1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "MCTargetDesc/SystemZMCTargetDesc.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/MC/MCContext.h" 13 #include "llvm/MC/MCExpr.h" 14 #include "llvm/MC/MCInst.h" 15 #include "llvm/MC/MCInstBuilder.h" 16 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 17 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 18 #include "llvm/MC/MCStreamer.h" 19 #include "llvm/MC/MCSubtargetInfo.h" 20 #include "llvm/Support/TargetRegistry.h" 21 22 using namespace llvm; 23 24 // Return true if Expr is in the range [MinValue, MaxValue]. 25 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) { 26 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 27 int64_t Value = CE->getValue(); 28 return Value >= MinValue && Value <= MaxValue; 29 } 30 return false; 31 } 32 33 namespace { 34 enum RegisterKind { 35 GR32Reg, 36 GRH32Reg, 37 GR64Reg, 38 GR128Reg, 39 ADDR32Reg, 40 ADDR64Reg, 41 FP32Reg, 42 FP64Reg, 43 FP128Reg, 44 VR32Reg, 45 VR64Reg, 46 VR128Reg 47 }; 48 49 enum MemoryKind { 50 BDMem, 51 BDXMem, 52 BDLMem, 53 BDRMem, 54 BDVMem 55 }; 56 57 class SystemZOperand : public MCParsedAsmOperand { 58 public: 59 private: 60 enum OperandKind { 61 KindInvalid, 62 KindToken, 63 KindReg, 64 KindAccessReg, 65 KindImm, 66 KindImmTLS, 67 KindMem 68 }; 69 70 OperandKind Kind; 71 SMLoc StartLoc, EndLoc; 72 73 // A string of length Length, starting at Data. 74 struct TokenOp { 75 const char *Data; 76 unsigned Length; 77 }; 78 79 // LLVM register Num, which has kind Kind. In some ways it might be 80 // easier for this class to have a register bank (general, floating-point 81 // or access) and a raw register number (0-15). This would postpone the 82 // interpretation of the operand to the add*() methods and avoid the need 83 // for context-dependent parsing. However, we do things the current way 84 // because of the virtual getReg() method, which needs to distinguish 85 // between (say) %r0 used as a single register and %r0 used as a pair. 86 // Context-dependent parsing can also give us slightly better error 87 // messages when invalid pairs like %r1 are used. 88 struct RegOp { 89 RegisterKind Kind; 90 unsigned Num; 91 }; 92 93 // Base + Disp + Index, where Base and Index are LLVM registers or 0. 94 // MemKind says what type of memory this is and RegKind says what type 95 // the base register has (ADDR32Reg or ADDR64Reg). Length is the operand 96 // length for D(L,B)-style operands, otherwise it is null. 97 struct MemOp { 98 unsigned Base : 12; 99 unsigned Index : 12; 100 unsigned MemKind : 4; 101 unsigned RegKind : 4; 102 const MCExpr *Disp; 103 union { 104 const MCExpr *Imm; 105 unsigned Reg; 106 } Length; 107 }; 108 109 // Imm is an immediate operand, and Sym is an optional TLS symbol 110 // for use with a __tls_get_offset marker relocation. 111 struct ImmTLSOp { 112 const MCExpr *Imm; 113 const MCExpr *Sym; 114 }; 115 116 union { 117 TokenOp Token; 118 RegOp Reg; 119 unsigned AccessReg; 120 const MCExpr *Imm; 121 ImmTLSOp ImmTLS; 122 MemOp Mem; 123 }; 124 125 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 126 // Add as immediates when possible. Null MCExpr = 0. 127 if (!Expr) 128 Inst.addOperand(MCOperand::createImm(0)); 129 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) 130 Inst.addOperand(MCOperand::createImm(CE->getValue())); 131 else 132 Inst.addOperand(MCOperand::createExpr(Expr)); 133 } 134 135 public: 136 SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc) 137 : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {} 138 139 // Create particular kinds of operand. 140 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc, 141 SMLoc EndLoc) { 142 return make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc); 143 } 144 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) { 145 auto Op = make_unique<SystemZOperand>(KindToken, Loc, Loc); 146 Op->Token.Data = Str.data(); 147 Op->Token.Length = Str.size(); 148 return Op; 149 } 150 static std::unique_ptr<SystemZOperand> 151 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { 152 auto Op = make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc); 153 Op->Reg.Kind = Kind; 154 Op->Reg.Num = Num; 155 return Op; 156 } 157 static std::unique_ptr<SystemZOperand> 158 createAccessReg(unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { 159 auto Op = make_unique<SystemZOperand>(KindAccessReg, StartLoc, EndLoc); 160 Op->AccessReg = Num; 161 return Op; 162 } 163 static std::unique_ptr<SystemZOperand> 164 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { 165 auto Op = make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc); 166 Op->Imm = Expr; 167 return Op; 168 } 169 static std::unique_ptr<SystemZOperand> 170 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, 171 const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm, 172 unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) { 173 auto Op = make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc); 174 Op->Mem.MemKind = MemKind; 175 Op->Mem.RegKind = RegKind; 176 Op->Mem.Base = Base; 177 Op->Mem.Index = Index; 178 Op->Mem.Disp = Disp; 179 if (MemKind == BDLMem) 180 Op->Mem.Length.Imm = LengthImm; 181 if (MemKind == BDRMem) 182 Op->Mem.Length.Reg = LengthReg; 183 return Op; 184 } 185 static std::unique_ptr<SystemZOperand> 186 createImmTLS(const MCExpr *Imm, const MCExpr *Sym, 187 SMLoc StartLoc, SMLoc EndLoc) { 188 auto Op = make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc); 189 Op->ImmTLS.Imm = Imm; 190 Op->ImmTLS.Sym = Sym; 191 return Op; 192 } 193 194 // Token operands 195 bool isToken() const override { 196 return Kind == KindToken; 197 } 198 StringRef getToken() const { 199 assert(Kind == KindToken && "Not a token"); 200 return StringRef(Token.Data, Token.Length); 201 } 202 203 // Register operands. 204 bool isReg() const override { 205 return Kind == KindReg; 206 } 207 bool isReg(RegisterKind RegKind) const { 208 return Kind == KindReg && Reg.Kind == RegKind; 209 } 210 unsigned getReg() const override { 211 assert(Kind == KindReg && "Not a register"); 212 return Reg.Num; 213 } 214 215 // Access register operands. Access registers aren't exposed to LLVM 216 // as registers. 217 bool isAccessReg() const { 218 return Kind == KindAccessReg; 219 } 220 221 // Immediate operands. 222 bool isImm() const override { 223 return Kind == KindImm; 224 } 225 bool isImm(int64_t MinValue, int64_t MaxValue) const { 226 return Kind == KindImm && inRange(Imm, MinValue, MaxValue); 227 } 228 const MCExpr *getImm() const { 229 assert(Kind == KindImm && "Not an immediate"); 230 return Imm; 231 } 232 233 // Immediate operands with optional TLS symbol. 234 bool isImmTLS() const { 235 return Kind == KindImmTLS; 236 } 237 238 // Memory operands. 239 bool isMem() const override { 240 return Kind == KindMem; 241 } 242 bool isMem(MemoryKind MemKind) const { 243 return (Kind == KindMem && 244 (Mem.MemKind == MemKind || 245 // A BDMem can be treated as a BDXMem in which the index 246 // register field is 0. 247 (Mem.MemKind == BDMem && MemKind == BDXMem))); 248 } 249 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { 250 return isMem(MemKind) && Mem.RegKind == RegKind; 251 } 252 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { 253 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff); 254 } 255 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { 256 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287); 257 } 258 bool isMemDisp12Len8(RegisterKind RegKind) const { 259 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100); 260 } 261 262 // Override MCParsedAsmOperand. 263 SMLoc getStartLoc() const override { return StartLoc; } 264 SMLoc getEndLoc() const override { return EndLoc; } 265 void print(raw_ostream &OS) const override; 266 267 // Used by the TableGen code to add particular types of operand 268 // to an instruction. 269 void addRegOperands(MCInst &Inst, unsigned N) const { 270 assert(N == 1 && "Invalid number of operands"); 271 Inst.addOperand(MCOperand::createReg(getReg())); 272 } 273 void addAccessRegOperands(MCInst &Inst, unsigned N) const { 274 assert(N == 1 && "Invalid number of operands"); 275 assert(Kind == KindAccessReg && "Invalid operand type"); 276 Inst.addOperand(MCOperand::createImm(AccessReg)); 277 } 278 void addImmOperands(MCInst &Inst, unsigned N) const { 279 assert(N == 1 && "Invalid number of operands"); 280 addExpr(Inst, getImm()); 281 } 282 void addBDAddrOperands(MCInst &Inst, unsigned N) const { 283 assert(N == 2 && "Invalid number of operands"); 284 assert(isMem(BDMem) && "Invalid operand type"); 285 Inst.addOperand(MCOperand::createReg(Mem.Base)); 286 addExpr(Inst, Mem.Disp); 287 } 288 void addBDXAddrOperands(MCInst &Inst, unsigned N) const { 289 assert(N == 3 && "Invalid number of operands"); 290 assert(isMem(BDXMem) && "Invalid operand type"); 291 Inst.addOperand(MCOperand::createReg(Mem.Base)); 292 addExpr(Inst, Mem.Disp); 293 Inst.addOperand(MCOperand::createReg(Mem.Index)); 294 } 295 void addBDLAddrOperands(MCInst &Inst, unsigned N) const { 296 assert(N == 3 && "Invalid number of operands"); 297 assert(isMem(BDLMem) && "Invalid operand type"); 298 Inst.addOperand(MCOperand::createReg(Mem.Base)); 299 addExpr(Inst, Mem.Disp); 300 addExpr(Inst, Mem.Length.Imm); 301 } 302 void addBDRAddrOperands(MCInst &Inst, unsigned N) const { 303 assert(N == 3 && "Invalid number of operands"); 304 assert(isMem(BDRMem) && "Invalid operand type"); 305 Inst.addOperand(MCOperand::createReg(Mem.Base)); 306 addExpr(Inst, Mem.Disp); 307 Inst.addOperand(MCOperand::createReg(Mem.Length.Reg)); 308 } 309 void addBDVAddrOperands(MCInst &Inst, unsigned N) const { 310 assert(N == 3 && "Invalid number of operands"); 311 assert(isMem(BDVMem) && "Invalid operand type"); 312 Inst.addOperand(MCOperand::createReg(Mem.Base)); 313 addExpr(Inst, Mem.Disp); 314 Inst.addOperand(MCOperand::createReg(Mem.Index)); 315 } 316 void addImmTLSOperands(MCInst &Inst, unsigned N) const { 317 assert(N == 2 && "Invalid number of operands"); 318 assert(Kind == KindImmTLS && "Invalid operand type"); 319 addExpr(Inst, ImmTLS.Imm); 320 if (ImmTLS.Sym) 321 addExpr(Inst, ImmTLS.Sym); 322 } 323 324 // Used by the TableGen code to check for particular operand types. 325 bool isGR32() const { return isReg(GR32Reg); } 326 bool isGRH32() const { return isReg(GRH32Reg); } 327 bool isGRX32() const { return false; } 328 bool isGR64() const { return isReg(GR64Reg); } 329 bool isGR128() const { return isReg(GR128Reg); } 330 bool isADDR32() const { return isReg(ADDR32Reg); } 331 bool isADDR64() const { return isReg(ADDR64Reg); } 332 bool isADDR128() const { return false; } 333 bool isFP32() const { return isReg(FP32Reg); } 334 bool isFP64() const { return isReg(FP64Reg); } 335 bool isFP128() const { return isReg(FP128Reg); } 336 bool isVR32() const { return isReg(VR32Reg); } 337 bool isVR64() const { return isReg(VR64Reg); } 338 bool isVF128() const { return false; } 339 bool isVR128() const { return isReg(VR128Reg); } 340 bool isAnyReg() const { return (isReg() || isImm(0, 15)); } 341 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, ADDR32Reg); } 342 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, ADDR32Reg); } 343 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, ADDR64Reg); } 344 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, ADDR64Reg); } 345 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, ADDR64Reg); } 346 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, ADDR64Reg); } 347 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(ADDR64Reg); } 348 bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, ADDR64Reg); } 349 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, ADDR64Reg); } 350 bool isU1Imm() const { return isImm(0, 1); } 351 bool isU2Imm() const { return isImm(0, 3); } 352 bool isU3Imm() const { return isImm(0, 7); } 353 bool isU4Imm() const { return isImm(0, 15); } 354 bool isU6Imm() const { return isImm(0, 63); } 355 bool isU8Imm() const { return isImm(0, 255); } 356 bool isS8Imm() const { return isImm(-128, 127); } 357 bool isU12Imm() const { return isImm(0, 4095); } 358 bool isU16Imm() const { return isImm(0, 65535); } 359 bool isS16Imm() const { return isImm(-32768, 32767); } 360 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); } 361 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); } 362 bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); } 363 }; 364 365 class SystemZAsmParser : public MCTargetAsmParser { 366 #define GET_ASSEMBLER_HEADER 367 #include "SystemZGenAsmMatcher.inc" 368 369 private: 370 MCAsmParser &Parser; 371 enum RegisterGroup { 372 RegGR, 373 RegFP, 374 RegV, 375 RegAccess 376 }; 377 struct Register { 378 RegisterGroup Group; 379 unsigned Num; 380 SMLoc StartLoc, EndLoc; 381 }; 382 383 bool parseRegister(Register &Reg); 384 385 bool parseRegister(Register &Reg, RegisterGroup Group, const unsigned *Regs, 386 bool IsAddress = false); 387 388 OperandMatchResultTy parseRegister(OperandVector &Operands, 389 RegisterGroup Group, const unsigned *Regs, 390 RegisterKind Kind); 391 392 OperandMatchResultTy parseAnyRegister(OperandVector &Operands); 393 394 bool parseAddress(bool &HaveReg1, Register &Reg1, 395 bool &HaveReg2, Register &Reg2, 396 const MCExpr *&Disp, const MCExpr *&Length); 397 bool parseAddressRegister(Register &Reg); 398 399 bool ParseDirectiveInsn(SMLoc L); 400 401 OperandMatchResultTy parseAddress(OperandVector &Operands, 402 MemoryKind MemKind, const unsigned *Regs, 403 RegisterKind RegKind); 404 405 OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal, 406 int64_t MaxVal, bool AllowTLS); 407 408 bool parseOperand(OperandVector &Operands, StringRef Mnemonic); 409 410 public: 411 SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, 412 const MCInstrInfo &MII, 413 const MCTargetOptions &Options) 414 : MCTargetAsmParser(Options, sti), Parser(parser) { 415 MCAsmParserExtension::Initialize(Parser); 416 417 // Alias the .word directive to .short. 418 parser.addAliasForDirective(".word", ".short"); 419 420 // Initialize the set of available features. 421 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); 422 } 423 424 // Override MCTargetAsmParser. 425 bool ParseDirective(AsmToken DirectiveID) override; 426 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 427 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 428 SMLoc NameLoc, OperandVector &Operands) override; 429 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 430 OperandVector &Operands, MCStreamer &Out, 431 uint64_t &ErrorInfo, 432 bool MatchingInlineAsm) override; 433 434 // Used by the TableGen code to parse particular operand types. 435 OperandMatchResultTy parseGR32(OperandVector &Operands) { 436 return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, GR32Reg); 437 } 438 OperandMatchResultTy parseGRH32(OperandVector &Operands) { 439 return parseRegister(Operands, RegGR, SystemZMC::GRH32Regs, GRH32Reg); 440 } 441 OperandMatchResultTy parseGRX32(OperandVector &Operands) { 442 llvm_unreachable("GRX32 should only be used for pseudo instructions"); 443 } 444 OperandMatchResultTy parseGR64(OperandVector &Operands) { 445 return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, GR64Reg); 446 } 447 OperandMatchResultTy parseGR128(OperandVector &Operands) { 448 return parseRegister(Operands, RegGR, SystemZMC::GR128Regs, GR128Reg); 449 } 450 OperandMatchResultTy parseADDR32(OperandVector &Operands) { 451 return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, ADDR32Reg); 452 } 453 OperandMatchResultTy parseADDR64(OperandVector &Operands) { 454 return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, ADDR64Reg); 455 } 456 OperandMatchResultTy parseADDR128(OperandVector &Operands) { 457 llvm_unreachable("Shouldn't be used as an operand"); 458 } 459 OperandMatchResultTy parseFP32(OperandVector &Operands) { 460 return parseRegister(Operands, RegFP, SystemZMC::FP32Regs, FP32Reg); 461 } 462 OperandMatchResultTy parseFP64(OperandVector &Operands) { 463 return parseRegister(Operands, RegFP, SystemZMC::FP64Regs, FP64Reg); 464 } 465 OperandMatchResultTy parseFP128(OperandVector &Operands) { 466 return parseRegister(Operands, RegFP, SystemZMC::FP128Regs, FP128Reg); 467 } 468 OperandMatchResultTy parseVR32(OperandVector &Operands) { 469 return parseRegister(Operands, RegV, SystemZMC::VR32Regs, VR32Reg); 470 } 471 OperandMatchResultTy parseVR64(OperandVector &Operands) { 472 return parseRegister(Operands, RegV, SystemZMC::VR64Regs, VR64Reg); 473 } 474 OperandMatchResultTy parseVF128(OperandVector &Operands) { 475 llvm_unreachable("Shouldn't be used as an operand"); 476 } 477 OperandMatchResultTy parseVR128(OperandVector &Operands) { 478 return parseRegister(Operands, RegV, SystemZMC::VR128Regs, VR128Reg); 479 } 480 OperandMatchResultTy parseAnyReg(OperandVector &Operands) { 481 return parseAnyRegister(Operands); 482 } 483 OperandMatchResultTy parseBDAddr32(OperandVector &Operands) { 484 return parseAddress(Operands, BDMem, SystemZMC::GR32Regs, ADDR32Reg); 485 } 486 OperandMatchResultTy parseBDAddr64(OperandVector &Operands) { 487 return parseAddress(Operands, BDMem, SystemZMC::GR64Regs, ADDR64Reg); 488 } 489 OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) { 490 return parseAddress(Operands, BDXMem, SystemZMC::GR64Regs, ADDR64Reg); 491 } 492 OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) { 493 return parseAddress(Operands, BDLMem, SystemZMC::GR64Regs, ADDR64Reg); 494 } 495 OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) { 496 return parseAddress(Operands, BDRMem, SystemZMC::GR64Regs, ADDR64Reg); 497 } 498 OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) { 499 return parseAddress(Operands, BDVMem, SystemZMC::GR64Regs, ADDR64Reg); 500 } 501 OperandMatchResultTy parseAccessReg(OperandVector &Operands); 502 OperandMatchResultTy parsePCRel16(OperandVector &Operands) { 503 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false); 504 } 505 OperandMatchResultTy parsePCRel32(OperandVector &Operands) { 506 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false); 507 } 508 OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) { 509 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true); 510 } 511 OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) { 512 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true); 513 } 514 }; 515 } // end anonymous namespace 516 517 #define GET_REGISTER_MATCHER 518 #define GET_SUBTARGET_FEATURE_NAME 519 #define GET_MATCHER_IMPLEMENTATION 520 #include "SystemZGenAsmMatcher.inc" 521 522 // Used for the .insn directives; contains information needed to parse the 523 // operands in the directive. 524 struct InsnMatchEntry { 525 StringRef Format; 526 uint64_t Opcode; 527 int32_t NumOperands; 528 MatchClassKind OperandKinds[5]; 529 }; 530 531 // For equal_range comparison. 532 struct CompareInsn { 533 bool operator() (const InsnMatchEntry &LHS, StringRef RHS) { 534 return LHS.Format < RHS; 535 } 536 bool operator() (StringRef LHS, const InsnMatchEntry &RHS) { 537 return LHS < RHS.Format; 538 } 539 bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) { 540 return LHS.Format < RHS.Format; 541 } 542 }; 543 544 // Table initializing information for parsing the .insn directive. 545 static struct InsnMatchEntry InsnMatchTable[] = { 546 /* Format, Opcode, NumOperands, OperandKinds */ 547 { "e", SystemZ::InsnE, 1, 548 { MCK_U16Imm } }, 549 { "ri", SystemZ::InsnRI, 3, 550 { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } }, 551 { "rie", SystemZ::InsnRIE, 4, 552 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 553 { "ril", SystemZ::InsnRIL, 3, 554 { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } }, 555 { "rilu", SystemZ::InsnRILU, 3, 556 { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } }, 557 { "ris", SystemZ::InsnRIS, 5, 558 { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 559 { "rr", SystemZ::InsnRR, 3, 560 { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } }, 561 { "rre", SystemZ::InsnRRE, 3, 562 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } }, 563 { "rrf", SystemZ::InsnRRF, 5, 564 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } }, 565 { "rrs", SystemZ::InsnRRS, 5, 566 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 567 { "rs", SystemZ::InsnRS, 4, 568 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 569 { "rse", SystemZ::InsnRSE, 4, 570 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 571 { "rsi", SystemZ::InsnRSI, 4, 572 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 573 { "rsy", SystemZ::InsnRSY, 4, 574 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } }, 575 { "rx", SystemZ::InsnRX, 3, 576 { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 577 { "rxe", SystemZ::InsnRXE, 3, 578 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 579 { "rxf", SystemZ::InsnRXF, 4, 580 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 581 { "rxy", SystemZ::InsnRXY, 3, 582 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } }, 583 { "s", SystemZ::InsnS, 2, 584 { MCK_U32Imm, MCK_BDAddr64Disp12 } }, 585 { "si", SystemZ::InsnSI, 3, 586 { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } }, 587 { "sil", SystemZ::InsnSIL, 3, 588 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } }, 589 { "siy", SystemZ::InsnSIY, 3, 590 { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } }, 591 { "ss", SystemZ::InsnSS, 4, 592 { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 593 { "sse", SystemZ::InsnSSE, 3, 594 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } }, 595 { "ssf", SystemZ::InsnSSF, 4, 596 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } } 597 }; 598 599 void SystemZOperand::print(raw_ostream &OS) const { 600 llvm_unreachable("Not implemented"); 601 } 602 603 // Parse one register of the form %<prefix><number>. 604 bool SystemZAsmParser::parseRegister(Register &Reg) { 605 Reg.StartLoc = Parser.getTok().getLoc(); 606 607 // Eat the % prefix. 608 if (Parser.getTok().isNot(AsmToken::Percent)) 609 return Error(Parser.getTok().getLoc(), "register expected"); 610 Parser.Lex(); 611 612 // Expect a register name. 613 if (Parser.getTok().isNot(AsmToken::Identifier)) 614 return Error(Reg.StartLoc, "invalid register"); 615 616 // Check that there's a prefix. 617 StringRef Name = Parser.getTok().getString(); 618 if (Name.size() < 2) 619 return Error(Reg.StartLoc, "invalid register"); 620 char Prefix = Name[0]; 621 622 // Treat the rest of the register name as a register number. 623 if (Name.substr(1).getAsInteger(10, Reg.Num)) 624 return Error(Reg.StartLoc, "invalid register"); 625 626 // Look for valid combinations of prefix and number. 627 if (Prefix == 'r' && Reg.Num < 16) 628 Reg.Group = RegGR; 629 else if (Prefix == 'f' && Reg.Num < 16) 630 Reg.Group = RegFP; 631 else if (Prefix == 'v' && Reg.Num < 32) 632 Reg.Group = RegV; 633 else if (Prefix == 'a' && Reg.Num < 16) 634 Reg.Group = RegAccess; 635 else 636 return Error(Reg.StartLoc, "invalid register"); 637 638 Reg.EndLoc = Parser.getTok().getLoc(); 639 Parser.Lex(); 640 return false; 641 } 642 643 // Parse a register of group Group. If Regs is nonnull, use it to map 644 // the raw register number to LLVM numbering, with zero entries 645 // indicating an invalid register. IsAddress says whether the 646 // register appears in an address context. Allow FP Group if expecting 647 // RegV Group, since the f-prefix yields the FP group even while used 648 // with vector instructions. 649 bool SystemZAsmParser::parseRegister(Register &Reg, RegisterGroup Group, 650 const unsigned *Regs, bool IsAddress) { 651 if (parseRegister(Reg)) 652 return true; 653 if (Reg.Group != Group && !(Reg.Group == RegFP && Group == RegV)) 654 return Error(Reg.StartLoc, "invalid operand for instruction"); 655 if (Regs && Regs[Reg.Num] == 0) 656 return Error(Reg.StartLoc, "invalid register pair"); 657 if (Reg.Num == 0 && IsAddress) 658 return Error(Reg.StartLoc, "%r0 used in an address"); 659 if (Regs) 660 Reg.Num = Regs[Reg.Num]; 661 return false; 662 } 663 664 // Parse a register and add it to Operands. The other arguments are as above. 665 SystemZAsmParser::OperandMatchResultTy 666 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterGroup Group, 667 const unsigned *Regs, RegisterKind Kind) { 668 if (Parser.getTok().isNot(AsmToken::Percent)) 669 return MatchOperand_NoMatch; 670 671 Register Reg; 672 bool IsAddress = (Kind == ADDR32Reg || Kind == ADDR64Reg); 673 if (parseRegister(Reg, Group, Regs, IsAddress)) 674 return MatchOperand_ParseFail; 675 676 Operands.push_back(SystemZOperand::createReg(Kind, Reg.Num, 677 Reg.StartLoc, Reg.EndLoc)); 678 return MatchOperand_Success; 679 } 680 681 // Parse any type of register (including integers) and add it to Operands. 682 SystemZAsmParser::OperandMatchResultTy 683 SystemZAsmParser::parseAnyRegister(OperandVector &Operands) { 684 // Handle integer values. 685 if (Parser.getTok().is(AsmToken::Integer)) { 686 const MCExpr *Register; 687 SMLoc StartLoc = Parser.getTok().getLoc(); 688 if (Parser.parseExpression(Register)) 689 return MatchOperand_ParseFail; 690 691 if (auto *CE = dyn_cast<MCConstantExpr>(Register)) { 692 int64_t Value = CE->getValue(); 693 if (Value < 0 || Value > 15) { 694 Error(StartLoc, "invalid register"); 695 return MatchOperand_ParseFail; 696 } 697 } 698 699 SMLoc EndLoc = 700 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 701 702 Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc)); 703 } 704 else { 705 Register Reg; 706 if (parseRegister(Reg)) 707 return MatchOperand_ParseFail; 708 709 // Map to the correct register kind. 710 RegisterKind Kind; 711 unsigned RegNo; 712 if (Reg.Group == RegGR) { 713 Kind = GR64Reg; 714 RegNo = SystemZMC::GR64Regs[Reg.Num]; 715 } 716 else if (Reg.Group == RegFP) { 717 Kind = FP64Reg; 718 RegNo = SystemZMC::FP64Regs[Reg.Num]; 719 } 720 else if (Reg.Group == RegV) { 721 Kind = VR128Reg; 722 RegNo = SystemZMC::VR128Regs[Reg.Num]; 723 } 724 else { 725 return MatchOperand_ParseFail; 726 } 727 728 Operands.push_back(SystemZOperand::createReg(Kind, RegNo, 729 Reg.StartLoc, Reg.EndLoc)); 730 } 731 return MatchOperand_Success; 732 } 733 734 // Parse a memory operand into Reg1, Reg2, Disp, and Length. 735 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1, 736 bool &HaveReg2, Register &Reg2, 737 const MCExpr *&Disp, 738 const MCExpr *&Length) { 739 // Parse the displacement, which must always be present. 740 if (getParser().parseExpression(Disp)) 741 return true; 742 743 // Parse the optional base and index. 744 HaveReg1 = false; 745 HaveReg2 = false; 746 Length = nullptr; 747 if (getLexer().is(AsmToken::LParen)) { 748 Parser.Lex(); 749 750 if (getLexer().is(AsmToken::Percent)) { 751 // Parse the first register. 752 HaveReg1 = true; 753 if (parseRegister(Reg1)) 754 return true; 755 } else { 756 // Parse the length. 757 if (getParser().parseExpression(Length)) 758 return true; 759 } 760 761 // Check whether there's a second register. 762 if (getLexer().is(AsmToken::Comma)) { 763 Parser.Lex(); 764 HaveReg2 = true; 765 if (parseRegister(Reg2)) 766 return true; 767 } 768 769 // Consume the closing bracket. 770 if (getLexer().isNot(AsmToken::RParen)) 771 return Error(Parser.getTok().getLoc(), "unexpected token in address"); 772 Parser.Lex(); 773 } 774 return false; 775 } 776 777 // Verify that Reg is a valid address register (base or index). 778 bool 779 SystemZAsmParser::parseAddressRegister(Register &Reg) { 780 if (Reg.Group == RegV) { 781 Error(Reg.StartLoc, "invalid use of vector addressing"); 782 return true; 783 } else if (Reg.Group != RegGR) { 784 Error(Reg.StartLoc, "invalid address register"); 785 return true; 786 } else if (Reg.Num == 0) { 787 Error(Reg.StartLoc, "%r0 used in an address"); 788 return true; 789 } 790 return false; 791 } 792 793 // Parse a memory operand and add it to Operands. The other arguments 794 // are as above. 795 SystemZAsmParser::OperandMatchResultTy 796 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind, 797 const unsigned *Regs, RegisterKind RegKind) { 798 SMLoc StartLoc = Parser.getTok().getLoc(); 799 unsigned Base = 0, Index = 0, LengthReg = 0; 800 Register Reg1, Reg2; 801 bool HaveReg1, HaveReg2; 802 const MCExpr *Disp; 803 const MCExpr *Length; 804 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length)) 805 return MatchOperand_ParseFail; 806 807 switch (MemKind) { 808 case BDMem: 809 // If we have Reg1, it must be an address register. 810 if (HaveReg1) { 811 if (parseAddressRegister(Reg1)) 812 return MatchOperand_ParseFail; 813 Base = Regs[Reg1.Num]; 814 } 815 // There must be no Reg2 or length. 816 if (Length) { 817 Error(StartLoc, "invalid use of length addressing"); 818 return MatchOperand_ParseFail; 819 } 820 if (HaveReg2) { 821 Error(StartLoc, "invalid use of indexed addressing"); 822 return MatchOperand_ParseFail; 823 } 824 break; 825 case BDXMem: 826 // If we have Reg1, it must be an address register. 827 if (HaveReg1) { 828 if (parseAddressRegister(Reg1)) 829 return MatchOperand_ParseFail; 830 // If the are two registers, the first one is the index and the 831 // second is the base. 832 if (HaveReg2) 833 Index = Regs[Reg1.Num]; 834 else 835 Base = Regs[Reg1.Num]; 836 } 837 // If we have Reg2, it must be an address register. 838 if (HaveReg2) { 839 if (parseAddressRegister(Reg2)) 840 return MatchOperand_ParseFail; 841 Base = Regs[Reg2.Num]; 842 } 843 // There must be no length. 844 if (Length) { 845 Error(StartLoc, "invalid use of length addressing"); 846 return MatchOperand_ParseFail; 847 } 848 break; 849 case BDLMem: 850 // If we have Reg2, it must be an address register. 851 if (HaveReg2) { 852 if (parseAddressRegister(Reg2)) 853 return MatchOperand_ParseFail; 854 Base = Regs[Reg2.Num]; 855 } 856 // We cannot support base+index addressing. 857 if (HaveReg1 && HaveReg2) { 858 Error(StartLoc, "invalid use of indexed addressing"); 859 return MatchOperand_ParseFail; 860 } 861 // We must have a length. 862 if (!Length) { 863 Error(StartLoc, "missing length in address"); 864 return MatchOperand_ParseFail; 865 } 866 break; 867 case BDRMem: 868 // We must have Reg1, and it must be a GPR. 869 if (!HaveReg1 || Reg1.Group != RegGR) { 870 Error(StartLoc, "invalid operand for instruction"); 871 return MatchOperand_ParseFail; 872 } 873 LengthReg = SystemZMC::GR64Regs[Reg1.Num]; 874 // If we have Reg2, it must be an address register. 875 if (HaveReg2) { 876 if (parseAddressRegister(Reg2)) 877 return MatchOperand_ParseFail; 878 Base = Regs[Reg2.Num]; 879 } 880 // There must be no length. 881 if (Length) { 882 Error(StartLoc, "invalid use of length addressing"); 883 return MatchOperand_ParseFail; 884 } 885 break; 886 case BDVMem: 887 // We must have Reg1, and it must be a vector register. 888 if (!HaveReg1 || Reg1.Group != RegV) { 889 Error(StartLoc, "vector index required in address"); 890 return MatchOperand_ParseFail; 891 } 892 Index = SystemZMC::VR128Regs[Reg1.Num]; 893 // If we have Reg2, it must be an address register. 894 if (HaveReg2) { 895 if (parseAddressRegister(Reg2)) 896 return MatchOperand_ParseFail; 897 Base = Regs[Reg2.Num]; 898 } 899 // There must be no length. 900 if (Length) { 901 Error(StartLoc, "invalid use of length addressing"); 902 return MatchOperand_ParseFail; 903 } 904 break; 905 } 906 907 SMLoc EndLoc = 908 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 909 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp, 910 Index, Length, LengthReg, 911 StartLoc, EndLoc)); 912 return MatchOperand_Success; 913 } 914 915 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) { 916 StringRef IDVal = DirectiveID.getIdentifier(); 917 918 if (IDVal == ".insn") 919 return ParseDirectiveInsn(DirectiveID.getLoc()); 920 921 return true; 922 } 923 924 /// ParseDirectiveInsn 925 /// ::= .insn [ format, encoding, (operands (, operands)*) ] 926 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) { 927 MCAsmParser &Parser = getParser(); 928 929 // Expect instruction format as identifier. 930 StringRef Format; 931 SMLoc ErrorLoc = Parser.getTok().getLoc(); 932 if (Parser.parseIdentifier(Format)) 933 return Error(ErrorLoc, "expected instruction format"); 934 935 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands; 936 937 // Find entry for this format in InsnMatchTable. 938 auto EntryRange = 939 std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable), 940 Format, CompareInsn()); 941 942 // If first == second, couldn't find a match in the table. 943 if (EntryRange.first == EntryRange.second) 944 return Error(ErrorLoc, "unrecognized format"); 945 946 struct InsnMatchEntry *Entry = EntryRange.first; 947 948 // Format should match from equal_range. 949 assert(Entry->Format == Format); 950 951 // Parse the following operands using the table's information. 952 for (int i = 0; i < Entry->NumOperands; i++) { 953 MatchClassKind Kind = Entry->OperandKinds[i]; 954 955 SMLoc StartLoc = Parser.getTok().getLoc(); 956 957 // Always expect commas as separators for operands. 958 if (getLexer().isNot(AsmToken::Comma)) 959 return Error(StartLoc, "unexpected token in directive"); 960 Lex(); 961 962 // Parse operands. 963 OperandMatchResultTy ResTy; 964 if (Kind == MCK_AnyReg) 965 ResTy = parseAnyReg(Operands); 966 else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20) 967 ResTy = parseBDXAddr64(Operands); 968 else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20) 969 ResTy = parseBDAddr64(Operands); 970 else if (Kind == MCK_PCRel32) 971 ResTy = parsePCRel32(Operands); 972 else if (Kind == MCK_PCRel16) 973 ResTy = parsePCRel16(Operands); 974 else { 975 // Only remaining operand kind is an immediate. 976 const MCExpr *Expr; 977 SMLoc StartLoc = Parser.getTok().getLoc(); 978 979 // Expect immediate expression. 980 if (Parser.parseExpression(Expr)) 981 return Error(StartLoc, "unexpected token in directive"); 982 983 SMLoc EndLoc = 984 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 985 986 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 987 ResTy = MatchOperand_Success; 988 } 989 990 if (ResTy != MatchOperand_Success) 991 return true; 992 } 993 994 // Build the instruction with the parsed operands. 995 MCInst Inst = MCInstBuilder(Entry->Opcode); 996 997 for (size_t i = 0; i < Operands.size(); i++) { 998 MCParsedAsmOperand &Operand = *Operands[i]; 999 MatchClassKind Kind = Entry->OperandKinds[i]; 1000 1001 // Verify operand. 1002 unsigned Res = validateOperandClass(Operand, Kind); 1003 if (Res != Match_Success) 1004 return Error(Operand.getStartLoc(), "unexpected operand type"); 1005 1006 // Add operands to instruction. 1007 SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand); 1008 if (ZOperand.isReg()) 1009 ZOperand.addRegOperands(Inst, 1); 1010 else if (ZOperand.isMem(BDMem)) 1011 ZOperand.addBDAddrOperands(Inst, 2); 1012 else if (ZOperand.isMem(BDXMem)) 1013 ZOperand.addBDXAddrOperands(Inst, 3); 1014 else if (ZOperand.isImm()) 1015 ZOperand.addImmOperands(Inst, 1); 1016 else 1017 llvm_unreachable("unexpected operand type"); 1018 } 1019 1020 // Emit as a regular instruction. 1021 Parser.getStreamer().EmitInstruction(Inst, getSTI()); 1022 1023 return false; 1024 } 1025 1026 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, 1027 SMLoc &EndLoc) { 1028 Register Reg; 1029 if (parseRegister(Reg)) 1030 return true; 1031 if (Reg.Group == RegGR) 1032 RegNo = SystemZMC::GR64Regs[Reg.Num]; 1033 else if (Reg.Group == RegFP) 1034 RegNo = SystemZMC::FP64Regs[Reg.Num]; 1035 else if (Reg.Group == RegV) 1036 RegNo = SystemZMC::VR128Regs[Reg.Num]; 1037 else 1038 // FIXME: Access registers aren't modelled as LLVM registers yet. 1039 return Error(Reg.StartLoc, "invalid operand for instruction"); 1040 StartLoc = Reg.StartLoc; 1041 EndLoc = Reg.EndLoc; 1042 return false; 1043 } 1044 1045 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info, 1046 StringRef Name, SMLoc NameLoc, 1047 OperandVector &Operands) { 1048 Operands.push_back(SystemZOperand::createToken(Name, NameLoc)); 1049 1050 // Read the remaining operands. 1051 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1052 // Read the first operand. 1053 if (parseOperand(Operands, Name)) { 1054 return true; 1055 } 1056 1057 // Read any subsequent operands. 1058 while (getLexer().is(AsmToken::Comma)) { 1059 Parser.Lex(); 1060 if (parseOperand(Operands, Name)) { 1061 return true; 1062 } 1063 } 1064 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1065 SMLoc Loc = getLexer().getLoc(); 1066 return Error(Loc, "unexpected token in argument list"); 1067 } 1068 } 1069 1070 // Consume the EndOfStatement. 1071 Parser.Lex(); 1072 return false; 1073 } 1074 1075 bool SystemZAsmParser::parseOperand(OperandVector &Operands, 1076 StringRef Mnemonic) { 1077 // Check if the current operand has a custom associated parser, if so, try to 1078 // custom parse the operand, or fallback to the general approach. Force all 1079 // features to be available during the operand check, or else we will fail to 1080 // find the custom parser, and then we will later get an InvalidOperand error 1081 // instead of a MissingFeature errror. 1082 uint64_t AvailableFeatures = getAvailableFeatures(); 1083 setAvailableFeatures(~(uint64_t)0); 1084 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 1085 setAvailableFeatures(AvailableFeatures); 1086 if (ResTy == MatchOperand_Success) 1087 return false; 1088 1089 // If there wasn't a custom match, try the generic matcher below. Otherwise, 1090 // there was a match, but an error occurred, in which case, just return that 1091 // the operand parsing failed. 1092 if (ResTy == MatchOperand_ParseFail) 1093 return true; 1094 1095 // Check for a register. All real register operands should have used 1096 // a context-dependent parse routine, which gives the required register 1097 // class. The code is here to mop up other cases, like those where 1098 // the instruction isn't recognized. 1099 if (Parser.getTok().is(AsmToken::Percent)) { 1100 Register Reg; 1101 if (parseRegister(Reg)) 1102 return true; 1103 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc)); 1104 return false; 1105 } 1106 1107 // The only other type of operand is an immediate or address. As above, 1108 // real address operands should have used a context-dependent parse routine, 1109 // so we treat any plain expression as an immediate. 1110 SMLoc StartLoc = Parser.getTok().getLoc(); 1111 Register Reg1, Reg2; 1112 bool HaveReg1, HaveReg2; 1113 const MCExpr *Expr; 1114 const MCExpr *Length; 1115 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length)) 1116 return MatchOperand_ParseFail; 1117 // If the register combination is not valid for any instruction, reject it. 1118 // Otherwise, fall back to reporting an unrecognized instruction. 1119 if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV 1120 && parseAddressRegister(Reg1)) 1121 return MatchOperand_ParseFail; 1122 if (HaveReg2 && parseAddressRegister(Reg2)) 1123 return MatchOperand_ParseFail; 1124 1125 SMLoc EndLoc = 1126 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1127 if (HaveReg1 || HaveReg2 || Length) 1128 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc)); 1129 else 1130 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1131 return false; 1132 } 1133 1134 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1135 OperandVector &Operands, 1136 MCStreamer &Out, 1137 uint64_t &ErrorInfo, 1138 bool MatchingInlineAsm) { 1139 MCInst Inst; 1140 unsigned MatchResult; 1141 1142 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, 1143 MatchingInlineAsm); 1144 switch (MatchResult) { 1145 case Match_Success: 1146 Inst.setLoc(IDLoc); 1147 Out.EmitInstruction(Inst, getSTI()); 1148 return false; 1149 1150 case Match_MissingFeature: { 1151 assert(ErrorInfo && "Unknown missing feature!"); 1152 // Special case the error message for the very common case where only 1153 // a single subtarget feature is missing 1154 std::string Msg = "instruction requires:"; 1155 uint64_t Mask = 1; 1156 for (unsigned I = 0; I < sizeof(ErrorInfo) * 8 - 1; ++I) { 1157 if (ErrorInfo & Mask) { 1158 Msg += " "; 1159 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 1160 } 1161 Mask <<= 1; 1162 } 1163 return Error(IDLoc, Msg); 1164 } 1165 1166 case Match_InvalidOperand: { 1167 SMLoc ErrorLoc = IDLoc; 1168 if (ErrorInfo != ~0ULL) { 1169 if (ErrorInfo >= Operands.size()) 1170 return Error(IDLoc, "too few operands for instruction"); 1171 1172 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); 1173 if (ErrorLoc == SMLoc()) 1174 ErrorLoc = IDLoc; 1175 } 1176 return Error(ErrorLoc, "invalid operand for instruction"); 1177 } 1178 1179 case Match_MnemonicFail: 1180 return Error(IDLoc, "invalid instruction"); 1181 } 1182 1183 llvm_unreachable("Unexpected match type"); 1184 } 1185 1186 SystemZAsmParser::OperandMatchResultTy 1187 SystemZAsmParser::parseAccessReg(OperandVector &Operands) { 1188 if (Parser.getTok().isNot(AsmToken::Percent)) 1189 return MatchOperand_NoMatch; 1190 1191 Register Reg; 1192 if (parseRegister(Reg, RegAccess, nullptr)) 1193 return MatchOperand_ParseFail; 1194 1195 Operands.push_back(SystemZOperand::createAccessReg(Reg.Num, 1196 Reg.StartLoc, 1197 Reg.EndLoc)); 1198 return MatchOperand_Success; 1199 } 1200 1201 SystemZAsmParser::OperandMatchResultTy 1202 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal, 1203 int64_t MaxVal, bool AllowTLS) { 1204 MCContext &Ctx = getContext(); 1205 MCStreamer &Out = getStreamer(); 1206 const MCExpr *Expr; 1207 SMLoc StartLoc = Parser.getTok().getLoc(); 1208 if (getParser().parseExpression(Expr)) 1209 return MatchOperand_NoMatch; 1210 1211 // For consistency with the GNU assembler, treat immediates as offsets 1212 // from ".". 1213 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 1214 int64_t Value = CE->getValue(); 1215 if ((Value & 1) || Value < MinVal || Value > MaxVal) { 1216 Error(StartLoc, "offset out of range"); 1217 return MatchOperand_ParseFail; 1218 } 1219 MCSymbol *Sym = Ctx.createTempSymbol(); 1220 Out.EmitLabel(Sym); 1221 const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, 1222 Ctx); 1223 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx); 1224 } 1225 1226 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. 1227 const MCExpr *Sym = nullptr; 1228 if (AllowTLS && getLexer().is(AsmToken::Colon)) { 1229 Parser.Lex(); 1230 1231 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1232 Error(Parser.getTok().getLoc(), "unexpected token"); 1233 return MatchOperand_ParseFail; 1234 } 1235 1236 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 1237 StringRef Name = Parser.getTok().getString(); 1238 if (Name == "tls_gdcall") 1239 Kind = MCSymbolRefExpr::VK_TLSGD; 1240 else if (Name == "tls_ldcall") 1241 Kind = MCSymbolRefExpr::VK_TLSLDM; 1242 else { 1243 Error(Parser.getTok().getLoc(), "unknown TLS tag"); 1244 return MatchOperand_ParseFail; 1245 } 1246 Parser.Lex(); 1247 1248 if (Parser.getTok().isNot(AsmToken::Colon)) { 1249 Error(Parser.getTok().getLoc(), "unexpected token"); 1250 return MatchOperand_ParseFail; 1251 } 1252 Parser.Lex(); 1253 1254 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1255 Error(Parser.getTok().getLoc(), "unexpected token"); 1256 return MatchOperand_ParseFail; 1257 } 1258 1259 StringRef Identifier = Parser.getTok().getString(); 1260 Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier), 1261 Kind, Ctx); 1262 Parser.Lex(); 1263 } 1264 1265 SMLoc EndLoc = 1266 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1267 1268 if (AllowTLS) 1269 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym, 1270 StartLoc, EndLoc)); 1271 else 1272 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1273 1274 return MatchOperand_Success; 1275 } 1276 1277 // Force static initialization. 1278 extern "C" void LLVMInitializeSystemZAsmParser() { 1279 RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget()); 1280 } 1281