1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "MCTargetDesc/SystemZMCTargetDesc.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/MC/MCContext.h" 13 #include "llvm/MC/MCExpr.h" 14 #include "llvm/MC/MCInst.h" 15 #include "llvm/MC/MCInstBuilder.h" 16 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 17 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 18 #include "llvm/MC/MCStreamer.h" 19 #include "llvm/MC/MCSubtargetInfo.h" 20 #include "llvm/Support/TargetRegistry.h" 21 22 using namespace llvm; 23 24 // Return true if Expr is in the range [MinValue, MaxValue]. 25 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) { 26 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 27 int64_t Value = CE->getValue(); 28 return Value >= MinValue && Value <= MaxValue; 29 } 30 return false; 31 } 32 33 namespace { 34 enum RegisterKind { 35 GR32Reg, 36 GRH32Reg, 37 GR64Reg, 38 GR128Reg, 39 ADDR32Reg, 40 ADDR64Reg, 41 FP32Reg, 42 FP64Reg, 43 FP128Reg, 44 VR32Reg, 45 VR64Reg, 46 VR128Reg 47 }; 48 49 enum MemoryKind { 50 BDMem, 51 BDXMem, 52 BDLMem, 53 BDVMem 54 }; 55 56 class SystemZOperand : public MCParsedAsmOperand { 57 public: 58 private: 59 enum OperandKind { 60 KindInvalid, 61 KindToken, 62 KindReg, 63 KindAccessReg, 64 KindImm, 65 KindImmTLS, 66 KindMem 67 }; 68 69 OperandKind Kind; 70 SMLoc StartLoc, EndLoc; 71 72 // A string of length Length, starting at Data. 73 struct TokenOp { 74 const char *Data; 75 unsigned Length; 76 }; 77 78 // LLVM register Num, which has kind Kind. In some ways it might be 79 // easier for this class to have a register bank (general, floating-point 80 // or access) and a raw register number (0-15). This would postpone the 81 // interpretation of the operand to the add*() methods and avoid the need 82 // for context-dependent parsing. However, we do things the current way 83 // because of the virtual getReg() method, which needs to distinguish 84 // between (say) %r0 used as a single register and %r0 used as a pair. 85 // Context-dependent parsing can also give us slightly better error 86 // messages when invalid pairs like %r1 are used. 87 struct RegOp { 88 RegisterKind Kind; 89 unsigned Num; 90 }; 91 92 // Base + Disp + Index, where Base and Index are LLVM registers or 0. 93 // MemKind says what type of memory this is and RegKind says what type 94 // the base register has (ADDR32Reg or ADDR64Reg). Length is the operand 95 // length for D(L,B)-style operands, otherwise it is null. 96 struct MemOp { 97 unsigned Base : 12; 98 unsigned Index : 12; 99 unsigned MemKind : 4; 100 unsigned RegKind : 4; 101 const MCExpr *Disp; 102 const MCExpr *Length; 103 }; 104 105 // Imm is an immediate operand, and Sym is an optional TLS symbol 106 // for use with a __tls_get_offset marker relocation. 107 struct ImmTLSOp { 108 const MCExpr *Imm; 109 const MCExpr *Sym; 110 }; 111 112 union { 113 TokenOp Token; 114 RegOp Reg; 115 unsigned AccessReg; 116 const MCExpr *Imm; 117 ImmTLSOp ImmTLS; 118 MemOp Mem; 119 }; 120 121 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 122 // Add as immediates when possible. Null MCExpr = 0. 123 if (!Expr) 124 Inst.addOperand(MCOperand::createImm(0)); 125 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) 126 Inst.addOperand(MCOperand::createImm(CE->getValue())); 127 else 128 Inst.addOperand(MCOperand::createExpr(Expr)); 129 } 130 131 public: 132 SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc) 133 : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {} 134 135 // Create particular kinds of operand. 136 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc, 137 SMLoc EndLoc) { 138 return make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc); 139 } 140 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) { 141 auto Op = make_unique<SystemZOperand>(KindToken, Loc, Loc); 142 Op->Token.Data = Str.data(); 143 Op->Token.Length = Str.size(); 144 return Op; 145 } 146 static std::unique_ptr<SystemZOperand> 147 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { 148 auto Op = make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc); 149 Op->Reg.Kind = Kind; 150 Op->Reg.Num = Num; 151 return Op; 152 } 153 static std::unique_ptr<SystemZOperand> 154 createAccessReg(unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { 155 auto Op = make_unique<SystemZOperand>(KindAccessReg, StartLoc, EndLoc); 156 Op->AccessReg = Num; 157 return Op; 158 } 159 static std::unique_ptr<SystemZOperand> 160 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { 161 auto Op = make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc); 162 Op->Imm = Expr; 163 return Op; 164 } 165 static std::unique_ptr<SystemZOperand> 166 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, 167 const MCExpr *Disp, unsigned Index, const MCExpr *Length, 168 SMLoc StartLoc, SMLoc EndLoc) { 169 auto Op = make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc); 170 Op->Mem.MemKind = MemKind; 171 Op->Mem.RegKind = RegKind; 172 Op->Mem.Base = Base; 173 Op->Mem.Index = Index; 174 Op->Mem.Disp = Disp; 175 Op->Mem.Length = Length; 176 return Op; 177 } 178 static std::unique_ptr<SystemZOperand> 179 createImmTLS(const MCExpr *Imm, const MCExpr *Sym, 180 SMLoc StartLoc, SMLoc EndLoc) { 181 auto Op = make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc); 182 Op->ImmTLS.Imm = Imm; 183 Op->ImmTLS.Sym = Sym; 184 return Op; 185 } 186 187 // Token operands 188 bool isToken() const override { 189 return Kind == KindToken; 190 } 191 StringRef getToken() const { 192 assert(Kind == KindToken && "Not a token"); 193 return StringRef(Token.Data, Token.Length); 194 } 195 196 // Register operands. 197 bool isReg() const override { 198 return Kind == KindReg; 199 } 200 bool isReg(RegisterKind RegKind) const { 201 return Kind == KindReg && Reg.Kind == RegKind; 202 } 203 unsigned getReg() const override { 204 assert(Kind == KindReg && "Not a register"); 205 return Reg.Num; 206 } 207 208 // Access register operands. Access registers aren't exposed to LLVM 209 // as registers. 210 bool isAccessReg() const { 211 return Kind == KindAccessReg; 212 } 213 214 // Immediate operands. 215 bool isImm() const override { 216 return Kind == KindImm; 217 } 218 bool isImm(int64_t MinValue, int64_t MaxValue) const { 219 return Kind == KindImm && inRange(Imm, MinValue, MaxValue); 220 } 221 const MCExpr *getImm() const { 222 assert(Kind == KindImm && "Not an immediate"); 223 return Imm; 224 } 225 226 // Immediate operands with optional TLS symbol. 227 bool isImmTLS() const { 228 return Kind == KindImmTLS; 229 } 230 231 // Memory operands. 232 bool isMem() const override { 233 return Kind == KindMem; 234 } 235 bool isMem(MemoryKind MemKind) const { 236 return (Kind == KindMem && 237 (Mem.MemKind == MemKind || 238 // A BDMem can be treated as a BDXMem in which the index 239 // register field is 0. 240 (Mem.MemKind == BDMem && MemKind == BDXMem))); 241 } 242 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { 243 return isMem(MemKind) && Mem.RegKind == RegKind; 244 } 245 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { 246 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff); 247 } 248 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { 249 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287); 250 } 251 bool isMemDisp12Len8(RegisterKind RegKind) const { 252 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length, 1, 0x100); 253 } 254 void addBDVAddrOperands(MCInst &Inst, unsigned N) const { 255 assert(N == 3 && "Invalid number of operands"); 256 assert(isMem(BDVMem) && "Invalid operand type"); 257 Inst.addOperand(MCOperand::createReg(Mem.Base)); 258 addExpr(Inst, Mem.Disp); 259 Inst.addOperand(MCOperand::createReg(Mem.Index)); 260 } 261 262 // Override MCParsedAsmOperand. 263 SMLoc getStartLoc() const override { return StartLoc; } 264 SMLoc getEndLoc() const override { return EndLoc; } 265 void print(raw_ostream &OS) const override; 266 267 // Used by the TableGen code to add particular types of operand 268 // to an instruction. 269 void addRegOperands(MCInst &Inst, unsigned N) const { 270 assert(N == 1 && "Invalid number of operands"); 271 Inst.addOperand(MCOperand::createReg(getReg())); 272 } 273 void addAccessRegOperands(MCInst &Inst, unsigned N) const { 274 assert(N == 1 && "Invalid number of operands"); 275 assert(Kind == KindAccessReg && "Invalid operand type"); 276 Inst.addOperand(MCOperand::createImm(AccessReg)); 277 } 278 void addImmOperands(MCInst &Inst, unsigned N) const { 279 assert(N == 1 && "Invalid number of operands"); 280 addExpr(Inst, getImm()); 281 } 282 void addBDAddrOperands(MCInst &Inst, unsigned N) const { 283 assert(N == 2 && "Invalid number of operands"); 284 assert(isMem(BDMem) && "Invalid operand type"); 285 Inst.addOperand(MCOperand::createReg(Mem.Base)); 286 addExpr(Inst, Mem.Disp); 287 } 288 void addBDXAddrOperands(MCInst &Inst, unsigned N) const { 289 assert(N == 3 && "Invalid number of operands"); 290 assert(isMem(BDXMem) && "Invalid operand type"); 291 Inst.addOperand(MCOperand::createReg(Mem.Base)); 292 addExpr(Inst, Mem.Disp); 293 Inst.addOperand(MCOperand::createReg(Mem.Index)); 294 } 295 void addBDLAddrOperands(MCInst &Inst, unsigned N) const { 296 assert(N == 3 && "Invalid number of operands"); 297 assert(isMem(BDLMem) && "Invalid operand type"); 298 Inst.addOperand(MCOperand::createReg(Mem.Base)); 299 addExpr(Inst, Mem.Disp); 300 addExpr(Inst, Mem.Length); 301 } 302 void addImmTLSOperands(MCInst &Inst, unsigned N) const { 303 assert(N == 2 && "Invalid number of operands"); 304 assert(Kind == KindImmTLS && "Invalid operand type"); 305 addExpr(Inst, ImmTLS.Imm); 306 if (ImmTLS.Sym) 307 addExpr(Inst, ImmTLS.Sym); 308 } 309 310 // Used by the TableGen code to check for particular operand types. 311 bool isGR32() const { return isReg(GR32Reg); } 312 bool isGRH32() const { return isReg(GRH32Reg); } 313 bool isGRX32() const { return false; } 314 bool isGR64() const { return isReg(GR64Reg); } 315 bool isGR128() const { return isReg(GR128Reg); } 316 bool isADDR32() const { return isReg(ADDR32Reg); } 317 bool isADDR64() const { return isReg(ADDR64Reg); } 318 bool isADDR128() const { return false; } 319 bool isFP32() const { return isReg(FP32Reg); } 320 bool isFP64() const { return isReg(FP64Reg); } 321 bool isFP128() const { return isReg(FP128Reg); } 322 bool isVR32() const { return isReg(VR32Reg); } 323 bool isVR64() const { return isReg(VR64Reg); } 324 bool isVF128() const { return false; } 325 bool isVR128() const { return isReg(VR128Reg); } 326 bool isAnyReg() const { return (isReg() || isImm(0, 15)); } 327 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, ADDR32Reg); } 328 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, ADDR32Reg); } 329 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, ADDR64Reg); } 330 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, ADDR64Reg); } 331 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, ADDR64Reg); } 332 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, ADDR64Reg); } 333 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(ADDR64Reg); } 334 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, ADDR64Reg); } 335 bool isU1Imm() const { return isImm(0, 1); } 336 bool isU2Imm() const { return isImm(0, 3); } 337 bool isU3Imm() const { return isImm(0, 7); } 338 bool isU4Imm() const { return isImm(0, 15); } 339 bool isU6Imm() const { return isImm(0, 63); } 340 bool isU8Imm() const { return isImm(0, 255); } 341 bool isS8Imm() const { return isImm(-128, 127); } 342 bool isU12Imm() const { return isImm(0, 4095); } 343 bool isU16Imm() const { return isImm(0, 65535); } 344 bool isS16Imm() const { return isImm(-32768, 32767); } 345 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); } 346 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); } 347 bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); } 348 }; 349 350 class SystemZAsmParser : public MCTargetAsmParser { 351 #define GET_ASSEMBLER_HEADER 352 #include "SystemZGenAsmMatcher.inc" 353 354 private: 355 MCAsmParser &Parser; 356 enum RegisterGroup { 357 RegGR, 358 RegFP, 359 RegV, 360 RegAccess 361 }; 362 struct Register { 363 RegisterGroup Group; 364 unsigned Num; 365 SMLoc StartLoc, EndLoc; 366 }; 367 368 bool parseRegister(Register &Reg); 369 370 bool parseRegister(Register &Reg, RegisterGroup Group, const unsigned *Regs, 371 bool IsAddress = false); 372 373 OperandMatchResultTy parseRegister(OperandVector &Operands, 374 RegisterGroup Group, const unsigned *Regs, 375 RegisterKind Kind); 376 377 OperandMatchResultTy parseAnyRegister(OperandVector &Operands); 378 379 bool parseAddress(unsigned &Base, const MCExpr *&Disp, 380 unsigned &Index, bool &IsVector, const MCExpr *&Length, 381 const unsigned *Regs, RegisterKind RegKind); 382 383 bool ParseDirectiveInsn(SMLoc L); 384 385 OperandMatchResultTy parseAddress(OperandVector &Operands, 386 MemoryKind MemKind, const unsigned *Regs, 387 RegisterKind RegKind); 388 389 OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal, 390 int64_t MaxVal, bool AllowTLS); 391 392 bool parseOperand(OperandVector &Operands, StringRef Mnemonic); 393 394 public: 395 SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, 396 const MCInstrInfo &MII, 397 const MCTargetOptions &Options) 398 : MCTargetAsmParser(Options, sti), Parser(parser) { 399 MCAsmParserExtension::Initialize(Parser); 400 401 // Alias the .word directive to .short. 402 parser.addAliasForDirective(".word", ".short"); 403 404 // Initialize the set of available features. 405 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); 406 } 407 408 // Override MCTargetAsmParser. 409 bool ParseDirective(AsmToken DirectiveID) override; 410 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 411 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 412 SMLoc NameLoc, OperandVector &Operands) override; 413 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 414 OperandVector &Operands, MCStreamer &Out, 415 uint64_t &ErrorInfo, 416 bool MatchingInlineAsm) override; 417 418 // Used by the TableGen code to parse particular operand types. 419 OperandMatchResultTy parseGR32(OperandVector &Operands) { 420 return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, GR32Reg); 421 } 422 OperandMatchResultTy parseGRH32(OperandVector &Operands) { 423 return parseRegister(Operands, RegGR, SystemZMC::GRH32Regs, GRH32Reg); 424 } 425 OperandMatchResultTy parseGRX32(OperandVector &Operands) { 426 llvm_unreachable("GRX32 should only be used for pseudo instructions"); 427 } 428 OperandMatchResultTy parseGR64(OperandVector &Operands) { 429 return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, GR64Reg); 430 } 431 OperandMatchResultTy parseGR128(OperandVector &Operands) { 432 return parseRegister(Operands, RegGR, SystemZMC::GR128Regs, GR128Reg); 433 } 434 OperandMatchResultTy parseADDR32(OperandVector &Operands) { 435 return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, ADDR32Reg); 436 } 437 OperandMatchResultTy parseADDR64(OperandVector &Operands) { 438 return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, ADDR64Reg); 439 } 440 OperandMatchResultTy parseADDR128(OperandVector &Operands) { 441 llvm_unreachable("Shouldn't be used as an operand"); 442 } 443 OperandMatchResultTy parseFP32(OperandVector &Operands) { 444 return parseRegister(Operands, RegFP, SystemZMC::FP32Regs, FP32Reg); 445 } 446 OperandMatchResultTy parseFP64(OperandVector &Operands) { 447 return parseRegister(Operands, RegFP, SystemZMC::FP64Regs, FP64Reg); 448 } 449 OperandMatchResultTy parseFP128(OperandVector &Operands) { 450 return parseRegister(Operands, RegFP, SystemZMC::FP128Regs, FP128Reg); 451 } 452 OperandMatchResultTy parseVR32(OperandVector &Operands) { 453 return parseRegister(Operands, RegV, SystemZMC::VR32Regs, VR32Reg); 454 } 455 OperandMatchResultTy parseVR64(OperandVector &Operands) { 456 return parseRegister(Operands, RegV, SystemZMC::VR64Regs, VR64Reg); 457 } 458 OperandMatchResultTy parseVF128(OperandVector &Operands) { 459 llvm_unreachable("Shouldn't be used as an operand"); 460 } 461 OperandMatchResultTy parseVR128(OperandVector &Operands) { 462 return parseRegister(Operands, RegV, SystemZMC::VR128Regs, VR128Reg); 463 } 464 OperandMatchResultTy parseAnyReg(OperandVector &Operands) { 465 return parseAnyRegister(Operands); 466 } 467 OperandMatchResultTy parseBDAddr32(OperandVector &Operands) { 468 return parseAddress(Operands, BDMem, SystemZMC::GR32Regs, ADDR32Reg); 469 } 470 OperandMatchResultTy parseBDAddr64(OperandVector &Operands) { 471 return parseAddress(Operands, BDMem, SystemZMC::GR64Regs, ADDR64Reg); 472 } 473 OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) { 474 return parseAddress(Operands, BDXMem, SystemZMC::GR64Regs, ADDR64Reg); 475 } 476 OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) { 477 return parseAddress(Operands, BDLMem, SystemZMC::GR64Regs, ADDR64Reg); 478 } 479 OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) { 480 return parseAddress(Operands, BDVMem, SystemZMC::GR64Regs, ADDR64Reg); 481 } 482 OperandMatchResultTy parseAccessReg(OperandVector &Operands); 483 OperandMatchResultTy parsePCRel16(OperandVector &Operands) { 484 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false); 485 } 486 OperandMatchResultTy parsePCRel32(OperandVector &Operands) { 487 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false); 488 } 489 OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) { 490 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true); 491 } 492 OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) { 493 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true); 494 } 495 }; 496 } // end anonymous namespace 497 498 #define GET_REGISTER_MATCHER 499 #define GET_SUBTARGET_FEATURE_NAME 500 #define GET_MATCHER_IMPLEMENTATION 501 #include "SystemZGenAsmMatcher.inc" 502 503 // Used for the .insn directives; contains information needed to parse the 504 // operands in the directive. 505 struct InsnMatchEntry { 506 StringRef Format; 507 uint64_t Opcode; 508 int32_t NumOperands; 509 MatchClassKind OperandKinds[5]; 510 }; 511 512 // For equal_range comparison. 513 struct CompareInsn { 514 bool operator() (const InsnMatchEntry &LHS, StringRef RHS) { 515 return LHS.Format < RHS; 516 } 517 bool operator() (StringRef LHS, const InsnMatchEntry &RHS) { 518 return LHS < RHS.Format; 519 } 520 bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) { 521 return LHS.Format < RHS.Format; 522 } 523 }; 524 525 // Table initializing information for parsing the .insn directive. 526 static struct InsnMatchEntry InsnMatchTable[] = { 527 /* Format, Opcode, NumOperands, OperandKinds */ 528 { "e", SystemZ::InsnE, 1, 529 { MCK_U16Imm } }, 530 { "ri", SystemZ::InsnRI, 3, 531 { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } }, 532 { "rie", SystemZ::InsnRIE, 4, 533 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 534 { "ril", SystemZ::InsnRIL, 3, 535 { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } }, 536 { "rilu", SystemZ::InsnRILU, 3, 537 { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } }, 538 { "ris", SystemZ::InsnRIS, 5, 539 { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 540 { "rr", SystemZ::InsnRR, 3, 541 { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } }, 542 { "rre", SystemZ::InsnRRE, 3, 543 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } }, 544 { "rrf", SystemZ::InsnRRF, 5, 545 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } }, 546 { "rrs", SystemZ::InsnRRS, 5, 547 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 548 { "rs", SystemZ::InsnRS, 4, 549 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 550 { "rse", SystemZ::InsnRSE, 4, 551 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 552 { "rsi", SystemZ::InsnRSI, 4, 553 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 554 { "rsy", SystemZ::InsnRSY, 4, 555 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } }, 556 { "rx", SystemZ::InsnRX, 3, 557 { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 558 { "rxe", SystemZ::InsnRXE, 3, 559 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 560 { "rxf", SystemZ::InsnRXF, 4, 561 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 562 { "rxy", SystemZ::InsnRXY, 3, 563 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } }, 564 { "s", SystemZ::InsnS, 2, 565 { MCK_U32Imm, MCK_BDAddr64Disp12 } }, 566 { "si", SystemZ::InsnSI, 3, 567 { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } }, 568 { "sil", SystemZ::InsnSIL, 3, 569 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } }, 570 { "siy", SystemZ::InsnSIY, 3, 571 { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } }, 572 { "ss", SystemZ::InsnSS, 4, 573 { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 574 { "sse", SystemZ::InsnSSE, 3, 575 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } }, 576 { "ssf", SystemZ::InsnSSF, 4, 577 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } } 578 }; 579 580 void SystemZOperand::print(raw_ostream &OS) const { 581 llvm_unreachable("Not implemented"); 582 } 583 584 // Parse one register of the form %<prefix><number>. 585 bool SystemZAsmParser::parseRegister(Register &Reg) { 586 Reg.StartLoc = Parser.getTok().getLoc(); 587 588 // Eat the % prefix. 589 if (Parser.getTok().isNot(AsmToken::Percent)) 590 return Error(Parser.getTok().getLoc(), "register expected"); 591 Parser.Lex(); 592 593 // Expect a register name. 594 if (Parser.getTok().isNot(AsmToken::Identifier)) 595 return Error(Reg.StartLoc, "invalid register"); 596 597 // Check that there's a prefix. 598 StringRef Name = Parser.getTok().getString(); 599 if (Name.size() < 2) 600 return Error(Reg.StartLoc, "invalid register"); 601 char Prefix = Name[0]; 602 603 // Treat the rest of the register name as a register number. 604 if (Name.substr(1).getAsInteger(10, Reg.Num)) 605 return Error(Reg.StartLoc, "invalid register"); 606 607 // Look for valid combinations of prefix and number. 608 if (Prefix == 'r' && Reg.Num < 16) 609 Reg.Group = RegGR; 610 else if (Prefix == 'f' && Reg.Num < 16) 611 Reg.Group = RegFP; 612 else if (Prefix == 'v' && Reg.Num < 32) 613 Reg.Group = RegV; 614 else if (Prefix == 'a' && Reg.Num < 16) 615 Reg.Group = RegAccess; 616 else 617 return Error(Reg.StartLoc, "invalid register"); 618 619 Reg.EndLoc = Parser.getTok().getLoc(); 620 Parser.Lex(); 621 return false; 622 } 623 624 // Parse a register of group Group. If Regs is nonnull, use it to map 625 // the raw register number to LLVM numbering, with zero entries 626 // indicating an invalid register. IsAddress says whether the 627 // register appears in an address context. Allow FP Group if expecting 628 // RegV Group, since the f-prefix yields the FP group even while used 629 // with vector instructions. 630 bool SystemZAsmParser::parseRegister(Register &Reg, RegisterGroup Group, 631 const unsigned *Regs, bool IsAddress) { 632 if (parseRegister(Reg)) 633 return true; 634 if (Reg.Group != Group && !(Reg.Group == RegFP && Group == RegV)) 635 return Error(Reg.StartLoc, "invalid operand for instruction"); 636 if (Regs && Regs[Reg.Num] == 0) 637 return Error(Reg.StartLoc, "invalid register pair"); 638 if (Reg.Num == 0 && IsAddress) 639 return Error(Reg.StartLoc, "%r0 used in an address"); 640 if (Regs) 641 Reg.Num = Regs[Reg.Num]; 642 return false; 643 } 644 645 // Parse a register and add it to Operands. The other arguments are as above. 646 SystemZAsmParser::OperandMatchResultTy 647 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterGroup Group, 648 const unsigned *Regs, RegisterKind Kind) { 649 if (Parser.getTok().isNot(AsmToken::Percent)) 650 return MatchOperand_NoMatch; 651 652 Register Reg; 653 bool IsAddress = (Kind == ADDR32Reg || Kind == ADDR64Reg); 654 if (parseRegister(Reg, Group, Regs, IsAddress)) 655 return MatchOperand_ParseFail; 656 657 Operands.push_back(SystemZOperand::createReg(Kind, Reg.Num, 658 Reg.StartLoc, Reg.EndLoc)); 659 return MatchOperand_Success; 660 } 661 662 // Parse any type of register (including integers) and add it to Operands. 663 SystemZAsmParser::OperandMatchResultTy 664 SystemZAsmParser::parseAnyRegister(OperandVector &Operands) { 665 // Handle integer values. 666 if (Parser.getTok().is(AsmToken::Integer)) { 667 const MCExpr *Register; 668 SMLoc StartLoc = Parser.getTok().getLoc(); 669 if (Parser.parseExpression(Register)) 670 return MatchOperand_ParseFail; 671 672 if (auto *CE = dyn_cast<MCConstantExpr>(Register)) { 673 int64_t Value = CE->getValue(); 674 if (Value < 0 || Value > 15) { 675 Error(StartLoc, "invalid register"); 676 return MatchOperand_ParseFail; 677 } 678 } 679 680 SMLoc EndLoc = 681 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 682 683 Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc)); 684 } 685 else { 686 Register Reg; 687 if (parseRegister(Reg)) 688 return MatchOperand_ParseFail; 689 690 // Map to the correct register kind. 691 RegisterKind Kind; 692 unsigned RegNo; 693 if (Reg.Group == RegGR) { 694 Kind = GR64Reg; 695 RegNo = SystemZMC::GR64Regs[Reg.Num]; 696 } 697 else if (Reg.Group == RegFP) { 698 Kind = FP64Reg; 699 RegNo = SystemZMC::FP64Regs[Reg.Num]; 700 } 701 else if (Reg.Group == RegV) { 702 Kind = VR128Reg; 703 RegNo = SystemZMC::VR128Regs[Reg.Num]; 704 } 705 else { 706 return MatchOperand_ParseFail; 707 } 708 709 Operands.push_back(SystemZOperand::createReg(Kind, RegNo, 710 Reg.StartLoc, Reg.EndLoc)); 711 } 712 return MatchOperand_Success; 713 } 714 715 // Parse a memory operand into Base, Disp, Index and Length. 716 // Regs maps asm register numbers to LLVM register numbers and RegKind 717 // says what kind of address register we're using (ADDR32Reg or ADDR64Reg). 718 bool SystemZAsmParser::parseAddress(unsigned &Base, const MCExpr *&Disp, 719 unsigned &Index, bool &IsVector, 720 const MCExpr *&Length, const unsigned *Regs, 721 RegisterKind RegKind) { 722 // Parse the displacement, which must always be present. 723 if (getParser().parseExpression(Disp)) 724 return true; 725 726 // Parse the optional base and index. 727 Index = 0; 728 Base = 0; 729 IsVector = false; 730 Length = nullptr; 731 if (getLexer().is(AsmToken::LParen)) { 732 Parser.Lex(); 733 734 if (getLexer().is(AsmToken::Percent)) { 735 // Parse the first register and decide whether it's a base or an index. 736 Register Reg; 737 if (parseRegister(Reg)) 738 return true; 739 if (Reg.Group == RegV) { 740 // A vector index register. The base register is optional. 741 IsVector = true; 742 Index = SystemZMC::VR128Regs[Reg.Num]; 743 } else if (Reg.Group == RegGR) { 744 if (Reg.Num == 0) 745 return Error(Reg.StartLoc, "%r0 used in an address"); 746 // If the are two registers, the first one is the index and the 747 // second is the base. 748 if (getLexer().is(AsmToken::Comma)) 749 Index = Regs[Reg.Num]; 750 else 751 Base = Regs[Reg.Num]; 752 } else 753 return Error(Reg.StartLoc, "invalid address register"); 754 } else { 755 // Parse the length. 756 if (getParser().parseExpression(Length)) 757 return true; 758 } 759 760 // Check whether there's a second register. It's the base if so. 761 if (getLexer().is(AsmToken::Comma)) { 762 Parser.Lex(); 763 Register Reg; 764 if (parseRegister(Reg, RegGR, Regs, RegKind)) 765 return true; 766 Base = Reg.Num; 767 } 768 769 // Consume the closing bracket. 770 if (getLexer().isNot(AsmToken::RParen)) 771 return Error(Parser.getTok().getLoc(), "unexpected token in address"); 772 Parser.Lex(); 773 } 774 return false; 775 } 776 777 // Parse a memory operand and add it to Operands. The other arguments 778 // are as above. 779 SystemZAsmParser::OperandMatchResultTy 780 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind, 781 const unsigned *Regs, RegisterKind RegKind) { 782 SMLoc StartLoc = Parser.getTok().getLoc(); 783 unsigned Base, Index; 784 bool IsVector; 785 const MCExpr *Disp; 786 const MCExpr *Length; 787 if (parseAddress(Base, Disp, Index, IsVector, Length, Regs, RegKind)) 788 return MatchOperand_ParseFail; 789 790 if (IsVector && MemKind != BDVMem) { 791 Error(StartLoc, "invalid use of vector addressing"); 792 return MatchOperand_ParseFail; 793 } 794 795 if (!IsVector && MemKind == BDVMem) { 796 Error(StartLoc, "vector index required in address"); 797 return MatchOperand_ParseFail; 798 } 799 800 if (Index && MemKind != BDXMem && MemKind != BDVMem) { 801 Error(StartLoc, "invalid use of indexed addressing"); 802 return MatchOperand_ParseFail; 803 } 804 805 if (Length && MemKind != BDLMem) { 806 Error(StartLoc, "invalid use of length addressing"); 807 return MatchOperand_ParseFail; 808 } 809 810 if (!Length && MemKind == BDLMem) { 811 Error(StartLoc, "missing length in address"); 812 return MatchOperand_ParseFail; 813 } 814 815 SMLoc EndLoc = 816 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 817 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp, 818 Index, Length, StartLoc, 819 EndLoc)); 820 return MatchOperand_Success; 821 } 822 823 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) { 824 StringRef IDVal = DirectiveID.getIdentifier(); 825 826 if (IDVal == ".insn") 827 return ParseDirectiveInsn(DirectiveID.getLoc()); 828 829 return true; 830 } 831 832 /// ParseDirectiveInsn 833 /// ::= .insn [ format, encoding, (operands (, operands)*) ] 834 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) { 835 MCAsmParser &Parser = getParser(); 836 837 // Expect instruction format as identifier. 838 StringRef Format; 839 SMLoc ErrorLoc = Parser.getTok().getLoc(); 840 if (Parser.parseIdentifier(Format)) 841 return Error(ErrorLoc, "expected instruction format"); 842 843 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands; 844 845 // Find entry for this format in InsnMatchTable. 846 auto EntryRange = 847 std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable), 848 Format, CompareInsn()); 849 850 // If first == second, couldn't find a match in the table. 851 if (EntryRange.first == EntryRange.second) 852 return Error(ErrorLoc, "unrecognized format"); 853 854 struct InsnMatchEntry *Entry = EntryRange.first; 855 856 // Format should match from equal_range. 857 assert(Entry->Format == Format); 858 859 // Parse the following operands using the table's information. 860 for (int i = 0; i < Entry->NumOperands; i++) { 861 MatchClassKind Kind = Entry->OperandKinds[i]; 862 863 SMLoc StartLoc = Parser.getTok().getLoc(); 864 865 // Always expect commas as separators for operands. 866 if (getLexer().isNot(AsmToken::Comma)) 867 return Error(StartLoc, "unexpected token in directive"); 868 Lex(); 869 870 // Parse operands. 871 OperandMatchResultTy ResTy; 872 if (Kind == MCK_AnyReg) 873 ResTy = parseAnyReg(Operands); 874 else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20) 875 ResTy = parseBDXAddr64(Operands); 876 else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20) 877 ResTy = parseBDAddr64(Operands); 878 else if (Kind == MCK_PCRel32) 879 ResTy = parsePCRel32(Operands); 880 else if (Kind == MCK_PCRel16) 881 ResTy = parsePCRel16(Operands); 882 else { 883 // Only remaining operand kind is an immediate. 884 const MCExpr *Expr; 885 SMLoc StartLoc = Parser.getTok().getLoc(); 886 887 // Expect immediate expression. 888 if (Parser.parseExpression(Expr)) 889 return Error(StartLoc, "unexpected token in directive"); 890 891 SMLoc EndLoc = 892 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 893 894 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 895 ResTy = MatchOperand_Success; 896 } 897 898 if (ResTy != MatchOperand_Success) 899 return true; 900 } 901 902 // Build the instruction with the parsed operands. 903 MCInst Inst = MCInstBuilder(Entry->Opcode); 904 905 for (size_t i = 0; i < Operands.size(); i++) { 906 MCParsedAsmOperand &Operand = *Operands[i]; 907 MatchClassKind Kind = Entry->OperandKinds[i]; 908 909 // Verify operand. 910 unsigned Res = validateOperandClass(Operand, Kind); 911 if (Res != Match_Success) 912 return Error(Operand.getStartLoc(), "unexpected operand type"); 913 914 // Add operands to instruction. 915 SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand); 916 if (ZOperand.isReg()) 917 ZOperand.addRegOperands(Inst, 1); 918 else if (ZOperand.isMem(BDMem)) 919 ZOperand.addBDAddrOperands(Inst, 2); 920 else if (ZOperand.isMem(BDXMem)) 921 ZOperand.addBDXAddrOperands(Inst, 3); 922 else if (ZOperand.isImm()) 923 ZOperand.addImmOperands(Inst, 1); 924 else 925 llvm_unreachable("unexpected operand type"); 926 } 927 928 // Emit as a regular instruction. 929 Parser.getStreamer().EmitInstruction(Inst, getSTI()); 930 931 return false; 932 } 933 934 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, 935 SMLoc &EndLoc) { 936 Register Reg; 937 if (parseRegister(Reg)) 938 return true; 939 if (Reg.Group == RegGR) 940 RegNo = SystemZMC::GR64Regs[Reg.Num]; 941 else if (Reg.Group == RegFP) 942 RegNo = SystemZMC::FP64Regs[Reg.Num]; 943 else if (Reg.Group == RegV) 944 RegNo = SystemZMC::VR128Regs[Reg.Num]; 945 else 946 // FIXME: Access registers aren't modelled as LLVM registers yet. 947 return Error(Reg.StartLoc, "invalid operand for instruction"); 948 StartLoc = Reg.StartLoc; 949 EndLoc = Reg.EndLoc; 950 return false; 951 } 952 953 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info, 954 StringRef Name, SMLoc NameLoc, 955 OperandVector &Operands) { 956 Operands.push_back(SystemZOperand::createToken(Name, NameLoc)); 957 958 // Read the remaining operands. 959 if (getLexer().isNot(AsmToken::EndOfStatement)) { 960 // Read the first operand. 961 if (parseOperand(Operands, Name)) { 962 return true; 963 } 964 965 // Read any subsequent operands. 966 while (getLexer().is(AsmToken::Comma)) { 967 Parser.Lex(); 968 if (parseOperand(Operands, Name)) { 969 return true; 970 } 971 } 972 if (getLexer().isNot(AsmToken::EndOfStatement)) { 973 SMLoc Loc = getLexer().getLoc(); 974 return Error(Loc, "unexpected token in argument list"); 975 } 976 } 977 978 // Consume the EndOfStatement. 979 Parser.Lex(); 980 return false; 981 } 982 983 bool SystemZAsmParser::parseOperand(OperandVector &Operands, 984 StringRef Mnemonic) { 985 // Check if the current operand has a custom associated parser, if so, try to 986 // custom parse the operand, or fallback to the general approach. 987 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 988 if (ResTy == MatchOperand_Success) 989 return false; 990 991 // If there wasn't a custom match, try the generic matcher below. Otherwise, 992 // there was a match, but an error occurred, in which case, just return that 993 // the operand parsing failed. 994 if (ResTy == MatchOperand_ParseFail) 995 return true; 996 997 // Check for a register. All real register operands should have used 998 // a context-dependent parse routine, which gives the required register 999 // class. The code is here to mop up other cases, like those where 1000 // the instruction isn't recognized. 1001 if (Parser.getTok().is(AsmToken::Percent)) { 1002 Register Reg; 1003 if (parseRegister(Reg)) 1004 return true; 1005 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc)); 1006 return false; 1007 } 1008 1009 // The only other type of operand is an immediate or address. As above, 1010 // real address operands should have used a context-dependent parse routine, 1011 // so we treat any plain expression as an immediate. 1012 SMLoc StartLoc = Parser.getTok().getLoc(); 1013 unsigned Base, Index; 1014 bool IsVector; 1015 const MCExpr *Expr, *Length; 1016 if (parseAddress(Base, Expr, Index, IsVector, Length, SystemZMC::GR64Regs, 1017 ADDR64Reg)) 1018 return true; 1019 1020 SMLoc EndLoc = 1021 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1022 if (Base || Index || Length) 1023 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc)); 1024 else 1025 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1026 return false; 1027 } 1028 1029 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1030 OperandVector &Operands, 1031 MCStreamer &Out, 1032 uint64_t &ErrorInfo, 1033 bool MatchingInlineAsm) { 1034 MCInst Inst; 1035 unsigned MatchResult; 1036 1037 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, 1038 MatchingInlineAsm); 1039 switch (MatchResult) { 1040 case Match_Success: 1041 Inst.setLoc(IDLoc); 1042 Out.EmitInstruction(Inst, getSTI()); 1043 return false; 1044 1045 case Match_MissingFeature: { 1046 assert(ErrorInfo && "Unknown missing feature!"); 1047 // Special case the error message for the very common case where only 1048 // a single subtarget feature is missing 1049 std::string Msg = "instruction requires:"; 1050 uint64_t Mask = 1; 1051 for (unsigned I = 0; I < sizeof(ErrorInfo) * 8 - 1; ++I) { 1052 if (ErrorInfo & Mask) { 1053 Msg += " "; 1054 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 1055 } 1056 Mask <<= 1; 1057 } 1058 return Error(IDLoc, Msg); 1059 } 1060 1061 case Match_InvalidOperand: { 1062 SMLoc ErrorLoc = IDLoc; 1063 if (ErrorInfo != ~0ULL) { 1064 if (ErrorInfo >= Operands.size()) 1065 return Error(IDLoc, "too few operands for instruction"); 1066 1067 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); 1068 if (ErrorLoc == SMLoc()) 1069 ErrorLoc = IDLoc; 1070 } 1071 return Error(ErrorLoc, "invalid operand for instruction"); 1072 } 1073 1074 case Match_MnemonicFail: 1075 return Error(IDLoc, "invalid instruction"); 1076 } 1077 1078 llvm_unreachable("Unexpected match type"); 1079 } 1080 1081 SystemZAsmParser::OperandMatchResultTy 1082 SystemZAsmParser::parseAccessReg(OperandVector &Operands) { 1083 if (Parser.getTok().isNot(AsmToken::Percent)) 1084 return MatchOperand_NoMatch; 1085 1086 Register Reg; 1087 if (parseRegister(Reg, RegAccess, nullptr)) 1088 return MatchOperand_ParseFail; 1089 1090 Operands.push_back(SystemZOperand::createAccessReg(Reg.Num, 1091 Reg.StartLoc, 1092 Reg.EndLoc)); 1093 return MatchOperand_Success; 1094 } 1095 1096 SystemZAsmParser::OperandMatchResultTy 1097 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal, 1098 int64_t MaxVal, bool AllowTLS) { 1099 MCContext &Ctx = getContext(); 1100 MCStreamer &Out = getStreamer(); 1101 const MCExpr *Expr; 1102 SMLoc StartLoc = Parser.getTok().getLoc(); 1103 if (getParser().parseExpression(Expr)) 1104 return MatchOperand_NoMatch; 1105 1106 // For consistency with the GNU assembler, treat immediates as offsets 1107 // from ".". 1108 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 1109 int64_t Value = CE->getValue(); 1110 if ((Value & 1) || Value < MinVal || Value > MaxVal) { 1111 Error(StartLoc, "offset out of range"); 1112 return MatchOperand_ParseFail; 1113 } 1114 MCSymbol *Sym = Ctx.createTempSymbol(); 1115 Out.EmitLabel(Sym); 1116 const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, 1117 Ctx); 1118 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx); 1119 } 1120 1121 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. 1122 const MCExpr *Sym = nullptr; 1123 if (AllowTLS && getLexer().is(AsmToken::Colon)) { 1124 Parser.Lex(); 1125 1126 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1127 Error(Parser.getTok().getLoc(), "unexpected token"); 1128 return MatchOperand_ParseFail; 1129 } 1130 1131 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 1132 StringRef Name = Parser.getTok().getString(); 1133 if (Name == "tls_gdcall") 1134 Kind = MCSymbolRefExpr::VK_TLSGD; 1135 else if (Name == "tls_ldcall") 1136 Kind = MCSymbolRefExpr::VK_TLSLDM; 1137 else { 1138 Error(Parser.getTok().getLoc(), "unknown TLS tag"); 1139 return MatchOperand_ParseFail; 1140 } 1141 Parser.Lex(); 1142 1143 if (Parser.getTok().isNot(AsmToken::Colon)) { 1144 Error(Parser.getTok().getLoc(), "unexpected token"); 1145 return MatchOperand_ParseFail; 1146 } 1147 Parser.Lex(); 1148 1149 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1150 Error(Parser.getTok().getLoc(), "unexpected token"); 1151 return MatchOperand_ParseFail; 1152 } 1153 1154 StringRef Identifier = Parser.getTok().getString(); 1155 Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier), 1156 Kind, Ctx); 1157 Parser.Lex(); 1158 } 1159 1160 SMLoc EndLoc = 1161 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1162 1163 if (AllowTLS) 1164 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym, 1165 StartLoc, EndLoc)); 1166 else 1167 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1168 1169 return MatchOperand_Success; 1170 } 1171 1172 // Force static initialization. 1173 extern "C" void LLVMInitializeSystemZAsmParser() { 1174 RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget()); 1175 } 1176