1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "MCTargetDesc/SystemZMCTargetDesc.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/MC/MCContext.h" 13 #include "llvm/MC/MCExpr.h" 14 #include "llvm/MC/MCInst.h" 15 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 16 #include "llvm/MC/MCStreamer.h" 17 #include "llvm/MC/MCSubtargetInfo.h" 18 #include "llvm/MC/MCTargetAsmParser.h" 19 #include "llvm/Support/TargetRegistry.h" 20 21 using namespace llvm; 22 23 // Return true if Expr is in the range [MinValue, MaxValue]. 24 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) { 25 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 26 int64_t Value = CE->getValue(); 27 return Value >= MinValue && Value <= MaxValue; 28 } 29 return false; 30 } 31 32 namespace { 33 enum RegisterKind { 34 GR32Reg, 35 GRH32Reg, 36 GR64Reg, 37 GR128Reg, 38 ADDR32Reg, 39 ADDR64Reg, 40 FP32Reg, 41 FP64Reg, 42 FP128Reg, 43 VR32Reg, 44 VR64Reg, 45 VR128Reg 46 }; 47 48 enum MemoryKind { 49 BDMem, 50 BDXMem, 51 BDLMem, 52 BDVMem 53 }; 54 55 class SystemZOperand : public MCParsedAsmOperand { 56 public: 57 private: 58 enum OperandKind { 59 KindInvalid, 60 KindToken, 61 KindReg, 62 KindAccessReg, 63 KindImm, 64 KindImmTLS, 65 KindMem 66 }; 67 68 OperandKind Kind; 69 SMLoc StartLoc, EndLoc; 70 71 // A string of length Length, starting at Data. 72 struct TokenOp { 73 const char *Data; 74 unsigned Length; 75 }; 76 77 // LLVM register Num, which has kind Kind. In some ways it might be 78 // easier for this class to have a register bank (general, floating-point 79 // or access) and a raw register number (0-15). This would postpone the 80 // interpretation of the operand to the add*() methods and avoid the need 81 // for context-dependent parsing. However, we do things the current way 82 // because of the virtual getReg() method, which needs to distinguish 83 // between (say) %r0 used as a single register and %r0 used as a pair. 84 // Context-dependent parsing can also give us slightly better error 85 // messages when invalid pairs like %r1 are used. 86 struct RegOp { 87 RegisterKind Kind; 88 unsigned Num; 89 }; 90 91 // Base + Disp + Index, where Base and Index are LLVM registers or 0. 92 // MemKind says what type of memory this is and RegKind says what type 93 // the base register has (ADDR32Reg or ADDR64Reg). Length is the operand 94 // length for D(L,B)-style operands, otherwise it is null. 95 struct MemOp { 96 unsigned Base : 12; 97 unsigned Index : 12; 98 unsigned MemKind : 4; 99 unsigned RegKind : 4; 100 const MCExpr *Disp; 101 const MCExpr *Length; 102 }; 103 104 // Imm is an immediate operand, and Sym is an optional TLS symbol 105 // for use with a __tls_get_offset marker relocation. 106 struct ImmTLSOp { 107 const MCExpr *Imm; 108 const MCExpr *Sym; 109 }; 110 111 union { 112 TokenOp Token; 113 RegOp Reg; 114 unsigned AccessReg; 115 const MCExpr *Imm; 116 ImmTLSOp ImmTLS; 117 MemOp Mem; 118 }; 119 120 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 121 // Add as immediates when possible. Null MCExpr = 0. 122 if (!Expr) 123 Inst.addOperand(MCOperand::createImm(0)); 124 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) 125 Inst.addOperand(MCOperand::createImm(CE->getValue())); 126 else 127 Inst.addOperand(MCOperand::createExpr(Expr)); 128 } 129 130 public: 131 SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc) 132 : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {} 133 134 // Create particular kinds of operand. 135 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc, 136 SMLoc EndLoc) { 137 return make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc); 138 } 139 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) { 140 auto Op = make_unique<SystemZOperand>(KindToken, Loc, Loc); 141 Op->Token.Data = Str.data(); 142 Op->Token.Length = Str.size(); 143 return Op; 144 } 145 static std::unique_ptr<SystemZOperand> 146 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { 147 auto Op = make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc); 148 Op->Reg.Kind = Kind; 149 Op->Reg.Num = Num; 150 return Op; 151 } 152 static std::unique_ptr<SystemZOperand> 153 createAccessReg(unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { 154 auto Op = make_unique<SystemZOperand>(KindAccessReg, StartLoc, EndLoc); 155 Op->AccessReg = Num; 156 return Op; 157 } 158 static std::unique_ptr<SystemZOperand> 159 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { 160 auto Op = make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc); 161 Op->Imm = Expr; 162 return Op; 163 } 164 static std::unique_ptr<SystemZOperand> 165 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, 166 const MCExpr *Disp, unsigned Index, const MCExpr *Length, 167 SMLoc StartLoc, SMLoc EndLoc) { 168 auto Op = make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc); 169 Op->Mem.MemKind = MemKind; 170 Op->Mem.RegKind = RegKind; 171 Op->Mem.Base = Base; 172 Op->Mem.Index = Index; 173 Op->Mem.Disp = Disp; 174 Op->Mem.Length = Length; 175 return Op; 176 } 177 static std::unique_ptr<SystemZOperand> 178 createImmTLS(const MCExpr *Imm, const MCExpr *Sym, 179 SMLoc StartLoc, SMLoc EndLoc) { 180 auto Op = make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc); 181 Op->ImmTLS.Imm = Imm; 182 Op->ImmTLS.Sym = Sym; 183 return Op; 184 } 185 186 // Token operands 187 bool isToken() const override { 188 return Kind == KindToken; 189 } 190 StringRef getToken() const { 191 assert(Kind == KindToken && "Not a token"); 192 return StringRef(Token.Data, Token.Length); 193 } 194 195 // Register operands. 196 bool isReg() const override { 197 return Kind == KindReg; 198 } 199 bool isReg(RegisterKind RegKind) const { 200 return Kind == KindReg && Reg.Kind == RegKind; 201 } 202 unsigned getReg() const override { 203 assert(Kind == KindReg && "Not a register"); 204 return Reg.Num; 205 } 206 207 // Access register operands. Access registers aren't exposed to LLVM 208 // as registers. 209 bool isAccessReg() const { 210 return Kind == KindAccessReg; 211 } 212 213 // Immediate operands. 214 bool isImm() const override { 215 return Kind == KindImm; 216 } 217 bool isImm(int64_t MinValue, int64_t MaxValue) const { 218 return Kind == KindImm && inRange(Imm, MinValue, MaxValue); 219 } 220 const MCExpr *getImm() const { 221 assert(Kind == KindImm && "Not an immediate"); 222 return Imm; 223 } 224 225 // Immediate operands with optional TLS symbol. 226 bool isImmTLS() const { 227 return Kind == KindImmTLS; 228 } 229 230 // Memory operands. 231 bool isMem() const override { 232 return Kind == KindMem; 233 } 234 bool isMem(MemoryKind MemKind) const { 235 return (Kind == KindMem && 236 (Mem.MemKind == MemKind || 237 // A BDMem can be treated as a BDXMem in which the index 238 // register field is 0. 239 (Mem.MemKind == BDMem && MemKind == BDXMem))); 240 } 241 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { 242 return isMem(MemKind) && Mem.RegKind == RegKind; 243 } 244 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { 245 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff); 246 } 247 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { 248 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287); 249 } 250 bool isMemDisp12Len8(RegisterKind RegKind) const { 251 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length, 1, 0x100); 252 } 253 void addBDVAddrOperands(MCInst &Inst, unsigned N) const { 254 assert(N == 3 && "Invalid number of operands"); 255 assert(isMem(BDVMem) && "Invalid operand type"); 256 Inst.addOperand(MCOperand::createReg(Mem.Base)); 257 addExpr(Inst, Mem.Disp); 258 Inst.addOperand(MCOperand::createReg(Mem.Index)); 259 } 260 261 // Override MCParsedAsmOperand. 262 SMLoc getStartLoc() const override { return StartLoc; } 263 SMLoc getEndLoc() const override { return EndLoc; } 264 void print(raw_ostream &OS) const override; 265 266 // Used by the TableGen code to add particular types of operand 267 // to an instruction. 268 void addRegOperands(MCInst &Inst, unsigned N) const { 269 assert(N == 1 && "Invalid number of operands"); 270 Inst.addOperand(MCOperand::createReg(getReg())); 271 } 272 void addAccessRegOperands(MCInst &Inst, unsigned N) const { 273 assert(N == 1 && "Invalid number of operands"); 274 assert(Kind == KindAccessReg && "Invalid operand type"); 275 Inst.addOperand(MCOperand::createImm(AccessReg)); 276 } 277 void addImmOperands(MCInst &Inst, unsigned N) const { 278 assert(N == 1 && "Invalid number of operands"); 279 addExpr(Inst, getImm()); 280 } 281 void addBDAddrOperands(MCInst &Inst, unsigned N) const { 282 assert(N == 2 && "Invalid number of operands"); 283 assert(isMem(BDMem) && "Invalid operand type"); 284 Inst.addOperand(MCOperand::createReg(Mem.Base)); 285 addExpr(Inst, Mem.Disp); 286 } 287 void addBDXAddrOperands(MCInst &Inst, unsigned N) const { 288 assert(N == 3 && "Invalid number of operands"); 289 assert(isMem(BDXMem) && "Invalid operand type"); 290 Inst.addOperand(MCOperand::createReg(Mem.Base)); 291 addExpr(Inst, Mem.Disp); 292 Inst.addOperand(MCOperand::createReg(Mem.Index)); 293 } 294 void addBDLAddrOperands(MCInst &Inst, unsigned N) const { 295 assert(N == 3 && "Invalid number of operands"); 296 assert(isMem(BDLMem) && "Invalid operand type"); 297 Inst.addOperand(MCOperand::createReg(Mem.Base)); 298 addExpr(Inst, Mem.Disp); 299 addExpr(Inst, Mem.Length); 300 } 301 void addImmTLSOperands(MCInst &Inst, unsigned N) const { 302 assert(N == 2 && "Invalid number of operands"); 303 assert(Kind == KindImmTLS && "Invalid operand type"); 304 addExpr(Inst, ImmTLS.Imm); 305 if (ImmTLS.Sym) 306 addExpr(Inst, ImmTLS.Sym); 307 } 308 309 // Used by the TableGen code to check for particular operand types. 310 bool isGR32() const { return isReg(GR32Reg); } 311 bool isGRH32() const { return isReg(GRH32Reg); } 312 bool isGRX32() const { return false; } 313 bool isGR64() const { return isReg(GR64Reg); } 314 bool isGR128() const { return isReg(GR128Reg); } 315 bool isADDR32() const { return isReg(ADDR32Reg); } 316 bool isADDR64() const { return isReg(ADDR64Reg); } 317 bool isADDR128() const { return false; } 318 bool isFP32() const { return isReg(FP32Reg); } 319 bool isFP64() const { return isReg(FP64Reg); } 320 bool isFP128() const { return isReg(FP128Reg); } 321 bool isVR32() const { return isReg(VR32Reg); } 322 bool isVR64() const { return isReg(VR64Reg); } 323 bool isVF128() const { return false; } 324 bool isVR128() const { return isReg(VR128Reg); } 325 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, ADDR32Reg); } 326 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, ADDR32Reg); } 327 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, ADDR64Reg); } 328 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, ADDR64Reg); } 329 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, ADDR64Reg); } 330 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, ADDR64Reg); } 331 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(ADDR64Reg); } 332 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, ADDR64Reg); } 333 bool isU1Imm() const { return isImm(0, 1); } 334 bool isU2Imm() const { return isImm(0, 3); } 335 bool isU3Imm() const { return isImm(0, 7); } 336 bool isU4Imm() const { return isImm(0, 15); } 337 bool isU6Imm() const { return isImm(0, 63); } 338 bool isU8Imm() const { return isImm(0, 255); } 339 bool isS8Imm() const { return isImm(-128, 127); } 340 bool isU12Imm() const { return isImm(0, 4095); } 341 bool isU16Imm() const { return isImm(0, 65535); } 342 bool isS16Imm() const { return isImm(-32768, 32767); } 343 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); } 344 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); } 345 }; 346 347 class SystemZAsmParser : public MCTargetAsmParser { 348 #define GET_ASSEMBLER_HEADER 349 #include "SystemZGenAsmMatcher.inc" 350 351 private: 352 MCSubtargetInfo &STI; 353 MCAsmParser &Parser; 354 enum RegisterGroup { 355 RegGR, 356 RegFP, 357 RegV, 358 RegAccess 359 }; 360 struct Register { 361 RegisterGroup Group; 362 unsigned Num; 363 SMLoc StartLoc, EndLoc; 364 }; 365 366 bool parseRegister(Register &Reg); 367 368 bool parseRegister(Register &Reg, RegisterGroup Group, const unsigned *Regs, 369 bool IsAddress = false); 370 371 OperandMatchResultTy parseRegister(OperandVector &Operands, 372 RegisterGroup Group, const unsigned *Regs, 373 RegisterKind Kind); 374 375 bool parseAddress(unsigned &Base, const MCExpr *&Disp, 376 unsigned &Index, bool &IsVector, const MCExpr *&Length, 377 const unsigned *Regs, RegisterKind RegKind); 378 379 OperandMatchResultTy parseAddress(OperandVector &Operands, 380 MemoryKind MemKind, const unsigned *Regs, 381 RegisterKind RegKind); 382 383 OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal, 384 int64_t MaxVal, bool AllowTLS); 385 386 bool parseOperand(OperandVector &Operands, StringRef Mnemonic); 387 388 public: 389 SystemZAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser, 390 const MCInstrInfo &MII, 391 const MCTargetOptions &Options) 392 : MCTargetAsmParser(Options), STI(sti), Parser(parser) { 393 MCAsmParserExtension::Initialize(Parser); 394 395 // Initialize the set of available features. 396 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 397 } 398 399 // Override MCTargetAsmParser. 400 bool ParseDirective(AsmToken DirectiveID) override; 401 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 402 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 403 SMLoc NameLoc, OperandVector &Operands) override; 404 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 405 OperandVector &Operands, MCStreamer &Out, 406 uint64_t &ErrorInfo, 407 bool MatchingInlineAsm) override; 408 409 // Used by the TableGen code to parse particular operand types. 410 OperandMatchResultTy parseGR32(OperandVector &Operands) { 411 return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, GR32Reg); 412 } 413 OperandMatchResultTy parseGRH32(OperandVector &Operands) { 414 return parseRegister(Operands, RegGR, SystemZMC::GRH32Regs, GRH32Reg); 415 } 416 OperandMatchResultTy parseGRX32(OperandVector &Operands) { 417 llvm_unreachable("GRX32 should only be used for pseudo instructions"); 418 } 419 OperandMatchResultTy parseGR64(OperandVector &Operands) { 420 return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, GR64Reg); 421 } 422 OperandMatchResultTy parseGR128(OperandVector &Operands) { 423 return parseRegister(Operands, RegGR, SystemZMC::GR128Regs, GR128Reg); 424 } 425 OperandMatchResultTy parseADDR32(OperandVector &Operands) { 426 return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, ADDR32Reg); 427 } 428 OperandMatchResultTy parseADDR64(OperandVector &Operands) { 429 return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, ADDR64Reg); 430 } 431 OperandMatchResultTy parseADDR128(OperandVector &Operands) { 432 llvm_unreachable("Shouldn't be used as an operand"); 433 } 434 OperandMatchResultTy parseFP32(OperandVector &Operands) { 435 return parseRegister(Operands, RegFP, SystemZMC::FP32Regs, FP32Reg); 436 } 437 OperandMatchResultTy parseFP64(OperandVector &Operands) { 438 return parseRegister(Operands, RegFP, SystemZMC::FP64Regs, FP64Reg); 439 } 440 OperandMatchResultTy parseFP128(OperandVector &Operands) { 441 return parseRegister(Operands, RegFP, SystemZMC::FP128Regs, FP128Reg); 442 } 443 OperandMatchResultTy parseVR32(OperandVector &Operands) { 444 return parseRegister(Operands, RegV, SystemZMC::VR32Regs, VR32Reg); 445 } 446 OperandMatchResultTy parseVR64(OperandVector &Operands) { 447 return parseRegister(Operands, RegV, SystemZMC::VR64Regs, VR64Reg); 448 } 449 OperandMatchResultTy parseVF128(OperandVector &Operands) { 450 llvm_unreachable("Shouldn't be used as an operand"); 451 } 452 OperandMatchResultTy parseVR128(OperandVector &Operands) { 453 return parseRegister(Operands, RegV, SystemZMC::VR128Regs, VR128Reg); 454 } 455 OperandMatchResultTy parseBDAddr32(OperandVector &Operands) { 456 return parseAddress(Operands, BDMem, SystemZMC::GR32Regs, ADDR32Reg); 457 } 458 OperandMatchResultTy parseBDAddr64(OperandVector &Operands) { 459 return parseAddress(Operands, BDMem, SystemZMC::GR64Regs, ADDR64Reg); 460 } 461 OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) { 462 return parseAddress(Operands, BDXMem, SystemZMC::GR64Regs, ADDR64Reg); 463 } 464 OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) { 465 return parseAddress(Operands, BDLMem, SystemZMC::GR64Regs, ADDR64Reg); 466 } 467 OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) { 468 return parseAddress(Operands, BDVMem, SystemZMC::GR64Regs, ADDR64Reg); 469 } 470 OperandMatchResultTy parseAccessReg(OperandVector &Operands); 471 OperandMatchResultTy parsePCRel16(OperandVector &Operands) { 472 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false); 473 } 474 OperandMatchResultTy parsePCRel32(OperandVector &Operands) { 475 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false); 476 } 477 OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) { 478 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true); 479 } 480 OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) { 481 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true); 482 } 483 }; 484 } // end anonymous namespace 485 486 #define GET_REGISTER_MATCHER 487 #define GET_SUBTARGET_FEATURE_NAME 488 #define GET_MATCHER_IMPLEMENTATION 489 #include "SystemZGenAsmMatcher.inc" 490 491 void SystemZOperand::print(raw_ostream &OS) const { 492 llvm_unreachable("Not implemented"); 493 } 494 495 // Parse one register of the form %<prefix><number>. 496 bool SystemZAsmParser::parseRegister(Register &Reg) { 497 Reg.StartLoc = Parser.getTok().getLoc(); 498 499 // Eat the % prefix. 500 if (Parser.getTok().isNot(AsmToken::Percent)) 501 return Error(Parser.getTok().getLoc(), "register expected"); 502 Parser.Lex(); 503 504 // Expect a register name. 505 if (Parser.getTok().isNot(AsmToken::Identifier)) 506 return Error(Reg.StartLoc, "invalid register"); 507 508 // Check that there's a prefix. 509 StringRef Name = Parser.getTok().getString(); 510 if (Name.size() < 2) 511 return Error(Reg.StartLoc, "invalid register"); 512 char Prefix = Name[0]; 513 514 // Treat the rest of the register name as a register number. 515 if (Name.substr(1).getAsInteger(10, Reg.Num)) 516 return Error(Reg.StartLoc, "invalid register"); 517 518 // Look for valid combinations of prefix and number. 519 if (Prefix == 'r' && Reg.Num < 16) 520 Reg.Group = RegGR; 521 else if (Prefix == 'f' && Reg.Num < 16) 522 Reg.Group = RegFP; 523 else if (Prefix == 'v' && Reg.Num < 32) 524 Reg.Group = RegV; 525 else if (Prefix == 'a' && Reg.Num < 16) 526 Reg.Group = RegAccess; 527 else 528 return Error(Reg.StartLoc, "invalid register"); 529 530 Reg.EndLoc = Parser.getTok().getLoc(); 531 Parser.Lex(); 532 return false; 533 } 534 535 // Parse a register of group Group. If Regs is nonnull, use it to map 536 // the raw register number to LLVM numbering, with zero entries indicating 537 // an invalid register. IsAddress says whether the register appears in an 538 // address context. 539 bool SystemZAsmParser::parseRegister(Register &Reg, RegisterGroup Group, 540 const unsigned *Regs, bool IsAddress) { 541 if (parseRegister(Reg)) 542 return true; 543 if (Reg.Group != Group) 544 return Error(Reg.StartLoc, "invalid operand for instruction"); 545 if (Regs && Regs[Reg.Num] == 0) 546 return Error(Reg.StartLoc, "invalid register pair"); 547 if (Reg.Num == 0 && IsAddress) 548 return Error(Reg.StartLoc, "%r0 used in an address"); 549 if (Regs) 550 Reg.Num = Regs[Reg.Num]; 551 return false; 552 } 553 554 // Parse a register and add it to Operands. The other arguments are as above. 555 SystemZAsmParser::OperandMatchResultTy 556 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterGroup Group, 557 const unsigned *Regs, RegisterKind Kind) { 558 if (Parser.getTok().isNot(AsmToken::Percent)) 559 return MatchOperand_NoMatch; 560 561 Register Reg; 562 bool IsAddress = (Kind == ADDR32Reg || Kind == ADDR64Reg); 563 if (parseRegister(Reg, Group, Regs, IsAddress)) 564 return MatchOperand_ParseFail; 565 566 Operands.push_back(SystemZOperand::createReg(Kind, Reg.Num, 567 Reg.StartLoc, Reg.EndLoc)); 568 return MatchOperand_Success; 569 } 570 571 // Parse a memory operand into Base, Disp, Index and Length. 572 // Regs maps asm register numbers to LLVM register numbers and RegKind 573 // says what kind of address register we're using (ADDR32Reg or ADDR64Reg). 574 bool SystemZAsmParser::parseAddress(unsigned &Base, const MCExpr *&Disp, 575 unsigned &Index, bool &IsVector, 576 const MCExpr *&Length, const unsigned *Regs, 577 RegisterKind RegKind) { 578 // Parse the displacement, which must always be present. 579 if (getParser().parseExpression(Disp)) 580 return true; 581 582 // Parse the optional base and index. 583 Index = 0; 584 Base = 0; 585 IsVector = false; 586 Length = nullptr; 587 if (getLexer().is(AsmToken::LParen)) { 588 Parser.Lex(); 589 590 if (getLexer().is(AsmToken::Percent)) { 591 // Parse the first register and decide whether it's a base or an index. 592 Register Reg; 593 if (parseRegister(Reg)) 594 return true; 595 if (Reg.Group == RegV) { 596 // A vector index register. The base register is optional. 597 IsVector = true; 598 Index = SystemZMC::VR128Regs[Reg.Num]; 599 } else if (Reg.Group == RegGR) { 600 if (Reg.Num == 0) 601 return Error(Reg.StartLoc, "%r0 used in an address"); 602 // If the are two registers, the first one is the index and the 603 // second is the base. 604 if (getLexer().is(AsmToken::Comma)) 605 Index = Regs[Reg.Num]; 606 else 607 Base = Regs[Reg.Num]; 608 } else 609 return Error(Reg.StartLoc, "invalid address register"); 610 } else { 611 // Parse the length. 612 if (getParser().parseExpression(Length)) 613 return true; 614 } 615 616 // Check whether there's a second register. It's the base if so. 617 if (getLexer().is(AsmToken::Comma)) { 618 Parser.Lex(); 619 Register Reg; 620 if (parseRegister(Reg, RegGR, Regs, RegKind)) 621 return true; 622 Base = Reg.Num; 623 } 624 625 // Consume the closing bracket. 626 if (getLexer().isNot(AsmToken::RParen)) 627 return Error(Parser.getTok().getLoc(), "unexpected token in address"); 628 Parser.Lex(); 629 } 630 return false; 631 } 632 633 // Parse a memory operand and add it to Operands. The other arguments 634 // are as above. 635 SystemZAsmParser::OperandMatchResultTy 636 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind, 637 const unsigned *Regs, RegisterKind RegKind) { 638 SMLoc StartLoc = Parser.getTok().getLoc(); 639 unsigned Base, Index; 640 bool IsVector; 641 const MCExpr *Disp; 642 const MCExpr *Length; 643 if (parseAddress(Base, Disp, Index, IsVector, Length, Regs, RegKind)) 644 return MatchOperand_ParseFail; 645 646 if (IsVector && MemKind != BDVMem) { 647 Error(StartLoc, "invalid use of vector addressing"); 648 return MatchOperand_ParseFail; 649 } 650 651 if (!IsVector && MemKind == BDVMem) { 652 Error(StartLoc, "vector index required in address"); 653 return MatchOperand_ParseFail; 654 } 655 656 if (Index && MemKind != BDXMem && MemKind != BDVMem) { 657 Error(StartLoc, "invalid use of indexed addressing"); 658 return MatchOperand_ParseFail; 659 } 660 661 if (Length && MemKind != BDLMem) { 662 Error(StartLoc, "invalid use of length addressing"); 663 return MatchOperand_ParseFail; 664 } 665 666 if (!Length && MemKind == BDLMem) { 667 Error(StartLoc, "missing length in address"); 668 return MatchOperand_ParseFail; 669 } 670 671 SMLoc EndLoc = 672 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 673 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp, 674 Index, Length, StartLoc, 675 EndLoc)); 676 return MatchOperand_Success; 677 } 678 679 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) { 680 return true; 681 } 682 683 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, 684 SMLoc &EndLoc) { 685 Register Reg; 686 if (parseRegister(Reg)) 687 return true; 688 if (Reg.Group == RegGR) 689 RegNo = SystemZMC::GR64Regs[Reg.Num]; 690 else if (Reg.Group == RegFP) 691 RegNo = SystemZMC::FP64Regs[Reg.Num]; 692 else if (Reg.Group == RegV) 693 RegNo = SystemZMC::VR128Regs[Reg.Num]; 694 else 695 // FIXME: Access registers aren't modelled as LLVM registers yet. 696 return Error(Reg.StartLoc, "invalid operand for instruction"); 697 StartLoc = Reg.StartLoc; 698 EndLoc = Reg.EndLoc; 699 return false; 700 } 701 702 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info, 703 StringRef Name, SMLoc NameLoc, 704 OperandVector &Operands) { 705 Operands.push_back(SystemZOperand::createToken(Name, NameLoc)); 706 707 // Read the remaining operands. 708 if (getLexer().isNot(AsmToken::EndOfStatement)) { 709 // Read the first operand. 710 if (parseOperand(Operands, Name)) { 711 Parser.eatToEndOfStatement(); 712 return true; 713 } 714 715 // Read any subsequent operands. 716 while (getLexer().is(AsmToken::Comma)) { 717 Parser.Lex(); 718 if (parseOperand(Operands, Name)) { 719 Parser.eatToEndOfStatement(); 720 return true; 721 } 722 } 723 if (getLexer().isNot(AsmToken::EndOfStatement)) { 724 SMLoc Loc = getLexer().getLoc(); 725 Parser.eatToEndOfStatement(); 726 return Error(Loc, "unexpected token in argument list"); 727 } 728 } 729 730 // Consume the EndOfStatement. 731 Parser.Lex(); 732 return false; 733 } 734 735 bool SystemZAsmParser::parseOperand(OperandVector &Operands, 736 StringRef Mnemonic) { 737 // Check if the current operand has a custom associated parser, if so, try to 738 // custom parse the operand, or fallback to the general approach. 739 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 740 if (ResTy == MatchOperand_Success) 741 return false; 742 743 // If there wasn't a custom match, try the generic matcher below. Otherwise, 744 // there was a match, but an error occurred, in which case, just return that 745 // the operand parsing failed. 746 if (ResTy == MatchOperand_ParseFail) 747 return true; 748 749 // Check for a register. All real register operands should have used 750 // a context-dependent parse routine, which gives the required register 751 // class. The code is here to mop up other cases, like those where 752 // the instruction isn't recognized. 753 if (Parser.getTok().is(AsmToken::Percent)) { 754 Register Reg; 755 if (parseRegister(Reg)) 756 return true; 757 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc)); 758 return false; 759 } 760 761 // The only other type of operand is an immediate or address. As above, 762 // real address operands should have used a context-dependent parse routine, 763 // so we treat any plain expression as an immediate. 764 SMLoc StartLoc = Parser.getTok().getLoc(); 765 unsigned Base, Index; 766 bool IsVector; 767 const MCExpr *Expr, *Length; 768 if (parseAddress(Base, Expr, Index, IsVector, Length, SystemZMC::GR64Regs, 769 ADDR64Reg)) 770 return true; 771 772 SMLoc EndLoc = 773 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 774 if (Base || Index || Length) 775 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc)); 776 else 777 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 778 return false; 779 } 780 781 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 782 OperandVector &Operands, 783 MCStreamer &Out, 784 uint64_t &ErrorInfo, 785 bool MatchingInlineAsm) { 786 MCInst Inst; 787 unsigned MatchResult; 788 789 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, 790 MatchingInlineAsm); 791 switch (MatchResult) { 792 case Match_Success: 793 Inst.setLoc(IDLoc); 794 Out.EmitInstruction(Inst, STI); 795 return false; 796 797 case Match_MissingFeature: { 798 assert(ErrorInfo && "Unknown missing feature!"); 799 // Special case the error message for the very common case where only 800 // a single subtarget feature is missing 801 std::string Msg = "instruction requires:"; 802 uint64_t Mask = 1; 803 for (unsigned I = 0; I < sizeof(ErrorInfo) * 8 - 1; ++I) { 804 if (ErrorInfo & Mask) { 805 Msg += " "; 806 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 807 } 808 Mask <<= 1; 809 } 810 return Error(IDLoc, Msg); 811 } 812 813 case Match_InvalidOperand: { 814 SMLoc ErrorLoc = IDLoc; 815 if (ErrorInfo != ~0ULL) { 816 if (ErrorInfo >= Operands.size()) 817 return Error(IDLoc, "too few operands for instruction"); 818 819 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); 820 if (ErrorLoc == SMLoc()) 821 ErrorLoc = IDLoc; 822 } 823 return Error(ErrorLoc, "invalid operand for instruction"); 824 } 825 826 case Match_MnemonicFail: 827 return Error(IDLoc, "invalid instruction"); 828 } 829 830 llvm_unreachable("Unexpected match type"); 831 } 832 833 SystemZAsmParser::OperandMatchResultTy 834 SystemZAsmParser::parseAccessReg(OperandVector &Operands) { 835 if (Parser.getTok().isNot(AsmToken::Percent)) 836 return MatchOperand_NoMatch; 837 838 Register Reg; 839 if (parseRegister(Reg, RegAccess, nullptr)) 840 return MatchOperand_ParseFail; 841 842 Operands.push_back(SystemZOperand::createAccessReg(Reg.Num, 843 Reg.StartLoc, 844 Reg.EndLoc)); 845 return MatchOperand_Success; 846 } 847 848 SystemZAsmParser::OperandMatchResultTy 849 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal, 850 int64_t MaxVal, bool AllowTLS) { 851 MCContext &Ctx = getContext(); 852 MCStreamer &Out = getStreamer(); 853 const MCExpr *Expr; 854 SMLoc StartLoc = Parser.getTok().getLoc(); 855 if (getParser().parseExpression(Expr)) 856 return MatchOperand_NoMatch; 857 858 // For consistency with the GNU assembler, treat immediates as offsets 859 // from ".". 860 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 861 int64_t Value = CE->getValue(); 862 if ((Value & 1) || Value < MinVal || Value > MaxVal) { 863 Error(StartLoc, "offset out of range"); 864 return MatchOperand_ParseFail; 865 } 866 MCSymbol *Sym = Ctx.createTempSymbol(); 867 Out.EmitLabel(Sym); 868 const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, 869 Ctx); 870 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx); 871 } 872 873 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. 874 const MCExpr *Sym = nullptr; 875 if (AllowTLS && getLexer().is(AsmToken::Colon)) { 876 Parser.Lex(); 877 878 if (Parser.getTok().isNot(AsmToken::Identifier)) { 879 Error(Parser.getTok().getLoc(), "unexpected token"); 880 return MatchOperand_ParseFail; 881 } 882 883 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 884 StringRef Name = Parser.getTok().getString(); 885 if (Name == "tls_gdcall") 886 Kind = MCSymbolRefExpr::VK_TLSGD; 887 else if (Name == "tls_ldcall") 888 Kind = MCSymbolRefExpr::VK_TLSLDM; 889 else { 890 Error(Parser.getTok().getLoc(), "unknown TLS tag"); 891 return MatchOperand_ParseFail; 892 } 893 Parser.Lex(); 894 895 if (Parser.getTok().isNot(AsmToken::Colon)) { 896 Error(Parser.getTok().getLoc(), "unexpected token"); 897 return MatchOperand_ParseFail; 898 } 899 Parser.Lex(); 900 901 if (Parser.getTok().isNot(AsmToken::Identifier)) { 902 Error(Parser.getTok().getLoc(), "unexpected token"); 903 return MatchOperand_ParseFail; 904 } 905 906 StringRef Identifier = Parser.getTok().getString(); 907 Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier), 908 Kind, Ctx); 909 Parser.Lex(); 910 } 911 912 SMLoc EndLoc = 913 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 914 915 if (AllowTLS) 916 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym, 917 StartLoc, EndLoc)); 918 else 919 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 920 921 return MatchOperand_Success; 922 } 923 924 // Force static initialization. 925 extern "C" void LLVMInitializeSystemZAsmParser() { 926 RegisterMCAsmParser<SystemZAsmParser> X(TheSystemZTarget); 927 } 928