1 //===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that SystemZ uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
15 #define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
16
17 #include "SystemZ.h"
18 #include "SystemZInstrInfo.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22
23 namespace llvm {
24 namespace SystemZISD {
25 enum NodeType : unsigned {
26 FIRST_NUMBER = ISD::BUILTIN_OP_END,
27
28 // Return with a flag operand. Operand 0 is the chain operand.
29 RET_FLAG,
30
31 // Calls a function. Operand 0 is the chain operand and operand 1
32 // is the target address. The arguments start at operand 2.
33 // There is an optional glue operand at the end.
34 CALL,
35 SIBCALL,
36
37 // TLS calls. Like regular calls, except operand 1 is the TLS symbol.
38 // (The call target is implicitly __tls_get_offset.)
39 TLS_GDCALL,
40 TLS_LDCALL,
41
42 // Wraps a TargetGlobalAddress that should be loaded using PC-relative
43 // accesses (LARL). Operand 0 is the address.
44 PCREL_WRAPPER,
45
46 // Used in cases where an offset is applied to a TargetGlobalAddress.
47 // Operand 0 is the full TargetGlobalAddress and operand 1 is a
48 // PCREL_WRAPPER for an anchor point. This is used so that we can
49 // cheaply refer to either the full address or the anchor point
50 // as a register base.
51 PCREL_OFFSET,
52
53 // Integer comparisons. There are three operands: the two values
54 // to compare, and an integer of type SystemZICMP.
55 ICMP,
56
57 // Floating-point comparisons. The two operands are the values to compare.
58 FCMP,
59
60 // Test under mask. The first operand is ANDed with the second operand
61 // and the condition codes are set on the result. The third operand is
62 // a boolean that is true if the condition codes need to distinguish
63 // between CCMASK_TM_MIXED_MSB_0 and CCMASK_TM_MIXED_MSB_1 (which the
64 // register forms do but the memory forms don't).
65 TM,
66
67 // Branches if a condition is true. Operand 0 is the chain operand;
68 // operand 1 is the 4-bit condition-code mask, with bit N in
69 // big-endian order meaning "branch if CC=N"; operand 2 is the
70 // target block and operand 3 is the flag operand.
71 BR_CCMASK,
72
73 // Selects between operand 0 and operand 1. Operand 2 is the
74 // mask of condition-code values for which operand 0 should be
75 // chosen over operand 1; it has the same form as BR_CCMASK.
76 // Operand 3 is the flag operand.
77 SELECT_CCMASK,
78
79 // Evaluates to the gap between the stack pointer and the
80 // base of the dynamically-allocatable area.
81 ADJDYNALLOC,
82
83 // For allocating stack space when using stack clash protector.
84 // Allocation is performed by block, and each block is probed.
85 PROBED_ALLOCA,
86
87 // Count number of bits set in operand 0 per byte.
88 POPCNT,
89
90 // Wrappers around the ISD opcodes of the same name. The output is GR128.
91 // Input operands may be GR64 or GR32, depending on the instruction.
92 SMUL_LOHI,
93 UMUL_LOHI,
94 SDIVREM,
95 UDIVREM,
96
97 // Add/subtract with overflow/carry. These have the same operands as
98 // the corresponding standard operations, except with the carry flag
99 // replaced by a condition code value.
100 SADDO, SSUBO, UADDO, USUBO, ADDCARRY, SUBCARRY,
101
102 // Set the condition code from a boolean value in operand 0.
103 // Operand 1 is a mask of all condition-code values that may result of this
104 // operation, operand 2 is a mask of condition-code values that may result
105 // if the boolean is true.
106 // Note that this operation is always optimized away, we will never
107 // generate any code for it.
108 GET_CCMASK,
109
110 // Use a series of MVCs to copy bytes from one memory location to another.
111 // The operands are:
112 // - the target address
113 // - the source address
114 // - the constant length
115 //
116 // This isn't a memory opcode because we'd need to attach two
117 // MachineMemOperands rather than one.
118 MVC,
119
120 // Similar to MVC, but for logic operations (AND, OR, XOR).
121 NC,
122 OC,
123 XC,
124
125 // Use CLC to compare two blocks of memory, with the same comments
126 // as for MVC.
127 CLC,
128
129 // Use MVC to set a block of memory after storing the first byte.
130 MEMSET_MVC,
131
132 // Use an MVST-based sequence to implement stpcpy().
133 STPCPY,
134
135 // Use a CLST-based sequence to implement strcmp(). The two input operands
136 // are the addresses of the strings to compare.
137 STRCMP,
138
139 // Use an SRST-based sequence to search a block of memory. The first
140 // operand is the end address, the second is the start, and the third
141 // is the character to search for. CC is set to 1 on success and 2
142 // on failure.
143 SEARCH_STRING,
144
145 // Store the CC value in bits 29 and 28 of an integer.
146 IPM,
147
148 // Compiler barrier only; generate a no-op.
149 MEMBARRIER,
150
151 // Transaction begin. The first operand is the chain, the second
152 // the TDB pointer, and the third the immediate control field.
153 // Returns CC value and chain.
154 TBEGIN,
155 TBEGIN_NOFLOAT,
156
157 // Transaction end. Just the chain operand. Returns CC value and chain.
158 TEND,
159
160 // Create a vector constant by filling byte N of the result with bit
161 // 15-N of the single operand.
162 BYTE_MASK,
163
164 // Create a vector constant by replicating an element-sized RISBG-style mask.
165 // The first operand specifies the starting set bit and the second operand
166 // specifies the ending set bit. Both operands count from the MSB of the
167 // element.
168 ROTATE_MASK,
169
170 // Replicate a GPR scalar value into all elements of a vector.
171 REPLICATE,
172
173 // Create a vector from two i64 GPRs.
174 JOIN_DWORDS,
175
176 // Replicate one element of a vector into all elements. The first operand
177 // is the vector and the second is the index of the element to replicate.
178 SPLAT,
179
180 // Interleave elements from the high half of operand 0 and the high half
181 // of operand 1.
182 MERGE_HIGH,
183
184 // Likewise for the low halves.
185 MERGE_LOW,
186
187 // Concatenate the vectors in the first two operands, shift them left
188 // by the third operand, and take the first half of the result.
189 SHL_DOUBLE,
190
191 // Take one element of the first v2i64 operand and the one element of
192 // the second v2i64 operand and concatenate them to form a v2i64 result.
193 // The third operand is a 4-bit value of the form 0A0B, where A and B
194 // are the element selectors for the first operand and second operands
195 // respectively.
196 PERMUTE_DWORDS,
197
198 // Perform a general vector permute on vector operands 0 and 1.
199 // Each byte of operand 2 controls the corresponding byte of the result,
200 // in the same way as a byte-level VECTOR_SHUFFLE mask.
201 PERMUTE,
202
203 // Pack vector operands 0 and 1 into a single vector with half-sized elements.
204 PACK,
205
206 // Likewise, but saturate the result and set CC. PACKS_CC does signed
207 // saturation and PACKLS_CC does unsigned saturation.
208 PACKS_CC,
209 PACKLS_CC,
210
211 // Unpack the first half of vector operand 0 into double-sized elements.
212 // UNPACK_HIGH sign-extends and UNPACKL_HIGH zero-extends.
213 UNPACK_HIGH,
214 UNPACKL_HIGH,
215
216 // Likewise for the second half.
217 UNPACK_LOW,
218 UNPACKL_LOW,
219
220 // Shift each element of vector operand 0 by the number of bits specified
221 // by scalar operand 1.
222 VSHL_BY_SCALAR,
223 VSRL_BY_SCALAR,
224 VSRA_BY_SCALAR,
225
226 // For each element of the output type, sum across all sub-elements of
227 // operand 0 belonging to the corresponding element, and add in the
228 // rightmost sub-element of the corresponding element of operand 1.
229 VSUM,
230
231 // Compare integer vector operands 0 and 1 to produce the usual 0/-1
232 // vector result. VICMPE is for equality, VICMPH for "signed greater than"
233 // and VICMPHL for "unsigned greater than".
234 VICMPE,
235 VICMPH,
236 VICMPHL,
237
238 // Likewise, but also set the condition codes on the result.
239 VICMPES,
240 VICMPHS,
241 VICMPHLS,
242
243 // Compare floating-point vector operands 0 and 1 to produce the usual 0/-1
244 // vector result. VFCMPE is for "ordered and equal", VFCMPH for "ordered and
245 // greater than" and VFCMPHE for "ordered and greater than or equal to".
246 VFCMPE,
247 VFCMPH,
248 VFCMPHE,
249
250 // Likewise, but also set the condition codes on the result.
251 VFCMPES,
252 VFCMPHS,
253 VFCMPHES,
254
255 // Test floating-point data class for vectors.
256 VFTCI,
257
258 // Extend the even f32 elements of vector operand 0 to produce a vector
259 // of f64 elements.
260 VEXTEND,
261
262 // Round the f64 elements of vector operand 0 to f32s and store them in the
263 // even elements of the result.
264 VROUND,
265
266 // AND the two vector operands together and set CC based on the result.
267 VTM,
268
269 // String operations that set CC as a side-effect.
270 VFAE_CC,
271 VFAEZ_CC,
272 VFEE_CC,
273 VFEEZ_CC,
274 VFENE_CC,
275 VFENEZ_CC,
276 VISTR_CC,
277 VSTRC_CC,
278 VSTRCZ_CC,
279 VSTRS_CC,
280 VSTRSZ_CC,
281
282 // Test Data Class.
283 //
284 // Operand 0: the value to test
285 // Operand 1: the bit mask
286 TDC,
287
288 // Strict variants of scalar floating-point comparisons.
289 // Quiet and signaling versions.
290 STRICT_FCMP = ISD::FIRST_TARGET_STRICTFP_OPCODE,
291 STRICT_FCMPS,
292
293 // Strict variants of vector floating-point comparisons.
294 // Quiet and signaling versions.
295 STRICT_VFCMPE,
296 STRICT_VFCMPH,
297 STRICT_VFCMPHE,
298 STRICT_VFCMPES,
299 STRICT_VFCMPHS,
300 STRICT_VFCMPHES,
301
302 // Strict variants of VEXTEND and VROUND.
303 STRICT_VEXTEND,
304 STRICT_VROUND,
305
306 // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or
307 // ATOMIC_LOAD_<op>.
308 //
309 // Operand 0: the address of the containing 32-bit-aligned field
310 // Operand 1: the second operand of <op>, in the high bits of an i32
311 // for everything except ATOMIC_SWAPW
312 // Operand 2: how many bits to rotate the i32 left to bring the first
313 // operand into the high bits
314 // Operand 3: the negative of operand 2, for rotating the other way
315 // Operand 4: the width of the field in bits (8 or 16)
316 ATOMIC_SWAPW = ISD::FIRST_TARGET_MEMORY_OPCODE,
317 ATOMIC_LOADW_ADD,
318 ATOMIC_LOADW_SUB,
319 ATOMIC_LOADW_AND,
320 ATOMIC_LOADW_OR,
321 ATOMIC_LOADW_XOR,
322 ATOMIC_LOADW_NAND,
323 ATOMIC_LOADW_MIN,
324 ATOMIC_LOADW_MAX,
325 ATOMIC_LOADW_UMIN,
326 ATOMIC_LOADW_UMAX,
327
328 // A wrapper around the inner loop of an ATOMIC_CMP_SWAP.
329 //
330 // Operand 0: the address of the containing 32-bit-aligned field
331 // Operand 1: the compare value, in the low bits of an i32
332 // Operand 2: the swap value, in the low bits of an i32
333 // Operand 3: how many bits to rotate the i32 left to bring the first
334 // operand into the high bits
335 // Operand 4: the negative of operand 2, for rotating the other way
336 // Operand 5: the width of the field in bits (8 or 16)
337 ATOMIC_CMP_SWAPW,
338
339 // Atomic compare-and-swap returning CC value.
340 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
341 ATOMIC_CMP_SWAP,
342
343 // 128-bit atomic load.
344 // Val, OUTCHAIN = ATOMIC_LOAD_128(INCHAIN, ptr)
345 ATOMIC_LOAD_128,
346
347 // 128-bit atomic store.
348 // OUTCHAIN = ATOMIC_STORE_128(INCHAIN, val, ptr)
349 ATOMIC_STORE_128,
350
351 // 128-bit atomic compare-and-swap.
352 // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
353 ATOMIC_CMP_SWAP_128,
354
355 // Byte swapping load/store. Same operands as regular load/store.
356 LRV, STRV,
357
358 // Element swapping load/store. Same operands as regular load/store.
359 VLER, VSTER,
360
361 // Prefetch from the second operand using the 4-bit control code in
362 // the first operand. The code is 1 for a load prefetch and 2 for
363 // a store prefetch.
364 PREFETCH
365 };
366
367 // Return true if OPCODE is some kind of PC-relative address.
isPCREL(unsigned Opcode)368 inline bool isPCREL(unsigned Opcode) {
369 return Opcode == PCREL_WRAPPER || Opcode == PCREL_OFFSET;
370 }
371 } // end namespace SystemZISD
372
373 namespace SystemZICMP {
374 // Describes whether an integer comparison needs to be signed or unsigned,
375 // or whether either type is OK.
376 enum {
377 Any,
378 UnsignedOnly,
379 SignedOnly
380 };
381 } // end namespace SystemZICMP
382
383 class SystemZSubtarget;
384
385 class SystemZTargetLowering : public TargetLowering {
386 public:
387 explicit SystemZTargetLowering(const TargetMachine &TM,
388 const SystemZSubtarget &STI);
389
390 bool useSoftFloat() const override;
391
392 // Override TargetLowering.
getScalarShiftAmountTy(const DataLayout &,EVT)393 MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
394 return MVT::i32;
395 }
getVectorIdxTy(const DataLayout & DL)396 MVT getVectorIdxTy(const DataLayout &DL) const override {
397 // Only the lower 12 bits of an element index are used, so we don't
398 // want to clobber the upper 32 bits of a GPR unnecessarily.
399 return MVT::i32;
400 }
getPreferredVectorAction(MVT VT)401 TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT)
402 const override {
403 // Widen subvectors to the full width rather than promoting integer
404 // elements. This is better because:
405 //
406 // (a) it means that we can handle the ABI for passing and returning
407 // sub-128 vectors without having to handle them as legal types.
408 //
409 // (b) we don't have instructions to extend on load and truncate on store,
410 // so promoting the integers is less efficient.
411 //
412 // (c) there are no multiplication instructions for the widest integer
413 // type (v2i64).
414 if (VT.getScalarSizeInBits() % 8 == 0)
415 return TypeWidenVector;
416 return TargetLoweringBase::getPreferredVectorAction(VT);
417 }
418 unsigned
getNumRegisters(LLVMContext & Context,EVT VT,Optional<MVT> RegisterVT)419 getNumRegisters(LLVMContext &Context, EVT VT,
420 Optional<MVT> RegisterVT) const override {
421 // i128 inline assembly operand.
422 if (VT == MVT::i128 && RegisterVT && *RegisterVT == MVT::Untyped)
423 return 1;
424 return TargetLowering::getNumRegisters(Context, VT);
425 }
isCheapToSpeculateCtlz()426 bool isCheapToSpeculateCtlz() const override { return true; }
preferZeroCompareBranch()427 bool preferZeroCompareBranch() const override { return true; }
hasBitPreservingFPLogic(EVT VT)428 bool hasBitPreservingFPLogic(EVT VT) const override {
429 EVT ScVT = VT.getScalarType();
430 return ScVT == MVT::f32 || ScVT == MVT::f64 || ScVT == MVT::f128;
431 }
isMaskAndCmp0FoldingBeneficial(const Instruction & AndI)432 bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override {
433 ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
434 return Mask && Mask->getValue().isIntN(16);
435 }
convertSetCCLogicToBitwiseLogic(EVT VT)436 bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
437 return VT.isScalarInteger();
438 }
439 EVT getSetCCResultType(const DataLayout &DL, LLVMContext &,
440 EVT) const override;
441 bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
442 EVT VT) const override;
443 bool isFPImmLegal(const APFloat &Imm, EVT VT,
444 bool ForCodeSize) const override;
ShouldShrinkFPConstant(EVT VT)445 bool ShouldShrinkFPConstant(EVT VT) const override {
446 // Do not shrink 64-bit FP constpool entries since LDEB is slower than
447 // LD, and having the full constant in memory enables reg/mem opcodes.
448 return VT != MVT::f64;
449 }
450 bool hasInlineStackProbe(MachineFunction &MF) const override;
451 bool isLegalICmpImmediate(int64_t Imm) const override;
452 bool isLegalAddImmediate(int64_t Imm) const override;
453 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty,
454 unsigned AS,
455 Instruction *I = nullptr) const override;
456 bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, Align Alignment,
457 MachineMemOperand::Flags Flags,
458 bool *Fast) const override;
459 bool
460 findOptimalMemOpLowering(std::vector<EVT> &MemOps, unsigned Limit,
461 const MemOp &Op, unsigned DstAS, unsigned SrcAS,
462 const AttributeList &FuncAttributes) const override;
463 EVT getOptimalMemOpType(const MemOp &Op,
464 const AttributeList &FuncAttributes) const override;
465 bool isTruncateFree(Type *, Type *) const override;
isTruncateFree(EVT,EVT)466 bool isTruncateFree(EVT, EVT) const override;
467
468 bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
469 bool MathUsed) const override {
470 // Form add and sub with overflow intrinsics regardless of any extra
471 // users of the math result.
472 return VT == MVT::i32 || VT == MVT::i64;
473 }
474
shouldConsiderGEPOffsetSplit()475 bool shouldConsiderGEPOffsetSplit() const override { return true; }
476
477 const char *getTargetNodeName(unsigned Opcode) const override;
478 std::pair<unsigned, const TargetRegisterClass *>
479 getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
480 StringRef Constraint, MVT VT) const override;
481 TargetLowering::ConstraintType
482 getConstraintType(StringRef Constraint) const override;
483 TargetLowering::ConstraintWeight
484 getSingleConstraintMatchWeight(AsmOperandInfo &info,
485 const char *constraint) const override;
486 void LowerAsmOperandForConstraint(SDValue Op,
487 std::string &Constraint,
488 std::vector<SDValue> &Ops,
489 SelectionDAG &DAG) const override;
490
getInlineAsmMemConstraint(StringRef ConstraintCode)491 unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
492 if (ConstraintCode.size() == 1) {
493 switch(ConstraintCode[0]) {
494 default:
495 break;
496 case 'o':
497 return InlineAsm::Constraint_o;
498 case 'Q':
499 return InlineAsm::Constraint_Q;
500 case 'R':
501 return InlineAsm::Constraint_R;
502 case 'S':
503 return InlineAsm::Constraint_S;
504 case 'T':
505 return InlineAsm::Constraint_T;
506 }
507 } else if (ConstraintCode.size() == 2 && ConstraintCode[0] == 'Z') {
508 switch (ConstraintCode[1]) {
509 default:
510 break;
511 case 'Q':
512 return InlineAsm::Constraint_ZQ;
513 case 'R':
514 return InlineAsm::Constraint_ZR;
515 case 'S':
516 return InlineAsm::Constraint_ZS;
517 case 'T':
518 return InlineAsm::Constraint_ZT;
519 }
520 }
521 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
522 }
523
524 Register getRegisterByName(const char *RegName, LLT VT,
525 const MachineFunction &MF) const override;
526
527 /// If a physical register, this returns the register that receives the
528 /// exception address on entry to an EH pad.
529 Register
getExceptionPointerRegister(const Constant * PersonalityFn)530 getExceptionPointerRegister(const Constant *PersonalityFn) const override {
531 return SystemZ::R6D;
532 }
533
534 /// If a physical register, this returns the register that receives the
535 /// exception typeid on entry to a landing pad.
536 Register
getExceptionSelectorRegister(const Constant * PersonalityFn)537 getExceptionSelectorRegister(const Constant *PersonalityFn) const override {
538 return SystemZ::R7D;
539 }
540
541 /// Override to support customized stack guard loading.
useLoadStackGuardNode()542 bool useLoadStackGuardNode() const override {
543 return true;
544 }
insertSSPDeclarations(Module & M)545 void insertSSPDeclarations(Module &M) const override {
546 }
547
548 MachineBasicBlock *
549 EmitInstrWithCustomInserter(MachineInstr &MI,
550 MachineBasicBlock *BB) const override;
551 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
552 void LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results,
553 SelectionDAG &DAG) const override;
554 void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
555 SelectionDAG &DAG) const override;
556 const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
557 bool allowTruncateForTailCall(Type *, Type *) const override;
558 bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
559 bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL,
560 SDValue Val, SDValue *Parts,
561 unsigned NumParts, MVT PartVT,
562 Optional<CallingConv::ID> CC) const override;
563 SDValue
564 joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL,
565 const SDValue *Parts, unsigned NumParts,
566 MVT PartVT, EVT ValueVT,
567 Optional<CallingConv::ID> CC) const override;
568 SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv,
569 bool isVarArg,
570 const SmallVectorImpl<ISD::InputArg> &Ins,
571 const SDLoc &DL, SelectionDAG &DAG,
572 SmallVectorImpl<SDValue> &InVals) const override;
573 SDValue LowerCall(CallLoweringInfo &CLI,
574 SmallVectorImpl<SDValue> &InVals) const override;
575
576 std::pair<SDValue, SDValue>
577 makeExternalCall(SDValue Chain, SelectionDAG &DAG, const char *CalleeName,
578 EVT RetVT, ArrayRef<SDValue> Ops, CallingConv::ID CallConv,
579 bool IsSigned, SDLoc DL, bool DoesNotReturn,
580 bool IsReturnValueUsed) const;
581
582 bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
583 bool isVarArg,
584 const SmallVectorImpl<ISD::OutputArg> &Outs,
585 LLVMContext &Context) const override;
586 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
587 const SmallVectorImpl<ISD::OutputArg> &Outs,
588 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
589 SelectionDAG &DAG) const override;
590 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
591
592 /// Determine which of the bits specified in Mask are known to be either
593 /// zero or one and return them in the KnownZero/KnownOne bitsets.
594 void computeKnownBitsForTargetNode(const SDValue Op,
595 KnownBits &Known,
596 const APInt &DemandedElts,
597 const SelectionDAG &DAG,
598 unsigned Depth = 0) const override;
599
600 /// Determine the number of bits in the operation that are sign bits.
601 unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
602 const APInt &DemandedElts,
603 const SelectionDAG &DAG,
604 unsigned Depth) const override;
605
getExtendForAtomicOps()606 ISD::NodeType getExtendForAtomicOps() const override {
607 return ISD::ANY_EXTEND;
608 }
getExtendForAtomicCmpSwapArg()609 ISD::NodeType getExtendForAtomicCmpSwapArg() const override {
610 return ISD::ZERO_EXTEND;
611 }
612
supportSwiftError()613 bool supportSwiftError() const override {
614 return true;
615 }
616
617 unsigned getStackProbeSize(MachineFunction &MF) const;
618
619 private:
620 const SystemZSubtarget &Subtarget;
621
622 // Implement LowerOperation for individual opcodes.
623 SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
624 const SDLoc &DL, EVT VT,
625 SDValue CmpOp0, SDValue CmpOp1, SDValue Chain) const;
626 SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL,
627 EVT VT, ISD::CondCode CC,
628 SDValue CmpOp0, SDValue CmpOp1,
629 SDValue Chain = SDValue(),
630 bool IsSignaling = false) const;
631 SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const;
632 SDValue lowerSTRICT_FSETCC(SDValue Op, SelectionDAG &DAG,
633 bool IsSignaling) const;
634 SDValue lowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
635 SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
636 SDValue lowerGlobalAddress(GlobalAddressSDNode *Node,
637 SelectionDAG &DAG) const;
638 SDValue lowerTLSGetOffset(GlobalAddressSDNode *Node,
639 SelectionDAG &DAG, unsigned Opcode,
640 SDValue GOTOffset) const;
641 SDValue lowerThreadPointer(const SDLoc &DL, SelectionDAG &DAG) const;
642 SDValue lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
643 SelectionDAG &DAG) const;
644 SDValue lowerBlockAddress(BlockAddressSDNode *Node,
645 SelectionDAG &DAG) const;
646 SDValue lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const;
647 SDValue lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const;
648 SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
649 SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
650 SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
651 SDValue lowerVASTART_ELF(SDValue Op, SelectionDAG &DAG) const;
652 SDValue lowerVASTART_XPLINK(SDValue Op, SelectionDAG &DAG) const;
653 SDValue lowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
654 SDValue lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
655 SDValue lowerDYNAMIC_STACKALLOC_ELF(SDValue Op, SelectionDAG &DAG) const;
656 SDValue lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op, SelectionDAG &DAG) const;
657 SDValue lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
658 SDValue lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
659 SDValue lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
660 SDValue lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const;
661 SDValue lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const;
662 SDValue lowerXALUO(SDValue Op, SelectionDAG &DAG) const;
663 SDValue lowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) const;
664 SDValue lowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
665 SDValue lowerOR(SDValue Op, SelectionDAG &DAG) const;
666 SDValue lowerCTPOP(SDValue Op, SelectionDAG &DAG) const;
667 SDValue lowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const;
668 SDValue lowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const;
669 SDValue lowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const;
670 SDValue lowerATOMIC_LOAD_OP(SDValue Op, SelectionDAG &DAG,
671 unsigned Opcode) const;
672 SDValue lowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
673 SDValue lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
674 SDValue lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const;
675 SDValue lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
676 SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const;
677 SDValue lowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const;
678 SDValue lowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
679 bool isVectorElementLoad(SDValue Op) const;
680 SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
681 SmallVectorImpl<SDValue> &Elems) const;
682 SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
683 SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
684 SDValue lowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
685 SDValue lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
686 SDValue lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
687 SDValue lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const;
688 SDValue lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const;
689 SDValue lowerShift(SDValue Op, SelectionDAG &DAG, unsigned ByScalar) const;
690 SDValue lowerIS_FPCLASS(SDValue Op, SelectionDAG &DAG) const;
691
692 bool canTreatAsByteVector(EVT VT) const;
693 SDValue combineExtract(const SDLoc &DL, EVT ElemVT, EVT VecVT, SDValue OrigOp,
694 unsigned Index, DAGCombinerInfo &DCI,
695 bool Force) const;
696 SDValue combineTruncateExtract(const SDLoc &DL, EVT TruncVT, SDValue Op,
697 DAGCombinerInfo &DCI) const;
698 SDValue combineZERO_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
699 SDValue combineSIGN_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
700 SDValue combineSIGN_EXTEND_INREG(SDNode *N, DAGCombinerInfo &DCI) const;
701 SDValue combineMERGE(SDNode *N, DAGCombinerInfo &DCI) const;
702 bool canLoadStoreByteSwapped(EVT VT) const;
703 SDValue combineLOAD(SDNode *N, DAGCombinerInfo &DCI) const;
704 SDValue combineSTORE(SDNode *N, DAGCombinerInfo &DCI) const;
705 SDValue combineVECTOR_SHUFFLE(SDNode *N, DAGCombinerInfo &DCI) const;
706 SDValue combineEXTRACT_VECTOR_ELT(SDNode *N, DAGCombinerInfo &DCI) const;
707 SDValue combineJOIN_DWORDS(SDNode *N, DAGCombinerInfo &DCI) const;
708 SDValue combineFP_ROUND(SDNode *N, DAGCombinerInfo &DCI) const;
709 SDValue combineFP_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
710 SDValue combineINT_TO_FP(SDNode *N, DAGCombinerInfo &DCI) const;
711 SDValue combineBSWAP(SDNode *N, DAGCombinerInfo &DCI) const;
712 SDValue combineBR_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
713 SDValue combineSELECT_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
714 SDValue combineGET_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
715 SDValue combineIntDIVREM(SDNode *N, DAGCombinerInfo &DCI) const;
716 SDValue combineINTRINSIC(SDNode *N, DAGCombinerInfo &DCI) const;
717
718 SDValue unwrapAddress(SDValue N) const override;
719
720 // If the last instruction before MBBI in MBB was some form of COMPARE,
721 // try to replace it with a COMPARE AND BRANCH just before MBBI.
722 // CCMask and Target are the BRC-like operands for the branch.
723 // Return true if the change was made.
724 bool convertPrevCompareToBranch(MachineBasicBlock *MBB,
725 MachineBasicBlock::iterator MBBI,
726 unsigned CCMask,
727 MachineBasicBlock *Target) const;
728
729 // Implement EmitInstrWithCustomInserter for individual operation types.
730 MachineBasicBlock *emitSelect(MachineInstr &MI, MachineBasicBlock *BB) const;
731 MachineBasicBlock *emitCondStore(MachineInstr &MI, MachineBasicBlock *BB,
732 unsigned StoreOpcode, unsigned STOCOpcode,
733 bool Invert) const;
734 MachineBasicBlock *emitPair128(MachineInstr &MI,
735 MachineBasicBlock *MBB) const;
736 MachineBasicBlock *emitExt128(MachineInstr &MI, MachineBasicBlock *MBB,
737 bool ClearEven) const;
738 MachineBasicBlock *emitAtomicLoadBinary(MachineInstr &MI,
739 MachineBasicBlock *BB,
740 unsigned BinOpcode, unsigned BitSize,
741 bool Invert = false) const;
742 MachineBasicBlock *emitAtomicLoadMinMax(MachineInstr &MI,
743 MachineBasicBlock *MBB,
744 unsigned CompareOpcode,
745 unsigned KeepOldMask,
746 unsigned BitSize) const;
747 MachineBasicBlock *emitAtomicCmpSwapW(MachineInstr &MI,
748 MachineBasicBlock *BB) const;
749 MachineBasicBlock *emitMemMemWrapper(MachineInstr &MI, MachineBasicBlock *BB,
750 unsigned Opcode,
751 bool IsMemset = false) const;
752 MachineBasicBlock *emitStringWrapper(MachineInstr &MI, MachineBasicBlock *BB,
753 unsigned Opcode) const;
754 MachineBasicBlock *emitTransactionBegin(MachineInstr &MI,
755 MachineBasicBlock *MBB,
756 unsigned Opcode, bool NoFloat) const;
757 MachineBasicBlock *emitLoadAndTestCmp0(MachineInstr &MI,
758 MachineBasicBlock *MBB,
759 unsigned Opcode) const;
760 MachineBasicBlock *emitProbedAlloca(MachineInstr &MI,
761 MachineBasicBlock *MBB) const;
762
763 SDValue getBackchainAddress(SDValue SP, SelectionDAG &DAG) const;
764
765 MachineMemOperand::Flags
766 getTargetMMOFlags(const Instruction &I) const override;
767 const TargetRegisterClass *getRepRegClassFor(MVT VT) const override;
768 };
769
770 struct SystemZVectorConstantInfo {
771 private:
772 APInt IntBits; // The 128 bits as an integer.
773 APInt SplatBits; // Smallest splat value.
774 APInt SplatUndef; // Bits correspoding to undef operands of the BVN.
775 unsigned SplatBitSize = 0;
776 bool isFP128 = false;
777 public:
778 unsigned Opcode = 0;
779 SmallVector<unsigned, 2> OpVals;
780 MVT VecVT;
781 SystemZVectorConstantInfo(APInt IntImm);
SystemZVectorConstantInfoSystemZVectorConstantInfo782 SystemZVectorConstantInfo(APFloat FPImm)
783 : SystemZVectorConstantInfo(FPImm.bitcastToAPInt()) {
784 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
785 }
786 SystemZVectorConstantInfo(BuildVectorSDNode *BVN);
787 bool isVectorConstantLegal(const SystemZSubtarget &Subtarget);
788 };
789
790 } // end namespace llvm
791
792 #endif
793