1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the X86 implementation of TargetFrameLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "X86FrameLowering.h" 15 #include "X86InstrBuilder.h" 16 #include "X86InstrInfo.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/Analysis/EHPersonalities.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/WinEHFuncInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/MC/MCAsmInfo.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Target/TargetOptions.h" 33 #include "llvm/Support/Debug.h" 34 #include <cstdlib> 35 36 using namespace llvm; 37 38 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 39 unsigned StackAlignOverride) 40 : TargetFrameLowering(StackGrowsDown, StackAlignOverride, 41 STI.is64Bit() ? -8 : -4), 42 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { 43 // Cache a bunch of frame-related predicates for this subtarget. 44 SlotSize = TRI->getSlotSize(); 45 Is64Bit = STI.is64Bit(); 46 IsLP64 = STI.isTarget64BitLP64(); 47 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 48 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 49 StackPtr = TRI->getStackRegister(); 50 } 51 52 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 53 return !MF.getFrameInfo().hasVarSizedObjects() && 54 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 55 } 56 57 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 58 /// call frame pseudos can be simplified. Having a FP, as in the default 59 /// implementation, is not sufficient here since we can't always use it. 60 /// Use a more nuanced condition. 61 bool 62 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 63 return hasReservedCallFrame(MF) || 64 (hasFP(MF) && !TRI->needsStackRealignment(MF)) || 65 TRI->hasBasePointer(MF); 66 } 67 68 // needsFrameIndexResolution - Do we need to perform FI resolution for 69 // this function. Normally, this is required only when the function 70 // has any stack objects. However, FI resolution actually has another job, 71 // not apparent from the title - it resolves callframesetup/destroy 72 // that were not simplified earlier. 73 // So, this is required for x86 functions that have push sequences even 74 // when there are no stack objects. 75 bool 76 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 77 return MF.getFrameInfo().hasStackObjects() || 78 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 79 } 80 81 /// hasFP - Return true if the specified function should have a dedicated frame 82 /// pointer register. This is true if the function has variable sized allocas 83 /// or if frame pointer elimination is disabled. 84 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 85 const MachineFrameInfo &MFI = MF.getFrameInfo(); 86 const MachineModuleInfo &MMI = MF.getMMI(); 87 88 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 89 TRI->needsStackRealignment(MF) || 90 MFI.hasVarSizedObjects() || 91 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 92 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 93 MMI.callsUnwindInit() || MMI.hasEHFunclets() || MMI.callsEHReturn() || 94 MFI.hasStackMap() || MFI.hasPatchPoint() || 95 MFI.hasCopyImplyingStackAdjustment()); 96 } 97 98 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) { 99 if (IsLP64) { 100 if (isInt<8>(Imm)) 101 return X86::SUB64ri8; 102 return X86::SUB64ri32; 103 } else { 104 if (isInt<8>(Imm)) 105 return X86::SUB32ri8; 106 return X86::SUB32ri; 107 } 108 } 109 110 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) { 111 if (IsLP64) { 112 if (isInt<8>(Imm)) 113 return X86::ADD64ri8; 114 return X86::ADD64ri32; 115 } else { 116 if (isInt<8>(Imm)) 117 return X86::ADD32ri8; 118 return X86::ADD32ri; 119 } 120 } 121 122 static unsigned getSUBrrOpcode(unsigned isLP64) { 123 return isLP64 ? X86::SUB64rr : X86::SUB32rr; 124 } 125 126 static unsigned getADDrrOpcode(unsigned isLP64) { 127 return isLP64 ? X86::ADD64rr : X86::ADD32rr; 128 } 129 130 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 131 if (IsLP64) { 132 if (isInt<8>(Imm)) 133 return X86::AND64ri8; 134 return X86::AND64ri32; 135 } 136 if (isInt<8>(Imm)) 137 return X86::AND32ri8; 138 return X86::AND32ri; 139 } 140 141 static unsigned getLEArOpcode(unsigned IsLP64) { 142 return IsLP64 ? X86::LEA64r : X86::LEA32r; 143 } 144 145 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live 146 /// when it reaches the "return" instruction. We can then pop a stack object 147 /// to this register without worry about clobbering it. 148 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB, 149 MachineBasicBlock::iterator &MBBI, 150 const X86RegisterInfo *TRI, 151 bool Is64Bit) { 152 const MachineFunction *MF = MBB.getParent(); 153 const Function *F = MF->getFunction(); 154 if (!F || MF->getMMI().callsEHReturn()) 155 return 0; 156 157 const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF); 158 159 if (MBBI == MBB.end()) 160 return 0; 161 162 switch (MBBI->getOpcode()) { 163 default: return 0; 164 case TargetOpcode::PATCHABLE_RET: 165 case X86::RET: 166 case X86::RETL: 167 case X86::RETQ: 168 case X86::RETIL: 169 case X86::RETIQ: 170 case X86::TCRETURNdi: 171 case X86::TCRETURNri: 172 case X86::TCRETURNmi: 173 case X86::TCRETURNdi64: 174 case X86::TCRETURNri64: 175 case X86::TCRETURNmi64: 176 case X86::EH_RETURN: 177 case X86::EH_RETURN64: { 178 SmallSet<uint16_t, 8> Uses; 179 for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) { 180 MachineOperand &MO = MBBI->getOperand(i); 181 if (!MO.isReg() || MO.isDef()) 182 continue; 183 unsigned Reg = MO.getReg(); 184 if (!Reg) 185 continue; 186 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 187 Uses.insert(*AI); 188 } 189 190 for (auto CS : AvailableRegs) 191 if (!Uses.count(CS) && CS != X86::RIP) 192 return CS; 193 } 194 } 195 196 return 0; 197 } 198 199 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 200 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 201 unsigned Reg = RegMask.PhysReg; 202 203 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 204 Reg == X86::AH || Reg == X86::AL) 205 return true; 206 } 207 208 return false; 209 } 210 211 /// Check if the flags need to be preserved before the terminators. 212 /// This would be the case, if the eflags is live-in of the region 213 /// composed by the terminators or live-out of that region, without 214 /// being defined by a terminator. 215 static bool 216 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 217 for (const MachineInstr &MI : MBB.terminators()) { 218 bool BreakNext = false; 219 for (const MachineOperand &MO : MI.operands()) { 220 if (!MO.isReg()) 221 continue; 222 unsigned Reg = MO.getReg(); 223 if (Reg != X86::EFLAGS) 224 continue; 225 226 // This terminator needs an eflags that is not defined 227 // by a previous another terminator: 228 // EFLAGS is live-in of the region composed by the terminators. 229 if (!MO.isDef()) 230 return true; 231 // This terminator defines the eflags, i.e., we don't need to preserve it. 232 // However, we still need to check this specific terminator does not 233 // read a live-in value. 234 BreakNext = true; 235 } 236 // We found a definition of the eflags, no need to preserve them. 237 if (BreakNext) 238 return false; 239 } 240 241 // None of the terminators use or define the eflags. 242 // Check if they are live-out, that would imply we need to preserve them. 243 for (const MachineBasicBlock *Succ : MBB.successors()) 244 if (Succ->isLiveIn(X86::EFLAGS)) 245 return true; 246 247 return false; 248 } 249 250 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 251 /// stack pointer by a constant value. 252 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 253 MachineBasicBlock::iterator &MBBI, 254 int64_t NumBytes, bool InEpilogue) const { 255 bool isSub = NumBytes < 0; 256 uint64_t Offset = isSub ? -NumBytes : NumBytes; 257 258 uint64_t Chunk = (1LL << 31) - 1; 259 DebugLoc DL = MBB.findDebugLoc(MBBI); 260 261 while (Offset) { 262 if (Offset > Chunk) { 263 // Rather than emit a long series of instructions for large offsets, 264 // load the offset into a register and do one sub/add 265 unsigned Reg = 0; 266 267 if (isSub && !isEAXLiveIn(MBB)) 268 Reg = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 269 else 270 Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 271 272 if (Reg) { 273 unsigned Opc = Is64Bit ? X86::MOV64ri : X86::MOV32ri; 274 BuildMI(MBB, MBBI, DL, TII.get(Opc), Reg) 275 .addImm(Offset); 276 Opc = isSub 277 ? getSUBrrOpcode(Is64Bit) 278 : getADDrrOpcode(Is64Bit); 279 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 280 .addReg(StackPtr) 281 .addReg(Reg); 282 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 283 Offset = 0; 284 continue; 285 } 286 } 287 288 uint64_t ThisVal = std::min(Offset, Chunk); 289 if (ThisVal == (Is64Bit ? 8 : 4)) { 290 // Use push / pop instead. 291 unsigned Reg = isSub 292 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 293 : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 294 if (Reg) { 295 unsigned Opc = isSub 296 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 297 : (Is64Bit ? X86::POP64r : X86::POP32r); 298 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc)) 299 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)); 300 if (isSub) 301 MI->setFlag(MachineInstr::FrameSetup); 302 else 303 MI->setFlag(MachineInstr::FrameDestroy); 304 Offset -= ThisVal; 305 continue; 306 } 307 } 308 309 MachineInstrBuilder MI = BuildStackAdjustment( 310 MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue); 311 if (isSub) 312 MI.setMIFlag(MachineInstr::FrameSetup); 313 else 314 MI.setMIFlag(MachineInstr::FrameDestroy); 315 316 Offset -= ThisVal; 317 } 318 } 319 320 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 321 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 322 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 323 assert(Offset != 0 && "zero offset stack adjustment requested"); 324 325 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 326 // is tricky. 327 bool UseLEA; 328 if (!InEpilogue) { 329 // Check if inserting the prologue at the beginning 330 // of MBB would require to use LEA operations. 331 // We need to use LEA operations if EFLAGS is live in, because 332 // it means an instruction will read it before it gets defined. 333 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 334 } else { 335 // If we can use LEA for SP but we shouldn't, check that none 336 // of the terminators uses the eflags. Otherwise we will insert 337 // a ADD that will redefine the eflags and break the condition. 338 // Alternatively, we could move the ADD, but this may not be possible 339 // and is an optimization anyway. 340 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 341 if (UseLEA && !STI.useLeaForSP()) 342 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 343 // If that assert breaks, that means we do not do the right thing 344 // in canUseAsEpilogue. 345 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 346 "We shouldn't have allowed this insertion point"); 347 } 348 349 MachineInstrBuilder MI; 350 if (UseLEA) { 351 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 352 TII.get(getLEArOpcode(Uses64BitFramePtr)), 353 StackPtr), 354 StackPtr, false, Offset); 355 } else { 356 bool IsSub = Offset < 0; 357 uint64_t AbsOffset = IsSub ? -Offset : Offset; 358 unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 359 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 360 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 361 .addReg(StackPtr) 362 .addImm(AbsOffset); 363 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 364 } 365 return MI; 366 } 367 368 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 369 MachineBasicBlock::iterator &MBBI, 370 bool doMergeWithPrevious) const { 371 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 372 (!doMergeWithPrevious && MBBI == MBB.end())) 373 return 0; 374 375 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 376 MachineBasicBlock::iterator NI = doMergeWithPrevious ? nullptr 377 : std::next(MBBI); 378 unsigned Opc = PI->getOpcode(); 379 int Offset = 0; 380 381 if (!doMergeWithPrevious && NI != MBB.end() && 382 NI->getOpcode() == TargetOpcode::CFI_INSTRUCTION) { 383 // Don't merge with the next instruction if it has CFI. 384 return Offset; 385 } 386 387 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 388 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 389 PI->getOperand(0).getReg() == StackPtr){ 390 assert(PI->getOperand(1).getReg() == StackPtr); 391 Offset += PI->getOperand(2).getImm(); 392 MBB.erase(PI); 393 if (!doMergeWithPrevious) MBBI = NI; 394 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 395 PI->getOperand(0).getReg() == StackPtr && 396 PI->getOperand(1).getReg() == StackPtr && 397 PI->getOperand(2).getImm() == 1 && 398 PI->getOperand(3).getReg() == X86::NoRegister && 399 PI->getOperand(5).getReg() == X86::NoRegister) { 400 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 401 Offset += PI->getOperand(4).getImm(); 402 MBB.erase(PI); 403 if (!doMergeWithPrevious) MBBI = NI; 404 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 405 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 406 PI->getOperand(0).getReg() == StackPtr) { 407 assert(PI->getOperand(1).getReg() == StackPtr); 408 Offset -= PI->getOperand(2).getImm(); 409 MBB.erase(PI); 410 if (!doMergeWithPrevious) MBBI = NI; 411 } 412 413 return Offset; 414 } 415 416 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 417 MachineBasicBlock::iterator MBBI, 418 const DebugLoc &DL, 419 const MCCFIInstruction &CFIInst) const { 420 MachineFunction &MF = *MBB.getParent(); 421 unsigned CFIIndex = MF.getMMI().addFrameInst(CFIInst); 422 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 423 .addCFIIndex(CFIIndex); 424 } 425 426 void X86FrameLowering::emitCalleeSavedFrameMoves( 427 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 428 const DebugLoc &DL) const { 429 MachineFunction &MF = *MBB.getParent(); 430 MachineFrameInfo &MFI = MF.getFrameInfo(); 431 MachineModuleInfo &MMI = MF.getMMI(); 432 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 433 434 // Add callee saved registers to move list. 435 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 436 if (CSI.empty()) return; 437 438 // Calculate offsets. 439 for (std::vector<CalleeSavedInfo>::const_iterator 440 I = CSI.begin(), E = CSI.end(); I != E; ++I) { 441 int64_t Offset = MFI.getObjectOffset(I->getFrameIdx()); 442 unsigned Reg = I->getReg(); 443 444 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 445 BuildCFI(MBB, MBBI, DL, 446 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 447 } 448 } 449 450 void X86FrameLowering::emitStackProbe(MachineFunction &MF, 451 MachineBasicBlock &MBB, 452 MachineBasicBlock::iterator MBBI, 453 const DebugLoc &DL, bool InProlog) const { 454 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 455 if (STI.isTargetWindowsCoreCLR()) { 456 if (InProlog) { 457 emitStackProbeInlineStub(MF, MBB, MBBI, DL, true); 458 } else { 459 emitStackProbeInline(MF, MBB, MBBI, DL, false); 460 } 461 } else { 462 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog); 463 } 464 } 465 466 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 467 MachineBasicBlock &PrologMBB) const { 468 const StringRef ChkStkStubSymbol = "__chkstk_stub"; 469 MachineInstr *ChkStkStub = nullptr; 470 471 for (MachineInstr &MI : PrologMBB) { 472 if (MI.isCall() && MI.getOperand(0).isSymbol() && 473 ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) { 474 ChkStkStub = &MI; 475 break; 476 } 477 } 478 479 if (ChkStkStub != nullptr) { 480 assert(!ChkStkStub->isBundled() && 481 "Not expecting bundled instructions here"); 482 MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator()); 483 assert(std::prev(MBBI) == ChkStkStub && 484 "MBBI expected after __chkstk_stub."); 485 DebugLoc DL = PrologMBB.findDebugLoc(MBBI); 486 emitStackProbeInline(MF, PrologMBB, MBBI, DL, true); 487 ChkStkStub->eraseFromParent(); 488 } 489 } 490 491 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 492 MachineBasicBlock &MBB, 493 MachineBasicBlock::iterator MBBI, 494 const DebugLoc &DL, 495 bool InProlog) const { 496 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 497 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 498 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 499 const TargetInstrInfo &TII = *STI.getInstrInfo(); 500 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 501 502 // RAX contains the number of bytes of desired stack adjustment. 503 // The handling here assumes this value has already been updated so as to 504 // maintain stack alignment. 505 // 506 // We need to exit with RSP modified by this amount and execute suitable 507 // page touches to notify the OS that we're growing the stack responsibly. 508 // All stack probing must be done without modifying RSP. 509 // 510 // MBB: 511 // SizeReg = RAX; 512 // ZeroReg = 0 513 // CopyReg = RSP 514 // Flags, TestReg = CopyReg - SizeReg 515 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 516 // LimitReg = gs magic thread env access 517 // if FinalReg >= LimitReg goto ContinueMBB 518 // RoundBB: 519 // RoundReg = page address of FinalReg 520 // LoopMBB: 521 // LoopReg = PHI(LimitReg,ProbeReg) 522 // ProbeReg = LoopReg - PageSize 523 // [ProbeReg] = 0 524 // if (ProbeReg > RoundReg) goto LoopMBB 525 // ContinueMBB: 526 // RSP = RSP - RAX 527 // [rest of original MBB] 528 529 // Set up the new basic blocks 530 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 531 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 532 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 533 534 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 535 MF.insert(MBBIter, RoundMBB); 536 MF.insert(MBBIter, LoopMBB); 537 MF.insert(MBBIter, ContinueMBB); 538 539 // Split MBB and move the tail portion down to ContinueMBB. 540 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 541 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 542 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 543 544 // Some useful constants 545 const int64_t ThreadEnvironmentStackLimit = 0x10; 546 const int64_t PageSize = 0x1000; 547 const int64_t PageMask = ~(PageSize - 1); 548 549 // Registers we need. For the normal case we use virtual 550 // registers. For the prolog expansion we use RAX, RCX and RDX. 551 MachineRegisterInfo &MRI = MF.getRegInfo(); 552 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 553 const unsigned SizeReg = InProlog ? (unsigned)X86::RAX 554 : MRI.createVirtualRegister(RegClass), 555 ZeroReg = InProlog ? (unsigned)X86::RCX 556 : MRI.createVirtualRegister(RegClass), 557 CopyReg = InProlog ? (unsigned)X86::RDX 558 : MRI.createVirtualRegister(RegClass), 559 TestReg = InProlog ? (unsigned)X86::RDX 560 : MRI.createVirtualRegister(RegClass), 561 FinalReg = InProlog ? (unsigned)X86::RDX 562 : MRI.createVirtualRegister(RegClass), 563 RoundedReg = InProlog ? (unsigned)X86::RDX 564 : MRI.createVirtualRegister(RegClass), 565 LimitReg = InProlog ? (unsigned)X86::RCX 566 : MRI.createVirtualRegister(RegClass), 567 JoinReg = InProlog ? (unsigned)X86::RCX 568 : MRI.createVirtualRegister(RegClass), 569 ProbeReg = InProlog ? (unsigned)X86::RCX 570 : MRI.createVirtualRegister(RegClass); 571 572 // SP-relative offsets where we can save RCX and RDX. 573 int64_t RCXShadowSlot = 0; 574 int64_t RDXShadowSlot = 0; 575 576 // If inlining in the prolog, save RCX and RDX. 577 // Future optimization: don't save or restore if not live in. 578 if (InProlog) { 579 // Compute the offsets. We need to account for things already 580 // pushed onto the stack at this point: return address, frame 581 // pointer (if used), and callee saves. 582 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 583 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 584 const bool HasFP = hasFP(MF); 585 RCXShadowSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 586 RDXShadowSlot = RCXShadowSlot + 8; 587 // Emit the saves. 588 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 589 RCXShadowSlot) 590 .addReg(X86::RCX); 591 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 592 RDXShadowSlot) 593 .addReg(X86::RDX); 594 } else { 595 // Not in the prolog. Copy RAX to a virtual reg. 596 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 597 } 598 599 // Add code to MBB to check for overflow and set the new target stack pointer 600 // to zero if so. 601 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 602 .addReg(ZeroReg, RegState::Undef) 603 .addReg(ZeroReg, RegState::Undef); 604 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 605 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 606 .addReg(CopyReg) 607 .addReg(SizeReg); 608 BuildMI(&MBB, DL, TII.get(X86::CMOVB64rr), FinalReg) 609 .addReg(TestReg) 610 .addReg(ZeroReg); 611 612 // FinalReg now holds final stack pointer value, or zero if 613 // allocation would overflow. Compare against the current stack 614 // limit from the thread environment block. Note this limit is the 615 // lowest touched page on the stack, not the point at which the OS 616 // will cause an overflow exception, so this is just an optimization 617 // to avoid unnecessarily touching pages that are below the current 618 // SP but already commited to the stack by the OS. 619 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 620 .addReg(0) 621 .addImm(1) 622 .addReg(0) 623 .addImm(ThreadEnvironmentStackLimit) 624 .addReg(X86::GS); 625 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 626 // Jump if the desired stack pointer is at or above the stack limit. 627 BuildMI(&MBB, DL, TII.get(X86::JAE_1)).addMBB(ContinueMBB); 628 629 // Add code to roundMBB to round the final stack pointer to a page boundary. 630 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 631 .addReg(FinalReg) 632 .addImm(PageMask); 633 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 634 635 // LimitReg now holds the current stack limit, RoundedReg page-rounded 636 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 637 // and probe until we reach RoundedReg. 638 if (!InProlog) { 639 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 640 .addReg(LimitReg) 641 .addMBB(RoundMBB) 642 .addReg(ProbeReg) 643 .addMBB(LoopMBB); 644 } 645 646 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 647 false, -PageSize); 648 649 // Probe by storing a byte onto the stack. 650 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 651 .addReg(ProbeReg) 652 .addImm(1) 653 .addReg(0) 654 .addImm(0) 655 .addReg(0) 656 .addImm(0); 657 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 658 .addReg(RoundedReg) 659 .addReg(ProbeReg); 660 BuildMI(LoopMBB, DL, TII.get(X86::JNE_1)).addMBB(LoopMBB); 661 662 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 663 664 // If in prolog, restore RDX and RCX. 665 if (InProlog) { 666 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm), 667 X86::RCX), 668 X86::RSP, false, RCXShadowSlot); 669 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm), 670 X86::RDX), 671 X86::RSP, false, RDXShadowSlot); 672 } 673 674 // Now that the probing is done, add code to continueMBB to update 675 // the stack pointer for real. 676 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 677 .addReg(X86::RSP) 678 .addReg(SizeReg); 679 680 // Add the control flow edges we need. 681 MBB.addSuccessor(ContinueMBB); 682 MBB.addSuccessor(RoundMBB); 683 RoundMBB->addSuccessor(LoopMBB); 684 LoopMBB->addSuccessor(ContinueMBB); 685 LoopMBB->addSuccessor(LoopMBB); 686 687 // Mark all the instructions added to the prolog as frame setup. 688 if (InProlog) { 689 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 690 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 691 } 692 for (MachineInstr &MI : *RoundMBB) { 693 MI.setFlag(MachineInstr::FrameSetup); 694 } 695 for (MachineInstr &MI : *LoopMBB) { 696 MI.setFlag(MachineInstr::FrameSetup); 697 } 698 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); 699 CMBBI != ContinueMBBI; ++CMBBI) { 700 CMBBI->setFlag(MachineInstr::FrameSetup); 701 } 702 } 703 704 // Possible TODO: physreg liveness for InProlog case. 705 } 706 707 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF, 708 MachineBasicBlock &MBB, 709 MachineBasicBlock::iterator MBBI, 710 const DebugLoc &DL, 711 bool InProlog) const { 712 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 713 714 unsigned CallOp; 715 if (Is64Bit) 716 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 717 else 718 CallOp = X86::CALLpcrel32; 719 720 const char *Symbol; 721 if (Is64Bit) { 722 if (STI.isTargetCygMing()) { 723 Symbol = "___chkstk_ms"; 724 } else { 725 Symbol = "__chkstk"; 726 } 727 } else if (STI.isTargetCygMing()) 728 Symbol = "_alloca"; 729 else 730 Symbol = "_chkstk"; 731 732 MachineInstrBuilder CI; 733 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 734 735 // All current stack probes take AX and SP as input, clobber flags, and 736 // preserve all registers. x86_64 probes leave RSP unmodified. 737 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 738 // For the large code model, we have to call through a register. Use R11, 739 // as it is scratch in all supported calling conventions. 740 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 741 .addExternalSymbol(Symbol); 742 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 743 } else { 744 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addExternalSymbol(Symbol); 745 } 746 747 unsigned AX = Is64Bit ? X86::RAX : X86::EAX; 748 unsigned SP = Is64Bit ? X86::RSP : X86::ESP; 749 CI.addReg(AX, RegState::Implicit) 750 .addReg(SP, RegState::Implicit) 751 .addReg(AX, RegState::Define | RegState::Implicit) 752 .addReg(SP, RegState::Define | RegState::Implicit) 753 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 754 755 if (Is64Bit) { 756 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 757 // themselves. It also does not clobber %rax so we can reuse it when 758 // adjusting %rsp. 759 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 760 .addReg(X86::RSP) 761 .addReg(X86::RAX); 762 } 763 764 if (InProlog) { 765 // Apply the frame setup flag to all inserted instrs. 766 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 767 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 768 } 769 } 770 771 void X86FrameLowering::emitStackProbeInlineStub( 772 MachineFunction &MF, MachineBasicBlock &MBB, 773 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 774 775 assert(InProlog && "ChkStkStub called outside prolog!"); 776 777 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32)) 778 .addExternalSymbol("__chkstk_stub"); 779 } 780 781 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 782 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 783 // and might require smaller successive adjustments. 784 const uint64_t Win64MaxSEHOffset = 128; 785 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 786 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 787 return SEHFrameOffset & -16; 788 } 789 790 // If we're forcing a stack realignment we can't rely on just the frame 791 // info, we need to know the ABI stack alignment as well in case we 792 // have a call out. Otherwise just make sure we have some alignment - we'll 793 // go with the minimum SlotSize. 794 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 795 const MachineFrameInfo &MFI = MF.getFrameInfo(); 796 uint64_t MaxAlign = MFI.getMaxAlignment(); // Desired stack alignment. 797 unsigned StackAlign = getStackAlignment(); 798 if (MF.getFunction()->hasFnAttribute("stackrealign")) { 799 if (MFI.hasCalls()) 800 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 801 else if (MaxAlign < SlotSize) 802 MaxAlign = SlotSize; 803 } 804 return MaxAlign; 805 } 806 807 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 808 MachineBasicBlock::iterator MBBI, 809 const DebugLoc &DL, unsigned Reg, 810 uint64_t MaxAlign) const { 811 uint64_t Val = -MaxAlign; 812 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 813 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 814 .addReg(Reg) 815 .addImm(Val) 816 .setMIFlag(MachineInstr::FrameSetup); 817 818 // The EFLAGS implicit def is dead. 819 MI->getOperand(3).setIsDead(); 820 } 821 822 /// emitPrologue - Push callee-saved registers onto the stack, which 823 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 824 /// space for local variables. Also emit labels used by the exception handler to 825 /// generate the exception handling frames. 826 827 /* 828 Here's a gist of what gets emitted: 829 830 ; Establish frame pointer, if needed 831 [if needs FP] 832 push %rbp 833 .cfi_def_cfa_offset 16 834 .cfi_offset %rbp, -16 835 .seh_pushreg %rpb 836 mov %rsp, %rbp 837 .cfi_def_cfa_register %rbp 838 839 ; Spill general-purpose registers 840 [for all callee-saved GPRs] 841 pushq %<reg> 842 [if not needs FP] 843 .cfi_def_cfa_offset (offset from RETADDR) 844 .seh_pushreg %<reg> 845 846 ; If the required stack alignment > default stack alignment 847 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 848 ; of unknown size in the stack frame. 849 [if stack needs re-alignment] 850 and $MASK, %rsp 851 852 ; Allocate space for locals 853 [if target is Windows and allocated space > 4096 bytes] 854 ; Windows needs special care for allocations larger 855 ; than one page. 856 mov $NNN, %rax 857 call ___chkstk_ms/___chkstk 858 sub %rax, %rsp 859 [else] 860 sub $NNN, %rsp 861 862 [if needs FP] 863 .seh_stackalloc (size of XMM spill slots) 864 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 865 [else] 866 .seh_stackalloc NNN 867 868 ; Spill XMMs 869 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 870 ; they may get spilled on any platform, if the current function 871 ; calls @llvm.eh.unwind.init 872 [if needs FP] 873 [for all callee-saved XMM registers] 874 movaps %<xmm reg>, -MMM(%rbp) 875 [for all callee-saved XMM registers] 876 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 877 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 878 [else] 879 [for all callee-saved XMM registers] 880 movaps %<xmm reg>, KKK(%rsp) 881 [for all callee-saved XMM registers] 882 .seh_savexmm %<xmm reg>, KKK 883 884 .seh_endprologue 885 886 [if needs base pointer] 887 mov %rsp, %rbx 888 [if needs to restore base pointer] 889 mov %rsp, -MMM(%rbp) 890 891 ; Emit CFI info 892 [if needs FP] 893 [for all callee-saved registers] 894 .cfi_offset %<reg>, (offset from %rbp) 895 [else] 896 .cfi_def_cfa_offset (offset from RETADDR) 897 [for all callee-saved registers] 898 .cfi_offset %<reg>, (offset from %rsp) 899 900 Notes: 901 - .seh directives are emitted only for Windows 64 ABI 902 - .cfi directives are emitted for all other ABIs 903 - for 32-bit code, substitute %e?? registers for %r?? 904 */ 905 906 void X86FrameLowering::emitPrologue(MachineFunction &MF, 907 MachineBasicBlock &MBB) const { 908 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 909 "MF used frame lowering for wrong subtarget"); 910 MachineBasicBlock::iterator MBBI = MBB.begin(); 911 MachineFrameInfo &MFI = MF.getFrameInfo(); 912 const Function *Fn = MF.getFunction(); 913 MachineModuleInfo &MMI = MF.getMMI(); 914 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 915 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 916 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 917 bool IsFunclet = MBB.isEHFuncletEntry(); 918 EHPersonality Personality = EHPersonality::Unknown; 919 if (Fn->hasPersonalityFn()) 920 Personality = classifyEHPersonality(Fn->getPersonalityFn()); 921 bool FnHasClrFunclet = 922 MMI.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 923 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 924 bool HasFP = hasFP(MF); 925 bool IsWin64CC = STI.isCallingConvWin64(Fn->getCallingConv()); 926 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 927 bool NeedsWinCFI = IsWin64Prologue && Fn->needsUnwindTableEntry(); 928 bool NeedsDwarfCFI = 929 !IsWin64Prologue && (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry()); 930 unsigned FramePtr = TRI->getFrameRegister(MF); 931 const unsigned MachineFramePtr = 932 STI.isTarget64BitILP32() 933 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr; 934 unsigned BasePtr = TRI->getBaseRegister(); 935 bool HasWinCFI = false; 936 937 // Debug location must be unknown since the first debug location is used 938 // to determine the end of the prologue. 939 DebugLoc DL; 940 941 // Add RETADDR move area to callee saved frame size. 942 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 943 if (TailCallReturnAddrDelta && IsWin64Prologue) 944 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 945 946 if (TailCallReturnAddrDelta < 0) 947 X86FI->setCalleeSavedFrameSize( 948 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); 949 950 bool UseStackProbe = (STI.isOSWindows() && !STI.isTargetMachO()); 951 952 // The default stack probe size is 4096 if the function has no stackprobesize 953 // attribute. 954 unsigned StackProbeSize = 4096; 955 if (Fn->hasFnAttribute("stack-probe-size")) 956 Fn->getFnAttribute("stack-probe-size") 957 .getValueAsString() 958 .getAsInteger(0, StackProbeSize); 959 960 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 961 // function, and use up to 128 bytes of stack space, don't have a frame 962 // pointer, calls, or dynamic alloca then we do not need to adjust the 963 // stack pointer (we fit in the Red Zone). We also check that we don't 964 // push and pop from the stack. 965 if (Is64Bit && !Fn->hasFnAttribute(Attribute::NoRedZone) && 966 !TRI->needsStackRealignment(MF) && 967 !MFI.hasVarSizedObjects() && // No dynamic alloca. 968 !MFI.adjustsStack() && // No calls. 969 !IsWin64CC && // Win64 has no Red Zone 970 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 971 !MF.shouldSplitStack()) { // Regular stack 972 uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); 973 if (HasFP) MinSize += SlotSize; 974 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 975 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 976 MFI.setStackSize(StackSize); 977 } 978 979 // Insert stack pointer adjustment for later moving of return addr. Only 980 // applies to tail call optimized functions where the callee argument stack 981 // size is bigger than the callers. 982 if (TailCallReturnAddrDelta < 0) { 983 BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta, 984 /*InEpilogue=*/false) 985 .setMIFlag(MachineInstr::FrameSetup); 986 } 987 988 // Mapping for machine moves: 989 // 990 // DST: VirtualFP AND 991 // SRC: VirtualFP => DW_CFA_def_cfa_offset 992 // ELSE => DW_CFA_def_cfa 993 // 994 // SRC: VirtualFP AND 995 // DST: Register => DW_CFA_def_cfa_register 996 // 997 // ELSE 998 // OFFSET < 0 => DW_CFA_offset_extended_sf 999 // REG < 64 => DW_CFA_offset + Reg 1000 // ELSE => DW_CFA_offset_extended 1001 1002 uint64_t NumBytes = 0; 1003 int stackGrowth = -SlotSize; 1004 1005 // Find the funclet establisher parameter 1006 unsigned Establisher = X86::NoRegister; 1007 if (IsClrFunclet) 1008 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1009 else if (IsFunclet) 1010 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1011 1012 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1013 // Immediately spill establisher into the home slot. 1014 // The runtime cares about this. 1015 // MOV64mr %rdx, 16(%rsp) 1016 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1017 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1018 .addReg(Establisher) 1019 .setMIFlag(MachineInstr::FrameSetup); 1020 MBB.addLiveIn(Establisher); 1021 } 1022 1023 if (HasFP) { 1024 // Calculate required stack adjustment. 1025 uint64_t FrameSize = StackSize - SlotSize; 1026 // If required, include space for extra hidden slot for stashing base pointer. 1027 if (X86FI->getRestoreBasePointer()) 1028 FrameSize += SlotSize; 1029 1030 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); 1031 1032 // Callee-saved registers are pushed on stack before the stack is realigned. 1033 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1034 NumBytes = alignTo(NumBytes, MaxAlign); 1035 1036 // Get the offset of the stack slot for the EBP register, which is 1037 // guaranteed to be the last slot by processFunctionBeforeFrameFinalized. 1038 // Update the frame offset adjustment. 1039 if (!IsFunclet) 1040 MFI.setOffsetAdjustment(-NumBytes); 1041 else 1042 assert(MFI.getOffsetAdjustment() == -(int)NumBytes && 1043 "should calculate same local variable offset for funclets"); 1044 1045 // Save EBP/RBP into the appropriate stack slot. 1046 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1047 .addReg(MachineFramePtr, RegState::Kill) 1048 .setMIFlag(MachineInstr::FrameSetup); 1049 1050 if (NeedsDwarfCFI) { 1051 // Mark the place where EBP/RBP was saved. 1052 // Define the current CFA rule to use the provided offset. 1053 assert(StackSize); 1054 BuildCFI(MBB, MBBI, DL, 1055 MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth)); 1056 1057 // Change the rule for the FramePtr to be an "offset" rule. 1058 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1059 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset( 1060 nullptr, DwarfFramePtr, 2 * stackGrowth)); 1061 } 1062 1063 if (NeedsWinCFI) { 1064 HasWinCFI = true; 1065 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1066 .addImm(FramePtr) 1067 .setMIFlag(MachineInstr::FrameSetup); 1068 } 1069 1070 if (!IsWin64Prologue && !IsFunclet) { 1071 // Update EBP with the new base value. 1072 BuildMI(MBB, MBBI, DL, 1073 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1074 FramePtr) 1075 .addReg(StackPtr) 1076 .setMIFlag(MachineInstr::FrameSetup); 1077 1078 if (NeedsDwarfCFI) { 1079 // Mark effective beginning of when frame pointer becomes valid. 1080 // Define the current CFA to use the EBP/RBP register. 1081 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1082 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister( 1083 nullptr, DwarfFramePtr)); 1084 } 1085 } 1086 1087 // Mark the FramePtr as live-in in every block. Don't do this again for 1088 // funclet prologues. 1089 if (!IsFunclet) { 1090 for (MachineBasicBlock &EveryMBB : MF) 1091 EveryMBB.addLiveIn(MachineFramePtr); 1092 } 1093 } else { 1094 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1095 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); 1096 } 1097 1098 // For EH funclets, only allocate enough space for outgoing calls. Save the 1099 // NumBytes value that we would've used for the parent frame. 1100 unsigned ParentFrameNumBytes = NumBytes; 1101 if (IsFunclet) 1102 NumBytes = getWinEHFuncletFrameSize(MF); 1103 1104 // Skip the callee-saved push instructions. 1105 bool PushedRegs = false; 1106 int StackOffset = 2 * stackGrowth; 1107 1108 while (MBBI != MBB.end() && 1109 MBBI->getFlag(MachineInstr::FrameSetup) && 1110 (MBBI->getOpcode() == X86::PUSH32r || 1111 MBBI->getOpcode() == X86::PUSH64r)) { 1112 PushedRegs = true; 1113 unsigned Reg = MBBI->getOperand(0).getReg(); 1114 ++MBBI; 1115 1116 if (!HasFP && NeedsDwarfCFI) { 1117 // Mark callee-saved push instruction. 1118 // Define the current CFA rule to use the provided offset. 1119 assert(StackSize); 1120 BuildCFI(MBB, MBBI, DL, 1121 MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset)); 1122 StackOffset += stackGrowth; 1123 } 1124 1125 if (NeedsWinCFI) { 1126 HasWinCFI = true; 1127 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)).addImm(Reg).setMIFlag( 1128 MachineInstr::FrameSetup); 1129 } 1130 } 1131 1132 // Realign stack after we pushed callee-saved registers (so that we'll be 1133 // able to calculate their offsets from the frame pointer). 1134 // Don't do this for Win64, it needs to realign the stack after the prologue. 1135 if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) { 1136 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1137 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1138 } 1139 1140 // If there is an SUB32ri of ESP immediately before this instruction, merge 1141 // the two. This can be the case when tail call elimination is enabled and 1142 // the callee has more arguments then the caller. 1143 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1144 1145 // Adjust stack pointer: ESP -= numbytes. 1146 1147 // Windows and cygwin/mingw require a prologue helper routine when allocating 1148 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1149 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1150 // stack and adjust the stack pointer in one go. The 64-bit version of 1151 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1152 // responsible for adjusting the stack pointer. Touching the stack at 4K 1153 // increments is necessary to ensure that the guard pages used by the OS 1154 // virtual memory manager are allocated in correct sequence. 1155 uint64_t AlignedNumBytes = NumBytes; 1156 if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) 1157 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1158 if (AlignedNumBytes >= StackProbeSize && UseStackProbe) { 1159 // Check whether EAX is livein for this block. 1160 bool isEAXAlive = isEAXLiveIn(MBB); 1161 1162 if (isEAXAlive) { 1163 // Sanity check that EAX is not livein for this function. 1164 // It should not be, so throw an assert. 1165 assert(!Is64Bit && "EAX is livein in x64 case!"); 1166 1167 // Save EAX 1168 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1169 .addReg(X86::EAX, RegState::Kill) 1170 .setMIFlag(MachineInstr::FrameSetup); 1171 } 1172 1173 if (Is64Bit) { 1174 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1175 // Function prologue is responsible for adjusting the stack pointer. 1176 if (isUInt<32>(NumBytes)) { 1177 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1178 .addImm(NumBytes) 1179 .setMIFlag(MachineInstr::FrameSetup); 1180 } else if (isInt<32>(NumBytes)) { 1181 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX) 1182 .addImm(NumBytes) 1183 .setMIFlag(MachineInstr::FrameSetup); 1184 } else { 1185 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) 1186 .addImm(NumBytes) 1187 .setMIFlag(MachineInstr::FrameSetup); 1188 } 1189 } else { 1190 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1191 // We'll also use 4 already allocated bytes for EAX. 1192 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1193 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1194 .setMIFlag(MachineInstr::FrameSetup); 1195 } 1196 1197 // Call __chkstk, __chkstk_ms, or __alloca. 1198 emitStackProbe(MF, MBB, MBBI, DL, true); 1199 1200 if (isEAXAlive) { 1201 // Restore EAX 1202 MachineInstr *MI = 1203 addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1204 StackPtr, false, NumBytes - 4); 1205 MI->setFlag(MachineInstr::FrameSetup); 1206 MBB.insert(MBBI, MI); 1207 } 1208 } else if (NumBytes) { 1209 emitSPUpdate(MBB, MBBI, -(int64_t)NumBytes, /*InEpilogue=*/false); 1210 } 1211 1212 if (NeedsWinCFI && NumBytes) { 1213 HasWinCFI = true; 1214 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1215 .addImm(NumBytes) 1216 .setMIFlag(MachineInstr::FrameSetup); 1217 } 1218 1219 int SEHFrameOffset = 0; 1220 unsigned SPOrEstablisher; 1221 if (IsFunclet) { 1222 if (IsClrFunclet) { 1223 // The establisher parameter passed to a CLR funclet is actually a pointer 1224 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1225 // to find the root function establisher frame by loading the PSPSym from 1226 // the intermediate frame. 1227 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1228 MachinePointerInfo NoInfo; 1229 MBB.addLiveIn(Establisher); 1230 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1231 Establisher, false, PSPSlotOffset) 1232 .addMemOperand(MF.getMachineMemOperand( 1233 NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize)); 1234 ; 1235 // Save the root establisher back into the current funclet's (mostly 1236 // empty) frame, in case a sub-funclet or the GC needs it. 1237 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1238 false, PSPSlotOffset) 1239 .addReg(Establisher) 1240 .addMemOperand( 1241 MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore | 1242 MachineMemOperand::MOVolatile, 1243 SlotSize, SlotSize)); 1244 } 1245 SPOrEstablisher = Establisher; 1246 } else { 1247 SPOrEstablisher = StackPtr; 1248 } 1249 1250 if (IsWin64Prologue && HasFP) { 1251 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1252 // this calculation on the incoming establisher, which holds the value of 1253 // RSP from the parent frame at the end of the prologue. 1254 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1255 if (SEHFrameOffset) 1256 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1257 SPOrEstablisher, false, SEHFrameOffset); 1258 else 1259 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1260 .addReg(SPOrEstablisher); 1261 1262 // If this is not a funclet, emit the CFI describing our frame pointer. 1263 if (NeedsWinCFI && !IsFunclet) { 1264 HasWinCFI = true; 1265 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1266 .addImm(FramePtr) 1267 .addImm(SEHFrameOffset) 1268 .setMIFlag(MachineInstr::FrameSetup); 1269 if (isAsynchronousEHPersonality(Personality)) 1270 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 1271 } 1272 } else if (IsFunclet && STI.is32Bit()) { 1273 // Reset EBP / ESI to something good for funclets. 1274 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 1275 // If we're a catch funclet, we can be returned to via catchret. Save ESP 1276 // into the registration node so that the runtime will restore it for us. 1277 if (!MBB.isCleanupFuncletEntry()) { 1278 assert(Personality == EHPersonality::MSVC_CXX); 1279 unsigned FrameReg; 1280 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 1281 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg); 1282 // ESP is the first field, so no extra displacement is needed. 1283 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 1284 false, EHRegOffset) 1285 .addReg(X86::ESP); 1286 } 1287 } 1288 1289 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 1290 const MachineInstr &FrameInstr = *MBBI; 1291 ++MBBI; 1292 1293 if (NeedsWinCFI) { 1294 int FI; 1295 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 1296 if (X86::FR64RegClass.contains(Reg)) { 1297 unsigned IgnoredFrameReg; 1298 int Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg); 1299 Offset += SEHFrameOffset; 1300 1301 HasWinCFI = true; 1302 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 1303 .addImm(Reg) 1304 .addImm(Offset) 1305 .setMIFlag(MachineInstr::FrameSetup); 1306 } 1307 } 1308 } 1309 } 1310 1311 if (NeedsWinCFI && HasWinCFI) 1312 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 1313 .setMIFlag(MachineInstr::FrameSetup); 1314 1315 if (FnHasClrFunclet && !IsFunclet) { 1316 // Save the so-called Initial-SP (i.e. the value of the stack pointer 1317 // immediately after the prolog) into the PSPSlot so that funclets 1318 // and the GC can recover it. 1319 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1320 auto PSPInfo = MachinePointerInfo::getFixedStack( 1321 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 1322 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 1323 PSPSlotOffset) 1324 .addReg(StackPtr) 1325 .addMemOperand(MF.getMachineMemOperand( 1326 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1327 SlotSize, SlotSize)); 1328 } 1329 1330 // Realign stack after we spilled callee-saved registers (so that we'll be 1331 // able to calculate their offsets from the frame pointer). 1332 // Win64 requires aligning the stack after the prologue. 1333 if (IsWin64Prologue && TRI->needsStackRealignment(MF)) { 1334 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1335 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 1336 } 1337 1338 // We already dealt with stack realignment and funclets above. 1339 if (IsFunclet && STI.is32Bit()) 1340 return; 1341 1342 // If we need a base pointer, set it up here. It's whatever the value 1343 // of the stack pointer is at this point. Any variable size objects 1344 // will be allocated after this, so we can still use the base pointer 1345 // to reference locals. 1346 if (TRI->hasBasePointer(MF)) { 1347 // Update the base pointer with the current stack pointer. 1348 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 1349 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 1350 .addReg(SPOrEstablisher) 1351 .setMIFlag(MachineInstr::FrameSetup); 1352 if (X86FI->getRestoreBasePointer()) { 1353 // Stash value of base pointer. Saving RSP instead of EBP shortens 1354 // dependence chain. Used by SjLj EH. 1355 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1356 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 1357 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 1358 .addReg(SPOrEstablisher) 1359 .setMIFlag(MachineInstr::FrameSetup); 1360 } 1361 1362 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 1363 // Stash the value of the frame pointer relative to the base pointer for 1364 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 1365 // it recovers the frame pointer from the base pointer rather than the 1366 // other way around. 1367 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1368 unsigned UsedReg; 1369 int Offset = 1370 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 1371 assert(UsedReg == BasePtr); 1372 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 1373 .addReg(FramePtr) 1374 .setMIFlag(MachineInstr::FrameSetup); 1375 } 1376 } 1377 1378 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 1379 // Mark end of stack pointer adjustment. 1380 if (!HasFP && NumBytes) { 1381 // Define the current CFA rule to use the provided offset. 1382 assert(StackSize); 1383 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset( 1384 nullptr, -StackSize + stackGrowth)); 1385 } 1386 1387 // Emit DWARF info specifying the offsets of the callee-saved registers. 1388 if (PushedRegs) 1389 emitCalleeSavedFrameMoves(MBB, MBBI, DL); 1390 } 1391 1392 // X86 Interrupt handling function cannot assume anything about the direction 1393 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 1394 // in each prologue of interrupt handler function. 1395 // 1396 // FIXME: Create "cld" instruction only in these cases: 1397 // 1. The interrupt handling function uses any of the "rep" instructions. 1398 // 2. Interrupt handling function calls another function. 1399 // 1400 if (Fn->getCallingConv() == CallingConv::X86_INTR) 1401 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 1402 .setMIFlag(MachineInstr::FrameSetup); 1403 1404 // At this point we know if the function has WinCFI or not. 1405 MF.setHasWinCFI(HasWinCFI); 1406 } 1407 1408 bool X86FrameLowering::canUseLEAForSPInEpilogue( 1409 const MachineFunction &MF) const { 1410 // We can't use LEA instructions for adjusting the stack pointer if we don't 1411 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 1412 // to deallocate the stack. 1413 // This means that we can use LEA for SP in two situations: 1414 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 1415 // 2. We *have* a frame pointer which means we are permitted to use LEA. 1416 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 1417 } 1418 1419 static bool isFuncletReturnInstr(MachineInstr &MI) { 1420 switch (MI.getOpcode()) { 1421 case X86::CATCHRET: 1422 case X86::CLEANUPRET: 1423 return true; 1424 default: 1425 return false; 1426 } 1427 llvm_unreachable("impossible"); 1428 } 1429 1430 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 1431 // stack. It holds a pointer to the bottom of the root function frame. The 1432 // establisher frame pointer passed to a nested funclet may point to the 1433 // (mostly empty) frame of its parent funclet, but it will need to find 1434 // the frame of the root function to access locals. To facilitate this, 1435 // every funclet copies the pointer to the bottom of the root function 1436 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 1437 // same offset for the PSPSym in the root function frame that's used in the 1438 // funclets' frames allows each funclet to dynamically accept any ancestor 1439 // frame as its establisher argument (the runtime doesn't guarantee the 1440 // immediate parent for some reason lost to history), and also allows the GC, 1441 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 1442 // frame with only a single offset reported for the entire method. 1443 unsigned 1444 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 1445 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 1446 unsigned SPReg; 1447 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 1448 /*IgnoreSPUpdates*/ true); 1449 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 1450 return static_cast<unsigned>(Offset); 1451 } 1452 1453 unsigned 1454 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 1455 // This is the size of the pushed CSRs. 1456 unsigned CSSize = 1457 MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 1458 // This is the amount of stack a funclet needs to allocate. 1459 unsigned UsedSize; 1460 EHPersonality Personality = 1461 classifyEHPersonality(MF.getFunction()->getPersonalityFn()); 1462 if (Personality == EHPersonality::CoreCLR) { 1463 // CLR funclets need to hold enough space to include the PSPSym, at the 1464 // same offset from the stack pointer (immediately after the prolog) as it 1465 // resides at in the main function. 1466 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 1467 } else { 1468 // Other funclets just need enough stack for outgoing call arguments. 1469 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 1470 } 1471 // RBP is not included in the callee saved register block. After pushing RBP, 1472 // everything is 16 byte aligned. Everything we allocate before an outgoing 1473 // call must also be 16 byte aligned. 1474 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment()); 1475 // Subtract out the size of the callee saved registers. This is how much stack 1476 // each funclet will allocate. 1477 return FrameSizeMinusRBP - CSSize; 1478 } 1479 1480 static bool isTailCallOpcode(unsigned Opc) { 1481 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 1482 Opc == X86::TCRETURNmi || 1483 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 1484 Opc == X86::TCRETURNmi64; 1485 } 1486 1487 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 1488 MachineBasicBlock &MBB) const { 1489 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1490 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1491 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1492 Optional<unsigned> RetOpcode; 1493 if (MBBI != MBB.end()) 1494 RetOpcode = MBBI->getOpcode(); 1495 DebugLoc DL; 1496 if (MBBI != MBB.end()) 1497 DL = MBBI->getDebugLoc(); 1498 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 1499 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 1500 unsigned FramePtr = TRI->getFrameRegister(MF); 1501 unsigned MachineFramePtr = 1502 Is64BitILP32 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr; 1503 1504 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1505 bool NeedsWinCFI = 1506 IsWin64Prologue && MF.getFunction()->needsUnwindTableEntry(); 1507 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 1508 MachineBasicBlock *TargetMBB = nullptr; 1509 1510 // Get the number of bytes to allocate from the FrameInfo. 1511 uint64_t StackSize = MFI.getStackSize(); 1512 uint64_t MaxAlign = calculateMaxStackAlign(MF); 1513 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1514 uint64_t NumBytes = 0; 1515 1516 if (RetOpcode && *RetOpcode == X86::CATCHRET) { 1517 // SEH shouldn't use catchret. 1518 assert(!isAsynchronousEHPersonality( 1519 classifyEHPersonality(MF.getFunction()->getPersonalityFn())) && 1520 "SEH should not use CATCHRET"); 1521 1522 NumBytes = getWinEHFuncletFrameSize(MF); 1523 assert(hasFP(MF) && "EH funclets without FP not yet implemented"); 1524 TargetMBB = MBBI->getOperand(0).getMBB(); 1525 1526 // Pop EBP. 1527 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 1528 MachineFramePtr) 1529 .setMIFlag(MachineInstr::FrameDestroy); 1530 } else if (RetOpcode && *RetOpcode == X86::CLEANUPRET) { 1531 NumBytes = getWinEHFuncletFrameSize(MF); 1532 assert(hasFP(MF) && "EH funclets without FP not yet implemented"); 1533 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 1534 MachineFramePtr) 1535 .setMIFlag(MachineInstr::FrameDestroy); 1536 } else if (hasFP(MF)) { 1537 // Calculate required stack adjustment. 1538 uint64_t FrameSize = StackSize - SlotSize; 1539 NumBytes = FrameSize - CSSize; 1540 1541 // Callee-saved registers were pushed on stack before the stack was 1542 // realigned. 1543 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1544 NumBytes = alignTo(FrameSize, MaxAlign); 1545 1546 // Pop EBP. 1547 BuildMI(MBB, MBBI, DL, 1548 TII.get(Is64Bit ? X86::POP64r : X86::POP32r), MachineFramePtr) 1549 .setMIFlag(MachineInstr::FrameDestroy); 1550 } else { 1551 NumBytes = StackSize - CSSize; 1552 } 1553 uint64_t SEHStackAllocAmt = NumBytes; 1554 1555 // Skip the callee-saved pop instructions. 1556 while (MBBI != MBB.begin()) { 1557 MachineBasicBlock::iterator PI = std::prev(MBBI); 1558 unsigned Opc = PI->getOpcode(); 1559 1560 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 1561 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) && 1562 Opc != X86::DBG_VALUE && !PI->isTerminator()) 1563 break; 1564 1565 --MBBI; 1566 } 1567 MachineBasicBlock::iterator FirstCSPop = MBBI; 1568 1569 if (TargetMBB) { 1570 // Fill EAX/RAX with the address of the target block. 1571 unsigned ReturnReg = STI.is64Bit() ? X86::RAX : X86::EAX; 1572 if (STI.is64Bit()) { 1573 // LEA64r TargetMBB(%rip), %rax 1574 BuildMI(MBB, FirstCSPop, DL, TII.get(X86::LEA64r), ReturnReg) 1575 .addReg(X86::RIP) 1576 .addImm(0) 1577 .addReg(0) 1578 .addMBB(TargetMBB) 1579 .addReg(0); 1580 } else { 1581 // MOV32ri $TargetMBB, %eax 1582 BuildMI(MBB, FirstCSPop, DL, TII.get(X86::MOV32ri), ReturnReg) 1583 .addMBB(TargetMBB); 1584 } 1585 // Record that we've taken the address of TargetMBB and no longer just 1586 // reference it in a terminator. 1587 TargetMBB->setHasAddressTaken(); 1588 } 1589 1590 if (MBBI != MBB.end()) 1591 DL = MBBI->getDebugLoc(); 1592 1593 // If there is an ADD32ri or SUB32ri of ESP immediately before this 1594 // instruction, merge the two instructions. 1595 if (NumBytes || MFI.hasVarSizedObjects()) 1596 NumBytes += mergeSPUpdates(MBB, MBBI, true); 1597 1598 // If dynamic alloca is used, then reset esp to point to the last callee-saved 1599 // slot before popping them off! Same applies for the case, when stack was 1600 // realigned. Don't do this if this was a funclet epilogue, since the funclets 1601 // will not do realignment or dynamic stack allocation. 1602 if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) && 1603 !IsFunclet) { 1604 if (TRI->needsStackRealignment(MF)) 1605 MBBI = FirstCSPop; 1606 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 1607 uint64_t LEAAmount = 1608 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 1609 1610 // There are only two legal forms of epilogue: 1611 // - add SEHAllocationSize, %rsp 1612 // - lea SEHAllocationSize(%FramePtr), %rsp 1613 // 1614 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 1615 // However, we may use this sequence if we have a frame pointer because the 1616 // effects of the prologue can safely be undone. 1617 if (LEAAmount != 0) { 1618 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 1619 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 1620 FramePtr, false, LEAAmount); 1621 --MBBI; 1622 } else { 1623 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 1624 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 1625 .addReg(FramePtr); 1626 --MBBI; 1627 } 1628 } else if (NumBytes) { 1629 // Adjust stack pointer back: ESP += numbytes. 1630 emitSPUpdate(MBB, MBBI, NumBytes, /*InEpilogue=*/true); 1631 --MBBI; 1632 } 1633 1634 // Windows unwinder will not invoke function's exception handler if IP is 1635 // either in prologue or in epilogue. This behavior causes a problem when a 1636 // call immediately precedes an epilogue, because the return address points 1637 // into the epilogue. To cope with that, we insert an epilogue marker here, 1638 // then replace it with a 'nop' if it ends up immediately after a CALL in the 1639 // final emitted code. 1640 if (NeedsWinCFI && MF.hasWinCFI()) 1641 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 1642 1643 if (!RetOpcode || !isTailCallOpcode(*RetOpcode)) { 1644 // Add the return addr area delta back since we are not tail calling. 1645 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 1646 assert(Offset >= 0 && "TCDelta should never be positive"); 1647 if (Offset) { 1648 MBBI = MBB.getFirstTerminator(); 1649 1650 // Check for possible merge with preceding ADD instruction. 1651 Offset += mergeSPUpdates(MBB, MBBI, true); 1652 emitSPUpdate(MBB, MBBI, Offset, /*InEpilogue=*/true); 1653 } 1654 } 1655 } 1656 1657 // NOTE: this only has a subset of the full frame index logic. In 1658 // particular, the FI < 0 and AfterFPPop logic is handled in 1659 // X86RegisterInfo::eliminateFrameIndex, but not here. Possibly 1660 // (probably?) it should be moved into here. 1661 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 1662 unsigned &FrameReg) const { 1663 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1664 1665 // We can't calculate offset from frame pointer if the stack is realigned, 1666 // so enforce usage of stack/base pointer. The base pointer is used when we 1667 // have dynamic allocas in addition to dynamic realignment. 1668 if (TRI->hasBasePointer(MF)) 1669 FrameReg = TRI->getBaseRegister(); 1670 else if (TRI->needsStackRealignment(MF)) 1671 FrameReg = TRI->getStackRegister(); 1672 else 1673 FrameReg = TRI->getFrameRegister(MF); 1674 1675 // Offset will hold the offset from the stack pointer at function entry to the 1676 // object. 1677 // We need to factor in additional offsets applied during the prologue to the 1678 // frame, base, and stack pointer depending on which is used. 1679 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 1680 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1681 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1682 uint64_t StackSize = MFI.getStackSize(); 1683 bool HasFP = hasFP(MF); 1684 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1685 int64_t FPDelta = 0; 1686 1687 if (IsWin64Prologue) { 1688 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 1689 1690 // Calculate required stack adjustment. 1691 uint64_t FrameSize = StackSize - SlotSize; 1692 // If required, include space for extra hidden slot for stashing base pointer. 1693 if (X86FI->getRestoreBasePointer()) 1694 FrameSize += SlotSize; 1695 uint64_t NumBytes = FrameSize - CSSize; 1696 1697 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 1698 if (FI && FI == X86FI->getFAIndex()) 1699 return -SEHFrameOffset; 1700 1701 // FPDelta is the offset from the "traditional" FP location of the old base 1702 // pointer followed by return address and the location required by the 1703 // restricted Win64 prologue. 1704 // Add FPDelta to all offsets below that go through the frame pointer. 1705 FPDelta = FrameSize - SEHFrameOffset; 1706 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 1707 "FPDelta isn't aligned per the Win64 ABI!"); 1708 } 1709 1710 1711 if (TRI->hasBasePointer(MF)) { 1712 assert(HasFP && "VLAs and dynamic stack realign, but no FP?!"); 1713 if (FI < 0) { 1714 // Skip the saved EBP. 1715 return Offset + SlotSize + FPDelta; 1716 } else { 1717 assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0); 1718 return Offset + StackSize; 1719 } 1720 } else if (TRI->needsStackRealignment(MF)) { 1721 if (FI < 0) { 1722 // Skip the saved EBP. 1723 return Offset + SlotSize + FPDelta; 1724 } else { 1725 assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0); 1726 return Offset + StackSize; 1727 } 1728 // FIXME: Support tail calls 1729 } else { 1730 if (!HasFP) 1731 return Offset + StackSize; 1732 1733 // Skip the saved EBP. 1734 Offset += SlotSize; 1735 1736 // Skip the RETADDR move area 1737 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1738 if (TailCallReturnAddrDelta < 0) 1739 Offset -= TailCallReturnAddrDelta; 1740 } 1741 1742 return Offset + FPDelta; 1743 } 1744 1745 int 1746 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, 1747 int FI, unsigned &FrameReg, 1748 bool IgnoreSPUpdates) const { 1749 1750 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1751 // Does not include any dynamic realign. 1752 const uint64_t StackSize = MFI.getStackSize(); 1753 // LLVM arranges the stack as follows: 1754 // ... 1755 // ARG2 1756 // ARG1 1757 // RETADDR 1758 // PUSH RBP <-- RBP points here 1759 // PUSH CSRs 1760 // ~~~~~~~ <-- possible stack realignment (non-win64) 1761 // ... 1762 // STACK OBJECTS 1763 // ... <-- RSP after prologue points here 1764 // ~~~~~~~ <-- possible stack realignment (win64) 1765 // 1766 // if (hasVarSizedObjects()): 1767 // ... <-- "base pointer" (ESI/RBX) points here 1768 // DYNAMIC ALLOCAS 1769 // ... <-- RSP points here 1770 // 1771 // Case 1: In the simple case of no stack realignment and no dynamic 1772 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 1773 // with fixed offsets from RSP. 1774 // 1775 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 1776 // stack objects are addressed with RBP and regular stack objects with RSP. 1777 // 1778 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 1779 // to address stack arguments for outgoing calls and nothing else. The "base 1780 // pointer" points to local variables, and RBP points to fixed objects. 1781 // 1782 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 1783 // answer we give is relative to the SP after the prologue, and not the 1784 // SP in the middle of the function. 1785 1786 if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) && 1787 !STI.isTargetWin64()) 1788 return getFrameIndexReference(MF, FI, FrameReg); 1789 1790 // If !hasReservedCallFrame the function might have SP adjustement in the 1791 // body. So, even though the offset is statically known, it depends on where 1792 // we are in the function. 1793 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 1794 if (!IgnoreSPUpdates && !TFI->hasReservedCallFrame(MF)) 1795 return getFrameIndexReference(MF, FI, FrameReg); 1796 1797 // We don't handle tail calls, and shouldn't be seeing them either. 1798 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 1799 "we don't handle this case!"); 1800 1801 // Fill in FrameReg output argument. 1802 FrameReg = TRI->getStackRegister(); 1803 1804 // This is how the math works out: 1805 // 1806 // %rsp grows (i.e. gets lower) left to right. Each box below is 1807 // one word (eight bytes). Obj0 is the stack slot we're trying to 1808 // get to. 1809 // 1810 // ---------------------------------- 1811 // | BP | Obj0 | Obj1 | ... | ObjN | 1812 // ---------------------------------- 1813 // ^ ^ ^ ^ 1814 // A B C E 1815 // 1816 // A is the incoming stack pointer. 1817 // (B - A) is the local area offset (-8 for x86-64) [1] 1818 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 1819 // 1820 // |(E - B)| is the StackSize (absolute value, positive). For a 1821 // stack that grown down, this works out to be (B - E). [3] 1822 // 1823 // E is also the value of %rsp after stack has been set up, and we 1824 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 1825 // (C - E) == (C - A) - (B - A) + (B - E) 1826 // { Using [1], [2] and [3] above } 1827 // == getObjectOffset - LocalAreaOffset + StackSize 1828 // 1829 1830 // Get the Offset from the StackPointer 1831 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 1832 1833 return Offset + StackSize; 1834 } 1835 1836 bool X86FrameLowering::assignCalleeSavedSpillSlots( 1837 MachineFunction &MF, const TargetRegisterInfo *TRI, 1838 std::vector<CalleeSavedInfo> &CSI) const { 1839 MachineFrameInfo &MFI = MF.getFrameInfo(); 1840 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1841 1842 unsigned CalleeSavedFrameSize = 0; 1843 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 1844 1845 if (hasFP(MF)) { 1846 // emitPrologue always spills frame register the first thing. 1847 SpillSlotOffset -= SlotSize; 1848 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 1849 1850 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 1851 // the frame register, we can delete it from CSI list and not have to worry 1852 // about avoiding it later. 1853 unsigned FPReg = TRI->getFrameRegister(MF); 1854 for (unsigned i = 0; i < CSI.size(); ++i) { 1855 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 1856 CSI.erase(CSI.begin() + i); 1857 break; 1858 } 1859 } 1860 } 1861 1862 // Assign slots for GPRs. It increases frame size. 1863 for (unsigned i = CSI.size(); i != 0; --i) { 1864 unsigned Reg = CSI[i - 1].getReg(); 1865 1866 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 1867 continue; 1868 1869 SpillSlotOffset -= SlotSize; 1870 CalleeSavedFrameSize += SlotSize; 1871 1872 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 1873 CSI[i - 1].setFrameIdx(SlotIndex); 1874 } 1875 1876 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 1877 1878 // Assign slots for XMMs. 1879 for (unsigned i = CSI.size(); i != 0; --i) { 1880 unsigned Reg = CSI[i - 1].getReg(); 1881 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 1882 continue; 1883 1884 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 1885 // ensure alignment 1886 SpillSlotOffset -= std::abs(SpillSlotOffset) % RC->getAlignment(); 1887 // spill into slot 1888 SpillSlotOffset -= RC->getSize(); 1889 int SlotIndex = 1890 MFI.CreateFixedSpillStackObject(RC->getSize(), SpillSlotOffset); 1891 CSI[i - 1].setFrameIdx(SlotIndex); 1892 MFI.ensureMaxAlignment(RC->getAlignment()); 1893 } 1894 1895 return true; 1896 } 1897 1898 bool X86FrameLowering::spillCalleeSavedRegisters( 1899 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 1900 const std::vector<CalleeSavedInfo> &CSI, 1901 const TargetRegisterInfo *TRI) const { 1902 DebugLoc DL = MBB.findDebugLoc(MI); 1903 1904 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 1905 // for us, and there are no XMM CSRs on Win32. 1906 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 1907 return true; 1908 1909 // Push GPRs. It increases frame size. 1910 const MachineFunction &MF = *MBB.getParent(); 1911 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 1912 for (unsigned i = CSI.size(); i != 0; --i) { 1913 unsigned Reg = CSI[i - 1].getReg(); 1914 1915 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 1916 continue; 1917 1918 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1919 bool isLiveIn = MRI.isLiveIn(Reg); 1920 if (!isLiveIn) 1921 MBB.addLiveIn(Reg); 1922 1923 // Decide whether we can add a kill flag to the use. 1924 bool CanKill = !isLiveIn; 1925 // Check if any subregister is live-in 1926 if (CanKill) { 1927 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 1928 if (MRI.isLiveIn(*AReg)) { 1929 CanKill = false; 1930 break; 1931 } 1932 } 1933 } 1934 1935 // Do not set a kill flag on values that are also marked as live-in. This 1936 // happens with the @llvm-returnaddress intrinsic and with arguments 1937 // passed in callee saved registers. 1938 // Omitting the kill flags is conservatively correct even if the live-in 1939 // is not used after all. 1940 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 1941 .setMIFlag(MachineInstr::FrameSetup); 1942 } 1943 1944 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 1945 // It can be done by spilling XMMs to stack frame. 1946 for (unsigned i = CSI.size(); i != 0; --i) { 1947 unsigned Reg = CSI[i-1].getReg(); 1948 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 1949 continue; 1950 // Add the callee-saved register as live-in. It's killed at the spill. 1951 MBB.addLiveIn(Reg); 1952 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 1953 1954 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC, 1955 TRI); 1956 --MI; 1957 MI->setFlag(MachineInstr::FrameSetup); 1958 ++MI; 1959 } 1960 1961 return true; 1962 } 1963 1964 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, 1965 MachineBasicBlock::iterator MI, 1966 const std::vector<CalleeSavedInfo> &CSI, 1967 const TargetRegisterInfo *TRI) const { 1968 if (CSI.empty()) 1969 return false; 1970 1971 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 1972 // Don't restore CSRs in 32-bit EH funclets. Matches 1973 // spillCalleeSavedRegisters. 1974 if (STI.is32Bit()) 1975 return true; 1976 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 1977 // funclets. emitEpilogue transforms these to normal jumps. 1978 if (MI->getOpcode() == X86::CATCHRET) { 1979 const Function *Func = MBB.getParent()->getFunction(); 1980 bool IsSEH = isAsynchronousEHPersonality( 1981 classifyEHPersonality(Func->getPersonalityFn())); 1982 if (IsSEH) 1983 return true; 1984 } 1985 } 1986 1987 DebugLoc DL = MBB.findDebugLoc(MI); 1988 1989 // Reload XMMs from stack frame. 1990 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 1991 unsigned Reg = CSI[i].getReg(); 1992 if (X86::GR64RegClass.contains(Reg) || 1993 X86::GR32RegClass.contains(Reg)) 1994 continue; 1995 1996 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg); 1997 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); 1998 } 1999 2000 // POP GPRs. 2001 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 2002 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2003 unsigned Reg = CSI[i].getReg(); 2004 if (!X86::GR64RegClass.contains(Reg) && 2005 !X86::GR32RegClass.contains(Reg)) 2006 continue; 2007 2008 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 2009 .setMIFlag(MachineInstr::FrameDestroy); 2010 } 2011 return true; 2012 } 2013 2014 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 2015 BitVector &SavedRegs, 2016 RegScavenger *RS) const { 2017 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2018 2019 MachineFrameInfo &MFI = MF.getFrameInfo(); 2020 2021 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2022 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2023 2024 if (TailCallReturnAddrDelta < 0) { 2025 // create RETURNADDR area 2026 // arg 2027 // arg 2028 // RETADDR 2029 // { ... 2030 // RETADDR area 2031 // ... 2032 // } 2033 // [EBP] 2034 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 2035 TailCallReturnAddrDelta - SlotSize, true); 2036 } 2037 2038 // Spill the BasePtr if it's used. 2039 if (TRI->hasBasePointer(MF)) { 2040 SavedRegs.set(TRI->getBaseRegister()); 2041 2042 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 2043 if (MF.getMMI().hasEHFunclets()) { 2044 int FI = MFI.CreateSpillStackObject(SlotSize, SlotSize); 2045 X86FI->setHasSEHFramePtrSave(true); 2046 X86FI->setSEHFramePtrSaveIndex(FI); 2047 } 2048 } 2049 } 2050 2051 static bool 2052 HasNestArgument(const MachineFunction *MF) { 2053 const Function *F = MF->getFunction(); 2054 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 2055 I != E; I++) { 2056 if (I->hasNestAttr()) 2057 return true; 2058 } 2059 return false; 2060 } 2061 2062 /// GetScratchRegister - Get a temp register for performing work in the 2063 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2064 /// and the properties of the function either one or two registers will be 2065 /// needed. Set primary to true for the first register, false for the second. 2066 static unsigned 2067 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2068 CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv(); 2069 2070 // Erlang stuff. 2071 if (CallingConvention == CallingConv::HiPE) { 2072 if (Is64Bit) 2073 return Primary ? X86::R14 : X86::R13; 2074 else 2075 return Primary ? X86::EBX : X86::EDI; 2076 } 2077 2078 if (Is64Bit) { 2079 if (IsLP64) 2080 return Primary ? X86::R11 : X86::R12; 2081 else 2082 return Primary ? X86::R11D : X86::R12D; 2083 } 2084 2085 bool IsNested = HasNestArgument(&MF); 2086 2087 if (CallingConvention == CallingConv::X86_FastCall || 2088 CallingConvention == CallingConv::Fast) { 2089 if (IsNested) 2090 report_fatal_error("Segmented stacks does not support fastcall with " 2091 "nested function."); 2092 return Primary ? X86::EAX : X86::ECX; 2093 } 2094 if (IsNested) 2095 return Primary ? X86::EDX : X86::EAX; 2096 return Primary ? X86::ECX : X86::EAX; 2097 } 2098 2099 // The stack limit in the TCB is set to this many bytes above the actual stack 2100 // limit. 2101 static const uint64_t kSplitStackAvailable = 256; 2102 2103 void X86FrameLowering::adjustForSegmentedStacks( 2104 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2105 MachineFrameInfo &MFI = MF.getFrameInfo(); 2106 uint64_t StackSize; 2107 unsigned TlsReg, TlsOffset; 2108 DebugLoc DL; 2109 2110 // To support shrink-wrapping we would need to insert the new blocks 2111 // at the right place and update the branches to PrologueMBB. 2112 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2113 2114 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2115 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2116 "Scratch register is live-in"); 2117 2118 if (MF.getFunction()->isVarArg()) 2119 report_fatal_error("Segmented stacks do not support vararg functions."); 2120 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 2121 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 2122 !STI.isTargetDragonFly()) 2123 report_fatal_error("Segmented stacks not supported on this platform."); 2124 2125 // Eventually StackSize will be calculated by a link-time pass; which will 2126 // also decide whether checking code needs to be injected into this particular 2127 // prologue. 2128 StackSize = MFI.getStackSize(); 2129 2130 // Do not generate a prologue for functions with a stack of size zero 2131 if (StackSize == 0) 2132 return; 2133 2134 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 2135 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 2136 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2137 bool IsNested = false; 2138 2139 // We need to know if the function has a nest argument only in 64 bit mode. 2140 if (Is64Bit) 2141 IsNested = HasNestArgument(&MF); 2142 2143 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 2144 // allocMBB needs to be last (terminating) instruction. 2145 2146 for (const auto &LI : PrologueMBB.liveins()) { 2147 allocMBB->addLiveIn(LI); 2148 checkMBB->addLiveIn(LI); 2149 } 2150 2151 if (IsNested) 2152 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 2153 2154 MF.push_front(allocMBB); 2155 MF.push_front(checkMBB); 2156 2157 // When the frame size is less than 256 we just compare the stack 2158 // boundary directly to the value of the stack pointer, per gcc. 2159 bool CompareStackPointer = StackSize < kSplitStackAvailable; 2160 2161 // Read the limit off the current stacklet off the stack_guard location. 2162 if (Is64Bit) { 2163 if (STI.isTargetLinux()) { 2164 TlsReg = X86::FS; 2165 TlsOffset = IsLP64 ? 0x70 : 0x40; 2166 } else if (STI.isTargetDarwin()) { 2167 TlsReg = X86::GS; 2168 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 2169 } else if (STI.isTargetWin64()) { 2170 TlsReg = X86::GS; 2171 TlsOffset = 0x28; // pvArbitrary, reserved for application use 2172 } else if (STI.isTargetFreeBSD()) { 2173 TlsReg = X86::FS; 2174 TlsOffset = 0x18; 2175 } else if (STI.isTargetDragonFly()) { 2176 TlsReg = X86::FS; 2177 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 2178 } else { 2179 report_fatal_error("Segmented stacks not supported on this platform."); 2180 } 2181 2182 if (CompareStackPointer) 2183 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 2184 else 2185 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 2186 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2187 2188 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 2189 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2190 } else { 2191 if (STI.isTargetLinux()) { 2192 TlsReg = X86::GS; 2193 TlsOffset = 0x30; 2194 } else if (STI.isTargetDarwin()) { 2195 TlsReg = X86::GS; 2196 TlsOffset = 0x48 + 90*4; 2197 } else if (STI.isTargetWin32()) { 2198 TlsReg = X86::FS; 2199 TlsOffset = 0x14; // pvArbitrary, reserved for application use 2200 } else if (STI.isTargetDragonFly()) { 2201 TlsReg = X86::FS; 2202 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 2203 } else if (STI.isTargetFreeBSD()) { 2204 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 2205 } else { 2206 report_fatal_error("Segmented stacks not supported on this platform."); 2207 } 2208 2209 if (CompareStackPointer) 2210 ScratchReg = X86::ESP; 2211 else 2212 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 2213 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2214 2215 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 2216 STI.isTargetDragonFly()) { 2217 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 2218 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2219 } else if (STI.isTargetDarwin()) { 2220 2221 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 2222 unsigned ScratchReg2; 2223 bool SaveScratch2; 2224 if (CompareStackPointer) { 2225 // The primary scratch register is available for holding the TLS offset. 2226 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2227 SaveScratch2 = false; 2228 } else { 2229 // Need to use a second register to hold the TLS offset 2230 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 2231 2232 // Unfortunately, with fastcc the second scratch register may hold an 2233 // argument. 2234 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 2235 } 2236 2237 // If Scratch2 is live-in then it needs to be saved. 2238 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 2239 "Scratch register is live-in and not saved"); 2240 2241 if (SaveScratch2) 2242 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 2243 .addReg(ScratchReg2, RegState::Kill); 2244 2245 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 2246 .addImm(TlsOffset); 2247 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 2248 .addReg(ScratchReg) 2249 .addReg(ScratchReg2).addImm(1).addReg(0) 2250 .addImm(0) 2251 .addReg(TlsReg); 2252 2253 if (SaveScratch2) 2254 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 2255 } 2256 } 2257 2258 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 2259 // It jumps to normal execution of the function body. 2260 BuildMI(checkMBB, DL, TII.get(X86::JA_1)).addMBB(&PrologueMBB); 2261 2262 // On 32 bit we first push the arguments size and then the frame size. On 64 2263 // bit, we pass the stack frame size in r10 and the argument size in r11. 2264 if (Is64Bit) { 2265 // Functions with nested arguments use R10, so it needs to be saved across 2266 // the call to _morestack 2267 2268 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 2269 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 2270 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 2271 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 2272 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri; 2273 2274 if (IsNested) 2275 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 2276 2277 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10) 2278 .addImm(StackSize); 2279 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11) 2280 .addImm(X86FI->getArgumentStackSize()); 2281 } else { 2282 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2283 .addImm(X86FI->getArgumentStackSize()); 2284 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2285 .addImm(StackSize); 2286 } 2287 2288 // __morestack is in libgcc 2289 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 2290 // Under the large code model, we cannot assume that __morestack lives 2291 // within 2^31 bytes of the call site, so we cannot use pc-relative 2292 // addressing. We cannot perform the call via a temporary register, 2293 // as the rax register may be used to store the static chain, and all 2294 // other suitable registers may be either callee-save or used for 2295 // parameter passing. We cannot use the stack at this point either 2296 // because __morestack manipulates the stack directly. 2297 // 2298 // To avoid these issues, perform an indirect call via a read-only memory 2299 // location containing the address. 2300 // 2301 // This solution is not perfect, as it assumes that the .rodata section 2302 // is laid out within 2^31 bytes of each function body, but this seems 2303 // to be sufficient for JIT. 2304 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 2305 .addReg(X86::RIP) 2306 .addImm(0) 2307 .addReg(0) 2308 .addExternalSymbol("__morestack_addr") 2309 .addReg(0); 2310 MF.getMMI().setUsesMorestackAddr(true); 2311 } else { 2312 if (Is64Bit) 2313 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 2314 .addExternalSymbol("__morestack"); 2315 else 2316 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 2317 .addExternalSymbol("__morestack"); 2318 } 2319 2320 if (IsNested) 2321 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 2322 else 2323 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 2324 2325 allocMBB->addSuccessor(&PrologueMBB); 2326 2327 checkMBB->addSuccessor(allocMBB); 2328 checkMBB->addSuccessor(&PrologueMBB); 2329 2330 #ifdef EXPENSIVE_CHECKS 2331 MF.verify(); 2332 #endif 2333 } 2334 2335 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 2336 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 2337 /// to fields it needs, through a named metadata node "hipe.literals" containing 2338 /// name-value pairs. 2339 static unsigned getHiPELiteral( 2340 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 2341 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 2342 MDNode *Node = HiPELiteralsMD->getOperand(i); 2343 if (Node->getNumOperands() != 2) continue; 2344 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 2345 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 2346 if (!NodeName || !NodeVal) continue; 2347 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 2348 if (ValConst && NodeName->getString() == LiteralName) { 2349 return ValConst->getZExtValue(); 2350 } 2351 } 2352 2353 report_fatal_error("HiPE literal " + LiteralName 2354 + " required but not provided"); 2355 } 2356 2357 /// Erlang programs may need a special prologue to handle the stack size they 2358 /// might need at runtime. That is because Erlang/OTP does not implement a C 2359 /// stack but uses a custom implementation of hybrid stack/heap architecture. 2360 /// (for more information see Eric Stenman's Ph.D. thesis: 2361 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 2362 /// 2363 /// CheckStack: 2364 /// temp0 = sp - MaxStack 2365 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2366 /// OldStart: 2367 /// ... 2368 /// IncStack: 2369 /// call inc_stack # doubles the stack space 2370 /// temp0 = sp - MaxStack 2371 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2372 void X86FrameLowering::adjustForHiPEPrologue( 2373 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2374 MachineFrameInfo &MFI = MF.getFrameInfo(); 2375 DebugLoc DL; 2376 2377 // To support shrink-wrapping we would need to insert the new blocks 2378 // at the right place and update the branches to PrologueMBB. 2379 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2380 2381 // HiPE-specific values 2382 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 2383 ->getNamedMetadata("hipe.literals"); 2384 if (!HiPELiteralsMD) 2385 report_fatal_error( 2386 "Can't generate HiPE prologue without runtime parameters"); 2387 const unsigned HipeLeafWords 2388 = getHiPELiteral(HiPELiteralsMD, 2389 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 2390 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 2391 const unsigned Guaranteed = HipeLeafWords * SlotSize; 2392 unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ? 2393 MF.getFunction()->arg_size() - CCRegisteredArgs : 0; 2394 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 2395 2396 assert(STI.isTargetLinux() && 2397 "HiPE prologue is only supported on Linux operating systems."); 2398 2399 // Compute the largest caller's frame that is needed to fit the callees' 2400 // frames. This 'MaxStack' is computed from: 2401 // 2402 // a) the fixed frame size, which is the space needed for all spilled temps, 2403 // b) outgoing on-stack parameter areas, and 2404 // c) the minimum stack space this function needs to make available for the 2405 // functions it calls (a tunable ABI property). 2406 if (MFI.hasCalls()) { 2407 unsigned MoreStackForCalls = 0; 2408 2409 for (auto &MBB : MF) { 2410 for (auto &MI : MBB) { 2411 if (!MI.isCall()) 2412 continue; 2413 2414 // Get callee operand. 2415 const MachineOperand &MO = MI.getOperand(0); 2416 2417 // Only take account of global function calls (no closures etc.). 2418 if (!MO.isGlobal()) 2419 continue; 2420 2421 const Function *F = dyn_cast<Function>(MO.getGlobal()); 2422 if (!F) 2423 continue; 2424 2425 // Do not update 'MaxStack' for primitive and built-in functions 2426 // (encoded with names either starting with "erlang."/"bif_" or not 2427 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 2428 // "_", such as the BIF "suspend_0") as they are executed on another 2429 // stack. 2430 if (F->getName().find("erlang.") != StringRef::npos || 2431 F->getName().find("bif_") != StringRef::npos || 2432 F->getName().find_first_of("._") == StringRef::npos) 2433 continue; 2434 2435 unsigned CalleeStkArity = 2436 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 2437 if (HipeLeafWords - 1 > CalleeStkArity) 2438 MoreStackForCalls = std::max(MoreStackForCalls, 2439 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 2440 } 2441 } 2442 MaxStack += MoreStackForCalls; 2443 } 2444 2445 // If the stack frame needed is larger than the guaranteed then runtime checks 2446 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 2447 if (MaxStack > Guaranteed) { 2448 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 2449 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 2450 2451 for (const auto &LI : PrologueMBB.liveins()) { 2452 stackCheckMBB->addLiveIn(LI); 2453 incStackMBB->addLiveIn(LI); 2454 } 2455 2456 MF.push_front(incStackMBB); 2457 MF.push_front(stackCheckMBB); 2458 2459 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 2460 unsigned LEAop, CMPop, CALLop; 2461 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 2462 if (Is64Bit) { 2463 SPReg = X86::RSP; 2464 PReg = X86::RBP; 2465 LEAop = X86::LEA64r; 2466 CMPop = X86::CMP64rm; 2467 CALLop = X86::CALL64pcrel32; 2468 } else { 2469 SPReg = X86::ESP; 2470 PReg = X86::EBP; 2471 LEAop = X86::LEA32r; 2472 CMPop = X86::CMP32rm; 2473 CALLop = X86::CALLpcrel32; 2474 } 2475 2476 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2477 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2478 "HiPE prologue scratch register is live-in"); 2479 2480 // Create new MBB for StackCheck: 2481 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 2482 SPReg, false, -MaxStack); 2483 // SPLimitOffset is in a fixed heap location (pointed by BP). 2484 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 2485 .addReg(ScratchReg), PReg, false, SPLimitOffset); 2486 BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_1)).addMBB(&PrologueMBB); 2487 2488 // Create new MBB for IncStack: 2489 BuildMI(incStackMBB, DL, TII.get(CALLop)). 2490 addExternalSymbol("inc_stack_0"); 2491 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 2492 SPReg, false, -MaxStack); 2493 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 2494 .addReg(ScratchReg), PReg, false, SPLimitOffset); 2495 BuildMI(incStackMBB, DL, TII.get(X86::JLE_1)).addMBB(incStackMBB); 2496 2497 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 2498 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 2499 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 2500 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 2501 } 2502 #ifdef EXPENSIVE_CHECKS 2503 MF.verify(); 2504 #endif 2505 } 2506 2507 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 2508 MachineBasicBlock::iterator MBBI, 2509 const DebugLoc &DL, 2510 int Offset) const { 2511 2512 if (Offset <= 0) 2513 return false; 2514 2515 if (Offset % SlotSize) 2516 return false; 2517 2518 int NumPops = Offset / SlotSize; 2519 // This is only worth it if we have at most 2 pops. 2520 if (NumPops != 1 && NumPops != 2) 2521 return false; 2522 2523 // Handle only the trivial case where the adjustment directly follows 2524 // a call. This is the most common one, anyway. 2525 if (MBBI == MBB.begin()) 2526 return false; 2527 MachineBasicBlock::iterator Prev = std::prev(MBBI); 2528 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 2529 return false; 2530 2531 unsigned Regs[2]; 2532 unsigned FoundRegs = 0; 2533 2534 auto RegMask = Prev->getOperand(1); 2535 2536 auto &RegClass = 2537 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 2538 // Try to find up to NumPops free registers. 2539 for (auto Candidate : RegClass) { 2540 2541 // Poor man's liveness: 2542 // Since we're immediately after a call, any register that is clobbered 2543 // by the call and not defined by it can be considered dead. 2544 if (!RegMask.clobbersPhysReg(Candidate)) 2545 continue; 2546 2547 bool IsDef = false; 2548 for (const MachineOperand &MO : Prev->implicit_operands()) { 2549 if (MO.isReg() && MO.isDef() && 2550 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 2551 IsDef = true; 2552 break; 2553 } 2554 } 2555 2556 if (IsDef) 2557 continue; 2558 2559 Regs[FoundRegs++] = Candidate; 2560 if (FoundRegs == (unsigned)NumPops) 2561 break; 2562 } 2563 2564 if (FoundRegs == 0) 2565 return false; 2566 2567 // If we found only one free register, but need two, reuse the same one twice. 2568 while (FoundRegs < (unsigned)NumPops) 2569 Regs[FoundRegs++] = Regs[0]; 2570 2571 for (int i = 0; i < NumPops; ++i) 2572 BuildMI(MBB, MBBI, DL, 2573 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 2574 2575 return true; 2576 } 2577 2578 MachineBasicBlock::iterator X86FrameLowering:: 2579 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 2580 MachineBasicBlock::iterator I) const { 2581 bool reserveCallFrame = hasReservedCallFrame(MF); 2582 unsigned Opcode = I->getOpcode(); 2583 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 2584 DebugLoc DL = I->getDebugLoc(); 2585 uint64_t Amount = !reserveCallFrame ? I->getOperand(0).getImm() : 0; 2586 uint64_t InternalAmt = (isDestroy || Amount) ? I->getOperand(1).getImm() : 0; 2587 I = MBB.erase(I); 2588 2589 if (!reserveCallFrame) { 2590 // If the stack pointer can be changed after prologue, turn the 2591 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 2592 // adjcallstackdown instruction into 'add ESP, <amt>' 2593 2594 // We need to keep the stack aligned properly. To do this, we round the 2595 // amount of space needed for the outgoing arguments up to the next 2596 // alignment boundary. 2597 unsigned StackAlign = getStackAlignment(); 2598 Amount = alignTo(Amount, StackAlign); 2599 2600 MachineModuleInfo &MMI = MF.getMMI(); 2601 const Function *Fn = MF.getFunction(); 2602 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2603 bool DwarfCFI = !WindowsCFI && 2604 (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry()); 2605 2606 // If we have any exception handlers in this function, and we adjust 2607 // the SP before calls, we may need to indicate this to the unwinder 2608 // using GNU_ARGS_SIZE. Note that this may be necessary even when 2609 // Amount == 0, because the preceding function may have set a non-0 2610 // GNU_ARGS_SIZE. 2611 // TODO: We don't need to reset this between subsequent functions, 2612 // if it didn't change. 2613 bool HasDwarfEHHandlers = !WindowsCFI && 2614 !MF.getMMI().getLandingPads().empty(); 2615 2616 if (HasDwarfEHHandlers && !isDestroy && 2617 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 2618 BuildCFI(MBB, I, DL, 2619 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 2620 2621 if (Amount == 0) 2622 return I; 2623 2624 // Factor out the amount that gets handled inside the sequence 2625 // (Pushes of argument for frame setup, callee pops for frame destroy) 2626 Amount -= InternalAmt; 2627 2628 // TODO: This is needed only if we require precise CFA. 2629 // If this is a callee-pop calling convention, emit a CFA adjust for 2630 // the amount the callee popped. 2631 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 2632 BuildCFI(MBB, I, DL, 2633 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 2634 2635 // Add Amount to SP to destroy a frame, or subtract to setup. 2636 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 2637 int64_t CfaAdjustment = -StackAdjustment; 2638 2639 if (StackAdjustment) { 2640 // Merge with any previous or following adjustment instruction. Note: the 2641 // instructions merged with here do not have CFI, so their stack 2642 // adjustments do not feed into CfaAdjustment. 2643 StackAdjustment += mergeSPUpdates(MBB, I, true); 2644 StackAdjustment += mergeSPUpdates(MBB, I, false); 2645 2646 if (StackAdjustment) { 2647 if (!(Fn->optForMinSize() && 2648 adjustStackWithPops(MBB, I, DL, StackAdjustment))) 2649 BuildStackAdjustment(MBB, I, DL, StackAdjustment, 2650 /*InEpilogue=*/false); 2651 } 2652 } 2653 2654 if (DwarfCFI && !hasFP(MF)) { 2655 // If we don't have FP, but need to generate unwind information, 2656 // we need to set the correct CFA offset after the stack adjustment. 2657 // How much we adjust the CFA offset depends on whether we're emitting 2658 // CFI only for EH purposes or for debugging. EH only requires the CFA 2659 // offset to be correct at each call site, while for debugging we want 2660 // it to be more precise. 2661 2662 // TODO: When not using precise CFA, we also need to adjust for the 2663 // InternalAmt here. 2664 if (CfaAdjustment) { 2665 BuildCFI(MBB, I, DL, MCCFIInstruction::createAdjustCfaOffset( 2666 nullptr, CfaAdjustment)); 2667 } 2668 } 2669 2670 return I; 2671 } 2672 2673 if (isDestroy && InternalAmt) { 2674 // If we are performing frame pointer elimination and if the callee pops 2675 // something off the stack pointer, add it back. We do this until we have 2676 // more advanced stack pointer tracking ability. 2677 // We are not tracking the stack pointer adjustment by the callee, so make 2678 // sure we restore the stack pointer immediately after the call, there may 2679 // be spill code inserted between the CALL and ADJCALLSTACKUP instructions. 2680 MachineBasicBlock::iterator CI = I; 2681 MachineBasicBlock::iterator B = MBB.begin(); 2682 while (CI != B && !std::prev(CI)->isCall()) 2683 --CI; 2684 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 2685 } 2686 2687 return I; 2688 } 2689 2690 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 2691 assert(MBB.getParent() && "Block is not attached to a function!"); 2692 const MachineFunction &MF = *MBB.getParent(); 2693 return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS); 2694 } 2695 2696 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 2697 assert(MBB.getParent() && "Block is not attached to a function!"); 2698 2699 // Win64 has strict requirements in terms of epilogue and we are 2700 // not taking a chance at messing with them. 2701 // I.e., unless this block is already an exit block, we can't use 2702 // it as an epilogue. 2703 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 2704 return false; 2705 2706 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 2707 return true; 2708 2709 // If we cannot use LEA to adjust SP, we may need to use ADD, which 2710 // clobbers the EFLAGS. Check that we do not need to preserve it, 2711 // otherwise, conservatively assume this is not 2712 // safe to insert the epilogue here. 2713 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 2714 } 2715 2716 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2717 // If we may need to emit frameless compact unwind information, give 2718 // up as this is currently broken: PR25614. 2719 return (MF.getFunction()->hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) && 2720 // The lowering of segmented stack and HiPE only support entry blocks 2721 // as prologue blocks: PR26107. 2722 // This limitation may be lifted if we fix: 2723 // - adjustForSegmentedStacks 2724 // - adjustForHiPEPrologue 2725 MF.getFunction()->getCallingConv() != CallingConv::HiPE && 2726 !MF.shouldSplitStack(); 2727 } 2728 2729 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 2730 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 2731 const DebugLoc &DL, bool RestoreSP) const { 2732 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 2733 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 2734 assert(STI.is32Bit() && !Uses64BitFramePtr && 2735 "restoring EBP/ESI on non-32-bit target"); 2736 2737 MachineFunction &MF = *MBB.getParent(); 2738 unsigned FramePtr = TRI->getFrameRegister(MF); 2739 unsigned BasePtr = TRI->getBaseRegister(); 2740 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 2741 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2742 MachineFrameInfo &MFI = MF.getFrameInfo(); 2743 2744 // FIXME: Don't set FrameSetup flag in catchret case. 2745 2746 int FI = FuncInfo.EHRegNodeFrameIndex; 2747 int EHRegSize = MFI.getObjectSize(FI); 2748 2749 if (RestoreSP) { 2750 // MOV32rm -EHRegSize(%ebp), %esp 2751 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 2752 X86::EBP, true, -EHRegSize) 2753 .setMIFlag(MachineInstr::FrameSetup); 2754 } 2755 2756 unsigned UsedReg; 2757 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg); 2758 int EndOffset = -EHRegOffset - EHRegSize; 2759 FuncInfo.EHRegNodeEndOffset = EndOffset; 2760 2761 if (UsedReg == FramePtr) { 2762 // ADD $offset, %ebp 2763 unsigned ADDri = getADDriOpcode(false, EndOffset); 2764 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 2765 .addReg(FramePtr) 2766 .addImm(EndOffset) 2767 .setMIFlag(MachineInstr::FrameSetup) 2768 ->getOperand(3) 2769 .setIsDead(); 2770 assert(EndOffset >= 0 && 2771 "end of registration object above normal EBP position!"); 2772 } else if (UsedReg == BasePtr) { 2773 // LEA offset(%ebp), %esi 2774 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 2775 FramePtr, false, EndOffset) 2776 .setMIFlag(MachineInstr::FrameSetup); 2777 // MOV32rm SavedEBPOffset(%esi), %ebp 2778 assert(X86FI->getHasSEHFramePtrSave()); 2779 int Offset = 2780 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 2781 assert(UsedReg == BasePtr); 2782 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 2783 UsedReg, true, Offset) 2784 .setMIFlag(MachineInstr::FrameSetup); 2785 } else { 2786 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 2787 } 2788 return MBBI; 2789 } 2790 2791 namespace { 2792 // Struct used by orderFrameObjects to help sort the stack objects. 2793 struct X86FrameSortingObject { 2794 bool IsValid = false; // true if we care about this Object. 2795 unsigned ObjectIndex = 0; // Index of Object into MFI list. 2796 unsigned ObjectSize = 0; // Size of Object in bytes. 2797 unsigned ObjectAlignment = 1; // Alignment of Object in bytes. 2798 unsigned ObjectNumUses = 0; // Object static number of uses. 2799 }; 2800 2801 // The comparison function we use for std::sort to order our local 2802 // stack symbols. The current algorithm is to use an estimated 2803 // "density". This takes into consideration the size and number of 2804 // uses each object has in order to roughly minimize code size. 2805 // So, for example, an object of size 16B that is referenced 5 times 2806 // will get higher priority than 4 4B objects referenced 1 time each. 2807 // It's not perfect and we may be able to squeeze a few more bytes out of 2808 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 2809 // fringe end can have special consideration, given their size is less 2810 // important, etc.), but the algorithmic complexity grows too much to be 2811 // worth the extra gains we get. This gets us pretty close. 2812 // The final order leaves us with objects with highest priority going 2813 // at the end of our list. 2814 struct X86FrameSortingComparator { 2815 inline bool operator()(const X86FrameSortingObject &A, 2816 const X86FrameSortingObject &B) { 2817 uint64_t DensityAScaled, DensityBScaled; 2818 2819 // For consistency in our comparison, all invalid objects are placed 2820 // at the end. This also allows us to stop walking when we hit the 2821 // first invalid item after it's all sorted. 2822 if (!A.IsValid) 2823 return false; 2824 if (!B.IsValid) 2825 return true; 2826 2827 // The density is calculated by doing : 2828 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 2829 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 2830 // Since this approach may cause inconsistencies in 2831 // the floating point <, >, == comparisons, depending on the floating 2832 // point model with which the compiler was built, we're going 2833 // to scale both sides by multiplying with 2834 // A.ObjectSize * B.ObjectSize. This ends up factoring away 2835 // the division and, with it, the need for any floating point 2836 // arithmetic. 2837 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 2838 static_cast<uint64_t>(B.ObjectSize); 2839 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 2840 static_cast<uint64_t>(A.ObjectSize); 2841 2842 // If the two densities are equal, prioritize highest alignment 2843 // objects. This allows for similar alignment objects 2844 // to be packed together (given the same density). 2845 // There's room for improvement here, also, since we can pack 2846 // similar alignment (different density) objects next to each 2847 // other to save padding. This will also require further 2848 // complexity/iterations, and the overall gain isn't worth it, 2849 // in general. Something to keep in mind, though. 2850 if (DensityAScaled == DensityBScaled) 2851 return A.ObjectAlignment < B.ObjectAlignment; 2852 2853 return DensityAScaled < DensityBScaled; 2854 } 2855 }; 2856 } // namespace 2857 2858 // Order the symbols in the local stack. 2859 // We want to place the local stack objects in some sort of sensible order. 2860 // The heuristic we use is to try and pack them according to static number 2861 // of uses and size of object in order to minimize code size. 2862 void X86FrameLowering::orderFrameObjects( 2863 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 2864 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2865 2866 // Don't waste time if there's nothing to do. 2867 if (ObjectsToAllocate.empty()) 2868 return; 2869 2870 // Create an array of all MFI objects. We won't need all of these 2871 // objects, but we're going to create a full array of them to make 2872 // it easier to index into when we're counting "uses" down below. 2873 // We want to be able to easily/cheaply access an object by simply 2874 // indexing into it, instead of having to search for it every time. 2875 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 2876 2877 // Walk the objects we care about and mark them as such in our working 2878 // struct. 2879 for (auto &Obj : ObjectsToAllocate) { 2880 SortingObjects[Obj].IsValid = true; 2881 SortingObjects[Obj].ObjectIndex = Obj; 2882 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlignment(Obj); 2883 // Set the size. 2884 int ObjectSize = MFI.getObjectSize(Obj); 2885 if (ObjectSize == 0) 2886 // Variable size. Just use 4. 2887 SortingObjects[Obj].ObjectSize = 4; 2888 else 2889 SortingObjects[Obj].ObjectSize = ObjectSize; 2890 } 2891 2892 // Count the number of uses for each object. 2893 for (auto &MBB : MF) { 2894 for (auto &MI : MBB) { 2895 if (MI.isDebugValue()) 2896 continue; 2897 for (const MachineOperand &MO : MI.operands()) { 2898 // Check to see if it's a local stack symbol. 2899 if (!MO.isFI()) 2900 continue; 2901 int Index = MO.getIndex(); 2902 // Check to see if it falls within our range, and is tagged 2903 // to require ordering. 2904 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 2905 SortingObjects[Index].IsValid) 2906 SortingObjects[Index].ObjectNumUses++; 2907 } 2908 } 2909 } 2910 2911 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 2912 // info). 2913 std::stable_sort(SortingObjects.begin(), SortingObjects.end(), 2914 X86FrameSortingComparator()); 2915 2916 // Now modify the original list to represent the final order that 2917 // we want. The order will depend on whether we're going to access them 2918 // from the stack pointer or the frame pointer. For SP, the list should 2919 // end up with the END containing objects that we want with smaller offsets. 2920 // For FP, it should be flipped. 2921 int i = 0; 2922 for (auto &Obj : SortingObjects) { 2923 // All invalid items are sorted at the end, so it's safe to stop. 2924 if (!Obj.IsValid) 2925 break; 2926 ObjectsToAllocate[i++] = Obj.ObjectIndex; 2927 } 2928 2929 // Flip it if we're accessing off of the FP. 2930 if (!TRI->needsStackRealignment(MF) && hasFP(MF)) 2931 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 2932 } 2933 2934 2935 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 2936 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 2937 unsigned Offset = 16; 2938 // RBP is immediately pushed. 2939 Offset += SlotSize; 2940 // All callee-saved registers are then pushed. 2941 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 2942 // Every funclet allocates enough stack space for the largest outgoing call. 2943 Offset += getWinEHFuncletFrameSize(MF); 2944 return Offset; 2945 } 2946 2947 void X86FrameLowering::processFunctionBeforeFrameFinalized( 2948 MachineFunction &MF, RegScavenger *RS) const { 2949 // If this function isn't doing Win64-style C++ EH, we don't need to do 2950 // anything. 2951 const Function *Fn = MF.getFunction(); 2952 if (!STI.is64Bit() || !MF.getMMI().hasEHFunclets() || 2953 classifyEHPersonality(Fn->getPersonalityFn()) != EHPersonality::MSVC_CXX) 2954 return; 2955 2956 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 2957 // relative to RSP after the prologue. Find the offset of the last fixed 2958 // object, so that we can allocate a slot immediately following it. If there 2959 // were no fixed objects, use offset -SlotSize, which is immediately after the 2960 // return address. Fixed objects have negative frame indices. 2961 MachineFrameInfo &MFI = MF.getFrameInfo(); 2962 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 2963 int64_t MinFixedObjOffset = -SlotSize; 2964 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 2965 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 2966 2967 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 2968 for (WinEHHandlerType &H : TBME.HandlerArray) { 2969 int FrameIndex = H.CatchObj.FrameIndex; 2970 if (FrameIndex != INT_MAX) { 2971 // Ensure alignment. 2972 unsigned Align = MFI.getObjectAlignment(FrameIndex); 2973 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 2974 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 2975 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 2976 } 2977 } 2978 } 2979 2980 // Ensure alignment. 2981 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 2982 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 2983 int UnwindHelpFI = 2984 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*Immutable=*/false); 2985 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 2986 2987 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 2988 // other frame setup instructions. 2989 MachineBasicBlock &MBB = MF.front(); 2990 auto MBBI = MBB.begin(); 2991 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 2992 ++MBBI; 2993 2994 DebugLoc DL = MBB.findDebugLoc(MBBI); 2995 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 2996 UnwindHelpFI) 2997 .addImm(-2); 2998 } 2999