1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "MCTargetDesc/SystemZMCTargetDesc.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/StringRef.h" 14 #include "llvm/MC/MCContext.h" 15 #include "llvm/MC/MCExpr.h" 16 #include "llvm/MC/MCInst.h" 17 #include "llvm/MC/MCInstBuilder.h" 18 #include "llvm/MC/MCParser/MCAsmLexer.h" 19 #include "llvm/MC/MCParser/MCAsmParser.h" 20 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 21 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 22 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/MC/MCSubtargetInfo.h" 25 #include "llvm/Support/Casting.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/SMLoc.h" 28 #include "llvm/Support/TargetRegistry.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <cstddef> 32 #include <cstdint> 33 #include <iterator> 34 #include <memory> 35 #include <string> 36 37 using namespace llvm; 38 39 // Return true if Expr is in the range [MinValue, MaxValue]. 40 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) { 41 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 42 int64_t Value = CE->getValue(); 43 return Value >= MinValue && Value <= MaxValue; 44 } 45 return false; 46 } 47 48 namespace { 49 50 enum RegisterKind { 51 GR32Reg, 52 GRH32Reg, 53 GR64Reg, 54 GR128Reg, 55 ADDR32Reg, 56 ADDR64Reg, 57 FP32Reg, 58 FP64Reg, 59 FP128Reg, 60 VR32Reg, 61 VR64Reg, 62 VR128Reg, 63 AR32Reg, 64 CR64Reg, 65 }; 66 67 enum MemoryKind { 68 BDMem, 69 BDXMem, 70 BDLMem, 71 BDRMem, 72 BDVMem 73 }; 74 75 class SystemZOperand : public MCParsedAsmOperand { 76 private: 77 enum OperandKind { 78 KindInvalid, 79 KindToken, 80 KindReg, 81 KindImm, 82 KindImmTLS, 83 KindMem 84 }; 85 86 OperandKind Kind; 87 SMLoc StartLoc, EndLoc; 88 89 // A string of length Length, starting at Data. 90 struct TokenOp { 91 const char *Data; 92 unsigned Length; 93 }; 94 95 // LLVM register Num, which has kind Kind. In some ways it might be 96 // easier for this class to have a register bank (general, floating-point 97 // or access) and a raw register number (0-15). This would postpone the 98 // interpretation of the operand to the add*() methods and avoid the need 99 // for context-dependent parsing. However, we do things the current way 100 // because of the virtual getReg() method, which needs to distinguish 101 // between (say) %r0 used as a single register and %r0 used as a pair. 102 // Context-dependent parsing can also give us slightly better error 103 // messages when invalid pairs like %r1 are used. 104 struct RegOp { 105 RegisterKind Kind; 106 unsigned Num; 107 }; 108 109 // Base + Disp + Index, where Base and Index are LLVM registers or 0. 110 // MemKind says what type of memory this is and RegKind says what type 111 // the base register has (ADDR32Reg or ADDR64Reg). Length is the operand 112 // length for D(L,B)-style operands, otherwise it is null. 113 struct MemOp { 114 unsigned Base : 12; 115 unsigned Index : 12; 116 unsigned MemKind : 4; 117 unsigned RegKind : 4; 118 const MCExpr *Disp; 119 union { 120 const MCExpr *Imm; 121 unsigned Reg; 122 } Length; 123 }; 124 125 // Imm is an immediate operand, and Sym is an optional TLS symbol 126 // for use with a __tls_get_offset marker relocation. 127 struct ImmTLSOp { 128 const MCExpr *Imm; 129 const MCExpr *Sym; 130 }; 131 132 union { 133 TokenOp Token; 134 RegOp Reg; 135 const MCExpr *Imm; 136 ImmTLSOp ImmTLS; 137 MemOp Mem; 138 }; 139 140 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 141 // Add as immediates when possible. Null MCExpr = 0. 142 if (!Expr) 143 Inst.addOperand(MCOperand::createImm(0)); 144 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) 145 Inst.addOperand(MCOperand::createImm(CE->getValue())); 146 else 147 Inst.addOperand(MCOperand::createExpr(Expr)); 148 } 149 150 public: 151 SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc) 152 : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {} 153 154 // Create particular kinds of operand. 155 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc, 156 SMLoc EndLoc) { 157 return make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc); 158 } 159 160 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) { 161 auto Op = make_unique<SystemZOperand>(KindToken, Loc, Loc); 162 Op->Token.Data = Str.data(); 163 Op->Token.Length = Str.size(); 164 return Op; 165 } 166 167 static std::unique_ptr<SystemZOperand> 168 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { 169 auto Op = make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc); 170 Op->Reg.Kind = Kind; 171 Op->Reg.Num = Num; 172 return Op; 173 } 174 175 static std::unique_ptr<SystemZOperand> 176 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { 177 auto Op = make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc); 178 Op->Imm = Expr; 179 return Op; 180 } 181 182 static std::unique_ptr<SystemZOperand> 183 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, 184 const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm, 185 unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) { 186 auto Op = make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc); 187 Op->Mem.MemKind = MemKind; 188 Op->Mem.RegKind = RegKind; 189 Op->Mem.Base = Base; 190 Op->Mem.Index = Index; 191 Op->Mem.Disp = Disp; 192 if (MemKind == BDLMem) 193 Op->Mem.Length.Imm = LengthImm; 194 if (MemKind == BDRMem) 195 Op->Mem.Length.Reg = LengthReg; 196 return Op; 197 } 198 199 static std::unique_ptr<SystemZOperand> 200 createImmTLS(const MCExpr *Imm, const MCExpr *Sym, 201 SMLoc StartLoc, SMLoc EndLoc) { 202 auto Op = make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc); 203 Op->ImmTLS.Imm = Imm; 204 Op->ImmTLS.Sym = Sym; 205 return Op; 206 } 207 208 // Token operands 209 bool isToken() const override { 210 return Kind == KindToken; 211 } 212 StringRef getToken() const { 213 assert(Kind == KindToken && "Not a token"); 214 return StringRef(Token.Data, Token.Length); 215 } 216 217 // Register operands. 218 bool isReg() const override { 219 return Kind == KindReg; 220 } 221 bool isReg(RegisterKind RegKind) const { 222 return Kind == KindReg && Reg.Kind == RegKind; 223 } 224 unsigned getReg() const override { 225 assert(Kind == KindReg && "Not a register"); 226 return Reg.Num; 227 } 228 229 // Immediate operands. 230 bool isImm() const override { 231 return Kind == KindImm; 232 } 233 bool isImm(int64_t MinValue, int64_t MaxValue) const { 234 return Kind == KindImm && inRange(Imm, MinValue, MaxValue); 235 } 236 const MCExpr *getImm() const { 237 assert(Kind == KindImm && "Not an immediate"); 238 return Imm; 239 } 240 241 // Immediate operands with optional TLS symbol. 242 bool isImmTLS() const { 243 return Kind == KindImmTLS; 244 } 245 246 // Memory operands. 247 bool isMem() const override { 248 return Kind == KindMem; 249 } 250 bool isMem(MemoryKind MemKind) const { 251 return (Kind == KindMem && 252 (Mem.MemKind == MemKind || 253 // A BDMem can be treated as a BDXMem in which the index 254 // register field is 0. 255 (Mem.MemKind == BDMem && MemKind == BDXMem))); 256 } 257 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { 258 return isMem(MemKind) && Mem.RegKind == RegKind; 259 } 260 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { 261 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff); 262 } 263 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { 264 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287); 265 } 266 bool isMemDisp12Len4(RegisterKind RegKind) const { 267 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10); 268 } 269 bool isMemDisp12Len8(RegisterKind RegKind) const { 270 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100); 271 } 272 273 // Override MCParsedAsmOperand. 274 SMLoc getStartLoc() const override { return StartLoc; } 275 SMLoc getEndLoc() const override { return EndLoc; } 276 void print(raw_ostream &OS) const override; 277 278 /// getLocRange - Get the range between the first and last token of this 279 /// operand. 280 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 281 282 // Used by the TableGen code to add particular types of operand 283 // to an instruction. 284 void addRegOperands(MCInst &Inst, unsigned N) const { 285 assert(N == 1 && "Invalid number of operands"); 286 Inst.addOperand(MCOperand::createReg(getReg())); 287 } 288 void addImmOperands(MCInst &Inst, unsigned N) const { 289 assert(N == 1 && "Invalid number of operands"); 290 addExpr(Inst, getImm()); 291 } 292 void addBDAddrOperands(MCInst &Inst, unsigned N) const { 293 assert(N == 2 && "Invalid number of operands"); 294 assert(isMem(BDMem) && "Invalid operand type"); 295 Inst.addOperand(MCOperand::createReg(Mem.Base)); 296 addExpr(Inst, Mem.Disp); 297 } 298 void addBDXAddrOperands(MCInst &Inst, unsigned N) const { 299 assert(N == 3 && "Invalid number of operands"); 300 assert(isMem(BDXMem) && "Invalid operand type"); 301 Inst.addOperand(MCOperand::createReg(Mem.Base)); 302 addExpr(Inst, Mem.Disp); 303 Inst.addOperand(MCOperand::createReg(Mem.Index)); 304 } 305 void addBDLAddrOperands(MCInst &Inst, unsigned N) const { 306 assert(N == 3 && "Invalid number of operands"); 307 assert(isMem(BDLMem) && "Invalid operand type"); 308 Inst.addOperand(MCOperand::createReg(Mem.Base)); 309 addExpr(Inst, Mem.Disp); 310 addExpr(Inst, Mem.Length.Imm); 311 } 312 void addBDRAddrOperands(MCInst &Inst, unsigned N) const { 313 assert(N == 3 && "Invalid number of operands"); 314 assert(isMem(BDRMem) && "Invalid operand type"); 315 Inst.addOperand(MCOperand::createReg(Mem.Base)); 316 addExpr(Inst, Mem.Disp); 317 Inst.addOperand(MCOperand::createReg(Mem.Length.Reg)); 318 } 319 void addBDVAddrOperands(MCInst &Inst, unsigned N) const { 320 assert(N == 3 && "Invalid number of operands"); 321 assert(isMem(BDVMem) && "Invalid operand type"); 322 Inst.addOperand(MCOperand::createReg(Mem.Base)); 323 addExpr(Inst, Mem.Disp); 324 Inst.addOperand(MCOperand::createReg(Mem.Index)); 325 } 326 void addImmTLSOperands(MCInst &Inst, unsigned N) const { 327 assert(N == 2 && "Invalid number of operands"); 328 assert(Kind == KindImmTLS && "Invalid operand type"); 329 addExpr(Inst, ImmTLS.Imm); 330 if (ImmTLS.Sym) 331 addExpr(Inst, ImmTLS.Sym); 332 } 333 334 // Used by the TableGen code to check for particular operand types. 335 bool isGR32() const { return isReg(GR32Reg); } 336 bool isGRH32() const { return isReg(GRH32Reg); } 337 bool isGRX32() const { return false; } 338 bool isGR64() const { return isReg(GR64Reg); } 339 bool isGR128() const { return isReg(GR128Reg); } 340 bool isADDR32() const { return isReg(ADDR32Reg); } 341 bool isADDR64() const { return isReg(ADDR64Reg); } 342 bool isADDR128() const { return false; } 343 bool isFP32() const { return isReg(FP32Reg); } 344 bool isFP64() const { return isReg(FP64Reg); } 345 bool isFP128() const { return isReg(FP128Reg); } 346 bool isVR32() const { return isReg(VR32Reg); } 347 bool isVR64() const { return isReg(VR64Reg); } 348 bool isVF128() const { return false; } 349 bool isVR128() const { return isReg(VR128Reg); } 350 bool isAR32() const { return isReg(AR32Reg); } 351 bool isCR64() const { return isReg(CR64Reg); } 352 bool isAnyReg() const { return (isReg() || isImm(0, 15)); } 353 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, ADDR32Reg); } 354 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, ADDR32Reg); } 355 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, ADDR64Reg); } 356 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, ADDR64Reg); } 357 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, ADDR64Reg); } 358 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, ADDR64Reg); } 359 bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(ADDR64Reg); } 360 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(ADDR64Reg); } 361 bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, ADDR64Reg); } 362 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, ADDR64Reg); } 363 bool isU1Imm() const { return isImm(0, 1); } 364 bool isU2Imm() const { return isImm(0, 3); } 365 bool isU3Imm() const { return isImm(0, 7); } 366 bool isU4Imm() const { return isImm(0, 15); } 367 bool isU6Imm() const { return isImm(0, 63); } 368 bool isU8Imm() const { return isImm(0, 255); } 369 bool isS8Imm() const { return isImm(-128, 127); } 370 bool isU12Imm() const { return isImm(0, 4095); } 371 bool isU16Imm() const { return isImm(0, 65535); } 372 bool isS16Imm() const { return isImm(-32768, 32767); } 373 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); } 374 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); } 375 bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); } 376 }; 377 378 class SystemZAsmParser : public MCTargetAsmParser { 379 #define GET_ASSEMBLER_HEADER 380 #include "SystemZGenAsmMatcher.inc" 381 382 private: 383 MCAsmParser &Parser; 384 enum RegisterGroup { 385 RegGR, 386 RegFP, 387 RegV, 388 RegAR, 389 RegCR 390 }; 391 struct Register { 392 RegisterGroup Group; 393 unsigned Num; 394 SMLoc StartLoc, EndLoc; 395 }; 396 397 bool parseRegister(Register &Reg); 398 399 bool parseRegister(Register &Reg, RegisterGroup Group, const unsigned *Regs, 400 bool IsAddress = false); 401 402 OperandMatchResultTy parseRegister(OperandVector &Operands, 403 RegisterGroup Group, const unsigned *Regs, 404 RegisterKind Kind); 405 406 OperandMatchResultTy parseAnyRegister(OperandVector &Operands); 407 408 bool parseAddress(bool &HaveReg1, Register &Reg1, 409 bool &HaveReg2, Register &Reg2, 410 const MCExpr *&Disp, const MCExpr *&Length); 411 bool parseAddressRegister(Register &Reg); 412 413 bool ParseDirectiveInsn(SMLoc L); 414 415 OperandMatchResultTy parseAddress(OperandVector &Operands, 416 MemoryKind MemKind, const unsigned *Regs, 417 RegisterKind RegKind); 418 419 OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal, 420 int64_t MaxVal, bool AllowTLS); 421 422 bool parseOperand(OperandVector &Operands, StringRef Mnemonic); 423 424 public: 425 SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, 426 const MCInstrInfo &MII, 427 const MCTargetOptions &Options) 428 : MCTargetAsmParser(Options, sti, MII), Parser(parser) { 429 MCAsmParserExtension::Initialize(Parser); 430 431 // Alias the .word directive to .short. 432 parser.addAliasForDirective(".word", ".short"); 433 434 // Initialize the set of available features. 435 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); 436 } 437 438 // Override MCTargetAsmParser. 439 bool ParseDirective(AsmToken DirectiveID) override; 440 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 441 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 442 SMLoc NameLoc, OperandVector &Operands) override; 443 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 444 OperandVector &Operands, MCStreamer &Out, 445 uint64_t &ErrorInfo, 446 bool MatchingInlineAsm) override; 447 448 // Used by the TableGen code to parse particular operand types. 449 OperandMatchResultTy parseGR32(OperandVector &Operands) { 450 return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, GR32Reg); 451 } 452 OperandMatchResultTy parseGRH32(OperandVector &Operands) { 453 return parseRegister(Operands, RegGR, SystemZMC::GRH32Regs, GRH32Reg); 454 } 455 OperandMatchResultTy parseGRX32(OperandVector &Operands) { 456 llvm_unreachable("GRX32 should only be used for pseudo instructions"); 457 } 458 OperandMatchResultTy parseGR64(OperandVector &Operands) { 459 return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, GR64Reg); 460 } 461 OperandMatchResultTy parseGR128(OperandVector &Operands) { 462 return parseRegister(Operands, RegGR, SystemZMC::GR128Regs, GR128Reg); 463 } 464 OperandMatchResultTy parseADDR32(OperandVector &Operands) { 465 return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, ADDR32Reg); 466 } 467 OperandMatchResultTy parseADDR64(OperandVector &Operands) { 468 return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, ADDR64Reg); 469 } 470 OperandMatchResultTy parseADDR128(OperandVector &Operands) { 471 llvm_unreachable("Shouldn't be used as an operand"); 472 } 473 OperandMatchResultTy parseFP32(OperandVector &Operands) { 474 return parseRegister(Operands, RegFP, SystemZMC::FP32Regs, FP32Reg); 475 } 476 OperandMatchResultTy parseFP64(OperandVector &Operands) { 477 return parseRegister(Operands, RegFP, SystemZMC::FP64Regs, FP64Reg); 478 } 479 OperandMatchResultTy parseFP128(OperandVector &Operands) { 480 return parseRegister(Operands, RegFP, SystemZMC::FP128Regs, FP128Reg); 481 } 482 OperandMatchResultTy parseVR32(OperandVector &Operands) { 483 return parseRegister(Operands, RegV, SystemZMC::VR32Regs, VR32Reg); 484 } 485 OperandMatchResultTy parseVR64(OperandVector &Operands) { 486 return parseRegister(Operands, RegV, SystemZMC::VR64Regs, VR64Reg); 487 } 488 OperandMatchResultTy parseVF128(OperandVector &Operands) { 489 llvm_unreachable("Shouldn't be used as an operand"); 490 } 491 OperandMatchResultTy parseVR128(OperandVector &Operands) { 492 return parseRegister(Operands, RegV, SystemZMC::VR128Regs, VR128Reg); 493 } 494 OperandMatchResultTy parseAR32(OperandVector &Operands) { 495 return parseRegister(Operands, RegAR, SystemZMC::AR32Regs, AR32Reg); 496 } 497 OperandMatchResultTy parseCR64(OperandVector &Operands) { 498 return parseRegister(Operands, RegCR, SystemZMC::CR64Regs, CR64Reg); 499 } 500 OperandMatchResultTy parseAnyReg(OperandVector &Operands) { 501 return parseAnyRegister(Operands); 502 } 503 OperandMatchResultTy parseBDAddr32(OperandVector &Operands) { 504 return parseAddress(Operands, BDMem, SystemZMC::GR32Regs, ADDR32Reg); 505 } 506 OperandMatchResultTy parseBDAddr64(OperandVector &Operands) { 507 return parseAddress(Operands, BDMem, SystemZMC::GR64Regs, ADDR64Reg); 508 } 509 OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) { 510 return parseAddress(Operands, BDXMem, SystemZMC::GR64Regs, ADDR64Reg); 511 } 512 OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) { 513 return parseAddress(Operands, BDLMem, SystemZMC::GR64Regs, ADDR64Reg); 514 } 515 OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) { 516 return parseAddress(Operands, BDRMem, SystemZMC::GR64Regs, ADDR64Reg); 517 } 518 OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) { 519 return parseAddress(Operands, BDVMem, SystemZMC::GR64Regs, ADDR64Reg); 520 } 521 OperandMatchResultTy parsePCRel12(OperandVector &Operands) { 522 return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false); 523 } 524 OperandMatchResultTy parsePCRel16(OperandVector &Operands) { 525 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false); 526 } 527 OperandMatchResultTy parsePCRel24(OperandVector &Operands) { 528 return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false); 529 } 530 OperandMatchResultTy parsePCRel32(OperandVector &Operands) { 531 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false); 532 } 533 OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) { 534 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true); 535 } 536 OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) { 537 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true); 538 } 539 }; 540 541 } // end anonymous namespace 542 543 #define GET_REGISTER_MATCHER 544 #define GET_SUBTARGET_FEATURE_NAME 545 #define GET_MATCHER_IMPLEMENTATION 546 #define GET_MNEMONIC_SPELL_CHECKER 547 #include "SystemZGenAsmMatcher.inc" 548 549 // Used for the .insn directives; contains information needed to parse the 550 // operands in the directive. 551 struct InsnMatchEntry { 552 StringRef Format; 553 uint64_t Opcode; 554 int32_t NumOperands; 555 MatchClassKind OperandKinds[5]; 556 }; 557 558 // For equal_range comparison. 559 struct CompareInsn { 560 bool operator() (const InsnMatchEntry &LHS, StringRef RHS) { 561 return LHS.Format < RHS; 562 } 563 bool operator() (StringRef LHS, const InsnMatchEntry &RHS) { 564 return LHS < RHS.Format; 565 } 566 bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) { 567 return LHS.Format < RHS.Format; 568 } 569 }; 570 571 // Table initializing information for parsing the .insn directive. 572 static struct InsnMatchEntry InsnMatchTable[] = { 573 /* Format, Opcode, NumOperands, OperandKinds */ 574 { "e", SystemZ::InsnE, 1, 575 { MCK_U16Imm } }, 576 { "ri", SystemZ::InsnRI, 3, 577 { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } }, 578 { "rie", SystemZ::InsnRIE, 4, 579 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 580 { "ril", SystemZ::InsnRIL, 3, 581 { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } }, 582 { "rilu", SystemZ::InsnRILU, 3, 583 { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } }, 584 { "ris", SystemZ::InsnRIS, 5, 585 { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 586 { "rr", SystemZ::InsnRR, 3, 587 { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } }, 588 { "rre", SystemZ::InsnRRE, 3, 589 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } }, 590 { "rrf", SystemZ::InsnRRF, 5, 591 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } }, 592 { "rrs", SystemZ::InsnRRS, 5, 593 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 594 { "rs", SystemZ::InsnRS, 4, 595 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 596 { "rse", SystemZ::InsnRSE, 4, 597 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 598 { "rsi", SystemZ::InsnRSI, 4, 599 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 600 { "rsy", SystemZ::InsnRSY, 4, 601 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } }, 602 { "rx", SystemZ::InsnRX, 3, 603 { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 604 { "rxe", SystemZ::InsnRXE, 3, 605 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 606 { "rxf", SystemZ::InsnRXF, 4, 607 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 608 { "rxy", SystemZ::InsnRXY, 3, 609 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } }, 610 { "s", SystemZ::InsnS, 2, 611 { MCK_U32Imm, MCK_BDAddr64Disp12 } }, 612 { "si", SystemZ::InsnSI, 3, 613 { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } }, 614 { "sil", SystemZ::InsnSIL, 3, 615 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } }, 616 { "siy", SystemZ::InsnSIY, 3, 617 { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } }, 618 { "ss", SystemZ::InsnSS, 4, 619 { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 620 { "sse", SystemZ::InsnSSE, 3, 621 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } }, 622 { "ssf", SystemZ::InsnSSF, 4, 623 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } } 624 }; 625 626 void SystemZOperand::print(raw_ostream &OS) const { 627 llvm_unreachable("Not implemented"); 628 } 629 630 // Parse one register of the form %<prefix><number>. 631 bool SystemZAsmParser::parseRegister(Register &Reg) { 632 Reg.StartLoc = Parser.getTok().getLoc(); 633 634 // Eat the % prefix. 635 if (Parser.getTok().isNot(AsmToken::Percent)) 636 return Error(Parser.getTok().getLoc(), "register expected"); 637 Parser.Lex(); 638 639 // Expect a register name. 640 if (Parser.getTok().isNot(AsmToken::Identifier)) 641 return Error(Reg.StartLoc, "invalid register"); 642 643 // Check that there's a prefix. 644 StringRef Name = Parser.getTok().getString(); 645 if (Name.size() < 2) 646 return Error(Reg.StartLoc, "invalid register"); 647 char Prefix = Name[0]; 648 649 // Treat the rest of the register name as a register number. 650 if (Name.substr(1).getAsInteger(10, Reg.Num)) 651 return Error(Reg.StartLoc, "invalid register"); 652 653 // Look for valid combinations of prefix and number. 654 if (Prefix == 'r' && Reg.Num < 16) 655 Reg.Group = RegGR; 656 else if (Prefix == 'f' && Reg.Num < 16) 657 Reg.Group = RegFP; 658 else if (Prefix == 'v' && Reg.Num < 32) 659 Reg.Group = RegV; 660 else if (Prefix == 'a' && Reg.Num < 16) 661 Reg.Group = RegAR; 662 else if (Prefix == 'c' && Reg.Num < 16) 663 Reg.Group = RegCR; 664 else 665 return Error(Reg.StartLoc, "invalid register"); 666 667 Reg.EndLoc = Parser.getTok().getLoc(); 668 Parser.Lex(); 669 return false; 670 } 671 672 // Parse a register of group Group. If Regs is nonnull, use it to map 673 // the raw register number to LLVM numbering, with zero entries 674 // indicating an invalid register. IsAddress says whether the 675 // register appears in an address context. Allow FP Group if expecting 676 // RegV Group, since the f-prefix yields the FP group even while used 677 // with vector instructions. 678 bool SystemZAsmParser::parseRegister(Register &Reg, RegisterGroup Group, 679 const unsigned *Regs, bool IsAddress) { 680 if (parseRegister(Reg)) 681 return true; 682 if (Reg.Group != Group && !(Reg.Group == RegFP && Group == RegV)) 683 return Error(Reg.StartLoc, "invalid operand for instruction"); 684 if (Regs && Regs[Reg.Num] == 0) 685 return Error(Reg.StartLoc, "invalid register pair"); 686 if (Reg.Num == 0 && IsAddress) 687 return Error(Reg.StartLoc, "%r0 used in an address"); 688 if (Regs) 689 Reg.Num = Regs[Reg.Num]; 690 return false; 691 } 692 693 // Parse a register and add it to Operands. The other arguments are as above. 694 OperandMatchResultTy 695 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterGroup Group, 696 const unsigned *Regs, RegisterKind Kind) { 697 if (Parser.getTok().isNot(AsmToken::Percent)) 698 return MatchOperand_NoMatch; 699 700 Register Reg; 701 bool IsAddress = (Kind == ADDR32Reg || Kind == ADDR64Reg); 702 if (parseRegister(Reg, Group, Regs, IsAddress)) 703 return MatchOperand_ParseFail; 704 705 Operands.push_back(SystemZOperand::createReg(Kind, Reg.Num, 706 Reg.StartLoc, Reg.EndLoc)); 707 return MatchOperand_Success; 708 } 709 710 // Parse any type of register (including integers) and add it to Operands. 711 OperandMatchResultTy 712 SystemZAsmParser::parseAnyRegister(OperandVector &Operands) { 713 // Handle integer values. 714 if (Parser.getTok().is(AsmToken::Integer)) { 715 const MCExpr *Register; 716 SMLoc StartLoc = Parser.getTok().getLoc(); 717 if (Parser.parseExpression(Register)) 718 return MatchOperand_ParseFail; 719 720 if (auto *CE = dyn_cast<MCConstantExpr>(Register)) { 721 int64_t Value = CE->getValue(); 722 if (Value < 0 || Value > 15) { 723 Error(StartLoc, "invalid register"); 724 return MatchOperand_ParseFail; 725 } 726 } 727 728 SMLoc EndLoc = 729 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 730 731 Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc)); 732 } 733 else { 734 Register Reg; 735 if (parseRegister(Reg)) 736 return MatchOperand_ParseFail; 737 738 // Map to the correct register kind. 739 RegisterKind Kind; 740 unsigned RegNo; 741 if (Reg.Group == RegGR) { 742 Kind = GR64Reg; 743 RegNo = SystemZMC::GR64Regs[Reg.Num]; 744 } 745 else if (Reg.Group == RegFP) { 746 Kind = FP64Reg; 747 RegNo = SystemZMC::FP64Regs[Reg.Num]; 748 } 749 else if (Reg.Group == RegV) { 750 Kind = VR128Reg; 751 RegNo = SystemZMC::VR128Regs[Reg.Num]; 752 } 753 else if (Reg.Group == RegAR) { 754 Kind = AR32Reg; 755 RegNo = SystemZMC::AR32Regs[Reg.Num]; 756 } 757 else if (Reg.Group == RegCR) { 758 Kind = CR64Reg; 759 RegNo = SystemZMC::CR64Regs[Reg.Num]; 760 } 761 else { 762 return MatchOperand_ParseFail; 763 } 764 765 Operands.push_back(SystemZOperand::createReg(Kind, RegNo, 766 Reg.StartLoc, Reg.EndLoc)); 767 } 768 return MatchOperand_Success; 769 } 770 771 // Parse a memory operand into Reg1, Reg2, Disp, and Length. 772 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1, 773 bool &HaveReg2, Register &Reg2, 774 const MCExpr *&Disp, 775 const MCExpr *&Length) { 776 // Parse the displacement, which must always be present. 777 if (getParser().parseExpression(Disp)) 778 return true; 779 780 // Parse the optional base and index. 781 HaveReg1 = false; 782 HaveReg2 = false; 783 Length = nullptr; 784 if (getLexer().is(AsmToken::LParen)) { 785 Parser.Lex(); 786 787 if (getLexer().is(AsmToken::Percent)) { 788 // Parse the first register. 789 HaveReg1 = true; 790 if (parseRegister(Reg1)) 791 return true; 792 } else { 793 // Parse the length. 794 if (getParser().parseExpression(Length)) 795 return true; 796 } 797 798 // Check whether there's a second register. 799 if (getLexer().is(AsmToken::Comma)) { 800 Parser.Lex(); 801 HaveReg2 = true; 802 if (parseRegister(Reg2)) 803 return true; 804 } 805 806 // Consume the closing bracket. 807 if (getLexer().isNot(AsmToken::RParen)) 808 return Error(Parser.getTok().getLoc(), "unexpected token in address"); 809 Parser.Lex(); 810 } 811 return false; 812 } 813 814 // Verify that Reg is a valid address register (base or index). 815 bool 816 SystemZAsmParser::parseAddressRegister(Register &Reg) { 817 if (Reg.Group == RegV) { 818 Error(Reg.StartLoc, "invalid use of vector addressing"); 819 return true; 820 } else if (Reg.Group != RegGR) { 821 Error(Reg.StartLoc, "invalid address register"); 822 return true; 823 } else if (Reg.Num == 0) { 824 Error(Reg.StartLoc, "%r0 used in an address"); 825 return true; 826 } 827 return false; 828 } 829 830 // Parse a memory operand and add it to Operands. The other arguments 831 // are as above. 832 OperandMatchResultTy 833 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind, 834 const unsigned *Regs, RegisterKind RegKind) { 835 SMLoc StartLoc = Parser.getTok().getLoc(); 836 unsigned Base = 0, Index = 0, LengthReg = 0; 837 Register Reg1, Reg2; 838 bool HaveReg1, HaveReg2; 839 const MCExpr *Disp; 840 const MCExpr *Length; 841 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length)) 842 return MatchOperand_ParseFail; 843 844 switch (MemKind) { 845 case BDMem: 846 // If we have Reg1, it must be an address register. 847 if (HaveReg1) { 848 if (parseAddressRegister(Reg1)) 849 return MatchOperand_ParseFail; 850 Base = Regs[Reg1.Num]; 851 } 852 // There must be no Reg2 or length. 853 if (Length) { 854 Error(StartLoc, "invalid use of length addressing"); 855 return MatchOperand_ParseFail; 856 } 857 if (HaveReg2) { 858 Error(StartLoc, "invalid use of indexed addressing"); 859 return MatchOperand_ParseFail; 860 } 861 break; 862 case BDXMem: 863 // If we have Reg1, it must be an address register. 864 if (HaveReg1) { 865 if (parseAddressRegister(Reg1)) 866 return MatchOperand_ParseFail; 867 // If the are two registers, the first one is the index and the 868 // second is the base. 869 if (HaveReg2) 870 Index = Regs[Reg1.Num]; 871 else 872 Base = Regs[Reg1.Num]; 873 } 874 // If we have Reg2, it must be an address register. 875 if (HaveReg2) { 876 if (parseAddressRegister(Reg2)) 877 return MatchOperand_ParseFail; 878 Base = Regs[Reg2.Num]; 879 } 880 // There must be no length. 881 if (Length) { 882 Error(StartLoc, "invalid use of length addressing"); 883 return MatchOperand_ParseFail; 884 } 885 break; 886 case BDLMem: 887 // If we have Reg2, it must be an address register. 888 if (HaveReg2) { 889 if (parseAddressRegister(Reg2)) 890 return MatchOperand_ParseFail; 891 Base = Regs[Reg2.Num]; 892 } 893 // We cannot support base+index addressing. 894 if (HaveReg1 && HaveReg2) { 895 Error(StartLoc, "invalid use of indexed addressing"); 896 return MatchOperand_ParseFail; 897 } 898 // We must have a length. 899 if (!Length) { 900 Error(StartLoc, "missing length in address"); 901 return MatchOperand_ParseFail; 902 } 903 break; 904 case BDRMem: 905 // We must have Reg1, and it must be a GPR. 906 if (!HaveReg1 || Reg1.Group != RegGR) { 907 Error(StartLoc, "invalid operand for instruction"); 908 return MatchOperand_ParseFail; 909 } 910 LengthReg = SystemZMC::GR64Regs[Reg1.Num]; 911 // If we have Reg2, it must be an address register. 912 if (HaveReg2) { 913 if (parseAddressRegister(Reg2)) 914 return MatchOperand_ParseFail; 915 Base = Regs[Reg2.Num]; 916 } 917 // There must be no length. 918 if (Length) { 919 Error(StartLoc, "invalid use of length addressing"); 920 return MatchOperand_ParseFail; 921 } 922 break; 923 case BDVMem: 924 // We must have Reg1, and it must be a vector register. 925 if (!HaveReg1 || Reg1.Group != RegV) { 926 Error(StartLoc, "vector index required in address"); 927 return MatchOperand_ParseFail; 928 } 929 Index = SystemZMC::VR128Regs[Reg1.Num]; 930 // If we have Reg2, it must be an address register. 931 if (HaveReg2) { 932 if (parseAddressRegister(Reg2)) 933 return MatchOperand_ParseFail; 934 Base = Regs[Reg2.Num]; 935 } 936 // There must be no length. 937 if (Length) { 938 Error(StartLoc, "invalid use of length addressing"); 939 return MatchOperand_ParseFail; 940 } 941 break; 942 } 943 944 SMLoc EndLoc = 945 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 946 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp, 947 Index, Length, LengthReg, 948 StartLoc, EndLoc)); 949 return MatchOperand_Success; 950 } 951 952 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) { 953 StringRef IDVal = DirectiveID.getIdentifier(); 954 955 if (IDVal == ".insn") 956 return ParseDirectiveInsn(DirectiveID.getLoc()); 957 958 return true; 959 } 960 961 /// ParseDirectiveInsn 962 /// ::= .insn [ format, encoding, (operands (, operands)*) ] 963 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) { 964 MCAsmParser &Parser = getParser(); 965 966 // Expect instruction format as identifier. 967 StringRef Format; 968 SMLoc ErrorLoc = Parser.getTok().getLoc(); 969 if (Parser.parseIdentifier(Format)) 970 return Error(ErrorLoc, "expected instruction format"); 971 972 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands; 973 974 // Find entry for this format in InsnMatchTable. 975 auto EntryRange = 976 std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable), 977 Format, CompareInsn()); 978 979 // If first == second, couldn't find a match in the table. 980 if (EntryRange.first == EntryRange.second) 981 return Error(ErrorLoc, "unrecognized format"); 982 983 struct InsnMatchEntry *Entry = EntryRange.first; 984 985 // Format should match from equal_range. 986 assert(Entry->Format == Format); 987 988 // Parse the following operands using the table's information. 989 for (int i = 0; i < Entry->NumOperands; i++) { 990 MatchClassKind Kind = Entry->OperandKinds[i]; 991 992 SMLoc StartLoc = Parser.getTok().getLoc(); 993 994 // Always expect commas as separators for operands. 995 if (getLexer().isNot(AsmToken::Comma)) 996 return Error(StartLoc, "unexpected token in directive"); 997 Lex(); 998 999 // Parse operands. 1000 OperandMatchResultTy ResTy; 1001 if (Kind == MCK_AnyReg) 1002 ResTy = parseAnyReg(Operands); 1003 else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20) 1004 ResTy = parseBDXAddr64(Operands); 1005 else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20) 1006 ResTy = parseBDAddr64(Operands); 1007 else if (Kind == MCK_PCRel32) 1008 ResTy = parsePCRel32(Operands); 1009 else if (Kind == MCK_PCRel16) 1010 ResTy = parsePCRel16(Operands); 1011 else { 1012 // Only remaining operand kind is an immediate. 1013 const MCExpr *Expr; 1014 SMLoc StartLoc = Parser.getTok().getLoc(); 1015 1016 // Expect immediate expression. 1017 if (Parser.parseExpression(Expr)) 1018 return Error(StartLoc, "unexpected token in directive"); 1019 1020 SMLoc EndLoc = 1021 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1022 1023 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1024 ResTy = MatchOperand_Success; 1025 } 1026 1027 if (ResTy != MatchOperand_Success) 1028 return true; 1029 } 1030 1031 // Build the instruction with the parsed operands. 1032 MCInst Inst = MCInstBuilder(Entry->Opcode); 1033 1034 for (size_t i = 0; i < Operands.size(); i++) { 1035 MCParsedAsmOperand &Operand = *Operands[i]; 1036 MatchClassKind Kind = Entry->OperandKinds[i]; 1037 1038 // Verify operand. 1039 unsigned Res = validateOperandClass(Operand, Kind); 1040 if (Res != Match_Success) 1041 return Error(Operand.getStartLoc(), "unexpected operand type"); 1042 1043 // Add operands to instruction. 1044 SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand); 1045 if (ZOperand.isReg()) 1046 ZOperand.addRegOperands(Inst, 1); 1047 else if (ZOperand.isMem(BDMem)) 1048 ZOperand.addBDAddrOperands(Inst, 2); 1049 else if (ZOperand.isMem(BDXMem)) 1050 ZOperand.addBDXAddrOperands(Inst, 3); 1051 else if (ZOperand.isImm()) 1052 ZOperand.addImmOperands(Inst, 1); 1053 else 1054 llvm_unreachable("unexpected operand type"); 1055 } 1056 1057 // Emit as a regular instruction. 1058 Parser.getStreamer().EmitInstruction(Inst, getSTI()); 1059 1060 return false; 1061 } 1062 1063 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, 1064 SMLoc &EndLoc) { 1065 Register Reg; 1066 if (parseRegister(Reg)) 1067 return true; 1068 if (Reg.Group == RegGR) 1069 RegNo = SystemZMC::GR64Regs[Reg.Num]; 1070 else if (Reg.Group == RegFP) 1071 RegNo = SystemZMC::FP64Regs[Reg.Num]; 1072 else if (Reg.Group == RegV) 1073 RegNo = SystemZMC::VR128Regs[Reg.Num]; 1074 else if (Reg.Group == RegAR) 1075 RegNo = SystemZMC::AR32Regs[Reg.Num]; 1076 else if (Reg.Group == RegCR) 1077 RegNo = SystemZMC::CR64Regs[Reg.Num]; 1078 StartLoc = Reg.StartLoc; 1079 EndLoc = Reg.EndLoc; 1080 return false; 1081 } 1082 1083 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info, 1084 StringRef Name, SMLoc NameLoc, 1085 OperandVector &Operands) { 1086 Operands.push_back(SystemZOperand::createToken(Name, NameLoc)); 1087 1088 // Read the remaining operands. 1089 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1090 // Read the first operand. 1091 if (parseOperand(Operands, Name)) { 1092 return true; 1093 } 1094 1095 // Read any subsequent operands. 1096 while (getLexer().is(AsmToken::Comma)) { 1097 Parser.Lex(); 1098 if (parseOperand(Operands, Name)) { 1099 return true; 1100 } 1101 } 1102 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1103 SMLoc Loc = getLexer().getLoc(); 1104 return Error(Loc, "unexpected token in argument list"); 1105 } 1106 } 1107 1108 // Consume the EndOfStatement. 1109 Parser.Lex(); 1110 return false; 1111 } 1112 1113 bool SystemZAsmParser::parseOperand(OperandVector &Operands, 1114 StringRef Mnemonic) { 1115 // Check if the current operand has a custom associated parser, if so, try to 1116 // custom parse the operand, or fallback to the general approach. Force all 1117 // features to be available during the operand check, or else we will fail to 1118 // find the custom parser, and then we will later get an InvalidOperand error 1119 // instead of a MissingFeature errror. 1120 uint64_t AvailableFeatures = getAvailableFeatures(); 1121 setAvailableFeatures(~(uint64_t)0); 1122 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 1123 setAvailableFeatures(AvailableFeatures); 1124 if (ResTy == MatchOperand_Success) 1125 return false; 1126 1127 // If there wasn't a custom match, try the generic matcher below. Otherwise, 1128 // there was a match, but an error occurred, in which case, just return that 1129 // the operand parsing failed. 1130 if (ResTy == MatchOperand_ParseFail) 1131 return true; 1132 1133 // Check for a register. All real register operands should have used 1134 // a context-dependent parse routine, which gives the required register 1135 // class. The code is here to mop up other cases, like those where 1136 // the instruction isn't recognized. 1137 if (Parser.getTok().is(AsmToken::Percent)) { 1138 Register Reg; 1139 if (parseRegister(Reg)) 1140 return true; 1141 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc)); 1142 return false; 1143 } 1144 1145 // The only other type of operand is an immediate or address. As above, 1146 // real address operands should have used a context-dependent parse routine, 1147 // so we treat any plain expression as an immediate. 1148 SMLoc StartLoc = Parser.getTok().getLoc(); 1149 Register Reg1, Reg2; 1150 bool HaveReg1, HaveReg2; 1151 const MCExpr *Expr; 1152 const MCExpr *Length; 1153 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length)) 1154 return true; 1155 // If the register combination is not valid for any instruction, reject it. 1156 // Otherwise, fall back to reporting an unrecognized instruction. 1157 if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV 1158 && parseAddressRegister(Reg1)) 1159 return true; 1160 if (HaveReg2 && parseAddressRegister(Reg2)) 1161 return true; 1162 1163 SMLoc EndLoc = 1164 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1165 if (HaveReg1 || HaveReg2 || Length) 1166 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc)); 1167 else 1168 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1169 return false; 1170 } 1171 1172 static std::string SystemZMnemonicSpellCheck(StringRef S, uint64_t FBS, 1173 unsigned VariantID = 0); 1174 1175 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1176 OperandVector &Operands, 1177 MCStreamer &Out, 1178 uint64_t &ErrorInfo, 1179 bool MatchingInlineAsm) { 1180 MCInst Inst; 1181 unsigned MatchResult; 1182 1183 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, 1184 MatchingInlineAsm); 1185 switch (MatchResult) { 1186 case Match_Success: 1187 Inst.setLoc(IDLoc); 1188 Out.EmitInstruction(Inst, getSTI()); 1189 return false; 1190 1191 case Match_MissingFeature: { 1192 assert(ErrorInfo && "Unknown missing feature!"); 1193 // Special case the error message for the very common case where only 1194 // a single subtarget feature is missing 1195 std::string Msg = "instruction requires:"; 1196 uint64_t Mask = 1; 1197 for (unsigned I = 0; I < sizeof(ErrorInfo) * 8 - 1; ++I) { 1198 if (ErrorInfo & Mask) { 1199 Msg += " "; 1200 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 1201 } 1202 Mask <<= 1; 1203 } 1204 return Error(IDLoc, Msg); 1205 } 1206 1207 case Match_InvalidOperand: { 1208 SMLoc ErrorLoc = IDLoc; 1209 if (ErrorInfo != ~0ULL) { 1210 if (ErrorInfo >= Operands.size()) 1211 return Error(IDLoc, "too few operands for instruction"); 1212 1213 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); 1214 if (ErrorLoc == SMLoc()) 1215 ErrorLoc = IDLoc; 1216 } 1217 return Error(ErrorLoc, "invalid operand for instruction"); 1218 } 1219 1220 case Match_MnemonicFail: { 1221 uint64_t FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 1222 std::string Suggestion = SystemZMnemonicSpellCheck( 1223 ((SystemZOperand &)*Operands[0]).getToken(), FBS); 1224 return Error(IDLoc, "invalid instruction" + Suggestion, 1225 ((SystemZOperand &)*Operands[0]).getLocRange()); 1226 } 1227 } 1228 1229 llvm_unreachable("Unexpected match type"); 1230 } 1231 1232 OperandMatchResultTy 1233 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal, 1234 int64_t MaxVal, bool AllowTLS) { 1235 MCContext &Ctx = getContext(); 1236 MCStreamer &Out = getStreamer(); 1237 const MCExpr *Expr; 1238 SMLoc StartLoc = Parser.getTok().getLoc(); 1239 if (getParser().parseExpression(Expr)) 1240 return MatchOperand_NoMatch; 1241 1242 // For consistency with the GNU assembler, treat immediates as offsets 1243 // from ".". 1244 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 1245 int64_t Value = CE->getValue(); 1246 if ((Value & 1) || Value < MinVal || Value > MaxVal) { 1247 Error(StartLoc, "offset out of range"); 1248 return MatchOperand_ParseFail; 1249 } 1250 MCSymbol *Sym = Ctx.createTempSymbol(); 1251 Out.EmitLabel(Sym); 1252 const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, 1253 Ctx); 1254 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx); 1255 } 1256 1257 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. 1258 const MCExpr *Sym = nullptr; 1259 if (AllowTLS && getLexer().is(AsmToken::Colon)) { 1260 Parser.Lex(); 1261 1262 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1263 Error(Parser.getTok().getLoc(), "unexpected token"); 1264 return MatchOperand_ParseFail; 1265 } 1266 1267 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 1268 StringRef Name = Parser.getTok().getString(); 1269 if (Name == "tls_gdcall") 1270 Kind = MCSymbolRefExpr::VK_TLSGD; 1271 else if (Name == "tls_ldcall") 1272 Kind = MCSymbolRefExpr::VK_TLSLDM; 1273 else { 1274 Error(Parser.getTok().getLoc(), "unknown TLS tag"); 1275 return MatchOperand_ParseFail; 1276 } 1277 Parser.Lex(); 1278 1279 if (Parser.getTok().isNot(AsmToken::Colon)) { 1280 Error(Parser.getTok().getLoc(), "unexpected token"); 1281 return MatchOperand_ParseFail; 1282 } 1283 Parser.Lex(); 1284 1285 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1286 Error(Parser.getTok().getLoc(), "unexpected token"); 1287 return MatchOperand_ParseFail; 1288 } 1289 1290 StringRef Identifier = Parser.getTok().getString(); 1291 Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier), 1292 Kind, Ctx); 1293 Parser.Lex(); 1294 } 1295 1296 SMLoc EndLoc = 1297 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1298 1299 if (AllowTLS) 1300 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym, 1301 StartLoc, EndLoc)); 1302 else 1303 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1304 1305 return MatchOperand_Success; 1306 } 1307 1308 // Force static initialization. 1309 extern "C" void LLVMInitializeSystemZAsmParser() { 1310 RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget()); 1311 } 1312