 1723 if (FI && FI == X86FI->getFAIndex()) 1724 return -SEHFrameOffset; 1725 1726 // FPDelta is the offset from the "traditional" FP location of the old base 1727 // pointer followed by return address and the location required by the 1728 // restricted Win64 prologue. 1729 // Add FPDelta to all offsets below that go through the frame pointer. 1730 FPDelta = FrameSize - SEHFrameOffset; 1731 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 1732 "FPDelta isn't aligned per the Win64 ABI!"); 1733 } 1734 1735 1736 if (TRI->hasBasePointer(MF)) { 1737 assert(HasFP && "VLAs and dynamic stack realign, but no FP?!"); 1738 if (FI < 0) { 1739 // Skip the saved EBP. 1740 return Offset + SlotSize + FPDelta; 1741 } else { 1742 assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0); 1743 return Offset + StackSize; 1744 } 1745 } else if (TRI->needsStackRealignment(MF)) { 1746 if (FI < 0) { 1747 // Skip the saved EBP. 1748 return Offset + SlotSize + FPDelta; 1749 } else { 1750 assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0); 1751 return Offset + StackSize; 1752 } 1753 // FIXME: Support tail calls 1754 } else { 1755 if (!HasFP) 1756 return Offset + StackSize; 1757 1758 // Skip the saved EBP. 1759 Offset += SlotSize; 1760 1761 // Skip the RETADDR move area 1762 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1763 if (TailCallReturnAddrDelta < 0) 1764 Offset -= TailCallReturnAddrDelta; 1765 } 1766 1767 return Offset + FPDelta; 1768 } 1769 1770 int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, 1771 int FI, unsigned &FrameReg, 1772 int Adjustment) const { 1773 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1774 FrameReg = TRI->getStackRegister(); 1775 return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment; 1776 } 1777 1778 int 1779 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, 1780 int FI, unsigned &FrameReg, 1781 bool IgnoreSPUpdates) const { 1782 1783 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1784 // Does not include any dynamic realign. 1785 const uint64_t StackSize = MFI.getStackSize(); 1786 // LLVM arranges the stack as follows: 1787 // ... 1788 // ARG2 1789 // ARG1 1790 // RETADDR 1791 // PUSH RBP <-- RBP points here 1792 // PUSH CSRs 1793 // ~~~~~~~ <-- possible stack realignment (non-win64) 1794 // ... 1795 // STACK OBJECTS 1796 // ... <-- RSP after prologue points here 1797 // ~~~~~~~ <-- possible stack realignment (win64) 1798 // 1799 // if (hasVarSizedObjects()): 1800 // ... <-- "base pointer" (ESI/RBX) points here 1801 // DYNAMIC ALLOCAS 1802 // ... <-- RSP points here 1803 // 1804 // Case 1: In the simple case of no stack realignment and no dynamic 1805 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 1806 // with fixed offsets from RSP. 1807 // 1808 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 1809 // stack objects are addressed with RBP and regular stack objects with RSP. 1810 // 1811 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 1812 // to address stack arguments for outgoing calls and nothing else. The "base 1813 // pointer" points to local variables, and RBP points to fixed objects. 1814 // 1815 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 1816 // answer we give is relative to the SP after the prologue, and not the 1817 // SP in the middle of the function. 1818 1819 if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) && 1820 !STI.isTargetWin64()) 1821 return getFrameIndexReference(MF, FI, FrameReg); 1822 1823 // If !hasReservedCallFrame the function might have SP adjustement in the 1824 // body. So, even though the offset is statically known, it depends on where 1825 // we are in the function. 1826 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 1827 if (!IgnoreSPUpdates && !TFI->hasReservedCallFrame(MF)) 1828 return getFrameIndexReference(MF, FI, FrameReg); 1829 1830 // We don't handle tail calls, and shouldn't be seeing them either. 1831 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 1832 "we don't handle this case!"); 1833 1834 // This is how the math works out: 1835 // 1836 // %rsp grows (i.e. gets lower) left to right. Each box below is 1837 // one word (eight bytes). Obj0 is the stack slot we're trying to 1838 // get to. 1839 // 1840 // ---------------------------------- 1841 // | BP | Obj0 | Obj1 | ... | ObjN | 1842 // ---------------------------------- 1843 // ^ ^ ^ ^ 1844 // A B C E 1845 // 1846 // A is the incoming stack pointer. 1847 // (B - A) is the local area offset (-8 for x86-64) [1] 1848 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 1849 // 1850 // |(E - B)| is the StackSize (absolute value, positive). For a 1851 // stack that grown down, this works out to be (B - E). [3] 1852 // 1853 // E is also the value of %rsp after stack has been set up, and we 1854 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 1855 // (C - E) == (C - A) - (B - A) + (B - E) 1856 // { Using [1], [2] and [3] above } 1857 // == getObjectOffset - LocalAreaOffset + StackSize 1858 1859 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 1860 } 1861 1862 bool X86FrameLowering::assignCalleeSavedSpillSlots( 1863 MachineFunction &MF, const TargetRegisterInfo *TRI, 1864 std::vector<CalleeSavedInfo> &CSI) const { 1865 MachineFrameInfo &MFI = MF.getFrameInfo(); 1866 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1867 1868 unsigned CalleeSavedFrameSize = 0; 1869 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 1870 1871 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1872 1873 if (TailCallReturnAddrDelta < 0) { 1874 // create RETURNADDR area 1875 // arg 1876 // arg 1877 // RETADDR 1878 // { ... 1879 // RETADDR area 1880 // ... 1881 // } 1882 // [EBP] 1883 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 1884 TailCallReturnAddrDelta - SlotSize, true); 1885 } 1886 1887 // Spill the BasePtr if it's used. 1888 if (this->TRI->hasBasePointer(MF)) { 1889 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 1890 if (MF.hasEHFunclets()) { 1891 int FI = MFI.CreateSpillStackObject(SlotSize, SlotSize); 1892 X86FI->setHasSEHFramePtrSave(true); 1893 X86FI->setSEHFramePtrSaveIndex(FI); 1894 } 1895 } 1896 1897 if (hasFP(MF)) { 1898 // emitPrologue always spills frame register the first thing. 1899 SpillSlotOffset -= SlotSize; 1900 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 1901 1902 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 1903 // the frame register, we can delete it from CSI list and not have to worry 1904 // about avoiding it later. 1905 unsigned FPReg = TRI->getFrameRegister(MF); 1906 for (unsigned i = 0; i < CSI.size(); ++i) { 1907 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 1908 CSI.erase(CSI.begin() + i); 1909 break; 1910 } 1911 } 1912 } 1913 1914 // Assign slots for GPRs. It increases frame size. 1915 for (unsigned i = CSI.size(); i != 0; --i) { 1916 unsigned Reg = CSI[i - 1].getReg(); 1917 1918 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 1919 continue; 1920 1921 SpillSlotOffset -= SlotSize; 1922 CalleeSavedFrameSize += SlotSize; 1923 1924 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 1925 CSI[i - 1].setFrameIdx(SlotIndex); 1926 } 1927 1928 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 1929 1930 // Assign slots for XMMs. 1931 for (unsigned i = CSI.size(); i != 0; --i) { 1932 unsigned Reg = CSI[i - 1].getReg(); 1933 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 1934 continue; 1935 1936 // If this is k-register make sure we lookup via the largest legal type. 1937 MVT VT = MVT::Other; 1938 if (X86::VK16RegClass.contains(Reg)) 1939 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 1940 1941 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 1942 unsigned Size = TRI->getSpillSize(*RC); 1943 unsigned Align = TRI->getSpillAlignment(*RC); 1944 // ensure alignment 1945 SpillSlotOffset -= std::abs(SpillSlotOffset) % Align; 1946 // spill into slot 1947 SpillSlotOffset -= Size; 1948 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 1949 CSI[i - 1].setFrameIdx(SlotIndex); 1950 MFI.ensureMaxAlignment(Align); 1951 } 1952 1953 return true; 1954 } 1955 1956 bool X86FrameLowering::spillCalleeSavedRegisters( 1957 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 1958 const std::vector<CalleeSavedInfo> &CSI, 1959 const TargetRegisterInfo *TRI) const { 1960 DebugLoc DL = MBB.findDebugLoc(MI); 1961 1962 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 1963 // for us, and there are no XMM CSRs on Win32. 1964 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 1965 return true; 1966 1967 // Push GPRs. It increases frame size. 1968 const MachineFunction &MF = *MBB.getParent(); 1969 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 1970 for (unsigned i = CSI.size(); i != 0; --i) { 1971 unsigned Reg = CSI[i - 1].getReg(); 1972 1973 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 1974 continue; 1975 1976 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1977 bool isLiveIn = MRI.isLiveIn(Reg); 1978 if (!isLiveIn) 1979 MBB.addLiveIn(Reg); 1980 1981 // Decide whether we can add a kill flag to the use. 1982 bool CanKill = !isLiveIn; 1983 // Check if any subregister is live-in 1984 if (CanKill) { 1985 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 1986 if (MRI.isLiveIn(*AReg)) { 1987 CanKill = false; 1988 break; 1989 } 1990 } 1991 } 1992 1993 // Do not set a kill flag on values that are also marked as live-in. This 1994 // happens with the @llvm-returnaddress intrinsic and with arguments 1995 // passed in callee saved registers. 1996 // Omitting the kill flags is conservatively correct even if the live-in 1997 // is not used after all. 1998 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 1999 .setMIFlag(MachineInstr::FrameSetup); 2000 } 2001 2002 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 2003 // It can be done by spilling XMMs to stack frame. 2004 for (unsigned i = CSI.size(); i != 0; --i) { 2005 unsigned Reg = CSI[i-1].getReg(); 2006 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2007 continue; 2008 2009 // If this is k-register make sure we lookup via the largest legal type. 2010 MVT VT = MVT::Other; 2011 if (X86::VK16RegClass.contains(Reg)) 2012 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2013 2014 // Add the callee-saved register as live-in. It's killed at the spill. 2015 MBB.addLiveIn(Reg); 2016 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2017 2018 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC, 2019 TRI); 2020 --MI; 2021 MI->setFlag(MachineInstr::FrameSetup); 2022 ++MI; 2023 } 2024 2025 return true; 2026 } 2027 2028 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 2029 MachineBasicBlock::iterator MBBI, 2030 MachineInstr *CatchRet) const { 2031 // SEH shouldn't use catchret. 2032 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 2033 MBB.getParent()->getFunction().getPersonalityFn())) && 2034 "SEH should not use CATCHRET"); 2035 DebugLoc DL = CatchRet->getDebugLoc(); 2036 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 2037 2038 // Fill EAX/RAX with the address of the target block. 2039 if (STI.is64Bit()) { 2040 // LEA64r CatchRetTarget(%rip), %rax 2041 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 2042 .addReg(X86::RIP) 2043 .addImm(0) 2044 .addReg(0) 2045 .addMBB(CatchRetTarget) 2046 .addReg(0); 2047 } else { 2048 // MOV32ri $CatchRetTarget, %eax 2049 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2050 .addMBB(CatchRetTarget); 2051 } 2052 2053 // Record that we've taken the address of CatchRetTarget and no longer just 2054 // reference it in a terminator. 2055 CatchRetTarget->setHasAddressTaken(); 2056 } 2057 2058 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, 2059 MachineBasicBlock::iterator MI, 2060 std::vector<CalleeSavedInfo> &CSI, 2061 const TargetRegisterInfo *TRI) const { 2062 if (CSI.empty()) 2063 return false; 2064 2065 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 2066 // Don't restore CSRs in 32-bit EH funclets. Matches 2067 // spillCalleeSavedRegisters. 2068 if (STI.is32Bit()) 2069 return true; 2070 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 2071 // funclets. emitEpilogue transforms these to normal jumps. 2072 if (MI->getOpcode() == X86::CATCHRET) { 2073 const Function &F = MBB.getParent()->getFunction(); 2074 bool IsSEH = isAsynchronousEHPersonality( 2075 classifyEHPersonality(F.getPersonalityFn())); 2076 if (IsSEH) 2077 return true; 2078 } 2079 } 2080 2081 DebugLoc DL = MBB.findDebugLoc(MI); 2082 2083 // Reload XMMs from stack frame. 2084 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2085 unsigned Reg = CSI[i].getReg(); 2086 if (X86::GR64RegClass.contains(Reg) || 2087 X86::GR32RegClass.contains(Reg)) 2088 continue; 2089 2090 // If this is k-register make sure we lookup via the largest legal type. 2091 MVT VT = MVT::Other; 2092 if (X86::VK16RegClass.contains(Reg)) 2093 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2094 2095 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2096 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); 2097 } 2098 2099 // POP GPRs. 2100 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 2101 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2102 unsigned Reg = CSI[i].getReg(); 2103 if (!X86::GR64RegClass.contains(Reg) && 2104 !X86::GR32RegClass.contains(Reg)) 2105 continue; 2106 2107 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 2108 .setMIFlag(MachineInstr::FrameDestroy); 2109 } 2110 return true; 2111 } 2112 2113 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 2114 BitVector &SavedRegs, 2115 RegScavenger *RS) const { 2116 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2117 2118 // Spill the BasePtr if it's used. 2119 if (TRI->hasBasePointer(MF)){ 2120 unsigned BasePtr = TRI->getBaseRegister(); 2121 if (STI.isTarget64BitILP32()) 2122 BasePtr = getX86SubSuperRegister(BasePtr, 64); 2123 SavedRegs.set(BasePtr); 2124 } 2125 } 2126 2127 static bool 2128 HasNestArgument(const MachineFunction *MF) { 2129 const Function &F = MF->getFunction(); 2130 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 2131 I != E; I++) { 2132 if (I->hasNestAttr()) 2133 return true; 2134 } 2135 return false; 2136 } 2137 2138 /// GetScratchRegister - Get a temp register for performing work in the 2139 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2140 /// and the properties of the function either one or two registers will be 2141 /// needed. Set primary to true for the first register, false for the second. 2142 static unsigned 2143 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2144 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 2145 2146 // Erlang stuff. 2147 if (CallingConvention == CallingConv::HiPE) { 2148 if (Is64Bit) 2149 return Primary ? X86::R14 : X86::R13; 2150 else 2151 return Primary ? X86::EBX : X86::EDI; 2152 } 2153 2154 if (Is64Bit) { 2155 if (IsLP64) 2156 return Primary ? X86::R11 : X86::R12; 2157 else 2158 return Primary ? X86::R11D : X86::R12D; 2159 } 2160 2161 bool IsNested = HasNestArgument(&MF); 2162 2163 if (CallingConvention == CallingConv::X86_FastCall || 2164 CallingConvention == CallingConv::Fast) { 2165 if (IsNested) 2166 report_fatal_error("Segmented stacks does not support fastcall with " 2167 "nested function."); 2168 return Primary ? X86::EAX : X86::ECX; 2169 } 2170 if (IsNested) 2171 return Primary ? X86::EDX : X86::EAX; 2172 return Primary ? X86::ECX : X86::EAX; 2173 } 2174 2175 // The stack limit in the TCB is set to this many bytes above the actual stack 2176 // limit. 2177 static const uint64_t kSplitStackAvailable = 256; 2178 2179 void X86FrameLowering::adjustForSegmentedStacks( 2180 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2181 MachineFrameInfo &MFI = MF.getFrameInfo(); 2182 uint64_t StackSize; 2183 unsigned TlsReg, TlsOffset; 2184 DebugLoc DL; 2185 2186 // To support shrink-wrapping we would need to insert the new blocks 2187 // at the right place and update the branches to PrologueMBB. 2188 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2189 2190 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2191 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2192 "Scratch register is live-in"); 2193 2194 if (MF.getFunction().isVarArg()) 2195 report_fatal_error("Segmented stacks do not support vararg functions."); 2196 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 2197 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 2198 !STI.isTargetDragonFly()) 2199 report_fatal_error("Segmented stacks not supported on this platform."); 2200 2201 // Eventually StackSize will be calculated by a link-time pass; which will 2202 // also decide whether checking code needs to be injected into this particular 2203 // prologue. 2204 StackSize = MFI.getStackSize(); 2205 2206 // Do not generate a prologue for functions with a stack of size zero 2207 if (StackSize == 0) 2208 return; 2209 2210 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 2211 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 2212 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2213 bool IsNested = false; 2214 2215 // We need to know if the function has a nest argument only in 64 bit mode. 2216 if (Is64Bit) 2217 IsNested = HasNestArgument(&MF); 2218 2219 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 2220 // allocMBB needs to be last (terminating) instruction. 2221 2222 for (const auto &LI : PrologueMBB.liveins()) { 2223 allocMBB->addLiveIn(LI); 2224 checkMBB->addLiveIn(LI); 2225 } 2226 2227 if (IsNested) 2228 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 2229 2230 MF.push_front(allocMBB); 2231 MF.push_front(checkMBB); 2232 2233 // When the frame size is less than 256 we just compare the stack 2234 // boundary directly to the value of the stack pointer, per gcc. 2235 bool CompareStackPointer = StackSize < kSplitStackAvailable; 2236 2237 // Read the limit off the current stacklet off the stack_guard location. 2238 if (Is64Bit) { 2239 if (STI.isTargetLinux()) { 2240 TlsReg = X86::FS; 2241 TlsOffset = IsLP64 ? 0x70 : 0x40; 2242 } else if (STI.isTargetDarwin()) { 2243 TlsReg = X86::GS; 2244 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 2245 } else if (STI.isTargetWin64()) { 2246 TlsReg = X86::GS; 2247 TlsOffset = 0x28; // pvArbitrary, reserved for application use 2248 } else if (STI.isTargetFreeBSD()) { 2249 TlsReg = X86::FS; 2250 TlsOffset = 0x18; 2251 } else if (STI.isTargetDragonFly()) { 2252 TlsReg = X86::FS; 2253 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 2254 } else { 2255 report_fatal_error("Segmented stacks not supported on this platform."); 2256 } 2257 2258 if (CompareStackPointer) 2259 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 2260 else 2261 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 2262 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2263 2264 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 2265 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2266 } else { 2267 if (STI.isTargetLinux()) { 2268 TlsReg = X86::GS; 2269 TlsOffset = 0x30; 2270 } else if (STI.isTargetDarwin()) { 2271 TlsReg = X86::GS; 2272 TlsOffset = 0x48 + 90*4; 2273 } else if (STI.isTargetWin32()) { 2274 TlsReg = X86::FS; 2275 TlsOffset = 0x14; // pvArbitrary, reserved for application use 2276 } else if (STI.isTargetDragonFly()) { 2277 TlsReg = X86::FS; 2278 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 2279 } else if (STI.isTargetFreeBSD()) { 2280 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 2281 } else { 2282 report_fatal_error("Segmented stacks not supported on this platform."); 2283 } 2284 2285 if (CompareStackPointer) 2286 ScratchReg = X86::ESP; 2287 else 2288 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 2289 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2290 2291 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 2292 STI.isTargetDragonFly()) { 2293 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 2294 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2295 } else if (STI.isTargetDarwin()) { 2296 2297 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 2298 unsigned ScratchReg2; 2299 bool SaveScratch2; 2300 if (CompareStackPointer) { 2301 // The primary scratch register is available for holding the TLS offset. 2302 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2303 SaveScratch2 = false; 2304 } else { 2305 // Need to use a second register to hold the TLS offset 2306 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 2307 2308 // Unfortunately, with fastcc the second scratch register may hold an 2309 // argument. 2310 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 2311 } 2312 2313 // If Scratch2 is live-in then it needs to be saved. 2314 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 2315 "Scratch register is live-in and not saved"); 2316 2317 if (SaveScratch2) 2318 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 2319 .addReg(ScratchReg2, RegState::Kill); 2320 2321 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 2322 .addImm(TlsOffset); 2323 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 2324 .addReg(ScratchReg) 2325 .addReg(ScratchReg2).addImm(1).addReg(0) 2326 .addImm(0) 2327 .addReg(TlsReg); 2328 2329 if (SaveScratch2) 2330 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 2331 } 2332 } 2333 2334 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 2335 // It jumps to normal execution of the function body. 2336 BuildMI(checkMBB, DL, TII.get(X86::JA_1)).addMBB(&PrologueMBB); 2337 2338 // On 32 bit we first push the arguments size and then the frame size. On 64 2339 // bit, we pass the stack frame size in r10 and the argument size in r11. 2340 if (Is64Bit) { 2341 // Functions with nested arguments use R10, so it needs to be saved across 2342 // the call to _morestack 2343 2344 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 2345 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 2346 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 2347 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 2348 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri; 2349 2350 if (IsNested) 2351 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 2352 2353 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10) 2354 .addImm(StackSize); 2355 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11) 2356 .addImm(X86FI->getArgumentStackSize()); 2357 } else { 2358 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2359 .addImm(X86FI->getArgumentStackSize()); 2360 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2361 .addImm(StackSize); 2362 } 2363 2364 // __morestack is in libgcc 2365 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 2366 // Under the large code model, we cannot assume that __morestack lives 2367 // within 2^31 bytes of the call site, so we cannot use pc-relative 2368 // addressing. We cannot perform the call via a temporary register, 2369 // as the rax register may be used to store the static chain, and all 2370 // other suitable registers may be either callee-save or used for 2371 // parameter passing. We cannot use the stack at this point either 2372 // because __morestack manipulates the stack directly. 2373 // 2374 // To avoid these issues, perform an indirect call via a read-only memory 2375 // location containing the address. 2376 // 2377 // This solution is not perfect, as it assumes that the .rodata section 2378 // is laid out within 2^31 bytes of each function body, but this seems 2379 // to be sufficient for JIT. 2380 // FIXME: Add retpoline support and remove the error here.. 2381 if (STI.useRetpoline()) 2382 report_fatal_error("Emitting morestack calls on 64-bit with the large " 2383 "code model and retpoline not yet implemented."); 2384 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 2385 .addReg(X86::RIP) 2386 .addImm(0) 2387 .addReg(0) 2388 .addExternalSymbol("__morestack_addr") 2389 .addReg(0); 2390 MF.getMMI().setUsesMorestackAddr(true); 2391 } else { 2392 if (Is64Bit) 2393 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 2394 .addExternalSymbol("__morestack"); 2395 else 2396 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 2397 .addExternalSymbol("__morestack"); 2398 } 2399 2400 if (IsNested) 2401 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 2402 else 2403 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 2404 2405 allocMBB->addSuccessor(&PrologueMBB); 2406 2407 checkMBB->addSuccessor(allocMBB); 2408 checkMBB->addSuccessor(&PrologueMBB); 2409 2410 #ifdef EXPENSIVE_CHECKS 2411 MF.verify(); 2412 #endif 2413 } 2414 2415 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 2416 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 2417 /// to fields it needs, through a named metadata node "hipe.literals" containing 2418 /// name-value pairs. 2419 static unsigned getHiPELiteral( 2420 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 2421 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 2422 MDNode *Node = HiPELiteralsMD->getOperand(i); 2423 if (Node->getNumOperands() != 2) continue; 2424 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 2425 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 2426 if (!NodeName || !NodeVal) continue; 2427 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 2428 if (ValConst && NodeName->getString() == LiteralName) { 2429 return ValConst->getZExtValue(); 2430 } 2431 } 2432 2433 report_fatal_error("HiPE literal " + LiteralName 2434 + " required but not provided"); 2435 } 2436 2437 /// Erlang programs may need a special prologue to handle the stack size they 2438 /// might need at runtime. That is because Erlang/OTP does not implement a C 2439 /// stack but uses a custom implementation of hybrid stack/heap architecture. 2440 /// (for more information see Eric Stenman's Ph.D. thesis: 2441 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 2442 /// 2443 /// CheckStack: 2444 /// temp0 = sp - MaxStack 2445 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2446 /// OldStart: 2447 /// ... 2448 /// IncStack: 2449 /// call inc_stack # doubles the stack space 2450 /// temp0 = sp - MaxStack 2451 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2452 void X86FrameLowering::adjustForHiPEPrologue( 2453 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2454 MachineFrameInfo &MFI = MF.getFrameInfo(); 2455 DebugLoc DL; 2456 2457 // To support shrink-wrapping we would need to insert the new blocks 2458 // at the right place and update the branches to PrologueMBB. 2459 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2460 2461 // HiPE-specific values 2462 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 2463 ->getNamedMetadata("hipe.literals"); 2464 if (!HiPELiteralsMD) 2465 report_fatal_error( 2466 "Can't generate HiPE prologue without runtime parameters"); 2467 const unsigned HipeLeafWords 2468 = getHiPELiteral(HiPELiteralsMD, 2469 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 2470 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 2471 const unsigned Guaranteed = HipeLeafWords * SlotSize; 2472 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? 2473 MF.getFunction().arg_size() - CCRegisteredArgs : 0; 2474 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 2475 2476 assert(STI.isTargetLinux() && 2477 "HiPE prologue is only supported on Linux operating systems."); 2478 2479 // Compute the largest caller's frame that is needed to fit the callees' 2480 // frames. This 'MaxStack' is computed from: 2481 // 2482 // a) the fixed frame size, which is the space needed for all spilled temps, 2483 // b) outgoing on-stack parameter areas, and 2484 // c) the minimum stack space this function needs to make available for the 2485 // functions it calls (a tunable ABI property). 2486 if (MFI.hasCalls()) { 2487 unsigned MoreStackForCalls = 0; 2488 2489 for (auto &MBB : MF) { 2490 for (auto &MI : MBB) { 2491 if (!MI.isCall()) 2492 continue; 2493 2494 // Get callee operand. 2495 const MachineOperand &MO = MI.getOperand(0); 2496 2497 // Only take account of global function calls (no closures etc.). 2498 if (!MO.isGlobal()) 2499 continue; 2500 2501 const Function *F = dyn_cast<Function>(MO.getGlobal()); 2502 if (!F) 2503 continue; 2504 2505 // Do not update 'MaxStack' for primitive and built-in functions 2506 // (encoded with names either starting with "erlang."/"bif_" or not 2507 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 2508 // "_", such as the BIF "suspend_0") as they are executed on another 2509 // stack. 2510 if (F->getName().find("erlang.") != StringRef::npos || 2511 F->getName().find("bif_") != StringRef::npos || 2512 F->getName().find_first_of("._") == StringRef::npos) 2513 continue; 2514 2515 unsigned CalleeStkArity = 2516 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 2517 if (HipeLeafWords - 1 > CalleeStkArity) 2518 MoreStackForCalls = std::max(MoreStackForCalls, 2519 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 2520 } 2521 } 2522 MaxStack += MoreStackForCalls; 2523 } 2524 2525 // If the stack frame needed is larger than the guaranteed then runtime checks 2526 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 2527 if (MaxStack > Guaranteed) { 2528 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 2529 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 2530 2531 for (const auto &LI : PrologueMBB.liveins()) { 2532 stackCheckMBB->addLiveIn(LI); 2533 incStackMBB->addLiveIn(LI); 2534 } 2535 2536 MF.push_front(incStackMBB); 2537 MF.push_front(stackCheckMBB); 2538 2539 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 2540 unsigned LEAop, CMPop, CALLop; 2541 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 2542 if (Is64Bit) { 2543 SPReg = X86::RSP; 2544 PReg = X86::RBP; 2545 LEAop = X86::LEA64r; 2546 CMPop = X86::CMP64rm; 2547 CALLop = X86::CALL64pcrel32; 2548 } else { 2549 SPReg = X86::ESP; 2550 PReg = X86::EBP; 2551 LEAop = X86::LEA32r; 2552 CMPop = X86::CMP32rm; 2553 CALLop = X86::CALLpcrel32; 2554 } 2555 2556 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2557 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2558 "HiPE prologue scratch register is live-in"); 2559 2560 // Create new MBB for StackCheck: 2561 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 2562 SPReg, false, -MaxStack); 2563 // SPLimitOffset is in a fixed heap location (pointed by BP). 2564 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 2565 .addReg(ScratchReg), PReg, false, SPLimitOffset); 2566 BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_1)).addMBB(&PrologueMBB); 2567 2568 // Create new MBB for IncStack: 2569 BuildMI(incStackMBB, DL, TII.get(CALLop)). 2570 addExternalSymbol("inc_stack_0"); 2571 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 2572 SPReg, false, -MaxStack); 2573 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 2574 .addReg(ScratchReg), PReg, false, SPLimitOffset); 2575 BuildMI(incStackMBB, DL, TII.get(X86::JLE_1)).addMBB(incStackMBB); 2576 2577 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 2578 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 2579 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 2580 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 2581 } 2582 #ifdef EXPENSIVE_CHECKS 2583 MF.verify(); 2584 #endif 2585 } 2586 2587 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 2588 MachineBasicBlock::iterator MBBI, 2589 const DebugLoc &DL, 2590 int Offset) const { 2591 2592 if (Offset <= 0) 2593 return false; 2594 2595 if (Offset % SlotSize) 2596 return false; 2597 2598 int NumPops = Offset / SlotSize; 2599 // This is only worth it if we have at most 2 pops. 2600 if (NumPops != 1 && NumPops != 2) 2601 return false; 2602 2603 // Handle only the trivial case where the adjustment directly follows 2604 // a call. This is the most common one, anyway. 2605 if (MBBI == MBB.begin()) 2606 return false; 2607 MachineBasicBlock::iterator Prev = std::prev(MBBI); 2608 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 2609 return false; 2610 2611 unsigned Regs[2]; 2612 unsigned FoundRegs = 0; 2613 2614 auto &MRI = MBB.getParent()->getRegInfo(); 2615 auto RegMask = Prev->getOperand(1); 2616 2617 auto &RegClass = 2618 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 2619 // Try to find up to NumPops free registers. 2620 for (auto Candidate : RegClass) { 2621 2622 // Poor man's liveness: 2623 // Since we're immediately after a call, any register that is clobbered 2624 // by the call and not defined by it can be considered dead. 2625 if (!RegMask.clobbersPhysReg(Candidate)) 2626 continue; 2627 2628 // Don't clobber reserved registers 2629 if (MRI.isReserved(Candidate)) 2630 continue; 2631 2632 bool IsDef = false; 2633 for (const MachineOperand &MO : Prev->implicit_operands()) { 2634 if (MO.isReg() && MO.isDef() && 2635 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 2636 IsDef = true; 2637 break; 2638 } 2639 } 2640 2641 if (IsDef) 2642 continue; 2643 2644 Regs[FoundRegs++] = Candidate; 2645 if (FoundRegs == (unsigned)NumPops) 2646 break; 2647 } 2648 2649 if (FoundRegs == 0) 2650 return false; 2651 2652 // If we found only one free register, but need two, reuse the same one twice. 2653 while (FoundRegs < (unsigned)NumPops) 2654 Regs[FoundRegs++] = Regs[0]; 2655 2656 for (int i = 0; i < NumPops; ++i) 2657 BuildMI(MBB, MBBI, DL, 2658 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 2659 2660 return true; 2661 } 2662 2663 MachineBasicBlock::iterator X86FrameLowering:: 2664 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 2665 MachineBasicBlock::iterator I) const { 2666 bool reserveCallFrame = hasReservedCallFrame(MF); 2667 unsigned Opcode = I->getOpcode(); 2668 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 2669 DebugLoc DL = I->getDebugLoc(); 2670 uint64_t Amount = !reserveCallFrame ? TII.getFrameSize(*I) : 0; 2671 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 2672 I = MBB.erase(I); 2673 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 2674 2675 if (!reserveCallFrame) { 2676 // If the stack pointer can be changed after prologue, turn the 2677 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 2678 // adjcallstackdown instruction into 'add ESP, <amt>' 2679 2680 // We need to keep the stack aligned properly. To do this, we round the 2681 // amount of space needed for the outgoing arguments up to the next 2682 // alignment boundary. 2683 unsigned StackAlign = getStackAlignment(); 2684 Amount = alignTo(Amount, StackAlign); 2685 2686 MachineModuleInfo &MMI = MF.getMMI(); 2687 const Function &F = MF.getFunction(); 2688 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2689 bool DwarfCFI = !WindowsCFI && 2690 (MMI.hasDebugInfo() || F.needsUnwindTableEntry()); 2691 2692 // If we have any exception handlers in this function, and we adjust 2693 // the SP before calls, we may need to indicate this to the unwinder 2694 // using GNU_ARGS_SIZE. Note that this may be necessary even when 2695 // Amount == 0, because the preceding function may have set a non-0 2696 // GNU_ARGS_SIZE. 2697 // TODO: We don't need to reset this between subsequent functions, 2698 // if it didn't change. 2699 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 2700 2701 if (HasDwarfEHHandlers && !isDestroy && 2702 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 2703 BuildCFI(MBB, InsertPos, DL, 2704 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 2705 2706 if (Amount == 0) 2707 return I; 2708 2709 // Factor out the amount that gets handled inside the sequence 2710 // (Pushes of argument for frame setup, callee pops for frame destroy) 2711 Amount -= InternalAmt; 2712 2713 // TODO: This is needed only if we require precise CFA. 2714 // If this is a callee-pop calling convention, emit a CFA adjust for 2715 // the amount the callee popped. 2716 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 2717 BuildCFI(MBB, InsertPos, DL, 2718 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 2719 2720 // Add Amount to SP to destroy a frame, or subtract to setup. 2721 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 2722 int64_t CfaAdjustment = -StackAdjustment; 2723 2724 if (StackAdjustment) { 2725 // Merge with any previous or following adjustment instruction. Note: the 2726 // instructions merged with here do not have CFI, so their stack 2727 // adjustments do not feed into CfaAdjustment. 2728 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 2729 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 2730 2731 if (StackAdjustment) { 2732 if (!(F.optForMinSize() && 2733 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 2734 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 2735 /*InEpilogue=*/false); 2736 } 2737 } 2738 2739 if (DwarfCFI && !hasFP(MF)) { 2740 // If we don't have FP, but need to generate unwind information, 2741 // we need to set the correct CFA offset after the stack adjustment. 2742 // How much we adjust the CFA offset depends on whether we're emitting 2743 // CFI only for EH purposes or for debugging. EH only requires the CFA 2744 // offset to be correct at each call site, while for debugging we want 2745 // it to be more precise. 2746 2747 // TODO: When not using precise CFA, we also need to adjust for the 2748 // InternalAmt here. 2749 if (CfaAdjustment) { 2750 BuildCFI(MBB, InsertPos, DL, 2751 MCCFIInstruction::createAdjustCfaOffset(nullptr, 2752 CfaAdjustment)); 2753 } 2754 } 2755 2756 return I; 2757 } 2758 2759 if (isDestroy && InternalAmt) { 2760 // If we are performing frame pointer elimination and if the callee pops 2761 // something off the stack pointer, add it back. We do this until we have 2762 // more advanced stack pointer tracking ability. 2763 // We are not tracking the stack pointer adjustment by the callee, so make 2764 // sure we restore the stack pointer immediately after the call, there may 2765 // be spill code inserted between the CALL and ADJCALLSTACKUP instructions. 2766 MachineBasicBlock::iterator CI = I; 2767 MachineBasicBlock::iterator B = MBB.begin(); 2768 while (CI != B && !std::prev(CI)->isCall()) 2769 --CI; 2770 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 2771 } 2772 2773 return I; 2774 } 2775 2776 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 2777 assert(MBB.getParent() && "Block is not attached to a function!"); 2778 const MachineFunction &MF = *MBB.getParent(); 2779 return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS); 2780 } 2781 2782 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 2783 assert(MBB.getParent() && "Block is not attached to a function!"); 2784 2785 // Win64 has strict requirements in terms of epilogue and we are 2786 // not taking a chance at messing with them. 2787 // I.e., unless this block is already an exit block, we can't use 2788 // it as an epilogue. 2789 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 2790 return false; 2791 2792 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 2793 return true; 2794 2795 // If we cannot use LEA to adjust SP, we may need to use ADD, which 2796 // clobbers the EFLAGS. Check that we do not need to preserve it, 2797 // otherwise, conservatively assume this is not 2798 // safe to insert the epilogue here. 2799 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 2800 } 2801 2802 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2803 // If we may need to emit frameless compact unwind information, give 2804 // up as this is currently broken: PR25614. 2805 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) && 2806 // The lowering of segmented stack and HiPE only support entry blocks 2807 // as prologue blocks: PR26107. 2808 // This limitation may be lifted if we fix: 2809 // - adjustForSegmentedStacks 2810 // - adjustForHiPEPrologue 2811 MF.getFunction().getCallingConv() != CallingConv::HiPE && 2812 !MF.shouldSplitStack(); 2813 } 2814 2815 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 2816 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 2817 const DebugLoc &DL, bool RestoreSP) const { 2818 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 2819 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 2820 assert(STI.is32Bit() && !Uses64BitFramePtr && 2821 "restoring EBP/ESI on non-32-bit target"); 2822 2823 MachineFunction &MF = *MBB.getParent(); 2824 unsigned FramePtr = TRI->getFrameRegister(MF); 2825 unsigned BasePtr = TRI->getBaseRegister(); 2826 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 2827 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2828 MachineFrameInfo &MFI = MF.getFrameInfo(); 2829 2830 // FIXME: Don't set FrameSetup flag in catchret case. 2831 2832 int FI = FuncInfo.EHRegNodeFrameIndex; 2833 int EHRegSize = MFI.getObjectSize(FI); 2834 2835 if (RestoreSP) { 2836 // MOV32rm -EHRegSize(%ebp), %esp 2837 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 2838 X86::EBP, true, -EHRegSize) 2839 .setMIFlag(MachineInstr::FrameSetup); 2840 } 2841 2842 unsigned UsedReg; 2843 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg); 2844 int EndOffset = -EHRegOffset - EHRegSize; 2845 FuncInfo.EHRegNodeEndOffset = EndOffset; 2846 2847 if (UsedReg == FramePtr) { 2848 // ADD $offset, %ebp 2849 unsigned ADDri = getADDriOpcode(false, EndOffset); 2850 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 2851 .addReg(FramePtr) 2852 .addImm(EndOffset) 2853 .setMIFlag(MachineInstr::FrameSetup) 2854 ->getOperand(3) 2855 .setIsDead(); 2856 assert(EndOffset >= 0 && 2857 "end of registration object above normal EBP position!"); 2858 } else if (UsedReg == BasePtr) { 2859 // LEA offset(%ebp), %esi 2860 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 2861 FramePtr, false, EndOffset) 2862 .setMIFlag(MachineInstr::FrameSetup); 2863 // MOV32rm SavedEBPOffset(%esi), %ebp 2864 assert(X86FI->getHasSEHFramePtrSave()); 2865 int Offset = 2866 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 2867 assert(UsedReg == BasePtr); 2868 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 2869 UsedReg, true, Offset) 2870 .setMIFlag(MachineInstr::FrameSetup); 2871 } else { 2872 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 2873 } 2874 return MBBI; 2875 } 2876 2877 namespace { 2878 // Struct used by orderFrameObjects to help sort the stack objects. 2879 struct X86FrameSortingObject { 2880 bool IsValid = false; // true if we care about this Object. 2881 unsigned ObjectIndex = 0; // Index of Object into MFI list. 2882 unsigned ObjectSize = 0; // Size of Object in bytes. 2883 unsigned ObjectAlignment = 1; // Alignment of Object in bytes. 2884 unsigned ObjectNumUses = 0; // Object static number of uses. 2885 }; 2886 2887 // The comparison function we use for std::sort to order our local 2888 // stack symbols. The current algorithm is to use an estimated 2889 // "density". This takes into consideration the size and number of 2890 // uses each object has in order to roughly minimize code size. 2891 // So, for example, an object of size 16B that is referenced 5 times 2892 // will get higher priority than 4 4B objects referenced 1 time each. 2893 // It's not perfect and we may be able to squeeze a few more bytes out of 2894 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 2895 // fringe end can have special consideration, given their size is less 2896 // important, etc.), but the algorithmic complexity grows too much to be 2897 // worth the extra gains we get. This gets us pretty close. 2898 // The final order leaves us with objects with highest priority going 2899 // at the end of our list. 2900 struct X86FrameSortingComparator { 2901 inline bool operator()(const X86FrameSortingObject &A, 2902 const X86FrameSortingObject &B) { 2903 uint64_t DensityAScaled, DensityBScaled; 2904 2905 // For consistency in our comparison, all invalid objects are placed 2906 // at the end. This also allows us to stop walking when we hit the 2907 // first invalid item after it's all sorted. 2908 if (!A.IsValid) 2909 return false; 2910 if (!B.IsValid) 2911 return true; 2912 2913 // The density is calculated by doing : 2914 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 2915 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 2916 // Since this approach may cause inconsistencies in 2917 // the floating point <, >, == comparisons, depending on the floating 2918 // point model with which the compiler was built, we're going 2919 // to scale both sides by multiplying with 2920 // A.ObjectSize * B.ObjectSize. This ends up factoring away 2921 // the division and, with it, the need for any floating point 2922 // arithmetic. 2923 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 2924 static_cast<uint64_t>(B.ObjectSize); 2925 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 2926 static_cast<uint64_t>(A.ObjectSize); 2927 2928 // If the two densities are equal, prioritize highest alignment 2929 // objects. This allows for similar alignment objects 2930 // to be packed together (given the same density). 2931 // There's room for improvement here, also, since we can pack 2932 // similar alignment (different density) objects next to each 2933 // other to save padding. This will also require further 2934 // complexity/iterations, and the overall gain isn't worth it, 2935 // in general. Something to keep in mind, though. 2936 if (DensityAScaled == DensityBScaled) 2937 return A.ObjectAlignment < B.ObjectAlignment; 2938 2939 return DensityAScaled < DensityBScaled; 2940 } 2941 }; 2942 } // namespace 2943 2944 // Order the symbols in the local stack. 2945 // We want to place the local stack objects in some sort of sensible order. 2946 // The heuristic we use is to try and pack them according to static number 2947 // of uses and size of object in order to minimize code size. 2948 void X86FrameLowering::orderFrameObjects( 2949 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 2950 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2951 2952 // Don't waste time if there's nothing to do. 2953 if (ObjectsToAllocate.empty()) 2954 return; 2955 2956 // Create an array of all MFI objects. We won't need all of these 2957 // objects, but we're going to create a full array of them to make 2958 // it easier to index into when we're counting "uses" down below. 2959 // We want to be able to easily/cheaply access an object by simply 2960 // indexing into it, instead of having to search for it every time. 2961 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 2962 2963 // Walk the objects we care about and mark them as such in our working 2964 // struct. 2965 for (auto &Obj : ObjectsToAllocate) { 2966 SortingObjects[Obj].IsValid = true; 2967 SortingObjects[Obj].ObjectIndex = Obj; 2968 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlignment(Obj); 2969 // Set the size. 2970 int ObjectSize = MFI.getObjectSize(Obj); 2971 if (ObjectSize == 0) 2972 // Variable size. Just use 4. 2973 SortingObjects[Obj].ObjectSize = 4; 2974 else 2975 SortingObjects[Obj].ObjectSize = ObjectSize; 2976 } 2977 2978 // Count the number of uses for each object. 2979 for (auto &MBB : MF) { 2980 for (auto &MI : MBB) { 2981 if (MI.isDebugValue()) 2982 continue; 2983 for (const MachineOperand &MO : MI.operands()) { 2984 // Check to see if it's a local stack symbol. 2985 if (!MO.isFI()) 2986 continue; 2987 int Index = MO.getIndex(); 2988 // Check to see if it falls within our range, and is tagged 2989 // to require ordering. 2990 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 2991 SortingObjects[Index].IsValid) 2992 SortingObjects[Index].ObjectNumUses++; 2993 } 2994 } 2995 } 2996 2997 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 2998 // info). 2999 std::stable_sort(SortingObjects.begin(), SortingObjects.end(), 3000 X86FrameSortingComparator()); 3001 3002 // Now modify the original list to represent the final order that 3003 // we want. The order will depend on whether we're going to access them 3004 // from the stack pointer or the frame pointer. For SP, the list should 3005 // end up with the END containing objects that we want with smaller offsets. 3006 // For FP, it should be flipped. 3007 int i = 0; 3008 for (auto &Obj : SortingObjects) { 3009 // All invalid items are sorted at the end, so it's safe to stop. 3010 if (!Obj.IsValid) 3011 break; 3012 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3013 } 3014 3015 // Flip it if we're accessing off of the FP. 3016 if (!TRI->needsStackRealignment(MF) && hasFP(MF)) 3017 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 3018 } 3019 3020 3021 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 3022 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 3023 unsigned Offset = 16; 3024 // RBP is immediately pushed. 3025 Offset += SlotSize; 3026 // All callee-saved registers are then pushed. 3027 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 3028 // Every funclet allocates enough stack space for the largest outgoing call. 3029 Offset += getWinEHFuncletFrameSize(MF); 3030 return Offset; 3031 } 3032 3033 void X86FrameLowering::processFunctionBeforeFrameFinalized( 3034 MachineFunction &MF, RegScavenger *RS) const { 3035 // Mark the function as not having WinCFI. We will set it back to true in 3036 // emitPrologue if it gets called and emits CFI. 3037 MF.setHasWinCFI(false); 3038 3039 // If this function isn't doing Win64-style C++ EH, we don't need to do 3040 // anything. 3041 const Function &F = MF.getFunction(); 3042 if (!STI.is64Bit() || !MF.hasEHFunclets() || 3043 classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX) 3044 return; 3045 3046 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 3047 // relative to RSP after the prologue. Find the offset of the last fixed 3048 // object, so that we can allocate a slot immediately following it. If there 3049 // were no fixed objects, use offset -SlotSize, which is immediately after the 3050 // return address. Fixed objects have negative frame indices. 3051 MachineFrameInfo &MFI = MF.getFrameInfo(); 3052 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3053 int64_t MinFixedObjOffset = -SlotSize; 3054 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 3055 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 3056 3057 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 3058 for (WinEHHandlerType &H : TBME.HandlerArray) { 3059 int FrameIndex = H.CatchObj.FrameIndex; 3060 if (FrameIndex != INT_MAX) { 3061 // Ensure alignment. 3062 unsigned Align = MFI.getObjectAlignment(FrameIndex); 3063 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 3064 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 3065 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 3066 } 3067 } 3068 } 3069 3070 // Ensure alignment. 3071 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 3072 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 3073 int UnwindHelpFI = 3074 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*Immutable=*/false); 3075 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3076 3077 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 3078 // other frame setup instructions. 3079 MachineBasicBlock &MBB = MF.front(); 3080 auto MBBI = MBB.begin(); 3081 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3082 ++MBBI; 3083 3084 DebugLoc DL = MBB.findDebugLoc(MBBI); 3085 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 3086 UnwindHelpFI) 3087 .addImm(-2); 3088 } 3089