1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86FrameLowering.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "X86InstrBuilder.h" 16 #include "X86InstrInfo.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/EHPersonalities.h" 23 #include "llvm/CodeGen/LivePhysRegs.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/WinEHFuncInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCObjectFileInfo.h" 34 #include "llvm/MC/MCSymbol.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Target/TargetOptions.h" 37 #include <cstdlib> 38 39 #define DEBUG_TYPE "x86-fl" 40 41 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue"); 42 STATISTIC(NumFrameExtraProbe, 43 "Number of extra stack probes generated in prologue"); 44 45 using namespace llvm; 46 47 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 48 MaybeAlign StackAlignOverride) 49 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), 50 STI.is64Bit() ? -8 : -4), 51 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { 52 // Cache a bunch of frame-related predicates for this subtarget. 53 SlotSize = TRI->getSlotSize(); 54 Is64Bit = STI.is64Bit(); 55 IsLP64 = STI.isTarget64BitLP64(); 56 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 57 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 58 StackPtr = TRI->getStackRegister(); 59 } 60 61 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 62 return !MF.getFrameInfo().hasVarSizedObjects() && 63 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() && 64 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall(); 65 } 66 67 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 68 /// call frame pseudos can be simplified. Having a FP, as in the default 69 /// implementation, is not sufficient here since we can't always use it. 70 /// Use a more nuanced condition. 71 bool 72 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 73 return hasReservedCallFrame(MF) || 74 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 75 (hasFP(MF) && !TRI->hasStackRealignment(MF)) || 76 TRI->hasBasePointer(MF); 77 } 78 79 // needsFrameIndexResolution - Do we need to perform FI resolution for 80 // this function. Normally, this is required only when the function 81 // has any stack objects. However, FI resolution actually has another job, 82 // not apparent from the title - it resolves callframesetup/destroy 83 // that were not simplified earlier. 84 // So, this is required for x86 functions that have push sequences even 85 // when there are no stack objects. 86 bool 87 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 88 return MF.getFrameInfo().hasStackObjects() || 89 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 90 } 91 92 /// hasFP - Return true if the specified function should have a dedicated frame 93 /// pointer register. This is true if the function has variable sized allocas 94 /// or if frame pointer elimination is disabled. 95 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 96 const MachineFrameInfo &MFI = MF.getFrameInfo(); 97 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 98 TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 99 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 100 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 101 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 102 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 103 MFI.hasStackMap() || MFI.hasPatchPoint() || 104 (isWin64Prologue(MF) && MFI.hasCopyImplyingStackAdjustment())); 105 } 106 107 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) { 108 if (IsLP64) { 109 if (isInt<8>(Imm)) 110 return X86::SUB64ri8; 111 return X86::SUB64ri32; 112 } else { 113 if (isInt<8>(Imm)) 114 return X86::SUB32ri8; 115 return X86::SUB32ri; 116 } 117 } 118 119 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) { 120 if (IsLP64) { 121 if (isInt<8>(Imm)) 122 return X86::ADD64ri8; 123 return X86::ADD64ri32; 124 } else { 125 if (isInt<8>(Imm)) 126 return X86::ADD32ri8; 127 return X86::ADD32ri; 128 } 129 } 130 131 static unsigned getSUBrrOpcode(bool IsLP64) { 132 return IsLP64 ? X86::SUB64rr : X86::SUB32rr; 133 } 134 135 static unsigned getADDrrOpcode(bool IsLP64) { 136 return IsLP64 ? X86::ADD64rr : X86::ADD32rr; 137 } 138 139 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 140 if (IsLP64) { 141 if (isInt<8>(Imm)) 142 return X86::AND64ri8; 143 return X86::AND64ri32; 144 } 145 if (isInt<8>(Imm)) 146 return X86::AND32ri8; 147 return X86::AND32ri; 148 } 149 150 static unsigned getLEArOpcode(bool IsLP64) { 151 return IsLP64 ? X86::LEA64r : X86::LEA32r; 152 } 153 154 static unsigned getMOVriOpcode(bool Use64BitReg, int64_t Imm) { 155 if (Use64BitReg) { 156 if (isUInt<32>(Imm)) 157 return X86::MOV32ri64; 158 if (isInt<32>(Imm)) 159 return X86::MOV64ri32; 160 return X86::MOV64ri; 161 } 162 return X86::MOV32ri; 163 } 164 165 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 166 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 167 unsigned Reg = RegMask.PhysReg; 168 169 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 170 Reg == X86::AH || Reg == X86::AL) 171 return true; 172 } 173 174 return false; 175 } 176 177 /// Check if the flags need to be preserved before the terminators. 178 /// This would be the case, if the eflags is live-in of the region 179 /// composed by the terminators or live-out of that region, without 180 /// being defined by a terminator. 181 static bool 182 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 183 for (const MachineInstr &MI : MBB.terminators()) { 184 bool BreakNext = false; 185 for (const MachineOperand &MO : MI.operands()) { 186 if (!MO.isReg()) 187 continue; 188 Register Reg = MO.getReg(); 189 if (Reg != X86::EFLAGS) 190 continue; 191 192 // This terminator needs an eflags that is not defined 193 // by a previous another terminator: 194 // EFLAGS is live-in of the region composed by the terminators. 195 if (!MO.isDef()) 196 return true; 197 // This terminator defines the eflags, i.e., we don't need to preserve it. 198 // However, we still need to check this specific terminator does not 199 // read a live-in value. 200 BreakNext = true; 201 } 202 // We found a definition of the eflags, no need to preserve them. 203 if (BreakNext) 204 return false; 205 } 206 207 // None of the terminators use or define the eflags. 208 // Check if they are live-out, that would imply we need to preserve them. 209 for (const MachineBasicBlock *Succ : MBB.successors()) 210 if (Succ->isLiveIn(X86::EFLAGS)) 211 return true; 212 213 return false; 214 } 215 216 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 217 /// stack pointer by a constant value. 218 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 219 MachineBasicBlock::iterator &MBBI, 220 const DebugLoc &DL, 221 int64_t NumBytes, bool InEpilogue) const { 222 bool isSub = NumBytes < 0; 223 uint64_t Offset = isSub ? -NumBytes : NumBytes; 224 MachineInstr::MIFlag Flag = 225 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 226 227 uint64_t Chunk = (1LL << 31) - 1; 228 229 MachineFunction &MF = *MBB.getParent(); 230 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 231 const X86TargetLowering &TLI = *STI.getTargetLowering(); 232 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 233 234 // It's ok to not take into account large chunks when probing, as the 235 // allocation is split in smaller chunks anyway. 236 if (EmitInlineStackProbe && !InEpilogue) { 237 238 // This pseudo-instruction is going to be expanded, potentially using a 239 // loop, by inlineStackProbe(). 240 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset); 241 return; 242 } else if (Offset > Chunk) { 243 // Rather than emit a long series of instructions for large offsets, 244 // load the offset into a register and do one sub/add 245 unsigned Reg = 0; 246 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 247 248 if (isSub && !isEAXLiveIn(MBB)) 249 Reg = Rax; 250 else 251 Reg = TRI->findDeadCallerSavedReg(MBB, MBBI); 252 253 unsigned AddSubRROpc = 254 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 255 if (Reg) { 256 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Reg) 257 .addImm(Offset) 258 .setMIFlag(Flag); 259 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 260 .addReg(StackPtr) 261 .addReg(Reg); 262 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 263 return; 264 } else if (Offset > 8 * Chunk) { 265 // If we would need more than 8 add or sub instructions (a >16GB stack 266 // frame), it's worth spilling RAX to materialize this immediate. 267 // pushq %rax 268 // movabsq +-$Offset+-SlotSize, %rax 269 // addq %rsp, %rax 270 // xchg %rax, (%rsp) 271 // movq (%rsp), %rsp 272 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 273 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 274 .addReg(Rax, RegState::Kill) 275 .setMIFlag(Flag); 276 // Subtract is not commutative, so negate the offset and always use add. 277 // Subtract 8 less and add 8 more to account for the PUSH we just did. 278 if (isSub) 279 Offset = -(Offset - SlotSize); 280 else 281 Offset = Offset + SlotSize; 282 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Rax) 283 .addImm(Offset) 284 .setMIFlag(Flag); 285 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 286 .addReg(Rax) 287 .addReg(StackPtr); 288 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 289 // Exchange the new SP in RAX with the top of the stack. 290 addRegOffset( 291 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 292 StackPtr, false, 0); 293 // Load new SP from the top of the stack into RSP. 294 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 295 StackPtr, false, 0); 296 return; 297 } 298 } 299 300 while (Offset) { 301 uint64_t ThisVal = std::min(Offset, Chunk); 302 if (ThisVal == SlotSize) { 303 // Use push / pop for slot sized adjustments as a size optimization. We 304 // need to find a dead register when using pop. 305 unsigned Reg = isSub 306 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 307 : TRI->findDeadCallerSavedReg(MBB, MBBI); 308 if (Reg) { 309 unsigned Opc = isSub 310 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 311 : (Is64Bit ? X86::POP64r : X86::POP32r); 312 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 313 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 314 .setMIFlag(Flag); 315 Offset -= ThisVal; 316 continue; 317 } 318 } 319 320 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 321 .setMIFlag(Flag); 322 323 Offset -= ThisVal; 324 } 325 } 326 327 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 328 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 329 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 330 assert(Offset != 0 && "zero offset stack adjustment requested"); 331 332 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 333 // is tricky. 334 bool UseLEA; 335 if (!InEpilogue) { 336 // Check if inserting the prologue at the beginning 337 // of MBB would require to use LEA operations. 338 // We need to use LEA operations if EFLAGS is live in, because 339 // it means an instruction will read it before it gets defined. 340 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 341 } else { 342 // If we can use LEA for SP but we shouldn't, check that none 343 // of the terminators uses the eflags. Otherwise we will insert 344 // a ADD that will redefine the eflags and break the condition. 345 // Alternatively, we could move the ADD, but this may not be possible 346 // and is an optimization anyway. 347 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 348 if (UseLEA && !STI.useLeaForSP()) 349 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 350 // If that assert breaks, that means we do not do the right thing 351 // in canUseAsEpilogue. 352 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 353 "We shouldn't have allowed this insertion point"); 354 } 355 356 MachineInstrBuilder MI; 357 if (UseLEA) { 358 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 359 TII.get(getLEArOpcode(Uses64BitFramePtr)), 360 StackPtr), 361 StackPtr, false, Offset); 362 } else { 363 bool IsSub = Offset < 0; 364 uint64_t AbsOffset = IsSub ? -Offset : Offset; 365 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 366 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 367 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 368 .addReg(StackPtr) 369 .addImm(AbsOffset); 370 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 371 } 372 return MI; 373 } 374 375 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 376 MachineBasicBlock::iterator &MBBI, 377 bool doMergeWithPrevious) const { 378 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 379 (!doMergeWithPrevious && MBBI == MBB.end())) 380 return 0; 381 382 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 383 384 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 385 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 386 // instruction, and that there are no DBG_VALUE or other instructions between 387 // ADD/SUB/LEA and its corresponding CFI instruction. 388 /* TODO: Add support for the case where there are multiple CFI instructions 389 below the ADD/SUB/LEA, e.g.: 390 ... 391 add 392 cfi_def_cfa_offset 393 cfi_offset 394 ... 395 */ 396 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 397 PI = std::prev(PI); 398 399 unsigned Opc = PI->getOpcode(); 400 int Offset = 0; 401 402 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 403 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 404 PI->getOperand(0).getReg() == StackPtr){ 405 assert(PI->getOperand(1).getReg() == StackPtr); 406 Offset = PI->getOperand(2).getImm(); 407 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 408 PI->getOperand(0).getReg() == StackPtr && 409 PI->getOperand(1).getReg() == StackPtr && 410 PI->getOperand(2).getImm() == 1 && 411 PI->getOperand(3).getReg() == X86::NoRegister && 412 PI->getOperand(5).getReg() == X86::NoRegister) { 413 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 414 Offset = PI->getOperand(4).getImm(); 415 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 416 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 417 PI->getOperand(0).getReg() == StackPtr) { 418 assert(PI->getOperand(1).getReg() == StackPtr); 419 Offset = -PI->getOperand(2).getImm(); 420 } else 421 return 0; 422 423 PI = MBB.erase(PI); 424 if (PI != MBB.end() && PI->isCFIInstruction()) { 425 auto CIs = MBB.getParent()->getFrameInstructions(); 426 MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()]; 427 if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset || 428 CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset) 429 PI = MBB.erase(PI); 430 } 431 if (!doMergeWithPrevious) 432 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 433 434 return Offset; 435 } 436 437 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 438 MachineBasicBlock::iterator MBBI, 439 const DebugLoc &DL, 440 const MCCFIInstruction &CFIInst) const { 441 MachineFunction &MF = *MBB.getParent(); 442 unsigned CFIIndex = MF.addFrameInst(CFIInst); 443 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 444 .addCFIIndex(CFIIndex); 445 } 446 447 /// Emits Dwarf Info specifying offsets of callee saved registers and 448 /// frame pointer. This is called only when basic block sections are enabled. 449 void X86FrameLowering::emitCalleeSavedFrameMovesFullCFA( 450 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 451 MachineFunction &MF = *MBB.getParent(); 452 if (!hasFP(MF)) { 453 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 454 return; 455 } 456 const MachineModuleInfo &MMI = MF.getMMI(); 457 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 458 const Register FramePtr = TRI->getFrameRegister(MF); 459 const Register MachineFramePtr = 460 STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64)) 461 : FramePtr; 462 unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true); 463 // Offset = space for return address + size of the frame pointer itself. 464 unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4); 465 BuildCFI(MBB, MBBI, DebugLoc{}, 466 MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset)); 467 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 468 } 469 470 void X86FrameLowering::emitCalleeSavedFrameMoves( 471 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 472 const DebugLoc &DL, bool IsPrologue) const { 473 MachineFunction &MF = *MBB.getParent(); 474 MachineFrameInfo &MFI = MF.getFrameInfo(); 475 MachineModuleInfo &MMI = MF.getMMI(); 476 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 477 478 // Add callee saved registers to move list. 479 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 480 481 // Calculate offsets. 482 for (const CalleeSavedInfo &I : CSI) { 483 int64_t Offset = MFI.getObjectOffset(I.getFrameIdx()); 484 Register Reg = I.getReg(); 485 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 486 487 if (IsPrologue) { 488 BuildCFI(MBB, MBBI, DL, 489 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 490 } else { 491 BuildCFI(MBB, MBBI, DL, 492 MCCFIInstruction::createRestore(nullptr, DwarfReg)); 493 } 494 } 495 } 496 497 void X86FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero, 498 MachineBasicBlock &MBB) const { 499 const MachineFunction &MF = *MBB.getParent(); 500 501 // Don't clear registers that will just be reset before exiting. 502 for (const CalleeSavedInfo &CSI : MF.getFrameInfo().getCalleeSavedInfo()) 503 for (MCRegister Reg : TRI->sub_and_superregs_inclusive(CSI.getReg())) 504 RegsToZero.reset(Reg); 505 506 // Insertion point. 507 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 508 509 // We don't need to zero out registers that are clobbered by "pop" 510 // instructions. 511 for (MachineBasicBlock::iterator I = MBBI, E = MBB.end(); I != E; ++I) 512 for (const MachineOperand &MO : I->operands()) { 513 if (!MO.isReg()) 514 continue; 515 516 for (const MCPhysReg &Reg : TRI->sub_and_superregs_inclusive(MO.getReg())) 517 RegsToZero.reset(Reg); 518 } 519 520 // Fake a debug loc. 521 DebugLoc DL; 522 if (MBBI != MBB.end()) 523 DL = MBBI->getDebugLoc(); 524 525 // Zero out FP stack if referenced. Do this outside of the loop below so that 526 // it's done only once. 527 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); 528 for (MCRegister Reg : RegsToZero.set_bits()) { 529 if (!X86::RFP80RegClass.contains(Reg)) 530 continue; 531 532 unsigned NumFPRegs = ST.is64Bit() ? 8 : 7; 533 for (unsigned i = 0; i != NumFPRegs; ++i) 534 BuildMI(MBB, MBBI, DL, TII.get(X86::LD_F0)); 535 536 for (unsigned i = 0; i != NumFPRegs; ++i) 537 BuildMI(MBB, MBBI, DL, TII.get(X86::ST_FPrr)).addReg(X86::ST0); 538 break; 539 } 540 541 // For GPRs, we only care to clear out the 32-bit register. 542 BitVector GPRsToZero(TRI->getNumRegs()); 543 for (MCRegister Reg : RegsToZero.set_bits()) 544 if (TRI->isGeneralPurposeRegister(MF, Reg)) { 545 GPRsToZero.set(getX86SubSuperRegisterOrZero(Reg, 32)); 546 RegsToZero.reset(Reg); 547 } 548 549 for (MCRegister Reg : GPRsToZero.set_bits()) 550 BuildMI(MBB, MBBI, DL, TII.get(X86::XOR32rr), Reg) 551 .addReg(Reg, RegState::Undef) 552 .addReg(Reg, RegState::Undef); 553 554 // Zero out registers. 555 for (MCRegister Reg : RegsToZero.set_bits()) { 556 if (ST.hasMMX() && X86::VR64RegClass.contains(Reg)) 557 // FIXME: Ignore MMX registers? 558 continue; 559 560 unsigned XorOp; 561 if (X86::VR128RegClass.contains(Reg)) { 562 // XMM# 563 if (!ST.hasSSE1()) 564 continue; 565 XorOp = X86::PXORrr; 566 } else if (X86::VR256RegClass.contains(Reg)) { 567 // YMM# 568 if (!ST.hasAVX()) 569 continue; 570 XorOp = X86::VPXORrr; 571 } else if (X86::VR512RegClass.contains(Reg)) { 572 // ZMM# 573 if (!ST.hasAVX512()) 574 continue; 575 XorOp = X86::VPXORYrr; 576 } else if (X86::VK1RegClass.contains(Reg) || 577 X86::VK2RegClass.contains(Reg) || 578 X86::VK4RegClass.contains(Reg) || 579 X86::VK8RegClass.contains(Reg) || 580 X86::VK16RegClass.contains(Reg)) { 581 if (!ST.hasVLX()) 582 continue; 583 XorOp = ST.hasBWI() ? X86::KXORQrr : X86::KXORWrr; 584 } else { 585 continue; 586 } 587 588 BuildMI(MBB, MBBI, DL, TII.get(XorOp), Reg) 589 .addReg(Reg, RegState::Undef) 590 .addReg(Reg, RegState::Undef); 591 } 592 } 593 594 void X86FrameLowering::emitStackProbe( 595 MachineFunction &MF, MachineBasicBlock &MBB, 596 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, 597 Optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { 598 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 599 if (STI.isTargetWindowsCoreCLR()) { 600 if (InProlog) { 601 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)) 602 .addImm(0 /* no explicit stack size */); 603 } else { 604 emitStackProbeInline(MF, MBB, MBBI, DL, false); 605 } 606 } else { 607 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog, InstrNum); 608 } 609 } 610 611 bool X86FrameLowering::stackProbeFunctionModifiesSP() const { 612 return STI.isOSWindows() && !STI.isTargetWin64(); 613 } 614 615 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 616 MachineBasicBlock &PrologMBB) const { 617 auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 618 return MI.getOpcode() == X86::STACKALLOC_W_PROBING; 619 }); 620 if (Where != PrologMBB.end()) { 621 DebugLoc DL = PrologMBB.findDebugLoc(Where); 622 emitStackProbeInline(MF, PrologMBB, Where, DL, true); 623 Where->eraseFromParent(); 624 } 625 } 626 627 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 628 MachineBasicBlock &MBB, 629 MachineBasicBlock::iterator MBBI, 630 const DebugLoc &DL, 631 bool InProlog) const { 632 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 633 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit()) 634 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog); 635 else 636 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog); 637 } 638 639 void X86FrameLowering::emitStackProbeInlineGeneric( 640 MachineFunction &MF, MachineBasicBlock &MBB, 641 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 642 MachineInstr &AllocWithProbe = *MBBI; 643 uint64_t Offset = AllocWithProbe.getOperand(0).getImm(); 644 645 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 646 const X86TargetLowering &TLI = *STI.getTargetLowering(); 647 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) && 648 "different expansion expected for CoreCLR 64 bit"); 649 650 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 651 uint64_t ProbeChunk = StackProbeSize * 8; 652 653 uint64_t MaxAlign = 654 TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0; 655 656 // Synthesize a loop or unroll it, depending on the number of iterations. 657 // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left 658 // between the unaligned rsp and current rsp. 659 if (Offset > ProbeChunk) { 660 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset, 661 MaxAlign % StackProbeSize); 662 } else { 663 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset, 664 MaxAlign % StackProbeSize); 665 } 666 } 667 668 void X86FrameLowering::emitStackProbeInlineGenericBlock( 669 MachineFunction &MF, MachineBasicBlock &MBB, 670 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 671 uint64_t AlignOffset) const { 672 673 const bool NeedsDwarfCFI = needsDwarfCFI(MF); 674 const bool HasFP = hasFP(MF); 675 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 676 const X86TargetLowering &TLI = *STI.getTargetLowering(); 677 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset); 678 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 679 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 680 681 uint64_t CurrentOffset = 0; 682 683 assert(AlignOffset < StackProbeSize); 684 685 // If the offset is so small it fits within a page, there's nothing to do. 686 if (StackProbeSize < Offset + AlignOffset) { 687 688 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 689 .addReg(StackPtr) 690 .addImm(StackProbeSize - AlignOffset) 691 .setMIFlag(MachineInstr::FrameSetup); 692 if (!HasFP && NeedsDwarfCFI) { 693 BuildCFI(MBB, MBBI, DL, 694 MCCFIInstruction::createAdjustCfaOffset( 695 nullptr, StackProbeSize - AlignOffset)); 696 } 697 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 698 699 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 700 .setMIFlag(MachineInstr::FrameSetup), 701 StackPtr, false, 0) 702 .addImm(0) 703 .setMIFlag(MachineInstr::FrameSetup); 704 NumFrameExtraProbe++; 705 CurrentOffset = StackProbeSize - AlignOffset; 706 } 707 708 // For the next N - 1 pages, just probe. I tried to take advantage of 709 // natural probes but it implies much more logic and there was very few 710 // interesting natural probes to interleave. 711 while (CurrentOffset + StackProbeSize < Offset) { 712 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 713 .addReg(StackPtr) 714 .addImm(StackProbeSize) 715 .setMIFlag(MachineInstr::FrameSetup); 716 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 717 718 if (!HasFP && NeedsDwarfCFI) { 719 BuildCFI( 720 MBB, MBBI, DL, 721 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize)); 722 } 723 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 724 .setMIFlag(MachineInstr::FrameSetup), 725 StackPtr, false, 0) 726 .addImm(0) 727 .setMIFlag(MachineInstr::FrameSetup); 728 NumFrameExtraProbe++; 729 CurrentOffset += StackProbeSize; 730 } 731 732 // No need to probe the tail, it is smaller than a Page. 733 uint64_t ChunkSize = Offset - CurrentOffset; 734 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 735 .addReg(StackPtr) 736 .addImm(ChunkSize) 737 .setMIFlag(MachineInstr::FrameSetup); 738 // No need to adjust Dwarf CFA offset here, the last position of the stack has 739 // been defined 740 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 741 } 742 743 void X86FrameLowering::emitStackProbeInlineGenericLoop( 744 MachineFunction &MF, MachineBasicBlock &MBB, 745 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 746 uint64_t AlignOffset) const { 747 assert(Offset && "null offset"); 748 749 const bool NeedsDwarfCFI = needsDwarfCFI(MF); 750 const bool HasFP = hasFP(MF); 751 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 752 const X86TargetLowering &TLI = *STI.getTargetLowering(); 753 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 754 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 755 756 if (AlignOffset) { 757 if (AlignOffset < StackProbeSize) { 758 // Perform a first smaller allocation followed by a probe. 759 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, AlignOffset); 760 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), StackPtr) 761 .addReg(StackPtr) 762 .addImm(AlignOffset) 763 .setMIFlag(MachineInstr::FrameSetup); 764 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 765 766 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 767 .setMIFlag(MachineInstr::FrameSetup), 768 StackPtr, false, 0) 769 .addImm(0) 770 .setMIFlag(MachineInstr::FrameSetup); 771 NumFrameExtraProbe++; 772 Offset -= AlignOffset; 773 } 774 } 775 776 // Synthesize a loop 777 NumFrameLoopProbe++; 778 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 779 780 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB); 781 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB); 782 783 MachineFunction::iterator MBBIter = ++MBB.getIterator(); 784 MF.insert(MBBIter, testMBB); 785 MF.insert(MBBIter, tailMBB); 786 787 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 788 : Is64Bit ? X86::R11D 789 : X86::EAX; 790 791 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 792 .addReg(StackPtr) 793 .setMIFlag(MachineInstr::FrameSetup); 794 795 // save loop bound 796 { 797 const unsigned BoundOffset = alignDown(Offset, StackProbeSize); 798 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, BoundOffset); 799 BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed) 800 .addReg(FinalStackProbed) 801 .addImm(BoundOffset) 802 .setMIFlag(MachineInstr::FrameSetup); 803 804 // while in the loop, use loop-invariant reg for CFI, 805 // instead of the stack pointer, which changes during the loop 806 if (!HasFP && NeedsDwarfCFI) { 807 // x32 uses the same DWARF register numbers as x86-64, 808 // so there isn't a register number for r11d, we must use r11 instead 809 const Register DwarfFinalStackProbed = 810 STI.isTarget64BitILP32() 811 ? Register(getX86SubSuperRegister(FinalStackProbed, 64)) 812 : FinalStackProbed; 813 814 BuildCFI(MBB, MBBI, DL, 815 MCCFIInstruction::createDefCfaRegister( 816 nullptr, TRI->getDwarfRegNum(DwarfFinalStackProbed, true))); 817 BuildCFI(MBB, MBBI, DL, 818 MCCFIInstruction::createAdjustCfaOffset(nullptr, BoundOffset)); 819 } 820 } 821 822 // allocate a page 823 { 824 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 825 BuildMI(testMBB, DL, TII.get(SUBOpc), StackPtr) 826 .addReg(StackPtr) 827 .addImm(StackProbeSize) 828 .setMIFlag(MachineInstr::FrameSetup); 829 } 830 831 // touch the page 832 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc)) 833 .setMIFlag(MachineInstr::FrameSetup), 834 StackPtr, false, 0) 835 .addImm(0) 836 .setMIFlag(MachineInstr::FrameSetup); 837 838 // cmp with stack pointer bound 839 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 840 .addReg(StackPtr) 841 .addReg(FinalStackProbed) 842 .setMIFlag(MachineInstr::FrameSetup); 843 844 // jump 845 BuildMI(testMBB, DL, TII.get(X86::JCC_1)) 846 .addMBB(testMBB) 847 .addImm(X86::COND_NE) 848 .setMIFlag(MachineInstr::FrameSetup); 849 testMBB->addSuccessor(testMBB); 850 testMBB->addSuccessor(tailMBB); 851 852 // BB management 853 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end()); 854 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB); 855 MBB.addSuccessor(testMBB); 856 857 // handle tail 858 const unsigned TailOffset = Offset % StackProbeSize; 859 MachineBasicBlock::iterator TailMBBIter = tailMBB->begin(); 860 if (TailOffset) { 861 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, TailOffset); 862 BuildMI(*tailMBB, TailMBBIter, DL, TII.get(Opc), StackPtr) 863 .addReg(StackPtr) 864 .addImm(TailOffset) 865 .setMIFlag(MachineInstr::FrameSetup); 866 } 867 868 // after the loop, switch back to stack pointer for CFI 869 if (!HasFP && NeedsDwarfCFI) { 870 // x32 uses the same DWARF register numbers as x86-64, 871 // so there isn't a register number for esp, we must use rsp instead 872 const Register DwarfStackPtr = 873 STI.isTarget64BitILP32() 874 ? Register(getX86SubSuperRegister(StackPtr, 64)) 875 : Register(StackPtr); 876 877 BuildCFI(*tailMBB, TailMBBIter, DL, 878 MCCFIInstruction::createDefCfaRegister( 879 nullptr, TRI->getDwarfRegNum(DwarfStackPtr, true))); 880 } 881 882 // Update Live In information 883 recomputeLiveIns(*testMBB); 884 recomputeLiveIns(*tailMBB); 885 } 886 887 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64( 888 MachineFunction &MF, MachineBasicBlock &MBB, 889 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 890 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 891 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 892 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 893 const TargetInstrInfo &TII = *STI.getInstrInfo(); 894 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 895 896 // RAX contains the number of bytes of desired stack adjustment. 897 // The handling here assumes this value has already been updated so as to 898 // maintain stack alignment. 899 // 900 // We need to exit with RSP modified by this amount and execute suitable 901 // page touches to notify the OS that we're growing the stack responsibly. 902 // All stack probing must be done without modifying RSP. 903 // 904 // MBB: 905 // SizeReg = RAX; 906 // ZeroReg = 0 907 // CopyReg = RSP 908 // Flags, TestReg = CopyReg - SizeReg 909 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 910 // LimitReg = gs magic thread env access 911 // if FinalReg >= LimitReg goto ContinueMBB 912 // RoundBB: 913 // RoundReg = page address of FinalReg 914 // LoopMBB: 915 // LoopReg = PHI(LimitReg,ProbeReg) 916 // ProbeReg = LoopReg - PageSize 917 // [ProbeReg] = 0 918 // if (ProbeReg > RoundReg) goto LoopMBB 919 // ContinueMBB: 920 // RSP = RSP - RAX 921 // [rest of original MBB] 922 923 // Set up the new basic blocks 924 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 925 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 926 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 927 928 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 929 MF.insert(MBBIter, RoundMBB); 930 MF.insert(MBBIter, LoopMBB); 931 MF.insert(MBBIter, ContinueMBB); 932 933 // Split MBB and move the tail portion down to ContinueMBB. 934 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 935 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 936 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 937 938 // Some useful constants 939 const int64_t ThreadEnvironmentStackLimit = 0x10; 940 const int64_t PageSize = 0x1000; 941 const int64_t PageMask = ~(PageSize - 1); 942 943 // Registers we need. For the normal case we use virtual 944 // registers. For the prolog expansion we use RAX, RCX and RDX. 945 MachineRegisterInfo &MRI = MF.getRegInfo(); 946 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 947 const Register SizeReg = InProlog ? X86::RAX 948 : MRI.createVirtualRegister(RegClass), 949 ZeroReg = InProlog ? X86::RCX 950 : MRI.createVirtualRegister(RegClass), 951 CopyReg = InProlog ? X86::RDX 952 : MRI.createVirtualRegister(RegClass), 953 TestReg = InProlog ? X86::RDX 954 : MRI.createVirtualRegister(RegClass), 955 FinalReg = InProlog ? X86::RDX 956 : MRI.createVirtualRegister(RegClass), 957 RoundedReg = InProlog ? X86::RDX 958 : MRI.createVirtualRegister(RegClass), 959 LimitReg = InProlog ? X86::RCX 960 : MRI.createVirtualRegister(RegClass), 961 JoinReg = InProlog ? X86::RCX 962 : MRI.createVirtualRegister(RegClass), 963 ProbeReg = InProlog ? X86::RCX 964 : MRI.createVirtualRegister(RegClass); 965 966 // SP-relative offsets where we can save RCX and RDX. 967 int64_t RCXShadowSlot = 0; 968 int64_t RDXShadowSlot = 0; 969 970 // If inlining in the prolog, save RCX and RDX. 971 if (InProlog) { 972 // Compute the offsets. We need to account for things already 973 // pushed onto the stack at this point: return address, frame 974 // pointer (if used), and callee saves. 975 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 976 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 977 const bool HasFP = hasFP(MF); 978 979 // Check if we need to spill RCX and/or RDX. 980 // Here we assume that no earlier prologue instruction changes RCX and/or 981 // RDX, so checking the block live-ins is enough. 982 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); 983 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); 984 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 985 // Assign the initial slot to both registers, then change RDX's slot if both 986 // need to be spilled. 987 if (IsRCXLiveIn) 988 RCXShadowSlot = InitSlot; 989 if (IsRDXLiveIn) 990 RDXShadowSlot = InitSlot; 991 if (IsRDXLiveIn && IsRCXLiveIn) 992 RDXShadowSlot += 8; 993 // Emit the saves if needed. 994 if (IsRCXLiveIn) 995 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 996 RCXShadowSlot) 997 .addReg(X86::RCX); 998 if (IsRDXLiveIn) 999 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 1000 RDXShadowSlot) 1001 .addReg(X86::RDX); 1002 } else { 1003 // Not in the prolog. Copy RAX to a virtual reg. 1004 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 1005 } 1006 1007 // Add code to MBB to check for overflow and set the new target stack pointer 1008 // to zero if so. 1009 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 1010 .addReg(ZeroReg, RegState::Undef) 1011 .addReg(ZeroReg, RegState::Undef); 1012 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 1013 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 1014 .addReg(CopyReg) 1015 .addReg(SizeReg); 1016 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) 1017 .addReg(TestReg) 1018 .addReg(ZeroReg) 1019 .addImm(X86::COND_B); 1020 1021 // FinalReg now holds final stack pointer value, or zero if 1022 // allocation would overflow. Compare against the current stack 1023 // limit from the thread environment block. Note this limit is the 1024 // lowest touched page on the stack, not the point at which the OS 1025 // will cause an overflow exception, so this is just an optimization 1026 // to avoid unnecessarily touching pages that are below the current 1027 // SP but already committed to the stack by the OS. 1028 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 1029 .addReg(0) 1030 .addImm(1) 1031 .addReg(0) 1032 .addImm(ThreadEnvironmentStackLimit) 1033 .addReg(X86::GS); 1034 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 1035 // Jump if the desired stack pointer is at or above the stack limit. 1036 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); 1037 1038 // Add code to roundMBB to round the final stack pointer to a page boundary. 1039 RoundMBB->addLiveIn(FinalReg); 1040 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 1041 .addReg(FinalReg) 1042 .addImm(PageMask); 1043 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 1044 1045 // LimitReg now holds the current stack limit, RoundedReg page-rounded 1046 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 1047 // and probe until we reach RoundedReg. 1048 if (!InProlog) { 1049 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 1050 .addReg(LimitReg) 1051 .addMBB(RoundMBB) 1052 .addReg(ProbeReg) 1053 .addMBB(LoopMBB); 1054 } 1055 1056 LoopMBB->addLiveIn(JoinReg); 1057 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 1058 false, -PageSize); 1059 1060 // Probe by storing a byte onto the stack. 1061 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 1062 .addReg(ProbeReg) 1063 .addImm(1) 1064 .addReg(0) 1065 .addImm(0) 1066 .addReg(0) 1067 .addImm(0); 1068 1069 LoopMBB->addLiveIn(RoundedReg); 1070 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 1071 .addReg(RoundedReg) 1072 .addReg(ProbeReg); 1073 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); 1074 1075 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 1076 1077 // If in prolog, restore RDX and RCX. 1078 if (InProlog) { 1079 if (RCXShadowSlot) // It means we spilled RCX in the prologue. 1080 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 1081 TII.get(X86::MOV64rm), X86::RCX), 1082 X86::RSP, false, RCXShadowSlot); 1083 if (RDXShadowSlot) // It means we spilled RDX in the prologue. 1084 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 1085 TII.get(X86::MOV64rm), X86::RDX), 1086 X86::RSP, false, RDXShadowSlot); 1087 } 1088 1089 // Now that the probing is done, add code to continueMBB to update 1090 // the stack pointer for real. 1091 ContinueMBB->addLiveIn(SizeReg); 1092 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 1093 .addReg(X86::RSP) 1094 .addReg(SizeReg); 1095 1096 // Add the control flow edges we need. 1097 MBB.addSuccessor(ContinueMBB); 1098 MBB.addSuccessor(RoundMBB); 1099 RoundMBB->addSuccessor(LoopMBB); 1100 LoopMBB->addSuccessor(ContinueMBB); 1101 LoopMBB->addSuccessor(LoopMBB); 1102 1103 // Mark all the instructions added to the prolog as frame setup. 1104 if (InProlog) { 1105 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 1106 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 1107 } 1108 for (MachineInstr &MI : *RoundMBB) { 1109 MI.setFlag(MachineInstr::FrameSetup); 1110 } 1111 for (MachineInstr &MI : *LoopMBB) { 1112 MI.setFlag(MachineInstr::FrameSetup); 1113 } 1114 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); 1115 CMBBI != ContinueMBBI; ++CMBBI) { 1116 CMBBI->setFlag(MachineInstr::FrameSetup); 1117 } 1118 } 1119 } 1120 1121 void X86FrameLowering::emitStackProbeCall( 1122 MachineFunction &MF, MachineBasicBlock &MBB, 1123 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, 1124 Optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { 1125 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 1126 1127 // FIXME: Add indirect thunk support and remove this. 1128 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) 1129 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 1130 "code model and indirect thunks not yet implemented."); 1131 1132 unsigned CallOp; 1133 if (Is64Bit) 1134 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 1135 else 1136 CallOp = X86::CALLpcrel32; 1137 1138 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 1139 1140 MachineInstrBuilder CI; 1141 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 1142 1143 // All current stack probes take AX and SP as input, clobber flags, and 1144 // preserve all registers. x86_64 probes leave RSP unmodified. 1145 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 1146 // For the large code model, we have to call through a register. Use R11, 1147 // as it is scratch in all supported calling conventions. 1148 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 1149 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1150 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 1151 } else { 1152 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 1153 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1154 } 1155 1156 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; 1157 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; 1158 CI.addReg(AX, RegState::Implicit) 1159 .addReg(SP, RegState::Implicit) 1160 .addReg(AX, RegState::Define | RegState::Implicit) 1161 .addReg(SP, RegState::Define | RegState::Implicit) 1162 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 1163 1164 MachineInstr *ModInst = CI; 1165 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1166 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 1167 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 1168 // themselves. They also does not clobber %rax so we can reuse it when 1169 // adjusting %rsp. 1170 // All other platforms do not specify a particular ABI for the stack probe 1171 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 1172 ModInst = 1173 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) 1174 .addReg(SP) 1175 .addReg(AX); 1176 } 1177 1178 // DebugInfo variable locations -- if there's an instruction number for the 1179 // allocation (i.e., DYN_ALLOC_*), substitute it for the instruction that 1180 // modifies SP. 1181 if (InstrNum) { 1182 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1183 // Label destination operand of the subtract. 1184 MF.makeDebugValueSubstitution(*InstrNum, 1185 {ModInst->getDebugInstrNum(), 0}); 1186 } else { 1187 // Label the call. The operand number is the penultimate operand, zero 1188 // based. 1189 unsigned SPDefOperand = ModInst->getNumOperands() - 2; 1190 MF.makeDebugValueSubstitution( 1191 *InstrNum, {ModInst->getDebugInstrNum(), SPDefOperand}); 1192 } 1193 } 1194 1195 if (InProlog) { 1196 // Apply the frame setup flag to all inserted instrs. 1197 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 1198 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 1199 } 1200 } 1201 1202 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 1203 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 1204 // and might require smaller successive adjustments. 1205 const uint64_t Win64MaxSEHOffset = 128; 1206 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 1207 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 1208 return SEHFrameOffset & -16; 1209 } 1210 1211 // If we're forcing a stack realignment we can't rely on just the frame 1212 // info, we need to know the ABI stack alignment as well in case we 1213 // have a call out. Otherwise just make sure we have some alignment - we'll 1214 // go with the minimum SlotSize. 1215 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 1216 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1217 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment. 1218 Align StackAlign = getStackAlign(); 1219 if (MF.getFunction().hasFnAttribute("stackrealign")) { 1220 if (MFI.hasCalls()) 1221 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 1222 else if (MaxAlign < SlotSize) 1223 MaxAlign = Align(SlotSize); 1224 } 1225 return MaxAlign.value(); 1226 } 1227 1228 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 1229 MachineBasicBlock::iterator MBBI, 1230 const DebugLoc &DL, unsigned Reg, 1231 uint64_t MaxAlign) const { 1232 uint64_t Val = -MaxAlign; 1233 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 1234 1235 MachineFunction &MF = *MBB.getParent(); 1236 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 1237 const X86TargetLowering &TLI = *STI.getTargetLowering(); 1238 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 1239 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 1240 1241 // We want to make sure that (in worst case) less than StackProbeSize bytes 1242 // are not probed after the AND. This assumption is used in 1243 // emitStackProbeInlineGeneric. 1244 if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) { 1245 { 1246 NumFrameLoopProbe++; 1247 MachineBasicBlock *entryMBB = 1248 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1249 MachineBasicBlock *headMBB = 1250 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1251 MachineBasicBlock *bodyMBB = 1252 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1253 MachineBasicBlock *footMBB = 1254 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1255 1256 MachineFunction::iterator MBBIter = MBB.getIterator(); 1257 MF.insert(MBBIter, entryMBB); 1258 MF.insert(MBBIter, headMBB); 1259 MF.insert(MBBIter, bodyMBB); 1260 MF.insert(MBBIter, footMBB); 1261 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 1262 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 1263 : Is64Bit ? X86::R11D 1264 : X86::EAX; 1265 1266 // Setup entry block 1267 { 1268 1269 entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI); 1270 BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 1271 .addReg(StackPtr) 1272 .setMIFlag(MachineInstr::FrameSetup); 1273 MachineInstr *MI = 1274 BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed) 1275 .addReg(FinalStackProbed) 1276 .addImm(Val) 1277 .setMIFlag(MachineInstr::FrameSetup); 1278 1279 // The EFLAGS implicit def is dead. 1280 MI->getOperand(3).setIsDead(); 1281 1282 BuildMI(entryMBB, DL, 1283 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1284 .addReg(FinalStackProbed) 1285 .addReg(StackPtr) 1286 .setMIFlag(MachineInstr::FrameSetup); 1287 BuildMI(entryMBB, DL, TII.get(X86::JCC_1)) 1288 .addMBB(&MBB) 1289 .addImm(X86::COND_E) 1290 .setMIFlag(MachineInstr::FrameSetup); 1291 entryMBB->addSuccessor(headMBB); 1292 entryMBB->addSuccessor(&MBB); 1293 } 1294 1295 // Loop entry block 1296 1297 { 1298 const unsigned SUBOpc = 1299 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1300 BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr) 1301 .addReg(StackPtr) 1302 .addImm(StackProbeSize) 1303 .setMIFlag(MachineInstr::FrameSetup); 1304 1305 BuildMI(headMBB, DL, 1306 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1307 .addReg(FinalStackProbed) 1308 .addReg(StackPtr) 1309 .setMIFlag(MachineInstr::FrameSetup); 1310 1311 // jump 1312 BuildMI(headMBB, DL, TII.get(X86::JCC_1)) 1313 .addMBB(footMBB) 1314 .addImm(X86::COND_B) 1315 .setMIFlag(MachineInstr::FrameSetup); 1316 1317 headMBB->addSuccessor(bodyMBB); 1318 headMBB->addSuccessor(footMBB); 1319 } 1320 1321 // setup loop body 1322 { 1323 addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc)) 1324 .setMIFlag(MachineInstr::FrameSetup), 1325 StackPtr, false, 0) 1326 .addImm(0) 1327 .setMIFlag(MachineInstr::FrameSetup); 1328 1329 const unsigned SUBOpc = 1330 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1331 BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr) 1332 .addReg(StackPtr) 1333 .addImm(StackProbeSize) 1334 .setMIFlag(MachineInstr::FrameSetup); 1335 1336 // cmp with stack pointer bound 1337 BuildMI(bodyMBB, DL, 1338 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1339 .addReg(FinalStackProbed) 1340 .addReg(StackPtr) 1341 .setMIFlag(MachineInstr::FrameSetup); 1342 1343 // jump 1344 BuildMI(bodyMBB, DL, TII.get(X86::JCC_1)) 1345 .addMBB(bodyMBB) 1346 .addImm(X86::COND_B) 1347 .setMIFlag(MachineInstr::FrameSetup); 1348 bodyMBB->addSuccessor(bodyMBB); 1349 bodyMBB->addSuccessor(footMBB); 1350 } 1351 1352 // setup loop footer 1353 { 1354 BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr) 1355 .addReg(FinalStackProbed) 1356 .setMIFlag(MachineInstr::FrameSetup); 1357 addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc)) 1358 .setMIFlag(MachineInstr::FrameSetup), 1359 StackPtr, false, 0) 1360 .addImm(0) 1361 .setMIFlag(MachineInstr::FrameSetup); 1362 footMBB->addSuccessor(&MBB); 1363 } 1364 1365 recomputeLiveIns(*headMBB); 1366 recomputeLiveIns(*bodyMBB); 1367 recomputeLiveIns(*footMBB); 1368 recomputeLiveIns(MBB); 1369 } 1370 } else { 1371 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 1372 .addReg(Reg) 1373 .addImm(Val) 1374 .setMIFlag(MachineInstr::FrameSetup); 1375 1376 // The EFLAGS implicit def is dead. 1377 MI->getOperand(3).setIsDead(); 1378 } 1379 } 1380 1381 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { 1382 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be 1383 // clobbered by any interrupt handler. 1384 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1385 "MF used frame lowering for wrong subtarget"); 1386 const Function &Fn = MF.getFunction(); 1387 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 1388 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); 1389 } 1390 1391 /// Return true if we need to use the restricted Windows x64 prologue and 1392 /// epilogue code patterns that can be described with WinCFI (.seh_* 1393 /// directives). 1394 bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const { 1395 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1396 } 1397 1398 bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const { 1399 return !isWin64Prologue(MF) && MF.needsFrameMoves(); 1400 } 1401 1402 /// emitPrologue - Push callee-saved registers onto the stack, which 1403 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 1404 /// space for local variables. Also emit labels used by the exception handler to 1405 /// generate the exception handling frames. 1406 1407 /* 1408 Here's a gist of what gets emitted: 1409 1410 ; Establish frame pointer, if needed 1411 [if needs FP] 1412 push %rbp 1413 .cfi_def_cfa_offset 16 1414 .cfi_offset %rbp, -16 1415 .seh_pushreg %rpb 1416 mov %rsp, %rbp 1417 .cfi_def_cfa_register %rbp 1418 1419 ; Spill general-purpose registers 1420 [for all callee-saved GPRs] 1421 pushq %<reg> 1422 [if not needs FP] 1423 .cfi_def_cfa_offset (offset from RETADDR) 1424 .seh_pushreg %<reg> 1425 1426 ; If the required stack alignment > default stack alignment 1427 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 1428 ; of unknown size in the stack frame. 1429 [if stack needs re-alignment] 1430 and $MASK, %rsp 1431 1432 ; Allocate space for locals 1433 [if target is Windows and allocated space > 4096 bytes] 1434 ; Windows needs special care for allocations larger 1435 ; than one page. 1436 mov $NNN, %rax 1437 call ___chkstk_ms/___chkstk 1438 sub %rax, %rsp 1439 [else] 1440 sub $NNN, %rsp 1441 1442 [if needs FP] 1443 .seh_stackalloc (size of XMM spill slots) 1444 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 1445 [else] 1446 .seh_stackalloc NNN 1447 1448 ; Spill XMMs 1449 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 1450 ; they may get spilled on any platform, if the current function 1451 ; calls @llvm.eh.unwind.init 1452 [if needs FP] 1453 [for all callee-saved XMM registers] 1454 movaps %<xmm reg>, -MMM(%rbp) 1455 [for all callee-saved XMM registers] 1456 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 1457 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 1458 [else] 1459 [for all callee-saved XMM registers] 1460 movaps %<xmm reg>, KKK(%rsp) 1461 [for all callee-saved XMM registers] 1462 .seh_savexmm %<xmm reg>, KKK 1463 1464 .seh_endprologue 1465 1466 [if needs base pointer] 1467 mov %rsp, %rbx 1468 [if needs to restore base pointer] 1469 mov %rsp, -MMM(%rbp) 1470 1471 ; Emit CFI info 1472 [if needs FP] 1473 [for all callee-saved registers] 1474 .cfi_offset %<reg>, (offset from %rbp) 1475 [else] 1476 .cfi_def_cfa_offset (offset from RETADDR) 1477 [for all callee-saved registers] 1478 .cfi_offset %<reg>, (offset from %rsp) 1479 1480 Notes: 1481 - .seh directives are emitted only for Windows 64 ABI 1482 - .cv_fpo directives are emitted on win32 when emitting CodeView 1483 - .cfi directives are emitted for all other ABIs 1484 - for 32-bit code, substitute %e?? registers for %r?? 1485 */ 1486 1487 void X86FrameLowering::emitPrologue(MachineFunction &MF, 1488 MachineBasicBlock &MBB) const { 1489 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1490 "MF used frame lowering for wrong subtarget"); 1491 MachineBasicBlock::iterator MBBI = MBB.begin(); 1492 MachineFrameInfo &MFI = MF.getFrameInfo(); 1493 const Function &Fn = MF.getFunction(); 1494 MachineModuleInfo &MMI = MF.getMMI(); 1495 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1496 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 1497 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 1498 bool IsFunclet = MBB.isEHFuncletEntry(); 1499 EHPersonality Personality = EHPersonality::Unknown; 1500 if (Fn.hasPersonalityFn()) 1501 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 1502 bool FnHasClrFunclet = 1503 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 1504 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 1505 bool HasFP = hasFP(MF); 1506 bool IsWin64Prologue = isWin64Prologue(MF); 1507 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 1508 // FIXME: Emit FPO data for EH funclets. 1509 bool NeedsWinFPO = 1510 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); 1511 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 1512 bool NeedsDwarfCFI = needsDwarfCFI(MF); 1513 Register FramePtr = TRI->getFrameRegister(MF); 1514 const Register MachineFramePtr = 1515 STI.isTarget64BitILP32() 1516 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1517 Register BasePtr = TRI->getBaseRegister(); 1518 bool HasWinCFI = false; 1519 1520 // Debug location must be unknown since the first debug location is used 1521 // to determine the end of the prologue. 1522 DebugLoc DL; 1523 1524 // Space reserved for stack-based arguments when making a (ABI-guaranteed) 1525 // tail call. 1526 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 1527 if (TailCallArgReserveSize && IsWin64Prologue) 1528 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 1529 1530 const bool EmitStackProbeCall = 1531 STI.getTargetLowering()->hasStackProbeSymbol(MF); 1532 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); 1533 1534 if (HasFP && X86FI->hasSwiftAsyncContext()) { 1535 switch (MF.getTarget().Options.SwiftAsyncFramePointer) { 1536 case SwiftAsyncFramePointerMode::DeploymentBased: 1537 if (STI.swiftAsyncContextIsDynamicallySet()) { 1538 // The special symbol below is absolute and has a *value* suitable to be 1539 // combined with the frame pointer directly. 1540 BuildMI(MBB, MBBI, DL, TII.get(X86::OR64rm), MachineFramePtr) 1541 .addUse(MachineFramePtr) 1542 .addUse(X86::RIP) 1543 .addImm(1) 1544 .addUse(X86::NoRegister) 1545 .addExternalSymbol("swift_async_extendedFramePointerFlags", 1546 X86II::MO_GOTPCREL) 1547 .addUse(X86::NoRegister); 1548 break; 1549 } 1550 LLVM_FALLTHROUGH; 1551 1552 case SwiftAsyncFramePointerMode::Always: 1553 BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8), MachineFramePtr) 1554 .addUse(MachineFramePtr) 1555 .addImm(60) 1556 .setMIFlag(MachineInstr::FrameSetup); 1557 break; 1558 1559 case SwiftAsyncFramePointerMode::Never: 1560 break; 1561 } 1562 } 1563 1564 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 1565 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1566 // stack alignment. 1567 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1568 Fn.arg_size() == 2) { 1569 StackSize += 8; 1570 MFI.setStackSize(StackSize); 1571 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); 1572 } 1573 1574 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1575 // function, and use up to 128 bytes of stack space, don't have a frame 1576 // pointer, calls, or dynamic alloca then we do not need to adjust the 1577 // stack pointer (we fit in the Red Zone). We also check that we don't 1578 // push and pop from the stack. 1579 if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) && 1580 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1581 !MFI.adjustsStack() && // No calls. 1582 !EmitStackProbeCall && // No stack probes. 1583 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1584 !MF.shouldSplitStack()) { // Regular stack 1585 uint64_t MinSize = 1586 X86FI->getCalleeSavedFrameSize() - X86FI->getTCReturnAddrDelta(); 1587 if (HasFP) MinSize += SlotSize; 1588 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1589 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1590 MFI.setStackSize(StackSize); 1591 } 1592 1593 // Insert stack pointer adjustment for later moving of return addr. Only 1594 // applies to tail call optimized functions where the callee argument stack 1595 // size is bigger than the callers. 1596 if (TailCallArgReserveSize != 0) { 1597 BuildStackAdjustment(MBB, MBBI, DL, -(int)TailCallArgReserveSize, 1598 /*InEpilogue=*/false) 1599 .setMIFlag(MachineInstr::FrameSetup); 1600 } 1601 1602 // Mapping for machine moves: 1603 // 1604 // DST: VirtualFP AND 1605 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1606 // ELSE => DW_CFA_def_cfa 1607 // 1608 // SRC: VirtualFP AND 1609 // DST: Register => DW_CFA_def_cfa_register 1610 // 1611 // ELSE 1612 // OFFSET < 0 => DW_CFA_offset_extended_sf 1613 // REG < 64 => DW_CFA_offset + Reg 1614 // ELSE => DW_CFA_offset_extended 1615 1616 uint64_t NumBytes = 0; 1617 int stackGrowth = -SlotSize; 1618 1619 // Find the funclet establisher parameter 1620 Register Establisher = X86::NoRegister; 1621 if (IsClrFunclet) 1622 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1623 else if (IsFunclet) 1624 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1625 1626 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1627 // Immediately spill establisher into the home slot. 1628 // The runtime cares about this. 1629 // MOV64mr %rdx, 16(%rsp) 1630 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1631 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1632 .addReg(Establisher) 1633 .setMIFlag(MachineInstr::FrameSetup); 1634 MBB.addLiveIn(Establisher); 1635 } 1636 1637 if (HasFP) { 1638 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1639 1640 // Calculate required stack adjustment. 1641 uint64_t FrameSize = StackSize - SlotSize; 1642 // If required, include space for extra hidden slot for stashing base pointer. 1643 if (X86FI->getRestoreBasePointer()) 1644 FrameSize += SlotSize; 1645 1646 NumBytes = FrameSize - 1647 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1648 1649 // Callee-saved registers are pushed on stack before the stack is realigned. 1650 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 1651 NumBytes = alignTo(NumBytes, MaxAlign); 1652 1653 // Save EBP/RBP into the appropriate stack slot. 1654 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1655 .addReg(MachineFramePtr, RegState::Kill) 1656 .setMIFlag(MachineInstr::FrameSetup); 1657 1658 if (NeedsDwarfCFI) { 1659 // Mark the place where EBP/RBP was saved. 1660 // Define the current CFA rule to use the provided offset. 1661 assert(StackSize); 1662 BuildCFI(MBB, MBBI, DL, 1663 MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth)); 1664 1665 // Change the rule for the FramePtr to be an "offset" rule. 1666 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1667 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset( 1668 nullptr, DwarfFramePtr, 2 * stackGrowth)); 1669 } 1670 1671 if (NeedsWinCFI) { 1672 HasWinCFI = true; 1673 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1674 .addImm(FramePtr) 1675 .setMIFlag(MachineInstr::FrameSetup); 1676 } 1677 1678 if (!IsFunclet) { 1679 if (X86FI->hasSwiftAsyncContext()) { 1680 const auto &Attrs = MF.getFunction().getAttributes(); 1681 1682 // Before we update the live frame pointer we have to ensure there's a 1683 // valid (or null) asynchronous context in its slot just before FP in 1684 // the frame record, so store it now. 1685 if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) { 1686 // We have an initial context in r14, store it just before the frame 1687 // pointer. 1688 MBB.addLiveIn(X86::R14); 1689 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1690 .addReg(X86::R14) 1691 .setMIFlag(MachineInstr::FrameSetup); 1692 } else { 1693 // No initial context, store null so that there's no pointer that 1694 // could be misused. 1695 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i8)) 1696 .addImm(0) 1697 .setMIFlag(MachineInstr::FrameSetup); 1698 } 1699 1700 if (NeedsWinCFI) { 1701 HasWinCFI = true; 1702 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1703 .addImm(X86::R14) 1704 .setMIFlag(MachineInstr::FrameSetup); 1705 } 1706 1707 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr) 1708 .addUse(X86::RSP) 1709 .addImm(1) 1710 .addUse(X86::NoRegister) 1711 .addImm(8) 1712 .addUse(X86::NoRegister) 1713 .setMIFlag(MachineInstr::FrameSetup); 1714 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri8), X86::RSP) 1715 .addUse(X86::RSP) 1716 .addImm(8) 1717 .setMIFlag(MachineInstr::FrameSetup); 1718 } 1719 1720 if (!IsWin64Prologue && !IsFunclet) { 1721 // Update EBP with the new base value. 1722 if (!X86FI->hasSwiftAsyncContext()) 1723 BuildMI(MBB, MBBI, DL, 1724 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1725 FramePtr) 1726 .addReg(StackPtr) 1727 .setMIFlag(MachineInstr::FrameSetup); 1728 1729 if (NeedsDwarfCFI) { 1730 // Mark effective beginning of when frame pointer becomes valid. 1731 // Define the current CFA to use the EBP/RBP register. 1732 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1733 BuildCFI( 1734 MBB, MBBI, DL, 1735 MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr)); 1736 } 1737 1738 if (NeedsWinFPO) { 1739 // .cv_fpo_setframe $FramePtr 1740 HasWinCFI = true; 1741 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1742 .addImm(FramePtr) 1743 .addImm(0) 1744 .setMIFlag(MachineInstr::FrameSetup); 1745 } 1746 } 1747 } 1748 } else { 1749 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1750 NumBytes = StackSize - 1751 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1752 } 1753 1754 // Update the offset adjustment, which is mainly used by codeview to translate 1755 // from ESP to VFRAME relative local variable offsets. 1756 if (!IsFunclet) { 1757 if (HasFP && TRI->hasStackRealignment(MF)) 1758 MFI.setOffsetAdjustment(-NumBytes); 1759 else 1760 MFI.setOffsetAdjustment(-StackSize); 1761 } 1762 1763 // For EH funclets, only allocate enough space for outgoing calls. Save the 1764 // NumBytes value that we would've used for the parent frame. 1765 unsigned ParentFrameNumBytes = NumBytes; 1766 if (IsFunclet) 1767 NumBytes = getWinEHFuncletFrameSize(MF); 1768 1769 // Skip the callee-saved push instructions. 1770 bool PushedRegs = false; 1771 int StackOffset = 2 * stackGrowth; 1772 1773 while (MBBI != MBB.end() && 1774 MBBI->getFlag(MachineInstr::FrameSetup) && 1775 (MBBI->getOpcode() == X86::PUSH32r || 1776 MBBI->getOpcode() == X86::PUSH64r)) { 1777 PushedRegs = true; 1778 Register Reg = MBBI->getOperand(0).getReg(); 1779 ++MBBI; 1780 1781 if (!HasFP && NeedsDwarfCFI) { 1782 // Mark callee-saved push instruction. 1783 // Define the current CFA rule to use the provided offset. 1784 assert(StackSize); 1785 BuildCFI(MBB, MBBI, DL, 1786 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset)); 1787 StackOffset += stackGrowth; 1788 } 1789 1790 if (NeedsWinCFI) { 1791 HasWinCFI = true; 1792 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1793 .addImm(Reg) 1794 .setMIFlag(MachineInstr::FrameSetup); 1795 } 1796 } 1797 1798 // Realign stack after we pushed callee-saved registers (so that we'll be 1799 // able to calculate their offsets from the frame pointer). 1800 // Don't do this for Win64, it needs to realign the stack after the prologue. 1801 if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) { 1802 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1803 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1804 1805 if (NeedsWinCFI) { 1806 HasWinCFI = true; 1807 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) 1808 .addImm(MaxAlign) 1809 .setMIFlag(MachineInstr::FrameSetup); 1810 } 1811 } 1812 1813 // If there is an SUB32ri of ESP immediately before this instruction, merge 1814 // the two. This can be the case when tail call elimination is enabled and 1815 // the callee has more arguments then the caller. 1816 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1817 1818 // Adjust stack pointer: ESP -= numbytes. 1819 1820 // Windows and cygwin/mingw require a prologue helper routine when allocating 1821 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1822 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1823 // stack and adjust the stack pointer in one go. The 64-bit version of 1824 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1825 // responsible for adjusting the stack pointer. Touching the stack at 4K 1826 // increments is necessary to ensure that the guard pages used by the OS 1827 // virtual memory manager are allocated in correct sequence. 1828 uint64_t AlignedNumBytes = NumBytes; 1829 if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) 1830 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1831 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) { 1832 assert(!X86FI->getUsesRedZone() && 1833 "The Red Zone is not accounted for in stack probes"); 1834 1835 // Check whether EAX is livein for this block. 1836 bool isEAXAlive = isEAXLiveIn(MBB); 1837 1838 if (isEAXAlive) { 1839 if (Is64Bit) { 1840 // Save RAX 1841 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1842 .addReg(X86::RAX, RegState::Kill) 1843 .setMIFlag(MachineInstr::FrameSetup); 1844 } else { 1845 // Save EAX 1846 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1847 .addReg(X86::EAX, RegState::Kill) 1848 .setMIFlag(MachineInstr::FrameSetup); 1849 } 1850 } 1851 1852 if (Is64Bit) { 1853 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1854 // Function prologue is responsible for adjusting the stack pointer. 1855 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1856 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Alloc)), X86::RAX) 1857 .addImm(Alloc) 1858 .setMIFlag(MachineInstr::FrameSetup); 1859 } else { 1860 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1861 // We'll also use 4 already allocated bytes for EAX. 1862 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1863 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1864 .setMIFlag(MachineInstr::FrameSetup); 1865 } 1866 1867 // Call __chkstk, __chkstk_ms, or __alloca. 1868 emitStackProbe(MF, MBB, MBBI, DL, true); 1869 1870 if (isEAXAlive) { 1871 // Restore RAX/EAX 1872 MachineInstr *MI; 1873 if (Is64Bit) 1874 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 1875 StackPtr, false, NumBytes - 8); 1876 else 1877 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1878 StackPtr, false, NumBytes - 4); 1879 MI->setFlag(MachineInstr::FrameSetup); 1880 MBB.insert(MBBI, MI); 1881 } 1882 } else if (NumBytes) { 1883 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 1884 } 1885 1886 if (NeedsWinCFI && NumBytes) { 1887 HasWinCFI = true; 1888 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1889 .addImm(NumBytes) 1890 .setMIFlag(MachineInstr::FrameSetup); 1891 } 1892 1893 int SEHFrameOffset = 0; 1894 unsigned SPOrEstablisher; 1895 if (IsFunclet) { 1896 if (IsClrFunclet) { 1897 // The establisher parameter passed to a CLR funclet is actually a pointer 1898 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1899 // to find the root function establisher frame by loading the PSPSym from 1900 // the intermediate frame. 1901 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1902 MachinePointerInfo NoInfo; 1903 MBB.addLiveIn(Establisher); 1904 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1905 Establisher, false, PSPSlotOffset) 1906 .addMemOperand(MF.getMachineMemOperand( 1907 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize))); 1908 ; 1909 // Save the root establisher back into the current funclet's (mostly 1910 // empty) frame, in case a sub-funclet or the GC needs it. 1911 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1912 false, PSPSlotOffset) 1913 .addReg(Establisher) 1914 .addMemOperand(MF.getMachineMemOperand( 1915 NoInfo, 1916 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1917 SlotSize, Align(SlotSize))); 1918 } 1919 SPOrEstablisher = Establisher; 1920 } else { 1921 SPOrEstablisher = StackPtr; 1922 } 1923 1924 if (IsWin64Prologue && HasFP) { 1925 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1926 // this calculation on the incoming establisher, which holds the value of 1927 // RSP from the parent frame at the end of the prologue. 1928 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1929 if (SEHFrameOffset) 1930 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1931 SPOrEstablisher, false, SEHFrameOffset); 1932 else 1933 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1934 .addReg(SPOrEstablisher); 1935 1936 // If this is not a funclet, emit the CFI describing our frame pointer. 1937 if (NeedsWinCFI && !IsFunclet) { 1938 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 1939 HasWinCFI = true; 1940 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1941 .addImm(FramePtr) 1942 .addImm(SEHFrameOffset) 1943 .setMIFlag(MachineInstr::FrameSetup); 1944 if (isAsynchronousEHPersonality(Personality)) 1945 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 1946 } 1947 } else if (IsFunclet && STI.is32Bit()) { 1948 // Reset EBP / ESI to something good for funclets. 1949 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 1950 // If we're a catch funclet, we can be returned to via catchret. Save ESP 1951 // into the registration node so that the runtime will restore it for us. 1952 if (!MBB.isCleanupFuncletEntry()) { 1953 assert(Personality == EHPersonality::MSVC_CXX); 1954 Register FrameReg; 1955 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 1956 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed(); 1957 // ESP is the first field, so no extra displacement is needed. 1958 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 1959 false, EHRegOffset) 1960 .addReg(X86::ESP); 1961 } 1962 } 1963 1964 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 1965 const MachineInstr &FrameInstr = *MBBI; 1966 ++MBBI; 1967 1968 if (NeedsWinCFI) { 1969 int FI; 1970 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 1971 if (X86::FR64RegClass.contains(Reg)) { 1972 int Offset; 1973 Register IgnoredFrameReg; 1974 if (IsWin64Prologue && IsFunclet) 1975 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); 1976 else 1977 Offset = 1978 getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() + 1979 SEHFrameOffset; 1980 1981 HasWinCFI = true; 1982 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 1983 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 1984 .addImm(Reg) 1985 .addImm(Offset) 1986 .setMIFlag(MachineInstr::FrameSetup); 1987 } 1988 } 1989 } 1990 } 1991 1992 if (NeedsWinCFI && HasWinCFI) 1993 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 1994 .setMIFlag(MachineInstr::FrameSetup); 1995 1996 if (FnHasClrFunclet && !IsFunclet) { 1997 // Save the so-called Initial-SP (i.e. the value of the stack pointer 1998 // immediately after the prolog) into the PSPSlot so that funclets 1999 // and the GC can recover it. 2000 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 2001 auto PSPInfo = MachinePointerInfo::getFixedStack( 2002 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 2003 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 2004 PSPSlotOffset) 2005 .addReg(StackPtr) 2006 .addMemOperand(MF.getMachineMemOperand( 2007 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 2008 SlotSize, Align(SlotSize))); 2009 } 2010 2011 // Realign stack after we spilled callee-saved registers (so that we'll be 2012 // able to calculate their offsets from the frame pointer). 2013 // Win64 requires aligning the stack after the prologue. 2014 if (IsWin64Prologue && TRI->hasStackRealignment(MF)) { 2015 assert(HasFP && "There should be a frame pointer if stack is realigned."); 2016 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 2017 } 2018 2019 // We already dealt with stack realignment and funclets above. 2020 if (IsFunclet && STI.is32Bit()) 2021 return; 2022 2023 // If we need a base pointer, set it up here. It's whatever the value 2024 // of the stack pointer is at this point. Any variable size objects 2025 // will be allocated after this, so we can still use the base pointer 2026 // to reference locals. 2027 if (TRI->hasBasePointer(MF)) { 2028 // Update the base pointer with the current stack pointer. 2029 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 2030 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 2031 .addReg(SPOrEstablisher) 2032 .setMIFlag(MachineInstr::FrameSetup); 2033 if (X86FI->getRestoreBasePointer()) { 2034 // Stash value of base pointer. Saving RSP instead of EBP shortens 2035 // dependence chain. Used by SjLj EH. 2036 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 2037 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 2038 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 2039 .addReg(SPOrEstablisher) 2040 .setMIFlag(MachineInstr::FrameSetup); 2041 } 2042 2043 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 2044 // Stash the value of the frame pointer relative to the base pointer for 2045 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 2046 // it recovers the frame pointer from the base pointer rather than the 2047 // other way around. 2048 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 2049 Register UsedReg; 2050 int Offset = 2051 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 2052 .getFixed(); 2053 assert(UsedReg == BasePtr); 2054 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 2055 .addReg(FramePtr) 2056 .setMIFlag(MachineInstr::FrameSetup); 2057 } 2058 } 2059 2060 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 2061 // Mark end of stack pointer adjustment. 2062 if (!HasFP && NumBytes) { 2063 // Define the current CFA rule to use the provided offset. 2064 assert(StackSize); 2065 BuildCFI( 2066 MBB, MBBI, DL, 2067 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth)); 2068 } 2069 2070 // Emit DWARF info specifying the offsets of the callee-saved registers. 2071 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true); 2072 } 2073 2074 // X86 Interrupt handling function cannot assume anything about the direction 2075 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 2076 // in each prologue of interrupt handler function. 2077 // 2078 // FIXME: Create "cld" instruction only in these cases: 2079 // 1. The interrupt handling function uses any of the "rep" instructions. 2080 // 2. Interrupt handling function calls another function. 2081 // 2082 if (Fn.getCallingConv() == CallingConv::X86_INTR) 2083 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 2084 .setMIFlag(MachineInstr::FrameSetup); 2085 2086 // At this point we know if the function has WinCFI or not. 2087 MF.setHasWinCFI(HasWinCFI); 2088 } 2089 2090 bool X86FrameLowering::canUseLEAForSPInEpilogue( 2091 const MachineFunction &MF) const { 2092 // We can't use LEA instructions for adjusting the stack pointer if we don't 2093 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 2094 // to deallocate the stack. 2095 // This means that we can use LEA for SP in two situations: 2096 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 2097 // 2. We *have* a frame pointer which means we are permitted to use LEA. 2098 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 2099 } 2100 2101 static bool isFuncletReturnInstr(MachineInstr &MI) { 2102 switch (MI.getOpcode()) { 2103 case X86::CATCHRET: 2104 case X86::CLEANUPRET: 2105 return true; 2106 default: 2107 return false; 2108 } 2109 llvm_unreachable("impossible"); 2110 } 2111 2112 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 2113 // stack. It holds a pointer to the bottom of the root function frame. The 2114 // establisher frame pointer passed to a nested funclet may point to the 2115 // (mostly empty) frame of its parent funclet, but it will need to find 2116 // the frame of the root function to access locals. To facilitate this, 2117 // every funclet copies the pointer to the bottom of the root function 2118 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 2119 // same offset for the PSPSym in the root function frame that's used in the 2120 // funclets' frames allows each funclet to dynamically accept any ancestor 2121 // frame as its establisher argument (the runtime doesn't guarantee the 2122 // immediate parent for some reason lost to history), and also allows the GC, 2123 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 2124 // frame with only a single offset reported for the entire method. 2125 unsigned 2126 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 2127 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 2128 Register SPReg; 2129 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 2130 /*IgnoreSPUpdates*/ true) 2131 .getFixed(); 2132 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 2133 return static_cast<unsigned>(Offset); 2134 } 2135 2136 unsigned 2137 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 2138 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2139 // This is the size of the pushed CSRs. 2140 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2141 // This is the size of callee saved XMMs. 2142 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2143 unsigned XMMSize = WinEHXMMSlotInfo.size() * 2144 TRI->getSpillSize(X86::VR128RegClass); 2145 // This is the amount of stack a funclet needs to allocate. 2146 unsigned UsedSize; 2147 EHPersonality Personality = 2148 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 2149 if (Personality == EHPersonality::CoreCLR) { 2150 // CLR funclets need to hold enough space to include the PSPSym, at the 2151 // same offset from the stack pointer (immediately after the prolog) as it 2152 // resides at in the main function. 2153 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 2154 } else { 2155 // Other funclets just need enough stack for outgoing call arguments. 2156 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 2157 } 2158 // RBP is not included in the callee saved register block. After pushing RBP, 2159 // everything is 16 byte aligned. Everything we allocate before an outgoing 2160 // call must also be 16 byte aligned. 2161 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign()); 2162 // Subtract out the size of the callee saved registers. This is how much stack 2163 // each funclet will allocate. 2164 return FrameSizeMinusRBP + XMMSize - CSSize; 2165 } 2166 2167 static bool isTailCallOpcode(unsigned Opc) { 2168 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 2169 Opc == X86::TCRETURNmi || 2170 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 2171 Opc == X86::TCRETURNmi64; 2172 } 2173 2174 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 2175 MachineBasicBlock &MBB) const { 2176 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2177 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2178 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 2179 MachineBasicBlock::iterator MBBI = Terminator; 2180 DebugLoc DL; 2181 if (MBBI != MBB.end()) 2182 DL = MBBI->getDebugLoc(); 2183 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 2184 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 2185 Register FramePtr = TRI->getFrameRegister(MF); 2186 Register MachineFramePtr = 2187 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 2188 2189 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2190 bool NeedsWin64CFI = 2191 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 2192 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 2193 2194 // Get the number of bytes to allocate from the FrameInfo. 2195 uint64_t StackSize = MFI.getStackSize(); 2196 uint64_t MaxAlign = calculateMaxStackAlign(MF); 2197 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2198 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 2199 bool HasFP = hasFP(MF); 2200 uint64_t NumBytes = 0; 2201 2202 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && 2203 !MF.getTarget().getTargetTriple().isOSWindows()) && 2204 MF.needsFrameMoves(); 2205 2206 if (IsFunclet) { 2207 assert(HasFP && "EH funclets without FP not yet implemented"); 2208 NumBytes = getWinEHFuncletFrameSize(MF); 2209 } else if (HasFP) { 2210 // Calculate required stack adjustment. 2211 uint64_t FrameSize = StackSize - SlotSize; 2212 NumBytes = FrameSize - CSSize - TailCallArgReserveSize; 2213 2214 // Callee-saved registers were pushed on stack before the stack was 2215 // realigned. 2216 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 2217 NumBytes = alignTo(FrameSize, MaxAlign); 2218 } else { 2219 NumBytes = StackSize - CSSize - TailCallArgReserveSize; 2220 } 2221 uint64_t SEHStackAllocAmt = NumBytes; 2222 2223 // AfterPop is the position to insert .cfi_restore. 2224 MachineBasicBlock::iterator AfterPop = MBBI; 2225 if (HasFP) { 2226 if (X86FI->hasSwiftAsyncContext()) { 2227 // Discard the context. 2228 int Offset = 16 + mergeSPUpdates(MBB, MBBI, true); 2229 emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/true); 2230 } 2231 // Pop EBP. 2232 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 2233 MachineFramePtr) 2234 .setMIFlag(MachineInstr::FrameDestroy); 2235 2236 // We need to reset FP to its untagged state on return. Bit 60 is currently 2237 // used to show the presence of an extended frame. 2238 if (X86FI->hasSwiftAsyncContext()) { 2239 BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8), 2240 MachineFramePtr) 2241 .addUse(MachineFramePtr) 2242 .addImm(60) 2243 .setMIFlag(MachineInstr::FrameDestroy); 2244 } 2245 2246 if (NeedsDwarfCFI) { 2247 unsigned DwarfStackPtr = 2248 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 2249 BuildCFI(MBB, MBBI, DL, 2250 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize)); 2251 if (!MBB.succ_empty() && !MBB.isReturnBlock()) { 2252 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 2253 BuildCFI(MBB, AfterPop, DL, 2254 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr)); 2255 --MBBI; 2256 --AfterPop; 2257 } 2258 --MBBI; 2259 } 2260 } 2261 2262 MachineBasicBlock::iterator FirstCSPop = MBBI; 2263 // Skip the callee-saved pop instructions. 2264 while (MBBI != MBB.begin()) { 2265 MachineBasicBlock::iterator PI = std::prev(MBBI); 2266 unsigned Opc = PI->getOpcode(); 2267 2268 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 2269 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2270 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2271 (Opc != X86::BTR64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)) && 2272 (Opc != X86::ADD64ri8 || !PI->getFlag(MachineInstr::FrameDestroy))) 2273 break; 2274 FirstCSPop = PI; 2275 } 2276 2277 --MBBI; 2278 } 2279 MBBI = FirstCSPop; 2280 2281 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 2282 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 2283 2284 if (MBBI != MBB.end()) 2285 DL = MBBI->getDebugLoc(); 2286 // If there is an ADD32ri or SUB32ri of ESP immediately before this 2287 // instruction, merge the two instructions. 2288 if (NumBytes || MFI.hasVarSizedObjects()) 2289 NumBytes += mergeSPUpdates(MBB, MBBI, true); 2290 2291 // If dynamic alloca is used, then reset esp to point to the last callee-saved 2292 // slot before popping them off! Same applies for the case, when stack was 2293 // realigned. Don't do this if this was a funclet epilogue, since the funclets 2294 // will not do realignment or dynamic stack allocation. 2295 if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) && 2296 !IsFunclet) { 2297 if (TRI->hasStackRealignment(MF)) 2298 MBBI = FirstCSPop; 2299 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 2300 uint64_t LEAAmount = 2301 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 2302 2303 if (X86FI->hasSwiftAsyncContext()) 2304 LEAAmount -= 16; 2305 2306 // There are only two legal forms of epilogue: 2307 // - add SEHAllocationSize, %rsp 2308 // - lea SEHAllocationSize(%FramePtr), %rsp 2309 // 2310 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 2311 // However, we may use this sequence if we have a frame pointer because the 2312 // effects of the prologue can safely be undone. 2313 if (LEAAmount != 0) { 2314 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 2315 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 2316 FramePtr, false, LEAAmount); 2317 --MBBI; 2318 } else { 2319 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 2320 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 2321 .addReg(FramePtr); 2322 --MBBI; 2323 } 2324 } else if (NumBytes) { 2325 // Adjust stack pointer back: ESP += numbytes. 2326 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 2327 if (!HasFP && NeedsDwarfCFI) { 2328 // Define the current CFA rule to use the provided offset. 2329 BuildCFI(MBB, MBBI, DL, 2330 MCCFIInstruction::cfiDefCfaOffset( 2331 nullptr, CSSize + TailCallArgReserveSize + SlotSize)); 2332 } 2333 --MBBI; 2334 } 2335 2336 // Windows unwinder will not invoke function's exception handler if IP is 2337 // either in prologue or in epilogue. This behavior causes a problem when a 2338 // call immediately precedes an epilogue, because the return address points 2339 // into the epilogue. To cope with that, we insert an epilogue marker here, 2340 // then replace it with a 'nop' if it ends up immediately after a CALL in the 2341 // final emitted code. 2342 if (NeedsWin64CFI && MF.hasWinCFI()) 2343 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 2344 2345 if (!HasFP && NeedsDwarfCFI) { 2346 MBBI = FirstCSPop; 2347 int64_t Offset = -CSSize - SlotSize; 2348 // Mark callee-saved pop instruction. 2349 // Define the current CFA rule to use the provided offset. 2350 while (MBBI != MBB.end()) { 2351 MachineBasicBlock::iterator PI = MBBI; 2352 unsigned Opc = PI->getOpcode(); 2353 ++MBBI; 2354 if (Opc == X86::POP32r || Opc == X86::POP64r) { 2355 Offset += SlotSize; 2356 BuildCFI(MBB, MBBI, DL, 2357 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset)); 2358 } 2359 } 2360 } 2361 2362 // Emit DWARF info specifying the restores of the callee-saved registers. 2363 // For epilogue with return inside or being other block without successor, 2364 // no need to generate .cfi_restore for callee-saved registers. 2365 if (NeedsDwarfCFI && !MBB.succ_empty()) 2366 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false); 2367 2368 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 2369 // Add the return addr area delta back since we are not tail calling. 2370 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 2371 assert(Offset >= 0 && "TCDelta should never be positive"); 2372 if (Offset) { 2373 // Check for possible merge with preceding ADD instruction. 2374 Offset += mergeSPUpdates(MBB, Terminator, true); 2375 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 2376 } 2377 } 2378 2379 // Emit tilerelease for AMX kernel. 2380 if (X86FI->hasVirtualTileReg()) 2381 BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE)); 2382 } 2383 2384 StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, 2385 int FI, 2386 Register &FrameReg) const { 2387 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2388 2389 bool IsFixed = MFI.isFixedObjectIndex(FI); 2390 // We can't calculate offset from frame pointer if the stack is realigned, 2391 // so enforce usage of stack/base pointer. The base pointer is used when we 2392 // have dynamic allocas in addition to dynamic realignment. 2393 if (TRI->hasBasePointer(MF)) 2394 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 2395 else if (TRI->hasStackRealignment(MF)) 2396 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 2397 else 2398 FrameReg = TRI->getFrameRegister(MF); 2399 2400 // Offset will hold the offset from the stack pointer at function entry to the 2401 // object. 2402 // We need to factor in additional offsets applied during the prologue to the 2403 // frame, base, and stack pointer depending on which is used. 2404 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 2405 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2406 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2407 uint64_t StackSize = MFI.getStackSize(); 2408 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2409 int64_t FPDelta = 0; 2410 2411 // In an x86 interrupt, remove the offset we added to account for the return 2412 // address from any stack object allocated in the caller's frame. Interrupts 2413 // do not have a standard return address. Fixed objects in the current frame, 2414 // such as SSE register spills, should not get this treatment. 2415 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && 2416 Offset >= 0) { 2417 Offset += getOffsetOfLocalArea(); 2418 } 2419 2420 if (IsWin64Prologue) { 2421 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 2422 2423 // Calculate required stack adjustment. 2424 uint64_t FrameSize = StackSize - SlotSize; 2425 // If required, include space for extra hidden slot for stashing base pointer. 2426 if (X86FI->getRestoreBasePointer()) 2427 FrameSize += SlotSize; 2428 uint64_t NumBytes = FrameSize - CSSize; 2429 2430 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 2431 if (FI && FI == X86FI->getFAIndex()) 2432 return StackOffset::getFixed(-SEHFrameOffset); 2433 2434 // FPDelta is the offset from the "traditional" FP location of the old base 2435 // pointer followed by return address and the location required by the 2436 // restricted Win64 prologue. 2437 // Add FPDelta to all offsets below that go through the frame pointer. 2438 FPDelta = FrameSize - SEHFrameOffset; 2439 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 2440 "FPDelta isn't aligned per the Win64 ABI!"); 2441 } 2442 2443 if (FrameReg == TRI->getFramePtr()) { 2444 // Skip saved EBP/RBP 2445 Offset += SlotSize; 2446 2447 // Account for restricted Windows prologue. 2448 Offset += FPDelta; 2449 2450 // Skip the RETADDR move area 2451 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2452 if (TailCallReturnAddrDelta < 0) 2453 Offset -= TailCallReturnAddrDelta; 2454 2455 return StackOffset::getFixed(Offset); 2456 } 2457 2458 // FrameReg is either the stack pointer or a base pointer. But the base is 2459 // located at the end of the statically known StackSize so the distinction 2460 // doesn't really matter. 2461 if (TRI->hasStackRealignment(MF) || TRI->hasBasePointer(MF)) 2462 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2463 return StackOffset::getFixed(Offset + StackSize); 2464 } 2465 2466 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, 2467 Register &FrameReg) const { 2468 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2469 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2470 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2471 const auto it = WinEHXMMSlotInfo.find(FI); 2472 2473 if (it == WinEHXMMSlotInfo.end()) 2474 return getFrameIndexReference(MF, FI, FrameReg).getFixed(); 2475 2476 FrameReg = TRI->getStackRegister(); 2477 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) + 2478 it->second; 2479 } 2480 2481 StackOffset 2482 X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI, 2483 Register &FrameReg, 2484 int Adjustment) const { 2485 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2486 FrameReg = TRI->getStackRegister(); 2487 return StackOffset::getFixed(MFI.getObjectOffset(FI) - 2488 getOffsetOfLocalArea() + Adjustment); 2489 } 2490 2491 StackOffset 2492 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, 2493 int FI, Register &FrameReg, 2494 bool IgnoreSPUpdates) const { 2495 2496 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2497 // Does not include any dynamic realign. 2498 const uint64_t StackSize = MFI.getStackSize(); 2499 // LLVM arranges the stack as follows: 2500 // ... 2501 // ARG2 2502 // ARG1 2503 // RETADDR 2504 // PUSH RBP <-- RBP points here 2505 // PUSH CSRs 2506 // ~~~~~~~ <-- possible stack realignment (non-win64) 2507 // ... 2508 // STACK OBJECTS 2509 // ... <-- RSP after prologue points here 2510 // ~~~~~~~ <-- possible stack realignment (win64) 2511 // 2512 // if (hasVarSizedObjects()): 2513 // ... <-- "base pointer" (ESI/RBX) points here 2514 // DYNAMIC ALLOCAS 2515 // ... <-- RSP points here 2516 // 2517 // Case 1: In the simple case of no stack realignment and no dynamic 2518 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 2519 // with fixed offsets from RSP. 2520 // 2521 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 2522 // stack objects are addressed with RBP and regular stack objects with RSP. 2523 // 2524 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 2525 // to address stack arguments for outgoing calls and nothing else. The "base 2526 // pointer" points to local variables, and RBP points to fixed objects. 2527 // 2528 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 2529 // answer we give is relative to the SP after the prologue, and not the 2530 // SP in the middle of the function. 2531 2532 if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) && 2533 !STI.isTargetWin64()) 2534 return getFrameIndexReference(MF, FI, FrameReg); 2535 2536 // If !hasReservedCallFrame the function might have SP adjustement in the 2537 // body. So, even though the offset is statically known, it depends on where 2538 // we are in the function. 2539 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) 2540 return getFrameIndexReference(MF, FI, FrameReg); 2541 2542 // We don't handle tail calls, and shouldn't be seeing them either. 2543 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 2544 "we don't handle this case!"); 2545 2546 // This is how the math works out: 2547 // 2548 // %rsp grows (i.e. gets lower) left to right. Each box below is 2549 // one word (eight bytes). Obj0 is the stack slot we're trying to 2550 // get to. 2551 // 2552 // ---------------------------------- 2553 // | BP | Obj0 | Obj1 | ... | ObjN | 2554 // ---------------------------------- 2555 // ^ ^ ^ ^ 2556 // A B C E 2557 // 2558 // A is the incoming stack pointer. 2559 // (B - A) is the local area offset (-8 for x86-64) [1] 2560 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 2561 // 2562 // |(E - B)| is the StackSize (absolute value, positive). For a 2563 // stack that grown down, this works out to be (B - E). [3] 2564 // 2565 // E is also the value of %rsp after stack has been set up, and we 2566 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 2567 // (C - E) == (C - A) - (B - A) + (B - E) 2568 // { Using [1], [2] and [3] above } 2569 // == getObjectOffset - LocalAreaOffset + StackSize 2570 2571 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 2572 } 2573 2574 bool X86FrameLowering::assignCalleeSavedSpillSlots( 2575 MachineFunction &MF, const TargetRegisterInfo *TRI, 2576 std::vector<CalleeSavedInfo> &CSI) const { 2577 MachineFrameInfo &MFI = MF.getFrameInfo(); 2578 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2579 2580 unsigned CalleeSavedFrameSize = 0; 2581 unsigned XMMCalleeSavedFrameSize = 0; 2582 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2583 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 2584 2585 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2586 2587 if (TailCallReturnAddrDelta < 0) { 2588 // create RETURNADDR area 2589 // arg 2590 // arg 2591 // RETADDR 2592 // { ... 2593 // RETADDR area 2594 // ... 2595 // } 2596 // [EBP] 2597 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 2598 TailCallReturnAddrDelta - SlotSize, true); 2599 } 2600 2601 // Spill the BasePtr if it's used. 2602 if (this->TRI->hasBasePointer(MF)) { 2603 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 2604 if (MF.hasEHFunclets()) { 2605 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize)); 2606 X86FI->setHasSEHFramePtrSave(true); 2607 X86FI->setSEHFramePtrSaveIndex(FI); 2608 } 2609 } 2610 2611 if (hasFP(MF)) { 2612 // emitPrologue always spills frame register the first thing. 2613 SpillSlotOffset -= SlotSize; 2614 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2615 2616 // The async context lives directly before the frame pointer, and we 2617 // allocate a second slot to preserve stack alignment. 2618 if (X86FI->hasSwiftAsyncContext()) { 2619 SpillSlotOffset -= SlotSize; 2620 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2621 SpillSlotOffset -= SlotSize; 2622 } 2623 2624 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 2625 // the frame register, we can delete it from CSI list and not have to worry 2626 // about avoiding it later. 2627 Register FPReg = TRI->getFrameRegister(MF); 2628 for (unsigned i = 0; i < CSI.size(); ++i) { 2629 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 2630 CSI.erase(CSI.begin() + i); 2631 break; 2632 } 2633 } 2634 } 2635 2636 // Assign slots for GPRs. It increases frame size. 2637 for (CalleeSavedInfo &I : llvm::reverse(CSI)) { 2638 Register Reg = I.getReg(); 2639 2640 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2641 continue; 2642 2643 SpillSlotOffset -= SlotSize; 2644 CalleeSavedFrameSize += SlotSize; 2645 2646 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2647 I.setFrameIdx(SlotIndex); 2648 } 2649 2650 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 2651 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); 2652 2653 // Assign slots for XMMs. 2654 for (CalleeSavedInfo &I : llvm::reverse(CSI)) { 2655 Register Reg = I.getReg(); 2656 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2657 continue; 2658 2659 // If this is k-register make sure we lookup via the largest legal type. 2660 MVT VT = MVT::Other; 2661 if (X86::VK16RegClass.contains(Reg)) 2662 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2663 2664 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2665 unsigned Size = TRI->getSpillSize(*RC); 2666 Align Alignment = TRI->getSpillAlign(*RC); 2667 // ensure alignment 2668 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); 2669 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment); 2670 2671 // spill into slot 2672 SpillSlotOffset -= Size; 2673 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 2674 I.setFrameIdx(SlotIndex); 2675 MFI.ensureMaxAlignment(Alignment); 2676 2677 // Save the start offset and size of XMM in stack frame for funclets. 2678 if (X86::VR128RegClass.contains(Reg)) { 2679 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; 2680 XMMCalleeSavedFrameSize += Size; 2681 } 2682 } 2683 2684 return true; 2685 } 2686 2687 bool X86FrameLowering::spillCalleeSavedRegisters( 2688 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2689 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2690 DebugLoc DL = MBB.findDebugLoc(MI); 2691 2692 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2693 // for us, and there are no XMM CSRs on Win32. 2694 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2695 return true; 2696 2697 // Push GPRs. It increases frame size. 2698 const MachineFunction &MF = *MBB.getParent(); 2699 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 2700 for (const CalleeSavedInfo &I : llvm::reverse(CSI)) { 2701 Register Reg = I.getReg(); 2702 2703 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2704 continue; 2705 2706 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2707 bool isLiveIn = MRI.isLiveIn(Reg); 2708 if (!isLiveIn) 2709 MBB.addLiveIn(Reg); 2710 2711 // Decide whether we can add a kill flag to the use. 2712 bool CanKill = !isLiveIn; 2713 // Check if any subregister is live-in 2714 if (CanKill) { 2715 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 2716 if (MRI.isLiveIn(*AReg)) { 2717 CanKill = false; 2718 break; 2719 } 2720 } 2721 } 2722 2723 // Do not set a kill flag on values that are also marked as live-in. This 2724 // happens with the @llvm-returnaddress intrinsic and with arguments 2725 // passed in callee saved registers. 2726 // Omitting the kill flags is conservatively correct even if the live-in 2727 // is not used after all. 2728 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 2729 .setMIFlag(MachineInstr::FrameSetup); 2730 } 2731 2732 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 2733 // It can be done by spilling XMMs to stack frame. 2734 for (const CalleeSavedInfo &I : llvm::reverse(CSI)) { 2735 Register Reg = I.getReg(); 2736 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2737 continue; 2738 2739 // If this is k-register make sure we lookup via the largest legal type. 2740 MVT VT = MVT::Other; 2741 if (X86::VK16RegClass.contains(Reg)) 2742 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2743 2744 // Add the callee-saved register as live-in. It's killed at the spill. 2745 MBB.addLiveIn(Reg); 2746 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2747 2748 TII.storeRegToStackSlot(MBB, MI, Reg, true, I.getFrameIdx(), RC, TRI); 2749 --MI; 2750 MI->setFlag(MachineInstr::FrameSetup); 2751 ++MI; 2752 } 2753 2754 return true; 2755 } 2756 2757 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 2758 MachineBasicBlock::iterator MBBI, 2759 MachineInstr *CatchRet) const { 2760 // SEH shouldn't use catchret. 2761 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 2762 MBB.getParent()->getFunction().getPersonalityFn())) && 2763 "SEH should not use CATCHRET"); 2764 const DebugLoc &DL = CatchRet->getDebugLoc(); 2765 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 2766 2767 // Fill EAX/RAX with the address of the target block. 2768 if (STI.is64Bit()) { 2769 // LEA64r CatchRetTarget(%rip), %rax 2770 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 2771 .addReg(X86::RIP) 2772 .addImm(0) 2773 .addReg(0) 2774 .addMBB(CatchRetTarget) 2775 .addReg(0); 2776 } else { 2777 // MOV32ri $CatchRetTarget, %eax 2778 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2779 .addMBB(CatchRetTarget); 2780 } 2781 2782 // Record that we've taken the address of CatchRetTarget and no longer just 2783 // reference it in a terminator. 2784 CatchRetTarget->setHasAddressTaken(); 2785 } 2786 2787 bool X86FrameLowering::restoreCalleeSavedRegisters( 2788 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2789 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2790 if (CSI.empty()) 2791 return false; 2792 2793 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 2794 // Don't restore CSRs in 32-bit EH funclets. Matches 2795 // spillCalleeSavedRegisters. 2796 if (STI.is32Bit()) 2797 return true; 2798 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 2799 // funclets. emitEpilogue transforms these to normal jumps. 2800 if (MI->getOpcode() == X86::CATCHRET) { 2801 const Function &F = MBB.getParent()->getFunction(); 2802 bool IsSEH = isAsynchronousEHPersonality( 2803 classifyEHPersonality(F.getPersonalityFn())); 2804 if (IsSEH) 2805 return true; 2806 } 2807 } 2808 2809 DebugLoc DL = MBB.findDebugLoc(MI); 2810 2811 // Reload XMMs from stack frame. 2812 for (const CalleeSavedInfo &I : CSI) { 2813 Register Reg = I.getReg(); 2814 if (X86::GR64RegClass.contains(Reg) || 2815 X86::GR32RegClass.contains(Reg)) 2816 continue; 2817 2818 // If this is k-register make sure we lookup via the largest legal type. 2819 MVT VT = MVT::Other; 2820 if (X86::VK16RegClass.contains(Reg)) 2821 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2822 2823 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2824 TII.loadRegFromStackSlot(MBB, MI, Reg, I.getFrameIdx(), RC, TRI); 2825 } 2826 2827 // POP GPRs. 2828 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 2829 for (const CalleeSavedInfo &I : CSI) { 2830 Register Reg = I.getReg(); 2831 if (!X86::GR64RegClass.contains(Reg) && 2832 !X86::GR32RegClass.contains(Reg)) 2833 continue; 2834 2835 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 2836 .setMIFlag(MachineInstr::FrameDestroy); 2837 } 2838 return true; 2839 } 2840 2841 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 2842 BitVector &SavedRegs, 2843 RegScavenger *RS) const { 2844 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2845 2846 // Spill the BasePtr if it's used. 2847 if (TRI->hasBasePointer(MF)){ 2848 Register BasePtr = TRI->getBaseRegister(); 2849 if (STI.isTarget64BitILP32()) 2850 BasePtr = getX86SubSuperRegister(BasePtr, 64); 2851 SavedRegs.set(BasePtr); 2852 } 2853 } 2854 2855 static bool 2856 HasNestArgument(const MachineFunction *MF) { 2857 const Function &F = MF->getFunction(); 2858 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 2859 I != E; I++) { 2860 if (I->hasNestAttr() && !I->use_empty()) 2861 return true; 2862 } 2863 return false; 2864 } 2865 2866 /// GetScratchRegister - Get a temp register for performing work in the 2867 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2868 /// and the properties of the function either one or two registers will be 2869 /// needed. Set primary to true for the first register, false for the second. 2870 static unsigned 2871 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2872 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 2873 2874 // Erlang stuff. 2875 if (CallingConvention == CallingConv::HiPE) { 2876 if (Is64Bit) 2877 return Primary ? X86::R14 : X86::R13; 2878 else 2879 return Primary ? X86::EBX : X86::EDI; 2880 } 2881 2882 if (Is64Bit) { 2883 if (IsLP64) 2884 return Primary ? X86::R11 : X86::R12; 2885 else 2886 return Primary ? X86::R11D : X86::R12D; 2887 } 2888 2889 bool IsNested = HasNestArgument(&MF); 2890 2891 if (CallingConvention == CallingConv::X86_FastCall || 2892 CallingConvention == CallingConv::Fast || 2893 CallingConvention == CallingConv::Tail) { 2894 if (IsNested) 2895 report_fatal_error("Segmented stacks does not support fastcall with " 2896 "nested function."); 2897 return Primary ? X86::EAX : X86::ECX; 2898 } 2899 if (IsNested) 2900 return Primary ? X86::EDX : X86::EAX; 2901 return Primary ? X86::ECX : X86::EAX; 2902 } 2903 2904 // The stack limit in the TCB is set to this many bytes above the actual stack 2905 // limit. 2906 static const uint64_t kSplitStackAvailable = 256; 2907 2908 void X86FrameLowering::adjustForSegmentedStacks( 2909 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2910 MachineFrameInfo &MFI = MF.getFrameInfo(); 2911 uint64_t StackSize; 2912 unsigned TlsReg, TlsOffset; 2913 DebugLoc DL; 2914 2915 // To support shrink-wrapping we would need to insert the new blocks 2916 // at the right place and update the branches to PrologueMBB. 2917 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2918 2919 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2920 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2921 "Scratch register is live-in"); 2922 2923 if (MF.getFunction().isVarArg()) 2924 report_fatal_error("Segmented stacks do not support vararg functions."); 2925 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 2926 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 2927 !STI.isTargetDragonFly()) 2928 report_fatal_error("Segmented stacks not supported on this platform."); 2929 2930 // Eventually StackSize will be calculated by a link-time pass; which will 2931 // also decide whether checking code needs to be injected into this particular 2932 // prologue. 2933 StackSize = MFI.getStackSize(); 2934 2935 // Do not generate a prologue for leaf functions with a stack of size zero. 2936 // For non-leaf functions we have to allow for the possibility that the 2937 // callis to a non-split function, as in PR37807. This function could also 2938 // take the address of a non-split function. When the linker tries to adjust 2939 // its non-existent prologue, it would fail with an error. Mark the object 2940 // file so that such failures are not errors. See this Go language bug-report 2941 // https://go-review.googlesource.com/c/go/+/148819/ 2942 if (StackSize == 0 && !MFI.hasTailCall()) { 2943 MF.getMMI().setHasNosplitStack(true); 2944 return; 2945 } 2946 2947 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 2948 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 2949 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2950 bool IsNested = false; 2951 2952 // We need to know if the function has a nest argument only in 64 bit mode. 2953 if (Is64Bit) 2954 IsNested = HasNestArgument(&MF); 2955 2956 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 2957 // allocMBB needs to be last (terminating) instruction. 2958 2959 for (const auto &LI : PrologueMBB.liveins()) { 2960 allocMBB->addLiveIn(LI); 2961 checkMBB->addLiveIn(LI); 2962 } 2963 2964 if (IsNested) 2965 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 2966 2967 MF.push_front(allocMBB); 2968 MF.push_front(checkMBB); 2969 2970 // When the frame size is less than 256 we just compare the stack 2971 // boundary directly to the value of the stack pointer, per gcc. 2972 bool CompareStackPointer = StackSize < kSplitStackAvailable; 2973 2974 // Read the limit off the current stacklet off the stack_guard location. 2975 if (Is64Bit) { 2976 if (STI.isTargetLinux()) { 2977 TlsReg = X86::FS; 2978 TlsOffset = IsLP64 ? 0x70 : 0x40; 2979 } else if (STI.isTargetDarwin()) { 2980 TlsReg = X86::GS; 2981 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 2982 } else if (STI.isTargetWin64()) { 2983 TlsReg = X86::GS; 2984 TlsOffset = 0x28; // pvArbitrary, reserved for application use 2985 } else if (STI.isTargetFreeBSD()) { 2986 TlsReg = X86::FS; 2987 TlsOffset = 0x18; 2988 } else if (STI.isTargetDragonFly()) { 2989 TlsReg = X86::FS; 2990 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 2991 } else { 2992 report_fatal_error("Segmented stacks not supported on this platform."); 2993 } 2994 2995 if (CompareStackPointer) 2996 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 2997 else 2998 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 2999 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 3000 3001 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 3002 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 3003 } else { 3004 if (STI.isTargetLinux()) { 3005 TlsReg = X86::GS; 3006 TlsOffset = 0x30; 3007 } else if (STI.isTargetDarwin()) { 3008 TlsReg = X86::GS; 3009 TlsOffset = 0x48 + 90*4; 3010 } else if (STI.isTargetWin32()) { 3011 TlsReg = X86::FS; 3012 TlsOffset = 0x14; // pvArbitrary, reserved for application use 3013 } else if (STI.isTargetDragonFly()) { 3014 TlsReg = X86::FS; 3015 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 3016 } else if (STI.isTargetFreeBSD()) { 3017 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 3018 } else { 3019 report_fatal_error("Segmented stacks not supported on this platform."); 3020 } 3021 3022 if (CompareStackPointer) 3023 ScratchReg = X86::ESP; 3024 else 3025 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 3026 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 3027 3028 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 3029 STI.isTargetDragonFly()) { 3030 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 3031 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 3032 } else if (STI.isTargetDarwin()) { 3033 3034 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 3035 unsigned ScratchReg2; 3036 bool SaveScratch2; 3037 if (CompareStackPointer) { 3038 // The primary scratch register is available for holding the TLS offset. 3039 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3040 SaveScratch2 = false; 3041 } else { 3042 // Need to use a second register to hold the TLS offset 3043 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 3044 3045 // Unfortunately, with fastcc the second scratch register may hold an 3046 // argument. 3047 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 3048 } 3049 3050 // If Scratch2 is live-in then it needs to be saved. 3051 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 3052 "Scratch register is live-in and not saved"); 3053 3054 if (SaveScratch2) 3055 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 3056 .addReg(ScratchReg2, RegState::Kill); 3057 3058 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 3059 .addImm(TlsOffset); 3060 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 3061 .addReg(ScratchReg) 3062 .addReg(ScratchReg2).addImm(1).addReg(0) 3063 .addImm(0) 3064 .addReg(TlsReg); 3065 3066 if (SaveScratch2) 3067 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 3068 } 3069 } 3070 3071 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 3072 // It jumps to normal execution of the function body. 3073 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); 3074 3075 // On 32 bit we first push the arguments size and then the frame size. On 64 3076 // bit, we pass the stack frame size in r10 and the argument size in r11. 3077 if (Is64Bit) { 3078 // Functions with nested arguments use R10, so it needs to be saved across 3079 // the call to _morestack 3080 3081 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 3082 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 3083 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 3084 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 3085 3086 if (IsNested) 3087 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 3088 3089 BuildMI(allocMBB, DL, TII.get(getMOVriOpcode(IsLP64, StackSize)), Reg10) 3090 .addImm(StackSize); 3091 BuildMI(allocMBB, DL, 3092 TII.get(getMOVriOpcode(IsLP64, X86FI->getArgumentStackSize())), 3093 Reg11) 3094 .addImm(X86FI->getArgumentStackSize()); 3095 } else { 3096 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 3097 .addImm(X86FI->getArgumentStackSize()); 3098 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 3099 .addImm(StackSize); 3100 } 3101 3102 // __morestack is in libgcc 3103 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 3104 // Under the large code model, we cannot assume that __morestack lives 3105 // within 2^31 bytes of the call site, so we cannot use pc-relative 3106 // addressing. We cannot perform the call via a temporary register, 3107 // as the rax register may be used to store the static chain, and all 3108 // other suitable registers may be either callee-save or used for 3109 // parameter passing. We cannot use the stack at this point either 3110 // because __morestack manipulates the stack directly. 3111 // 3112 // To avoid these issues, perform an indirect call via a read-only memory 3113 // location containing the address. 3114 // 3115 // This solution is not perfect, as it assumes that the .rodata section 3116 // is laid out within 2^31 bytes of each function body, but this seems 3117 // to be sufficient for JIT. 3118 // FIXME: Add retpoline support and remove the error here.. 3119 if (STI.useIndirectThunkCalls()) 3120 report_fatal_error("Emitting morestack calls on 64-bit with the large " 3121 "code model and thunks not yet implemented."); 3122 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 3123 .addReg(X86::RIP) 3124 .addImm(0) 3125 .addReg(0) 3126 .addExternalSymbol("__morestack_addr") 3127 .addReg(0); 3128 MF.getMMI().setUsesMorestackAddr(true); 3129 } else { 3130 if (Is64Bit) 3131 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 3132 .addExternalSymbol("__morestack"); 3133 else 3134 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 3135 .addExternalSymbol("__morestack"); 3136 } 3137 3138 if (IsNested) 3139 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 3140 else 3141 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 3142 3143 allocMBB->addSuccessor(&PrologueMBB); 3144 3145 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); 3146 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); 3147 3148 #ifdef EXPENSIVE_CHECKS 3149 MF.verify(); 3150 #endif 3151 } 3152 3153 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 3154 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 3155 /// to fields it needs, through a named metadata node "hipe.literals" containing 3156 /// name-value pairs. 3157 static unsigned getHiPELiteral( 3158 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 3159 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 3160 MDNode *Node = HiPELiteralsMD->getOperand(i); 3161 if (Node->getNumOperands() != 2) continue; 3162 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 3163 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 3164 if (!NodeName || !NodeVal) continue; 3165 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 3166 if (ValConst && NodeName->getString() == LiteralName) { 3167 return ValConst->getZExtValue(); 3168 } 3169 } 3170 3171 report_fatal_error("HiPE literal " + LiteralName 3172 + " required but not provided"); 3173 } 3174 3175 // Return true if there are no non-ehpad successors to MBB and there are no 3176 // non-meta instructions between MBBI and MBB.end(). 3177 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, 3178 MachineBasicBlock::const_iterator MBBI) { 3179 return llvm::all_of( 3180 MBB.successors(), 3181 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && 3182 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { 3183 return MI.isMetaInstruction(); 3184 }); 3185 } 3186 3187 /// Erlang programs may need a special prologue to handle the stack size they 3188 /// might need at runtime. That is because Erlang/OTP does not implement a C 3189 /// stack but uses a custom implementation of hybrid stack/heap architecture. 3190 /// (for more information see Eric Stenman's Ph.D. thesis: 3191 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 3192 /// 3193 /// CheckStack: 3194 /// temp0 = sp - MaxStack 3195 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3196 /// OldStart: 3197 /// ... 3198 /// IncStack: 3199 /// call inc_stack # doubles the stack space 3200 /// temp0 = sp - MaxStack 3201 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3202 void X86FrameLowering::adjustForHiPEPrologue( 3203 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3204 MachineFrameInfo &MFI = MF.getFrameInfo(); 3205 DebugLoc DL; 3206 3207 // To support shrink-wrapping we would need to insert the new blocks 3208 // at the right place and update the branches to PrologueMBB. 3209 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 3210 3211 // HiPE-specific values 3212 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 3213 ->getNamedMetadata("hipe.literals"); 3214 if (!HiPELiteralsMD) 3215 report_fatal_error( 3216 "Can't generate HiPE prologue without runtime parameters"); 3217 const unsigned HipeLeafWords 3218 = getHiPELiteral(HiPELiteralsMD, 3219 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 3220 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 3221 const unsigned Guaranteed = HipeLeafWords * SlotSize; 3222 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? 3223 MF.getFunction().arg_size() - CCRegisteredArgs : 0; 3224 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 3225 3226 assert(STI.isTargetLinux() && 3227 "HiPE prologue is only supported on Linux operating systems."); 3228 3229 // Compute the largest caller's frame that is needed to fit the callees' 3230 // frames. This 'MaxStack' is computed from: 3231 // 3232 // a) the fixed frame size, which is the space needed for all spilled temps, 3233 // b) outgoing on-stack parameter areas, and 3234 // c) the minimum stack space this function needs to make available for the 3235 // functions it calls (a tunable ABI property). 3236 if (MFI.hasCalls()) { 3237 unsigned MoreStackForCalls = 0; 3238 3239 for (auto &MBB : MF) { 3240 for (auto &MI : MBB) { 3241 if (!MI.isCall()) 3242 continue; 3243 3244 // Get callee operand. 3245 const MachineOperand &MO = MI.getOperand(0); 3246 3247 // Only take account of global function calls (no closures etc.). 3248 if (!MO.isGlobal()) 3249 continue; 3250 3251 const Function *F = dyn_cast<Function>(MO.getGlobal()); 3252 if (!F) 3253 continue; 3254 3255 // Do not update 'MaxStack' for primitive and built-in functions 3256 // (encoded with names either starting with "erlang."/"bif_" or not 3257 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 3258 // "_", such as the BIF "suspend_0") as they are executed on another 3259 // stack. 3260 if (F->getName().contains("erlang.") || F->getName().contains("bif_") || 3261 F->getName().find_first_of("._") == StringRef::npos) 3262 continue; 3263 3264 unsigned CalleeStkArity = 3265 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 3266 if (HipeLeafWords - 1 > CalleeStkArity) 3267 MoreStackForCalls = std::max(MoreStackForCalls, 3268 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 3269 } 3270 } 3271 MaxStack += MoreStackForCalls; 3272 } 3273 3274 // If the stack frame needed is larger than the guaranteed then runtime checks 3275 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 3276 if (MaxStack > Guaranteed) { 3277 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 3278 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 3279 3280 for (const auto &LI : PrologueMBB.liveins()) { 3281 stackCheckMBB->addLiveIn(LI); 3282 incStackMBB->addLiveIn(LI); 3283 } 3284 3285 MF.push_front(incStackMBB); 3286 MF.push_front(stackCheckMBB); 3287 3288 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 3289 unsigned LEAop, CMPop, CALLop; 3290 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 3291 if (Is64Bit) { 3292 SPReg = X86::RSP; 3293 PReg = X86::RBP; 3294 LEAop = X86::LEA64r; 3295 CMPop = X86::CMP64rm; 3296 CALLop = X86::CALL64pcrel32; 3297 } else { 3298 SPReg = X86::ESP; 3299 PReg = X86::EBP; 3300 LEAop = X86::LEA32r; 3301 CMPop = X86::CMP32rm; 3302 CALLop = X86::CALLpcrel32; 3303 } 3304 3305 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3306 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 3307 "HiPE prologue scratch register is live-in"); 3308 3309 // Create new MBB for StackCheck: 3310 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 3311 SPReg, false, -MaxStack); 3312 // SPLimitOffset is in a fixed heap location (pointed by BP). 3313 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 3314 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3315 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); 3316 3317 // Create new MBB for IncStack: 3318 BuildMI(incStackMBB, DL, TII.get(CALLop)). 3319 addExternalSymbol("inc_stack_0"); 3320 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 3321 SPReg, false, -MaxStack); 3322 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 3323 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3324 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); 3325 3326 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 3327 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 3328 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 3329 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 3330 } 3331 #ifdef EXPENSIVE_CHECKS 3332 MF.verify(); 3333 #endif 3334 } 3335 3336 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 3337 MachineBasicBlock::iterator MBBI, 3338 const DebugLoc &DL, 3339 int Offset) const { 3340 if (Offset <= 0) 3341 return false; 3342 3343 if (Offset % SlotSize) 3344 return false; 3345 3346 int NumPops = Offset / SlotSize; 3347 // This is only worth it if we have at most 2 pops. 3348 if (NumPops != 1 && NumPops != 2) 3349 return false; 3350 3351 // Handle only the trivial case where the adjustment directly follows 3352 // a call. This is the most common one, anyway. 3353 if (MBBI == MBB.begin()) 3354 return false; 3355 MachineBasicBlock::iterator Prev = std::prev(MBBI); 3356 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 3357 return false; 3358 3359 unsigned Regs[2]; 3360 unsigned FoundRegs = 0; 3361 3362 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3363 const MachineOperand &RegMask = Prev->getOperand(1); 3364 3365 auto &RegClass = 3366 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 3367 // Try to find up to NumPops free registers. 3368 for (auto Candidate : RegClass) { 3369 // Poor man's liveness: 3370 // Since we're immediately after a call, any register that is clobbered 3371 // by the call and not defined by it can be considered dead. 3372 if (!RegMask.clobbersPhysReg(Candidate)) 3373 continue; 3374 3375 // Don't clobber reserved registers 3376 if (MRI.isReserved(Candidate)) 3377 continue; 3378 3379 bool IsDef = false; 3380 for (const MachineOperand &MO : Prev->implicit_operands()) { 3381 if (MO.isReg() && MO.isDef() && 3382 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 3383 IsDef = true; 3384 break; 3385 } 3386 } 3387 3388 if (IsDef) 3389 continue; 3390 3391 Regs[FoundRegs++] = Candidate; 3392 if (FoundRegs == (unsigned)NumPops) 3393 break; 3394 } 3395 3396 if (FoundRegs == 0) 3397 return false; 3398 3399 // If we found only one free register, but need two, reuse the same one twice. 3400 while (FoundRegs < (unsigned)NumPops) 3401 Regs[FoundRegs++] = Regs[0]; 3402 3403 for (int i = 0; i < NumPops; ++i) 3404 BuildMI(MBB, MBBI, DL, 3405 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 3406 3407 return true; 3408 } 3409 3410 MachineBasicBlock::iterator X86FrameLowering:: 3411 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 3412 MachineBasicBlock::iterator I) const { 3413 bool reserveCallFrame = hasReservedCallFrame(MF); 3414 unsigned Opcode = I->getOpcode(); 3415 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 3416 DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased. 3417 uint64_t Amount = TII.getFrameSize(*I); 3418 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 3419 I = MBB.erase(I); 3420 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 3421 3422 // Try to avoid emitting dead SP adjustments if the block end is unreachable, 3423 // typically because the function is marked noreturn (abort, throw, 3424 // assert_fail, etc). 3425 if (isDestroy && blockEndIsUnreachable(MBB, I)) 3426 return I; 3427 3428 if (!reserveCallFrame) { 3429 // If the stack pointer can be changed after prologue, turn the 3430 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 3431 // adjcallstackdown instruction into 'add ESP, <amt>' 3432 3433 // We need to keep the stack aligned properly. To do this, we round the 3434 // amount of space needed for the outgoing arguments up to the next 3435 // alignment boundary. 3436 Amount = alignTo(Amount, getStackAlign()); 3437 3438 const Function &F = MF.getFunction(); 3439 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 3440 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); 3441 3442 // If we have any exception handlers in this function, and we adjust 3443 // the SP before calls, we may need to indicate this to the unwinder 3444 // using GNU_ARGS_SIZE. Note that this may be necessary even when 3445 // Amount == 0, because the preceding function may have set a non-0 3446 // GNU_ARGS_SIZE. 3447 // TODO: We don't need to reset this between subsequent functions, 3448 // if it didn't change. 3449 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 3450 3451 if (HasDwarfEHHandlers && !isDestroy && 3452 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 3453 BuildCFI(MBB, InsertPos, DL, 3454 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 3455 3456 if (Amount == 0) 3457 return I; 3458 3459 // Factor out the amount that gets handled inside the sequence 3460 // (Pushes of argument for frame setup, callee pops for frame destroy) 3461 Amount -= InternalAmt; 3462 3463 // TODO: This is needed only if we require precise CFA. 3464 // If this is a callee-pop calling convention, emit a CFA adjust for 3465 // the amount the callee popped. 3466 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 3467 BuildCFI(MBB, InsertPos, DL, 3468 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 3469 3470 // Add Amount to SP to destroy a frame, or subtract to setup. 3471 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 3472 3473 if (StackAdjustment) { 3474 // Merge with any previous or following adjustment instruction. Note: the 3475 // instructions merged with here do not have CFI, so their stack 3476 // adjustments do not feed into CfaAdjustment. 3477 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 3478 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 3479 3480 if (StackAdjustment) { 3481 if (!(F.hasMinSize() && 3482 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 3483 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 3484 /*InEpilogue=*/false); 3485 } 3486 } 3487 3488 if (DwarfCFI && !hasFP(MF)) { 3489 // If we don't have FP, but need to generate unwind information, 3490 // we need to set the correct CFA offset after the stack adjustment. 3491 // How much we adjust the CFA offset depends on whether we're emitting 3492 // CFI only for EH purposes or for debugging. EH only requires the CFA 3493 // offset to be correct at each call site, while for debugging we want 3494 // it to be more precise. 3495 3496 int64_t CfaAdjustment = -StackAdjustment; 3497 // TODO: When not using precise CFA, we also need to adjust for the 3498 // InternalAmt here. 3499 if (CfaAdjustment) { 3500 BuildCFI(MBB, InsertPos, DL, 3501 MCCFIInstruction::createAdjustCfaOffset(nullptr, 3502 CfaAdjustment)); 3503 } 3504 } 3505 3506 return I; 3507 } 3508 3509 if (InternalAmt) { 3510 MachineBasicBlock::iterator CI = I; 3511 MachineBasicBlock::iterator B = MBB.begin(); 3512 while (CI != B && !std::prev(CI)->isCall()) 3513 --CI; 3514 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 3515 } 3516 3517 return I; 3518 } 3519 3520 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 3521 assert(MBB.getParent() && "Block is not attached to a function!"); 3522 const MachineFunction &MF = *MBB.getParent(); 3523 if (!MBB.isLiveIn(X86::EFLAGS)) 3524 return true; 3525 3526 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3527 return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext(); 3528 } 3529 3530 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 3531 assert(MBB.getParent() && "Block is not attached to a function!"); 3532 3533 // Win64 has strict requirements in terms of epilogue and we are 3534 // not taking a chance at messing with them. 3535 // I.e., unless this block is already an exit block, we can't use 3536 // it as an epilogue. 3537 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 3538 return false; 3539 3540 // Swift async context epilogue has a BTR instruction that clobbers parts of 3541 // EFLAGS. 3542 const MachineFunction &MF = *MBB.getParent(); 3543 if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext()) 3544 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3545 3546 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 3547 return true; 3548 3549 // If we cannot use LEA to adjust SP, we may need to use ADD, which 3550 // clobbers the EFLAGS. Check that we do not need to preserve it, 3551 // otherwise, conservatively assume this is not 3552 // safe to insert the epilogue here. 3553 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3554 } 3555 3556 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 3557 // If we may need to emit frameless compact unwind information, give 3558 // up as this is currently broken: PR25614. 3559 bool CompactUnwind = 3560 MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() != 3561 nullptr; 3562 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) || 3563 !CompactUnwind) && 3564 // The lowering of segmented stack and HiPE only support entry 3565 // blocks as prologue blocks: PR26107. This limitation may be 3566 // lifted if we fix: 3567 // - adjustForSegmentedStacks 3568 // - adjustForHiPEPrologue 3569 MF.getFunction().getCallingConv() != CallingConv::HiPE && 3570 !MF.shouldSplitStack(); 3571 } 3572 3573 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 3574 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3575 const DebugLoc &DL, bool RestoreSP) const { 3576 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 3577 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 3578 assert(STI.is32Bit() && !Uses64BitFramePtr && 3579 "restoring EBP/ESI on non-32-bit target"); 3580 3581 MachineFunction &MF = *MBB.getParent(); 3582 Register FramePtr = TRI->getFrameRegister(MF); 3583 Register BasePtr = TRI->getBaseRegister(); 3584 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 3585 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3586 MachineFrameInfo &MFI = MF.getFrameInfo(); 3587 3588 // FIXME: Don't set FrameSetup flag in catchret case. 3589 3590 int FI = FuncInfo.EHRegNodeFrameIndex; 3591 int EHRegSize = MFI.getObjectSize(FI); 3592 3593 if (RestoreSP) { 3594 // MOV32rm -EHRegSize(%ebp), %esp 3595 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 3596 X86::EBP, true, -EHRegSize) 3597 .setMIFlag(MachineInstr::FrameSetup); 3598 } 3599 3600 Register UsedReg; 3601 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed(); 3602 int EndOffset = -EHRegOffset - EHRegSize; 3603 FuncInfo.EHRegNodeEndOffset = EndOffset; 3604 3605 if (UsedReg == FramePtr) { 3606 // ADD $offset, %ebp 3607 unsigned ADDri = getADDriOpcode(false, EndOffset); 3608 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 3609 .addReg(FramePtr) 3610 .addImm(EndOffset) 3611 .setMIFlag(MachineInstr::FrameSetup) 3612 ->getOperand(3) 3613 .setIsDead(); 3614 assert(EndOffset >= 0 && 3615 "end of registration object above normal EBP position!"); 3616 } else if (UsedReg == BasePtr) { 3617 // LEA offset(%ebp), %esi 3618 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 3619 FramePtr, false, EndOffset) 3620 .setMIFlag(MachineInstr::FrameSetup); 3621 // MOV32rm SavedEBPOffset(%esi), %ebp 3622 assert(X86FI->getHasSEHFramePtrSave()); 3623 int Offset = 3624 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 3625 .getFixed(); 3626 assert(UsedReg == BasePtr); 3627 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 3628 UsedReg, true, Offset) 3629 .setMIFlag(MachineInstr::FrameSetup); 3630 } else { 3631 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 3632 } 3633 return MBBI; 3634 } 3635 3636 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 3637 return TRI->getSlotSize(); 3638 } 3639 3640 Register 3641 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const { 3642 return TRI->getDwarfRegNum(StackPtr, true); 3643 } 3644 3645 namespace { 3646 // Struct used by orderFrameObjects to help sort the stack objects. 3647 struct X86FrameSortingObject { 3648 bool IsValid = false; // true if we care about this Object. 3649 unsigned ObjectIndex = 0; // Index of Object into MFI list. 3650 unsigned ObjectSize = 0; // Size of Object in bytes. 3651 Align ObjectAlignment = Align(1); // Alignment of Object in bytes. 3652 unsigned ObjectNumUses = 0; // Object static number of uses. 3653 }; 3654 3655 // The comparison function we use for std::sort to order our local 3656 // stack symbols. The current algorithm is to use an estimated 3657 // "density". This takes into consideration the size and number of 3658 // uses each object has in order to roughly minimize code size. 3659 // So, for example, an object of size 16B that is referenced 5 times 3660 // will get higher priority than 4 4B objects referenced 1 time each. 3661 // It's not perfect and we may be able to squeeze a few more bytes out of 3662 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 3663 // fringe end can have special consideration, given their size is less 3664 // important, etc.), but the algorithmic complexity grows too much to be 3665 // worth the extra gains we get. This gets us pretty close. 3666 // The final order leaves us with objects with highest priority going 3667 // at the end of our list. 3668 struct X86FrameSortingComparator { 3669 inline bool operator()(const X86FrameSortingObject &A, 3670 const X86FrameSortingObject &B) const { 3671 uint64_t DensityAScaled, DensityBScaled; 3672 3673 // For consistency in our comparison, all invalid objects are placed 3674 // at the end. This also allows us to stop walking when we hit the 3675 // first invalid item after it's all sorted. 3676 if (!A.IsValid) 3677 return false; 3678 if (!B.IsValid) 3679 return true; 3680 3681 // The density is calculated by doing : 3682 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 3683 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 3684 // Since this approach may cause inconsistencies in 3685 // the floating point <, >, == comparisons, depending on the floating 3686 // point model with which the compiler was built, we're going 3687 // to scale both sides by multiplying with 3688 // A.ObjectSize * B.ObjectSize. This ends up factoring away 3689 // the division and, with it, the need for any floating point 3690 // arithmetic. 3691 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 3692 static_cast<uint64_t>(B.ObjectSize); 3693 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 3694 static_cast<uint64_t>(A.ObjectSize); 3695 3696 // If the two densities are equal, prioritize highest alignment 3697 // objects. This allows for similar alignment objects 3698 // to be packed together (given the same density). 3699 // There's room for improvement here, also, since we can pack 3700 // similar alignment (different density) objects next to each 3701 // other to save padding. This will also require further 3702 // complexity/iterations, and the overall gain isn't worth it, 3703 // in general. Something to keep in mind, though. 3704 if (DensityAScaled == DensityBScaled) 3705 return A.ObjectAlignment < B.ObjectAlignment; 3706 3707 return DensityAScaled < DensityBScaled; 3708 } 3709 }; 3710 } // namespace 3711 3712 // Order the symbols in the local stack. 3713 // We want to place the local stack objects in some sort of sensible order. 3714 // The heuristic we use is to try and pack them according to static number 3715 // of uses and size of object in order to minimize code size. 3716 void X86FrameLowering::orderFrameObjects( 3717 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 3718 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3719 3720 // Don't waste time if there's nothing to do. 3721 if (ObjectsToAllocate.empty()) 3722 return; 3723 3724 // Create an array of all MFI objects. We won't need all of these 3725 // objects, but we're going to create a full array of them to make 3726 // it easier to index into when we're counting "uses" down below. 3727 // We want to be able to easily/cheaply access an object by simply 3728 // indexing into it, instead of having to search for it every time. 3729 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 3730 3731 // Walk the objects we care about and mark them as such in our working 3732 // struct. 3733 for (auto &Obj : ObjectsToAllocate) { 3734 SortingObjects[Obj].IsValid = true; 3735 SortingObjects[Obj].ObjectIndex = Obj; 3736 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj); 3737 // Set the size. 3738 int ObjectSize = MFI.getObjectSize(Obj); 3739 if (ObjectSize == 0) 3740 // Variable size. Just use 4. 3741 SortingObjects[Obj].ObjectSize = 4; 3742 else 3743 SortingObjects[Obj].ObjectSize = ObjectSize; 3744 } 3745 3746 // Count the number of uses for each object. 3747 for (auto &MBB : MF) { 3748 for (auto &MI : MBB) { 3749 if (MI.isDebugInstr()) 3750 continue; 3751 for (const MachineOperand &MO : MI.operands()) { 3752 // Check to see if it's a local stack symbol. 3753 if (!MO.isFI()) 3754 continue; 3755 int Index = MO.getIndex(); 3756 // Check to see if it falls within our range, and is tagged 3757 // to require ordering. 3758 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 3759 SortingObjects[Index].IsValid) 3760 SortingObjects[Index].ObjectNumUses++; 3761 } 3762 } 3763 } 3764 3765 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 3766 // info). 3767 llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); 3768 3769 // Now modify the original list to represent the final order that 3770 // we want. The order will depend on whether we're going to access them 3771 // from the stack pointer or the frame pointer. For SP, the list should 3772 // end up with the END containing objects that we want with smaller offsets. 3773 // For FP, it should be flipped. 3774 int i = 0; 3775 for (auto &Obj : SortingObjects) { 3776 // All invalid items are sorted at the end, so it's safe to stop. 3777 if (!Obj.IsValid) 3778 break; 3779 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3780 } 3781 3782 // Flip it if we're accessing off of the FP. 3783 if (!TRI->hasStackRealignment(MF) && hasFP(MF)) 3784 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 3785 } 3786 3787 3788 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 3789 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 3790 unsigned Offset = 16; 3791 // RBP is immediately pushed. 3792 Offset += SlotSize; 3793 // All callee-saved registers are then pushed. 3794 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 3795 // Every funclet allocates enough stack space for the largest outgoing call. 3796 Offset += getWinEHFuncletFrameSize(MF); 3797 return Offset; 3798 } 3799 3800 void X86FrameLowering::processFunctionBeforeFrameFinalized( 3801 MachineFunction &MF, RegScavenger *RS) const { 3802 // Mark the function as not having WinCFI. We will set it back to true in 3803 // emitPrologue if it gets called and emits CFI. 3804 MF.setHasWinCFI(false); 3805 3806 // If we are using Windows x64 CFI, ensure that the stack is always 8 byte 3807 // aligned. The format doesn't support misaligned stack adjustments. 3808 if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) 3809 MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize)); 3810 3811 // If this function isn't doing Win64-style C++ EH, we don't need to do 3812 // anything. 3813 if (STI.is64Bit() && MF.hasEHFunclets() && 3814 classifyEHPersonality(MF.getFunction().getPersonalityFn()) == 3815 EHPersonality::MSVC_CXX) { 3816 adjustFrameForMsvcCxxEh(MF); 3817 } 3818 } 3819 3820 void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const { 3821 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 3822 // relative to RSP after the prologue. Find the offset of the last fixed 3823 // object, so that we can allocate a slot immediately following it. If there 3824 // were no fixed objects, use offset -SlotSize, which is immediately after the 3825 // return address. Fixed objects have negative frame indices. 3826 MachineFrameInfo &MFI = MF.getFrameInfo(); 3827 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3828 int64_t MinFixedObjOffset = -SlotSize; 3829 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 3830 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 3831 3832 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 3833 for (WinEHHandlerType &H : TBME.HandlerArray) { 3834 int FrameIndex = H.CatchObj.FrameIndex; 3835 if (FrameIndex != INT_MAX) { 3836 // Ensure alignment. 3837 unsigned Align = MFI.getObjectAlign(FrameIndex).value(); 3838 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 3839 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 3840 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 3841 } 3842 } 3843 } 3844 3845 // Ensure alignment. 3846 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 3847 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 3848 int UnwindHelpFI = 3849 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); 3850 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3851 3852 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 3853 // other frame setup instructions. 3854 MachineBasicBlock &MBB = MF.front(); 3855 auto MBBI = MBB.begin(); 3856 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3857 ++MBBI; 3858 3859 DebugLoc DL = MBB.findDebugLoc(MBBI); 3860 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 3861 UnwindHelpFI) 3862 .addImm(-2); 3863 } 3864 3865 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced( 3866 MachineFunction &MF, RegScavenger *RS) const { 3867 if (STI.is32Bit() && MF.hasEHFunclets()) 3868 restoreWinEHStackPointersInParent(MF); 3869 } 3870 3871 void X86FrameLowering::restoreWinEHStackPointersInParent( 3872 MachineFunction &MF) const { 3873 // 32-bit functions have to restore stack pointers when control is transferred 3874 // back to the parent function. These blocks are identified as eh pads that 3875 // are not funclet entries. 3876 bool IsSEH = isAsynchronousEHPersonality( 3877 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 3878 for (MachineBasicBlock &MBB : MF) { 3879 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry(); 3880 if (NeedsRestore) 3881 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(), 3882 /*RestoreSP=*/IsSEH); 3883 } 3884 } 3885