1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "MCTargetDesc/SystemZMCTargetDesc.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/StringRef.h" 14 #include "llvm/MC/MCContext.h" 15 #include "llvm/MC/MCExpr.h" 16 #include "llvm/MC/MCInst.h" 17 #include "llvm/MC/MCInstBuilder.h" 18 #include "llvm/MC/MCParser/MCAsmLexer.h" 19 #include "llvm/MC/MCParser/MCAsmParser.h" 20 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 21 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 22 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/MC/MCSubtargetInfo.h" 25 #include "llvm/Support/Casting.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/SMLoc.h" 28 #include "llvm/Support/TargetRegistry.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <cstddef> 32 #include <cstdint> 33 #include <iterator> 34 #include <memory> 35 #include <string> 36 37 using namespace llvm; 38 39 // Return true if Expr is in the range [MinValue, MaxValue]. 40 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) { 41 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 42 int64_t Value = CE->getValue(); 43 return Value >= MinValue && Value <= MaxValue; 44 } 45 return false; 46 } 47 48 namespace { 49 50 enum RegisterKind { 51 GR32Reg, 52 GRH32Reg, 53 GR64Reg, 54 GR128Reg, 55 ADDR32Reg, 56 ADDR64Reg, 57 FP32Reg, 58 FP64Reg, 59 FP128Reg, 60 VR32Reg, 61 VR64Reg, 62 VR128Reg, 63 AR32Reg, 64 CR64Reg, 65 }; 66 67 enum MemoryKind { 68 BDMem, 69 BDXMem, 70 BDLMem, 71 BDRMem, 72 BDVMem 73 }; 74 75 class SystemZOperand : public MCParsedAsmOperand { 76 private: 77 enum OperandKind { 78 KindInvalid, 79 KindToken, 80 KindReg, 81 KindImm, 82 KindImmTLS, 83 KindMem 84 }; 85 86 OperandKind Kind; 87 SMLoc StartLoc, EndLoc; 88 89 // A string of length Length, starting at Data. 90 struct TokenOp { 91 const char *Data; 92 unsigned Length; 93 }; 94 95 // LLVM register Num, which has kind Kind. In some ways it might be 96 // easier for this class to have a register bank (general, floating-point 97 // or access) and a raw register number (0-15). This would postpone the 98 // interpretation of the operand to the add*() methods and avoid the need 99 // for context-dependent parsing. However, we do things the current way 100 // because of the virtual getReg() method, which needs to distinguish 101 // between (say) %r0 used as a single register and %r0 used as a pair. 102 // Context-dependent parsing can also give us slightly better error 103 // messages when invalid pairs like %r1 are used. 104 struct RegOp { 105 RegisterKind Kind; 106 unsigned Num; 107 }; 108 109 // Base + Disp + Index, where Base and Index are LLVM registers or 0. 110 // MemKind says what type of memory this is and RegKind says what type 111 // the base register has (ADDR32Reg or ADDR64Reg). Length is the operand 112 // length for D(L,B)-style operands, otherwise it is null. 113 struct MemOp { 114 unsigned Base : 12; 115 unsigned Index : 12; 116 unsigned MemKind : 4; 117 unsigned RegKind : 4; 118 const MCExpr *Disp; 119 union { 120 const MCExpr *Imm; 121 unsigned Reg; 122 } Length; 123 }; 124 125 // Imm is an immediate operand, and Sym is an optional TLS symbol 126 // for use with a __tls_get_offset marker relocation. 127 struct ImmTLSOp { 128 const MCExpr *Imm; 129 const MCExpr *Sym; 130 }; 131 132 union { 133 TokenOp Token; 134 RegOp Reg; 135 const MCExpr *Imm; 136 ImmTLSOp ImmTLS; 137 MemOp Mem; 138 }; 139 140 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 141 // Add as immediates when possible. Null MCExpr = 0. 142 if (!Expr) 143 Inst.addOperand(MCOperand::createImm(0)); 144 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) 145 Inst.addOperand(MCOperand::createImm(CE->getValue())); 146 else 147 Inst.addOperand(MCOperand::createExpr(Expr)); 148 } 149 150 public: 151 SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc) 152 : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {} 153 154 // Create particular kinds of operand. 155 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc, 156 SMLoc EndLoc) { 157 return make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc); 158 } 159 160 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) { 161 auto Op = make_unique<SystemZOperand>(KindToken, Loc, Loc); 162 Op->Token.Data = Str.data(); 163 Op->Token.Length = Str.size(); 164 return Op; 165 } 166 167 static std::unique_ptr<SystemZOperand> 168 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { 169 auto Op = make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc); 170 Op->Reg.Kind = Kind; 171 Op->Reg.Num = Num; 172 return Op; 173 } 174 175 static std::unique_ptr<SystemZOperand> 176 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { 177 auto Op = make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc); 178 Op->Imm = Expr; 179 return Op; 180 } 181 182 static std::unique_ptr<SystemZOperand> 183 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, 184 const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm, 185 unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) { 186 auto Op = make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc); 187 Op->Mem.MemKind = MemKind; 188 Op->Mem.RegKind = RegKind; 189 Op->Mem.Base = Base; 190 Op->Mem.Index = Index; 191 Op->Mem.Disp = Disp; 192 if (MemKind == BDLMem) 193 Op->Mem.Length.Imm = LengthImm; 194 if (MemKind == BDRMem) 195 Op->Mem.Length.Reg = LengthReg; 196 return Op; 197 } 198 199 static std::unique_ptr<SystemZOperand> 200 createImmTLS(const MCExpr *Imm, const MCExpr *Sym, 201 SMLoc StartLoc, SMLoc EndLoc) { 202 auto Op = make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc); 203 Op->ImmTLS.Imm = Imm; 204 Op->ImmTLS.Sym = Sym; 205 return Op; 206 } 207 208 // Token operands 209 bool isToken() const override { 210 return Kind == KindToken; 211 } 212 StringRef getToken() const { 213 assert(Kind == KindToken && "Not a token"); 214 return StringRef(Token.Data, Token.Length); 215 } 216 217 // Register operands. 218 bool isReg() const override { 219 return Kind == KindReg; 220 } 221 bool isReg(RegisterKind RegKind) const { 222 return Kind == KindReg && Reg.Kind == RegKind; 223 } 224 unsigned getReg() const override { 225 assert(Kind == KindReg && "Not a register"); 226 return Reg.Num; 227 } 228 229 // Immediate operands. 230 bool isImm() const override { 231 return Kind == KindImm; 232 } 233 bool isImm(int64_t MinValue, int64_t MaxValue) const { 234 return Kind == KindImm && inRange(Imm, MinValue, MaxValue); 235 } 236 const MCExpr *getImm() const { 237 assert(Kind == KindImm && "Not an immediate"); 238 return Imm; 239 } 240 241 // Immediate operands with optional TLS symbol. 242 bool isImmTLS() const { 243 return Kind == KindImmTLS; 244 } 245 246 // Memory operands. 247 bool isMem() const override { 248 return Kind == KindMem; 249 } 250 bool isMem(MemoryKind MemKind) const { 251 return (Kind == KindMem && 252 (Mem.MemKind == MemKind || 253 // A BDMem can be treated as a BDXMem in which the index 254 // register field is 0. 255 (Mem.MemKind == BDMem && MemKind == BDXMem))); 256 } 257 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { 258 return isMem(MemKind) && Mem.RegKind == RegKind; 259 } 260 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { 261 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff); 262 } 263 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { 264 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287); 265 } 266 bool isMemDisp12Len4(RegisterKind RegKind) const { 267 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10); 268 } 269 bool isMemDisp12Len8(RegisterKind RegKind) const { 270 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100); 271 } 272 273 // Override MCParsedAsmOperand. 274 SMLoc getStartLoc() const override { return StartLoc; } 275 SMLoc getEndLoc() const override { return EndLoc; } 276 void print(raw_ostream &OS) const override; 277 278 /// getLocRange - Get the range between the first and last token of this 279 /// operand. 280 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 281 282 // Used by the TableGen code to add particular types of operand 283 // to an instruction. 284 void addRegOperands(MCInst &Inst, unsigned N) const { 285 assert(N == 1 && "Invalid number of operands"); 286 Inst.addOperand(MCOperand::createReg(getReg())); 287 } 288 void addImmOperands(MCInst &Inst, unsigned N) const { 289 assert(N == 1 && "Invalid number of operands"); 290 addExpr(Inst, getImm()); 291 } 292 void addBDAddrOperands(MCInst &Inst, unsigned N) const { 293 assert(N == 2 && "Invalid number of operands"); 294 assert(isMem(BDMem) && "Invalid operand type"); 295 Inst.addOperand(MCOperand::createReg(Mem.Base)); 296 addExpr(Inst, Mem.Disp); 297 } 298 void addBDXAddrOperands(MCInst &Inst, unsigned N) const { 299 assert(N == 3 && "Invalid number of operands"); 300 assert(isMem(BDXMem) && "Invalid operand type"); 301 Inst.addOperand(MCOperand::createReg(Mem.Base)); 302 addExpr(Inst, Mem.Disp); 303 Inst.addOperand(MCOperand::createReg(Mem.Index)); 304 } 305 void addBDLAddrOperands(MCInst &Inst, unsigned N) const { 306 assert(N == 3 && "Invalid number of operands"); 307 assert(isMem(BDLMem) && "Invalid operand type"); 308 Inst.addOperand(MCOperand::createReg(Mem.Base)); 309 addExpr(Inst, Mem.Disp); 310 addExpr(Inst, Mem.Length.Imm); 311 } 312 void addBDRAddrOperands(MCInst &Inst, unsigned N) const { 313 assert(N == 3 && "Invalid number of operands"); 314 assert(isMem(BDRMem) && "Invalid operand type"); 315 Inst.addOperand(MCOperand::createReg(Mem.Base)); 316 addExpr(Inst, Mem.Disp); 317 Inst.addOperand(MCOperand::createReg(Mem.Length.Reg)); 318 } 319 void addBDVAddrOperands(MCInst &Inst, unsigned N) const { 320 assert(N == 3 && "Invalid number of operands"); 321 assert(isMem(BDVMem) && "Invalid operand type"); 322 Inst.addOperand(MCOperand::createReg(Mem.Base)); 323 addExpr(Inst, Mem.Disp); 324 Inst.addOperand(MCOperand::createReg(Mem.Index)); 325 } 326 void addImmTLSOperands(MCInst &Inst, unsigned N) const { 327 assert(N == 2 && "Invalid number of operands"); 328 assert(Kind == KindImmTLS && "Invalid operand type"); 329 addExpr(Inst, ImmTLS.Imm); 330 if (ImmTLS.Sym) 331 addExpr(Inst, ImmTLS.Sym); 332 } 333 334 // Used by the TableGen code to check for particular operand types. 335 bool isGR32() const { return isReg(GR32Reg); } 336 bool isGRH32() const { return isReg(GRH32Reg); } 337 bool isGRX32() const { return false; } 338 bool isGR64() const { return isReg(GR64Reg); } 339 bool isGR128() const { return isReg(GR128Reg); } 340 bool isADDR32() const { return isReg(ADDR32Reg); } 341 bool isADDR64() const { return isReg(ADDR64Reg); } 342 bool isADDR128() const { return false; } 343 bool isFP32() const { return isReg(FP32Reg); } 344 bool isFP64() const { return isReg(FP64Reg); } 345 bool isFP128() const { return isReg(FP128Reg); } 346 bool isVR32() const { return isReg(VR32Reg); } 347 bool isVR64() const { return isReg(VR64Reg); } 348 bool isVF128() const { return false; } 349 bool isVR128() const { return isReg(VR128Reg); } 350 bool isAR32() const { return isReg(AR32Reg); } 351 bool isCR64() const { return isReg(CR64Reg); } 352 bool isAnyReg() const { return (isReg() || isImm(0, 15)); } 353 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, ADDR32Reg); } 354 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, ADDR32Reg); } 355 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, ADDR64Reg); } 356 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, ADDR64Reg); } 357 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, ADDR64Reg); } 358 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, ADDR64Reg); } 359 bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(ADDR64Reg); } 360 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(ADDR64Reg); } 361 bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, ADDR64Reg); } 362 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, ADDR64Reg); } 363 bool isU1Imm() const { return isImm(0, 1); } 364 bool isU2Imm() const { return isImm(0, 3); } 365 bool isU3Imm() const { return isImm(0, 7); } 366 bool isU4Imm() const { return isImm(0, 15); } 367 bool isU6Imm() const { return isImm(0, 63); } 368 bool isU8Imm() const { return isImm(0, 255); } 369 bool isS8Imm() const { return isImm(-128, 127); } 370 bool isU12Imm() const { return isImm(0, 4095); } 371 bool isU16Imm() const { return isImm(0, 65535); } 372 bool isS16Imm() const { return isImm(-32768, 32767); } 373 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); } 374 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); } 375 bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); } 376 }; 377 378 class SystemZAsmParser : public MCTargetAsmParser { 379 #define GET_ASSEMBLER_HEADER 380 #include "SystemZGenAsmMatcher.inc" 381 382 private: 383 MCAsmParser &Parser; 384 enum RegisterGroup { 385 RegGR, 386 RegFP, 387 RegV, 388 RegAR, 389 RegCR 390 }; 391 struct Register { 392 RegisterGroup Group; 393 unsigned Num; 394 SMLoc StartLoc, EndLoc; 395 }; 396 397 bool parseRegister(Register &Reg); 398 399 bool parseRegister(Register &Reg, RegisterGroup Group, const unsigned *Regs, 400 bool IsAddress = false); 401 402 OperandMatchResultTy parseRegister(OperandVector &Operands, 403 RegisterGroup Group, const unsigned *Regs, 404 RegisterKind Kind); 405 406 OperandMatchResultTy parseAnyRegister(OperandVector &Operands); 407 408 bool parseAddress(bool &HaveReg1, Register &Reg1, 409 bool &HaveReg2, Register &Reg2, 410 const MCExpr *&Disp, const MCExpr *&Length); 411 bool parseAddressRegister(Register &Reg); 412 413 bool ParseDirectiveInsn(SMLoc L); 414 415 OperandMatchResultTy parseAddress(OperandVector &Operands, 416 MemoryKind MemKind, const unsigned *Regs, 417 RegisterKind RegKind); 418 419 OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal, 420 int64_t MaxVal, bool AllowTLS); 421 422 bool parseOperand(OperandVector &Operands, StringRef Mnemonic); 423 424 public: 425 SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, 426 const MCInstrInfo &MII, 427 const MCTargetOptions &Options) 428 : MCTargetAsmParser(Options, sti, MII), Parser(parser) { 429 MCAsmParserExtension::Initialize(Parser); 430 431 // Alias the .word directive to .short. 432 parser.addAliasForDirective(".word", ".short"); 433 434 // Initialize the set of available features. 435 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); 436 } 437 438 // Override MCTargetAsmParser. 439 bool ParseDirective(AsmToken DirectiveID) override; 440 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 441 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 442 SMLoc NameLoc, OperandVector &Operands) override; 443 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 444 OperandVector &Operands, MCStreamer &Out, 445 uint64_t &ErrorInfo, 446 bool MatchingInlineAsm) override; 447 448 // Used by the TableGen code to parse particular operand types. 449 OperandMatchResultTy parseGR32(OperandVector &Operands) { 450 return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, GR32Reg); 451 } 452 OperandMatchResultTy parseGRH32(OperandVector &Operands) { 453 return parseRegister(Operands, RegGR, SystemZMC::GRH32Regs, GRH32Reg); 454 } 455 OperandMatchResultTy parseGRX32(OperandVector &Operands) { 456 llvm_unreachable("GRX32 should only be used for pseudo instructions"); 457 } 458 OperandMatchResultTy parseGR64(OperandVector &Operands) { 459 return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, GR64Reg); 460 } 461 OperandMatchResultTy parseGR128(OperandVector &Operands) { 462 return parseRegister(Operands, RegGR, SystemZMC::GR128Regs, GR128Reg); 463 } 464 OperandMatchResultTy parseADDR32(OperandVector &Operands) { 465 return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, ADDR32Reg); 466 } 467 OperandMatchResultTy parseADDR64(OperandVector &Operands) { 468 return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, ADDR64Reg); 469 } 470 OperandMatchResultTy parseADDR128(OperandVector &Operands) { 471 llvm_unreachable("Shouldn't be used as an operand"); 472 } 473 OperandMatchResultTy parseFP32(OperandVector &Operands) { 474 return parseRegister(Operands, RegFP, SystemZMC::FP32Regs, FP32Reg); 475 } 476 OperandMatchResultTy parseFP64(OperandVector &Operands) { 477 return parseRegister(Operands, RegFP, SystemZMC::FP64Regs, FP64Reg); 478 } 479 OperandMatchResultTy parseFP128(OperandVector &Operands) { 480 return parseRegister(Operands, RegFP, SystemZMC::FP128Regs, FP128Reg); 481 } 482 OperandMatchResultTy parseVR32(OperandVector &Operands) { 483 return parseRegister(Operands, RegV, SystemZMC::VR32Regs, VR32Reg); 484 } 485 OperandMatchResultTy parseVR64(OperandVector &Operands) { 486 return parseRegister(Operands, RegV, SystemZMC::VR64Regs, VR64Reg); 487 } 488 OperandMatchResultTy parseVF128(OperandVector &Operands) { 489 llvm_unreachable("Shouldn't be used as an operand"); 490 } 491 OperandMatchResultTy parseVR128(OperandVector &Operands) { 492 return parseRegister(Operands, RegV, SystemZMC::VR128Regs, VR128Reg); 493 } 494 OperandMatchResultTy parseAR32(OperandVector &Operands) { 495 return parseRegister(Operands, RegAR, SystemZMC::AR32Regs, AR32Reg); 496 } 497 OperandMatchResultTy parseCR64(OperandVector &Operands) { 498 return parseRegister(Operands, RegCR, SystemZMC::CR64Regs, CR64Reg); 499 } 500 OperandMatchResultTy parseAnyReg(OperandVector &Operands) { 501 return parseAnyRegister(Operands); 502 } 503 OperandMatchResultTy parseBDAddr32(OperandVector &Operands) { 504 return parseAddress(Operands, BDMem, SystemZMC::GR32Regs, ADDR32Reg); 505 } 506 OperandMatchResultTy parseBDAddr64(OperandVector &Operands) { 507 return parseAddress(Operands, BDMem, SystemZMC::GR64Regs, ADDR64Reg); 508 } 509 OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) { 510 return parseAddress(Operands, BDXMem, SystemZMC::GR64Regs, ADDR64Reg); 511 } 512 OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) { 513 return parseAddress(Operands, BDLMem, SystemZMC::GR64Regs, ADDR64Reg); 514 } 515 OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) { 516 return parseAddress(Operands, BDRMem, SystemZMC::GR64Regs, ADDR64Reg); 517 } 518 OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) { 519 return parseAddress(Operands, BDVMem, SystemZMC::GR64Regs, ADDR64Reg); 520 } 521 OperandMatchResultTy parsePCRel12(OperandVector &Operands) { 522 return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false); 523 } 524 OperandMatchResultTy parsePCRel16(OperandVector &Operands) { 525 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false); 526 } 527 OperandMatchResultTy parsePCRel24(OperandVector &Operands) { 528 return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false); 529 } 530 OperandMatchResultTy parsePCRel32(OperandVector &Operands) { 531 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false); 532 } 533 OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) { 534 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true); 535 } 536 OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) { 537 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true); 538 } 539 }; 540 541 } // end anonymous namespace 542 543 #define GET_REGISTER_MATCHER 544 #define GET_SUBTARGET_FEATURE_NAME 545 #define GET_MATCHER_IMPLEMENTATION 546 #include "SystemZGenAsmMatcher.inc" 547 548 // Used for the .insn directives; contains information needed to parse the 549 // operands in the directive. 550 struct InsnMatchEntry { 551 StringRef Format; 552 uint64_t Opcode; 553 int32_t NumOperands; 554 MatchClassKind OperandKinds[5]; 555 }; 556 557 // For equal_range comparison. 558 struct CompareInsn { 559 bool operator() (const InsnMatchEntry &LHS, StringRef RHS) { 560 return LHS.Format < RHS; 561 } 562 bool operator() (StringRef LHS, const InsnMatchEntry &RHS) { 563 return LHS < RHS.Format; 564 } 565 bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) { 566 return LHS.Format < RHS.Format; 567 } 568 }; 569 570 // Table initializing information for parsing the .insn directive. 571 static struct InsnMatchEntry InsnMatchTable[] = { 572 /* Format, Opcode, NumOperands, OperandKinds */ 573 { "e", SystemZ::InsnE, 1, 574 { MCK_U16Imm } }, 575 { "ri", SystemZ::InsnRI, 3, 576 { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } }, 577 { "rie", SystemZ::InsnRIE, 4, 578 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 579 { "ril", SystemZ::InsnRIL, 3, 580 { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } }, 581 { "rilu", SystemZ::InsnRILU, 3, 582 { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } }, 583 { "ris", SystemZ::InsnRIS, 5, 584 { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 585 { "rr", SystemZ::InsnRR, 3, 586 { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } }, 587 { "rre", SystemZ::InsnRRE, 3, 588 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } }, 589 { "rrf", SystemZ::InsnRRF, 5, 590 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } }, 591 { "rrs", SystemZ::InsnRRS, 5, 592 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 593 { "rs", SystemZ::InsnRS, 4, 594 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 595 { "rse", SystemZ::InsnRSE, 4, 596 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 597 { "rsi", SystemZ::InsnRSI, 4, 598 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 599 { "rsy", SystemZ::InsnRSY, 4, 600 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } }, 601 { "rx", SystemZ::InsnRX, 3, 602 { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 603 { "rxe", SystemZ::InsnRXE, 3, 604 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 605 { "rxf", SystemZ::InsnRXF, 4, 606 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 607 { "rxy", SystemZ::InsnRXY, 3, 608 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } }, 609 { "s", SystemZ::InsnS, 2, 610 { MCK_U32Imm, MCK_BDAddr64Disp12 } }, 611 { "si", SystemZ::InsnSI, 3, 612 { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } }, 613 { "sil", SystemZ::InsnSIL, 3, 614 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } }, 615 { "siy", SystemZ::InsnSIY, 3, 616 { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } }, 617 { "ss", SystemZ::InsnSS, 4, 618 { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 619 { "sse", SystemZ::InsnSSE, 3, 620 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } }, 621 { "ssf", SystemZ::InsnSSF, 4, 622 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } } 623 }; 624 625 void SystemZOperand::print(raw_ostream &OS) const { 626 llvm_unreachable("Not implemented"); 627 } 628 629 // Parse one register of the form %<prefix><number>. 630 bool SystemZAsmParser::parseRegister(Register &Reg) { 631 Reg.StartLoc = Parser.getTok().getLoc(); 632 633 // Eat the % prefix. 634 if (Parser.getTok().isNot(AsmToken::Percent)) 635 return Error(Parser.getTok().getLoc(), "register expected"); 636 Parser.Lex(); 637 638 // Expect a register name. 639 if (Parser.getTok().isNot(AsmToken::Identifier)) 640 return Error(Reg.StartLoc, "invalid register"); 641 642 // Check that there's a prefix. 643 StringRef Name = Parser.getTok().getString(); 644 if (Name.size() < 2) 645 return Error(Reg.StartLoc, "invalid register"); 646 char Prefix = Name[0]; 647 648 // Treat the rest of the register name as a register number. 649 if (Name.substr(1).getAsInteger(10, Reg.Num)) 650 return Error(Reg.StartLoc, "invalid register"); 651 652 // Look for valid combinations of prefix and number. 653 if (Prefix == 'r' && Reg.Num < 16) 654 Reg.Group = RegGR; 655 else if (Prefix == 'f' && Reg.Num < 16) 656 Reg.Group = RegFP; 657 else if (Prefix == 'v' && Reg.Num < 32) 658 Reg.Group = RegV; 659 else if (Prefix == 'a' && Reg.Num < 16) 660 Reg.Group = RegAR; 661 else if (Prefix == 'c' && Reg.Num < 16) 662 Reg.Group = RegCR; 663 else 664 return Error(Reg.StartLoc, "invalid register"); 665 666 Reg.EndLoc = Parser.getTok().getLoc(); 667 Parser.Lex(); 668 return false; 669 } 670 671 // Parse a register of group Group. If Regs is nonnull, use it to map 672 // the raw register number to LLVM numbering, with zero entries 673 // indicating an invalid register. IsAddress says whether the 674 // register appears in an address context. Allow FP Group if expecting 675 // RegV Group, since the f-prefix yields the FP group even while used 676 // with vector instructions. 677 bool SystemZAsmParser::parseRegister(Register &Reg, RegisterGroup Group, 678 const unsigned *Regs, bool IsAddress) { 679 if (parseRegister(Reg)) 680 return true; 681 if (Reg.Group != Group && !(Reg.Group == RegFP && Group == RegV)) 682 return Error(Reg.StartLoc, "invalid operand for instruction"); 683 if (Regs && Regs[Reg.Num] == 0) 684 return Error(Reg.StartLoc, "invalid register pair"); 685 if (Reg.Num == 0 && IsAddress) 686 return Error(Reg.StartLoc, "%r0 used in an address"); 687 if (Regs) 688 Reg.Num = Regs[Reg.Num]; 689 return false; 690 } 691 692 // Parse a register and add it to Operands. The other arguments are as above. 693 OperandMatchResultTy 694 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterGroup Group, 695 const unsigned *Regs, RegisterKind Kind) { 696 if (Parser.getTok().isNot(AsmToken::Percent)) 697 return MatchOperand_NoMatch; 698 699 Register Reg; 700 bool IsAddress = (Kind == ADDR32Reg || Kind == ADDR64Reg); 701 if (parseRegister(Reg, Group, Regs, IsAddress)) 702 return MatchOperand_ParseFail; 703 704 Operands.push_back(SystemZOperand::createReg(Kind, Reg.Num, 705 Reg.StartLoc, Reg.EndLoc)); 706 return MatchOperand_Success; 707 } 708 709 // Parse any type of register (including integers) and add it to Operands. 710 OperandMatchResultTy 711 SystemZAsmParser::parseAnyRegister(OperandVector &Operands) { 712 // Handle integer values. 713 if (Parser.getTok().is(AsmToken::Integer)) { 714 const MCExpr *Register; 715 SMLoc StartLoc = Parser.getTok().getLoc(); 716 if (Parser.parseExpression(Register)) 717 return MatchOperand_ParseFail; 718 719 if (auto *CE = dyn_cast<MCConstantExpr>(Register)) { 720 int64_t Value = CE->getValue(); 721 if (Value < 0 || Value > 15) { 722 Error(StartLoc, "invalid register"); 723 return MatchOperand_ParseFail; 724 } 725 } 726 727 SMLoc EndLoc = 728 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 729 730 Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc)); 731 } 732 else { 733 Register Reg; 734 if (parseRegister(Reg)) 735 return MatchOperand_ParseFail; 736 737 // Map to the correct register kind. 738 RegisterKind Kind; 739 unsigned RegNo; 740 if (Reg.Group == RegGR) { 741 Kind = GR64Reg; 742 RegNo = SystemZMC::GR64Regs[Reg.Num]; 743 } 744 else if (Reg.Group == RegFP) { 745 Kind = FP64Reg; 746 RegNo = SystemZMC::FP64Regs[Reg.Num]; 747 } 748 else if (Reg.Group == RegV) { 749 Kind = VR128Reg; 750 RegNo = SystemZMC::VR128Regs[Reg.Num]; 751 } 752 else if (Reg.Group == RegAR) { 753 Kind = AR32Reg; 754 RegNo = SystemZMC::AR32Regs[Reg.Num]; 755 } 756 else if (Reg.Group == RegCR) { 757 Kind = CR64Reg; 758 RegNo = SystemZMC::CR64Regs[Reg.Num]; 759 } 760 else { 761 return MatchOperand_ParseFail; 762 } 763 764 Operands.push_back(SystemZOperand::createReg(Kind, RegNo, 765 Reg.StartLoc, Reg.EndLoc)); 766 } 767 return MatchOperand_Success; 768 } 769 770 // Parse a memory operand into Reg1, Reg2, Disp, and Length. 771 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1, 772 bool &HaveReg2, Register &Reg2, 773 const MCExpr *&Disp, 774 const MCExpr *&Length) { 775 // Parse the displacement, which must always be present. 776 if (getParser().parseExpression(Disp)) 777 return true; 778 779 // Parse the optional base and index. 780 HaveReg1 = false; 781 HaveReg2 = false; 782 Length = nullptr; 783 if (getLexer().is(AsmToken::LParen)) { 784 Parser.Lex(); 785 786 if (getLexer().is(AsmToken::Percent)) { 787 // Parse the first register. 788 HaveReg1 = true; 789 if (parseRegister(Reg1)) 790 return true; 791 } else { 792 // Parse the length. 793 if (getParser().parseExpression(Length)) 794 return true; 795 } 796 797 // Check whether there's a second register. 798 if (getLexer().is(AsmToken::Comma)) { 799 Parser.Lex(); 800 HaveReg2 = true; 801 if (parseRegister(Reg2)) 802 return true; 803 } 804 805 // Consume the closing bracket. 806 if (getLexer().isNot(AsmToken::RParen)) 807 return Error(Parser.getTok().getLoc(), "unexpected token in address"); 808 Parser.Lex(); 809 } 810 return false; 811 } 812 813 // Verify that Reg is a valid address register (base or index). 814 bool 815 SystemZAsmParser::parseAddressRegister(Register &Reg) { 816 if (Reg.Group == RegV) { 817 Error(Reg.StartLoc, "invalid use of vector addressing"); 818 return true; 819 } else if (Reg.Group != RegGR) { 820 Error(Reg.StartLoc, "invalid address register"); 821 return true; 822 } else if (Reg.Num == 0) { 823 Error(Reg.StartLoc, "%r0 used in an address"); 824 return true; 825 } 826 return false; 827 } 828 829 // Parse a memory operand and add it to Operands. The other arguments 830 // are as above. 831 OperandMatchResultTy 832 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind, 833 const unsigned *Regs, RegisterKind RegKind) { 834 SMLoc StartLoc = Parser.getTok().getLoc(); 835 unsigned Base = 0, Index = 0, LengthReg = 0; 836 Register Reg1, Reg2; 837 bool HaveReg1, HaveReg2; 838 const MCExpr *Disp; 839 const MCExpr *Length; 840 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length)) 841 return MatchOperand_ParseFail; 842 843 switch (MemKind) { 844 case BDMem: 845 // If we have Reg1, it must be an address register. 846 if (HaveReg1) { 847 if (parseAddressRegister(Reg1)) 848 return MatchOperand_ParseFail; 849 Base = Regs[Reg1.Num]; 850 } 851 // There must be no Reg2 or length. 852 if (Length) { 853 Error(StartLoc, "invalid use of length addressing"); 854 return MatchOperand_ParseFail; 855 } 856 if (HaveReg2) { 857 Error(StartLoc, "invalid use of indexed addressing"); 858 return MatchOperand_ParseFail; 859 } 860 break; 861 case BDXMem: 862 // If we have Reg1, it must be an address register. 863 if (HaveReg1) { 864 if (parseAddressRegister(Reg1)) 865 return MatchOperand_ParseFail; 866 // If the are two registers, the first one is the index and the 867 // second is the base. 868 if (HaveReg2) 869 Index = Regs[Reg1.Num]; 870 else 871 Base = Regs[Reg1.Num]; 872 } 873 // If we have Reg2, it must be an address register. 874 if (HaveReg2) { 875 if (parseAddressRegister(Reg2)) 876 return MatchOperand_ParseFail; 877 Base = Regs[Reg2.Num]; 878 } 879 // There must be no length. 880 if (Length) { 881 Error(StartLoc, "invalid use of length addressing"); 882 return MatchOperand_ParseFail; 883 } 884 break; 885 case BDLMem: 886 // If we have Reg2, it must be an address register. 887 if (HaveReg2) { 888 if (parseAddressRegister(Reg2)) 889 return MatchOperand_ParseFail; 890 Base = Regs[Reg2.Num]; 891 } 892 // We cannot support base+index addressing. 893 if (HaveReg1 && HaveReg2) { 894 Error(StartLoc, "invalid use of indexed addressing"); 895 return MatchOperand_ParseFail; 896 } 897 // We must have a length. 898 if (!Length) { 899 Error(StartLoc, "missing length in address"); 900 return MatchOperand_ParseFail; 901 } 902 break; 903 case BDRMem: 904 // We must have Reg1, and it must be a GPR. 905 if (!HaveReg1 || Reg1.Group != RegGR) { 906 Error(StartLoc, "invalid operand for instruction"); 907 return MatchOperand_ParseFail; 908 } 909 LengthReg = SystemZMC::GR64Regs[Reg1.Num]; 910 // If we have Reg2, it must be an address register. 911 if (HaveReg2) { 912 if (parseAddressRegister(Reg2)) 913 return MatchOperand_ParseFail; 914 Base = Regs[Reg2.Num]; 915 } 916 // There must be no length. 917 if (Length) { 918 Error(StartLoc, "invalid use of length addressing"); 919 return MatchOperand_ParseFail; 920 } 921 break; 922 case BDVMem: 923 // We must have Reg1, and it must be a vector register. 924 if (!HaveReg1 || Reg1.Group != RegV) { 925 Error(StartLoc, "vector index required in address"); 926 return MatchOperand_ParseFail; 927 } 928 Index = SystemZMC::VR128Regs[Reg1.Num]; 929 // If we have Reg2, it must be an address register. 930 if (HaveReg2) { 931 if (parseAddressRegister(Reg2)) 932 return MatchOperand_ParseFail; 933 Base = Regs[Reg2.Num]; 934 } 935 // There must be no length. 936 if (Length) { 937 Error(StartLoc, "invalid use of length addressing"); 938 return MatchOperand_ParseFail; 939 } 940 break; 941 } 942 943 SMLoc EndLoc = 944 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 945 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp, 946 Index, Length, LengthReg, 947 StartLoc, EndLoc)); 948 return MatchOperand_Success; 949 } 950 951 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) { 952 StringRef IDVal = DirectiveID.getIdentifier(); 953 954 if (IDVal == ".insn") 955 return ParseDirectiveInsn(DirectiveID.getLoc()); 956 957 return true; 958 } 959 960 /// ParseDirectiveInsn 961 /// ::= .insn [ format, encoding, (operands (, operands)*) ] 962 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) { 963 MCAsmParser &Parser = getParser(); 964 965 // Expect instruction format as identifier. 966 StringRef Format; 967 SMLoc ErrorLoc = Parser.getTok().getLoc(); 968 if (Parser.parseIdentifier(Format)) 969 return Error(ErrorLoc, "expected instruction format"); 970 971 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands; 972 973 // Find entry for this format in InsnMatchTable. 974 auto EntryRange = 975 std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable), 976 Format, CompareInsn()); 977 978 // If first == second, couldn't find a match in the table. 979 if (EntryRange.first == EntryRange.second) 980 return Error(ErrorLoc, "unrecognized format"); 981 982 struct InsnMatchEntry *Entry = EntryRange.first; 983 984 // Format should match from equal_range. 985 assert(Entry->Format == Format); 986 987 // Parse the following operands using the table's information. 988 for (int i = 0; i < Entry->NumOperands; i++) { 989 MatchClassKind Kind = Entry->OperandKinds[i]; 990 991 SMLoc StartLoc = Parser.getTok().getLoc(); 992 993 // Always expect commas as separators for operands. 994 if (getLexer().isNot(AsmToken::Comma)) 995 return Error(StartLoc, "unexpected token in directive"); 996 Lex(); 997 998 // Parse operands. 999 OperandMatchResultTy ResTy; 1000 if (Kind == MCK_AnyReg) 1001 ResTy = parseAnyReg(Operands); 1002 else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20) 1003 ResTy = parseBDXAddr64(Operands); 1004 else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20) 1005 ResTy = parseBDAddr64(Operands); 1006 else if (Kind == MCK_PCRel32) 1007 ResTy = parsePCRel32(Operands); 1008 else if (Kind == MCK_PCRel16) 1009 ResTy = parsePCRel16(Operands); 1010 else { 1011 // Only remaining operand kind is an immediate. 1012 const MCExpr *Expr; 1013 SMLoc StartLoc = Parser.getTok().getLoc(); 1014 1015 // Expect immediate expression. 1016 if (Parser.parseExpression(Expr)) 1017 return Error(StartLoc, "unexpected token in directive"); 1018 1019 SMLoc EndLoc = 1020 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1021 1022 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1023 ResTy = MatchOperand_Success; 1024 } 1025 1026 if (ResTy != MatchOperand_Success) 1027 return true; 1028 } 1029 1030 // Build the instruction with the parsed operands. 1031 MCInst Inst = MCInstBuilder(Entry->Opcode); 1032 1033 for (size_t i = 0; i < Operands.size(); i++) { 1034 MCParsedAsmOperand &Operand = *Operands[i]; 1035 MatchClassKind Kind = Entry->OperandKinds[i]; 1036 1037 // Verify operand. 1038 unsigned Res = validateOperandClass(Operand, Kind); 1039 if (Res != Match_Success) 1040 return Error(Operand.getStartLoc(), "unexpected operand type"); 1041 1042 // Add operands to instruction. 1043 SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand); 1044 if (ZOperand.isReg()) 1045 ZOperand.addRegOperands(Inst, 1); 1046 else if (ZOperand.isMem(BDMem)) 1047 ZOperand.addBDAddrOperands(Inst, 2); 1048 else if (ZOperand.isMem(BDXMem)) 1049 ZOperand.addBDXAddrOperands(Inst, 3); 1050 else if (ZOperand.isImm()) 1051 ZOperand.addImmOperands(Inst, 1); 1052 else 1053 llvm_unreachable("unexpected operand type"); 1054 } 1055 1056 // Emit as a regular instruction. 1057 Parser.getStreamer().EmitInstruction(Inst, getSTI()); 1058 1059 return false; 1060 } 1061 1062 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, 1063 SMLoc &EndLoc) { 1064 Register Reg; 1065 if (parseRegister(Reg)) 1066 return true; 1067 if (Reg.Group == RegGR) 1068 RegNo = SystemZMC::GR64Regs[Reg.Num]; 1069 else if (Reg.Group == RegFP) 1070 RegNo = SystemZMC::FP64Regs[Reg.Num]; 1071 else if (Reg.Group == RegV) 1072 RegNo = SystemZMC::VR128Regs[Reg.Num]; 1073 else if (Reg.Group == RegAR) 1074 RegNo = SystemZMC::AR32Regs[Reg.Num]; 1075 else if (Reg.Group == RegCR) 1076 RegNo = SystemZMC::CR64Regs[Reg.Num]; 1077 StartLoc = Reg.StartLoc; 1078 EndLoc = Reg.EndLoc; 1079 return false; 1080 } 1081 1082 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info, 1083 StringRef Name, SMLoc NameLoc, 1084 OperandVector &Operands) { 1085 Operands.push_back(SystemZOperand::createToken(Name, NameLoc)); 1086 1087 // Read the remaining operands. 1088 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1089 // Read the first operand. 1090 if (parseOperand(Operands, Name)) { 1091 return true; 1092 } 1093 1094 // Read any subsequent operands. 1095 while (getLexer().is(AsmToken::Comma)) { 1096 Parser.Lex(); 1097 if (parseOperand(Operands, Name)) { 1098 return true; 1099 } 1100 } 1101 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1102 SMLoc Loc = getLexer().getLoc(); 1103 return Error(Loc, "unexpected token in argument list"); 1104 } 1105 } 1106 1107 // Consume the EndOfStatement. 1108 Parser.Lex(); 1109 return false; 1110 } 1111 1112 bool SystemZAsmParser::parseOperand(OperandVector &Operands, 1113 StringRef Mnemonic) { 1114 // Check if the current operand has a custom associated parser, if so, try to 1115 // custom parse the operand, or fallback to the general approach. Force all 1116 // features to be available during the operand check, or else we will fail to 1117 // find the custom parser, and then we will later get an InvalidOperand error 1118 // instead of a MissingFeature errror. 1119 uint64_t AvailableFeatures = getAvailableFeatures(); 1120 setAvailableFeatures(~(uint64_t)0); 1121 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 1122 setAvailableFeatures(AvailableFeatures); 1123 if (ResTy == MatchOperand_Success) 1124 return false; 1125 1126 // If there wasn't a custom match, try the generic matcher below. Otherwise, 1127 // there was a match, but an error occurred, in which case, just return that 1128 // the operand parsing failed. 1129 if (ResTy == MatchOperand_ParseFail) 1130 return true; 1131 1132 // Check for a register. All real register operands should have used 1133 // a context-dependent parse routine, which gives the required register 1134 // class. The code is here to mop up other cases, like those where 1135 // the instruction isn't recognized. 1136 if (Parser.getTok().is(AsmToken::Percent)) { 1137 Register Reg; 1138 if (parseRegister(Reg)) 1139 return true; 1140 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc)); 1141 return false; 1142 } 1143 1144 // The only other type of operand is an immediate or address. As above, 1145 // real address operands should have used a context-dependent parse routine, 1146 // so we treat any plain expression as an immediate. 1147 SMLoc StartLoc = Parser.getTok().getLoc(); 1148 Register Reg1, Reg2; 1149 bool HaveReg1, HaveReg2; 1150 const MCExpr *Expr; 1151 const MCExpr *Length; 1152 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length)) 1153 return true; 1154 // If the register combination is not valid for any instruction, reject it. 1155 // Otherwise, fall back to reporting an unrecognized instruction. 1156 if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV 1157 && parseAddressRegister(Reg1)) 1158 return true; 1159 if (HaveReg2 && parseAddressRegister(Reg2)) 1160 return true; 1161 1162 SMLoc EndLoc = 1163 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1164 if (HaveReg1 || HaveReg2 || Length) 1165 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc)); 1166 else 1167 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1168 return false; 1169 } 1170 1171 std::string SystemZMnemonicSpellCheck(StringRef S, uint64_t FBS); 1172 1173 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1174 OperandVector &Operands, 1175 MCStreamer &Out, 1176 uint64_t &ErrorInfo, 1177 bool MatchingInlineAsm) { 1178 MCInst Inst; 1179 unsigned MatchResult; 1180 1181 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, 1182 MatchingInlineAsm); 1183 switch (MatchResult) { 1184 case Match_Success: 1185 Inst.setLoc(IDLoc); 1186 Out.EmitInstruction(Inst, getSTI()); 1187 return false; 1188 1189 case Match_MissingFeature: { 1190 assert(ErrorInfo && "Unknown missing feature!"); 1191 // Special case the error message for the very common case where only 1192 // a single subtarget feature is missing 1193 std::string Msg = "instruction requires:"; 1194 uint64_t Mask = 1; 1195 for (unsigned I = 0; I < sizeof(ErrorInfo) * 8 - 1; ++I) { 1196 if (ErrorInfo & Mask) { 1197 Msg += " "; 1198 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 1199 } 1200 Mask <<= 1; 1201 } 1202 return Error(IDLoc, Msg); 1203 } 1204 1205 case Match_InvalidOperand: { 1206 SMLoc ErrorLoc = IDLoc; 1207 if (ErrorInfo != ~0ULL) { 1208 if (ErrorInfo >= Operands.size()) 1209 return Error(IDLoc, "too few operands for instruction"); 1210 1211 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); 1212 if (ErrorLoc == SMLoc()) 1213 ErrorLoc = IDLoc; 1214 } 1215 return Error(ErrorLoc, "invalid operand for instruction"); 1216 } 1217 1218 case Match_MnemonicFail: { 1219 uint64_t FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 1220 std::string Suggestion = SystemZMnemonicSpellCheck( 1221 ((SystemZOperand &)*Operands[0]).getToken(), FBS); 1222 return Error(IDLoc, "invalid instruction" + Suggestion, 1223 ((SystemZOperand &)*Operands[0]).getLocRange()); 1224 } 1225 } 1226 1227 llvm_unreachable("Unexpected match type"); 1228 } 1229 1230 OperandMatchResultTy 1231 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal, 1232 int64_t MaxVal, bool AllowTLS) { 1233 MCContext &Ctx = getContext(); 1234 MCStreamer &Out = getStreamer(); 1235 const MCExpr *Expr; 1236 SMLoc StartLoc = Parser.getTok().getLoc(); 1237 if (getParser().parseExpression(Expr)) 1238 return MatchOperand_NoMatch; 1239 1240 // For consistency with the GNU assembler, treat immediates as offsets 1241 // from ".". 1242 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 1243 int64_t Value = CE->getValue(); 1244 if ((Value & 1) || Value < MinVal || Value > MaxVal) { 1245 Error(StartLoc, "offset out of range"); 1246 return MatchOperand_ParseFail; 1247 } 1248 MCSymbol *Sym = Ctx.createTempSymbol(); 1249 Out.EmitLabel(Sym); 1250 const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, 1251 Ctx); 1252 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx); 1253 } 1254 1255 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. 1256 const MCExpr *Sym = nullptr; 1257 if (AllowTLS && getLexer().is(AsmToken::Colon)) { 1258 Parser.Lex(); 1259 1260 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1261 Error(Parser.getTok().getLoc(), "unexpected token"); 1262 return MatchOperand_ParseFail; 1263 } 1264 1265 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 1266 StringRef Name = Parser.getTok().getString(); 1267 if (Name == "tls_gdcall") 1268 Kind = MCSymbolRefExpr::VK_TLSGD; 1269 else if (Name == "tls_ldcall") 1270 Kind = MCSymbolRefExpr::VK_TLSLDM; 1271 else { 1272 Error(Parser.getTok().getLoc(), "unknown TLS tag"); 1273 return MatchOperand_ParseFail; 1274 } 1275 Parser.Lex(); 1276 1277 if (Parser.getTok().isNot(AsmToken::Colon)) { 1278 Error(Parser.getTok().getLoc(), "unexpected token"); 1279 return MatchOperand_ParseFail; 1280 } 1281 Parser.Lex(); 1282 1283 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1284 Error(Parser.getTok().getLoc(), "unexpected token"); 1285 return MatchOperand_ParseFail; 1286 } 1287 1288 StringRef Identifier = Parser.getTok().getString(); 1289 Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier), 1290 Kind, Ctx); 1291 Parser.Lex(); 1292 } 1293 1294 SMLoc EndLoc = 1295 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1296 1297 if (AllowTLS) 1298 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym, 1299 StartLoc, EndLoc)); 1300 else 1301 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1302 1303 return MatchOperand_Success; 1304 } 1305 1306 // Force static initialization. 1307 extern "C" void LLVMInitializeSystemZAsmParser() { 1308 RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget()); 1309 } 1310