1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InstPrinter/SystemZInstPrinter.h" 11 #include "MCTargetDesc/SystemZMCTargetDesc.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/MC/MCContext.h" 16 #include "llvm/MC/MCExpr.h" 17 #include "llvm/MC/MCInst.h" 18 #include "llvm/MC/MCInstBuilder.h" 19 #include "llvm/MC/MCParser/MCAsmLexer.h" 20 #include "llvm/MC/MCParser/MCAsmParser.h" 21 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 22 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 23 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 24 #include "llvm/MC/MCStreamer.h" 25 #include "llvm/MC/MCSubtargetInfo.h" 26 #include "llvm/Support/Casting.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/SMLoc.h" 29 #include "llvm/Support/TargetRegistry.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <cstddef> 33 #include <cstdint> 34 #include <iterator> 35 #include <memory> 36 #include <string> 37 38 using namespace llvm; 39 40 // Return true if Expr is in the range [MinValue, MaxValue]. 41 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) { 42 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 43 int64_t Value = CE->getValue(); 44 return Value >= MinValue && Value <= MaxValue; 45 } 46 return false; 47 } 48 49 namespace { 50 51 enum RegisterKind { 52 GR32Reg, 53 GRH32Reg, 54 GR64Reg, 55 GR128Reg, 56 ADDR32Reg, 57 ADDR64Reg, 58 FP32Reg, 59 FP64Reg, 60 FP128Reg, 61 VR32Reg, 62 VR64Reg, 63 VR128Reg, 64 AR32Reg, 65 CR64Reg, 66 }; 67 68 enum MemoryKind { 69 BDMem, 70 BDXMem, 71 BDLMem, 72 BDRMem, 73 BDVMem 74 }; 75 76 class SystemZOperand : public MCParsedAsmOperand { 77 private: 78 enum OperandKind { 79 KindInvalid, 80 KindToken, 81 KindReg, 82 KindImm, 83 KindImmTLS, 84 KindMem 85 }; 86 87 OperandKind Kind; 88 SMLoc StartLoc, EndLoc; 89 90 // A string of length Length, starting at Data. 91 struct TokenOp { 92 const char *Data; 93 unsigned Length; 94 }; 95 96 // LLVM register Num, which has kind Kind. In some ways it might be 97 // easier for this class to have a register bank (general, floating-point 98 // or access) and a raw register number (0-15). This would postpone the 99 // interpretation of the operand to the add*() methods and avoid the need 100 // for context-dependent parsing. However, we do things the current way 101 // because of the virtual getReg() method, which needs to distinguish 102 // between (say) %r0 used as a single register and %r0 used as a pair. 103 // Context-dependent parsing can also give us slightly better error 104 // messages when invalid pairs like %r1 are used. 105 struct RegOp { 106 RegisterKind Kind; 107 unsigned Num; 108 }; 109 110 // Base + Disp + Index, where Base and Index are LLVM registers or 0. 111 // MemKind says what type of memory this is and RegKind says what type 112 // the base register has (ADDR32Reg or ADDR64Reg). Length is the operand 113 // length for D(L,B)-style operands, otherwise it is null. 114 struct MemOp { 115 unsigned Base : 12; 116 unsigned Index : 12; 117 unsigned MemKind : 4; 118 unsigned RegKind : 4; 119 const MCExpr *Disp; 120 union { 121 const MCExpr *Imm; 122 unsigned Reg; 123 } Length; 124 }; 125 126 // Imm is an immediate operand, and Sym is an optional TLS symbol 127 // for use with a __tls_get_offset marker relocation. 128 struct ImmTLSOp { 129 const MCExpr *Imm; 130 const MCExpr *Sym; 131 }; 132 133 union { 134 TokenOp Token; 135 RegOp Reg; 136 const MCExpr *Imm; 137 ImmTLSOp ImmTLS; 138 MemOp Mem; 139 }; 140 141 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 142 // Add as immediates when possible. Null MCExpr = 0. 143 if (!Expr) 144 Inst.addOperand(MCOperand::createImm(0)); 145 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) 146 Inst.addOperand(MCOperand::createImm(CE->getValue())); 147 else 148 Inst.addOperand(MCOperand::createExpr(Expr)); 149 } 150 151 public: 152 SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc) 153 : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {} 154 155 // Create particular kinds of operand. 156 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc, 157 SMLoc EndLoc) { 158 return make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc); 159 } 160 161 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) { 162 auto Op = make_unique<SystemZOperand>(KindToken, Loc, Loc); 163 Op->Token.Data = Str.data(); 164 Op->Token.Length = Str.size(); 165 return Op; 166 } 167 168 static std::unique_ptr<SystemZOperand> 169 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { 170 auto Op = make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc); 171 Op->Reg.Kind = Kind; 172 Op->Reg.Num = Num; 173 return Op; 174 } 175 176 static std::unique_ptr<SystemZOperand> 177 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { 178 auto Op = make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc); 179 Op->Imm = Expr; 180 return Op; 181 } 182 183 static std::unique_ptr<SystemZOperand> 184 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, 185 const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm, 186 unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) { 187 auto Op = make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc); 188 Op->Mem.MemKind = MemKind; 189 Op->Mem.RegKind = RegKind; 190 Op->Mem.Base = Base; 191 Op->Mem.Index = Index; 192 Op->Mem.Disp = Disp; 193 if (MemKind == BDLMem) 194 Op->Mem.Length.Imm = LengthImm; 195 if (MemKind == BDRMem) 196 Op->Mem.Length.Reg = LengthReg; 197 return Op; 198 } 199 200 static std::unique_ptr<SystemZOperand> 201 createImmTLS(const MCExpr *Imm, const MCExpr *Sym, 202 SMLoc StartLoc, SMLoc EndLoc) { 203 auto Op = make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc); 204 Op->ImmTLS.Imm = Imm; 205 Op->ImmTLS.Sym = Sym; 206 return Op; 207 } 208 209 // Token operands 210 bool isToken() const override { 211 return Kind == KindToken; 212 } 213 StringRef getToken() const { 214 assert(Kind == KindToken && "Not a token"); 215 return StringRef(Token.Data, Token.Length); 216 } 217 218 // Register operands. 219 bool isReg() const override { 220 return Kind == KindReg; 221 } 222 bool isReg(RegisterKind RegKind) const { 223 return Kind == KindReg && Reg.Kind == RegKind; 224 } 225 unsigned getReg() const override { 226 assert(Kind == KindReg && "Not a register"); 227 return Reg.Num; 228 } 229 230 // Immediate operands. 231 bool isImm() const override { 232 return Kind == KindImm; 233 } 234 bool isImm(int64_t MinValue, int64_t MaxValue) const { 235 return Kind == KindImm && inRange(Imm, MinValue, MaxValue); 236 } 237 const MCExpr *getImm() const { 238 assert(Kind == KindImm && "Not an immediate"); 239 return Imm; 240 } 241 242 // Immediate operands with optional TLS symbol. 243 bool isImmTLS() const { 244 return Kind == KindImmTLS; 245 } 246 247 const ImmTLSOp getImmTLS() const { 248 assert(Kind == KindImmTLS && "Not a TLS immediate"); 249 return ImmTLS; 250 } 251 252 // Memory operands. 253 bool isMem() const override { 254 return Kind == KindMem; 255 } 256 bool isMem(MemoryKind MemKind) const { 257 return (Kind == KindMem && 258 (Mem.MemKind == MemKind || 259 // A BDMem can be treated as a BDXMem in which the index 260 // register field is 0. 261 (Mem.MemKind == BDMem && MemKind == BDXMem))); 262 } 263 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { 264 return isMem(MemKind) && Mem.RegKind == RegKind; 265 } 266 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { 267 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff); 268 } 269 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { 270 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287); 271 } 272 bool isMemDisp12Len4(RegisterKind RegKind) const { 273 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10); 274 } 275 bool isMemDisp12Len8(RegisterKind RegKind) const { 276 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100); 277 } 278 279 const MemOp& getMem() const { 280 assert(Kind == KindMem && "Not a Mem operand"); 281 return Mem; 282 } 283 284 // Override MCParsedAsmOperand. 285 SMLoc getStartLoc() const override { return StartLoc; } 286 SMLoc getEndLoc() const override { return EndLoc; } 287 void print(raw_ostream &OS) const override; 288 289 /// getLocRange - Get the range between the first and last token of this 290 /// operand. 291 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 292 293 // Used by the TableGen code to add particular types of operand 294 // to an instruction. 295 void addRegOperands(MCInst &Inst, unsigned N) const { 296 assert(N == 1 && "Invalid number of operands"); 297 Inst.addOperand(MCOperand::createReg(getReg())); 298 } 299 void addImmOperands(MCInst &Inst, unsigned N) const { 300 assert(N == 1 && "Invalid number of operands"); 301 addExpr(Inst, getImm()); 302 } 303 void addBDAddrOperands(MCInst &Inst, unsigned N) const { 304 assert(N == 2 && "Invalid number of operands"); 305 assert(isMem(BDMem) && "Invalid operand type"); 306 Inst.addOperand(MCOperand::createReg(Mem.Base)); 307 addExpr(Inst, Mem.Disp); 308 } 309 void addBDXAddrOperands(MCInst &Inst, unsigned N) const { 310 assert(N == 3 && "Invalid number of operands"); 311 assert(isMem(BDXMem) && "Invalid operand type"); 312 Inst.addOperand(MCOperand::createReg(Mem.Base)); 313 addExpr(Inst, Mem.Disp); 314 Inst.addOperand(MCOperand::createReg(Mem.Index)); 315 } 316 void addBDLAddrOperands(MCInst &Inst, unsigned N) const { 317 assert(N == 3 && "Invalid number of operands"); 318 assert(isMem(BDLMem) && "Invalid operand type"); 319 Inst.addOperand(MCOperand::createReg(Mem.Base)); 320 addExpr(Inst, Mem.Disp); 321 addExpr(Inst, Mem.Length.Imm); 322 } 323 void addBDRAddrOperands(MCInst &Inst, unsigned N) const { 324 assert(N == 3 && "Invalid number of operands"); 325 assert(isMem(BDRMem) && "Invalid operand type"); 326 Inst.addOperand(MCOperand::createReg(Mem.Base)); 327 addExpr(Inst, Mem.Disp); 328 Inst.addOperand(MCOperand::createReg(Mem.Length.Reg)); 329 } 330 void addBDVAddrOperands(MCInst &Inst, unsigned N) const { 331 assert(N == 3 && "Invalid number of operands"); 332 assert(isMem(BDVMem) && "Invalid operand type"); 333 Inst.addOperand(MCOperand::createReg(Mem.Base)); 334 addExpr(Inst, Mem.Disp); 335 Inst.addOperand(MCOperand::createReg(Mem.Index)); 336 } 337 void addImmTLSOperands(MCInst &Inst, unsigned N) const { 338 assert(N == 2 && "Invalid number of operands"); 339 assert(Kind == KindImmTLS && "Invalid operand type"); 340 addExpr(Inst, ImmTLS.Imm); 341 if (ImmTLS.Sym) 342 addExpr(Inst, ImmTLS.Sym); 343 } 344 345 // Used by the TableGen code to check for particular operand types. 346 bool isGR32() const { return isReg(GR32Reg); } 347 bool isGRH32() const { return isReg(GRH32Reg); } 348 bool isGRX32() const { return false; } 349 bool isGR64() const { return isReg(GR64Reg); } 350 bool isGR128() const { return isReg(GR128Reg); } 351 bool isADDR32() const { return isReg(ADDR32Reg); } 352 bool isADDR64() const { return isReg(ADDR64Reg); } 353 bool isADDR128() const { return false; } 354 bool isFP32() const { return isReg(FP32Reg); } 355 bool isFP64() const { return isReg(FP64Reg); } 356 bool isFP128() const { return isReg(FP128Reg); } 357 bool isVR32() const { return isReg(VR32Reg); } 358 bool isVR64() const { return isReg(VR64Reg); } 359 bool isVF128() const { return false; } 360 bool isVR128() const { return isReg(VR128Reg); } 361 bool isAR32() const { return isReg(AR32Reg); } 362 bool isCR64() const { return isReg(CR64Reg); } 363 bool isAnyReg() const { return (isReg() || isImm(0, 15)); } 364 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, ADDR32Reg); } 365 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, ADDR32Reg); } 366 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, ADDR64Reg); } 367 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, ADDR64Reg); } 368 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, ADDR64Reg); } 369 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, ADDR64Reg); } 370 bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(ADDR64Reg); } 371 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(ADDR64Reg); } 372 bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, ADDR64Reg); } 373 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, ADDR64Reg); } 374 bool isU1Imm() const { return isImm(0, 1); } 375 bool isU2Imm() const { return isImm(0, 3); } 376 bool isU3Imm() const { return isImm(0, 7); } 377 bool isU4Imm() const { return isImm(0, 15); } 378 bool isU6Imm() const { return isImm(0, 63); } 379 bool isU8Imm() const { return isImm(0, 255); } 380 bool isS8Imm() const { return isImm(-128, 127); } 381 bool isU12Imm() const { return isImm(0, 4095); } 382 bool isU16Imm() const { return isImm(0, 65535); } 383 bool isS16Imm() const { return isImm(-32768, 32767); } 384 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); } 385 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); } 386 bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); } 387 }; 388 389 class SystemZAsmParser : public MCTargetAsmParser { 390 #define GET_ASSEMBLER_HEADER 391 #include "SystemZGenAsmMatcher.inc" 392 393 private: 394 MCAsmParser &Parser; 395 enum RegisterGroup { 396 RegGR, 397 RegFP, 398 RegV, 399 RegAR, 400 RegCR 401 }; 402 struct Register { 403 RegisterGroup Group; 404 unsigned Num; 405 SMLoc StartLoc, EndLoc; 406 }; 407 408 bool parseRegister(Register &Reg); 409 410 bool parseRegister(Register &Reg, RegisterGroup Group, const unsigned *Regs, 411 bool IsAddress = false); 412 413 OperandMatchResultTy parseRegister(OperandVector &Operands, 414 RegisterGroup Group, const unsigned *Regs, 415 RegisterKind Kind); 416 417 OperandMatchResultTy parseAnyRegister(OperandVector &Operands); 418 419 bool parseAddress(bool &HaveReg1, Register &Reg1, 420 bool &HaveReg2, Register &Reg2, 421 const MCExpr *&Disp, const MCExpr *&Length); 422 bool parseAddressRegister(Register &Reg); 423 424 bool ParseDirectiveInsn(SMLoc L); 425 426 OperandMatchResultTy parseAddress(OperandVector &Operands, 427 MemoryKind MemKind, const unsigned *Regs, 428 RegisterKind RegKind); 429 430 OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal, 431 int64_t MaxVal, bool AllowTLS); 432 433 bool parseOperand(OperandVector &Operands, StringRef Mnemonic); 434 435 public: 436 SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, 437 const MCInstrInfo &MII, 438 const MCTargetOptions &Options) 439 : MCTargetAsmParser(Options, sti, MII), Parser(parser) { 440 MCAsmParserExtension::Initialize(Parser); 441 442 // Alias the .word directive to .short. 443 parser.addAliasForDirective(".word", ".short"); 444 445 // Initialize the set of available features. 446 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); 447 } 448 449 // Override MCTargetAsmParser. 450 bool ParseDirective(AsmToken DirectiveID) override; 451 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 452 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 453 SMLoc NameLoc, OperandVector &Operands) override; 454 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 455 OperandVector &Operands, MCStreamer &Out, 456 uint64_t &ErrorInfo, 457 bool MatchingInlineAsm) override; 458 459 // Used by the TableGen code to parse particular operand types. 460 OperandMatchResultTy parseGR32(OperandVector &Operands) { 461 return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, GR32Reg); 462 } 463 OperandMatchResultTy parseGRH32(OperandVector &Operands) { 464 return parseRegister(Operands, RegGR, SystemZMC::GRH32Regs, GRH32Reg); 465 } 466 OperandMatchResultTy parseGRX32(OperandVector &Operands) { 467 llvm_unreachable("GRX32 should only be used for pseudo instructions"); 468 } 469 OperandMatchResultTy parseGR64(OperandVector &Operands) { 470 return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, GR64Reg); 471 } 472 OperandMatchResultTy parseGR128(OperandVector &Operands) { 473 return parseRegister(Operands, RegGR, SystemZMC::GR128Regs, GR128Reg); 474 } 475 OperandMatchResultTy parseADDR32(OperandVector &Operands) { 476 return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, ADDR32Reg); 477 } 478 OperandMatchResultTy parseADDR64(OperandVector &Operands) { 479 return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, ADDR64Reg); 480 } 481 OperandMatchResultTy parseADDR128(OperandVector &Operands) { 482 llvm_unreachable("Shouldn't be used as an operand"); 483 } 484 OperandMatchResultTy parseFP32(OperandVector &Operands) { 485 return parseRegister(Operands, RegFP, SystemZMC::FP32Regs, FP32Reg); 486 } 487 OperandMatchResultTy parseFP64(OperandVector &Operands) { 488 return parseRegister(Operands, RegFP, SystemZMC::FP64Regs, FP64Reg); 489 } 490 OperandMatchResultTy parseFP128(OperandVector &Operands) { 491 return parseRegister(Operands, RegFP, SystemZMC::FP128Regs, FP128Reg); 492 } 493 OperandMatchResultTy parseVR32(OperandVector &Operands) { 494 return parseRegister(Operands, RegV, SystemZMC::VR32Regs, VR32Reg); 495 } 496 OperandMatchResultTy parseVR64(OperandVector &Operands) { 497 return parseRegister(Operands, RegV, SystemZMC::VR64Regs, VR64Reg); 498 } 499 OperandMatchResultTy parseVF128(OperandVector &Operands) { 500 llvm_unreachable("Shouldn't be used as an operand"); 501 } 502 OperandMatchResultTy parseVR128(OperandVector &Operands) { 503 return parseRegister(Operands, RegV, SystemZMC::VR128Regs, VR128Reg); 504 } 505 OperandMatchResultTy parseAR32(OperandVector &Operands) { 506 return parseRegister(Operands, RegAR, SystemZMC::AR32Regs, AR32Reg); 507 } 508 OperandMatchResultTy parseCR64(OperandVector &Operands) { 509 return parseRegister(Operands, RegCR, SystemZMC::CR64Regs, CR64Reg); 510 } 511 OperandMatchResultTy parseAnyReg(OperandVector &Operands) { 512 return parseAnyRegister(Operands); 513 } 514 OperandMatchResultTy parseBDAddr32(OperandVector &Operands) { 515 return parseAddress(Operands, BDMem, SystemZMC::GR32Regs, ADDR32Reg); 516 } 517 OperandMatchResultTy parseBDAddr64(OperandVector &Operands) { 518 return parseAddress(Operands, BDMem, SystemZMC::GR64Regs, ADDR64Reg); 519 } 520 OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) { 521 return parseAddress(Operands, BDXMem, SystemZMC::GR64Regs, ADDR64Reg); 522 } 523 OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) { 524 return parseAddress(Operands, BDLMem, SystemZMC::GR64Regs, ADDR64Reg); 525 } 526 OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) { 527 return parseAddress(Operands, BDRMem, SystemZMC::GR64Regs, ADDR64Reg); 528 } 529 OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) { 530 return parseAddress(Operands, BDVMem, SystemZMC::GR64Regs, ADDR64Reg); 531 } 532 OperandMatchResultTy parsePCRel12(OperandVector &Operands) { 533 return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false); 534 } 535 OperandMatchResultTy parsePCRel16(OperandVector &Operands) { 536 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false); 537 } 538 OperandMatchResultTy parsePCRel24(OperandVector &Operands) { 539 return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false); 540 } 541 OperandMatchResultTy parsePCRel32(OperandVector &Operands) { 542 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false); 543 } 544 OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) { 545 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true); 546 } 547 OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) { 548 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true); 549 } 550 }; 551 552 } // end anonymous namespace 553 554 #define GET_REGISTER_MATCHER 555 #define GET_SUBTARGET_FEATURE_NAME 556 #define GET_MATCHER_IMPLEMENTATION 557 #define GET_MNEMONIC_SPELL_CHECKER 558 #include "SystemZGenAsmMatcher.inc" 559 560 // Used for the .insn directives; contains information needed to parse the 561 // operands in the directive. 562 struct InsnMatchEntry { 563 StringRef Format; 564 uint64_t Opcode; 565 int32_t NumOperands; 566 MatchClassKind OperandKinds[5]; 567 }; 568 569 // For equal_range comparison. 570 struct CompareInsn { 571 bool operator() (const InsnMatchEntry &LHS, StringRef RHS) { 572 return LHS.Format < RHS; 573 } 574 bool operator() (StringRef LHS, const InsnMatchEntry &RHS) { 575 return LHS < RHS.Format; 576 } 577 bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) { 578 return LHS.Format < RHS.Format; 579 } 580 }; 581 582 // Table initializing information for parsing the .insn directive. 583 static struct InsnMatchEntry InsnMatchTable[] = { 584 /* Format, Opcode, NumOperands, OperandKinds */ 585 { "e", SystemZ::InsnE, 1, 586 { MCK_U16Imm } }, 587 { "ri", SystemZ::InsnRI, 3, 588 { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } }, 589 { "rie", SystemZ::InsnRIE, 4, 590 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 591 { "ril", SystemZ::InsnRIL, 3, 592 { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } }, 593 { "rilu", SystemZ::InsnRILU, 3, 594 { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } }, 595 { "ris", SystemZ::InsnRIS, 5, 596 { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 597 { "rr", SystemZ::InsnRR, 3, 598 { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } }, 599 { "rre", SystemZ::InsnRRE, 3, 600 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } }, 601 { "rrf", SystemZ::InsnRRF, 5, 602 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } }, 603 { "rrs", SystemZ::InsnRRS, 5, 604 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 605 { "rs", SystemZ::InsnRS, 4, 606 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 607 { "rse", SystemZ::InsnRSE, 4, 608 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 609 { "rsi", SystemZ::InsnRSI, 4, 610 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 611 { "rsy", SystemZ::InsnRSY, 4, 612 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } }, 613 { "rx", SystemZ::InsnRX, 3, 614 { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 615 { "rxe", SystemZ::InsnRXE, 3, 616 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 617 { "rxf", SystemZ::InsnRXF, 4, 618 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 619 { "rxy", SystemZ::InsnRXY, 3, 620 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } }, 621 { "s", SystemZ::InsnS, 2, 622 { MCK_U32Imm, MCK_BDAddr64Disp12 } }, 623 { "si", SystemZ::InsnSI, 3, 624 { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } }, 625 { "sil", SystemZ::InsnSIL, 3, 626 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } }, 627 { "siy", SystemZ::InsnSIY, 3, 628 { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } }, 629 { "ss", SystemZ::InsnSS, 4, 630 { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 631 { "sse", SystemZ::InsnSSE, 3, 632 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } }, 633 { "ssf", SystemZ::InsnSSF, 4, 634 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } } 635 }; 636 637 static void printMCExpr(const MCExpr *E, raw_ostream &OS) { 638 if (!E) 639 return; 640 if (auto *CE = dyn_cast<MCConstantExpr>(E)) 641 OS << *CE; 642 else if (auto *UE = dyn_cast<MCUnaryExpr>(E)) 643 OS << *UE; 644 else if (auto *BE = dyn_cast<MCBinaryExpr>(E)) 645 OS << *BE; 646 else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E)) 647 OS << *SRE; 648 else 649 OS << *E; 650 } 651 652 void SystemZOperand::print(raw_ostream &OS) const { 653 switch (Kind) { 654 break; 655 case KindToken: 656 OS << "Token:" << getToken(); 657 break; 658 case KindReg: 659 OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg()); 660 break; 661 case KindImm: 662 OS << "Imm:"; 663 printMCExpr(getImm(), OS); 664 break; 665 case KindImmTLS: 666 OS << "ImmTLS:"; 667 printMCExpr(getImmTLS().Imm, OS); 668 if (getImmTLS().Sym) { 669 OS << ", "; 670 printMCExpr(getImmTLS().Sym, OS); 671 } 672 break; 673 case KindMem: { 674 const MemOp &Op = getMem(); 675 OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp); 676 if (Op.Base) { 677 OS << "("; 678 if (Op.MemKind == BDLMem) 679 OS << *cast<MCConstantExpr>(Op.Length.Imm) << ","; 680 else if (Op.MemKind == BDRMem) 681 OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ","; 682 if (Op.Index) 683 OS << SystemZInstPrinter::getRegisterName(Op.Index) << ","; 684 OS << SystemZInstPrinter::getRegisterName(Op.Base); 685 OS << ")"; 686 } 687 break; 688 } 689 case KindInvalid: 690 break; 691 } 692 } 693 694 // Parse one register of the form %<prefix><number>. 695 bool SystemZAsmParser::parseRegister(Register &Reg) { 696 Reg.StartLoc = Parser.getTok().getLoc(); 697 698 // Eat the % prefix. 699 if (Parser.getTok().isNot(AsmToken::Percent)) 700 return Error(Parser.getTok().getLoc(), "register expected"); 701 Parser.Lex(); 702 703 // Expect a register name. 704 if (Parser.getTok().isNot(AsmToken::Identifier)) 705 return Error(Reg.StartLoc, "invalid register"); 706 707 // Check that there's a prefix. 708 StringRef Name = Parser.getTok().getString(); 709 if (Name.size() < 2) 710 return Error(Reg.StartLoc, "invalid register"); 711 char Prefix = Name[0]; 712 713 // Treat the rest of the register name as a register number. 714 if (Name.substr(1).getAsInteger(10, Reg.Num)) 715 return Error(Reg.StartLoc, "invalid register"); 716 717 // Look for valid combinations of prefix and number. 718 if (Prefix == 'r' && Reg.Num < 16) 719 Reg.Group = RegGR; 720 else if (Prefix == 'f' && Reg.Num < 16) 721 Reg.Group = RegFP; 722 else if (Prefix == 'v' && Reg.Num < 32) 723 Reg.Group = RegV; 724 else if (Prefix == 'a' && Reg.Num < 16) 725 Reg.Group = RegAR; 726 else if (Prefix == 'c' && Reg.Num < 16) 727 Reg.Group = RegCR; 728 else 729 return Error(Reg.StartLoc, "invalid register"); 730 731 Reg.EndLoc = Parser.getTok().getLoc(); 732 Parser.Lex(); 733 return false; 734 } 735 736 // Parse a register of group Group. If Regs is nonnull, use it to map 737 // the raw register number to LLVM numbering, with zero entries 738 // indicating an invalid register. IsAddress says whether the 739 // register appears in an address context. Allow FP Group if expecting 740 // RegV Group, since the f-prefix yields the FP group even while used 741 // with vector instructions. 742 bool SystemZAsmParser::parseRegister(Register &Reg, RegisterGroup Group, 743 const unsigned *Regs, bool IsAddress) { 744 if (parseRegister(Reg)) 745 return true; 746 if (Reg.Group != Group && !(Reg.Group == RegFP && Group == RegV)) 747 return Error(Reg.StartLoc, "invalid operand for instruction"); 748 if (Regs && Regs[Reg.Num] == 0) 749 return Error(Reg.StartLoc, "invalid register pair"); 750 if (Reg.Num == 0 && IsAddress) 751 return Error(Reg.StartLoc, "%r0 used in an address"); 752 if (Regs) 753 Reg.Num = Regs[Reg.Num]; 754 return false; 755 } 756 757 // Parse a register and add it to Operands. The other arguments are as above. 758 OperandMatchResultTy 759 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterGroup Group, 760 const unsigned *Regs, RegisterKind Kind) { 761 if (Parser.getTok().isNot(AsmToken::Percent)) 762 return MatchOperand_NoMatch; 763 764 Register Reg; 765 bool IsAddress = (Kind == ADDR32Reg || Kind == ADDR64Reg); 766 if (parseRegister(Reg, Group, Regs, IsAddress)) 767 return MatchOperand_ParseFail; 768 769 Operands.push_back(SystemZOperand::createReg(Kind, Reg.Num, 770 Reg.StartLoc, Reg.EndLoc)); 771 return MatchOperand_Success; 772 } 773 774 // Parse any type of register (including integers) and add it to Operands. 775 OperandMatchResultTy 776 SystemZAsmParser::parseAnyRegister(OperandVector &Operands) { 777 // Handle integer values. 778 if (Parser.getTok().is(AsmToken::Integer)) { 779 const MCExpr *Register; 780 SMLoc StartLoc = Parser.getTok().getLoc(); 781 if (Parser.parseExpression(Register)) 782 return MatchOperand_ParseFail; 783 784 if (auto *CE = dyn_cast<MCConstantExpr>(Register)) { 785 int64_t Value = CE->getValue(); 786 if (Value < 0 || Value > 15) { 787 Error(StartLoc, "invalid register"); 788 return MatchOperand_ParseFail; 789 } 790 } 791 792 SMLoc EndLoc = 793 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 794 795 Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc)); 796 } 797 else { 798 Register Reg; 799 if (parseRegister(Reg)) 800 return MatchOperand_ParseFail; 801 802 // Map to the correct register kind. 803 RegisterKind Kind; 804 unsigned RegNo; 805 if (Reg.Group == RegGR) { 806 Kind = GR64Reg; 807 RegNo = SystemZMC::GR64Regs[Reg.Num]; 808 } 809 else if (Reg.Group == RegFP) { 810 Kind = FP64Reg; 811 RegNo = SystemZMC::FP64Regs[Reg.Num]; 812 } 813 else if (Reg.Group == RegV) { 814 Kind = VR128Reg; 815 RegNo = SystemZMC::VR128Regs[Reg.Num]; 816 } 817 else if (Reg.Group == RegAR) { 818 Kind = AR32Reg; 819 RegNo = SystemZMC::AR32Regs[Reg.Num]; 820 } 821 else if (Reg.Group == RegCR) { 822 Kind = CR64Reg; 823 RegNo = SystemZMC::CR64Regs[Reg.Num]; 824 } 825 else { 826 return MatchOperand_ParseFail; 827 } 828 829 Operands.push_back(SystemZOperand::createReg(Kind, RegNo, 830 Reg.StartLoc, Reg.EndLoc)); 831 } 832 return MatchOperand_Success; 833 } 834 835 // Parse a memory operand into Reg1, Reg2, Disp, and Length. 836 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1, 837 bool &HaveReg2, Register &Reg2, 838 const MCExpr *&Disp, 839 const MCExpr *&Length) { 840 // Parse the displacement, which must always be present. 841 if (getParser().parseExpression(Disp)) 842 return true; 843 844 // Parse the optional base and index. 845 HaveReg1 = false; 846 HaveReg2 = false; 847 Length = nullptr; 848 if (getLexer().is(AsmToken::LParen)) { 849 Parser.Lex(); 850 851 if (getLexer().is(AsmToken::Percent)) { 852 // Parse the first register. 853 HaveReg1 = true; 854 if (parseRegister(Reg1)) 855 return true; 856 } else { 857 // Parse the length. 858 if (getParser().parseExpression(Length)) 859 return true; 860 } 861 862 // Check whether there's a second register. 863 if (getLexer().is(AsmToken::Comma)) { 864 Parser.Lex(); 865 HaveReg2 = true; 866 if (parseRegister(Reg2)) 867 return true; 868 } 869 870 // Consume the closing bracket. 871 if (getLexer().isNot(AsmToken::RParen)) 872 return Error(Parser.getTok().getLoc(), "unexpected token in address"); 873 Parser.Lex(); 874 } 875 return false; 876 } 877 878 // Verify that Reg is a valid address register (base or index). 879 bool 880 SystemZAsmParser::parseAddressRegister(Register &Reg) { 881 if (Reg.Group == RegV) { 882 Error(Reg.StartLoc, "invalid use of vector addressing"); 883 return true; 884 } else if (Reg.Group != RegGR) { 885 Error(Reg.StartLoc, "invalid address register"); 886 return true; 887 } else if (Reg.Num == 0) { 888 Error(Reg.StartLoc, "%r0 used in an address"); 889 return true; 890 } 891 return false; 892 } 893 894 // Parse a memory operand and add it to Operands. The other arguments 895 // are as above. 896 OperandMatchResultTy 897 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind, 898 const unsigned *Regs, RegisterKind RegKind) { 899 SMLoc StartLoc = Parser.getTok().getLoc(); 900 unsigned Base = 0, Index = 0, LengthReg = 0; 901 Register Reg1, Reg2; 902 bool HaveReg1, HaveReg2; 903 const MCExpr *Disp; 904 const MCExpr *Length; 905 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length)) 906 return MatchOperand_ParseFail; 907 908 switch (MemKind) { 909 case BDMem: 910 // If we have Reg1, it must be an address register. 911 if (HaveReg1) { 912 if (parseAddressRegister(Reg1)) 913 return MatchOperand_ParseFail; 914 Base = Regs[Reg1.Num]; 915 } 916 // There must be no Reg2 or length. 917 if (Length) { 918 Error(StartLoc, "invalid use of length addressing"); 919 return MatchOperand_ParseFail; 920 } 921 if (HaveReg2) { 922 Error(StartLoc, "invalid use of indexed addressing"); 923 return MatchOperand_ParseFail; 924 } 925 break; 926 case BDXMem: 927 // If we have Reg1, it must be an address register. 928 if (HaveReg1) { 929 if (parseAddressRegister(Reg1)) 930 return MatchOperand_ParseFail; 931 // If the are two registers, the first one is the index and the 932 // second is the base. 933 if (HaveReg2) 934 Index = Regs[Reg1.Num]; 935 else 936 Base = Regs[Reg1.Num]; 937 } 938 // If we have Reg2, it must be an address register. 939 if (HaveReg2) { 940 if (parseAddressRegister(Reg2)) 941 return MatchOperand_ParseFail; 942 Base = Regs[Reg2.Num]; 943 } 944 // There must be no length. 945 if (Length) { 946 Error(StartLoc, "invalid use of length addressing"); 947 return MatchOperand_ParseFail; 948 } 949 break; 950 case BDLMem: 951 // If we have Reg2, it must be an address register. 952 if (HaveReg2) { 953 if (parseAddressRegister(Reg2)) 954 return MatchOperand_ParseFail; 955 Base = Regs[Reg2.Num]; 956 } 957 // We cannot support base+index addressing. 958 if (HaveReg1 && HaveReg2) { 959 Error(StartLoc, "invalid use of indexed addressing"); 960 return MatchOperand_ParseFail; 961 } 962 // We must have a length. 963 if (!Length) { 964 Error(StartLoc, "missing length in address"); 965 return MatchOperand_ParseFail; 966 } 967 break; 968 case BDRMem: 969 // We must have Reg1, and it must be a GPR. 970 if (!HaveReg1 || Reg1.Group != RegGR) { 971 Error(StartLoc, "invalid operand for instruction"); 972 return MatchOperand_ParseFail; 973 } 974 LengthReg = SystemZMC::GR64Regs[Reg1.Num]; 975 // If we have Reg2, it must be an address register. 976 if (HaveReg2) { 977 if (parseAddressRegister(Reg2)) 978 return MatchOperand_ParseFail; 979 Base = Regs[Reg2.Num]; 980 } 981 // There must be no length. 982 if (Length) { 983 Error(StartLoc, "invalid use of length addressing"); 984 return MatchOperand_ParseFail; 985 } 986 break; 987 case BDVMem: 988 // We must have Reg1, and it must be a vector register. 989 if (!HaveReg1 || Reg1.Group != RegV) { 990 Error(StartLoc, "vector index required in address"); 991 return MatchOperand_ParseFail; 992 } 993 Index = SystemZMC::VR128Regs[Reg1.Num]; 994 // If we have Reg2, it must be an address register. 995 if (HaveReg2) { 996 if (parseAddressRegister(Reg2)) 997 return MatchOperand_ParseFail; 998 Base = Regs[Reg2.Num]; 999 } 1000 // There must be no length. 1001 if (Length) { 1002 Error(StartLoc, "invalid use of length addressing"); 1003 return MatchOperand_ParseFail; 1004 } 1005 break; 1006 } 1007 1008 SMLoc EndLoc = 1009 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1010 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp, 1011 Index, Length, LengthReg, 1012 StartLoc, EndLoc)); 1013 return MatchOperand_Success; 1014 } 1015 1016 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) { 1017 StringRef IDVal = DirectiveID.getIdentifier(); 1018 1019 if (IDVal == ".insn") 1020 return ParseDirectiveInsn(DirectiveID.getLoc()); 1021 1022 return true; 1023 } 1024 1025 /// ParseDirectiveInsn 1026 /// ::= .insn [ format, encoding, (operands (, operands)*) ] 1027 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) { 1028 MCAsmParser &Parser = getParser(); 1029 1030 // Expect instruction format as identifier. 1031 StringRef Format; 1032 SMLoc ErrorLoc = Parser.getTok().getLoc(); 1033 if (Parser.parseIdentifier(Format)) 1034 return Error(ErrorLoc, "expected instruction format"); 1035 1036 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands; 1037 1038 // Find entry for this format in InsnMatchTable. 1039 auto EntryRange = 1040 std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable), 1041 Format, CompareInsn()); 1042 1043 // If first == second, couldn't find a match in the table. 1044 if (EntryRange.first == EntryRange.second) 1045 return Error(ErrorLoc, "unrecognized format"); 1046 1047 struct InsnMatchEntry *Entry = EntryRange.first; 1048 1049 // Format should match from equal_range. 1050 assert(Entry->Format == Format); 1051 1052 // Parse the following operands using the table's information. 1053 for (int i = 0; i < Entry->NumOperands; i++) { 1054 MatchClassKind Kind = Entry->OperandKinds[i]; 1055 1056 SMLoc StartLoc = Parser.getTok().getLoc(); 1057 1058 // Always expect commas as separators for operands. 1059 if (getLexer().isNot(AsmToken::Comma)) 1060 return Error(StartLoc, "unexpected token in directive"); 1061 Lex(); 1062 1063 // Parse operands. 1064 OperandMatchResultTy ResTy; 1065 if (Kind == MCK_AnyReg) 1066 ResTy = parseAnyReg(Operands); 1067 else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20) 1068 ResTy = parseBDXAddr64(Operands); 1069 else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20) 1070 ResTy = parseBDAddr64(Operands); 1071 else if (Kind == MCK_PCRel32) 1072 ResTy = parsePCRel32(Operands); 1073 else if (Kind == MCK_PCRel16) 1074 ResTy = parsePCRel16(Operands); 1075 else { 1076 // Only remaining operand kind is an immediate. 1077 const MCExpr *Expr; 1078 SMLoc StartLoc = Parser.getTok().getLoc(); 1079 1080 // Expect immediate expression. 1081 if (Parser.parseExpression(Expr)) 1082 return Error(StartLoc, "unexpected token in directive"); 1083 1084 SMLoc EndLoc = 1085 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1086 1087 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1088 ResTy = MatchOperand_Success; 1089 } 1090 1091 if (ResTy != MatchOperand_Success) 1092 return true; 1093 } 1094 1095 // Build the instruction with the parsed operands. 1096 MCInst Inst = MCInstBuilder(Entry->Opcode); 1097 1098 for (size_t i = 0; i < Operands.size(); i++) { 1099 MCParsedAsmOperand &Operand = *Operands[i]; 1100 MatchClassKind Kind = Entry->OperandKinds[i]; 1101 1102 // Verify operand. 1103 unsigned Res = validateOperandClass(Operand, Kind); 1104 if (Res != Match_Success) 1105 return Error(Operand.getStartLoc(), "unexpected operand type"); 1106 1107 // Add operands to instruction. 1108 SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand); 1109 if (ZOperand.isReg()) 1110 ZOperand.addRegOperands(Inst, 1); 1111 else if (ZOperand.isMem(BDMem)) 1112 ZOperand.addBDAddrOperands(Inst, 2); 1113 else if (ZOperand.isMem(BDXMem)) 1114 ZOperand.addBDXAddrOperands(Inst, 3); 1115 else if (ZOperand.isImm()) 1116 ZOperand.addImmOperands(Inst, 1); 1117 else 1118 llvm_unreachable("unexpected operand type"); 1119 } 1120 1121 // Emit as a regular instruction. 1122 Parser.getStreamer().EmitInstruction(Inst, getSTI()); 1123 1124 return false; 1125 } 1126 1127 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, 1128 SMLoc &EndLoc) { 1129 Register Reg; 1130 if (parseRegister(Reg)) 1131 return true; 1132 if (Reg.Group == RegGR) 1133 RegNo = SystemZMC::GR64Regs[Reg.Num]; 1134 else if (Reg.Group == RegFP) 1135 RegNo = SystemZMC::FP64Regs[Reg.Num]; 1136 else if (Reg.Group == RegV) 1137 RegNo = SystemZMC::VR128Regs[Reg.Num]; 1138 else if (Reg.Group == RegAR) 1139 RegNo = SystemZMC::AR32Regs[Reg.Num]; 1140 else if (Reg.Group == RegCR) 1141 RegNo = SystemZMC::CR64Regs[Reg.Num]; 1142 StartLoc = Reg.StartLoc; 1143 EndLoc = Reg.EndLoc; 1144 return false; 1145 } 1146 1147 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info, 1148 StringRef Name, SMLoc NameLoc, 1149 OperandVector &Operands) { 1150 Operands.push_back(SystemZOperand::createToken(Name, NameLoc)); 1151 1152 // Read the remaining operands. 1153 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1154 // Read the first operand. 1155 if (parseOperand(Operands, Name)) { 1156 return true; 1157 } 1158 1159 // Read any subsequent operands. 1160 while (getLexer().is(AsmToken::Comma)) { 1161 Parser.Lex(); 1162 if (parseOperand(Operands, Name)) { 1163 return true; 1164 } 1165 } 1166 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1167 SMLoc Loc = getLexer().getLoc(); 1168 return Error(Loc, "unexpected token in argument list"); 1169 } 1170 } 1171 1172 // Consume the EndOfStatement. 1173 Parser.Lex(); 1174 return false; 1175 } 1176 1177 bool SystemZAsmParser::parseOperand(OperandVector &Operands, 1178 StringRef Mnemonic) { 1179 // Check if the current operand has a custom associated parser, if so, try to 1180 // custom parse the operand, or fallback to the general approach. Force all 1181 // features to be available during the operand check, or else we will fail to 1182 // find the custom parser, and then we will later get an InvalidOperand error 1183 // instead of a MissingFeature errror. 1184 uint64_t AvailableFeatures = getAvailableFeatures(); 1185 setAvailableFeatures(~(uint64_t)0); 1186 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 1187 setAvailableFeatures(AvailableFeatures); 1188 if (ResTy == MatchOperand_Success) 1189 return false; 1190 1191 // If there wasn't a custom match, try the generic matcher below. Otherwise, 1192 // there was a match, but an error occurred, in which case, just return that 1193 // the operand parsing failed. 1194 if (ResTy == MatchOperand_ParseFail) 1195 return true; 1196 1197 // Check for a register. All real register operands should have used 1198 // a context-dependent parse routine, which gives the required register 1199 // class. The code is here to mop up other cases, like those where 1200 // the instruction isn't recognized. 1201 if (Parser.getTok().is(AsmToken::Percent)) { 1202 Register Reg; 1203 if (parseRegister(Reg)) 1204 return true; 1205 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc)); 1206 return false; 1207 } 1208 1209 // The only other type of operand is an immediate or address. As above, 1210 // real address operands should have used a context-dependent parse routine, 1211 // so we treat any plain expression as an immediate. 1212 SMLoc StartLoc = Parser.getTok().getLoc(); 1213 Register Reg1, Reg2; 1214 bool HaveReg1, HaveReg2; 1215 const MCExpr *Expr; 1216 const MCExpr *Length; 1217 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length)) 1218 return true; 1219 // If the register combination is not valid for any instruction, reject it. 1220 // Otherwise, fall back to reporting an unrecognized instruction. 1221 if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV 1222 && parseAddressRegister(Reg1)) 1223 return true; 1224 if (HaveReg2 && parseAddressRegister(Reg2)) 1225 return true; 1226 1227 SMLoc EndLoc = 1228 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1229 if (HaveReg1 || HaveReg2 || Length) 1230 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc)); 1231 else 1232 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1233 return false; 1234 } 1235 1236 static std::string SystemZMnemonicSpellCheck(StringRef S, uint64_t FBS, 1237 unsigned VariantID = 0); 1238 1239 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1240 OperandVector &Operands, 1241 MCStreamer &Out, 1242 uint64_t &ErrorInfo, 1243 bool MatchingInlineAsm) { 1244 MCInst Inst; 1245 unsigned MatchResult; 1246 1247 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, 1248 MatchingInlineAsm); 1249 switch (MatchResult) { 1250 case Match_Success: 1251 Inst.setLoc(IDLoc); 1252 Out.EmitInstruction(Inst, getSTI()); 1253 return false; 1254 1255 case Match_MissingFeature: { 1256 assert(ErrorInfo && "Unknown missing feature!"); 1257 // Special case the error message for the very common case where only 1258 // a single subtarget feature is missing 1259 std::string Msg = "instruction requires:"; 1260 uint64_t Mask = 1; 1261 for (unsigned I = 0; I < sizeof(ErrorInfo) * 8 - 1; ++I) { 1262 if (ErrorInfo & Mask) { 1263 Msg += " "; 1264 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 1265 } 1266 Mask <<= 1; 1267 } 1268 return Error(IDLoc, Msg); 1269 } 1270 1271 case Match_InvalidOperand: { 1272 SMLoc ErrorLoc = IDLoc; 1273 if (ErrorInfo != ~0ULL) { 1274 if (ErrorInfo >= Operands.size()) 1275 return Error(IDLoc, "too few operands for instruction"); 1276 1277 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); 1278 if (ErrorLoc == SMLoc()) 1279 ErrorLoc = IDLoc; 1280 } 1281 return Error(ErrorLoc, "invalid operand for instruction"); 1282 } 1283 1284 case Match_MnemonicFail: { 1285 uint64_t FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 1286 std::string Suggestion = SystemZMnemonicSpellCheck( 1287 ((SystemZOperand &)*Operands[0]).getToken(), FBS); 1288 return Error(IDLoc, "invalid instruction" + Suggestion, 1289 ((SystemZOperand &)*Operands[0]).getLocRange()); 1290 } 1291 } 1292 1293 llvm_unreachable("Unexpected match type"); 1294 } 1295 1296 OperandMatchResultTy 1297 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal, 1298 int64_t MaxVal, bool AllowTLS) { 1299 MCContext &Ctx = getContext(); 1300 MCStreamer &Out = getStreamer(); 1301 const MCExpr *Expr; 1302 SMLoc StartLoc = Parser.getTok().getLoc(); 1303 if (getParser().parseExpression(Expr)) 1304 return MatchOperand_NoMatch; 1305 1306 // For consistency with the GNU assembler, treat immediates as offsets 1307 // from ".". 1308 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 1309 int64_t Value = CE->getValue(); 1310 if ((Value & 1) || Value < MinVal || Value > MaxVal) { 1311 Error(StartLoc, "offset out of range"); 1312 return MatchOperand_ParseFail; 1313 } 1314 MCSymbol *Sym = Ctx.createTempSymbol(); 1315 Out.EmitLabel(Sym); 1316 const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, 1317 Ctx); 1318 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx); 1319 } 1320 1321 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. 1322 const MCExpr *Sym = nullptr; 1323 if (AllowTLS && getLexer().is(AsmToken::Colon)) { 1324 Parser.Lex(); 1325 1326 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1327 Error(Parser.getTok().getLoc(), "unexpected token"); 1328 return MatchOperand_ParseFail; 1329 } 1330 1331 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 1332 StringRef Name = Parser.getTok().getString(); 1333 if (Name == "tls_gdcall") 1334 Kind = MCSymbolRefExpr::VK_TLSGD; 1335 else if (Name == "tls_ldcall") 1336 Kind = MCSymbolRefExpr::VK_TLSLDM; 1337 else { 1338 Error(Parser.getTok().getLoc(), "unknown TLS tag"); 1339 return MatchOperand_ParseFail; 1340 } 1341 Parser.Lex(); 1342 1343 if (Parser.getTok().isNot(AsmToken::Colon)) { 1344 Error(Parser.getTok().getLoc(), "unexpected token"); 1345 return MatchOperand_ParseFail; 1346 } 1347 Parser.Lex(); 1348 1349 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1350 Error(Parser.getTok().getLoc(), "unexpected token"); 1351 return MatchOperand_ParseFail; 1352 } 1353 1354 StringRef Identifier = Parser.getTok().getString(); 1355 Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier), 1356 Kind, Ctx); 1357 Parser.Lex(); 1358 } 1359 1360 SMLoc EndLoc = 1361 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1362 1363 if (AllowTLS) 1364 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym, 1365 StartLoc, EndLoc)); 1366 else 1367 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1368 1369 return MatchOperand_Success; 1370 } 1371 1372 // Force static initialization. 1373 extern "C" void LLVMInitializeSystemZAsmParser() { 1374 RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget()); 1375 } 1376