1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "MCTargetDesc/SystemZMCTargetDesc.h" 11 #include "llvm/MC/MCContext.h" 12 #include "llvm/MC/MCExpr.h" 13 #include "llvm/MC/MCInst.h" 14 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 15 #include "llvm/MC/MCStreamer.h" 16 #include "llvm/MC/MCSubtargetInfo.h" 17 #include "llvm/MC/MCTargetAsmParser.h" 18 #include "llvm/Support/TargetRegistry.h" 19 20 using namespace llvm; 21 22 // Return true if Expr is in the range [MinValue, MaxValue]. 23 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) { 24 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) { 25 int64_t Value = CE->getValue(); 26 return Value >= MinValue && Value <= MaxValue; 27 } 28 return false; 29 } 30 31 namespace { 32 class SystemZOperand : public MCParsedAsmOperand { 33 public: 34 enum RegisterKind { 35 GR32Reg, 36 GR64Reg, 37 GR128Reg, 38 ADDR32Reg, 39 ADDR64Reg, 40 FP32Reg, 41 FP64Reg, 42 FP128Reg 43 }; 44 45 private: 46 enum OperandKind { 47 KindInvalid, 48 KindToken, 49 KindReg, 50 KindAccessReg, 51 KindImm, 52 KindMem 53 }; 54 55 OperandKind Kind; 56 SMLoc StartLoc, EndLoc; 57 58 // A string of length Length, starting at Data. 59 struct TokenOp { 60 const char *Data; 61 unsigned Length; 62 }; 63 64 // LLVM register Num, which has kind Kind. In some ways it might be 65 // easier for this class to have a register bank (general, floating-point 66 // or access) and a raw register number (0-15). This would postpone the 67 // interpretation of the operand to the add*() methods and avoid the need 68 // for context-dependent parsing. However, we do things the current way 69 // because of the virtual getReg() method, which needs to distinguish 70 // between (say) %r0 used as a single register and %r0 used as a pair. 71 // Context-dependent parsing can also give us slightly better error 72 // messages when invalid pairs like %r1 are used. 73 struct RegOp { 74 RegisterKind Kind; 75 unsigned Num; 76 }; 77 78 // Base + Disp + Index, where Base and Index are LLVM registers or 0. 79 // RegKind says what type the registers have (ADDR32Reg or ADDR64Reg). 80 struct MemOp { 81 unsigned Base : 8; 82 unsigned Index : 8; 83 unsigned RegKind : 8; 84 unsigned Unused : 8; 85 const MCExpr *Disp; 86 }; 87 88 union { 89 TokenOp Token; 90 RegOp Reg; 91 unsigned AccessReg; 92 const MCExpr *Imm; 93 MemOp Mem; 94 }; 95 96 SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc) 97 : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) 98 {} 99 100 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 101 // Add as immediates when possible. Null MCExpr = 0. 102 if (Expr == 0) 103 Inst.addOperand(MCOperand::CreateImm(0)); 104 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 105 Inst.addOperand(MCOperand::CreateImm(CE->getValue())); 106 else 107 Inst.addOperand(MCOperand::CreateExpr(Expr)); 108 } 109 110 public: 111 // Create particular kinds of operand. 112 static SystemZOperand *createInvalid(SMLoc StartLoc, SMLoc EndLoc) { 113 return new SystemZOperand(KindInvalid, StartLoc, EndLoc); 114 } 115 static SystemZOperand *createToken(StringRef Str, SMLoc Loc) { 116 SystemZOperand *Op = new SystemZOperand(KindToken, Loc, Loc); 117 Op->Token.Data = Str.data(); 118 Op->Token.Length = Str.size(); 119 return Op; 120 } 121 static SystemZOperand *createReg(RegisterKind Kind, unsigned Num, 122 SMLoc StartLoc, SMLoc EndLoc) { 123 SystemZOperand *Op = new SystemZOperand(KindReg, StartLoc, EndLoc); 124 Op->Reg.Kind = Kind; 125 Op->Reg.Num = Num; 126 return Op; 127 } 128 static SystemZOperand *createAccessReg(unsigned Num, SMLoc StartLoc, 129 SMLoc EndLoc) { 130 SystemZOperand *Op = new SystemZOperand(KindAccessReg, StartLoc, EndLoc); 131 Op->AccessReg = Num; 132 return Op; 133 } 134 static SystemZOperand *createImm(const MCExpr *Expr, SMLoc StartLoc, 135 SMLoc EndLoc) { 136 SystemZOperand *Op = new SystemZOperand(KindImm, StartLoc, EndLoc); 137 Op->Imm = Expr; 138 return Op; 139 } 140 static SystemZOperand *createMem(RegisterKind RegKind, unsigned Base, 141 const MCExpr *Disp, unsigned Index, 142 SMLoc StartLoc, SMLoc EndLoc) { 143 SystemZOperand *Op = new SystemZOperand(KindMem, StartLoc, EndLoc); 144 Op->Mem.RegKind = RegKind; 145 Op->Mem.Base = Base; 146 Op->Mem.Index = Index; 147 Op->Mem.Disp = Disp; 148 return Op; 149 } 150 151 // Token operands 152 virtual bool isToken() const LLVM_OVERRIDE { 153 return Kind == KindToken; 154 } 155 StringRef getToken() const { 156 assert(Kind == KindToken && "Not a token"); 157 return StringRef(Token.Data, Token.Length); 158 } 159 160 // Register operands. 161 virtual bool isReg() const LLVM_OVERRIDE { 162 return Kind == KindReg; 163 } 164 bool isReg(RegisterKind RegKind) const { 165 return Kind == KindReg && Reg.Kind == RegKind; 166 } 167 virtual unsigned getReg() const LLVM_OVERRIDE { 168 assert(Kind == KindReg && "Not a register"); 169 return Reg.Num; 170 } 171 172 // Access register operands. Access registers aren't exposed to LLVM 173 // as registers. 174 bool isAccessReg() const { 175 return Kind == KindAccessReg; 176 } 177 178 // Immediate operands. 179 virtual bool isImm() const LLVM_OVERRIDE { 180 return Kind == KindImm; 181 } 182 bool isImm(int64_t MinValue, int64_t MaxValue) const { 183 return Kind == KindImm && inRange(Imm, MinValue, MaxValue); 184 } 185 const MCExpr *getImm() const { 186 assert(Kind == KindImm && "Not an immediate"); 187 return Imm; 188 } 189 190 // Memory operands. 191 virtual bool isMem() const LLVM_OVERRIDE { 192 return Kind == KindMem; 193 } 194 bool isMem(RegisterKind RegKind, bool HasIndex) const { 195 return (Kind == KindMem && 196 Mem.RegKind == RegKind && 197 (HasIndex || !Mem.Index)); 198 } 199 bool isMemDisp12(RegisterKind RegKind, bool HasIndex) const { 200 return isMem(RegKind, HasIndex) && inRange(Mem.Disp, 0, 0xfff); 201 } 202 bool isMemDisp20(RegisterKind RegKind, bool HasIndex) const { 203 return isMem(RegKind, HasIndex) && inRange(Mem.Disp, -524288, 524287); 204 } 205 206 // Override MCParsedAsmOperand. 207 virtual SMLoc getStartLoc() const LLVM_OVERRIDE { return StartLoc; } 208 virtual SMLoc getEndLoc() const LLVM_OVERRIDE { return EndLoc; } 209 virtual void print(raw_ostream &OS) const LLVM_OVERRIDE; 210 211 // Used by the TableGen code to add particular types of operand 212 // to an instruction. 213 void addRegOperands(MCInst &Inst, unsigned N) const { 214 assert(N == 1 && "Invalid number of operands"); 215 Inst.addOperand(MCOperand::CreateReg(getReg())); 216 } 217 void addAccessRegOperands(MCInst &Inst, unsigned N) const { 218 assert(N == 1 && "Invalid number of operands"); 219 assert(Kind == KindAccessReg && "Invalid operand type"); 220 Inst.addOperand(MCOperand::CreateImm(AccessReg)); 221 } 222 void addImmOperands(MCInst &Inst, unsigned N) const { 223 assert(N == 1 && "Invalid number of operands"); 224 addExpr(Inst, getImm()); 225 } 226 void addBDAddrOperands(MCInst &Inst, unsigned N) const { 227 assert(N == 2 && "Invalid number of operands"); 228 assert(Kind == KindMem && Mem.Index == 0 && "Invalid operand type"); 229 Inst.addOperand(MCOperand::CreateReg(Mem.Base)); 230 addExpr(Inst, Mem.Disp); 231 } 232 void addBDXAddrOperands(MCInst &Inst, unsigned N) const { 233 assert(N == 3 && "Invalid number of operands"); 234 assert(Kind == KindMem && "Invalid operand type"); 235 Inst.addOperand(MCOperand::CreateReg(Mem.Base)); 236 addExpr(Inst, Mem.Disp); 237 Inst.addOperand(MCOperand::CreateReg(Mem.Index)); 238 } 239 240 // Used by the TableGen code to check for particular operand types. 241 bool isGR32() const { return isReg(GR32Reg); } 242 bool isGR64() const { return isReg(GR64Reg); } 243 bool isGR128() const { return isReg(GR128Reg); } 244 bool isADDR32() const { return isReg(ADDR32Reg); } 245 bool isADDR64() const { return isReg(ADDR64Reg); } 246 bool isADDR128() const { return false; } 247 bool isFP32() const { return isReg(FP32Reg); } 248 bool isFP64() const { return isReg(FP64Reg); } 249 bool isFP128() const { return isReg(FP128Reg); } 250 bool isBDAddr32Disp12() const { return isMemDisp12(ADDR32Reg, false); } 251 bool isBDAddr32Disp20() const { return isMemDisp20(ADDR32Reg, false); } 252 bool isBDAddr64Disp12() const { return isMemDisp12(ADDR64Reg, false); } 253 bool isBDAddr64Disp20() const { return isMemDisp20(ADDR64Reg, false); } 254 bool isBDXAddr64Disp12() const { return isMemDisp12(ADDR64Reg, true); } 255 bool isBDXAddr64Disp20() const { return isMemDisp20(ADDR64Reg, true); } 256 bool isU4Imm() const { return isImm(0, 15); } 257 bool isU6Imm() const { return isImm(0, 63); } 258 bool isU8Imm() const { return isImm(0, 255); } 259 bool isS8Imm() const { return isImm(-128, 127); } 260 bool isU16Imm() const { return isImm(0, 65535); } 261 bool isS16Imm() const { return isImm(-32768, 32767); } 262 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); } 263 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); } 264 }; 265 266 class SystemZAsmParser : public MCTargetAsmParser { 267 #define GET_ASSEMBLER_HEADER 268 #include "SystemZGenAsmMatcher.inc" 269 270 private: 271 MCSubtargetInfo &STI; 272 MCAsmParser &Parser; 273 enum RegisterGroup { 274 RegGR, 275 RegFP, 276 RegAccess 277 }; 278 struct Register { 279 RegisterGroup Group; 280 unsigned Num; 281 SMLoc StartLoc, EndLoc; 282 }; 283 284 bool parseRegister(Register &Reg); 285 286 bool parseRegister(Register &Reg, RegisterGroup Group, const unsigned *Regs, 287 bool IsAddress = false); 288 289 OperandMatchResultTy 290 parseRegister(SmallVectorImpl<MCParsedAsmOperand*> &Operands, 291 RegisterGroup Group, const unsigned *Regs, 292 SystemZOperand::RegisterKind Kind, 293 bool IsAddress = false); 294 295 bool parseAddress(unsigned &Base, const MCExpr *&Disp, 296 unsigned &Index, const unsigned *Regs, 297 SystemZOperand::RegisterKind RegKind, 298 bool HasIndex); 299 300 OperandMatchResultTy 301 parseAddress(SmallVectorImpl<MCParsedAsmOperand*> &Operands, 302 const unsigned *Regs, SystemZOperand::RegisterKind RegKind, 303 bool HasIndex); 304 305 bool parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands, 306 StringRef Mnemonic); 307 308 public: 309 SystemZAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser) 310 : MCTargetAsmParser(), STI(sti), Parser(parser) { 311 MCAsmParserExtension::Initialize(Parser); 312 313 // Initialize the set of available features. 314 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 315 } 316 317 // Override MCTargetAsmParser. 318 virtual bool ParseDirective(AsmToken DirectiveID) LLVM_OVERRIDE; 319 virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, 320 SMLoc &EndLoc) LLVM_OVERRIDE; 321 virtual bool ParseInstruction(ParseInstructionInfo &Info, 322 StringRef Name, SMLoc NameLoc, 323 SmallVectorImpl<MCParsedAsmOperand*> &Operands) 324 LLVM_OVERRIDE; 325 virtual bool 326 MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 327 SmallVectorImpl<MCParsedAsmOperand*> &Operands, 328 MCStreamer &Out, unsigned &ErrorInfo, 329 bool MatchingInlineAsm) LLVM_OVERRIDE; 330 331 // Used by the TableGen code to parse particular operand types. 332 OperandMatchResultTy 333 parseGR32(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { 334 return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, 335 SystemZOperand::GR32Reg); 336 } 337 OperandMatchResultTy 338 parseGR64(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { 339 return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, 340 SystemZOperand::GR64Reg); 341 } 342 OperandMatchResultTy 343 parseGR128(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { 344 return parseRegister(Operands, RegGR, SystemZMC::GR128Regs, 345 SystemZOperand::GR128Reg); 346 } 347 OperandMatchResultTy 348 parseADDR32(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { 349 return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, 350 SystemZOperand::ADDR32Reg, true); 351 } 352 OperandMatchResultTy 353 parseADDR64(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { 354 return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, 355 SystemZOperand::ADDR64Reg, true); 356 } 357 OperandMatchResultTy 358 parseADDR128(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { 359 llvm_unreachable("Shouldn't be used as an operand"); 360 } 361 OperandMatchResultTy 362 parseFP32(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { 363 return parseRegister(Operands, RegFP, SystemZMC::FP32Regs, 364 SystemZOperand::FP32Reg); 365 } 366 OperandMatchResultTy 367 parseFP64(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { 368 return parseRegister(Operands, RegFP, SystemZMC::FP64Regs, 369 SystemZOperand::FP64Reg); 370 } 371 OperandMatchResultTy 372 parseFP128(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { 373 return parseRegister(Operands, RegFP, SystemZMC::FP128Regs, 374 SystemZOperand::FP128Reg); 375 } 376 OperandMatchResultTy 377 parseBDAddr32(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { 378 return parseAddress(Operands, SystemZMC::GR32Regs, 379 SystemZOperand::ADDR32Reg, false); 380 } 381 OperandMatchResultTy 382 parseBDAddr64(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { 383 return parseAddress(Operands, SystemZMC::GR64Regs, 384 SystemZOperand::ADDR64Reg, false); 385 } 386 OperandMatchResultTy 387 parseBDXAddr64(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { 388 return parseAddress(Operands, SystemZMC::GR64Regs, 389 SystemZOperand::ADDR64Reg, true); 390 } 391 OperandMatchResultTy 392 parseAccessReg(SmallVectorImpl<MCParsedAsmOperand*> &Operands); 393 OperandMatchResultTy 394 parsePCRel(SmallVectorImpl<MCParsedAsmOperand*> &Operands, 395 int64_t MinVal, int64_t MaxVal); 396 OperandMatchResultTy 397 parsePCRel16(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { 398 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1); 399 } 400 OperandMatchResultTy 401 parsePCRel32(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { 402 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1); 403 } 404 }; 405 } 406 407 #define GET_REGISTER_MATCHER 408 #define GET_SUBTARGET_FEATURE_NAME 409 #define GET_MATCHER_IMPLEMENTATION 410 #include "SystemZGenAsmMatcher.inc" 411 412 void SystemZOperand::print(raw_ostream &OS) const { 413 llvm_unreachable("Not implemented"); 414 } 415 416 // Parse one register of the form %<prefix><number>. 417 bool SystemZAsmParser::parseRegister(Register &Reg) { 418 Reg.StartLoc = Parser.getTok().getLoc(); 419 420 // Eat the % prefix. 421 if (Parser.getTok().isNot(AsmToken::Percent)) 422 return Error(Parser.getTok().getLoc(), "register expected"); 423 Parser.Lex(); 424 425 // Expect a register name. 426 if (Parser.getTok().isNot(AsmToken::Identifier)) 427 return Error(Reg.StartLoc, "invalid register"); 428 429 // Check that there's a prefix. 430 StringRef Name = Parser.getTok().getString(); 431 if (Name.size() < 2) 432 return Error(Reg.StartLoc, "invalid register"); 433 char Prefix = Name[0]; 434 435 // Treat the rest of the register name as a register number. 436 if (Name.substr(1).getAsInteger(10, Reg.Num)) 437 return Error(Reg.StartLoc, "invalid register"); 438 439 // Look for valid combinations of prefix and number. 440 if (Prefix == 'r' && Reg.Num < 16) 441 Reg.Group = RegGR; 442 else if (Prefix == 'f' && Reg.Num < 16) 443 Reg.Group = RegFP; 444 else if (Prefix == 'a' && Reg.Num < 16) 445 Reg.Group = RegAccess; 446 else 447 return Error(Reg.StartLoc, "invalid register"); 448 449 Reg.EndLoc = Parser.getTok().getLoc(); 450 Parser.Lex(); 451 return false; 452 } 453 454 // Parse a register of group Group. If Regs is nonnull, use it to map 455 // the raw register number to LLVM numbering, with zero entries indicating 456 // an invalid register. IsAddress says whether the register appears in an 457 // address context. 458 bool SystemZAsmParser::parseRegister(Register &Reg, RegisterGroup Group, 459 const unsigned *Regs, bool IsAddress) { 460 if (parseRegister(Reg)) 461 return true; 462 if (Reg.Group != Group) 463 return Error(Reg.StartLoc, "invalid operand for instruction"); 464 if (Regs && Regs[Reg.Num] == 0) 465 return Error(Reg.StartLoc, "invalid register pair"); 466 if (Reg.Num == 0 && IsAddress) 467 return Error(Reg.StartLoc, "%r0 used in an address"); 468 if (Regs) 469 Reg.Num = Regs[Reg.Num]; 470 return false; 471 } 472 473 // Parse a register and add it to Operands. The other arguments are as above. 474 SystemZAsmParser::OperandMatchResultTy 475 SystemZAsmParser::parseRegister(SmallVectorImpl<MCParsedAsmOperand*> &Operands, 476 RegisterGroup Group, const unsigned *Regs, 477 SystemZOperand::RegisterKind Kind, 478 bool IsAddress) { 479 if (Parser.getTok().isNot(AsmToken::Percent)) 480 return MatchOperand_NoMatch; 481 482 Register Reg; 483 if (parseRegister(Reg, Group, Regs, IsAddress)) 484 return MatchOperand_ParseFail; 485 486 Operands.push_back(SystemZOperand::createReg(Kind, Reg.Num, 487 Reg.StartLoc, Reg.EndLoc)); 488 return MatchOperand_Success; 489 } 490 491 // Parse a memory operand into Base, Disp and Index. Regs maps asm 492 // register numbers to LLVM register numbers and RegKind says what kind 493 // of address register we're using (ADDR32Reg or ADDR64Reg). HasIndex 494 // says whether the address allows index registers. 495 bool SystemZAsmParser::parseAddress(unsigned &Base, const MCExpr *&Disp, 496 unsigned &Index, const unsigned *Regs, 497 SystemZOperand::RegisterKind RegKind, 498 bool HasIndex) { 499 // Parse the displacement, which must always be present. 500 if (getParser().parseExpression(Disp)) 501 return true; 502 503 // Parse the optional base and index. 504 Index = 0; 505 Base = 0; 506 if (getLexer().is(AsmToken::LParen)) { 507 Parser.Lex(); 508 509 // Parse the first register. 510 Register Reg; 511 if (parseRegister(Reg, RegGR, Regs, RegKind)) 512 return true; 513 514 // Check whether there's a second register. If so, the one that we 515 // just parsed was the index. 516 if (getLexer().is(AsmToken::Comma)) { 517 Parser.Lex(); 518 519 if (!HasIndex) 520 return Error(Reg.StartLoc, "invalid use of indexed addressing"); 521 522 Index = Reg.Num; 523 if (parseRegister(Reg, RegGR, Regs, RegKind)) 524 return true; 525 } 526 Base = Reg.Num; 527 528 // Consume the closing bracket. 529 if (getLexer().isNot(AsmToken::RParen)) 530 return Error(Parser.getTok().getLoc(), "unexpected token in address"); 531 Parser.Lex(); 532 } 533 return false; 534 } 535 536 // Parse a memory operand and add it to Operands. The other arguments 537 // are as above. 538 SystemZAsmParser::OperandMatchResultTy 539 SystemZAsmParser::parseAddress(SmallVectorImpl<MCParsedAsmOperand*> &Operands, 540 const unsigned *Regs, 541 SystemZOperand::RegisterKind RegKind, 542 bool HasIndex) { 543 SMLoc StartLoc = Parser.getTok().getLoc(); 544 unsigned Base, Index; 545 const MCExpr *Disp; 546 if (parseAddress(Base, Disp, Index, Regs, RegKind, HasIndex)) 547 return MatchOperand_ParseFail; 548 549 SMLoc EndLoc = 550 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 551 Operands.push_back(SystemZOperand::createMem(RegKind, Base, Disp, Index, 552 StartLoc, EndLoc)); 553 return MatchOperand_Success; 554 } 555 556 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) { 557 return true; 558 } 559 560 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, 561 SMLoc &EndLoc) { 562 Register Reg; 563 if (parseRegister(Reg)) 564 return true; 565 if (Reg.Group == RegGR) 566 RegNo = SystemZMC::GR64Regs[Reg.Num]; 567 else if (Reg.Group == RegFP) 568 RegNo = SystemZMC::FP64Regs[Reg.Num]; 569 else 570 // FIXME: Access registers aren't modelled as LLVM registers yet. 571 return Error(Reg.StartLoc, "invalid operand for instruction"); 572 StartLoc = Reg.StartLoc; 573 EndLoc = Reg.EndLoc; 574 return false; 575 } 576 577 bool SystemZAsmParser:: 578 ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, 579 SmallVectorImpl<MCParsedAsmOperand*> &Operands) { 580 Operands.push_back(SystemZOperand::createToken(Name, NameLoc)); 581 582 // Read the remaining operands. 583 if (getLexer().isNot(AsmToken::EndOfStatement)) { 584 // Read the first operand. 585 if (parseOperand(Operands, Name)) { 586 Parser.eatToEndOfStatement(); 587 return true; 588 } 589 590 // Read any subsequent operands. 591 while (getLexer().is(AsmToken::Comma)) { 592 Parser.Lex(); 593 if (parseOperand(Operands, Name)) { 594 Parser.eatToEndOfStatement(); 595 return true; 596 } 597 } 598 if (getLexer().isNot(AsmToken::EndOfStatement)) { 599 SMLoc Loc = getLexer().getLoc(); 600 Parser.eatToEndOfStatement(); 601 return Error(Loc, "unexpected token in argument list"); 602 } 603 } 604 605 // Consume the EndOfStatement. 606 Parser.Lex(); 607 return false; 608 } 609 610 bool SystemZAsmParser:: 611 parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands, 612 StringRef Mnemonic) { 613 // Check if the current operand has a custom associated parser, if so, try to 614 // custom parse the operand, or fallback to the general approach. 615 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 616 if (ResTy == MatchOperand_Success) 617 return false; 618 619 // If there wasn't a custom match, try the generic matcher below. Otherwise, 620 // there was a match, but an error occurred, in which case, just return that 621 // the operand parsing failed. 622 if (ResTy == MatchOperand_ParseFail) 623 return true; 624 625 // Check for a register. All real register operands should have used 626 // a context-dependent parse routine, which gives the required register 627 // class. The code is here to mop up other cases, like those where 628 // the instruction isn't recognized. 629 if (Parser.getTok().is(AsmToken::Percent)) { 630 Register Reg; 631 if (parseRegister(Reg)) 632 return true; 633 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc)); 634 return false; 635 } 636 637 // The only other type of operand is an immediate or address. As above, 638 // real address operands should have used a context-dependent parse routine, 639 // so we treat any plain expression as an immediate. 640 SMLoc StartLoc = Parser.getTok().getLoc(); 641 unsigned Base, Index; 642 const MCExpr *Expr; 643 if (parseAddress(Base, Expr, Index, SystemZMC::GR64Regs, 644 SystemZOperand::ADDR64Reg, true)) 645 return true; 646 647 SMLoc EndLoc = 648 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 649 if (Base || Index) 650 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc)); 651 else 652 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 653 return false; 654 } 655 656 bool SystemZAsmParser:: 657 MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 658 SmallVectorImpl<MCParsedAsmOperand*> &Operands, 659 MCStreamer &Out, unsigned &ErrorInfo, 660 bool MatchingInlineAsm) { 661 MCInst Inst; 662 unsigned MatchResult; 663 664 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, 665 MatchingInlineAsm); 666 switch (MatchResult) { 667 default: break; 668 case Match_Success: 669 Inst.setLoc(IDLoc); 670 Out.EmitInstruction(Inst); 671 return false; 672 673 case Match_MissingFeature: { 674 assert(ErrorInfo && "Unknown missing feature!"); 675 // Special case the error message for the very common case where only 676 // a single subtarget feature is missing 677 std::string Msg = "instruction requires:"; 678 unsigned Mask = 1; 679 for (unsigned I = 0; I < sizeof(ErrorInfo) * 8 - 1; ++I) { 680 if (ErrorInfo & Mask) { 681 Msg += " "; 682 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 683 } 684 Mask <<= 1; 685 } 686 return Error(IDLoc, Msg); 687 } 688 689 case Match_InvalidOperand: { 690 SMLoc ErrorLoc = IDLoc; 691 if (ErrorInfo != ~0U) { 692 if (ErrorInfo >= Operands.size()) 693 return Error(IDLoc, "too few operands for instruction"); 694 695 ErrorLoc = ((SystemZOperand*)Operands[ErrorInfo])->getStartLoc(); 696 if (ErrorLoc == SMLoc()) 697 ErrorLoc = IDLoc; 698 } 699 return Error(ErrorLoc, "invalid operand for instruction"); 700 } 701 702 case Match_MnemonicFail: 703 return Error(IDLoc, "invalid instruction"); 704 } 705 706 llvm_unreachable("Unexpected match type"); 707 } 708 709 SystemZAsmParser::OperandMatchResultTy SystemZAsmParser:: 710 parseAccessReg(SmallVectorImpl<MCParsedAsmOperand*> &Operands) { 711 if (Parser.getTok().isNot(AsmToken::Percent)) 712 return MatchOperand_NoMatch; 713 714 Register Reg; 715 if (parseRegister(Reg, RegAccess, 0)) 716 return MatchOperand_ParseFail; 717 718 Operands.push_back(SystemZOperand::createAccessReg(Reg.Num, 719 Reg.StartLoc, 720 Reg.EndLoc)); 721 return MatchOperand_Success; 722 } 723 724 SystemZAsmParser::OperandMatchResultTy SystemZAsmParser:: 725 parsePCRel(SmallVectorImpl<MCParsedAsmOperand*> &Operands, 726 int64_t MinVal, int64_t MaxVal) { 727 MCContext &Ctx = getContext(); 728 MCStreamer &Out = getStreamer(); 729 const MCExpr *Expr; 730 SMLoc StartLoc = Parser.getTok().getLoc(); 731 if (getParser().parseExpression(Expr)) 732 return MatchOperand_NoMatch; 733 734 // For consistency with the GNU assembler, treat immediates as offsets 735 // from ".". 736 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) { 737 int64_t Value = CE->getValue(); 738 if ((Value & 1) || Value < MinVal || Value > MaxVal) { 739 Error(StartLoc, "offset out of range"); 740 return MatchOperand_ParseFail; 741 } 742 MCSymbol *Sym = Ctx.CreateTempSymbol(); 743 Out.EmitLabel(Sym); 744 const MCExpr *Base = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_None, 745 Ctx); 746 Expr = Value == 0 ? Base : MCBinaryExpr::CreateAdd(Base, Expr, Ctx); 747 } 748 749 SMLoc EndLoc = 750 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 751 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 752 return MatchOperand_Success; 753 } 754 755 // Force static initialization. 756 extern "C" void LLVMInitializeSystemZAsmParser() { 757 RegisterMCAsmParser<SystemZAsmParser> X(TheSystemZTarget); 758 } 759