1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of TargetFrameLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86FrameLowering.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrInfo.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Analysis/EHPersonalities.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/WinEHFuncInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Target/TargetOptions.h"
33 #include "llvm/Support/Debug.h"
34 #include <cstdlib>
35 
36 using namespace llvm;
37 
38 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
39                                    unsigned StackAlignOverride)
40     : TargetFrameLowering(StackGrowsDown, StackAlignOverride,
41                           STI.is64Bit() ? -8 : -4),
42       STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
43   // Cache a bunch of frame-related predicates for this subtarget.
44   SlotSize = TRI->getSlotSize();
45   Is64Bit = STI.is64Bit();
46   IsLP64 = STI.isTarget64BitLP64();
47   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
48   Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
49   StackPtr = TRI->getStackRegister();
50 }
51 
52 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
53   return !MF.getFrameInfo().hasVarSizedObjects() &&
54          !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
55 }
56 
57 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
58 /// call frame pseudos can be simplified.  Having a FP, as in the default
59 /// implementation, is not sufficient here since we can't always use it.
60 /// Use a more nuanced condition.
61 bool
62 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
63   return hasReservedCallFrame(MF) ||
64          (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
65          TRI->hasBasePointer(MF);
66 }
67 
68 // needsFrameIndexResolution - Do we need to perform FI resolution for
69 // this function. Normally, this is required only when the function
70 // has any stack objects. However, FI resolution actually has another job,
71 // not apparent from the title - it resolves callframesetup/destroy
72 // that were not simplified earlier.
73 // So, this is required for x86 functions that have push sequences even
74 // when there are no stack objects.
75 bool
76 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
77   return MF.getFrameInfo().hasStackObjects() ||
78          MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
79 }
80 
81 /// hasFP - Return true if the specified function should have a dedicated frame
82 /// pointer register.  This is true if the function has variable sized allocas
83 /// or if frame pointer elimination is disabled.
84 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
85   const MachineFrameInfo &MFI = MF.getFrameInfo();
86   const MachineModuleInfo &MMI = MF.getMMI();
87 
88   return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
89           TRI->needsStackRealignment(MF) ||
90           MFI.hasVarSizedObjects() ||
91           MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
92           MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
93           MMI.callsUnwindInit() || MMI.hasEHFunclets() || MMI.callsEHReturn() ||
94           MFI.hasStackMap() || MFI.hasPatchPoint() ||
95           MFI.hasCopyImplyingStackAdjustment());
96 }
97 
98 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
99   if (IsLP64) {
100     if (isInt<8>(Imm))
101       return X86::SUB64ri8;
102     return X86::SUB64ri32;
103   } else {
104     if (isInt<8>(Imm))
105       return X86::SUB32ri8;
106     return X86::SUB32ri;
107   }
108 }
109 
110 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
111   if (IsLP64) {
112     if (isInt<8>(Imm))
113       return X86::ADD64ri8;
114     return X86::ADD64ri32;
115   } else {
116     if (isInt<8>(Imm))
117       return X86::ADD32ri8;
118     return X86::ADD32ri;
119   }
120 }
121 
122 static unsigned getSUBrrOpcode(unsigned isLP64) {
123   return isLP64 ? X86::SUB64rr : X86::SUB32rr;
124 }
125 
126 static unsigned getADDrrOpcode(unsigned isLP64) {
127   return isLP64 ? X86::ADD64rr : X86::ADD32rr;
128 }
129 
130 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
131   if (IsLP64) {
132     if (isInt<8>(Imm))
133       return X86::AND64ri8;
134     return X86::AND64ri32;
135   }
136   if (isInt<8>(Imm))
137     return X86::AND32ri8;
138   return X86::AND32ri;
139 }
140 
141 static unsigned getLEArOpcode(unsigned IsLP64) {
142   return IsLP64 ? X86::LEA64r : X86::LEA32r;
143 }
144 
145 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
146 /// when it reaches the "return" instruction. We can then pop a stack object
147 /// to this register without worry about clobbering it.
148 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
149                                        MachineBasicBlock::iterator &MBBI,
150                                        const X86RegisterInfo *TRI,
151                                        bool Is64Bit) {
152   const MachineFunction *MF = MBB.getParent();
153   const Function *F = MF->getFunction();
154   if (!F || MF->getMMI().callsEHReturn())
155     return 0;
156 
157   const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);
158 
159   if (MBBI == MBB.end())
160     return 0;
161 
162   switch (MBBI->getOpcode()) {
163   default: return 0;
164   case TargetOpcode::PATCHABLE_RET:
165   case X86::RET:
166   case X86::RETL:
167   case X86::RETQ:
168   case X86::RETIL:
169   case X86::RETIQ:
170   case X86::TCRETURNdi:
171   case X86::TCRETURNri:
172   case X86::TCRETURNmi:
173   case X86::TCRETURNdi64:
174   case X86::TCRETURNri64:
175   case X86::TCRETURNmi64:
176   case X86::EH_RETURN:
177   case X86::EH_RETURN64: {
178     SmallSet<uint16_t, 8> Uses;
179     for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
180       MachineOperand &MO = MBBI->getOperand(i);
181       if (!MO.isReg() || MO.isDef())
182         continue;
183       unsigned Reg = MO.getReg();
184       if (!Reg)
185         continue;
186       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
187         Uses.insert(*AI);
188     }
189 
190     for (auto CS : AvailableRegs)
191       if (!Uses.count(CS) && CS != X86::RIP)
192         return CS;
193   }
194   }
195 
196   return 0;
197 }
198 
199 static bool isEAXLiveIn(MachineBasicBlock &MBB) {
200   for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
201     unsigned Reg = RegMask.PhysReg;
202 
203     if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
204         Reg == X86::AH || Reg == X86::AL)
205       return true;
206   }
207 
208   return false;
209 }
210 
211 /// Check if the flags need to be preserved before the terminators.
212 /// This would be the case, if the eflags is live-in of the region
213 /// composed by the terminators or live-out of that region, without
214 /// being defined by a terminator.
215 static bool
216 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
217   for (const MachineInstr &MI : MBB.terminators()) {
218     bool BreakNext = false;
219     for (const MachineOperand &MO : MI.operands()) {
220       if (!MO.isReg())
221         continue;
222       unsigned Reg = MO.getReg();
223       if (Reg != X86::EFLAGS)
224         continue;
225 
226       // This terminator needs an eflags that is not defined
227       // by a previous another terminator:
228       // EFLAGS is live-in of the region composed by the terminators.
229       if (!MO.isDef())
230         return true;
231       // This terminator defines the eflags, i.e., we don't need to preserve it.
232       // However, we still need to check this specific terminator does not
233       // read a live-in value.
234       BreakNext = true;
235     }
236     // We found a definition of the eflags, no need to preserve them.
237     if (BreakNext)
238       return false;
239   }
240 
241   // None of the terminators use or define the eflags.
242   // Check if they are live-out, that would imply we need to preserve them.
243   for (const MachineBasicBlock *Succ : MBB.successors())
244     if (Succ->isLiveIn(X86::EFLAGS))
245       return true;
246 
247   return false;
248 }
249 
250 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
251 /// stack pointer by a constant value.
252 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
253                                     MachineBasicBlock::iterator &MBBI,
254                                     int64_t NumBytes, bool InEpilogue) const {
255   bool isSub = NumBytes < 0;
256   uint64_t Offset = isSub ? -NumBytes : NumBytes;
257 
258   uint64_t Chunk = (1LL << 31) - 1;
259   DebugLoc DL = MBB.findDebugLoc(MBBI);
260 
261   while (Offset) {
262     if (Offset > Chunk) {
263       // Rather than emit a long series of instructions for large offsets,
264       // load the offset into a register and do one sub/add
265       unsigned Reg = 0;
266 
267       if (isSub && !isEAXLiveIn(MBB))
268         Reg = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
269       else
270         Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
271 
272       if (Reg) {
273         unsigned Opc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
274         BuildMI(MBB, MBBI, DL, TII.get(Opc), Reg)
275           .addImm(Offset);
276         Opc = isSub
277           ? getSUBrrOpcode(Is64Bit)
278           : getADDrrOpcode(Is64Bit);
279         MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
280           .addReg(StackPtr)
281           .addReg(Reg);
282         MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
283         Offset = 0;
284         continue;
285       }
286     }
287 
288     uint64_t ThisVal = std::min(Offset, Chunk);
289     if (ThisVal == (Is64Bit ? 8 : 4)) {
290       // Use push / pop instead.
291       unsigned Reg = isSub
292         ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
293         : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
294       if (Reg) {
295         unsigned Opc = isSub
296           ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
297           : (Is64Bit ? X86::POP64r  : X86::POP32r);
298         MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
299           .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
300         if (isSub)
301           MI->setFlag(MachineInstr::FrameSetup);
302         else
303           MI->setFlag(MachineInstr::FrameDestroy);
304         Offset -= ThisVal;
305         continue;
306       }
307     }
308 
309     MachineInstrBuilder MI = BuildStackAdjustment(
310         MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue);
311     if (isSub)
312       MI.setMIFlag(MachineInstr::FrameSetup);
313     else
314       MI.setMIFlag(MachineInstr::FrameDestroy);
315 
316     Offset -= ThisVal;
317   }
318 }
319 
320 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
321     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
322     const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
323   assert(Offset != 0 && "zero offset stack adjustment requested");
324 
325   // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
326   // is tricky.
327   bool UseLEA;
328   if (!InEpilogue) {
329     // Check if inserting the prologue at the beginning
330     // of MBB would require to use LEA operations.
331     // We need to use LEA operations if EFLAGS is live in, because
332     // it means an instruction will read it before it gets defined.
333     UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
334   } else {
335     // If we can use LEA for SP but we shouldn't, check that none
336     // of the terminators uses the eflags. Otherwise we will insert
337     // a ADD that will redefine the eflags and break the condition.
338     // Alternatively, we could move the ADD, but this may not be possible
339     // and is an optimization anyway.
340     UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
341     if (UseLEA && !STI.useLeaForSP())
342       UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
343     // If that assert breaks, that means we do not do the right thing
344     // in canUseAsEpilogue.
345     assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
346            "We shouldn't have allowed this insertion point");
347   }
348 
349   MachineInstrBuilder MI;
350   if (UseLEA) {
351     MI = addRegOffset(BuildMI(MBB, MBBI, DL,
352                               TII.get(getLEArOpcode(Uses64BitFramePtr)),
353                               StackPtr),
354                       StackPtr, false, Offset);
355   } else {
356     bool IsSub = Offset < 0;
357     uint64_t AbsOffset = IsSub ? -Offset : Offset;
358     unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
359                          : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
360     MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
361              .addReg(StackPtr)
362              .addImm(AbsOffset);
363     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
364   }
365   return MI;
366 }
367 
368 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
369                                      MachineBasicBlock::iterator &MBBI,
370                                      bool doMergeWithPrevious) const {
371   if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
372       (!doMergeWithPrevious && MBBI == MBB.end()))
373     return 0;
374 
375   MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
376   MachineBasicBlock::iterator NI = doMergeWithPrevious ? nullptr
377                                                        : std::next(MBBI);
378   unsigned Opc = PI->getOpcode();
379   int Offset = 0;
380 
381   if (!doMergeWithPrevious && NI != MBB.end() &&
382       NI->getOpcode() == TargetOpcode::CFI_INSTRUCTION) {
383     // Don't merge with the next instruction if it has CFI.
384     return Offset;
385   }
386 
387   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
388        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
389       PI->getOperand(0).getReg() == StackPtr){
390     assert(PI->getOperand(1).getReg() == StackPtr);
391     Offset += PI->getOperand(2).getImm();
392     MBB.erase(PI);
393     if (!doMergeWithPrevious) MBBI = NI;
394   } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
395              PI->getOperand(0).getReg() == StackPtr &&
396              PI->getOperand(1).getReg() == StackPtr &&
397              PI->getOperand(2).getImm() == 1 &&
398              PI->getOperand(3).getReg() == X86::NoRegister &&
399              PI->getOperand(5).getReg() == X86::NoRegister) {
400     // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
401     Offset += PI->getOperand(4).getImm();
402     MBB.erase(PI);
403     if (!doMergeWithPrevious) MBBI = NI;
404   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
405               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
406              PI->getOperand(0).getReg() == StackPtr) {
407     assert(PI->getOperand(1).getReg() == StackPtr);
408     Offset -= PI->getOperand(2).getImm();
409     MBB.erase(PI);
410     if (!doMergeWithPrevious) MBBI = NI;
411   }
412 
413   return Offset;
414 }
415 
416 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
417                                 MachineBasicBlock::iterator MBBI,
418                                 const DebugLoc &DL,
419                                 const MCCFIInstruction &CFIInst) const {
420   MachineFunction &MF = *MBB.getParent();
421   unsigned CFIIndex = MF.getMMI().addFrameInst(CFIInst);
422   BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
423       .addCFIIndex(CFIIndex);
424 }
425 
426 void X86FrameLowering::emitCalleeSavedFrameMoves(
427     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
428     const DebugLoc &DL) const {
429   MachineFunction &MF = *MBB.getParent();
430   MachineFrameInfo &MFI = MF.getFrameInfo();
431   MachineModuleInfo &MMI = MF.getMMI();
432   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
433 
434   // Add callee saved registers to move list.
435   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
436   if (CSI.empty()) return;
437 
438   // Calculate offsets.
439   for (std::vector<CalleeSavedInfo>::const_iterator
440          I = CSI.begin(), E = CSI.end(); I != E; ++I) {
441     int64_t Offset = MFI.getObjectOffset(I->getFrameIdx());
442     unsigned Reg = I->getReg();
443 
444     unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
445     BuildCFI(MBB, MBBI, DL,
446              MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
447   }
448 }
449 
450 void X86FrameLowering::emitStackProbe(MachineFunction &MF,
451                                       MachineBasicBlock &MBB,
452                                       MachineBasicBlock::iterator MBBI,
453                                       const DebugLoc &DL, bool InProlog) const {
454   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
455   if (STI.isTargetWindowsCoreCLR()) {
456     if (InProlog) {
457       emitStackProbeInlineStub(MF, MBB, MBBI, DL, true);
458     } else {
459       emitStackProbeInline(MF, MBB, MBBI, DL, false);
460     }
461   } else {
462     emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
463   }
464 }
465 
466 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
467                                         MachineBasicBlock &PrologMBB) const {
468   const StringRef ChkStkStubSymbol = "__chkstk_stub";
469   MachineInstr *ChkStkStub = nullptr;
470 
471   for (MachineInstr &MI : PrologMBB) {
472     if (MI.isCall() && MI.getOperand(0).isSymbol() &&
473         ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) {
474       ChkStkStub = &MI;
475       break;
476     }
477   }
478 
479   if (ChkStkStub != nullptr) {
480     assert(!ChkStkStub->isBundled() &&
481            "Not expecting bundled instructions here");
482     MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator());
483     assert(std::prev(MBBI) == ChkStkStub &&
484            "MBBI expected after __chkstk_stub.");
485     DebugLoc DL = PrologMBB.findDebugLoc(MBBI);
486     emitStackProbeInline(MF, PrologMBB, MBBI, DL, true);
487     ChkStkStub->eraseFromParent();
488   }
489 }
490 
491 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
492                                             MachineBasicBlock &MBB,
493                                             MachineBasicBlock::iterator MBBI,
494                                             const DebugLoc &DL,
495                                             bool InProlog) const {
496   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
497   assert(STI.is64Bit() && "different expansion needed for 32 bit");
498   assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
499   const TargetInstrInfo &TII = *STI.getInstrInfo();
500   const BasicBlock *LLVM_BB = MBB.getBasicBlock();
501 
502   // RAX contains the number of bytes of desired stack adjustment.
503   // The handling here assumes this value has already been updated so as to
504   // maintain stack alignment.
505   //
506   // We need to exit with RSP modified by this amount and execute suitable
507   // page touches to notify the OS that we're growing the stack responsibly.
508   // All stack probing must be done without modifying RSP.
509   //
510   // MBB:
511   //    SizeReg = RAX;
512   //    ZeroReg = 0
513   //    CopyReg = RSP
514   //    Flags, TestReg = CopyReg - SizeReg
515   //    FinalReg = !Flags.Ovf ? TestReg : ZeroReg
516   //    LimitReg = gs magic thread env access
517   //    if FinalReg >= LimitReg goto ContinueMBB
518   // RoundBB:
519   //    RoundReg = page address of FinalReg
520   // LoopMBB:
521   //    LoopReg = PHI(LimitReg,ProbeReg)
522   //    ProbeReg = LoopReg - PageSize
523   //    [ProbeReg] = 0
524   //    if (ProbeReg > RoundReg) goto LoopMBB
525   // ContinueMBB:
526   //    RSP = RSP - RAX
527   //    [rest of original MBB]
528 
529   // Set up the new basic blocks
530   MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
531   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
532   MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
533 
534   MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
535   MF.insert(MBBIter, RoundMBB);
536   MF.insert(MBBIter, LoopMBB);
537   MF.insert(MBBIter, ContinueMBB);
538 
539   // Split MBB and move the tail portion down to ContinueMBB.
540   MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
541   ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
542   ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
543 
544   // Some useful constants
545   const int64_t ThreadEnvironmentStackLimit = 0x10;
546   const int64_t PageSize = 0x1000;
547   const int64_t PageMask = ~(PageSize - 1);
548 
549   // Registers we need. For the normal case we use virtual
550   // registers. For the prolog expansion we use RAX, RCX and RDX.
551   MachineRegisterInfo &MRI = MF.getRegInfo();
552   const TargetRegisterClass *RegClass = &X86::GR64RegClass;
553   const unsigned SizeReg = InProlog ? (unsigned)X86::RAX
554                                     : MRI.createVirtualRegister(RegClass),
555                  ZeroReg = InProlog ? (unsigned)X86::RCX
556                                     : MRI.createVirtualRegister(RegClass),
557                  CopyReg = InProlog ? (unsigned)X86::RDX
558                                     : MRI.createVirtualRegister(RegClass),
559                  TestReg = InProlog ? (unsigned)X86::RDX
560                                     : MRI.createVirtualRegister(RegClass),
561                  FinalReg = InProlog ? (unsigned)X86::RDX
562                                      : MRI.createVirtualRegister(RegClass),
563                  RoundedReg = InProlog ? (unsigned)X86::RDX
564                                        : MRI.createVirtualRegister(RegClass),
565                  LimitReg = InProlog ? (unsigned)X86::RCX
566                                      : MRI.createVirtualRegister(RegClass),
567                  JoinReg = InProlog ? (unsigned)X86::RCX
568                                     : MRI.createVirtualRegister(RegClass),
569                  ProbeReg = InProlog ? (unsigned)X86::RCX
570                                      : MRI.createVirtualRegister(RegClass);
571 
572   // SP-relative offsets where we can save RCX and RDX.
573   int64_t RCXShadowSlot = 0;
574   int64_t RDXShadowSlot = 0;
575 
576   // If inlining in the prolog, save RCX and RDX.
577   // Future optimization: don't save or restore if not live in.
578   if (InProlog) {
579     // Compute the offsets. We need to account for things already
580     // pushed onto the stack at this point: return address, frame
581     // pointer (if used), and callee saves.
582     X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
583     const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
584     const bool HasFP = hasFP(MF);
585     RCXShadowSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
586     RDXShadowSlot = RCXShadowSlot + 8;
587     // Emit the saves.
588     addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
589                  RCXShadowSlot)
590         .addReg(X86::RCX);
591     addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
592                  RDXShadowSlot)
593         .addReg(X86::RDX);
594   } else {
595     // Not in the prolog. Copy RAX to a virtual reg.
596     BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
597   }
598 
599   // Add code to MBB to check for overflow and set the new target stack pointer
600   // to zero if so.
601   BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
602       .addReg(ZeroReg, RegState::Undef)
603       .addReg(ZeroReg, RegState::Undef);
604   BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
605   BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
606       .addReg(CopyReg)
607       .addReg(SizeReg);
608   BuildMI(&MBB, DL, TII.get(X86::CMOVB64rr), FinalReg)
609       .addReg(TestReg)
610       .addReg(ZeroReg);
611 
612   // FinalReg now holds final stack pointer value, or zero if
613   // allocation would overflow. Compare against the current stack
614   // limit from the thread environment block. Note this limit is the
615   // lowest touched page on the stack, not the point at which the OS
616   // will cause an overflow exception, so this is just an optimization
617   // to avoid unnecessarily touching pages that are below the current
618   // SP but already commited to the stack by the OS.
619   BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
620       .addReg(0)
621       .addImm(1)
622       .addReg(0)
623       .addImm(ThreadEnvironmentStackLimit)
624       .addReg(X86::GS);
625   BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
626   // Jump if the desired stack pointer is at or above the stack limit.
627   BuildMI(&MBB, DL, TII.get(X86::JAE_1)).addMBB(ContinueMBB);
628 
629   // Add code to roundMBB to round the final stack pointer to a page boundary.
630   BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
631       .addReg(FinalReg)
632       .addImm(PageMask);
633   BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
634 
635   // LimitReg now holds the current stack limit, RoundedReg page-rounded
636   // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
637   // and probe until we reach RoundedReg.
638   if (!InProlog) {
639     BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
640         .addReg(LimitReg)
641         .addMBB(RoundMBB)
642         .addReg(ProbeReg)
643         .addMBB(LoopMBB);
644   }
645 
646   addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
647                false, -PageSize);
648 
649   // Probe by storing a byte onto the stack.
650   BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
651       .addReg(ProbeReg)
652       .addImm(1)
653       .addReg(0)
654       .addImm(0)
655       .addReg(0)
656       .addImm(0);
657   BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
658       .addReg(RoundedReg)
659       .addReg(ProbeReg);
660   BuildMI(LoopMBB, DL, TII.get(X86::JNE_1)).addMBB(LoopMBB);
661 
662   MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
663 
664   // If in prolog, restore RDX and RCX.
665   if (InProlog) {
666     addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
667                          X86::RCX),
668                  X86::RSP, false, RCXShadowSlot);
669     addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
670                          X86::RDX),
671                  X86::RSP, false, RDXShadowSlot);
672   }
673 
674   // Now that the probing is done, add code to continueMBB to update
675   // the stack pointer for real.
676   BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
677       .addReg(X86::RSP)
678       .addReg(SizeReg);
679 
680   // Add the control flow edges we need.
681   MBB.addSuccessor(ContinueMBB);
682   MBB.addSuccessor(RoundMBB);
683   RoundMBB->addSuccessor(LoopMBB);
684   LoopMBB->addSuccessor(ContinueMBB);
685   LoopMBB->addSuccessor(LoopMBB);
686 
687   // Mark all the instructions added to the prolog as frame setup.
688   if (InProlog) {
689     for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
690       BeforeMBBI->setFlag(MachineInstr::FrameSetup);
691     }
692     for (MachineInstr &MI : *RoundMBB) {
693       MI.setFlag(MachineInstr::FrameSetup);
694     }
695     for (MachineInstr &MI : *LoopMBB) {
696       MI.setFlag(MachineInstr::FrameSetup);
697     }
698     for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
699          CMBBI != ContinueMBBI; ++CMBBI) {
700       CMBBI->setFlag(MachineInstr::FrameSetup);
701     }
702   }
703 
704   // Possible TODO: physreg liveness for InProlog case.
705 }
706 
707 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF,
708                                           MachineBasicBlock &MBB,
709                                           MachineBasicBlock::iterator MBBI,
710                                           const DebugLoc &DL,
711                                           bool InProlog) const {
712   bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
713 
714   unsigned CallOp;
715   if (Is64Bit)
716     CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
717   else
718     CallOp = X86::CALLpcrel32;
719 
720   const char *Symbol;
721   if (Is64Bit) {
722     if (STI.isTargetCygMing()) {
723       Symbol = "___chkstk_ms";
724     } else {
725       Symbol = "__chkstk";
726     }
727   } else if (STI.isTargetCygMing())
728     Symbol = "_alloca";
729   else
730     Symbol = "_chkstk";
731 
732   MachineInstrBuilder CI;
733   MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
734 
735   // All current stack probes take AX and SP as input, clobber flags, and
736   // preserve all registers. x86_64 probes leave RSP unmodified.
737   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
738     // For the large code model, we have to call through a register. Use R11,
739     // as it is scratch in all supported calling conventions.
740     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
741         .addExternalSymbol(Symbol);
742     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
743   } else {
744     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addExternalSymbol(Symbol);
745   }
746 
747   unsigned AX = Is64Bit ? X86::RAX : X86::EAX;
748   unsigned SP = Is64Bit ? X86::RSP : X86::ESP;
749   CI.addReg(AX, RegState::Implicit)
750       .addReg(SP, RegState::Implicit)
751       .addReg(AX, RegState::Define | RegState::Implicit)
752       .addReg(SP, RegState::Define | RegState::Implicit)
753       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
754 
755   if (Is64Bit) {
756     // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
757     // themselves. It also does not clobber %rax so we can reuse it when
758     // adjusting %rsp.
759     BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
760         .addReg(X86::RSP)
761         .addReg(X86::RAX);
762   }
763 
764   if (InProlog) {
765     // Apply the frame setup flag to all inserted instrs.
766     for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
767       ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
768   }
769 }
770 
771 void X86FrameLowering::emitStackProbeInlineStub(
772     MachineFunction &MF, MachineBasicBlock &MBB,
773     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
774 
775   assert(InProlog && "ChkStkStub called outside prolog!");
776 
777   BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
778       .addExternalSymbol("__chkstk_stub");
779 }
780 
781 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
782   // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
783   // and might require smaller successive adjustments.
784   const uint64_t Win64MaxSEHOffset = 128;
785   uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
786   // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
787   return SEHFrameOffset & -16;
788 }
789 
790 // If we're forcing a stack realignment we can't rely on just the frame
791 // info, we need to know the ABI stack alignment as well in case we
792 // have a call out.  Otherwise just make sure we have some alignment - we'll
793 // go with the minimum SlotSize.
794 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
795   const MachineFrameInfo &MFI = MF.getFrameInfo();
796   uint64_t MaxAlign = MFI.getMaxAlignment(); // Desired stack alignment.
797   unsigned StackAlign = getStackAlignment();
798   if (MF.getFunction()->hasFnAttribute("stackrealign")) {
799     if (MFI.hasCalls())
800       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
801     else if (MaxAlign < SlotSize)
802       MaxAlign = SlotSize;
803   }
804   return MaxAlign;
805 }
806 
807 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
808                                           MachineBasicBlock::iterator MBBI,
809                                           const DebugLoc &DL, unsigned Reg,
810                                           uint64_t MaxAlign) const {
811   uint64_t Val = -MaxAlign;
812   unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
813   MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
814                          .addReg(Reg)
815                          .addImm(Val)
816                          .setMIFlag(MachineInstr::FrameSetup);
817 
818   // The EFLAGS implicit def is dead.
819   MI->getOperand(3).setIsDead();
820 }
821 
822 /// emitPrologue - Push callee-saved registers onto the stack, which
823 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
824 /// space for local variables. Also emit labels used by the exception handler to
825 /// generate the exception handling frames.
826 
827 /*
828   Here's a gist of what gets emitted:
829 
830   ; Establish frame pointer, if needed
831   [if needs FP]
832       push  %rbp
833       .cfi_def_cfa_offset 16
834       .cfi_offset %rbp, -16
835       .seh_pushreg %rpb
836       mov  %rsp, %rbp
837       .cfi_def_cfa_register %rbp
838 
839   ; Spill general-purpose registers
840   [for all callee-saved GPRs]
841       pushq %<reg>
842       [if not needs FP]
843          .cfi_def_cfa_offset (offset from RETADDR)
844       .seh_pushreg %<reg>
845 
846   ; If the required stack alignment > default stack alignment
847   ; rsp needs to be re-aligned.  This creates a "re-alignment gap"
848   ; of unknown size in the stack frame.
849   [if stack needs re-alignment]
850       and  $MASK, %rsp
851 
852   ; Allocate space for locals
853   [if target is Windows and allocated space > 4096 bytes]
854       ; Windows needs special care for allocations larger
855       ; than one page.
856       mov $NNN, %rax
857       call ___chkstk_ms/___chkstk
858       sub  %rax, %rsp
859   [else]
860       sub  $NNN, %rsp
861 
862   [if needs FP]
863       .seh_stackalloc (size of XMM spill slots)
864       .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
865   [else]
866       .seh_stackalloc NNN
867 
868   ; Spill XMMs
869   ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
870   ; they may get spilled on any platform, if the current function
871   ; calls @llvm.eh.unwind.init
872   [if needs FP]
873       [for all callee-saved XMM registers]
874           movaps  %<xmm reg>, -MMM(%rbp)
875       [for all callee-saved XMM registers]
876           .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
877               ; i.e. the offset relative to (%rbp - SEHFrameOffset)
878   [else]
879       [for all callee-saved XMM registers]
880           movaps  %<xmm reg>, KKK(%rsp)
881       [for all callee-saved XMM registers]
882           .seh_savexmm %<xmm reg>, KKK
883 
884   .seh_endprologue
885 
886   [if needs base pointer]
887       mov  %rsp, %rbx
888       [if needs to restore base pointer]
889           mov %rsp, -MMM(%rbp)
890 
891   ; Emit CFI info
892   [if needs FP]
893       [for all callee-saved registers]
894           .cfi_offset %<reg>, (offset from %rbp)
895   [else]
896        .cfi_def_cfa_offset (offset from RETADDR)
897       [for all callee-saved registers]
898           .cfi_offset %<reg>, (offset from %rsp)
899 
900   Notes:
901   - .seh directives are emitted only for Windows 64 ABI
902   - .cfi directives are emitted for all other ABIs
903   - for 32-bit code, substitute %e?? registers for %r??
904 */
905 
906 void X86FrameLowering::emitPrologue(MachineFunction &MF,
907                                     MachineBasicBlock &MBB) const {
908   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
909          "MF used frame lowering for wrong subtarget");
910   MachineBasicBlock::iterator MBBI = MBB.begin();
911   MachineFrameInfo &MFI = MF.getFrameInfo();
912   const Function *Fn = MF.getFunction();
913   MachineModuleInfo &MMI = MF.getMMI();
914   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
915   uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
916   uint64_t StackSize = MFI.getStackSize();    // Number of bytes to allocate.
917   bool IsFunclet = MBB.isEHFuncletEntry();
918   EHPersonality Personality = EHPersonality::Unknown;
919   if (Fn->hasPersonalityFn())
920     Personality = classifyEHPersonality(Fn->getPersonalityFn());
921   bool FnHasClrFunclet =
922       MMI.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
923   bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
924   bool HasFP = hasFP(MF);
925   bool IsWin64CC = STI.isCallingConvWin64(Fn->getCallingConv());
926   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
927   bool NeedsWinCFI = IsWin64Prologue && Fn->needsUnwindTableEntry();
928   bool NeedsDwarfCFI =
929       !IsWin64Prologue && (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
930   unsigned FramePtr = TRI->getFrameRegister(MF);
931   const unsigned MachineFramePtr =
932       STI.isTarget64BitILP32()
933           ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
934   unsigned BasePtr = TRI->getBaseRegister();
935   bool HasWinCFI = false;
936 
937   // Debug location must be unknown since the first debug location is used
938   // to determine the end of the prologue.
939   DebugLoc DL;
940 
941   // Add RETADDR move area to callee saved frame size.
942   int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
943   if (TailCallReturnAddrDelta && IsWin64Prologue)
944     report_fatal_error("Can't handle guaranteed tail call under win64 yet");
945 
946   if (TailCallReturnAddrDelta < 0)
947     X86FI->setCalleeSavedFrameSize(
948       X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
949 
950   bool UseStackProbe = (STI.isOSWindows() && !STI.isTargetMachO());
951 
952   // The default stack probe size is 4096 if the function has no stackprobesize
953   // attribute.
954   unsigned StackProbeSize = 4096;
955   if (Fn->hasFnAttribute("stack-probe-size"))
956     Fn->getFnAttribute("stack-probe-size")
957         .getValueAsString()
958         .getAsInteger(0, StackProbeSize);
959 
960   // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
961   // function, and use up to 128 bytes of stack space, don't have a frame
962   // pointer, calls, or dynamic alloca then we do not need to adjust the
963   // stack pointer (we fit in the Red Zone). We also check that we don't
964   // push and pop from the stack.
965   if (Is64Bit && !Fn->hasFnAttribute(Attribute::NoRedZone) &&
966       !TRI->needsStackRealignment(MF) &&
967       !MFI.hasVarSizedObjects() &&             // No dynamic alloca.
968       !MFI.adjustsStack() &&                   // No calls.
969       !IsWin64CC &&                            // Win64 has no Red Zone
970       !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
971       !MF.shouldSplitStack()) {                // Regular stack
972     uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
973     if (HasFP) MinSize += SlotSize;
974     X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
975     StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
976     MFI.setStackSize(StackSize);
977   }
978 
979   // Insert stack pointer adjustment for later moving of return addr.  Only
980   // applies to tail call optimized functions where the callee argument stack
981   // size is bigger than the callers.
982   if (TailCallReturnAddrDelta < 0) {
983     BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
984                          /*InEpilogue=*/false)
985         .setMIFlag(MachineInstr::FrameSetup);
986   }
987 
988   // Mapping for machine moves:
989   //
990   //   DST: VirtualFP AND
991   //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
992   //        ELSE                        => DW_CFA_def_cfa
993   //
994   //   SRC: VirtualFP AND
995   //        DST: Register               => DW_CFA_def_cfa_register
996   //
997   //   ELSE
998   //        OFFSET < 0                  => DW_CFA_offset_extended_sf
999   //        REG < 64                    => DW_CFA_offset + Reg
1000   //        ELSE                        => DW_CFA_offset_extended
1001 
1002   uint64_t NumBytes = 0;
1003   int stackGrowth = -SlotSize;
1004 
1005   // Find the funclet establisher parameter
1006   unsigned Establisher = X86::NoRegister;
1007   if (IsClrFunclet)
1008     Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1009   else if (IsFunclet)
1010     Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1011 
1012   if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1013     // Immediately spill establisher into the home slot.
1014     // The runtime cares about this.
1015     // MOV64mr %rdx, 16(%rsp)
1016     unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1017     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1018         .addReg(Establisher)
1019         .setMIFlag(MachineInstr::FrameSetup);
1020     MBB.addLiveIn(Establisher);
1021   }
1022 
1023   if (HasFP) {
1024     // Calculate required stack adjustment.
1025     uint64_t FrameSize = StackSize - SlotSize;
1026     // If required, include space for extra hidden slot for stashing base pointer.
1027     if (X86FI->getRestoreBasePointer())
1028       FrameSize += SlotSize;
1029 
1030     NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
1031 
1032     // Callee-saved registers are pushed on stack before the stack is realigned.
1033     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1034       NumBytes = alignTo(NumBytes, MaxAlign);
1035 
1036     // Get the offset of the stack slot for the EBP register, which is
1037     // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
1038     // Update the frame offset adjustment.
1039     if (!IsFunclet)
1040       MFI.setOffsetAdjustment(-NumBytes);
1041     else
1042       assert(MFI.getOffsetAdjustment() == -(int)NumBytes &&
1043              "should calculate same local variable offset for funclets");
1044 
1045     // Save EBP/RBP into the appropriate stack slot.
1046     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1047       .addReg(MachineFramePtr, RegState::Kill)
1048       .setMIFlag(MachineInstr::FrameSetup);
1049 
1050     if (NeedsDwarfCFI) {
1051       // Mark the place where EBP/RBP was saved.
1052       // Define the current CFA rule to use the provided offset.
1053       assert(StackSize);
1054       BuildCFI(MBB, MBBI, DL,
1055                MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
1056 
1057       // Change the rule for the FramePtr to be an "offset" rule.
1058       unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1059       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
1060                                   nullptr, DwarfFramePtr, 2 * stackGrowth));
1061     }
1062 
1063     if (NeedsWinCFI) {
1064       HasWinCFI = true;
1065       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1066           .addImm(FramePtr)
1067           .setMIFlag(MachineInstr::FrameSetup);
1068     }
1069 
1070     if (!IsWin64Prologue && !IsFunclet) {
1071       // Update EBP with the new base value.
1072       BuildMI(MBB, MBBI, DL,
1073               TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1074               FramePtr)
1075           .addReg(StackPtr)
1076           .setMIFlag(MachineInstr::FrameSetup);
1077 
1078       if (NeedsDwarfCFI) {
1079         // Mark effective beginning of when frame pointer becomes valid.
1080         // Define the current CFA to use the EBP/RBP register.
1081         unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1082         BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
1083                                     nullptr, DwarfFramePtr));
1084       }
1085     }
1086 
1087     // Mark the FramePtr as live-in in every block. Don't do this again for
1088     // funclet prologues.
1089     if (!IsFunclet) {
1090       for (MachineBasicBlock &EveryMBB : MF)
1091         EveryMBB.addLiveIn(MachineFramePtr);
1092     }
1093   } else {
1094     assert(!IsFunclet && "funclets without FPs not yet implemented");
1095     NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1096   }
1097 
1098   // For EH funclets, only allocate enough space for outgoing calls. Save the
1099   // NumBytes value that we would've used for the parent frame.
1100   unsigned ParentFrameNumBytes = NumBytes;
1101   if (IsFunclet)
1102     NumBytes = getWinEHFuncletFrameSize(MF);
1103 
1104   // Skip the callee-saved push instructions.
1105   bool PushedRegs = false;
1106   int StackOffset = 2 * stackGrowth;
1107 
1108   while (MBBI != MBB.end() &&
1109          MBBI->getFlag(MachineInstr::FrameSetup) &&
1110          (MBBI->getOpcode() == X86::PUSH32r ||
1111           MBBI->getOpcode() == X86::PUSH64r)) {
1112     PushedRegs = true;
1113     unsigned Reg = MBBI->getOperand(0).getReg();
1114     ++MBBI;
1115 
1116     if (!HasFP && NeedsDwarfCFI) {
1117       // Mark callee-saved push instruction.
1118       // Define the current CFA rule to use the provided offset.
1119       assert(StackSize);
1120       BuildCFI(MBB, MBBI, DL,
1121                MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
1122       StackOffset += stackGrowth;
1123     }
1124 
1125     if (NeedsWinCFI) {
1126       HasWinCFI = true;
1127       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)).addImm(Reg).setMIFlag(
1128           MachineInstr::FrameSetup);
1129     }
1130   }
1131 
1132   // Realign stack after we pushed callee-saved registers (so that we'll be
1133   // able to calculate their offsets from the frame pointer).
1134   // Don't do this for Win64, it needs to realign the stack after the prologue.
1135   if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
1136     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1137     BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1138   }
1139 
1140   // If there is an SUB32ri of ESP immediately before this instruction, merge
1141   // the two. This can be the case when tail call elimination is enabled and
1142   // the callee has more arguments then the caller.
1143   NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1144 
1145   // Adjust stack pointer: ESP -= numbytes.
1146 
1147   // Windows and cygwin/mingw require a prologue helper routine when allocating
1148   // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
1149   // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
1150   // stack and adjust the stack pointer in one go.  The 64-bit version of
1151   // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
1152   // responsible for adjusting the stack pointer.  Touching the stack at 4K
1153   // increments is necessary to ensure that the guard pages used by the OS
1154   // virtual memory manager are allocated in correct sequence.
1155   uint64_t AlignedNumBytes = NumBytes;
1156   if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
1157     AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
1158   if (AlignedNumBytes >= StackProbeSize && UseStackProbe) {
1159     // Check whether EAX is livein for this block.
1160     bool isEAXAlive = isEAXLiveIn(MBB);
1161 
1162     if (isEAXAlive) {
1163       // Sanity check that EAX is not livein for this function.
1164       // It should not be, so throw an assert.
1165       assert(!Is64Bit && "EAX is livein in x64 case!");
1166 
1167       // Save EAX
1168       BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1169         .addReg(X86::EAX, RegState::Kill)
1170         .setMIFlag(MachineInstr::FrameSetup);
1171     }
1172 
1173     if (Is64Bit) {
1174       // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1175       // Function prologue is responsible for adjusting the stack pointer.
1176       if (isUInt<32>(NumBytes)) {
1177         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1178             .addImm(NumBytes)
1179             .setMIFlag(MachineInstr::FrameSetup);
1180       } else if (isInt<32>(NumBytes)) {
1181         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
1182             .addImm(NumBytes)
1183             .setMIFlag(MachineInstr::FrameSetup);
1184       } else {
1185         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
1186             .addImm(NumBytes)
1187             .setMIFlag(MachineInstr::FrameSetup);
1188       }
1189     } else {
1190       // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1191       // We'll also use 4 already allocated bytes for EAX.
1192       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1193           .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1194           .setMIFlag(MachineInstr::FrameSetup);
1195     }
1196 
1197     // Call __chkstk, __chkstk_ms, or __alloca.
1198     emitStackProbe(MF, MBB, MBBI, DL, true);
1199 
1200     if (isEAXAlive) {
1201       // Restore EAX
1202       MachineInstr *MI =
1203           addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1204                        StackPtr, false, NumBytes - 4);
1205       MI->setFlag(MachineInstr::FrameSetup);
1206       MBB.insert(MBBI, MI);
1207     }
1208   } else if (NumBytes) {
1209     emitSPUpdate(MBB, MBBI, -(int64_t)NumBytes, /*InEpilogue=*/false);
1210   }
1211 
1212   if (NeedsWinCFI && NumBytes) {
1213     HasWinCFI = true;
1214     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1215         .addImm(NumBytes)
1216         .setMIFlag(MachineInstr::FrameSetup);
1217   }
1218 
1219   int SEHFrameOffset = 0;
1220   unsigned SPOrEstablisher;
1221   if (IsFunclet) {
1222     if (IsClrFunclet) {
1223       // The establisher parameter passed to a CLR funclet is actually a pointer
1224       // to the (mostly empty) frame of its nearest enclosing funclet; we have
1225       // to find the root function establisher frame by loading the PSPSym from
1226       // the intermediate frame.
1227       unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1228       MachinePointerInfo NoInfo;
1229       MBB.addLiveIn(Establisher);
1230       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1231                    Establisher, false, PSPSlotOffset)
1232           .addMemOperand(MF.getMachineMemOperand(
1233               NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize));
1234       ;
1235       // Save the root establisher back into the current funclet's (mostly
1236       // empty) frame, in case a sub-funclet or the GC needs it.
1237       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
1238                    false, PSPSlotOffset)
1239           .addReg(Establisher)
1240           .addMemOperand(
1241               MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore |
1242                                                   MachineMemOperand::MOVolatile,
1243                                       SlotSize, SlotSize));
1244     }
1245     SPOrEstablisher = Establisher;
1246   } else {
1247     SPOrEstablisher = StackPtr;
1248   }
1249 
1250   if (IsWin64Prologue && HasFP) {
1251     // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1252     // this calculation on the incoming establisher, which holds the value of
1253     // RSP from the parent frame at the end of the prologue.
1254     SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
1255     if (SEHFrameOffset)
1256       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
1257                    SPOrEstablisher, false, SEHFrameOffset);
1258     else
1259       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
1260           .addReg(SPOrEstablisher);
1261 
1262     // If this is not a funclet, emit the CFI describing our frame pointer.
1263     if (NeedsWinCFI && !IsFunclet) {
1264       HasWinCFI = true;
1265       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1266           .addImm(FramePtr)
1267           .addImm(SEHFrameOffset)
1268           .setMIFlag(MachineInstr::FrameSetup);
1269       if (isAsynchronousEHPersonality(Personality))
1270         MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
1271     }
1272   } else if (IsFunclet && STI.is32Bit()) {
1273     // Reset EBP / ESI to something good for funclets.
1274     MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
1275     // If we're a catch funclet, we can be returned to via catchret. Save ESP
1276     // into the registration node so that the runtime will restore it for us.
1277     if (!MBB.isCleanupFuncletEntry()) {
1278       assert(Personality == EHPersonality::MSVC_CXX);
1279       unsigned FrameReg;
1280       int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
1281       int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
1282       // ESP is the first field, so no extra displacement is needed.
1283       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
1284                    false, EHRegOffset)
1285           .addReg(X86::ESP);
1286     }
1287   }
1288 
1289   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
1290     const MachineInstr &FrameInstr = *MBBI;
1291     ++MBBI;
1292 
1293     if (NeedsWinCFI) {
1294       int FI;
1295       if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
1296         if (X86::FR64RegClass.contains(Reg)) {
1297           unsigned IgnoredFrameReg;
1298           int Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg);
1299           Offset += SEHFrameOffset;
1300 
1301           HasWinCFI = true;
1302           BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
1303               .addImm(Reg)
1304               .addImm(Offset)
1305               .setMIFlag(MachineInstr::FrameSetup);
1306         }
1307       }
1308     }
1309   }
1310 
1311   if (NeedsWinCFI && HasWinCFI)
1312     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
1313         .setMIFlag(MachineInstr::FrameSetup);
1314 
1315   if (FnHasClrFunclet && !IsFunclet) {
1316     // Save the so-called Initial-SP (i.e. the value of the stack pointer
1317     // immediately after the prolog)  into the PSPSlot so that funclets
1318     // and the GC can recover it.
1319     unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1320     auto PSPInfo = MachinePointerInfo::getFixedStack(
1321         MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
1322     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
1323                  PSPSlotOffset)
1324         .addReg(StackPtr)
1325         .addMemOperand(MF.getMachineMemOperand(
1326             PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1327             SlotSize, SlotSize));
1328   }
1329 
1330   // Realign stack after we spilled callee-saved registers (so that we'll be
1331   // able to calculate their offsets from the frame pointer).
1332   // Win64 requires aligning the stack after the prologue.
1333   if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
1334     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1335     BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
1336   }
1337 
1338   // We already dealt with stack realignment and funclets above.
1339   if (IsFunclet && STI.is32Bit())
1340     return;
1341 
1342   // If we need a base pointer, set it up here. It's whatever the value
1343   // of the stack pointer is at this point. Any variable size objects
1344   // will be allocated after this, so we can still use the base pointer
1345   // to reference locals.
1346   if (TRI->hasBasePointer(MF)) {
1347     // Update the base pointer with the current stack pointer.
1348     unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
1349     BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
1350       .addReg(SPOrEstablisher)
1351       .setMIFlag(MachineInstr::FrameSetup);
1352     if (X86FI->getRestoreBasePointer()) {
1353       // Stash value of base pointer.  Saving RSP instead of EBP shortens
1354       // dependence chain. Used by SjLj EH.
1355       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1356       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
1357                    FramePtr, true, X86FI->getRestoreBasePointerOffset())
1358         .addReg(SPOrEstablisher)
1359         .setMIFlag(MachineInstr::FrameSetup);
1360     }
1361 
1362     if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
1363       // Stash the value of the frame pointer relative to the base pointer for
1364       // Win32 EH. This supports Win32 EH, which does the inverse of the above:
1365       // it recovers the frame pointer from the base pointer rather than the
1366       // other way around.
1367       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1368       unsigned UsedReg;
1369       int Offset =
1370           getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
1371       assert(UsedReg == BasePtr);
1372       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
1373           .addReg(FramePtr)
1374           .setMIFlag(MachineInstr::FrameSetup);
1375     }
1376   }
1377 
1378   if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
1379     // Mark end of stack pointer adjustment.
1380     if (!HasFP && NumBytes) {
1381       // Define the current CFA rule to use the provided offset.
1382       assert(StackSize);
1383       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1384                                   nullptr, -StackSize + stackGrowth));
1385     }
1386 
1387     // Emit DWARF info specifying the offsets of the callee-saved registers.
1388     if (PushedRegs)
1389       emitCalleeSavedFrameMoves(MBB, MBBI, DL);
1390   }
1391 
1392   // X86 Interrupt handling function cannot assume anything about the direction
1393   // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
1394   // in each prologue of interrupt handler function.
1395   //
1396   // FIXME: Create "cld" instruction only in these cases:
1397   // 1. The interrupt handling function uses any of the "rep" instructions.
1398   // 2. Interrupt handling function calls another function.
1399   //
1400   if (Fn->getCallingConv() == CallingConv::X86_INTR)
1401     BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
1402         .setMIFlag(MachineInstr::FrameSetup);
1403 
1404   // At this point we know if the function has WinCFI or not.
1405   MF.setHasWinCFI(HasWinCFI);
1406 }
1407 
1408 bool X86FrameLowering::canUseLEAForSPInEpilogue(
1409     const MachineFunction &MF) const {
1410   // We can't use LEA instructions for adjusting the stack pointer if we don't
1411   // have a frame pointer in the Win64 ABI.  Only ADD instructions may be used
1412   // to deallocate the stack.
1413   // This means that we can use LEA for SP in two situations:
1414   // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
1415   // 2. We *have* a frame pointer which means we are permitted to use LEA.
1416   return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
1417 }
1418 
1419 static bool isFuncletReturnInstr(MachineInstr &MI) {
1420   switch (MI.getOpcode()) {
1421   case X86::CATCHRET:
1422   case X86::CLEANUPRET:
1423     return true;
1424   default:
1425     return false;
1426   }
1427   llvm_unreachable("impossible");
1428 }
1429 
1430 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
1431 // stack. It holds a pointer to the bottom of the root function frame.  The
1432 // establisher frame pointer passed to a nested funclet may point to the
1433 // (mostly empty) frame of its parent funclet, but it will need to find
1434 // the frame of the root function to access locals.  To facilitate this,
1435 // every funclet copies the pointer to the bottom of the root function
1436 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
1437 // same offset for the PSPSym in the root function frame that's used in the
1438 // funclets' frames allows each funclet to dynamically accept any ancestor
1439 // frame as its establisher argument (the runtime doesn't guarantee the
1440 // immediate parent for some reason lost to history), and also allows the GC,
1441 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
1442 // frame with only a single offset reported for the entire method.
1443 unsigned
1444 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
1445   const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
1446   unsigned SPReg;
1447   int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
1448                                               /*IgnoreSPUpdates*/ true);
1449   assert(Offset >= 0 && SPReg == TRI->getStackRegister());
1450   return static_cast<unsigned>(Offset);
1451 }
1452 
1453 unsigned
1454 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
1455   // This is the size of the pushed CSRs.
1456   unsigned CSSize =
1457       MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
1458   // This is the amount of stack a funclet needs to allocate.
1459   unsigned UsedSize;
1460   EHPersonality Personality =
1461       classifyEHPersonality(MF.getFunction()->getPersonalityFn());
1462   if (Personality == EHPersonality::CoreCLR) {
1463     // CLR funclets need to hold enough space to include the PSPSym, at the
1464     // same offset from the stack pointer (immediately after the prolog) as it
1465     // resides at in the main function.
1466     UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
1467   } else {
1468     // Other funclets just need enough stack for outgoing call arguments.
1469     UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
1470   }
1471   // RBP is not included in the callee saved register block. After pushing RBP,
1472   // everything is 16 byte aligned. Everything we allocate before an outgoing
1473   // call must also be 16 byte aligned.
1474   unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment());
1475   // Subtract out the size of the callee saved registers. This is how much stack
1476   // each funclet will allocate.
1477   return FrameSizeMinusRBP - CSSize;
1478 }
1479 
1480 static bool isTailCallOpcode(unsigned Opc) {
1481     return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
1482         Opc == X86::TCRETURNmi ||
1483         Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
1484         Opc == X86::TCRETURNmi64;
1485 }
1486 
1487 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
1488                                     MachineBasicBlock &MBB) const {
1489   const MachineFrameInfo &MFI = MF.getFrameInfo();
1490   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1491   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1492   Optional<unsigned> RetOpcode;
1493   if (MBBI != MBB.end())
1494     RetOpcode = MBBI->getOpcode();
1495   DebugLoc DL;
1496   if (MBBI != MBB.end())
1497     DL = MBBI->getDebugLoc();
1498   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
1499   const bool Is64BitILP32 = STI.isTarget64BitILP32();
1500   unsigned FramePtr = TRI->getFrameRegister(MF);
1501   unsigned MachineFramePtr =
1502       Is64BitILP32 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
1503 
1504   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1505   bool NeedsWinCFI =
1506       IsWin64Prologue && MF.getFunction()->needsUnwindTableEntry();
1507   bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
1508   MachineBasicBlock *TargetMBB = nullptr;
1509 
1510   // Get the number of bytes to allocate from the FrameInfo.
1511   uint64_t StackSize = MFI.getStackSize();
1512   uint64_t MaxAlign = calculateMaxStackAlign(MF);
1513   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1514   uint64_t NumBytes = 0;
1515 
1516   if (RetOpcode && *RetOpcode == X86::CATCHRET) {
1517     // SEH shouldn't use catchret.
1518     assert(!isAsynchronousEHPersonality(
1519                classifyEHPersonality(MF.getFunction()->getPersonalityFn())) &&
1520            "SEH should not use CATCHRET");
1521 
1522     NumBytes = getWinEHFuncletFrameSize(MF);
1523     assert(hasFP(MF) && "EH funclets without FP not yet implemented");
1524     TargetMBB = MBBI->getOperand(0).getMBB();
1525 
1526     // Pop EBP.
1527     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
1528             MachineFramePtr)
1529         .setMIFlag(MachineInstr::FrameDestroy);
1530   } else if (RetOpcode && *RetOpcode == X86::CLEANUPRET) {
1531     NumBytes = getWinEHFuncletFrameSize(MF);
1532     assert(hasFP(MF) && "EH funclets without FP not yet implemented");
1533     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
1534             MachineFramePtr)
1535         .setMIFlag(MachineInstr::FrameDestroy);
1536   } else if (hasFP(MF)) {
1537     // Calculate required stack adjustment.
1538     uint64_t FrameSize = StackSize - SlotSize;
1539     NumBytes = FrameSize - CSSize;
1540 
1541     // Callee-saved registers were pushed on stack before the stack was
1542     // realigned.
1543     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1544       NumBytes = alignTo(FrameSize, MaxAlign);
1545 
1546     // Pop EBP.
1547     BuildMI(MBB, MBBI, DL,
1548             TII.get(Is64Bit ? X86::POP64r : X86::POP32r), MachineFramePtr)
1549         .setMIFlag(MachineInstr::FrameDestroy);
1550   } else {
1551     NumBytes = StackSize - CSSize;
1552   }
1553   uint64_t SEHStackAllocAmt = NumBytes;
1554 
1555   // Skip the callee-saved pop instructions.
1556   while (MBBI != MBB.begin()) {
1557     MachineBasicBlock::iterator PI = std::prev(MBBI);
1558     unsigned Opc = PI->getOpcode();
1559 
1560     if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
1561         (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
1562         Opc != X86::DBG_VALUE && !PI->isTerminator())
1563       break;
1564 
1565     --MBBI;
1566   }
1567   MachineBasicBlock::iterator FirstCSPop = MBBI;
1568 
1569   if (TargetMBB) {
1570     // Fill EAX/RAX with the address of the target block.
1571     unsigned ReturnReg = STI.is64Bit() ? X86::RAX : X86::EAX;
1572     if (STI.is64Bit()) {
1573       // LEA64r TargetMBB(%rip), %rax
1574       BuildMI(MBB, FirstCSPop, DL, TII.get(X86::LEA64r), ReturnReg)
1575           .addReg(X86::RIP)
1576           .addImm(0)
1577           .addReg(0)
1578           .addMBB(TargetMBB)
1579           .addReg(0);
1580     } else {
1581       // MOV32ri $TargetMBB, %eax
1582       BuildMI(MBB, FirstCSPop, DL, TII.get(X86::MOV32ri), ReturnReg)
1583           .addMBB(TargetMBB);
1584     }
1585     // Record that we've taken the address of TargetMBB and no longer just
1586     // reference it in a terminator.
1587     TargetMBB->setHasAddressTaken();
1588   }
1589 
1590   if (MBBI != MBB.end())
1591     DL = MBBI->getDebugLoc();
1592 
1593   // If there is an ADD32ri or SUB32ri of ESP immediately before this
1594   // instruction, merge the two instructions.
1595   if (NumBytes || MFI.hasVarSizedObjects())
1596     NumBytes += mergeSPUpdates(MBB, MBBI, true);
1597 
1598   // If dynamic alloca is used, then reset esp to point to the last callee-saved
1599   // slot before popping them off! Same applies for the case, when stack was
1600   // realigned. Don't do this if this was a funclet epilogue, since the funclets
1601   // will not do realignment or dynamic stack allocation.
1602   if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) &&
1603       !IsFunclet) {
1604     if (TRI->needsStackRealignment(MF))
1605       MBBI = FirstCSPop;
1606     unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
1607     uint64_t LEAAmount =
1608         IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
1609 
1610     // There are only two legal forms of epilogue:
1611     // - add SEHAllocationSize, %rsp
1612     // - lea SEHAllocationSize(%FramePtr), %rsp
1613     //
1614     // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
1615     // However, we may use this sequence if we have a frame pointer because the
1616     // effects of the prologue can safely be undone.
1617     if (LEAAmount != 0) {
1618       unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
1619       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
1620                    FramePtr, false, LEAAmount);
1621       --MBBI;
1622     } else {
1623       unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
1624       BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
1625         .addReg(FramePtr);
1626       --MBBI;
1627     }
1628   } else if (NumBytes) {
1629     // Adjust stack pointer back: ESP += numbytes.
1630     emitSPUpdate(MBB, MBBI, NumBytes, /*InEpilogue=*/true);
1631     --MBBI;
1632   }
1633 
1634   // Windows unwinder will not invoke function's exception handler if IP is
1635   // either in prologue or in epilogue.  This behavior causes a problem when a
1636   // call immediately precedes an epilogue, because the return address points
1637   // into the epilogue.  To cope with that, we insert an epilogue marker here,
1638   // then replace it with a 'nop' if it ends up immediately after a CALL in the
1639   // final emitted code.
1640   if (NeedsWinCFI && MF.hasWinCFI())
1641     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
1642 
1643   if (!RetOpcode || !isTailCallOpcode(*RetOpcode)) {
1644     // Add the return addr area delta back since we are not tail calling.
1645     int Offset = -1 * X86FI->getTCReturnAddrDelta();
1646     assert(Offset >= 0 && "TCDelta should never be positive");
1647     if (Offset) {
1648       MBBI = MBB.getFirstTerminator();
1649 
1650       // Check for possible merge with preceding ADD instruction.
1651       Offset += mergeSPUpdates(MBB, MBBI, true);
1652       emitSPUpdate(MBB, MBBI, Offset, /*InEpilogue=*/true);
1653     }
1654   }
1655 }
1656 
1657 // NOTE: this only has a subset of the full frame index logic. In
1658 // particular, the FI < 0 and AfterFPPop logic is handled in
1659 // X86RegisterInfo::eliminateFrameIndex, but not here. Possibly
1660 // (probably?) it should be moved into here.
1661 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1662                                              unsigned &FrameReg) const {
1663   const MachineFrameInfo &MFI = MF.getFrameInfo();
1664 
1665   // We can't calculate offset from frame pointer if the stack is realigned,
1666   // so enforce usage of stack/base pointer.  The base pointer is used when we
1667   // have dynamic allocas in addition to dynamic realignment.
1668   if (TRI->hasBasePointer(MF))
1669     FrameReg = TRI->getBaseRegister();
1670   else if (TRI->needsStackRealignment(MF))
1671     FrameReg = TRI->getStackRegister();
1672   else
1673     FrameReg = TRI->getFrameRegister(MF);
1674 
1675   // Offset will hold the offset from the stack pointer at function entry to the
1676   // object.
1677   // We need to factor in additional offsets applied during the prologue to the
1678   // frame, base, and stack pointer depending on which is used.
1679   int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
1680   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1681   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1682   uint64_t StackSize = MFI.getStackSize();
1683   bool HasFP = hasFP(MF);
1684   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1685   int64_t FPDelta = 0;
1686 
1687   if (IsWin64Prologue) {
1688     assert(!MFI.hasCalls() || (StackSize % 16) == 8);
1689 
1690     // Calculate required stack adjustment.
1691     uint64_t FrameSize = StackSize - SlotSize;
1692     // If required, include space for extra hidden slot for stashing base pointer.
1693     if (X86FI->getRestoreBasePointer())
1694       FrameSize += SlotSize;
1695     uint64_t NumBytes = FrameSize - CSSize;
1696 
1697     uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
1698     if (FI && FI == X86FI->getFAIndex())
1699       return -SEHFrameOffset;
1700 
1701     // FPDelta is the offset from the "traditional" FP location of the old base
1702     // pointer followed by return address and the location required by the
1703     // restricted Win64 prologue.
1704     // Add FPDelta to all offsets below that go through the frame pointer.
1705     FPDelta = FrameSize - SEHFrameOffset;
1706     assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
1707            "FPDelta isn't aligned per the Win64 ABI!");
1708   }
1709 
1710 
1711   if (TRI->hasBasePointer(MF)) {
1712     assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
1713     if (FI < 0) {
1714       // Skip the saved EBP.
1715       return Offset + SlotSize + FPDelta;
1716     } else {
1717       assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
1718       return Offset + StackSize;
1719     }
1720   } else if (TRI->needsStackRealignment(MF)) {
1721     if (FI < 0) {
1722       // Skip the saved EBP.
1723       return Offset + SlotSize + FPDelta;
1724     } else {
1725       assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
1726       return Offset + StackSize;
1727     }
1728     // FIXME: Support tail calls
1729   } else {
1730     if (!HasFP)
1731       return Offset + StackSize;
1732 
1733     // Skip the saved EBP.
1734     Offset += SlotSize;
1735 
1736     // Skip the RETADDR move area
1737     int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1738     if (TailCallReturnAddrDelta < 0)
1739       Offset -= TailCallReturnAddrDelta;
1740   }
1741 
1742   return Offset + FPDelta;
1743 }
1744 
1745 int
1746 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
1747                                                  int FI, unsigned &FrameReg,
1748                                                  bool IgnoreSPUpdates) const {
1749 
1750   const MachineFrameInfo &MFI = MF.getFrameInfo();
1751   // Does not include any dynamic realign.
1752   const uint64_t StackSize = MFI.getStackSize();
1753   // LLVM arranges the stack as follows:
1754   //   ...
1755   //   ARG2
1756   //   ARG1
1757   //   RETADDR
1758   //   PUSH RBP   <-- RBP points here
1759   //   PUSH CSRs
1760   //   ~~~~~~~    <-- possible stack realignment (non-win64)
1761   //   ...
1762   //   STACK OBJECTS
1763   //   ...        <-- RSP after prologue points here
1764   //   ~~~~~~~    <-- possible stack realignment (win64)
1765   //
1766   // if (hasVarSizedObjects()):
1767   //   ...        <-- "base pointer" (ESI/RBX) points here
1768   //   DYNAMIC ALLOCAS
1769   //   ...        <-- RSP points here
1770   //
1771   // Case 1: In the simple case of no stack realignment and no dynamic
1772   // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
1773   // with fixed offsets from RSP.
1774   //
1775   // Case 2: In the case of stack realignment with no dynamic allocas, fixed
1776   // stack objects are addressed with RBP and regular stack objects with RSP.
1777   //
1778   // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
1779   // to address stack arguments for outgoing calls and nothing else. The "base
1780   // pointer" points to local variables, and RBP points to fixed objects.
1781   //
1782   // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
1783   // answer we give is relative to the SP after the prologue, and not the
1784   // SP in the middle of the function.
1785 
1786   if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) &&
1787       !STI.isTargetWin64())
1788     return getFrameIndexReference(MF, FI, FrameReg);
1789 
1790   // If !hasReservedCallFrame the function might have SP adjustement in the
1791   // body.  So, even though the offset is statically known, it depends on where
1792   // we are in the function.
1793   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
1794   if (!IgnoreSPUpdates && !TFI->hasReservedCallFrame(MF))
1795     return getFrameIndexReference(MF, FI, FrameReg);
1796 
1797   // We don't handle tail calls, and shouldn't be seeing them either.
1798   assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
1799          "we don't handle this case!");
1800 
1801   // Fill in FrameReg output argument.
1802   FrameReg = TRI->getStackRegister();
1803 
1804   // This is how the math works out:
1805   //
1806   //  %rsp grows (i.e. gets lower) left to right. Each box below is
1807   //  one word (eight bytes).  Obj0 is the stack slot we're trying to
1808   //  get to.
1809   //
1810   //    ----------------------------------
1811   //    | BP | Obj0 | Obj1 | ... | ObjN |
1812   //    ----------------------------------
1813   //    ^    ^      ^                   ^
1814   //    A    B      C                   E
1815   //
1816   // A is the incoming stack pointer.
1817   // (B - A) is the local area offset (-8 for x86-64) [1]
1818   // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
1819   //
1820   // |(E - B)| is the StackSize (absolute value, positive).  For a
1821   // stack that grown down, this works out to be (B - E). [3]
1822   //
1823   // E is also the value of %rsp after stack has been set up, and we
1824   // want (C - E) -- the value we can add to %rsp to get to Obj0.  Now
1825   // (C - E) == (C - A) - (B - A) + (B - E)
1826   //            { Using [1], [2] and [3] above }
1827   //         == getObjectOffset - LocalAreaOffset + StackSize
1828   //
1829 
1830   // Get the Offset from the StackPointer
1831   int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
1832 
1833   return Offset + StackSize;
1834 }
1835 
1836 bool X86FrameLowering::assignCalleeSavedSpillSlots(
1837     MachineFunction &MF, const TargetRegisterInfo *TRI,
1838     std::vector<CalleeSavedInfo> &CSI) const {
1839   MachineFrameInfo &MFI = MF.getFrameInfo();
1840   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1841 
1842   unsigned CalleeSavedFrameSize = 0;
1843   int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
1844 
1845   if (hasFP(MF)) {
1846     // emitPrologue always spills frame register the first thing.
1847     SpillSlotOffset -= SlotSize;
1848     MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
1849 
1850     // Since emitPrologue and emitEpilogue will handle spilling and restoring of
1851     // the frame register, we can delete it from CSI list and not have to worry
1852     // about avoiding it later.
1853     unsigned FPReg = TRI->getFrameRegister(MF);
1854     for (unsigned i = 0; i < CSI.size(); ++i) {
1855       if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
1856         CSI.erase(CSI.begin() + i);
1857         break;
1858       }
1859     }
1860   }
1861 
1862   // Assign slots for GPRs. It increases frame size.
1863   for (unsigned i = CSI.size(); i != 0; --i) {
1864     unsigned Reg = CSI[i - 1].getReg();
1865 
1866     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
1867       continue;
1868 
1869     SpillSlotOffset -= SlotSize;
1870     CalleeSavedFrameSize += SlotSize;
1871 
1872     int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
1873     CSI[i - 1].setFrameIdx(SlotIndex);
1874   }
1875 
1876   X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
1877 
1878   // Assign slots for XMMs.
1879   for (unsigned i = CSI.size(); i != 0; --i) {
1880     unsigned Reg = CSI[i - 1].getReg();
1881     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
1882       continue;
1883 
1884     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1885     // ensure alignment
1886     SpillSlotOffset -= std::abs(SpillSlotOffset) % RC->getAlignment();
1887     // spill into slot
1888     SpillSlotOffset -= RC->getSize();
1889     int SlotIndex =
1890         MFI.CreateFixedSpillStackObject(RC->getSize(), SpillSlotOffset);
1891     CSI[i - 1].setFrameIdx(SlotIndex);
1892     MFI.ensureMaxAlignment(RC->getAlignment());
1893   }
1894 
1895   return true;
1896 }
1897 
1898 bool X86FrameLowering::spillCalleeSavedRegisters(
1899     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1900     const std::vector<CalleeSavedInfo> &CSI,
1901     const TargetRegisterInfo *TRI) const {
1902   DebugLoc DL = MBB.findDebugLoc(MI);
1903 
1904   // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
1905   // for us, and there are no XMM CSRs on Win32.
1906   if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
1907     return true;
1908 
1909   // Push GPRs. It increases frame size.
1910   const MachineFunction &MF = *MBB.getParent();
1911   unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
1912   for (unsigned i = CSI.size(); i != 0; --i) {
1913     unsigned Reg = CSI[i - 1].getReg();
1914 
1915     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
1916       continue;
1917 
1918     const MachineRegisterInfo &MRI = MF.getRegInfo();
1919     bool isLiveIn = MRI.isLiveIn(Reg);
1920     if (!isLiveIn)
1921       MBB.addLiveIn(Reg);
1922 
1923     // Decide whether we can add a kill flag to the use.
1924     bool CanKill = !isLiveIn;
1925     // Check if any subregister is live-in
1926     if (CanKill) {
1927       for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
1928         if (MRI.isLiveIn(*AReg)) {
1929           CanKill = false;
1930           break;
1931         }
1932       }
1933     }
1934 
1935     // Do not set a kill flag on values that are also marked as live-in. This
1936     // happens with the @llvm-returnaddress intrinsic and with arguments
1937     // passed in callee saved registers.
1938     // Omitting the kill flags is conservatively correct even if the live-in
1939     // is not used after all.
1940     BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
1941       .setMIFlag(MachineInstr::FrameSetup);
1942   }
1943 
1944   // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
1945   // It can be done by spilling XMMs to stack frame.
1946   for (unsigned i = CSI.size(); i != 0; --i) {
1947     unsigned Reg = CSI[i-1].getReg();
1948     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
1949       continue;
1950     // Add the callee-saved register as live-in. It's killed at the spill.
1951     MBB.addLiveIn(Reg);
1952     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1953 
1954     TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
1955                             TRI);
1956     --MI;
1957     MI->setFlag(MachineInstr::FrameSetup);
1958     ++MI;
1959   }
1960 
1961   return true;
1962 }
1963 
1964 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1965                                                MachineBasicBlock::iterator MI,
1966                                         const std::vector<CalleeSavedInfo> &CSI,
1967                                           const TargetRegisterInfo *TRI) const {
1968   if (CSI.empty())
1969     return false;
1970 
1971   if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
1972     // Don't restore CSRs in 32-bit EH funclets. Matches
1973     // spillCalleeSavedRegisters.
1974     if (STI.is32Bit())
1975       return true;
1976     // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
1977     // funclets. emitEpilogue transforms these to normal jumps.
1978     if (MI->getOpcode() == X86::CATCHRET) {
1979       const Function *Func = MBB.getParent()->getFunction();
1980       bool IsSEH = isAsynchronousEHPersonality(
1981           classifyEHPersonality(Func->getPersonalityFn()));
1982       if (IsSEH)
1983         return true;
1984     }
1985   }
1986 
1987   DebugLoc DL = MBB.findDebugLoc(MI);
1988 
1989   // Reload XMMs from stack frame.
1990   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1991     unsigned Reg = CSI[i].getReg();
1992     if (X86::GR64RegClass.contains(Reg) ||
1993         X86::GR32RegClass.contains(Reg))
1994       continue;
1995 
1996     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1997     TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
1998   }
1999 
2000   // POP GPRs.
2001   unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
2002   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2003     unsigned Reg = CSI[i].getReg();
2004     if (!X86::GR64RegClass.contains(Reg) &&
2005         !X86::GR32RegClass.contains(Reg))
2006       continue;
2007 
2008     BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
2009         .setMIFlag(MachineInstr::FrameDestroy);
2010   }
2011   return true;
2012 }
2013 
2014 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
2015                                             BitVector &SavedRegs,
2016                                             RegScavenger *RS) const {
2017   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2018 
2019   MachineFrameInfo &MFI = MF.getFrameInfo();
2020 
2021   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2022   int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2023 
2024   if (TailCallReturnAddrDelta < 0) {
2025     // create RETURNADDR area
2026     //   arg
2027     //   arg
2028     //   RETADDR
2029     //   { ...
2030     //     RETADDR area
2031     //     ...
2032     //   }
2033     //   [EBP]
2034     MFI.CreateFixedObject(-TailCallReturnAddrDelta,
2035                            TailCallReturnAddrDelta - SlotSize, true);
2036   }
2037 
2038   // Spill the BasePtr if it's used.
2039   if (TRI->hasBasePointer(MF)) {
2040     SavedRegs.set(TRI->getBaseRegister());
2041 
2042     // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
2043     if (MF.getMMI().hasEHFunclets()) {
2044       int FI = MFI.CreateSpillStackObject(SlotSize, SlotSize);
2045       X86FI->setHasSEHFramePtrSave(true);
2046       X86FI->setSEHFramePtrSaveIndex(FI);
2047     }
2048   }
2049 }
2050 
2051 static bool
2052 HasNestArgument(const MachineFunction *MF) {
2053   const Function *F = MF->getFunction();
2054   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
2055        I != E; I++) {
2056     if (I->hasNestAttr())
2057       return true;
2058   }
2059   return false;
2060 }
2061 
2062 /// GetScratchRegister - Get a temp register for performing work in the
2063 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
2064 /// and the properties of the function either one or two registers will be
2065 /// needed. Set primary to true for the first register, false for the second.
2066 static unsigned
2067 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
2068   CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
2069 
2070   // Erlang stuff.
2071   if (CallingConvention == CallingConv::HiPE) {
2072     if (Is64Bit)
2073       return Primary ? X86::R14 : X86::R13;
2074     else
2075       return Primary ? X86::EBX : X86::EDI;
2076   }
2077 
2078   if (Is64Bit) {
2079     if (IsLP64)
2080       return Primary ? X86::R11 : X86::R12;
2081     else
2082       return Primary ? X86::R11D : X86::R12D;
2083   }
2084 
2085   bool IsNested = HasNestArgument(&MF);
2086 
2087   if (CallingConvention == CallingConv::X86_FastCall ||
2088       CallingConvention == CallingConv::Fast) {
2089     if (IsNested)
2090       report_fatal_error("Segmented stacks does not support fastcall with "
2091                          "nested function.");
2092     return Primary ? X86::EAX : X86::ECX;
2093   }
2094   if (IsNested)
2095     return Primary ? X86::EDX : X86::EAX;
2096   return Primary ? X86::ECX : X86::EAX;
2097 }
2098 
2099 // The stack limit in the TCB is set to this many bytes above the actual stack
2100 // limit.
2101 static const uint64_t kSplitStackAvailable = 256;
2102 
2103 void X86FrameLowering::adjustForSegmentedStacks(
2104     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2105   MachineFrameInfo &MFI = MF.getFrameInfo();
2106   uint64_t StackSize;
2107   unsigned TlsReg, TlsOffset;
2108   DebugLoc DL;
2109 
2110   // To support shrink-wrapping we would need to insert the new blocks
2111   // at the right place and update the branches to PrologueMBB.
2112   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2113 
2114   unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2115   assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2116          "Scratch register is live-in");
2117 
2118   if (MF.getFunction()->isVarArg())
2119     report_fatal_error("Segmented stacks do not support vararg functions.");
2120   if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
2121       !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
2122       !STI.isTargetDragonFly())
2123     report_fatal_error("Segmented stacks not supported on this platform.");
2124 
2125   // Eventually StackSize will be calculated by a link-time pass; which will
2126   // also decide whether checking code needs to be injected into this particular
2127   // prologue.
2128   StackSize = MFI.getStackSize();
2129 
2130   // Do not generate a prologue for functions with a stack of size zero
2131   if (StackSize == 0)
2132     return;
2133 
2134   MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
2135   MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
2136   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2137   bool IsNested = false;
2138 
2139   // We need to know if the function has a nest argument only in 64 bit mode.
2140   if (Is64Bit)
2141     IsNested = HasNestArgument(&MF);
2142 
2143   // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2144   // allocMBB needs to be last (terminating) instruction.
2145 
2146   for (const auto &LI : PrologueMBB.liveins()) {
2147     allocMBB->addLiveIn(LI);
2148     checkMBB->addLiveIn(LI);
2149   }
2150 
2151   if (IsNested)
2152     allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
2153 
2154   MF.push_front(allocMBB);
2155   MF.push_front(checkMBB);
2156 
2157   // When the frame size is less than 256 we just compare the stack
2158   // boundary directly to the value of the stack pointer, per gcc.
2159   bool CompareStackPointer = StackSize < kSplitStackAvailable;
2160 
2161   // Read the limit off the current stacklet off the stack_guard location.
2162   if (Is64Bit) {
2163     if (STI.isTargetLinux()) {
2164       TlsReg = X86::FS;
2165       TlsOffset = IsLP64 ? 0x70 : 0x40;
2166     } else if (STI.isTargetDarwin()) {
2167       TlsReg = X86::GS;
2168       TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2169     } else if (STI.isTargetWin64()) {
2170       TlsReg = X86::GS;
2171       TlsOffset = 0x28; // pvArbitrary, reserved for application use
2172     } else if (STI.isTargetFreeBSD()) {
2173       TlsReg = X86::FS;
2174       TlsOffset = 0x18;
2175     } else if (STI.isTargetDragonFly()) {
2176       TlsReg = X86::FS;
2177       TlsOffset = 0x20; // use tls_tcb.tcb_segstack
2178     } else {
2179       report_fatal_error("Segmented stacks not supported on this platform.");
2180     }
2181 
2182     if (CompareStackPointer)
2183       ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
2184     else
2185       BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
2186         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2187 
2188     BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
2189       .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2190   } else {
2191     if (STI.isTargetLinux()) {
2192       TlsReg = X86::GS;
2193       TlsOffset = 0x30;
2194     } else if (STI.isTargetDarwin()) {
2195       TlsReg = X86::GS;
2196       TlsOffset = 0x48 + 90*4;
2197     } else if (STI.isTargetWin32()) {
2198       TlsReg = X86::FS;
2199       TlsOffset = 0x14; // pvArbitrary, reserved for application use
2200     } else if (STI.isTargetDragonFly()) {
2201       TlsReg = X86::FS;
2202       TlsOffset = 0x10; // use tls_tcb.tcb_segstack
2203     } else if (STI.isTargetFreeBSD()) {
2204       report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
2205     } else {
2206       report_fatal_error("Segmented stacks not supported on this platform.");
2207     }
2208 
2209     if (CompareStackPointer)
2210       ScratchReg = X86::ESP;
2211     else
2212       BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
2213         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2214 
2215     if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
2216         STI.isTargetDragonFly()) {
2217       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
2218         .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2219     } else if (STI.isTargetDarwin()) {
2220 
2221       // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
2222       unsigned ScratchReg2;
2223       bool SaveScratch2;
2224       if (CompareStackPointer) {
2225         // The primary scratch register is available for holding the TLS offset.
2226         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2227         SaveScratch2 = false;
2228       } else {
2229         // Need to use a second register to hold the TLS offset
2230         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
2231 
2232         // Unfortunately, with fastcc the second scratch register may hold an
2233         // argument.
2234         SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
2235       }
2236 
2237       // If Scratch2 is live-in then it needs to be saved.
2238       assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
2239              "Scratch register is live-in and not saved");
2240 
2241       if (SaveScratch2)
2242         BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
2243           .addReg(ScratchReg2, RegState::Kill);
2244 
2245       BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
2246         .addImm(TlsOffset);
2247       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
2248         .addReg(ScratchReg)
2249         .addReg(ScratchReg2).addImm(1).addReg(0)
2250         .addImm(0)
2251         .addReg(TlsReg);
2252 
2253       if (SaveScratch2)
2254         BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
2255     }
2256   }
2257 
2258   // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
2259   // It jumps to normal execution of the function body.
2260   BuildMI(checkMBB, DL, TII.get(X86::JA_1)).addMBB(&PrologueMBB);
2261 
2262   // On 32 bit we first push the arguments size and then the frame size. On 64
2263   // bit, we pass the stack frame size in r10 and the argument size in r11.
2264   if (Is64Bit) {
2265     // Functions with nested arguments use R10, so it needs to be saved across
2266     // the call to _morestack
2267 
2268     const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
2269     const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
2270     const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
2271     const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
2272     const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
2273 
2274     if (IsNested)
2275       BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
2276 
2277     BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
2278       .addImm(StackSize);
2279     BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
2280       .addImm(X86FI->getArgumentStackSize());
2281   } else {
2282     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2283       .addImm(X86FI->getArgumentStackSize());
2284     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2285       .addImm(StackSize);
2286   }
2287 
2288   // __morestack is in libgcc
2289   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
2290     // Under the large code model, we cannot assume that __morestack lives
2291     // within 2^31 bytes of the call site, so we cannot use pc-relative
2292     // addressing. We cannot perform the call via a temporary register,
2293     // as the rax register may be used to store the static chain, and all
2294     // other suitable registers may be either callee-save or used for
2295     // parameter passing. We cannot use the stack at this point either
2296     // because __morestack manipulates the stack directly.
2297     //
2298     // To avoid these issues, perform an indirect call via a read-only memory
2299     // location containing the address.
2300     //
2301     // This solution is not perfect, as it assumes that the .rodata section
2302     // is laid out within 2^31 bytes of each function body, but this seems
2303     // to be sufficient for JIT.
2304     BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
2305         .addReg(X86::RIP)
2306         .addImm(0)
2307         .addReg(0)
2308         .addExternalSymbol("__morestack_addr")
2309         .addReg(0);
2310     MF.getMMI().setUsesMorestackAddr(true);
2311   } else {
2312     if (Is64Bit)
2313       BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
2314         .addExternalSymbol("__morestack");
2315     else
2316       BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
2317         .addExternalSymbol("__morestack");
2318   }
2319 
2320   if (IsNested)
2321     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
2322   else
2323     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
2324 
2325   allocMBB->addSuccessor(&PrologueMBB);
2326 
2327   checkMBB->addSuccessor(allocMBB);
2328   checkMBB->addSuccessor(&PrologueMBB);
2329 
2330 #ifdef EXPENSIVE_CHECKS
2331   MF.verify();
2332 #endif
2333 }
2334 
2335 /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
2336 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
2337 /// to fields it needs, through a named metadata node "hipe.literals" containing
2338 /// name-value pairs.
2339 static unsigned getHiPELiteral(
2340     NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
2341   for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
2342     MDNode *Node = HiPELiteralsMD->getOperand(i);
2343     if (Node->getNumOperands() != 2) continue;
2344     MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
2345     ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
2346     if (!NodeName || !NodeVal) continue;
2347     ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
2348     if (ValConst && NodeName->getString() == LiteralName) {
2349       return ValConst->getZExtValue();
2350     }
2351   }
2352 
2353   report_fatal_error("HiPE literal " + LiteralName
2354                      + " required but not provided");
2355 }
2356 
2357 /// Erlang programs may need a special prologue to handle the stack size they
2358 /// might need at runtime. That is because Erlang/OTP does not implement a C
2359 /// stack but uses a custom implementation of hybrid stack/heap architecture.
2360 /// (for more information see Eric Stenman's Ph.D. thesis:
2361 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
2362 ///
2363 /// CheckStack:
2364 ///       temp0 = sp - MaxStack
2365 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2366 /// OldStart:
2367 ///       ...
2368 /// IncStack:
2369 ///       call inc_stack   # doubles the stack space
2370 ///       temp0 = sp - MaxStack
2371 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2372 void X86FrameLowering::adjustForHiPEPrologue(
2373     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2374   MachineFrameInfo &MFI = MF.getFrameInfo();
2375   DebugLoc DL;
2376 
2377   // To support shrink-wrapping we would need to insert the new blocks
2378   // at the right place and update the branches to PrologueMBB.
2379   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2380 
2381   // HiPE-specific values
2382   NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
2383     ->getNamedMetadata("hipe.literals");
2384   if (!HiPELiteralsMD)
2385     report_fatal_error(
2386         "Can't generate HiPE prologue without runtime parameters");
2387   const unsigned HipeLeafWords
2388     = getHiPELiteral(HiPELiteralsMD,
2389                      Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
2390   const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
2391   const unsigned Guaranteed = HipeLeafWords * SlotSize;
2392   unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ?
2393                             MF.getFunction()->arg_size() - CCRegisteredArgs : 0;
2394   unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;
2395 
2396   assert(STI.isTargetLinux() &&
2397          "HiPE prologue is only supported on Linux operating systems.");
2398 
2399   // Compute the largest caller's frame that is needed to fit the callees'
2400   // frames. This 'MaxStack' is computed from:
2401   //
2402   // a) the fixed frame size, which is the space needed for all spilled temps,
2403   // b) outgoing on-stack parameter areas, and
2404   // c) the minimum stack space this function needs to make available for the
2405   //    functions it calls (a tunable ABI property).
2406   if (MFI.hasCalls()) {
2407     unsigned MoreStackForCalls = 0;
2408 
2409     for (auto &MBB : MF) {
2410       for (auto &MI : MBB) {
2411         if (!MI.isCall())
2412           continue;
2413 
2414         // Get callee operand.
2415         const MachineOperand &MO = MI.getOperand(0);
2416 
2417         // Only take account of global function calls (no closures etc.).
2418         if (!MO.isGlobal())
2419           continue;
2420 
2421         const Function *F = dyn_cast<Function>(MO.getGlobal());
2422         if (!F)
2423           continue;
2424 
2425         // Do not update 'MaxStack' for primitive and built-in functions
2426         // (encoded with names either starting with "erlang."/"bif_" or not
2427         // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
2428         // "_", such as the BIF "suspend_0") as they are executed on another
2429         // stack.
2430         if (F->getName().find("erlang.") != StringRef::npos ||
2431             F->getName().find("bif_") != StringRef::npos ||
2432             F->getName().find_first_of("._") == StringRef::npos)
2433           continue;
2434 
2435         unsigned CalleeStkArity =
2436           F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
2437         if (HipeLeafWords - 1 > CalleeStkArity)
2438           MoreStackForCalls = std::max(MoreStackForCalls,
2439                                (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
2440       }
2441     }
2442     MaxStack += MoreStackForCalls;
2443   }
2444 
2445   // If the stack frame needed is larger than the guaranteed then runtime checks
2446   // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
2447   if (MaxStack > Guaranteed) {
2448     MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
2449     MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
2450 
2451     for (const auto &LI : PrologueMBB.liveins()) {
2452       stackCheckMBB->addLiveIn(LI);
2453       incStackMBB->addLiveIn(LI);
2454     }
2455 
2456     MF.push_front(incStackMBB);
2457     MF.push_front(stackCheckMBB);
2458 
2459     unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
2460     unsigned LEAop, CMPop, CALLop;
2461     SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
2462     if (Is64Bit) {
2463       SPReg = X86::RSP;
2464       PReg  = X86::RBP;
2465       LEAop = X86::LEA64r;
2466       CMPop = X86::CMP64rm;
2467       CALLop = X86::CALL64pcrel32;
2468     } else {
2469       SPReg = X86::ESP;
2470       PReg  = X86::EBP;
2471       LEAop = X86::LEA32r;
2472       CMPop = X86::CMP32rm;
2473       CALLop = X86::CALLpcrel32;
2474     }
2475 
2476     ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2477     assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2478            "HiPE prologue scratch register is live-in");
2479 
2480     // Create new MBB for StackCheck:
2481     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
2482                  SPReg, false, -MaxStack);
2483     // SPLimitOffset is in a fixed heap location (pointed by BP).
2484     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
2485                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
2486     BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_1)).addMBB(&PrologueMBB);
2487 
2488     // Create new MBB for IncStack:
2489     BuildMI(incStackMBB, DL, TII.get(CALLop)).
2490       addExternalSymbol("inc_stack_0");
2491     addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
2492                  SPReg, false, -MaxStack);
2493     addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
2494                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
2495     BuildMI(incStackMBB, DL, TII.get(X86::JLE_1)).addMBB(incStackMBB);
2496 
2497     stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
2498     stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
2499     incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
2500     incStackMBB->addSuccessor(incStackMBB, {1, 100});
2501   }
2502 #ifdef EXPENSIVE_CHECKS
2503   MF.verify();
2504 #endif
2505 }
2506 
2507 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
2508                                            MachineBasicBlock::iterator MBBI,
2509                                            const DebugLoc &DL,
2510                                            int Offset) const {
2511 
2512   if (Offset <= 0)
2513     return false;
2514 
2515   if (Offset % SlotSize)
2516     return false;
2517 
2518   int NumPops = Offset / SlotSize;
2519   // This is only worth it if we have at most 2 pops.
2520   if (NumPops != 1 && NumPops != 2)
2521     return false;
2522 
2523   // Handle only the trivial case where the adjustment directly follows
2524   // a call. This is the most common one, anyway.
2525   if (MBBI == MBB.begin())
2526     return false;
2527   MachineBasicBlock::iterator Prev = std::prev(MBBI);
2528   if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
2529     return false;
2530 
2531   unsigned Regs[2];
2532   unsigned FoundRegs = 0;
2533 
2534   auto RegMask = Prev->getOperand(1);
2535 
2536   auto &RegClass =
2537       Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
2538   // Try to find up to NumPops free registers.
2539   for (auto Candidate : RegClass) {
2540 
2541     // Poor man's liveness:
2542     // Since we're immediately after a call, any register that is clobbered
2543     // by the call and not defined by it can be considered dead.
2544     if (!RegMask.clobbersPhysReg(Candidate))
2545       continue;
2546 
2547     bool IsDef = false;
2548     for (const MachineOperand &MO : Prev->implicit_operands()) {
2549       if (MO.isReg() && MO.isDef() &&
2550           TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
2551         IsDef = true;
2552         break;
2553       }
2554     }
2555 
2556     if (IsDef)
2557       continue;
2558 
2559     Regs[FoundRegs++] = Candidate;
2560     if (FoundRegs == (unsigned)NumPops)
2561       break;
2562   }
2563 
2564   if (FoundRegs == 0)
2565     return false;
2566 
2567   // If we found only one free register, but need two, reuse the same one twice.
2568   while (FoundRegs < (unsigned)NumPops)
2569     Regs[FoundRegs++] = Regs[0];
2570 
2571   for (int i = 0; i < NumPops; ++i)
2572     BuildMI(MBB, MBBI, DL,
2573             TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
2574 
2575   return true;
2576 }
2577 
2578 MachineBasicBlock::iterator X86FrameLowering::
2579 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
2580                               MachineBasicBlock::iterator I) const {
2581   bool reserveCallFrame = hasReservedCallFrame(MF);
2582   unsigned Opcode = I->getOpcode();
2583   bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
2584   DebugLoc DL = I->getDebugLoc();
2585   uint64_t Amount = !reserveCallFrame ? I->getOperand(0).getImm() : 0;
2586   uint64_t InternalAmt = (isDestroy || Amount) ? I->getOperand(1).getImm() : 0;
2587   I = MBB.erase(I);
2588 
2589   if (!reserveCallFrame) {
2590     // If the stack pointer can be changed after prologue, turn the
2591     // adjcallstackup instruction into a 'sub ESP, <amt>' and the
2592     // adjcallstackdown instruction into 'add ESP, <amt>'
2593 
2594     // We need to keep the stack aligned properly.  To do this, we round the
2595     // amount of space needed for the outgoing arguments up to the next
2596     // alignment boundary.
2597     unsigned StackAlign = getStackAlignment();
2598     Amount = alignTo(Amount, StackAlign);
2599 
2600     MachineModuleInfo &MMI = MF.getMMI();
2601     const Function *Fn = MF.getFunction();
2602     bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2603     bool DwarfCFI = !WindowsCFI &&
2604                     (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
2605 
2606     // If we have any exception handlers in this function, and we adjust
2607     // the SP before calls, we may need to indicate this to the unwinder
2608     // using GNU_ARGS_SIZE. Note that this may be necessary even when
2609     // Amount == 0, because the preceding function may have set a non-0
2610     // GNU_ARGS_SIZE.
2611     // TODO: We don't need to reset this between subsequent functions,
2612     // if it didn't change.
2613     bool HasDwarfEHHandlers = !WindowsCFI &&
2614                               !MF.getMMI().getLandingPads().empty();
2615 
2616     if (HasDwarfEHHandlers && !isDestroy &&
2617         MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
2618       BuildCFI(MBB, I, DL,
2619                MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
2620 
2621     if (Amount == 0)
2622       return I;
2623 
2624     // Factor out the amount that gets handled inside the sequence
2625     // (Pushes of argument for frame setup, callee pops for frame destroy)
2626     Amount -= InternalAmt;
2627 
2628     // TODO: This is needed only if we require precise CFA.
2629     // If this is a callee-pop calling convention, emit a CFA adjust for
2630     // the amount the callee popped.
2631     if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
2632       BuildCFI(MBB, I, DL,
2633                MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
2634 
2635     // Add Amount to SP to destroy a frame, or subtract to setup.
2636     int64_t StackAdjustment = isDestroy ? Amount : -Amount;
2637     int64_t CfaAdjustment = -StackAdjustment;
2638 
2639     if (StackAdjustment) {
2640       // Merge with any previous or following adjustment instruction. Note: the
2641       // instructions merged with here do not have CFI, so their stack
2642       // adjustments do not feed into CfaAdjustment.
2643       StackAdjustment += mergeSPUpdates(MBB, I, true);
2644       StackAdjustment += mergeSPUpdates(MBB, I, false);
2645 
2646       if (StackAdjustment) {
2647         if (!(Fn->optForMinSize() &&
2648               adjustStackWithPops(MBB, I, DL, StackAdjustment)))
2649           BuildStackAdjustment(MBB, I, DL, StackAdjustment,
2650                                /*InEpilogue=*/false);
2651       }
2652     }
2653 
2654     if (DwarfCFI && !hasFP(MF)) {
2655       // If we don't have FP, but need to generate unwind information,
2656       // we need to set the correct CFA offset after the stack adjustment.
2657       // How much we adjust the CFA offset depends on whether we're emitting
2658       // CFI only for EH purposes or for debugging. EH only requires the CFA
2659       // offset to be correct at each call site, while for debugging we want
2660       // it to be more precise.
2661 
2662       // TODO: When not using precise CFA, we also need to adjust for the
2663       // InternalAmt here.
2664       if (CfaAdjustment) {
2665         BuildCFI(MBB, I, DL, MCCFIInstruction::createAdjustCfaOffset(
2666                                  nullptr, CfaAdjustment));
2667       }
2668     }
2669 
2670     return I;
2671   }
2672 
2673   if (isDestroy && InternalAmt) {
2674     // If we are performing frame pointer elimination and if the callee pops
2675     // something off the stack pointer, add it back.  We do this until we have
2676     // more advanced stack pointer tracking ability.
2677     // We are not tracking the stack pointer adjustment by the callee, so make
2678     // sure we restore the stack pointer immediately after the call, there may
2679     // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
2680     MachineBasicBlock::iterator CI = I;
2681     MachineBasicBlock::iterator B = MBB.begin();
2682     while (CI != B && !std::prev(CI)->isCall())
2683       --CI;
2684     BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
2685   }
2686 
2687   return I;
2688 }
2689 
2690 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
2691   assert(MBB.getParent() && "Block is not attached to a function!");
2692   const MachineFunction &MF = *MBB.getParent();
2693   return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS);
2694 }
2695 
2696 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
2697   assert(MBB.getParent() && "Block is not attached to a function!");
2698 
2699   // Win64 has strict requirements in terms of epilogue and we are
2700   // not taking a chance at messing with them.
2701   // I.e., unless this block is already an exit block, we can't use
2702   // it as an epilogue.
2703   if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
2704     return false;
2705 
2706   if (canUseLEAForSPInEpilogue(*MBB.getParent()))
2707     return true;
2708 
2709   // If we cannot use LEA to adjust SP, we may need to use ADD, which
2710   // clobbers the EFLAGS. Check that we do not need to preserve it,
2711   // otherwise, conservatively assume this is not
2712   // safe to insert the epilogue here.
2713   return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
2714 }
2715 
2716 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2717   // If we may need to emit frameless compact unwind information, give
2718   // up as this is currently broken: PR25614.
2719   return (MF.getFunction()->hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) &&
2720          // The lowering of segmented stack and HiPE only support entry blocks
2721          // as prologue blocks: PR26107.
2722          // This limitation may be lifted if we fix:
2723          // - adjustForSegmentedStacks
2724          // - adjustForHiPEPrologue
2725          MF.getFunction()->getCallingConv() != CallingConv::HiPE &&
2726          !MF.shouldSplitStack();
2727 }
2728 
2729 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
2730     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
2731     const DebugLoc &DL, bool RestoreSP) const {
2732   assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
2733   assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
2734   assert(STI.is32Bit() && !Uses64BitFramePtr &&
2735          "restoring EBP/ESI on non-32-bit target");
2736 
2737   MachineFunction &MF = *MBB.getParent();
2738   unsigned FramePtr = TRI->getFrameRegister(MF);
2739   unsigned BasePtr = TRI->getBaseRegister();
2740   WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
2741   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2742   MachineFrameInfo &MFI = MF.getFrameInfo();
2743 
2744   // FIXME: Don't set FrameSetup flag in catchret case.
2745 
2746   int FI = FuncInfo.EHRegNodeFrameIndex;
2747   int EHRegSize = MFI.getObjectSize(FI);
2748 
2749   if (RestoreSP) {
2750     // MOV32rm -EHRegSize(%ebp), %esp
2751     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
2752                  X86::EBP, true, -EHRegSize)
2753         .setMIFlag(MachineInstr::FrameSetup);
2754   }
2755 
2756   unsigned UsedReg;
2757   int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
2758   int EndOffset = -EHRegOffset - EHRegSize;
2759   FuncInfo.EHRegNodeEndOffset = EndOffset;
2760 
2761   if (UsedReg == FramePtr) {
2762     // ADD $offset, %ebp
2763     unsigned ADDri = getADDriOpcode(false, EndOffset);
2764     BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
2765         .addReg(FramePtr)
2766         .addImm(EndOffset)
2767         .setMIFlag(MachineInstr::FrameSetup)
2768         ->getOperand(3)
2769         .setIsDead();
2770     assert(EndOffset >= 0 &&
2771            "end of registration object above normal EBP position!");
2772   } else if (UsedReg == BasePtr) {
2773     // LEA offset(%ebp), %esi
2774     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
2775                  FramePtr, false, EndOffset)
2776         .setMIFlag(MachineInstr::FrameSetup);
2777     // MOV32rm SavedEBPOffset(%esi), %ebp
2778     assert(X86FI->getHasSEHFramePtrSave());
2779     int Offset =
2780         getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
2781     assert(UsedReg == BasePtr);
2782     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
2783                  UsedReg, true, Offset)
2784         .setMIFlag(MachineInstr::FrameSetup);
2785   } else {
2786     llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
2787   }
2788   return MBBI;
2789 }
2790 
2791 namespace {
2792 // Struct used by orderFrameObjects to help sort the stack objects.
2793 struct X86FrameSortingObject {
2794   bool IsValid = false;         // true if we care about this Object.
2795   unsigned ObjectIndex = 0;     // Index of Object into MFI list.
2796   unsigned ObjectSize = 0;      // Size of Object in bytes.
2797   unsigned ObjectAlignment = 1; // Alignment of Object in bytes.
2798   unsigned ObjectNumUses = 0;   // Object static number of uses.
2799 };
2800 
2801 // The comparison function we use for std::sort to order our local
2802 // stack symbols. The current algorithm is to use an estimated
2803 // "density". This takes into consideration the size and number of
2804 // uses each object has in order to roughly minimize code size.
2805 // So, for example, an object of size 16B that is referenced 5 times
2806 // will get higher priority than 4 4B objects referenced 1 time each.
2807 // It's not perfect and we may be able to squeeze a few more bytes out of
2808 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
2809 // fringe end can have special consideration, given their size is less
2810 // important, etc.), but the algorithmic complexity grows too much to be
2811 // worth the extra gains we get. This gets us pretty close.
2812 // The final order leaves us with objects with highest priority going
2813 // at the end of our list.
2814 struct X86FrameSortingComparator {
2815   inline bool operator()(const X86FrameSortingObject &A,
2816                          const X86FrameSortingObject &B) {
2817     uint64_t DensityAScaled, DensityBScaled;
2818 
2819     // For consistency in our comparison, all invalid objects are placed
2820     // at the end. This also allows us to stop walking when we hit the
2821     // first invalid item after it's all sorted.
2822     if (!A.IsValid)
2823       return false;
2824     if (!B.IsValid)
2825       return true;
2826 
2827     // The density is calculated by doing :
2828     //     (double)DensityA = A.ObjectNumUses / A.ObjectSize
2829     //     (double)DensityB = B.ObjectNumUses / B.ObjectSize
2830     // Since this approach may cause inconsistencies in
2831     // the floating point <, >, == comparisons, depending on the floating
2832     // point model with which the compiler was built, we're going
2833     // to scale both sides by multiplying with
2834     // A.ObjectSize * B.ObjectSize. This ends up factoring away
2835     // the division and, with it, the need for any floating point
2836     // arithmetic.
2837     DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
2838       static_cast<uint64_t>(B.ObjectSize);
2839     DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
2840       static_cast<uint64_t>(A.ObjectSize);
2841 
2842     // If the two densities are equal, prioritize highest alignment
2843     // objects. This allows for similar alignment objects
2844     // to be packed together (given the same density).
2845     // There's room for improvement here, also, since we can pack
2846     // similar alignment (different density) objects next to each
2847     // other to save padding. This will also require further
2848     // complexity/iterations, and the overall gain isn't worth it,
2849     // in general. Something to keep in mind, though.
2850     if (DensityAScaled == DensityBScaled)
2851       return A.ObjectAlignment < B.ObjectAlignment;
2852 
2853     return DensityAScaled < DensityBScaled;
2854   }
2855 };
2856 } // namespace
2857 
2858 // Order the symbols in the local stack.
2859 // We want to place the local stack objects in some sort of sensible order.
2860 // The heuristic we use is to try and pack them according to static number
2861 // of uses and size of object in order to minimize code size.
2862 void X86FrameLowering::orderFrameObjects(
2863     const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
2864   const MachineFrameInfo &MFI = MF.getFrameInfo();
2865 
2866   // Don't waste time if there's nothing to do.
2867   if (ObjectsToAllocate.empty())
2868     return;
2869 
2870   // Create an array of all MFI objects. We won't need all of these
2871   // objects, but we're going to create a full array of them to make
2872   // it easier to index into when we're counting "uses" down below.
2873   // We want to be able to easily/cheaply access an object by simply
2874   // indexing into it, instead of having to search for it every time.
2875   std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
2876 
2877   // Walk the objects we care about and mark them as such in our working
2878   // struct.
2879   for (auto &Obj : ObjectsToAllocate) {
2880     SortingObjects[Obj].IsValid = true;
2881     SortingObjects[Obj].ObjectIndex = Obj;
2882     SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlignment(Obj);
2883     // Set the size.
2884     int ObjectSize = MFI.getObjectSize(Obj);
2885     if (ObjectSize == 0)
2886       // Variable size. Just use 4.
2887       SortingObjects[Obj].ObjectSize = 4;
2888     else
2889       SortingObjects[Obj].ObjectSize = ObjectSize;
2890   }
2891 
2892   // Count the number of uses for each object.
2893   for (auto &MBB : MF) {
2894     for (auto &MI : MBB) {
2895       if (MI.isDebugValue())
2896         continue;
2897       for (const MachineOperand &MO : MI.operands()) {
2898         // Check to see if it's a local stack symbol.
2899         if (!MO.isFI())
2900           continue;
2901         int Index = MO.getIndex();
2902         // Check to see if it falls within our range, and is tagged
2903         // to require ordering.
2904         if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
2905             SortingObjects[Index].IsValid)
2906           SortingObjects[Index].ObjectNumUses++;
2907       }
2908     }
2909   }
2910 
2911   // Sort the objects using X86FrameSortingAlgorithm (see its comment for
2912   // info).
2913   std::stable_sort(SortingObjects.begin(), SortingObjects.end(),
2914                    X86FrameSortingComparator());
2915 
2916   // Now modify the original list to represent the final order that
2917   // we want. The order will depend on whether we're going to access them
2918   // from the stack pointer or the frame pointer. For SP, the list should
2919   // end up with the END containing objects that we want with smaller offsets.
2920   // For FP, it should be flipped.
2921   int i = 0;
2922   for (auto &Obj : SortingObjects) {
2923     // All invalid items are sorted at the end, so it's safe to stop.
2924     if (!Obj.IsValid)
2925       break;
2926     ObjectsToAllocate[i++] = Obj.ObjectIndex;
2927   }
2928 
2929   // Flip it if we're accessing off of the FP.
2930   if (!TRI->needsStackRealignment(MF) && hasFP(MF))
2931     std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
2932 }
2933 
2934 
2935 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
2936   // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
2937   unsigned Offset = 16;
2938   // RBP is immediately pushed.
2939   Offset += SlotSize;
2940   // All callee-saved registers are then pushed.
2941   Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
2942   // Every funclet allocates enough stack space for the largest outgoing call.
2943   Offset += getWinEHFuncletFrameSize(MF);
2944   return Offset;
2945 }
2946 
2947 void X86FrameLowering::processFunctionBeforeFrameFinalized(
2948     MachineFunction &MF, RegScavenger *RS) const {
2949   // If this function isn't doing Win64-style C++ EH, we don't need to do
2950   // anything.
2951   const Function *Fn = MF.getFunction();
2952   if (!STI.is64Bit() || !MF.getMMI().hasEHFunclets() ||
2953       classifyEHPersonality(Fn->getPersonalityFn()) != EHPersonality::MSVC_CXX)
2954     return;
2955 
2956   // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
2957   // relative to RSP after the prologue.  Find the offset of the last fixed
2958   // object, so that we can allocate a slot immediately following it. If there
2959   // were no fixed objects, use offset -SlotSize, which is immediately after the
2960   // return address. Fixed objects have negative frame indices.
2961   MachineFrameInfo &MFI = MF.getFrameInfo();
2962   WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
2963   int64_t MinFixedObjOffset = -SlotSize;
2964   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
2965     MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
2966 
2967   for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
2968     for (WinEHHandlerType &H : TBME.HandlerArray) {
2969       int FrameIndex = H.CatchObj.FrameIndex;
2970       if (FrameIndex != INT_MAX) {
2971         // Ensure alignment.
2972         unsigned Align = MFI.getObjectAlignment(FrameIndex);
2973         MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
2974         MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
2975         MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
2976       }
2977     }
2978   }
2979 
2980   // Ensure alignment.
2981   MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
2982   int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
2983   int UnwindHelpFI =
2984       MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*Immutable=*/false);
2985   EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
2986 
2987   // Store -2 into UnwindHelp on function entry. We have to scan forwards past
2988   // other frame setup instructions.
2989   MachineBasicBlock &MBB = MF.front();
2990   auto MBBI = MBB.begin();
2991   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
2992     ++MBBI;
2993 
2994   DebugLoc DL = MBB.findDebugLoc(MBBI);
2995   addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
2996                     UnwindHelpFI)
2997       .addImm(-2);
2998 }
2999