1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86FrameLowering.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "X86InstrBuilder.h" 16 #include "X86InstrInfo.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/EHPersonalities.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/WinEHFuncInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCObjectFileInfo.h" 33 #include "llvm/MC/MCSymbol.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Target/TargetOptions.h" 36 #include <cstdlib> 37 38 #define DEBUG_TYPE "x86-fl" 39 40 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue"); 41 STATISTIC(NumFrameExtraProbe, 42 "Number of extra stack probes generated in prologue"); 43 44 using namespace llvm; 45 46 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 47 MaybeAlign StackAlignOverride) 48 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), 49 STI.is64Bit() ? -8 : -4), 50 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { 51 // Cache a bunch of frame-related predicates for this subtarget. 52 SlotSize = TRI->getSlotSize(); 53 Is64Bit = STI.is64Bit(); 54 IsLP64 = STI.isTarget64BitLP64(); 55 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 56 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 57 StackPtr = TRI->getStackRegister(); 58 } 59 60 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 61 return !MF.getFrameInfo().hasVarSizedObjects() && 62 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() && 63 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall(); 64 } 65 66 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 67 /// call frame pseudos can be simplified. Having a FP, as in the default 68 /// implementation, is not sufficient here since we can't always use it. 69 /// Use a more nuanced condition. 70 bool 71 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 72 return hasReservedCallFrame(MF) || 73 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 74 (hasFP(MF) && !TRI->hasStackRealignment(MF)) || 75 TRI->hasBasePointer(MF); 76 } 77 78 // needsFrameIndexResolution - Do we need to perform FI resolution for 79 // this function. Normally, this is required only when the function 80 // has any stack objects. However, FI resolution actually has another job, 81 // not apparent from the title - it resolves callframesetup/destroy 82 // that were not simplified earlier. 83 // So, this is required for x86 functions that have push sequences even 84 // when there are no stack objects. 85 bool 86 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 87 return MF.getFrameInfo().hasStackObjects() || 88 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 89 } 90 91 /// hasFP - Return true if the specified function should have a dedicated frame 92 /// pointer register. This is true if the function has variable sized allocas 93 /// or if frame pointer elimination is disabled. 94 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 95 const MachineFrameInfo &MFI = MF.getFrameInfo(); 96 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 97 TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 98 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 99 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 100 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 101 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 102 MFI.hasStackMap() || MFI.hasPatchPoint() || 103 (isWin64Prologue(MF) && MFI.hasCopyImplyingStackAdjustment())); 104 } 105 106 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) { 107 if (IsLP64) { 108 if (isInt<8>(Imm)) 109 return X86::SUB64ri8; 110 return X86::SUB64ri32; 111 } else { 112 if (isInt<8>(Imm)) 113 return X86::SUB32ri8; 114 return X86::SUB32ri; 115 } 116 } 117 118 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) { 119 if (IsLP64) { 120 if (isInt<8>(Imm)) 121 return X86::ADD64ri8; 122 return X86::ADD64ri32; 123 } else { 124 if (isInt<8>(Imm)) 125 return X86::ADD32ri8; 126 return X86::ADD32ri; 127 } 128 } 129 130 static unsigned getSUBrrOpcode(bool IsLP64) { 131 return IsLP64 ? X86::SUB64rr : X86::SUB32rr; 132 } 133 134 static unsigned getADDrrOpcode(bool IsLP64) { 135 return IsLP64 ? X86::ADD64rr : X86::ADD32rr; 136 } 137 138 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 139 if (IsLP64) { 140 if (isInt<8>(Imm)) 141 return X86::AND64ri8; 142 return X86::AND64ri32; 143 } 144 if (isInt<8>(Imm)) 145 return X86::AND32ri8; 146 return X86::AND32ri; 147 } 148 149 static unsigned getLEArOpcode(bool IsLP64) { 150 return IsLP64 ? X86::LEA64r : X86::LEA32r; 151 } 152 153 static unsigned getMOVriOpcode(bool Use64BitReg, int64_t Imm) { 154 if (Use64BitReg) { 155 if (isUInt<32>(Imm)) 156 return X86::MOV32ri64; 157 if (isInt<32>(Imm)) 158 return X86::MOV64ri32; 159 return X86::MOV64ri; 160 } 161 return X86::MOV32ri; 162 } 163 164 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 165 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 166 unsigned Reg = RegMask.PhysReg; 167 168 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 169 Reg == X86::AH || Reg == X86::AL) 170 return true; 171 } 172 173 return false; 174 } 175 176 /// Check if the flags need to be preserved before the terminators. 177 /// This would be the case, if the eflags is live-in of the region 178 /// composed by the terminators or live-out of that region, without 179 /// being defined by a terminator. 180 static bool 181 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 182 for (const MachineInstr &MI : MBB.terminators()) { 183 bool BreakNext = false; 184 for (const MachineOperand &MO : MI.operands()) { 185 if (!MO.isReg()) 186 continue; 187 Register Reg = MO.getReg(); 188 if (Reg != X86::EFLAGS) 189 continue; 190 191 // This terminator needs an eflags that is not defined 192 // by a previous another terminator: 193 // EFLAGS is live-in of the region composed by the terminators. 194 if (!MO.isDef()) 195 return true; 196 // This terminator defines the eflags, i.e., we don't need to preserve it. 197 // However, we still need to check this specific terminator does not 198 // read a live-in value. 199 BreakNext = true; 200 } 201 // We found a definition of the eflags, no need to preserve them. 202 if (BreakNext) 203 return false; 204 } 205 206 // None of the terminators use or define the eflags. 207 // Check if they are live-out, that would imply we need to preserve them. 208 for (const MachineBasicBlock *Succ : MBB.successors()) 209 if (Succ->isLiveIn(X86::EFLAGS)) 210 return true; 211 212 return false; 213 } 214 215 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 216 /// stack pointer by a constant value. 217 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 218 MachineBasicBlock::iterator &MBBI, 219 const DebugLoc &DL, 220 int64_t NumBytes, bool InEpilogue) const { 221 bool isSub = NumBytes < 0; 222 uint64_t Offset = isSub ? -NumBytes : NumBytes; 223 MachineInstr::MIFlag Flag = 224 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 225 226 uint64_t Chunk = (1LL << 31) - 1; 227 228 MachineFunction &MF = *MBB.getParent(); 229 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 230 const X86TargetLowering &TLI = *STI.getTargetLowering(); 231 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 232 233 // It's ok to not take into account large chunks when probing, as the 234 // allocation is split in smaller chunks anyway. 235 if (EmitInlineStackProbe && !InEpilogue) { 236 237 // This pseudo-instruction is going to be expanded, potentially using a 238 // loop, by inlineStackProbe(). 239 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset); 240 return; 241 } else if (Offset > Chunk) { 242 // Rather than emit a long series of instructions for large offsets, 243 // load the offset into a register and do one sub/add 244 unsigned Reg = 0; 245 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 246 247 if (isSub && !isEAXLiveIn(MBB)) 248 Reg = Rax; 249 else 250 Reg = TRI->findDeadCallerSavedReg(MBB, MBBI); 251 252 unsigned AddSubRROpc = 253 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 254 if (Reg) { 255 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Reg) 256 .addImm(Offset) 257 .setMIFlag(Flag); 258 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 259 .addReg(StackPtr) 260 .addReg(Reg); 261 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 262 return; 263 } else if (Offset > 8 * Chunk) { 264 // If we would need more than 8 add or sub instructions (a >16GB stack 265 // frame), it's worth spilling RAX to materialize this immediate. 266 // pushq %rax 267 // movabsq +-$Offset+-SlotSize, %rax 268 // addq %rsp, %rax 269 // xchg %rax, (%rsp) 270 // movq (%rsp), %rsp 271 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 272 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 273 .addReg(Rax, RegState::Kill) 274 .setMIFlag(Flag); 275 // Subtract is not commutative, so negate the offset and always use add. 276 // Subtract 8 less and add 8 more to account for the PUSH we just did. 277 if (isSub) 278 Offset = -(Offset - SlotSize); 279 else 280 Offset = Offset + SlotSize; 281 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Rax) 282 .addImm(Offset) 283 .setMIFlag(Flag); 284 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 285 .addReg(Rax) 286 .addReg(StackPtr); 287 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 288 // Exchange the new SP in RAX with the top of the stack. 289 addRegOffset( 290 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 291 StackPtr, false, 0); 292 // Load new SP from the top of the stack into RSP. 293 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 294 StackPtr, false, 0); 295 return; 296 } 297 } 298 299 while (Offset) { 300 uint64_t ThisVal = std::min(Offset, Chunk); 301 if (ThisVal == SlotSize) { 302 // Use push / pop for slot sized adjustments as a size optimization. We 303 // need to find a dead register when using pop. 304 unsigned Reg = isSub 305 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 306 : TRI->findDeadCallerSavedReg(MBB, MBBI); 307 if (Reg) { 308 unsigned Opc = isSub 309 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 310 : (Is64Bit ? X86::POP64r : X86::POP32r); 311 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 312 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 313 .setMIFlag(Flag); 314 Offset -= ThisVal; 315 continue; 316 } 317 } 318 319 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 320 .setMIFlag(Flag); 321 322 Offset -= ThisVal; 323 } 324 } 325 326 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 327 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 328 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 329 assert(Offset != 0 && "zero offset stack adjustment requested"); 330 331 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 332 // is tricky. 333 bool UseLEA; 334 if (!InEpilogue) { 335 // Check if inserting the prologue at the beginning 336 // of MBB would require to use LEA operations. 337 // We need to use LEA operations if EFLAGS is live in, because 338 // it means an instruction will read it before it gets defined. 339 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 340 } else { 341 // If we can use LEA for SP but we shouldn't, check that none 342 // of the terminators uses the eflags. Otherwise we will insert 343 // a ADD that will redefine the eflags and break the condition. 344 // Alternatively, we could move the ADD, but this may not be possible 345 // and is an optimization anyway. 346 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 347 if (UseLEA && !STI.useLeaForSP()) 348 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 349 // If that assert breaks, that means we do not do the right thing 350 // in canUseAsEpilogue. 351 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 352 "We shouldn't have allowed this insertion point"); 353 } 354 355 MachineInstrBuilder MI; 356 if (UseLEA) { 357 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 358 TII.get(getLEArOpcode(Uses64BitFramePtr)), 359 StackPtr), 360 StackPtr, false, Offset); 361 } else { 362 bool IsSub = Offset < 0; 363 uint64_t AbsOffset = IsSub ? -Offset : Offset; 364 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 365 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 366 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 367 .addReg(StackPtr) 368 .addImm(AbsOffset); 369 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 370 } 371 return MI; 372 } 373 374 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 375 MachineBasicBlock::iterator &MBBI, 376 bool doMergeWithPrevious) const { 377 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 378 (!doMergeWithPrevious && MBBI == MBB.end())) 379 return 0; 380 381 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 382 383 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 384 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 385 // instruction, and that there are no DBG_VALUE or other instructions between 386 // ADD/SUB/LEA and its corresponding CFI instruction. 387 /* TODO: Add support for the case where there are multiple CFI instructions 388 below the ADD/SUB/LEA, e.g.: 389 ... 390 add 391 cfi_def_cfa_offset 392 cfi_offset 393 ... 394 */ 395 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 396 PI = std::prev(PI); 397 398 unsigned Opc = PI->getOpcode(); 399 int Offset = 0; 400 401 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 402 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 403 PI->getOperand(0).getReg() == StackPtr){ 404 assert(PI->getOperand(1).getReg() == StackPtr); 405 Offset = PI->getOperand(2).getImm(); 406 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 407 PI->getOperand(0).getReg() == StackPtr && 408 PI->getOperand(1).getReg() == StackPtr && 409 PI->getOperand(2).getImm() == 1 && 410 PI->getOperand(3).getReg() == X86::NoRegister && 411 PI->getOperand(5).getReg() == X86::NoRegister) { 412 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 413 Offset = PI->getOperand(4).getImm(); 414 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 415 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 416 PI->getOperand(0).getReg() == StackPtr) { 417 assert(PI->getOperand(1).getReg() == StackPtr); 418 Offset = -PI->getOperand(2).getImm(); 419 } else 420 return 0; 421 422 PI = MBB.erase(PI); 423 if (PI != MBB.end() && PI->isCFIInstruction()) { 424 auto CIs = MBB.getParent()->getFrameInstructions(); 425 MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()]; 426 if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset || 427 CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset) 428 PI = MBB.erase(PI); 429 } 430 if (!doMergeWithPrevious) 431 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 432 433 return Offset; 434 } 435 436 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 437 MachineBasicBlock::iterator MBBI, 438 const DebugLoc &DL, 439 const MCCFIInstruction &CFIInst) const { 440 MachineFunction &MF = *MBB.getParent(); 441 unsigned CFIIndex = MF.addFrameInst(CFIInst); 442 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 443 .addCFIIndex(CFIIndex); 444 } 445 446 /// Emits Dwarf Info specifying offsets of callee saved registers and 447 /// frame pointer. This is called only when basic block sections are enabled. 448 void X86FrameLowering::emitCalleeSavedFrameMovesFullCFA( 449 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 450 MachineFunction &MF = *MBB.getParent(); 451 if (!hasFP(MF)) { 452 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 453 return; 454 } 455 const MachineModuleInfo &MMI = MF.getMMI(); 456 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 457 const Register FramePtr = TRI->getFrameRegister(MF); 458 const Register MachineFramePtr = 459 STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64)) 460 : FramePtr; 461 unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true); 462 // Offset = space for return address + size of the frame pointer itself. 463 unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4); 464 BuildCFI(MBB, MBBI, DebugLoc{}, 465 MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset)); 466 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 467 } 468 469 void X86FrameLowering::emitCalleeSavedFrameMoves( 470 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 471 const DebugLoc &DL, bool IsPrologue) const { 472 MachineFunction &MF = *MBB.getParent(); 473 MachineFrameInfo &MFI = MF.getFrameInfo(); 474 MachineModuleInfo &MMI = MF.getMMI(); 475 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 476 477 // Add callee saved registers to move list. 478 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 479 480 // Calculate offsets. 481 for (const CalleeSavedInfo &I : CSI) { 482 int64_t Offset = MFI.getObjectOffset(I.getFrameIdx()); 483 Register Reg = I.getReg(); 484 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 485 486 if (IsPrologue) { 487 BuildCFI(MBB, MBBI, DL, 488 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 489 } else { 490 BuildCFI(MBB, MBBI, DL, 491 MCCFIInstruction::createRestore(nullptr, DwarfReg)); 492 } 493 } 494 } 495 496 void X86FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero, 497 MachineBasicBlock &MBB) const { 498 const MachineFunction &MF = *MBB.getParent(); 499 500 // Don't clear registers that will just be reset before exiting. 501 for (const CalleeSavedInfo &CSI : MF.getFrameInfo().getCalleeSavedInfo()) 502 for (MCRegister Reg : TRI->sub_and_superregs_inclusive(CSI.getReg())) 503 RegsToZero.reset(Reg); 504 505 // Insertion point. 506 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 507 508 // We don't need to zero out registers that are clobbered by "pop" 509 // instructions. 510 for (MachineBasicBlock::iterator I = MBBI, E = MBB.end(); I != E; ++I) 511 for (const MachineOperand &MO : I->operands()) { 512 if (!MO.isReg()) 513 continue; 514 515 for (const MCPhysReg &Reg : TRI->sub_and_superregs_inclusive(MO.getReg())) 516 RegsToZero.reset(Reg); 517 } 518 519 // Fake a debug loc. 520 DebugLoc DL; 521 if (MBBI != MBB.end()) 522 DL = MBBI->getDebugLoc(); 523 524 // Zero out FP stack if referenced. Do this outside of the loop below so that 525 // it's done only once. 526 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); 527 for (MCRegister Reg : RegsToZero.set_bits()) { 528 if (!X86::RFP80RegClass.contains(Reg)) 529 continue; 530 531 unsigned NumFPRegs = ST.is64Bit() ? 8 : 7; 532 for (unsigned i = 0; i != NumFPRegs; ++i) 533 BuildMI(MBB, MBBI, DL, TII.get(X86::LD_F0)); 534 535 for (unsigned i = 0; i != NumFPRegs; ++i) 536 BuildMI(MBB, MBBI, DL, TII.get(X86::ST_FPrr)).addReg(X86::ST0); 537 break; 538 } 539 540 // For GPRs, we only care to clear out the 32-bit register. 541 BitVector GPRsToZero(TRI->getNumRegs()); 542 for (MCRegister Reg : RegsToZero.set_bits()) 543 if (TRI->isGeneralPurposeRegister(MF, Reg)) { 544 GPRsToZero.set(getX86SubSuperRegisterOrZero(Reg, 32)); 545 RegsToZero.reset(Reg); 546 } 547 548 for (MCRegister Reg : GPRsToZero.set_bits()) 549 BuildMI(MBB, MBBI, DL, TII.get(X86::XOR32rr), Reg) 550 .addReg(Reg, RegState::Undef) 551 .addReg(Reg, RegState::Undef); 552 553 // Zero out registers. 554 for (MCRegister Reg : RegsToZero.set_bits()) { 555 if (ST.hasMMX() && X86::VR64RegClass.contains(Reg)) 556 // FIXME: Ignore MMX registers? 557 continue; 558 559 unsigned XorOp; 560 if (X86::VR128RegClass.contains(Reg)) { 561 // XMM# 562 if (!ST.hasSSE1()) 563 continue; 564 XorOp = X86::PXORrr; 565 } else if (X86::VR256RegClass.contains(Reg)) { 566 // YMM# 567 if (!ST.hasAVX()) 568 continue; 569 XorOp = X86::VPXORrr; 570 } else if (X86::VR512RegClass.contains(Reg)) { 571 // ZMM# 572 if (!ST.hasAVX512()) 573 continue; 574 XorOp = X86::VPXORYrr; 575 } else if (X86::VK1RegClass.contains(Reg) || 576 X86::VK2RegClass.contains(Reg) || 577 X86::VK4RegClass.contains(Reg) || 578 X86::VK8RegClass.contains(Reg) || 579 X86::VK16RegClass.contains(Reg)) { 580 if (!ST.hasVLX()) 581 continue; 582 XorOp = ST.hasBWI() ? X86::KXORQrr : X86::KXORWrr; 583 } else { 584 continue; 585 } 586 587 BuildMI(MBB, MBBI, DL, TII.get(XorOp), Reg) 588 .addReg(Reg, RegState::Undef) 589 .addReg(Reg, RegState::Undef); 590 } 591 } 592 593 void X86FrameLowering::emitStackProbe( 594 MachineFunction &MF, MachineBasicBlock &MBB, 595 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, 596 Optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { 597 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 598 if (STI.isTargetWindowsCoreCLR()) { 599 if (InProlog) { 600 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)) 601 .addImm(0 /* no explicit stack size */); 602 } else { 603 emitStackProbeInline(MF, MBB, MBBI, DL, false); 604 } 605 } else { 606 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog, InstrNum); 607 } 608 } 609 610 bool X86FrameLowering::stackProbeFunctionModifiesSP() const { 611 return STI.isOSWindows() && !STI.isTargetWin64(); 612 } 613 614 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 615 MachineBasicBlock &PrologMBB) const { 616 auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 617 return MI.getOpcode() == X86::STACKALLOC_W_PROBING; 618 }); 619 if (Where != PrologMBB.end()) { 620 DebugLoc DL = PrologMBB.findDebugLoc(Where); 621 emitStackProbeInline(MF, PrologMBB, Where, DL, true); 622 Where->eraseFromParent(); 623 } 624 } 625 626 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 627 MachineBasicBlock &MBB, 628 MachineBasicBlock::iterator MBBI, 629 const DebugLoc &DL, 630 bool InProlog) const { 631 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 632 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit()) 633 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog); 634 else 635 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog); 636 } 637 638 void X86FrameLowering::emitStackProbeInlineGeneric( 639 MachineFunction &MF, MachineBasicBlock &MBB, 640 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 641 MachineInstr &AllocWithProbe = *MBBI; 642 uint64_t Offset = AllocWithProbe.getOperand(0).getImm(); 643 644 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 645 const X86TargetLowering &TLI = *STI.getTargetLowering(); 646 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) && 647 "different expansion expected for CoreCLR 64 bit"); 648 649 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 650 uint64_t ProbeChunk = StackProbeSize * 8; 651 652 uint64_t MaxAlign = 653 TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0; 654 655 // Synthesize a loop or unroll it, depending on the number of iterations. 656 // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left 657 // between the unaligned rsp and current rsp. 658 if (Offset > ProbeChunk) { 659 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset, 660 MaxAlign % StackProbeSize); 661 } else { 662 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset, 663 MaxAlign % StackProbeSize); 664 } 665 } 666 667 void X86FrameLowering::emitStackProbeInlineGenericBlock( 668 MachineFunction &MF, MachineBasicBlock &MBB, 669 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 670 uint64_t AlignOffset) const { 671 672 const bool NeedsDwarfCFI = needsDwarfCFI(MF); 673 const bool HasFP = hasFP(MF); 674 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 675 const X86TargetLowering &TLI = *STI.getTargetLowering(); 676 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset); 677 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 678 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 679 680 uint64_t CurrentOffset = 0; 681 682 assert(AlignOffset < StackProbeSize); 683 684 // If the offset is so small it fits within a page, there's nothing to do. 685 if (StackProbeSize < Offset + AlignOffset) { 686 687 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 688 .addReg(StackPtr) 689 .addImm(StackProbeSize - AlignOffset) 690 .setMIFlag(MachineInstr::FrameSetup); 691 if (!HasFP && NeedsDwarfCFI) { 692 BuildCFI(MBB, MBBI, DL, 693 MCCFIInstruction::createAdjustCfaOffset( 694 nullptr, StackProbeSize - AlignOffset)); 695 } 696 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 697 698 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 699 .setMIFlag(MachineInstr::FrameSetup), 700 StackPtr, false, 0) 701 .addImm(0) 702 .setMIFlag(MachineInstr::FrameSetup); 703 NumFrameExtraProbe++; 704 CurrentOffset = StackProbeSize - AlignOffset; 705 } 706 707 // For the next N - 1 pages, just probe. I tried to take advantage of 708 // natural probes but it implies much more logic and there was very few 709 // interesting natural probes to interleave. 710 while (CurrentOffset + StackProbeSize < Offset) { 711 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 712 .addReg(StackPtr) 713 .addImm(StackProbeSize) 714 .setMIFlag(MachineInstr::FrameSetup); 715 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 716 717 if (!HasFP && NeedsDwarfCFI) { 718 BuildCFI( 719 MBB, MBBI, DL, 720 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize)); 721 } 722 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 723 .setMIFlag(MachineInstr::FrameSetup), 724 StackPtr, false, 0) 725 .addImm(0) 726 .setMIFlag(MachineInstr::FrameSetup); 727 NumFrameExtraProbe++; 728 CurrentOffset += StackProbeSize; 729 } 730 731 // No need to probe the tail, it is smaller than a Page. 732 uint64_t ChunkSize = Offset - CurrentOffset; 733 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 734 .addReg(StackPtr) 735 .addImm(ChunkSize) 736 .setMIFlag(MachineInstr::FrameSetup); 737 // No need to adjust Dwarf CFA offset here, the last position of the stack has 738 // been defined 739 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 740 } 741 742 void X86FrameLowering::emitStackProbeInlineGenericLoop( 743 MachineFunction &MF, MachineBasicBlock &MBB, 744 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 745 uint64_t AlignOffset) const { 746 assert(Offset && "null offset"); 747 748 const bool NeedsDwarfCFI = needsDwarfCFI(MF); 749 const bool HasFP = hasFP(MF); 750 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 751 const X86TargetLowering &TLI = *STI.getTargetLowering(); 752 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 753 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 754 755 if (AlignOffset) { 756 if (AlignOffset < StackProbeSize) { 757 // Perform a first smaller allocation followed by a probe. 758 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, AlignOffset); 759 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), StackPtr) 760 .addReg(StackPtr) 761 .addImm(AlignOffset) 762 .setMIFlag(MachineInstr::FrameSetup); 763 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 764 765 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 766 .setMIFlag(MachineInstr::FrameSetup), 767 StackPtr, false, 0) 768 .addImm(0) 769 .setMIFlag(MachineInstr::FrameSetup); 770 NumFrameExtraProbe++; 771 Offset -= AlignOffset; 772 } 773 } 774 775 // Synthesize a loop 776 NumFrameLoopProbe++; 777 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 778 779 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB); 780 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB); 781 782 MachineFunction::iterator MBBIter = ++MBB.getIterator(); 783 MF.insert(MBBIter, testMBB); 784 MF.insert(MBBIter, tailMBB); 785 786 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 787 : Is64Bit ? X86::R11D 788 : X86::EAX; 789 790 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 791 .addReg(StackPtr) 792 .setMIFlag(MachineInstr::FrameSetup); 793 794 // save loop bound 795 { 796 const unsigned BoundOffset = alignDown(Offset, StackProbeSize); 797 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, BoundOffset); 798 BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed) 799 .addReg(FinalStackProbed) 800 .addImm(BoundOffset) 801 .setMIFlag(MachineInstr::FrameSetup); 802 803 // while in the loop, use loop-invariant reg for CFI, 804 // instead of the stack pointer, which changes during the loop 805 if (!HasFP && NeedsDwarfCFI) { 806 // x32 uses the same DWARF register numbers as x86-64, 807 // so there isn't a register number for r11d, we must use r11 instead 808 const Register DwarfFinalStackProbed = 809 STI.isTarget64BitILP32() 810 ? Register(getX86SubSuperRegister(FinalStackProbed, 64)) 811 : FinalStackProbed; 812 813 BuildCFI(MBB, MBBI, DL, 814 MCCFIInstruction::createDefCfaRegister( 815 nullptr, TRI->getDwarfRegNum(DwarfFinalStackProbed, true))); 816 BuildCFI(MBB, MBBI, DL, 817 MCCFIInstruction::createAdjustCfaOffset(nullptr, BoundOffset)); 818 } 819 } 820 821 // allocate a page 822 { 823 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 824 BuildMI(testMBB, DL, TII.get(SUBOpc), StackPtr) 825 .addReg(StackPtr) 826 .addImm(StackProbeSize) 827 .setMIFlag(MachineInstr::FrameSetup); 828 } 829 830 // touch the page 831 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc)) 832 .setMIFlag(MachineInstr::FrameSetup), 833 StackPtr, false, 0) 834 .addImm(0) 835 .setMIFlag(MachineInstr::FrameSetup); 836 837 // cmp with stack pointer bound 838 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 839 .addReg(StackPtr) 840 .addReg(FinalStackProbed) 841 .setMIFlag(MachineInstr::FrameSetup); 842 843 // jump 844 BuildMI(testMBB, DL, TII.get(X86::JCC_1)) 845 .addMBB(testMBB) 846 .addImm(X86::COND_NE) 847 .setMIFlag(MachineInstr::FrameSetup); 848 testMBB->addSuccessor(testMBB); 849 testMBB->addSuccessor(tailMBB); 850 851 // BB management 852 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end()); 853 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB); 854 MBB.addSuccessor(testMBB); 855 856 // handle tail 857 const unsigned TailOffset = Offset % StackProbeSize; 858 MachineBasicBlock::iterator TailMBBIter = tailMBB->begin(); 859 if (TailOffset) { 860 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, TailOffset); 861 BuildMI(*tailMBB, TailMBBIter, DL, TII.get(Opc), StackPtr) 862 .addReg(StackPtr) 863 .addImm(TailOffset) 864 .setMIFlag(MachineInstr::FrameSetup); 865 } 866 867 // after the loop, switch back to stack pointer for CFI 868 if (!HasFP && NeedsDwarfCFI) { 869 // x32 uses the same DWARF register numbers as x86-64, 870 // so there isn't a register number for esp, we must use rsp instead 871 const Register DwarfStackPtr = 872 STI.isTarget64BitILP32() 873 ? Register(getX86SubSuperRegister(StackPtr, 64)) 874 : Register(StackPtr); 875 876 BuildCFI(*tailMBB, TailMBBIter, DL, 877 MCCFIInstruction::createDefCfaRegister( 878 nullptr, TRI->getDwarfRegNum(DwarfStackPtr, true))); 879 } 880 881 // Update Live In information 882 recomputeLiveIns(*testMBB); 883 recomputeLiveIns(*tailMBB); 884 } 885 886 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64( 887 MachineFunction &MF, MachineBasicBlock &MBB, 888 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 889 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 890 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 891 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 892 const TargetInstrInfo &TII = *STI.getInstrInfo(); 893 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 894 895 // RAX contains the number of bytes of desired stack adjustment. 896 // The handling here assumes this value has already been updated so as to 897 // maintain stack alignment. 898 // 899 // We need to exit with RSP modified by this amount and execute suitable 900 // page touches to notify the OS that we're growing the stack responsibly. 901 // All stack probing must be done without modifying RSP. 902 // 903 // MBB: 904 // SizeReg = RAX; 905 // ZeroReg = 0 906 // CopyReg = RSP 907 // Flags, TestReg = CopyReg - SizeReg 908 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 909 // LimitReg = gs magic thread env access 910 // if FinalReg >= LimitReg goto ContinueMBB 911 // RoundBB: 912 // RoundReg = page address of FinalReg 913 // LoopMBB: 914 // LoopReg = PHI(LimitReg,ProbeReg) 915 // ProbeReg = LoopReg - PageSize 916 // [ProbeReg] = 0 917 // if (ProbeReg > RoundReg) goto LoopMBB 918 // ContinueMBB: 919 // RSP = RSP - RAX 920 // [rest of original MBB] 921 922 // Set up the new basic blocks 923 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 924 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 925 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 926 927 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 928 MF.insert(MBBIter, RoundMBB); 929 MF.insert(MBBIter, LoopMBB); 930 MF.insert(MBBIter, ContinueMBB); 931 932 // Split MBB and move the tail portion down to ContinueMBB. 933 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 934 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 935 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 936 937 // Some useful constants 938 const int64_t ThreadEnvironmentStackLimit = 0x10; 939 const int64_t PageSize = 0x1000; 940 const int64_t PageMask = ~(PageSize - 1); 941 942 // Registers we need. For the normal case we use virtual 943 // registers. For the prolog expansion we use RAX, RCX and RDX. 944 MachineRegisterInfo &MRI = MF.getRegInfo(); 945 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 946 const Register SizeReg = InProlog ? X86::RAX 947 : MRI.createVirtualRegister(RegClass), 948 ZeroReg = InProlog ? X86::RCX 949 : MRI.createVirtualRegister(RegClass), 950 CopyReg = InProlog ? X86::RDX 951 : MRI.createVirtualRegister(RegClass), 952 TestReg = InProlog ? X86::RDX 953 : MRI.createVirtualRegister(RegClass), 954 FinalReg = InProlog ? X86::RDX 955 : MRI.createVirtualRegister(RegClass), 956 RoundedReg = InProlog ? X86::RDX 957 : MRI.createVirtualRegister(RegClass), 958 LimitReg = InProlog ? X86::RCX 959 : MRI.createVirtualRegister(RegClass), 960 JoinReg = InProlog ? X86::RCX 961 : MRI.createVirtualRegister(RegClass), 962 ProbeReg = InProlog ? X86::RCX 963 : MRI.createVirtualRegister(RegClass); 964 965 // SP-relative offsets where we can save RCX and RDX. 966 int64_t RCXShadowSlot = 0; 967 int64_t RDXShadowSlot = 0; 968 969 // If inlining in the prolog, save RCX and RDX. 970 if (InProlog) { 971 // Compute the offsets. We need to account for things already 972 // pushed onto the stack at this point: return address, frame 973 // pointer (if used), and callee saves. 974 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 975 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 976 const bool HasFP = hasFP(MF); 977 978 // Check if we need to spill RCX and/or RDX. 979 // Here we assume that no earlier prologue instruction changes RCX and/or 980 // RDX, so checking the block live-ins is enough. 981 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); 982 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); 983 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 984 // Assign the initial slot to both registers, then change RDX's slot if both 985 // need to be spilled. 986 if (IsRCXLiveIn) 987 RCXShadowSlot = InitSlot; 988 if (IsRDXLiveIn) 989 RDXShadowSlot = InitSlot; 990 if (IsRDXLiveIn && IsRCXLiveIn) 991 RDXShadowSlot += 8; 992 // Emit the saves if needed. 993 if (IsRCXLiveIn) 994 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 995 RCXShadowSlot) 996 .addReg(X86::RCX); 997 if (IsRDXLiveIn) 998 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 999 RDXShadowSlot) 1000 .addReg(X86::RDX); 1001 } else { 1002 // Not in the prolog. Copy RAX to a virtual reg. 1003 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 1004 } 1005 1006 // Add code to MBB to check for overflow and set the new target stack pointer 1007 // to zero if so. 1008 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 1009 .addReg(ZeroReg, RegState::Undef) 1010 .addReg(ZeroReg, RegState::Undef); 1011 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 1012 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 1013 .addReg(CopyReg) 1014 .addReg(SizeReg); 1015 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) 1016 .addReg(TestReg) 1017 .addReg(ZeroReg) 1018 .addImm(X86::COND_B); 1019 1020 // FinalReg now holds final stack pointer value, or zero if 1021 // allocation would overflow. Compare against the current stack 1022 // limit from the thread environment block. Note this limit is the 1023 // lowest touched page on the stack, not the point at which the OS 1024 // will cause an overflow exception, so this is just an optimization 1025 // to avoid unnecessarily touching pages that are below the current 1026 // SP but already committed to the stack by the OS. 1027 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 1028 .addReg(0) 1029 .addImm(1) 1030 .addReg(0) 1031 .addImm(ThreadEnvironmentStackLimit) 1032 .addReg(X86::GS); 1033 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 1034 // Jump if the desired stack pointer is at or above the stack limit. 1035 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); 1036 1037 // Add code to roundMBB to round the final stack pointer to a page boundary. 1038 RoundMBB->addLiveIn(FinalReg); 1039 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 1040 .addReg(FinalReg) 1041 .addImm(PageMask); 1042 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 1043 1044 // LimitReg now holds the current stack limit, RoundedReg page-rounded 1045 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 1046 // and probe until we reach RoundedReg. 1047 if (!InProlog) { 1048 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 1049 .addReg(LimitReg) 1050 .addMBB(RoundMBB) 1051 .addReg(ProbeReg) 1052 .addMBB(LoopMBB); 1053 } 1054 1055 LoopMBB->addLiveIn(JoinReg); 1056 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 1057 false, -PageSize); 1058 1059 // Probe by storing a byte onto the stack. 1060 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 1061 .addReg(ProbeReg) 1062 .addImm(1) 1063 .addReg(0) 1064 .addImm(0) 1065 .addReg(0) 1066 .addImm(0); 1067 1068 LoopMBB->addLiveIn(RoundedReg); 1069 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 1070 .addReg(RoundedReg) 1071 .addReg(ProbeReg); 1072 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); 1073 1074 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 1075 1076 // If in prolog, restore RDX and RCX. 1077 if (InProlog) { 1078 if (RCXShadowSlot) // It means we spilled RCX in the prologue. 1079 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 1080 TII.get(X86::MOV64rm), X86::RCX), 1081 X86::RSP, false, RCXShadowSlot); 1082 if (RDXShadowSlot) // It means we spilled RDX in the prologue. 1083 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 1084 TII.get(X86::MOV64rm), X86::RDX), 1085 X86::RSP, false, RDXShadowSlot); 1086 } 1087 1088 // Now that the probing is done, add code to continueMBB to update 1089 // the stack pointer for real. 1090 ContinueMBB->addLiveIn(SizeReg); 1091 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 1092 .addReg(X86::RSP) 1093 .addReg(SizeReg); 1094 1095 // Add the control flow edges we need. 1096 MBB.addSuccessor(ContinueMBB); 1097 MBB.addSuccessor(RoundMBB); 1098 RoundMBB->addSuccessor(LoopMBB); 1099 LoopMBB->addSuccessor(ContinueMBB); 1100 LoopMBB->addSuccessor(LoopMBB); 1101 1102 // Mark all the instructions added to the prolog as frame setup. 1103 if (InProlog) { 1104 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 1105 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 1106 } 1107 for (MachineInstr &MI : *RoundMBB) { 1108 MI.setFlag(MachineInstr::FrameSetup); 1109 } 1110 for (MachineInstr &MI : *LoopMBB) { 1111 MI.setFlag(MachineInstr::FrameSetup); 1112 } 1113 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); 1114 CMBBI != ContinueMBBI; ++CMBBI) { 1115 CMBBI->setFlag(MachineInstr::FrameSetup); 1116 } 1117 } 1118 } 1119 1120 void X86FrameLowering::emitStackProbeCall( 1121 MachineFunction &MF, MachineBasicBlock &MBB, 1122 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, 1123 Optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { 1124 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 1125 1126 // FIXME: Add indirect thunk support and remove this. 1127 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) 1128 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 1129 "code model and indirect thunks not yet implemented."); 1130 1131 unsigned CallOp; 1132 if (Is64Bit) 1133 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 1134 else 1135 CallOp = X86::CALLpcrel32; 1136 1137 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 1138 1139 MachineInstrBuilder CI; 1140 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 1141 1142 // All current stack probes take AX and SP as input, clobber flags, and 1143 // preserve all registers. x86_64 probes leave RSP unmodified. 1144 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 1145 // For the large code model, we have to call through a register. Use R11, 1146 // as it is scratch in all supported calling conventions. 1147 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 1148 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1149 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 1150 } else { 1151 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 1152 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1153 } 1154 1155 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; 1156 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; 1157 CI.addReg(AX, RegState::Implicit) 1158 .addReg(SP, RegState::Implicit) 1159 .addReg(AX, RegState::Define | RegState::Implicit) 1160 .addReg(SP, RegState::Define | RegState::Implicit) 1161 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 1162 1163 MachineInstr *ModInst = CI; 1164 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1165 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 1166 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 1167 // themselves. They also does not clobber %rax so we can reuse it when 1168 // adjusting %rsp. 1169 // All other platforms do not specify a particular ABI for the stack probe 1170 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 1171 ModInst = 1172 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) 1173 .addReg(SP) 1174 .addReg(AX); 1175 } 1176 1177 // DebugInfo variable locations -- if there's an instruction number for the 1178 // allocation (i.e., DYN_ALLOC_*), substitute it for the instruction that 1179 // modifies SP. 1180 if (InstrNum) { 1181 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1182 // Label destination operand of the subtract. 1183 MF.makeDebugValueSubstitution(*InstrNum, 1184 {ModInst->getDebugInstrNum(), 0}); 1185 } else { 1186 // Label the call. The operand number is the penultimate operand, zero 1187 // based. 1188 unsigned SPDefOperand = ModInst->getNumOperands() - 2; 1189 MF.makeDebugValueSubstitution( 1190 *InstrNum, {ModInst->getDebugInstrNum(), SPDefOperand}); 1191 } 1192 } 1193 1194 if (InProlog) { 1195 // Apply the frame setup flag to all inserted instrs. 1196 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 1197 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 1198 } 1199 } 1200 1201 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 1202 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 1203 // and might require smaller successive adjustments. 1204 const uint64_t Win64MaxSEHOffset = 128; 1205 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 1206 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 1207 return SEHFrameOffset & -16; 1208 } 1209 1210 // If we're forcing a stack realignment we can't rely on just the frame 1211 // info, we need to know the ABI stack alignment as well in case we 1212 // have a call out. Otherwise just make sure we have some alignment - we'll 1213 // go with the minimum SlotSize. 1214 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 1215 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1216 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment. 1217 Align StackAlign = getStackAlign(); 1218 if (MF.getFunction().hasFnAttribute("stackrealign")) { 1219 if (MFI.hasCalls()) 1220 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 1221 else if (MaxAlign < SlotSize) 1222 MaxAlign = Align(SlotSize); 1223 } 1224 return MaxAlign.value(); 1225 } 1226 1227 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 1228 MachineBasicBlock::iterator MBBI, 1229 const DebugLoc &DL, unsigned Reg, 1230 uint64_t MaxAlign) const { 1231 uint64_t Val = -MaxAlign; 1232 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 1233 1234 MachineFunction &MF = *MBB.getParent(); 1235 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 1236 const X86TargetLowering &TLI = *STI.getTargetLowering(); 1237 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 1238 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 1239 1240 // We want to make sure that (in worst case) less than StackProbeSize bytes 1241 // are not probed after the AND. This assumption is used in 1242 // emitStackProbeInlineGeneric. 1243 if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) { 1244 { 1245 NumFrameLoopProbe++; 1246 MachineBasicBlock *entryMBB = 1247 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1248 MachineBasicBlock *headMBB = 1249 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1250 MachineBasicBlock *bodyMBB = 1251 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1252 MachineBasicBlock *footMBB = 1253 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1254 1255 MachineFunction::iterator MBBIter = MBB.getIterator(); 1256 MF.insert(MBBIter, entryMBB); 1257 MF.insert(MBBIter, headMBB); 1258 MF.insert(MBBIter, bodyMBB); 1259 MF.insert(MBBIter, footMBB); 1260 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 1261 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 1262 : Is64Bit ? X86::R11D 1263 : X86::EAX; 1264 1265 // Setup entry block 1266 { 1267 1268 entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI); 1269 BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 1270 .addReg(StackPtr) 1271 .setMIFlag(MachineInstr::FrameSetup); 1272 MachineInstr *MI = 1273 BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed) 1274 .addReg(FinalStackProbed) 1275 .addImm(Val) 1276 .setMIFlag(MachineInstr::FrameSetup); 1277 1278 // The EFLAGS implicit def is dead. 1279 MI->getOperand(3).setIsDead(); 1280 1281 BuildMI(entryMBB, DL, 1282 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1283 .addReg(FinalStackProbed) 1284 .addReg(StackPtr) 1285 .setMIFlag(MachineInstr::FrameSetup); 1286 BuildMI(entryMBB, DL, TII.get(X86::JCC_1)) 1287 .addMBB(&MBB) 1288 .addImm(X86::COND_E) 1289 .setMIFlag(MachineInstr::FrameSetup); 1290 entryMBB->addSuccessor(headMBB); 1291 entryMBB->addSuccessor(&MBB); 1292 } 1293 1294 // Loop entry block 1295 1296 { 1297 const unsigned SUBOpc = 1298 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1299 BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr) 1300 .addReg(StackPtr) 1301 .addImm(StackProbeSize) 1302 .setMIFlag(MachineInstr::FrameSetup); 1303 1304 BuildMI(headMBB, DL, 1305 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1306 .addReg(FinalStackProbed) 1307 .addReg(StackPtr) 1308 .setMIFlag(MachineInstr::FrameSetup); 1309 1310 // jump 1311 BuildMI(headMBB, DL, TII.get(X86::JCC_1)) 1312 .addMBB(footMBB) 1313 .addImm(X86::COND_B) 1314 .setMIFlag(MachineInstr::FrameSetup); 1315 1316 headMBB->addSuccessor(bodyMBB); 1317 headMBB->addSuccessor(footMBB); 1318 } 1319 1320 // setup loop body 1321 { 1322 addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc)) 1323 .setMIFlag(MachineInstr::FrameSetup), 1324 StackPtr, false, 0) 1325 .addImm(0) 1326 .setMIFlag(MachineInstr::FrameSetup); 1327 1328 const unsigned SUBOpc = 1329 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1330 BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr) 1331 .addReg(StackPtr) 1332 .addImm(StackProbeSize) 1333 .setMIFlag(MachineInstr::FrameSetup); 1334 1335 // cmp with stack pointer bound 1336 BuildMI(bodyMBB, DL, 1337 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1338 .addReg(FinalStackProbed) 1339 .addReg(StackPtr) 1340 .setMIFlag(MachineInstr::FrameSetup); 1341 1342 // jump 1343 BuildMI(bodyMBB, DL, TII.get(X86::JCC_1)) 1344 .addMBB(bodyMBB) 1345 .addImm(X86::COND_B) 1346 .setMIFlag(MachineInstr::FrameSetup); 1347 bodyMBB->addSuccessor(bodyMBB); 1348 bodyMBB->addSuccessor(footMBB); 1349 } 1350 1351 // setup loop footer 1352 { 1353 BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr) 1354 .addReg(FinalStackProbed) 1355 .setMIFlag(MachineInstr::FrameSetup); 1356 addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc)) 1357 .setMIFlag(MachineInstr::FrameSetup), 1358 StackPtr, false, 0) 1359 .addImm(0) 1360 .setMIFlag(MachineInstr::FrameSetup); 1361 footMBB->addSuccessor(&MBB); 1362 } 1363 1364 recomputeLiveIns(*headMBB); 1365 recomputeLiveIns(*bodyMBB); 1366 recomputeLiveIns(*footMBB); 1367 recomputeLiveIns(MBB); 1368 } 1369 } else { 1370 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 1371 .addReg(Reg) 1372 .addImm(Val) 1373 .setMIFlag(MachineInstr::FrameSetup); 1374 1375 // The EFLAGS implicit def is dead. 1376 MI->getOperand(3).setIsDead(); 1377 } 1378 } 1379 1380 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { 1381 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be 1382 // clobbered by any interrupt handler. 1383 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1384 "MF used frame lowering for wrong subtarget"); 1385 const Function &Fn = MF.getFunction(); 1386 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 1387 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); 1388 } 1389 1390 /// Return true if we need to use the restricted Windows x64 prologue and 1391 /// epilogue code patterns that can be described with WinCFI (.seh_* 1392 /// directives). 1393 bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const { 1394 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1395 } 1396 1397 bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const { 1398 return !isWin64Prologue(MF) && MF.needsFrameMoves(); 1399 } 1400 1401 /// emitPrologue - Push callee-saved registers onto the stack, which 1402 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 1403 /// space for local variables. Also emit labels used by the exception handler to 1404 /// generate the exception handling frames. 1405 1406 /* 1407 Here's a gist of what gets emitted: 1408 1409 ; Establish frame pointer, if needed 1410 [if needs FP] 1411 push %rbp 1412 .cfi_def_cfa_offset 16 1413 .cfi_offset %rbp, -16 1414 .seh_pushreg %rpb 1415 mov %rsp, %rbp 1416 .cfi_def_cfa_register %rbp 1417 1418 ; Spill general-purpose registers 1419 [for all callee-saved GPRs] 1420 pushq %<reg> 1421 [if not needs FP] 1422 .cfi_def_cfa_offset (offset from RETADDR) 1423 .seh_pushreg %<reg> 1424 1425 ; If the required stack alignment > default stack alignment 1426 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 1427 ; of unknown size in the stack frame. 1428 [if stack needs re-alignment] 1429 and $MASK, %rsp 1430 1431 ; Allocate space for locals 1432 [if target is Windows and allocated space > 4096 bytes] 1433 ; Windows needs special care for allocations larger 1434 ; than one page. 1435 mov $NNN, %rax 1436 call ___chkstk_ms/___chkstk 1437 sub %rax, %rsp 1438 [else] 1439 sub $NNN, %rsp 1440 1441 [if needs FP] 1442 .seh_stackalloc (size of XMM spill slots) 1443 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 1444 [else] 1445 .seh_stackalloc NNN 1446 1447 ; Spill XMMs 1448 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 1449 ; they may get spilled on any platform, if the current function 1450 ; calls @llvm.eh.unwind.init 1451 [if needs FP] 1452 [for all callee-saved XMM registers] 1453 movaps %<xmm reg>, -MMM(%rbp) 1454 [for all callee-saved XMM registers] 1455 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 1456 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 1457 [else] 1458 [for all callee-saved XMM registers] 1459 movaps %<xmm reg>, KKK(%rsp) 1460 [for all callee-saved XMM registers] 1461 .seh_savexmm %<xmm reg>, KKK 1462 1463 .seh_endprologue 1464 1465 [if needs base pointer] 1466 mov %rsp, %rbx 1467 [if needs to restore base pointer] 1468 mov %rsp, -MMM(%rbp) 1469 1470 ; Emit CFI info 1471 [if needs FP] 1472 [for all callee-saved registers] 1473 .cfi_offset %<reg>, (offset from %rbp) 1474 [else] 1475 .cfi_def_cfa_offset (offset from RETADDR) 1476 [for all callee-saved registers] 1477 .cfi_offset %<reg>, (offset from %rsp) 1478 1479 Notes: 1480 - .seh directives are emitted only for Windows 64 ABI 1481 - .cv_fpo directives are emitted on win32 when emitting CodeView 1482 - .cfi directives are emitted for all other ABIs 1483 - for 32-bit code, substitute %e?? registers for %r?? 1484 */ 1485 1486 void X86FrameLowering::emitPrologue(MachineFunction &MF, 1487 MachineBasicBlock &MBB) const { 1488 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1489 "MF used frame lowering for wrong subtarget"); 1490 MachineBasicBlock::iterator MBBI = MBB.begin(); 1491 MachineFrameInfo &MFI = MF.getFrameInfo(); 1492 const Function &Fn = MF.getFunction(); 1493 MachineModuleInfo &MMI = MF.getMMI(); 1494 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1495 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 1496 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 1497 bool IsFunclet = MBB.isEHFuncletEntry(); 1498 EHPersonality Personality = EHPersonality::Unknown; 1499 if (Fn.hasPersonalityFn()) 1500 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 1501 bool FnHasClrFunclet = 1502 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 1503 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 1504 bool HasFP = hasFP(MF); 1505 bool IsWin64Prologue = isWin64Prologue(MF); 1506 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 1507 // FIXME: Emit FPO data for EH funclets. 1508 bool NeedsWinFPO = 1509 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); 1510 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 1511 bool NeedsDwarfCFI = needsDwarfCFI(MF); 1512 Register FramePtr = TRI->getFrameRegister(MF); 1513 const Register MachineFramePtr = 1514 STI.isTarget64BitILP32() 1515 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1516 Register BasePtr = TRI->getBaseRegister(); 1517 bool HasWinCFI = false; 1518 1519 // Debug location must be unknown since the first debug location is used 1520 // to determine the end of the prologue. 1521 DebugLoc DL; 1522 1523 // Space reserved for stack-based arguments when making a (ABI-guaranteed) 1524 // tail call. 1525 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 1526 if (TailCallArgReserveSize && IsWin64Prologue) 1527 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 1528 1529 const bool EmitStackProbeCall = 1530 STI.getTargetLowering()->hasStackProbeSymbol(MF); 1531 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); 1532 1533 if (HasFP && X86FI->hasSwiftAsyncContext()) { 1534 switch (MF.getTarget().Options.SwiftAsyncFramePointer) { 1535 case SwiftAsyncFramePointerMode::DeploymentBased: 1536 if (STI.swiftAsyncContextIsDynamicallySet()) { 1537 // The special symbol below is absolute and has a *value* suitable to be 1538 // combined with the frame pointer directly. 1539 BuildMI(MBB, MBBI, DL, TII.get(X86::OR64rm), MachineFramePtr) 1540 .addUse(MachineFramePtr) 1541 .addUse(X86::RIP) 1542 .addImm(1) 1543 .addUse(X86::NoRegister) 1544 .addExternalSymbol("swift_async_extendedFramePointerFlags", 1545 X86II::MO_GOTPCREL) 1546 .addUse(X86::NoRegister); 1547 break; 1548 } 1549 LLVM_FALLTHROUGH; 1550 1551 case SwiftAsyncFramePointerMode::Always: 1552 BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8), MachineFramePtr) 1553 .addUse(MachineFramePtr) 1554 .addImm(60) 1555 .setMIFlag(MachineInstr::FrameSetup); 1556 break; 1557 1558 case SwiftAsyncFramePointerMode::Never: 1559 break; 1560 } 1561 } 1562 1563 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 1564 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1565 // stack alignment. 1566 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1567 Fn.arg_size() == 2) { 1568 StackSize += 8; 1569 MFI.setStackSize(StackSize); 1570 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); 1571 } 1572 1573 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1574 // function, and use up to 128 bytes of stack space, don't have a frame 1575 // pointer, calls, or dynamic alloca then we do not need to adjust the 1576 // stack pointer (we fit in the Red Zone). We also check that we don't 1577 // push and pop from the stack. 1578 if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) && 1579 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1580 !MFI.adjustsStack() && // No calls. 1581 !EmitStackProbeCall && // No stack probes. 1582 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1583 !MF.shouldSplitStack()) { // Regular stack 1584 uint64_t MinSize = 1585 X86FI->getCalleeSavedFrameSize() - X86FI->getTCReturnAddrDelta(); 1586 if (HasFP) MinSize += SlotSize; 1587 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1588 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1589 MFI.setStackSize(StackSize); 1590 } 1591 1592 // Insert stack pointer adjustment for later moving of return addr. Only 1593 // applies to tail call optimized functions where the callee argument stack 1594 // size is bigger than the callers. 1595 if (TailCallArgReserveSize != 0) { 1596 BuildStackAdjustment(MBB, MBBI, DL, -(int)TailCallArgReserveSize, 1597 /*InEpilogue=*/false) 1598 .setMIFlag(MachineInstr::FrameSetup); 1599 } 1600 1601 // Mapping for machine moves: 1602 // 1603 // DST: VirtualFP AND 1604 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1605 // ELSE => DW_CFA_def_cfa 1606 // 1607 // SRC: VirtualFP AND 1608 // DST: Register => DW_CFA_def_cfa_register 1609 // 1610 // ELSE 1611 // OFFSET < 0 => DW_CFA_offset_extended_sf 1612 // REG < 64 => DW_CFA_offset + Reg 1613 // ELSE => DW_CFA_offset_extended 1614 1615 uint64_t NumBytes = 0; 1616 int stackGrowth = -SlotSize; 1617 1618 // Find the funclet establisher parameter 1619 Register Establisher = X86::NoRegister; 1620 if (IsClrFunclet) 1621 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1622 else if (IsFunclet) 1623 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1624 1625 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1626 // Immediately spill establisher into the home slot. 1627 // The runtime cares about this. 1628 // MOV64mr %rdx, 16(%rsp) 1629 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1630 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1631 .addReg(Establisher) 1632 .setMIFlag(MachineInstr::FrameSetup); 1633 MBB.addLiveIn(Establisher); 1634 } 1635 1636 if (HasFP) { 1637 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1638 1639 // Calculate required stack adjustment. 1640 uint64_t FrameSize = StackSize - SlotSize; 1641 // If required, include space for extra hidden slot for stashing base pointer. 1642 if (X86FI->getRestoreBasePointer()) 1643 FrameSize += SlotSize; 1644 1645 NumBytes = FrameSize - 1646 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1647 1648 // Callee-saved registers are pushed on stack before the stack is realigned. 1649 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 1650 NumBytes = alignTo(NumBytes, MaxAlign); 1651 1652 // Save EBP/RBP into the appropriate stack slot. 1653 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1654 .addReg(MachineFramePtr, RegState::Kill) 1655 .setMIFlag(MachineInstr::FrameSetup); 1656 1657 if (NeedsDwarfCFI) { 1658 // Mark the place where EBP/RBP was saved. 1659 // Define the current CFA rule to use the provided offset. 1660 assert(StackSize); 1661 BuildCFI(MBB, MBBI, DL, 1662 MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth)); 1663 1664 // Change the rule for the FramePtr to be an "offset" rule. 1665 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1666 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset( 1667 nullptr, DwarfFramePtr, 2 * stackGrowth)); 1668 } 1669 1670 if (NeedsWinCFI) { 1671 HasWinCFI = true; 1672 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1673 .addImm(FramePtr) 1674 .setMIFlag(MachineInstr::FrameSetup); 1675 } 1676 1677 if (!IsFunclet) { 1678 if (X86FI->hasSwiftAsyncContext()) { 1679 const auto &Attrs = MF.getFunction().getAttributes(); 1680 1681 // Before we update the live frame pointer we have to ensure there's a 1682 // valid (or null) asynchronous context in its slot just before FP in 1683 // the frame record, so store it now. 1684 if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) { 1685 // We have an initial context in r14, store it just before the frame 1686 // pointer. 1687 MBB.addLiveIn(X86::R14); 1688 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1689 .addReg(X86::R14) 1690 .setMIFlag(MachineInstr::FrameSetup); 1691 } else { 1692 // No initial context, store null so that there's no pointer that 1693 // could be misused. 1694 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i8)) 1695 .addImm(0) 1696 .setMIFlag(MachineInstr::FrameSetup); 1697 } 1698 1699 if (NeedsWinCFI) { 1700 HasWinCFI = true; 1701 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1702 .addImm(X86::R14) 1703 .setMIFlag(MachineInstr::FrameSetup); 1704 } 1705 1706 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr) 1707 .addUse(X86::RSP) 1708 .addImm(1) 1709 .addUse(X86::NoRegister) 1710 .addImm(8) 1711 .addUse(X86::NoRegister) 1712 .setMIFlag(MachineInstr::FrameSetup); 1713 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri8), X86::RSP) 1714 .addUse(X86::RSP) 1715 .addImm(8) 1716 .setMIFlag(MachineInstr::FrameSetup); 1717 } 1718 1719 if (!IsWin64Prologue && !IsFunclet) { 1720 // Update EBP with the new base value. 1721 if (!X86FI->hasSwiftAsyncContext()) 1722 BuildMI(MBB, MBBI, DL, 1723 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1724 FramePtr) 1725 .addReg(StackPtr) 1726 .setMIFlag(MachineInstr::FrameSetup); 1727 1728 if (NeedsDwarfCFI) { 1729 // Mark effective beginning of when frame pointer becomes valid. 1730 // Define the current CFA to use the EBP/RBP register. 1731 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1732 BuildCFI( 1733 MBB, MBBI, DL, 1734 MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr)); 1735 } 1736 1737 if (NeedsWinFPO) { 1738 // .cv_fpo_setframe $FramePtr 1739 HasWinCFI = true; 1740 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1741 .addImm(FramePtr) 1742 .addImm(0) 1743 .setMIFlag(MachineInstr::FrameSetup); 1744 } 1745 } 1746 } 1747 } else { 1748 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1749 NumBytes = StackSize - 1750 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1751 } 1752 1753 // Update the offset adjustment, which is mainly used by codeview to translate 1754 // from ESP to VFRAME relative local variable offsets. 1755 if (!IsFunclet) { 1756 if (HasFP && TRI->hasStackRealignment(MF)) 1757 MFI.setOffsetAdjustment(-NumBytes); 1758 else 1759 MFI.setOffsetAdjustment(-StackSize); 1760 } 1761 1762 // For EH funclets, only allocate enough space for outgoing calls. Save the 1763 // NumBytes value that we would've used for the parent frame. 1764 unsigned ParentFrameNumBytes = NumBytes; 1765 if (IsFunclet) 1766 NumBytes = getWinEHFuncletFrameSize(MF); 1767 1768 // Skip the callee-saved push instructions. 1769 bool PushedRegs = false; 1770 int StackOffset = 2 * stackGrowth; 1771 1772 while (MBBI != MBB.end() && 1773 MBBI->getFlag(MachineInstr::FrameSetup) && 1774 (MBBI->getOpcode() == X86::PUSH32r || 1775 MBBI->getOpcode() == X86::PUSH64r)) { 1776 PushedRegs = true; 1777 Register Reg = MBBI->getOperand(0).getReg(); 1778 ++MBBI; 1779 1780 if (!HasFP && NeedsDwarfCFI) { 1781 // Mark callee-saved push instruction. 1782 // Define the current CFA rule to use the provided offset. 1783 assert(StackSize); 1784 BuildCFI(MBB, MBBI, DL, 1785 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset)); 1786 StackOffset += stackGrowth; 1787 } 1788 1789 if (NeedsWinCFI) { 1790 HasWinCFI = true; 1791 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1792 .addImm(Reg) 1793 .setMIFlag(MachineInstr::FrameSetup); 1794 } 1795 } 1796 1797 // Realign stack after we pushed callee-saved registers (so that we'll be 1798 // able to calculate their offsets from the frame pointer). 1799 // Don't do this for Win64, it needs to realign the stack after the prologue. 1800 if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) { 1801 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1802 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1803 1804 if (NeedsWinCFI) { 1805 HasWinCFI = true; 1806 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) 1807 .addImm(MaxAlign) 1808 .setMIFlag(MachineInstr::FrameSetup); 1809 } 1810 } 1811 1812 // If there is an SUB32ri of ESP immediately before this instruction, merge 1813 // the two. This can be the case when tail call elimination is enabled and 1814 // the callee has more arguments then the caller. 1815 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1816 1817 // Adjust stack pointer: ESP -= numbytes. 1818 1819 // Windows and cygwin/mingw require a prologue helper routine when allocating 1820 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1821 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1822 // stack and adjust the stack pointer in one go. The 64-bit version of 1823 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1824 // responsible for adjusting the stack pointer. Touching the stack at 4K 1825 // increments is necessary to ensure that the guard pages used by the OS 1826 // virtual memory manager are allocated in correct sequence. 1827 uint64_t AlignedNumBytes = NumBytes; 1828 if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) 1829 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1830 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) { 1831 assert(!X86FI->getUsesRedZone() && 1832 "The Red Zone is not accounted for in stack probes"); 1833 1834 // Check whether EAX is livein for this block. 1835 bool isEAXAlive = isEAXLiveIn(MBB); 1836 1837 if (isEAXAlive) { 1838 if (Is64Bit) { 1839 // Save RAX 1840 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1841 .addReg(X86::RAX, RegState::Kill) 1842 .setMIFlag(MachineInstr::FrameSetup); 1843 } else { 1844 // Save EAX 1845 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1846 .addReg(X86::EAX, RegState::Kill) 1847 .setMIFlag(MachineInstr::FrameSetup); 1848 } 1849 } 1850 1851 if (Is64Bit) { 1852 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1853 // Function prologue is responsible for adjusting the stack pointer. 1854 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1855 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Alloc)), X86::RAX) 1856 .addImm(Alloc) 1857 .setMIFlag(MachineInstr::FrameSetup); 1858 } else { 1859 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1860 // We'll also use 4 already allocated bytes for EAX. 1861 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1862 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1863 .setMIFlag(MachineInstr::FrameSetup); 1864 } 1865 1866 // Call __chkstk, __chkstk_ms, or __alloca. 1867 emitStackProbe(MF, MBB, MBBI, DL, true); 1868 1869 if (isEAXAlive) { 1870 // Restore RAX/EAX 1871 MachineInstr *MI; 1872 if (Is64Bit) 1873 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 1874 StackPtr, false, NumBytes - 8); 1875 else 1876 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1877 StackPtr, false, NumBytes - 4); 1878 MI->setFlag(MachineInstr::FrameSetup); 1879 MBB.insert(MBBI, MI); 1880 } 1881 } else if (NumBytes) { 1882 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 1883 } 1884 1885 if (NeedsWinCFI && NumBytes) { 1886 HasWinCFI = true; 1887 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1888 .addImm(NumBytes) 1889 .setMIFlag(MachineInstr::FrameSetup); 1890 } 1891 1892 int SEHFrameOffset = 0; 1893 unsigned SPOrEstablisher; 1894 if (IsFunclet) { 1895 if (IsClrFunclet) { 1896 // The establisher parameter passed to a CLR funclet is actually a pointer 1897 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1898 // to find the root function establisher frame by loading the PSPSym from 1899 // the intermediate frame. 1900 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1901 MachinePointerInfo NoInfo; 1902 MBB.addLiveIn(Establisher); 1903 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1904 Establisher, false, PSPSlotOffset) 1905 .addMemOperand(MF.getMachineMemOperand( 1906 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize))); 1907 ; 1908 // Save the root establisher back into the current funclet's (mostly 1909 // empty) frame, in case a sub-funclet or the GC needs it. 1910 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1911 false, PSPSlotOffset) 1912 .addReg(Establisher) 1913 .addMemOperand(MF.getMachineMemOperand( 1914 NoInfo, 1915 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1916 SlotSize, Align(SlotSize))); 1917 } 1918 SPOrEstablisher = Establisher; 1919 } else { 1920 SPOrEstablisher = StackPtr; 1921 } 1922 1923 if (IsWin64Prologue && HasFP) { 1924 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1925 // this calculation on the incoming establisher, which holds the value of 1926 // RSP from the parent frame at the end of the prologue. 1927 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1928 if (SEHFrameOffset) 1929 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1930 SPOrEstablisher, false, SEHFrameOffset); 1931 else 1932 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1933 .addReg(SPOrEstablisher); 1934 1935 // If this is not a funclet, emit the CFI describing our frame pointer. 1936 if (NeedsWinCFI && !IsFunclet) { 1937 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 1938 HasWinCFI = true; 1939 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1940 .addImm(FramePtr) 1941 .addImm(SEHFrameOffset) 1942 .setMIFlag(MachineInstr::FrameSetup); 1943 if (isAsynchronousEHPersonality(Personality)) 1944 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 1945 } 1946 } else if (IsFunclet && STI.is32Bit()) { 1947 // Reset EBP / ESI to something good for funclets. 1948 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 1949 // If we're a catch funclet, we can be returned to via catchret. Save ESP 1950 // into the registration node so that the runtime will restore it for us. 1951 if (!MBB.isCleanupFuncletEntry()) { 1952 assert(Personality == EHPersonality::MSVC_CXX); 1953 Register FrameReg; 1954 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 1955 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed(); 1956 // ESP is the first field, so no extra displacement is needed. 1957 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 1958 false, EHRegOffset) 1959 .addReg(X86::ESP); 1960 } 1961 } 1962 1963 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 1964 const MachineInstr &FrameInstr = *MBBI; 1965 ++MBBI; 1966 1967 if (NeedsWinCFI) { 1968 int FI; 1969 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 1970 if (X86::FR64RegClass.contains(Reg)) { 1971 int Offset; 1972 Register IgnoredFrameReg; 1973 if (IsWin64Prologue && IsFunclet) 1974 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); 1975 else 1976 Offset = 1977 getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() + 1978 SEHFrameOffset; 1979 1980 HasWinCFI = true; 1981 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 1982 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 1983 .addImm(Reg) 1984 .addImm(Offset) 1985 .setMIFlag(MachineInstr::FrameSetup); 1986 } 1987 } 1988 } 1989 } 1990 1991 if (NeedsWinCFI && HasWinCFI) 1992 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 1993 .setMIFlag(MachineInstr::FrameSetup); 1994 1995 if (FnHasClrFunclet && !IsFunclet) { 1996 // Save the so-called Initial-SP (i.e. the value of the stack pointer 1997 // immediately after the prolog) into the PSPSlot so that funclets 1998 // and the GC can recover it. 1999 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 2000 auto PSPInfo = MachinePointerInfo::getFixedStack( 2001 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 2002 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 2003 PSPSlotOffset) 2004 .addReg(StackPtr) 2005 .addMemOperand(MF.getMachineMemOperand( 2006 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 2007 SlotSize, Align(SlotSize))); 2008 } 2009 2010 // Realign stack after we spilled callee-saved registers (so that we'll be 2011 // able to calculate their offsets from the frame pointer). 2012 // Win64 requires aligning the stack after the prologue. 2013 if (IsWin64Prologue && TRI->hasStackRealignment(MF)) { 2014 assert(HasFP && "There should be a frame pointer if stack is realigned."); 2015 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 2016 } 2017 2018 // We already dealt with stack realignment and funclets above. 2019 if (IsFunclet && STI.is32Bit()) 2020 return; 2021 2022 // If we need a base pointer, set it up here. It's whatever the value 2023 // of the stack pointer is at this point. Any variable size objects 2024 // will be allocated after this, so we can still use the base pointer 2025 // to reference locals. 2026 if (TRI->hasBasePointer(MF)) { 2027 // Update the base pointer with the current stack pointer. 2028 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 2029 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 2030 .addReg(SPOrEstablisher) 2031 .setMIFlag(MachineInstr::FrameSetup); 2032 if (X86FI->getRestoreBasePointer()) { 2033 // Stash value of base pointer. Saving RSP instead of EBP shortens 2034 // dependence chain. Used by SjLj EH. 2035 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 2036 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 2037 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 2038 .addReg(SPOrEstablisher) 2039 .setMIFlag(MachineInstr::FrameSetup); 2040 } 2041 2042 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 2043 // Stash the value of the frame pointer relative to the base pointer for 2044 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 2045 // it recovers the frame pointer from the base pointer rather than the 2046 // other way around. 2047 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 2048 Register UsedReg; 2049 int Offset = 2050 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 2051 .getFixed(); 2052 assert(UsedReg == BasePtr); 2053 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 2054 .addReg(FramePtr) 2055 .setMIFlag(MachineInstr::FrameSetup); 2056 } 2057 } 2058 2059 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 2060 // Mark end of stack pointer adjustment. 2061 if (!HasFP && NumBytes) { 2062 // Define the current CFA rule to use the provided offset. 2063 assert(StackSize); 2064 BuildCFI( 2065 MBB, MBBI, DL, 2066 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth)); 2067 } 2068 2069 // Emit DWARF info specifying the offsets of the callee-saved registers. 2070 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true); 2071 } 2072 2073 // X86 Interrupt handling function cannot assume anything about the direction 2074 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 2075 // in each prologue of interrupt handler function. 2076 // 2077 // FIXME: Create "cld" instruction only in these cases: 2078 // 1. The interrupt handling function uses any of the "rep" instructions. 2079 // 2. Interrupt handling function calls another function. 2080 // 2081 if (Fn.getCallingConv() == CallingConv::X86_INTR) 2082 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 2083 .setMIFlag(MachineInstr::FrameSetup); 2084 2085 // At this point we know if the function has WinCFI or not. 2086 MF.setHasWinCFI(HasWinCFI); 2087 } 2088 2089 bool X86FrameLowering::canUseLEAForSPInEpilogue( 2090 const MachineFunction &MF) const { 2091 // We can't use LEA instructions for adjusting the stack pointer if we don't 2092 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 2093 // to deallocate the stack. 2094 // This means that we can use LEA for SP in two situations: 2095 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 2096 // 2. We *have* a frame pointer which means we are permitted to use LEA. 2097 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 2098 } 2099 2100 static bool isFuncletReturnInstr(MachineInstr &MI) { 2101 switch (MI.getOpcode()) { 2102 case X86::CATCHRET: 2103 case X86::CLEANUPRET: 2104 return true; 2105 default: 2106 return false; 2107 } 2108 llvm_unreachable("impossible"); 2109 } 2110 2111 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 2112 // stack. It holds a pointer to the bottom of the root function frame. The 2113 // establisher frame pointer passed to a nested funclet may point to the 2114 // (mostly empty) frame of its parent funclet, but it will need to find 2115 // the frame of the root function to access locals. To facilitate this, 2116 // every funclet copies the pointer to the bottom of the root function 2117 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 2118 // same offset for the PSPSym in the root function frame that's used in the 2119 // funclets' frames allows each funclet to dynamically accept any ancestor 2120 // frame as its establisher argument (the runtime doesn't guarantee the 2121 // immediate parent for some reason lost to history), and also allows the GC, 2122 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 2123 // frame with only a single offset reported for the entire method. 2124 unsigned 2125 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 2126 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 2127 Register SPReg; 2128 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 2129 /*IgnoreSPUpdates*/ true) 2130 .getFixed(); 2131 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 2132 return static_cast<unsigned>(Offset); 2133 } 2134 2135 unsigned 2136 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 2137 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2138 // This is the size of the pushed CSRs. 2139 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2140 // This is the size of callee saved XMMs. 2141 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2142 unsigned XMMSize = WinEHXMMSlotInfo.size() * 2143 TRI->getSpillSize(X86::VR128RegClass); 2144 // This is the amount of stack a funclet needs to allocate. 2145 unsigned UsedSize; 2146 EHPersonality Personality = 2147 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 2148 if (Personality == EHPersonality::CoreCLR) { 2149 // CLR funclets need to hold enough space to include the PSPSym, at the 2150 // same offset from the stack pointer (immediately after the prolog) as it 2151 // resides at in the main function. 2152 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 2153 } else { 2154 // Other funclets just need enough stack for outgoing call arguments. 2155 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 2156 } 2157 // RBP is not included in the callee saved register block. After pushing RBP, 2158 // everything is 16 byte aligned. Everything we allocate before an outgoing 2159 // call must also be 16 byte aligned. 2160 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign()); 2161 // Subtract out the size of the callee saved registers. This is how much stack 2162 // each funclet will allocate. 2163 return FrameSizeMinusRBP + XMMSize - CSSize; 2164 } 2165 2166 static bool isTailCallOpcode(unsigned Opc) { 2167 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 2168 Opc == X86::TCRETURNmi || 2169 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 2170 Opc == X86::TCRETURNmi64; 2171 } 2172 2173 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 2174 MachineBasicBlock &MBB) const { 2175 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2176 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2177 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 2178 MachineBasicBlock::iterator MBBI = Terminator; 2179 DebugLoc DL; 2180 if (MBBI != MBB.end()) 2181 DL = MBBI->getDebugLoc(); 2182 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 2183 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 2184 Register FramePtr = TRI->getFrameRegister(MF); 2185 Register MachineFramePtr = 2186 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 2187 2188 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2189 bool NeedsWin64CFI = 2190 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 2191 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 2192 2193 // Get the number of bytes to allocate from the FrameInfo. 2194 uint64_t StackSize = MFI.getStackSize(); 2195 uint64_t MaxAlign = calculateMaxStackAlign(MF); 2196 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2197 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 2198 bool HasFP = hasFP(MF); 2199 uint64_t NumBytes = 0; 2200 2201 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && 2202 !MF.getTarget().getTargetTriple().isOSWindows()) && 2203 MF.needsFrameMoves(); 2204 2205 if (IsFunclet) { 2206 assert(HasFP && "EH funclets without FP not yet implemented"); 2207 NumBytes = getWinEHFuncletFrameSize(MF); 2208 } else if (HasFP) { 2209 // Calculate required stack adjustment. 2210 uint64_t FrameSize = StackSize - SlotSize; 2211 NumBytes = FrameSize - CSSize - TailCallArgReserveSize; 2212 2213 // Callee-saved registers were pushed on stack before the stack was 2214 // realigned. 2215 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 2216 NumBytes = alignTo(FrameSize, MaxAlign); 2217 } else { 2218 NumBytes = StackSize - CSSize - TailCallArgReserveSize; 2219 } 2220 uint64_t SEHStackAllocAmt = NumBytes; 2221 2222 // AfterPop is the position to insert .cfi_restore. 2223 MachineBasicBlock::iterator AfterPop = MBBI; 2224 if (HasFP) { 2225 if (X86FI->hasSwiftAsyncContext()) { 2226 // Discard the context. 2227 int Offset = 16 + mergeSPUpdates(MBB, MBBI, true); 2228 emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/true); 2229 } 2230 // Pop EBP. 2231 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 2232 MachineFramePtr) 2233 .setMIFlag(MachineInstr::FrameDestroy); 2234 2235 // We need to reset FP to its untagged state on return. Bit 60 is currently 2236 // used to show the presence of an extended frame. 2237 if (X86FI->hasSwiftAsyncContext()) { 2238 BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8), 2239 MachineFramePtr) 2240 .addUse(MachineFramePtr) 2241 .addImm(60) 2242 .setMIFlag(MachineInstr::FrameDestroy); 2243 } 2244 2245 if (NeedsDwarfCFI) { 2246 unsigned DwarfStackPtr = 2247 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 2248 BuildCFI(MBB, MBBI, DL, 2249 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize)); 2250 if (!MBB.succ_empty() && !MBB.isReturnBlock()) { 2251 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 2252 BuildCFI(MBB, AfterPop, DL, 2253 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr)); 2254 --MBBI; 2255 --AfterPop; 2256 } 2257 --MBBI; 2258 } 2259 } 2260 2261 MachineBasicBlock::iterator FirstCSPop = MBBI; 2262 // Skip the callee-saved pop instructions. 2263 while (MBBI != MBB.begin()) { 2264 MachineBasicBlock::iterator PI = std::prev(MBBI); 2265 unsigned Opc = PI->getOpcode(); 2266 2267 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 2268 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2269 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2270 (Opc != X86::BTR64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)) && 2271 (Opc != X86::ADD64ri8 || !PI->getFlag(MachineInstr::FrameDestroy))) 2272 break; 2273 FirstCSPop = PI; 2274 } 2275 2276 --MBBI; 2277 } 2278 MBBI = FirstCSPop; 2279 2280 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 2281 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 2282 2283 if (MBBI != MBB.end()) 2284 DL = MBBI->getDebugLoc(); 2285 // If there is an ADD32ri or SUB32ri of ESP immediately before this 2286 // instruction, merge the two instructions. 2287 if (NumBytes || MFI.hasVarSizedObjects()) 2288 NumBytes += mergeSPUpdates(MBB, MBBI, true); 2289 2290 // If dynamic alloca is used, then reset esp to point to the last callee-saved 2291 // slot before popping them off! Same applies for the case, when stack was 2292 // realigned. Don't do this if this was a funclet epilogue, since the funclets 2293 // will not do realignment or dynamic stack allocation. 2294 if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) && 2295 !IsFunclet) { 2296 if (TRI->hasStackRealignment(MF)) 2297 MBBI = FirstCSPop; 2298 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 2299 uint64_t LEAAmount = 2300 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 2301 2302 if (X86FI->hasSwiftAsyncContext()) 2303 LEAAmount -= 16; 2304 2305 // There are only two legal forms of epilogue: 2306 // - add SEHAllocationSize, %rsp 2307 // - lea SEHAllocationSize(%FramePtr), %rsp 2308 // 2309 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 2310 // However, we may use this sequence if we have a frame pointer because the 2311 // effects of the prologue can safely be undone. 2312 if (LEAAmount != 0) { 2313 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 2314 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 2315 FramePtr, false, LEAAmount); 2316 --MBBI; 2317 } else { 2318 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 2319 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 2320 .addReg(FramePtr); 2321 --MBBI; 2322 } 2323 } else if (NumBytes) { 2324 // Adjust stack pointer back: ESP += numbytes. 2325 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 2326 if (!HasFP && NeedsDwarfCFI) { 2327 // Define the current CFA rule to use the provided offset. 2328 BuildCFI(MBB, MBBI, DL, 2329 MCCFIInstruction::cfiDefCfaOffset( 2330 nullptr, CSSize + TailCallArgReserveSize + SlotSize)); 2331 } 2332 --MBBI; 2333 } 2334 2335 // Windows unwinder will not invoke function's exception handler if IP is 2336 // either in prologue or in epilogue. This behavior causes a problem when a 2337 // call immediately precedes an epilogue, because the return address points 2338 // into the epilogue. To cope with that, we insert an epilogue marker here, 2339 // then replace it with a 'nop' if it ends up immediately after a CALL in the 2340 // final emitted code. 2341 if (NeedsWin64CFI && MF.hasWinCFI()) 2342 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 2343 2344 if (!HasFP && NeedsDwarfCFI) { 2345 MBBI = FirstCSPop; 2346 int64_t Offset = -CSSize - SlotSize; 2347 // Mark callee-saved pop instruction. 2348 // Define the current CFA rule to use the provided offset. 2349 while (MBBI != MBB.end()) { 2350 MachineBasicBlock::iterator PI = MBBI; 2351 unsigned Opc = PI->getOpcode(); 2352 ++MBBI; 2353 if (Opc == X86::POP32r || Opc == X86::POP64r) { 2354 Offset += SlotSize; 2355 BuildCFI(MBB, MBBI, DL, 2356 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset)); 2357 } 2358 } 2359 } 2360 2361 // Emit DWARF info specifying the restores of the callee-saved registers. 2362 // For epilogue with return inside or being other block without successor, 2363 // no need to generate .cfi_restore for callee-saved registers. 2364 if (NeedsDwarfCFI && !MBB.succ_empty()) 2365 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false); 2366 2367 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 2368 // Add the return addr area delta back since we are not tail calling. 2369 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 2370 assert(Offset >= 0 && "TCDelta should never be positive"); 2371 if (Offset) { 2372 // Check for possible merge with preceding ADD instruction. 2373 Offset += mergeSPUpdates(MBB, Terminator, true); 2374 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 2375 } 2376 } 2377 2378 // Emit tilerelease for AMX kernel. 2379 if (X86FI->hasVirtualTileReg()) 2380 BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE)); 2381 } 2382 2383 StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, 2384 int FI, 2385 Register &FrameReg) const { 2386 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2387 2388 bool IsFixed = MFI.isFixedObjectIndex(FI); 2389 // We can't calculate offset from frame pointer if the stack is realigned, 2390 // so enforce usage of stack/base pointer. The base pointer is used when we 2391 // have dynamic allocas in addition to dynamic realignment. 2392 if (TRI->hasBasePointer(MF)) 2393 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 2394 else if (TRI->hasStackRealignment(MF)) 2395 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 2396 else 2397 FrameReg = TRI->getFrameRegister(MF); 2398 2399 // Offset will hold the offset from the stack pointer at function entry to the 2400 // object. 2401 // We need to factor in additional offsets applied during the prologue to the 2402 // frame, base, and stack pointer depending on which is used. 2403 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 2404 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2405 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2406 uint64_t StackSize = MFI.getStackSize(); 2407 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2408 int64_t FPDelta = 0; 2409 2410 // In an x86 interrupt, remove the offset we added to account for the return 2411 // address from any stack object allocated in the caller's frame. Interrupts 2412 // do not have a standard return address. Fixed objects in the current frame, 2413 // such as SSE register spills, should not get this treatment. 2414 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && 2415 Offset >= 0) { 2416 Offset += getOffsetOfLocalArea(); 2417 } 2418 2419 if (IsWin64Prologue) { 2420 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 2421 2422 // Calculate required stack adjustment. 2423 uint64_t FrameSize = StackSize - SlotSize; 2424 // If required, include space for extra hidden slot for stashing base pointer. 2425 if (X86FI->getRestoreBasePointer()) 2426 FrameSize += SlotSize; 2427 uint64_t NumBytes = FrameSize - CSSize; 2428 2429 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 2430 if (FI && FI == X86FI->getFAIndex()) 2431 return StackOffset::getFixed(-SEHFrameOffset); 2432 2433 // FPDelta is the offset from the "traditional" FP location of the old base 2434 // pointer followed by return address and the location required by the 2435 // restricted Win64 prologue. 2436 // Add FPDelta to all offsets below that go through the frame pointer. 2437 FPDelta = FrameSize - SEHFrameOffset; 2438 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 2439 "FPDelta isn't aligned per the Win64 ABI!"); 2440 } 2441 2442 if (FrameReg == TRI->getFramePtr()) { 2443 // Skip saved EBP/RBP 2444 Offset += SlotSize; 2445 2446 // Account for restricted Windows prologue. 2447 Offset += FPDelta; 2448 2449 // Skip the RETADDR move area 2450 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2451 if (TailCallReturnAddrDelta < 0) 2452 Offset -= TailCallReturnAddrDelta; 2453 2454 return StackOffset::getFixed(Offset); 2455 } 2456 2457 // FrameReg is either the stack pointer or a base pointer. But the base is 2458 // located at the end of the statically known StackSize so the distinction 2459 // doesn't really matter. 2460 if (TRI->hasStackRealignment(MF) || TRI->hasBasePointer(MF)) 2461 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2462 return StackOffset::getFixed(Offset + StackSize); 2463 } 2464 2465 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, 2466 Register &FrameReg) const { 2467 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2468 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2469 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2470 const auto it = WinEHXMMSlotInfo.find(FI); 2471 2472 if (it == WinEHXMMSlotInfo.end()) 2473 return getFrameIndexReference(MF, FI, FrameReg).getFixed(); 2474 2475 FrameReg = TRI->getStackRegister(); 2476 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) + 2477 it->second; 2478 } 2479 2480 StackOffset 2481 X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI, 2482 Register &FrameReg, 2483 int Adjustment) const { 2484 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2485 FrameReg = TRI->getStackRegister(); 2486 return StackOffset::getFixed(MFI.getObjectOffset(FI) - 2487 getOffsetOfLocalArea() + Adjustment); 2488 } 2489 2490 StackOffset 2491 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, 2492 int FI, Register &FrameReg, 2493 bool IgnoreSPUpdates) const { 2494 2495 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2496 // Does not include any dynamic realign. 2497 const uint64_t StackSize = MFI.getStackSize(); 2498 // LLVM arranges the stack as follows: 2499 // ... 2500 // ARG2 2501 // ARG1 2502 // RETADDR 2503 // PUSH RBP <-- RBP points here 2504 // PUSH CSRs 2505 // ~~~~~~~ <-- possible stack realignment (non-win64) 2506 // ... 2507 // STACK OBJECTS 2508 // ... <-- RSP after prologue points here 2509 // ~~~~~~~ <-- possible stack realignment (win64) 2510 // 2511 // if (hasVarSizedObjects()): 2512 // ... <-- "base pointer" (ESI/RBX) points here 2513 // DYNAMIC ALLOCAS 2514 // ... <-- RSP points here 2515 // 2516 // Case 1: In the simple case of no stack realignment and no dynamic 2517 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 2518 // with fixed offsets from RSP. 2519 // 2520 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 2521 // stack objects are addressed with RBP and regular stack objects with RSP. 2522 // 2523 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 2524 // to address stack arguments for outgoing calls and nothing else. The "base 2525 // pointer" points to local variables, and RBP points to fixed objects. 2526 // 2527 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 2528 // answer we give is relative to the SP after the prologue, and not the 2529 // SP in the middle of the function. 2530 2531 if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) && 2532 !STI.isTargetWin64()) 2533 return getFrameIndexReference(MF, FI, FrameReg); 2534 2535 // If !hasReservedCallFrame the function might have SP adjustement in the 2536 // body. So, even though the offset is statically known, it depends on where 2537 // we are in the function. 2538 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) 2539 return getFrameIndexReference(MF, FI, FrameReg); 2540 2541 // We don't handle tail calls, and shouldn't be seeing them either. 2542 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 2543 "we don't handle this case!"); 2544 2545 // This is how the math works out: 2546 // 2547 // %rsp grows (i.e. gets lower) left to right. Each box below is 2548 // one word (eight bytes). Obj0 is the stack slot we're trying to 2549 // get to. 2550 // 2551 // ---------------------------------- 2552 // | BP | Obj0 | Obj1 | ... | ObjN | 2553 // ---------------------------------- 2554 // ^ ^ ^ ^ 2555 // A B C E 2556 // 2557 // A is the incoming stack pointer. 2558 // (B - A) is the local area offset (-8 for x86-64) [1] 2559 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 2560 // 2561 // |(E - B)| is the StackSize (absolute value, positive). For a 2562 // stack that grown down, this works out to be (B - E). [3] 2563 // 2564 // E is also the value of %rsp after stack has been set up, and we 2565 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 2566 // (C - E) == (C - A) - (B - A) + (B - E) 2567 // { Using [1], [2] and [3] above } 2568 // == getObjectOffset - LocalAreaOffset + StackSize 2569 2570 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 2571 } 2572 2573 bool X86FrameLowering::assignCalleeSavedSpillSlots( 2574 MachineFunction &MF, const TargetRegisterInfo *TRI, 2575 std::vector<CalleeSavedInfo> &CSI) const { 2576 MachineFrameInfo &MFI = MF.getFrameInfo(); 2577 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2578 2579 unsigned CalleeSavedFrameSize = 0; 2580 unsigned XMMCalleeSavedFrameSize = 0; 2581 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2582 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 2583 2584 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2585 2586 if (TailCallReturnAddrDelta < 0) { 2587 // create RETURNADDR area 2588 // arg 2589 // arg 2590 // RETADDR 2591 // { ... 2592 // RETADDR area 2593 // ... 2594 // } 2595 // [EBP] 2596 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 2597 TailCallReturnAddrDelta - SlotSize, true); 2598 } 2599 2600 // Spill the BasePtr if it's used. 2601 if (this->TRI->hasBasePointer(MF)) { 2602 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 2603 if (MF.hasEHFunclets()) { 2604 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize)); 2605 X86FI->setHasSEHFramePtrSave(true); 2606 X86FI->setSEHFramePtrSaveIndex(FI); 2607 } 2608 } 2609 2610 if (hasFP(MF)) { 2611 // emitPrologue always spills frame register the first thing. 2612 SpillSlotOffset -= SlotSize; 2613 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2614 2615 // The async context lives directly before the frame pointer, and we 2616 // allocate a second slot to preserve stack alignment. 2617 if (X86FI->hasSwiftAsyncContext()) { 2618 SpillSlotOffset -= SlotSize; 2619 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2620 SpillSlotOffset -= SlotSize; 2621 } 2622 2623 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 2624 // the frame register, we can delete it from CSI list and not have to worry 2625 // about avoiding it later. 2626 Register FPReg = TRI->getFrameRegister(MF); 2627 for (unsigned i = 0; i < CSI.size(); ++i) { 2628 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 2629 CSI.erase(CSI.begin() + i); 2630 break; 2631 } 2632 } 2633 } 2634 2635 // Assign slots for GPRs. It increases frame size. 2636 for (CalleeSavedInfo &I : llvm::reverse(CSI)) { 2637 Register Reg = I.getReg(); 2638 2639 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2640 continue; 2641 2642 SpillSlotOffset -= SlotSize; 2643 CalleeSavedFrameSize += SlotSize; 2644 2645 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2646 I.setFrameIdx(SlotIndex); 2647 } 2648 2649 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 2650 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); 2651 2652 // Assign slots for XMMs. 2653 for (CalleeSavedInfo &I : llvm::reverse(CSI)) { 2654 Register Reg = I.getReg(); 2655 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2656 continue; 2657 2658 // If this is k-register make sure we lookup via the largest legal type. 2659 MVT VT = MVT::Other; 2660 if (X86::VK16RegClass.contains(Reg)) 2661 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2662 2663 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2664 unsigned Size = TRI->getSpillSize(*RC); 2665 Align Alignment = TRI->getSpillAlign(*RC); 2666 // ensure alignment 2667 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); 2668 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment); 2669 2670 // spill into slot 2671 SpillSlotOffset -= Size; 2672 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 2673 I.setFrameIdx(SlotIndex); 2674 MFI.ensureMaxAlignment(Alignment); 2675 2676 // Save the start offset and size of XMM in stack frame for funclets. 2677 if (X86::VR128RegClass.contains(Reg)) { 2678 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; 2679 XMMCalleeSavedFrameSize += Size; 2680 } 2681 } 2682 2683 return true; 2684 } 2685 2686 bool X86FrameLowering::spillCalleeSavedRegisters( 2687 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2688 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2689 DebugLoc DL = MBB.findDebugLoc(MI); 2690 2691 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2692 // for us, and there are no XMM CSRs on Win32. 2693 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2694 return true; 2695 2696 // Push GPRs. It increases frame size. 2697 const MachineFunction &MF = *MBB.getParent(); 2698 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 2699 for (const CalleeSavedInfo &I : llvm::reverse(CSI)) { 2700 Register Reg = I.getReg(); 2701 2702 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2703 continue; 2704 2705 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2706 bool isLiveIn = MRI.isLiveIn(Reg); 2707 if (!isLiveIn) 2708 MBB.addLiveIn(Reg); 2709 2710 // Decide whether we can add a kill flag to the use. 2711 bool CanKill = !isLiveIn; 2712 // Check if any subregister is live-in 2713 if (CanKill) { 2714 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 2715 if (MRI.isLiveIn(*AReg)) { 2716 CanKill = false; 2717 break; 2718 } 2719 } 2720 } 2721 2722 // Do not set a kill flag on values that are also marked as live-in. This 2723 // happens with the @llvm-returnaddress intrinsic and with arguments 2724 // passed in callee saved registers. 2725 // Omitting the kill flags is conservatively correct even if the live-in 2726 // is not used after all. 2727 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 2728 .setMIFlag(MachineInstr::FrameSetup); 2729 } 2730 2731 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 2732 // It can be done by spilling XMMs to stack frame. 2733 for (const CalleeSavedInfo &I : llvm::reverse(CSI)) { 2734 Register Reg = I.getReg(); 2735 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2736 continue; 2737 2738 // If this is k-register make sure we lookup via the largest legal type. 2739 MVT VT = MVT::Other; 2740 if (X86::VK16RegClass.contains(Reg)) 2741 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2742 2743 // Add the callee-saved register as live-in. It's killed at the spill. 2744 MBB.addLiveIn(Reg); 2745 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2746 2747 TII.storeRegToStackSlot(MBB, MI, Reg, true, I.getFrameIdx(), RC, TRI); 2748 --MI; 2749 MI->setFlag(MachineInstr::FrameSetup); 2750 ++MI; 2751 } 2752 2753 return true; 2754 } 2755 2756 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 2757 MachineBasicBlock::iterator MBBI, 2758 MachineInstr *CatchRet) const { 2759 // SEH shouldn't use catchret. 2760 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 2761 MBB.getParent()->getFunction().getPersonalityFn())) && 2762 "SEH should not use CATCHRET"); 2763 const DebugLoc &DL = CatchRet->getDebugLoc(); 2764 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 2765 2766 // Fill EAX/RAX with the address of the target block. 2767 if (STI.is64Bit()) { 2768 // LEA64r CatchRetTarget(%rip), %rax 2769 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 2770 .addReg(X86::RIP) 2771 .addImm(0) 2772 .addReg(0) 2773 .addMBB(CatchRetTarget) 2774 .addReg(0); 2775 } else { 2776 // MOV32ri $CatchRetTarget, %eax 2777 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2778 .addMBB(CatchRetTarget); 2779 } 2780 2781 // Record that we've taken the address of CatchRetTarget and no longer just 2782 // reference it in a terminator. 2783 CatchRetTarget->setHasAddressTaken(); 2784 } 2785 2786 bool X86FrameLowering::restoreCalleeSavedRegisters( 2787 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2788 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2789 if (CSI.empty()) 2790 return false; 2791 2792 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 2793 // Don't restore CSRs in 32-bit EH funclets. Matches 2794 // spillCalleeSavedRegisters. 2795 if (STI.is32Bit()) 2796 return true; 2797 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 2798 // funclets. emitEpilogue transforms these to normal jumps. 2799 if (MI->getOpcode() == X86::CATCHRET) { 2800 const Function &F = MBB.getParent()->getFunction(); 2801 bool IsSEH = isAsynchronousEHPersonality( 2802 classifyEHPersonality(F.getPersonalityFn())); 2803 if (IsSEH) 2804 return true; 2805 } 2806 } 2807 2808 DebugLoc DL = MBB.findDebugLoc(MI); 2809 2810 // Reload XMMs from stack frame. 2811 for (const CalleeSavedInfo &I : CSI) { 2812 Register Reg = I.getReg(); 2813 if (X86::GR64RegClass.contains(Reg) || 2814 X86::GR32RegClass.contains(Reg)) 2815 continue; 2816 2817 // If this is k-register make sure we lookup via the largest legal type. 2818 MVT VT = MVT::Other; 2819 if (X86::VK16RegClass.contains(Reg)) 2820 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2821 2822 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2823 TII.loadRegFromStackSlot(MBB, MI, Reg, I.getFrameIdx(), RC, TRI); 2824 } 2825 2826 // POP GPRs. 2827 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 2828 for (const CalleeSavedInfo &I : CSI) { 2829 Register Reg = I.getReg(); 2830 if (!X86::GR64RegClass.contains(Reg) && 2831 !X86::GR32RegClass.contains(Reg)) 2832 continue; 2833 2834 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 2835 .setMIFlag(MachineInstr::FrameDestroy); 2836 } 2837 return true; 2838 } 2839 2840 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 2841 BitVector &SavedRegs, 2842 RegScavenger *RS) const { 2843 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2844 2845 // Spill the BasePtr if it's used. 2846 if (TRI->hasBasePointer(MF)){ 2847 Register BasePtr = TRI->getBaseRegister(); 2848 if (STI.isTarget64BitILP32()) 2849 BasePtr = getX86SubSuperRegister(BasePtr, 64); 2850 SavedRegs.set(BasePtr); 2851 } 2852 } 2853 2854 static bool 2855 HasNestArgument(const MachineFunction *MF) { 2856 const Function &F = MF->getFunction(); 2857 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 2858 I != E; I++) { 2859 if (I->hasNestAttr() && !I->use_empty()) 2860 return true; 2861 } 2862 return false; 2863 } 2864 2865 /// GetScratchRegister - Get a temp register for performing work in the 2866 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2867 /// and the properties of the function either one or two registers will be 2868 /// needed. Set primary to true for the first register, false for the second. 2869 static unsigned 2870 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2871 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 2872 2873 // Erlang stuff. 2874 if (CallingConvention == CallingConv::HiPE) { 2875 if (Is64Bit) 2876 return Primary ? X86::R14 : X86::R13; 2877 else 2878 return Primary ? X86::EBX : X86::EDI; 2879 } 2880 2881 if (Is64Bit) { 2882 if (IsLP64) 2883 return Primary ? X86::R11 : X86::R12; 2884 else 2885 return Primary ? X86::R11D : X86::R12D; 2886 } 2887 2888 bool IsNested = HasNestArgument(&MF); 2889 2890 if (CallingConvention == CallingConv::X86_FastCall || 2891 CallingConvention == CallingConv::Fast || 2892 CallingConvention == CallingConv::Tail) { 2893 if (IsNested) 2894 report_fatal_error("Segmented stacks does not support fastcall with " 2895 "nested function."); 2896 return Primary ? X86::EAX : X86::ECX; 2897 } 2898 if (IsNested) 2899 return Primary ? X86::EDX : X86::EAX; 2900 return Primary ? X86::ECX : X86::EAX; 2901 } 2902 2903 // The stack limit in the TCB is set to this many bytes above the actual stack 2904 // limit. 2905 static const uint64_t kSplitStackAvailable = 256; 2906 2907 void X86FrameLowering::adjustForSegmentedStacks( 2908 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2909 MachineFrameInfo &MFI = MF.getFrameInfo(); 2910 uint64_t StackSize; 2911 unsigned TlsReg, TlsOffset; 2912 DebugLoc DL; 2913 2914 // To support shrink-wrapping we would need to insert the new blocks 2915 // at the right place and update the branches to PrologueMBB. 2916 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2917 2918 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2919 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2920 "Scratch register is live-in"); 2921 2922 if (MF.getFunction().isVarArg()) 2923 report_fatal_error("Segmented stacks do not support vararg functions."); 2924 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 2925 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 2926 !STI.isTargetDragonFly()) 2927 report_fatal_error("Segmented stacks not supported on this platform."); 2928 2929 // Eventually StackSize will be calculated by a link-time pass; which will 2930 // also decide whether checking code needs to be injected into this particular 2931 // prologue. 2932 StackSize = MFI.getStackSize(); 2933 2934 // Do not generate a prologue for leaf functions with a stack of size zero. 2935 // For non-leaf functions we have to allow for the possibility that the 2936 // callis to a non-split function, as in PR37807. This function could also 2937 // take the address of a non-split function. When the linker tries to adjust 2938 // its non-existent prologue, it would fail with an error. Mark the object 2939 // file so that such failures are not errors. See this Go language bug-report 2940 // https://go-review.googlesource.com/c/go/+/148819/ 2941 if (StackSize == 0 && !MFI.hasTailCall()) { 2942 MF.getMMI().setHasNosplitStack(true); 2943 return; 2944 } 2945 2946 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 2947 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 2948 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2949 bool IsNested = false; 2950 2951 // We need to know if the function has a nest argument only in 64 bit mode. 2952 if (Is64Bit) 2953 IsNested = HasNestArgument(&MF); 2954 2955 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 2956 // allocMBB needs to be last (terminating) instruction. 2957 2958 for (const auto &LI : PrologueMBB.liveins()) { 2959 allocMBB->addLiveIn(LI); 2960 checkMBB->addLiveIn(LI); 2961 } 2962 2963 if (IsNested) 2964 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 2965 2966 MF.push_front(allocMBB); 2967 MF.push_front(checkMBB); 2968 2969 // When the frame size is less than 256 we just compare the stack 2970 // boundary directly to the value of the stack pointer, per gcc. 2971 bool CompareStackPointer = StackSize < kSplitStackAvailable; 2972 2973 // Read the limit off the current stacklet off the stack_guard location. 2974 if (Is64Bit) { 2975 if (STI.isTargetLinux()) { 2976 TlsReg = X86::FS; 2977 TlsOffset = IsLP64 ? 0x70 : 0x40; 2978 } else if (STI.isTargetDarwin()) { 2979 TlsReg = X86::GS; 2980 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 2981 } else if (STI.isTargetWin64()) { 2982 TlsReg = X86::GS; 2983 TlsOffset = 0x28; // pvArbitrary, reserved for application use 2984 } else if (STI.isTargetFreeBSD()) { 2985 TlsReg = X86::FS; 2986 TlsOffset = 0x18; 2987 } else if (STI.isTargetDragonFly()) { 2988 TlsReg = X86::FS; 2989 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 2990 } else { 2991 report_fatal_error("Segmented stacks not supported on this platform."); 2992 } 2993 2994 if (CompareStackPointer) 2995 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 2996 else 2997 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 2998 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2999 3000 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 3001 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 3002 } else { 3003 if (STI.isTargetLinux()) { 3004 TlsReg = X86::GS; 3005 TlsOffset = 0x30; 3006 } else if (STI.isTargetDarwin()) { 3007 TlsReg = X86::GS; 3008 TlsOffset = 0x48 + 90*4; 3009 } else if (STI.isTargetWin32()) { 3010 TlsReg = X86::FS; 3011 TlsOffset = 0x14; // pvArbitrary, reserved for application use 3012 } else if (STI.isTargetDragonFly()) { 3013 TlsReg = X86::FS; 3014 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 3015 } else if (STI.isTargetFreeBSD()) { 3016 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 3017 } else { 3018 report_fatal_error("Segmented stacks not supported on this platform."); 3019 } 3020 3021 if (CompareStackPointer) 3022 ScratchReg = X86::ESP; 3023 else 3024 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 3025 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 3026 3027 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 3028 STI.isTargetDragonFly()) { 3029 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 3030 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 3031 } else if (STI.isTargetDarwin()) { 3032 3033 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 3034 unsigned ScratchReg2; 3035 bool SaveScratch2; 3036 if (CompareStackPointer) { 3037 // The primary scratch register is available for holding the TLS offset. 3038 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3039 SaveScratch2 = false; 3040 } else { 3041 // Need to use a second register to hold the TLS offset 3042 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 3043 3044 // Unfortunately, with fastcc the second scratch register may hold an 3045 // argument. 3046 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 3047 } 3048 3049 // If Scratch2 is live-in then it needs to be saved. 3050 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 3051 "Scratch register is live-in and not saved"); 3052 3053 if (SaveScratch2) 3054 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 3055 .addReg(ScratchReg2, RegState::Kill); 3056 3057 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 3058 .addImm(TlsOffset); 3059 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 3060 .addReg(ScratchReg) 3061 .addReg(ScratchReg2).addImm(1).addReg(0) 3062 .addImm(0) 3063 .addReg(TlsReg); 3064 3065 if (SaveScratch2) 3066 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 3067 } 3068 } 3069 3070 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 3071 // It jumps to normal execution of the function body. 3072 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); 3073 3074 // On 32 bit we first push the arguments size and then the frame size. On 64 3075 // bit, we pass the stack frame size in r10 and the argument size in r11. 3076 if (Is64Bit) { 3077 // Functions with nested arguments use R10, so it needs to be saved across 3078 // the call to _morestack 3079 3080 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 3081 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 3082 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 3083 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 3084 3085 if (IsNested) 3086 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 3087 3088 BuildMI(allocMBB, DL, TII.get(getMOVriOpcode(IsLP64, StackSize)), Reg10) 3089 .addImm(StackSize); 3090 BuildMI(allocMBB, DL, 3091 TII.get(getMOVriOpcode(IsLP64, X86FI->getArgumentStackSize())), 3092 Reg11) 3093 .addImm(X86FI->getArgumentStackSize()); 3094 } else { 3095 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 3096 .addImm(X86FI->getArgumentStackSize()); 3097 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 3098 .addImm(StackSize); 3099 } 3100 3101 // __morestack is in libgcc 3102 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 3103 // Under the large code model, we cannot assume that __morestack lives 3104 // within 2^31 bytes of the call site, so we cannot use pc-relative 3105 // addressing. We cannot perform the call via a temporary register, 3106 // as the rax register may be used to store the static chain, and all 3107 // other suitable registers may be either callee-save or used for 3108 // parameter passing. We cannot use the stack at this point either 3109 // because __morestack manipulates the stack directly. 3110 // 3111 // To avoid these issues, perform an indirect call via a read-only memory 3112 // location containing the address. 3113 // 3114 // This solution is not perfect, as it assumes that the .rodata section 3115 // is laid out within 2^31 bytes of each function body, but this seems 3116 // to be sufficient for JIT. 3117 // FIXME: Add retpoline support and remove the error here.. 3118 if (STI.useIndirectThunkCalls()) 3119 report_fatal_error("Emitting morestack calls on 64-bit with the large " 3120 "code model and thunks not yet implemented."); 3121 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 3122 .addReg(X86::RIP) 3123 .addImm(0) 3124 .addReg(0) 3125 .addExternalSymbol("__morestack_addr") 3126 .addReg(0); 3127 MF.getMMI().setUsesMorestackAddr(true); 3128 } else { 3129 if (Is64Bit) 3130 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 3131 .addExternalSymbol("__morestack"); 3132 else 3133 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 3134 .addExternalSymbol("__morestack"); 3135 } 3136 3137 if (IsNested) 3138 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 3139 else 3140 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 3141 3142 allocMBB->addSuccessor(&PrologueMBB); 3143 3144 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); 3145 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); 3146 3147 #ifdef EXPENSIVE_CHECKS 3148 MF.verify(); 3149 #endif 3150 } 3151 3152 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 3153 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 3154 /// to fields it needs, through a named metadata node "hipe.literals" containing 3155 /// name-value pairs. 3156 static unsigned getHiPELiteral( 3157 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 3158 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 3159 MDNode *Node = HiPELiteralsMD->getOperand(i); 3160 if (Node->getNumOperands() != 2) continue; 3161 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 3162 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 3163 if (!NodeName || !NodeVal) continue; 3164 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 3165 if (ValConst && NodeName->getString() == LiteralName) { 3166 return ValConst->getZExtValue(); 3167 } 3168 } 3169 3170 report_fatal_error("HiPE literal " + LiteralName 3171 + " required but not provided"); 3172 } 3173 3174 // Return true if there are no non-ehpad successors to MBB and there are no 3175 // non-meta instructions between MBBI and MBB.end(). 3176 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, 3177 MachineBasicBlock::const_iterator MBBI) { 3178 return llvm::all_of( 3179 MBB.successors(), 3180 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && 3181 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { 3182 return MI.isMetaInstruction(); 3183 }); 3184 } 3185 3186 /// Erlang programs may need a special prologue to handle the stack size they 3187 /// might need at runtime. That is because Erlang/OTP does not implement a C 3188 /// stack but uses a custom implementation of hybrid stack/heap architecture. 3189 /// (for more information see Eric Stenman's Ph.D. thesis: 3190 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 3191 /// 3192 /// CheckStack: 3193 /// temp0 = sp - MaxStack 3194 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3195 /// OldStart: 3196 /// ... 3197 /// IncStack: 3198 /// call inc_stack # doubles the stack space 3199 /// temp0 = sp - MaxStack 3200 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3201 void X86FrameLowering::adjustForHiPEPrologue( 3202 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3203 MachineFrameInfo &MFI = MF.getFrameInfo(); 3204 DebugLoc DL; 3205 3206 // To support shrink-wrapping we would need to insert the new blocks 3207 // at the right place and update the branches to PrologueMBB. 3208 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 3209 3210 // HiPE-specific values 3211 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 3212 ->getNamedMetadata("hipe.literals"); 3213 if (!HiPELiteralsMD) 3214 report_fatal_error( 3215 "Can't generate HiPE prologue without runtime parameters"); 3216 const unsigned HipeLeafWords 3217 = getHiPELiteral(HiPELiteralsMD, 3218 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 3219 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 3220 const unsigned Guaranteed = HipeLeafWords * SlotSize; 3221 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? 3222 MF.getFunction().arg_size() - CCRegisteredArgs : 0; 3223 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 3224 3225 assert(STI.isTargetLinux() && 3226 "HiPE prologue is only supported on Linux operating systems."); 3227 3228 // Compute the largest caller's frame that is needed to fit the callees' 3229 // frames. This 'MaxStack' is computed from: 3230 // 3231 // a) the fixed frame size, which is the space needed for all spilled temps, 3232 // b) outgoing on-stack parameter areas, and 3233 // c) the minimum stack space this function needs to make available for the 3234 // functions it calls (a tunable ABI property). 3235 if (MFI.hasCalls()) { 3236 unsigned MoreStackForCalls = 0; 3237 3238 for (auto &MBB : MF) { 3239 for (auto &MI : MBB) { 3240 if (!MI.isCall()) 3241 continue; 3242 3243 // Get callee operand. 3244 const MachineOperand &MO = MI.getOperand(0); 3245 3246 // Only take account of global function calls (no closures etc.). 3247 if (!MO.isGlobal()) 3248 continue; 3249 3250 const Function *F = dyn_cast<Function>(MO.getGlobal()); 3251 if (!F) 3252 continue; 3253 3254 // Do not update 'MaxStack' for primitive and built-in functions 3255 // (encoded with names either starting with "erlang."/"bif_" or not 3256 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 3257 // "_", such as the BIF "suspend_0") as they are executed on another 3258 // stack. 3259 if (F->getName().contains("erlang.") || F->getName().contains("bif_") || 3260 F->getName().find_first_of("._") == StringRef::npos) 3261 continue; 3262 3263 unsigned CalleeStkArity = 3264 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 3265 if (HipeLeafWords - 1 > CalleeStkArity) 3266 MoreStackForCalls = std::max(MoreStackForCalls, 3267 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 3268 } 3269 } 3270 MaxStack += MoreStackForCalls; 3271 } 3272 3273 // If the stack frame needed is larger than the guaranteed then runtime checks 3274 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 3275 if (MaxStack > Guaranteed) { 3276 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 3277 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 3278 3279 for (const auto &LI : PrologueMBB.liveins()) { 3280 stackCheckMBB->addLiveIn(LI); 3281 incStackMBB->addLiveIn(LI); 3282 } 3283 3284 MF.push_front(incStackMBB); 3285 MF.push_front(stackCheckMBB); 3286 3287 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 3288 unsigned LEAop, CMPop, CALLop; 3289 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 3290 if (Is64Bit) { 3291 SPReg = X86::RSP; 3292 PReg = X86::RBP; 3293 LEAop = X86::LEA64r; 3294 CMPop = X86::CMP64rm; 3295 CALLop = X86::CALL64pcrel32; 3296 } else { 3297 SPReg = X86::ESP; 3298 PReg = X86::EBP; 3299 LEAop = X86::LEA32r; 3300 CMPop = X86::CMP32rm; 3301 CALLop = X86::CALLpcrel32; 3302 } 3303 3304 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3305 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 3306 "HiPE prologue scratch register is live-in"); 3307 3308 // Create new MBB for StackCheck: 3309 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 3310 SPReg, false, -MaxStack); 3311 // SPLimitOffset is in a fixed heap location (pointed by BP). 3312 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 3313 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3314 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); 3315 3316 // Create new MBB for IncStack: 3317 BuildMI(incStackMBB, DL, TII.get(CALLop)). 3318 addExternalSymbol("inc_stack_0"); 3319 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 3320 SPReg, false, -MaxStack); 3321 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 3322 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3323 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); 3324 3325 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 3326 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 3327 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 3328 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 3329 } 3330 #ifdef EXPENSIVE_CHECKS 3331 MF.verify(); 3332 #endif 3333 } 3334 3335 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 3336 MachineBasicBlock::iterator MBBI, 3337 const DebugLoc &DL, 3338 int Offset) const { 3339 if (Offset <= 0) 3340 return false; 3341 3342 if (Offset % SlotSize) 3343 return false; 3344 3345 int NumPops = Offset / SlotSize; 3346 // This is only worth it if we have at most 2 pops. 3347 if (NumPops != 1 && NumPops != 2) 3348 return false; 3349 3350 // Handle only the trivial case where the adjustment directly follows 3351 // a call. This is the most common one, anyway. 3352 if (MBBI == MBB.begin()) 3353 return false; 3354 MachineBasicBlock::iterator Prev = std::prev(MBBI); 3355 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 3356 return false; 3357 3358 unsigned Regs[2]; 3359 unsigned FoundRegs = 0; 3360 3361 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3362 const MachineOperand &RegMask = Prev->getOperand(1); 3363 3364 auto &RegClass = 3365 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 3366 // Try to find up to NumPops free registers. 3367 for (auto Candidate : RegClass) { 3368 // Poor man's liveness: 3369 // Since we're immediately after a call, any register that is clobbered 3370 // by the call and not defined by it can be considered dead. 3371 if (!RegMask.clobbersPhysReg(Candidate)) 3372 continue; 3373 3374 // Don't clobber reserved registers 3375 if (MRI.isReserved(Candidate)) 3376 continue; 3377 3378 bool IsDef = false; 3379 for (const MachineOperand &MO : Prev->implicit_operands()) { 3380 if (MO.isReg() && MO.isDef() && 3381 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 3382 IsDef = true; 3383 break; 3384 } 3385 } 3386 3387 if (IsDef) 3388 continue; 3389 3390 Regs[FoundRegs++] = Candidate; 3391 if (FoundRegs == (unsigned)NumPops) 3392 break; 3393 } 3394 3395 if (FoundRegs == 0) 3396 return false; 3397 3398 // If we found only one free register, but need two, reuse the same one twice. 3399 while (FoundRegs < (unsigned)NumPops) 3400 Regs[FoundRegs++] = Regs[0]; 3401 3402 for (int i = 0; i < NumPops; ++i) 3403 BuildMI(MBB, MBBI, DL, 3404 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 3405 3406 return true; 3407 } 3408 3409 MachineBasicBlock::iterator X86FrameLowering:: 3410 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 3411 MachineBasicBlock::iterator I) const { 3412 bool reserveCallFrame = hasReservedCallFrame(MF); 3413 unsigned Opcode = I->getOpcode(); 3414 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 3415 DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased. 3416 uint64_t Amount = TII.getFrameSize(*I); 3417 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 3418 I = MBB.erase(I); 3419 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 3420 3421 // Try to avoid emitting dead SP adjustments if the block end is unreachable, 3422 // typically because the function is marked noreturn (abort, throw, 3423 // assert_fail, etc). 3424 if (isDestroy && blockEndIsUnreachable(MBB, I)) 3425 return I; 3426 3427 if (!reserveCallFrame) { 3428 // If the stack pointer can be changed after prologue, turn the 3429 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 3430 // adjcallstackdown instruction into 'add ESP, <amt>' 3431 3432 // We need to keep the stack aligned properly. To do this, we round the 3433 // amount of space needed for the outgoing arguments up to the next 3434 // alignment boundary. 3435 Amount = alignTo(Amount, getStackAlign()); 3436 3437 const Function &F = MF.getFunction(); 3438 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 3439 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); 3440 3441 // If we have any exception handlers in this function, and we adjust 3442 // the SP before calls, we may need to indicate this to the unwinder 3443 // using GNU_ARGS_SIZE. Note that this may be necessary even when 3444 // Amount == 0, because the preceding function may have set a non-0 3445 // GNU_ARGS_SIZE. 3446 // TODO: We don't need to reset this between subsequent functions, 3447 // if it didn't change. 3448 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 3449 3450 if (HasDwarfEHHandlers && !isDestroy && 3451 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 3452 BuildCFI(MBB, InsertPos, DL, 3453 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 3454 3455 if (Amount == 0) 3456 return I; 3457 3458 // Factor out the amount that gets handled inside the sequence 3459 // (Pushes of argument for frame setup, callee pops for frame destroy) 3460 Amount -= InternalAmt; 3461 3462 // TODO: This is needed only if we require precise CFA. 3463 // If this is a callee-pop calling convention, emit a CFA adjust for 3464 // the amount the callee popped. 3465 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 3466 BuildCFI(MBB, InsertPos, DL, 3467 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 3468 3469 // Add Amount to SP to destroy a frame, or subtract to setup. 3470 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 3471 3472 if (StackAdjustment) { 3473 // Merge with any previous or following adjustment instruction. Note: the 3474 // instructions merged with here do not have CFI, so their stack 3475 // adjustments do not feed into CfaAdjustment. 3476 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 3477 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 3478 3479 if (StackAdjustment) { 3480 if (!(F.hasMinSize() && 3481 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 3482 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 3483 /*InEpilogue=*/false); 3484 } 3485 } 3486 3487 if (DwarfCFI && !hasFP(MF)) { 3488 // If we don't have FP, but need to generate unwind information, 3489 // we need to set the correct CFA offset after the stack adjustment. 3490 // How much we adjust the CFA offset depends on whether we're emitting 3491 // CFI only for EH purposes or for debugging. EH only requires the CFA 3492 // offset to be correct at each call site, while for debugging we want 3493 // it to be more precise. 3494 3495 int64_t CfaAdjustment = -StackAdjustment; 3496 // TODO: When not using precise CFA, we also need to adjust for the 3497 // InternalAmt here. 3498 if (CfaAdjustment) { 3499 BuildCFI(MBB, InsertPos, DL, 3500 MCCFIInstruction::createAdjustCfaOffset(nullptr, 3501 CfaAdjustment)); 3502 } 3503 } 3504 3505 return I; 3506 } 3507 3508 if (InternalAmt) { 3509 MachineBasicBlock::iterator CI = I; 3510 MachineBasicBlock::iterator B = MBB.begin(); 3511 while (CI != B && !std::prev(CI)->isCall()) 3512 --CI; 3513 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 3514 } 3515 3516 return I; 3517 } 3518 3519 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 3520 assert(MBB.getParent() && "Block is not attached to a function!"); 3521 const MachineFunction &MF = *MBB.getParent(); 3522 if (!MBB.isLiveIn(X86::EFLAGS)) 3523 return true; 3524 3525 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3526 return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext(); 3527 } 3528 3529 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 3530 assert(MBB.getParent() && "Block is not attached to a function!"); 3531 3532 // Win64 has strict requirements in terms of epilogue and we are 3533 // not taking a chance at messing with them. 3534 // I.e., unless this block is already an exit block, we can't use 3535 // it as an epilogue. 3536 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 3537 return false; 3538 3539 // Swift async context epilogue has a BTR instruction that clobbers parts of 3540 // EFLAGS. 3541 const MachineFunction &MF = *MBB.getParent(); 3542 if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext()) 3543 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3544 3545 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 3546 return true; 3547 3548 // If we cannot use LEA to adjust SP, we may need to use ADD, which 3549 // clobbers the EFLAGS. Check that we do not need to preserve it, 3550 // otherwise, conservatively assume this is not 3551 // safe to insert the epilogue here. 3552 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3553 } 3554 3555 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 3556 // If we may need to emit frameless compact unwind information, give 3557 // up as this is currently broken: PR25614. 3558 bool CompactUnwind = 3559 MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() != 3560 nullptr; 3561 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) || 3562 !CompactUnwind) && 3563 // The lowering of segmented stack and HiPE only support entry 3564 // blocks as prologue blocks: PR26107. This limitation may be 3565 // lifted if we fix: 3566 // - adjustForSegmentedStacks 3567 // - adjustForHiPEPrologue 3568 MF.getFunction().getCallingConv() != CallingConv::HiPE && 3569 !MF.shouldSplitStack(); 3570 } 3571 3572 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 3573 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3574 const DebugLoc &DL, bool RestoreSP) const { 3575 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 3576 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 3577 assert(STI.is32Bit() && !Uses64BitFramePtr && 3578 "restoring EBP/ESI on non-32-bit target"); 3579 3580 MachineFunction &MF = *MBB.getParent(); 3581 Register FramePtr = TRI->getFrameRegister(MF); 3582 Register BasePtr = TRI->getBaseRegister(); 3583 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 3584 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3585 MachineFrameInfo &MFI = MF.getFrameInfo(); 3586 3587 // FIXME: Don't set FrameSetup flag in catchret case. 3588 3589 int FI = FuncInfo.EHRegNodeFrameIndex; 3590 int EHRegSize = MFI.getObjectSize(FI); 3591 3592 if (RestoreSP) { 3593 // MOV32rm -EHRegSize(%ebp), %esp 3594 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 3595 X86::EBP, true, -EHRegSize) 3596 .setMIFlag(MachineInstr::FrameSetup); 3597 } 3598 3599 Register UsedReg; 3600 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed(); 3601 int EndOffset = -EHRegOffset - EHRegSize; 3602 FuncInfo.EHRegNodeEndOffset = EndOffset; 3603 3604 if (UsedReg == FramePtr) { 3605 // ADD $offset, %ebp 3606 unsigned ADDri = getADDriOpcode(false, EndOffset); 3607 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 3608 .addReg(FramePtr) 3609 .addImm(EndOffset) 3610 .setMIFlag(MachineInstr::FrameSetup) 3611 ->getOperand(3) 3612 .setIsDead(); 3613 assert(EndOffset >= 0 && 3614 "end of registration object above normal EBP position!"); 3615 } else if (UsedReg == BasePtr) { 3616 // LEA offset(%ebp), %esi 3617 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 3618 FramePtr, false, EndOffset) 3619 .setMIFlag(MachineInstr::FrameSetup); 3620 // MOV32rm SavedEBPOffset(%esi), %ebp 3621 assert(X86FI->getHasSEHFramePtrSave()); 3622 int Offset = 3623 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 3624 .getFixed(); 3625 assert(UsedReg == BasePtr); 3626 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 3627 UsedReg, true, Offset) 3628 .setMIFlag(MachineInstr::FrameSetup); 3629 } else { 3630 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 3631 } 3632 return MBBI; 3633 } 3634 3635 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 3636 return TRI->getSlotSize(); 3637 } 3638 3639 Register 3640 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const { 3641 return TRI->getDwarfRegNum(StackPtr, true); 3642 } 3643 3644 namespace { 3645 // Struct used by orderFrameObjects to help sort the stack objects. 3646 struct X86FrameSortingObject { 3647 bool IsValid = false; // true if we care about this Object. 3648 unsigned ObjectIndex = 0; // Index of Object into MFI list. 3649 unsigned ObjectSize = 0; // Size of Object in bytes. 3650 Align ObjectAlignment = Align(1); // Alignment of Object in bytes. 3651 unsigned ObjectNumUses = 0; // Object static number of uses. 3652 }; 3653 3654 // The comparison function we use for std::sort to order our local 3655 // stack symbols. The current algorithm is to use an estimated 3656 // "density". This takes into consideration the size and number of 3657 // uses each object has in order to roughly minimize code size. 3658 // So, for example, an object of size 16B that is referenced 5 times 3659 // will get higher priority than 4 4B objects referenced 1 time each. 3660 // It's not perfect and we may be able to squeeze a few more bytes out of 3661 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 3662 // fringe end can have special consideration, given their size is less 3663 // important, etc.), but the algorithmic complexity grows too much to be 3664 // worth the extra gains we get. This gets us pretty close. 3665 // The final order leaves us with objects with highest priority going 3666 // at the end of our list. 3667 struct X86FrameSortingComparator { 3668 inline bool operator()(const X86FrameSortingObject &A, 3669 const X86FrameSortingObject &B) const { 3670 uint64_t DensityAScaled, DensityBScaled; 3671 3672 // For consistency in our comparison, all invalid objects are placed 3673 // at the end. This also allows us to stop walking when we hit the 3674 // first invalid item after it's all sorted. 3675 if (!A.IsValid) 3676 return false; 3677 if (!B.IsValid) 3678 return true; 3679 3680 // The density is calculated by doing : 3681 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 3682 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 3683 // Since this approach may cause inconsistencies in 3684 // the floating point <, >, == comparisons, depending on the floating 3685 // point model with which the compiler was built, we're going 3686 // to scale both sides by multiplying with 3687 // A.ObjectSize * B.ObjectSize. This ends up factoring away 3688 // the division and, with it, the need for any floating point 3689 // arithmetic. 3690 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 3691 static_cast<uint64_t>(B.ObjectSize); 3692 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 3693 static_cast<uint64_t>(A.ObjectSize); 3694 3695 // If the two densities are equal, prioritize highest alignment 3696 // objects. This allows for similar alignment objects 3697 // to be packed together (given the same density). 3698 // There's room for improvement here, also, since we can pack 3699 // similar alignment (different density) objects next to each 3700 // other to save padding. This will also require further 3701 // complexity/iterations, and the overall gain isn't worth it, 3702 // in general. Something to keep in mind, though. 3703 if (DensityAScaled == DensityBScaled) 3704 return A.ObjectAlignment < B.ObjectAlignment; 3705 3706 return DensityAScaled < DensityBScaled; 3707 } 3708 }; 3709 } // namespace 3710 3711 // Order the symbols in the local stack. 3712 // We want to place the local stack objects in some sort of sensible order. 3713 // The heuristic we use is to try and pack them according to static number 3714 // of uses and size of object in order to minimize code size. 3715 void X86FrameLowering::orderFrameObjects( 3716 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 3717 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3718 3719 // Don't waste time if there's nothing to do. 3720 if (ObjectsToAllocate.empty()) 3721 return; 3722 3723 // Create an array of all MFI objects. We won't need all of these 3724 // objects, but we're going to create a full array of them to make 3725 // it easier to index into when we're counting "uses" down below. 3726 // We want to be able to easily/cheaply access an object by simply 3727 // indexing into it, instead of having to search for it every time. 3728 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 3729 3730 // Walk the objects we care about and mark them as such in our working 3731 // struct. 3732 for (auto &Obj : ObjectsToAllocate) { 3733 SortingObjects[Obj].IsValid = true; 3734 SortingObjects[Obj].ObjectIndex = Obj; 3735 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj); 3736 // Set the size. 3737 int ObjectSize = MFI.getObjectSize(Obj); 3738 if (ObjectSize == 0) 3739 // Variable size. Just use 4. 3740 SortingObjects[Obj].ObjectSize = 4; 3741 else 3742 SortingObjects[Obj].ObjectSize = ObjectSize; 3743 } 3744 3745 // Count the number of uses for each object. 3746 for (auto &MBB : MF) { 3747 for (auto &MI : MBB) { 3748 if (MI.isDebugInstr()) 3749 continue; 3750 for (const MachineOperand &MO : MI.operands()) { 3751 // Check to see if it's a local stack symbol. 3752 if (!MO.isFI()) 3753 continue; 3754 int Index = MO.getIndex(); 3755 // Check to see if it falls within our range, and is tagged 3756 // to require ordering. 3757 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 3758 SortingObjects[Index].IsValid) 3759 SortingObjects[Index].ObjectNumUses++; 3760 } 3761 } 3762 } 3763 3764 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 3765 // info). 3766 llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); 3767 3768 // Now modify the original list to represent the final order that 3769 // we want. The order will depend on whether we're going to access them 3770 // from the stack pointer or the frame pointer. For SP, the list should 3771 // end up with the END containing objects that we want with smaller offsets. 3772 // For FP, it should be flipped. 3773 int i = 0; 3774 for (auto &Obj : SortingObjects) { 3775 // All invalid items are sorted at the end, so it's safe to stop. 3776 if (!Obj.IsValid) 3777 break; 3778 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3779 } 3780 3781 // Flip it if we're accessing off of the FP. 3782 if (!TRI->hasStackRealignment(MF) && hasFP(MF)) 3783 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 3784 } 3785 3786 3787 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 3788 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 3789 unsigned Offset = 16; 3790 // RBP is immediately pushed. 3791 Offset += SlotSize; 3792 // All callee-saved registers are then pushed. 3793 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 3794 // Every funclet allocates enough stack space for the largest outgoing call. 3795 Offset += getWinEHFuncletFrameSize(MF); 3796 return Offset; 3797 } 3798 3799 void X86FrameLowering::processFunctionBeforeFrameFinalized( 3800 MachineFunction &MF, RegScavenger *RS) const { 3801 // Mark the function as not having WinCFI. We will set it back to true in 3802 // emitPrologue if it gets called and emits CFI. 3803 MF.setHasWinCFI(false); 3804 3805 // If we are using Windows x64 CFI, ensure that the stack is always 8 byte 3806 // aligned. The format doesn't support misaligned stack adjustments. 3807 if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) 3808 MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize)); 3809 3810 // If this function isn't doing Win64-style C++ EH, we don't need to do 3811 // anything. 3812 if (STI.is64Bit() && MF.hasEHFunclets() && 3813 classifyEHPersonality(MF.getFunction().getPersonalityFn()) == 3814 EHPersonality::MSVC_CXX) { 3815 adjustFrameForMsvcCxxEh(MF); 3816 } 3817 } 3818 3819 void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const { 3820 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 3821 // relative to RSP after the prologue. Find the offset of the last fixed 3822 // object, so that we can allocate a slot immediately following it. If there 3823 // were no fixed objects, use offset -SlotSize, which is immediately after the 3824 // return address. Fixed objects have negative frame indices. 3825 MachineFrameInfo &MFI = MF.getFrameInfo(); 3826 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3827 int64_t MinFixedObjOffset = -SlotSize; 3828 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 3829 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 3830 3831 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 3832 for (WinEHHandlerType &H : TBME.HandlerArray) { 3833 int FrameIndex = H.CatchObj.FrameIndex; 3834 if (FrameIndex != INT_MAX) { 3835 // Ensure alignment. 3836 unsigned Align = MFI.getObjectAlign(FrameIndex).value(); 3837 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 3838 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 3839 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 3840 } 3841 } 3842 } 3843 3844 // Ensure alignment. 3845 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 3846 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 3847 int UnwindHelpFI = 3848 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); 3849 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3850 3851 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 3852 // other frame setup instructions. 3853 MachineBasicBlock &MBB = MF.front(); 3854 auto MBBI = MBB.begin(); 3855 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3856 ++MBBI; 3857 3858 DebugLoc DL = MBB.findDebugLoc(MBBI); 3859 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 3860 UnwindHelpFI) 3861 .addImm(-2); 3862 } 3863 3864 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced( 3865 MachineFunction &MF, RegScavenger *RS) const { 3866 if (STI.is32Bit() && MF.hasEHFunclets()) 3867 restoreWinEHStackPointersInParent(MF); 3868 } 3869 3870 void X86FrameLowering::restoreWinEHStackPointersInParent( 3871 MachineFunction &MF) const { 3872 // 32-bit functions have to restore stack pointers when control is transferred 3873 // back to the parent function. These blocks are identified as eh pads that 3874 // are not funclet entries. 3875 bool IsSEH = isAsynchronousEHPersonality( 3876 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 3877 for (MachineBasicBlock &MBB : MF) { 3878 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry(); 3879 if (NeedsRestore) 3880 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(), 3881 /*RestoreSP=*/IsSEH); 3882 } 3883 } 3884