1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "MCTargetDesc/SystemZMCTargetDesc.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/StringRef.h" 14 #include "llvm/MC/MCContext.h" 15 #include "llvm/MC/MCExpr.h" 16 #include "llvm/MC/MCInst.h" 17 #include "llvm/MC/MCInstBuilder.h" 18 #include "llvm/MC/MCParser/MCAsmLexer.h" 19 #include "llvm/MC/MCParser/MCAsmParser.h" 20 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 21 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 22 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/MC/MCSubtargetInfo.h" 25 #include "llvm/Support/Casting.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/SMLoc.h" 28 #include "llvm/Support/TargetRegistry.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <cstddef> 32 #include <cstdint> 33 #include <iterator> 34 #include <memory> 35 #include <string> 36 37 using namespace llvm; 38 39 // Return true if Expr is in the range [MinValue, MaxValue]. 40 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) { 41 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 42 int64_t Value = CE->getValue(); 43 return Value >= MinValue && Value <= MaxValue; 44 } 45 return false; 46 } 47 48 namespace { 49 50 enum RegisterKind { 51 GR32Reg, 52 GRH32Reg, 53 GR64Reg, 54 GR128Reg, 55 ADDR32Reg, 56 ADDR64Reg, 57 FP32Reg, 58 FP64Reg, 59 FP128Reg, 60 VR32Reg, 61 VR64Reg, 62 VR128Reg, 63 AR32Reg, 64 }; 65 66 enum MemoryKind { 67 BDMem, 68 BDXMem, 69 BDLMem, 70 BDRMem, 71 BDVMem 72 }; 73 74 class SystemZOperand : public MCParsedAsmOperand { 75 private: 76 enum OperandKind { 77 KindInvalid, 78 KindToken, 79 KindReg, 80 KindImm, 81 KindImmTLS, 82 KindMem 83 }; 84 85 OperandKind Kind; 86 SMLoc StartLoc, EndLoc; 87 88 // A string of length Length, starting at Data. 89 struct TokenOp { 90 const char *Data; 91 unsigned Length; 92 }; 93 94 // LLVM register Num, which has kind Kind. In some ways it might be 95 // easier for this class to have a register bank (general, floating-point 96 // or access) and a raw register number (0-15). This would postpone the 97 // interpretation of the operand to the add*() methods and avoid the need 98 // for context-dependent parsing. However, we do things the current way 99 // because of the virtual getReg() method, which needs to distinguish 100 // between (say) %r0 used as a single register and %r0 used as a pair. 101 // Context-dependent parsing can also give us slightly better error 102 // messages when invalid pairs like %r1 are used. 103 struct RegOp { 104 RegisterKind Kind; 105 unsigned Num; 106 }; 107 108 // Base + Disp + Index, where Base and Index are LLVM registers or 0. 109 // MemKind says what type of memory this is and RegKind says what type 110 // the base register has (ADDR32Reg or ADDR64Reg). Length is the operand 111 // length for D(L,B)-style operands, otherwise it is null. 112 struct MemOp { 113 unsigned Base : 12; 114 unsigned Index : 12; 115 unsigned MemKind : 4; 116 unsigned RegKind : 4; 117 const MCExpr *Disp; 118 union { 119 const MCExpr *Imm; 120 unsigned Reg; 121 } Length; 122 }; 123 124 // Imm is an immediate operand, and Sym is an optional TLS symbol 125 // for use with a __tls_get_offset marker relocation. 126 struct ImmTLSOp { 127 const MCExpr *Imm; 128 const MCExpr *Sym; 129 }; 130 131 union { 132 TokenOp Token; 133 RegOp Reg; 134 const MCExpr *Imm; 135 ImmTLSOp ImmTLS; 136 MemOp Mem; 137 }; 138 139 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 140 // Add as immediates when possible. Null MCExpr = 0. 141 if (!Expr) 142 Inst.addOperand(MCOperand::createImm(0)); 143 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) 144 Inst.addOperand(MCOperand::createImm(CE->getValue())); 145 else 146 Inst.addOperand(MCOperand::createExpr(Expr)); 147 } 148 149 public: 150 SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc) 151 : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {} 152 153 // Create particular kinds of operand. 154 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc, 155 SMLoc EndLoc) { 156 return make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc); 157 } 158 159 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) { 160 auto Op = make_unique<SystemZOperand>(KindToken, Loc, Loc); 161 Op->Token.Data = Str.data(); 162 Op->Token.Length = Str.size(); 163 return Op; 164 } 165 166 static std::unique_ptr<SystemZOperand> 167 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { 168 auto Op = make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc); 169 Op->Reg.Kind = Kind; 170 Op->Reg.Num = Num; 171 return Op; 172 } 173 174 static std::unique_ptr<SystemZOperand> 175 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { 176 auto Op = make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc); 177 Op->Imm = Expr; 178 return Op; 179 } 180 181 static std::unique_ptr<SystemZOperand> 182 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, 183 const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm, 184 unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) { 185 auto Op = make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc); 186 Op->Mem.MemKind = MemKind; 187 Op->Mem.RegKind = RegKind; 188 Op->Mem.Base = Base; 189 Op->Mem.Index = Index; 190 Op->Mem.Disp = Disp; 191 if (MemKind == BDLMem) 192 Op->Mem.Length.Imm = LengthImm; 193 if (MemKind == BDRMem) 194 Op->Mem.Length.Reg = LengthReg; 195 return Op; 196 } 197 198 static std::unique_ptr<SystemZOperand> 199 createImmTLS(const MCExpr *Imm, const MCExpr *Sym, 200 SMLoc StartLoc, SMLoc EndLoc) { 201 auto Op = make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc); 202 Op->ImmTLS.Imm = Imm; 203 Op->ImmTLS.Sym = Sym; 204 return Op; 205 } 206 207 // Token operands 208 bool isToken() const override { 209 return Kind == KindToken; 210 } 211 StringRef getToken() const { 212 assert(Kind == KindToken && "Not a token"); 213 return StringRef(Token.Data, Token.Length); 214 } 215 216 // Register operands. 217 bool isReg() const override { 218 return Kind == KindReg; 219 } 220 bool isReg(RegisterKind RegKind) const { 221 return Kind == KindReg && Reg.Kind == RegKind; 222 } 223 unsigned getReg() const override { 224 assert(Kind == KindReg && "Not a register"); 225 return Reg.Num; 226 } 227 228 // Immediate operands. 229 bool isImm() const override { 230 return Kind == KindImm; 231 } 232 bool isImm(int64_t MinValue, int64_t MaxValue) const { 233 return Kind == KindImm && inRange(Imm, MinValue, MaxValue); 234 } 235 const MCExpr *getImm() const { 236 assert(Kind == KindImm && "Not an immediate"); 237 return Imm; 238 } 239 240 // Immediate operands with optional TLS symbol. 241 bool isImmTLS() const { 242 return Kind == KindImmTLS; 243 } 244 245 // Memory operands. 246 bool isMem() const override { 247 return Kind == KindMem; 248 } 249 bool isMem(MemoryKind MemKind) const { 250 return (Kind == KindMem && 251 (Mem.MemKind == MemKind || 252 // A BDMem can be treated as a BDXMem in which the index 253 // register field is 0. 254 (Mem.MemKind == BDMem && MemKind == BDXMem))); 255 } 256 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { 257 return isMem(MemKind) && Mem.RegKind == RegKind; 258 } 259 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { 260 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff); 261 } 262 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { 263 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287); 264 } 265 bool isMemDisp12Len4(RegisterKind RegKind) const { 266 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10); 267 } 268 bool isMemDisp12Len8(RegisterKind RegKind) const { 269 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100); 270 } 271 272 // Override MCParsedAsmOperand. 273 SMLoc getStartLoc() const override { return StartLoc; } 274 SMLoc getEndLoc() const override { return EndLoc; } 275 void print(raw_ostream &OS) const override; 276 277 // Used by the TableGen code to add particular types of operand 278 // to an instruction. 279 void addRegOperands(MCInst &Inst, unsigned N) const { 280 assert(N == 1 && "Invalid number of operands"); 281 Inst.addOperand(MCOperand::createReg(getReg())); 282 } 283 void addImmOperands(MCInst &Inst, unsigned N) const { 284 assert(N == 1 && "Invalid number of operands"); 285 addExpr(Inst, getImm()); 286 } 287 void addBDAddrOperands(MCInst &Inst, unsigned N) const { 288 assert(N == 2 && "Invalid number of operands"); 289 assert(isMem(BDMem) && "Invalid operand type"); 290 Inst.addOperand(MCOperand::createReg(Mem.Base)); 291 addExpr(Inst, Mem.Disp); 292 } 293 void addBDXAddrOperands(MCInst &Inst, unsigned N) const { 294 assert(N == 3 && "Invalid number of operands"); 295 assert(isMem(BDXMem) && "Invalid operand type"); 296 Inst.addOperand(MCOperand::createReg(Mem.Base)); 297 addExpr(Inst, Mem.Disp); 298 Inst.addOperand(MCOperand::createReg(Mem.Index)); 299 } 300 void addBDLAddrOperands(MCInst &Inst, unsigned N) const { 301 assert(N == 3 && "Invalid number of operands"); 302 assert(isMem(BDLMem) && "Invalid operand type"); 303 Inst.addOperand(MCOperand::createReg(Mem.Base)); 304 addExpr(Inst, Mem.Disp); 305 addExpr(Inst, Mem.Length.Imm); 306 } 307 void addBDRAddrOperands(MCInst &Inst, unsigned N) const { 308 assert(N == 3 && "Invalid number of operands"); 309 assert(isMem(BDRMem) && "Invalid operand type"); 310 Inst.addOperand(MCOperand::createReg(Mem.Base)); 311 addExpr(Inst, Mem.Disp); 312 Inst.addOperand(MCOperand::createReg(Mem.Length.Reg)); 313 } 314 void addBDVAddrOperands(MCInst &Inst, unsigned N) const { 315 assert(N == 3 && "Invalid number of operands"); 316 assert(isMem(BDVMem) && "Invalid operand type"); 317 Inst.addOperand(MCOperand::createReg(Mem.Base)); 318 addExpr(Inst, Mem.Disp); 319 Inst.addOperand(MCOperand::createReg(Mem.Index)); 320 } 321 void addImmTLSOperands(MCInst &Inst, unsigned N) const { 322 assert(N == 2 && "Invalid number of operands"); 323 assert(Kind == KindImmTLS && "Invalid operand type"); 324 addExpr(Inst, ImmTLS.Imm); 325 if (ImmTLS.Sym) 326 addExpr(Inst, ImmTLS.Sym); 327 } 328 329 // Used by the TableGen code to check for particular operand types. 330 bool isGR32() const { return isReg(GR32Reg); } 331 bool isGRH32() const { return isReg(GRH32Reg); } 332 bool isGRX32() const { return false; } 333 bool isGR64() const { return isReg(GR64Reg); } 334 bool isGR128() const { return isReg(GR128Reg); } 335 bool isADDR32() const { return isReg(ADDR32Reg); } 336 bool isADDR64() const { return isReg(ADDR64Reg); } 337 bool isADDR128() const { return false; } 338 bool isFP32() const { return isReg(FP32Reg); } 339 bool isFP64() const { return isReg(FP64Reg); } 340 bool isFP128() const { return isReg(FP128Reg); } 341 bool isVR32() const { return isReg(VR32Reg); } 342 bool isVR64() const { return isReg(VR64Reg); } 343 bool isVF128() const { return false; } 344 bool isVR128() const { return isReg(VR128Reg); } 345 bool isAR32() const { return isReg(AR32Reg); } 346 bool isAnyReg() const { return (isReg() || isImm(0, 15)); } 347 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, ADDR32Reg); } 348 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, ADDR32Reg); } 349 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, ADDR64Reg); } 350 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, ADDR64Reg); } 351 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, ADDR64Reg); } 352 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, ADDR64Reg); } 353 bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(ADDR64Reg); } 354 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(ADDR64Reg); } 355 bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, ADDR64Reg); } 356 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, ADDR64Reg); } 357 bool isU1Imm() const { return isImm(0, 1); } 358 bool isU2Imm() const { return isImm(0, 3); } 359 bool isU3Imm() const { return isImm(0, 7); } 360 bool isU4Imm() const { return isImm(0, 15); } 361 bool isU6Imm() const { return isImm(0, 63); } 362 bool isU8Imm() const { return isImm(0, 255); } 363 bool isS8Imm() const { return isImm(-128, 127); } 364 bool isU12Imm() const { return isImm(0, 4095); } 365 bool isU16Imm() const { return isImm(0, 65535); } 366 bool isS16Imm() const { return isImm(-32768, 32767); } 367 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); } 368 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); } 369 bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); } 370 }; 371 372 class SystemZAsmParser : public MCTargetAsmParser { 373 #define GET_ASSEMBLER_HEADER 374 #include "SystemZGenAsmMatcher.inc" 375 376 private: 377 MCAsmParser &Parser; 378 enum RegisterGroup { 379 RegGR, 380 RegFP, 381 RegV, 382 RegAR 383 }; 384 struct Register { 385 RegisterGroup Group; 386 unsigned Num; 387 SMLoc StartLoc, EndLoc; 388 }; 389 390 bool parseRegister(Register &Reg); 391 392 bool parseRegister(Register &Reg, RegisterGroup Group, const unsigned *Regs, 393 bool IsAddress = false); 394 395 OperandMatchResultTy parseRegister(OperandVector &Operands, 396 RegisterGroup Group, const unsigned *Regs, 397 RegisterKind Kind); 398 399 OperandMatchResultTy parseAnyRegister(OperandVector &Operands); 400 401 bool parseAddress(bool &HaveReg1, Register &Reg1, 402 bool &HaveReg2, Register &Reg2, 403 const MCExpr *&Disp, const MCExpr *&Length); 404 bool parseAddressRegister(Register &Reg); 405 406 bool ParseDirectiveInsn(SMLoc L); 407 408 OperandMatchResultTy parseAddress(OperandVector &Operands, 409 MemoryKind MemKind, const unsigned *Regs, 410 RegisterKind RegKind); 411 412 OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal, 413 int64_t MaxVal, bool AllowTLS); 414 415 bool parseOperand(OperandVector &Operands, StringRef Mnemonic); 416 417 public: 418 SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, 419 const MCInstrInfo &MII, 420 const MCTargetOptions &Options) 421 : MCTargetAsmParser(Options, sti), Parser(parser) { 422 MCAsmParserExtension::Initialize(Parser); 423 424 // Alias the .word directive to .short. 425 parser.addAliasForDirective(".word", ".short"); 426 427 // Initialize the set of available features. 428 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); 429 } 430 431 // Override MCTargetAsmParser. 432 bool ParseDirective(AsmToken DirectiveID) override; 433 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 434 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 435 SMLoc NameLoc, OperandVector &Operands) override; 436 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 437 OperandVector &Operands, MCStreamer &Out, 438 uint64_t &ErrorInfo, 439 bool MatchingInlineAsm) override; 440 441 // Used by the TableGen code to parse particular operand types. 442 OperandMatchResultTy parseGR32(OperandVector &Operands) { 443 return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, GR32Reg); 444 } 445 OperandMatchResultTy parseGRH32(OperandVector &Operands) { 446 return parseRegister(Operands, RegGR, SystemZMC::GRH32Regs, GRH32Reg); 447 } 448 OperandMatchResultTy parseGRX32(OperandVector &Operands) { 449 llvm_unreachable("GRX32 should only be used for pseudo instructions"); 450 } 451 OperandMatchResultTy parseGR64(OperandVector &Operands) { 452 return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, GR64Reg); 453 } 454 OperandMatchResultTy parseGR128(OperandVector &Operands) { 455 return parseRegister(Operands, RegGR, SystemZMC::GR128Regs, GR128Reg); 456 } 457 OperandMatchResultTy parseADDR32(OperandVector &Operands) { 458 return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, ADDR32Reg); 459 } 460 OperandMatchResultTy parseADDR64(OperandVector &Operands) { 461 return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, ADDR64Reg); 462 } 463 OperandMatchResultTy parseADDR128(OperandVector &Operands) { 464 llvm_unreachable("Shouldn't be used as an operand"); 465 } 466 OperandMatchResultTy parseFP32(OperandVector &Operands) { 467 return parseRegister(Operands, RegFP, SystemZMC::FP32Regs, FP32Reg); 468 } 469 OperandMatchResultTy parseFP64(OperandVector &Operands) { 470 return parseRegister(Operands, RegFP, SystemZMC::FP64Regs, FP64Reg); 471 } 472 OperandMatchResultTy parseFP128(OperandVector &Operands) { 473 return parseRegister(Operands, RegFP, SystemZMC::FP128Regs, FP128Reg); 474 } 475 OperandMatchResultTy parseVR32(OperandVector &Operands) { 476 return parseRegister(Operands, RegV, SystemZMC::VR32Regs, VR32Reg); 477 } 478 OperandMatchResultTy parseVR64(OperandVector &Operands) { 479 return parseRegister(Operands, RegV, SystemZMC::VR64Regs, VR64Reg); 480 } 481 OperandMatchResultTy parseVF128(OperandVector &Operands) { 482 llvm_unreachable("Shouldn't be used as an operand"); 483 } 484 OperandMatchResultTy parseVR128(OperandVector &Operands) { 485 return parseRegister(Operands, RegV, SystemZMC::VR128Regs, VR128Reg); 486 } 487 OperandMatchResultTy parseAR32(OperandVector &Operands) { 488 return parseRegister(Operands, RegAR, SystemZMC::AR32Regs, AR32Reg); 489 } 490 OperandMatchResultTy parseAnyReg(OperandVector &Operands) { 491 return parseAnyRegister(Operands); 492 } 493 OperandMatchResultTy parseBDAddr32(OperandVector &Operands) { 494 return parseAddress(Operands, BDMem, SystemZMC::GR32Regs, ADDR32Reg); 495 } 496 OperandMatchResultTy parseBDAddr64(OperandVector &Operands) { 497 return parseAddress(Operands, BDMem, SystemZMC::GR64Regs, ADDR64Reg); 498 } 499 OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) { 500 return parseAddress(Operands, BDXMem, SystemZMC::GR64Regs, ADDR64Reg); 501 } 502 OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) { 503 return parseAddress(Operands, BDLMem, SystemZMC::GR64Regs, ADDR64Reg); 504 } 505 OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) { 506 return parseAddress(Operands, BDRMem, SystemZMC::GR64Regs, ADDR64Reg); 507 } 508 OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) { 509 return parseAddress(Operands, BDVMem, SystemZMC::GR64Regs, ADDR64Reg); 510 } 511 OperandMatchResultTy parsePCRel12(OperandVector &Operands) { 512 return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false); 513 } 514 OperandMatchResultTy parsePCRel16(OperandVector &Operands) { 515 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false); 516 } 517 OperandMatchResultTy parsePCRel24(OperandVector &Operands) { 518 return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false); 519 } 520 OperandMatchResultTy parsePCRel32(OperandVector &Operands) { 521 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false); 522 } 523 OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) { 524 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true); 525 } 526 OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) { 527 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true); 528 } 529 }; 530 531 } // end anonymous namespace 532 533 #define GET_REGISTER_MATCHER 534 #define GET_SUBTARGET_FEATURE_NAME 535 #define GET_MATCHER_IMPLEMENTATION 536 #include "SystemZGenAsmMatcher.inc" 537 538 // Used for the .insn directives; contains information needed to parse the 539 // operands in the directive. 540 struct InsnMatchEntry { 541 StringRef Format; 542 uint64_t Opcode; 543 int32_t NumOperands; 544 MatchClassKind OperandKinds[5]; 545 }; 546 547 // For equal_range comparison. 548 struct CompareInsn { 549 bool operator() (const InsnMatchEntry &LHS, StringRef RHS) { 550 return LHS.Format < RHS; 551 } 552 bool operator() (StringRef LHS, const InsnMatchEntry &RHS) { 553 return LHS < RHS.Format; 554 } 555 bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) { 556 return LHS.Format < RHS.Format; 557 } 558 }; 559 560 // Table initializing information for parsing the .insn directive. 561 static struct InsnMatchEntry InsnMatchTable[] = { 562 /* Format, Opcode, NumOperands, OperandKinds */ 563 { "e", SystemZ::InsnE, 1, 564 { MCK_U16Imm } }, 565 { "ri", SystemZ::InsnRI, 3, 566 { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } }, 567 { "rie", SystemZ::InsnRIE, 4, 568 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 569 { "ril", SystemZ::InsnRIL, 3, 570 { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } }, 571 { "rilu", SystemZ::InsnRILU, 3, 572 { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } }, 573 { "ris", SystemZ::InsnRIS, 5, 574 { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 575 { "rr", SystemZ::InsnRR, 3, 576 { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } }, 577 { "rre", SystemZ::InsnRRE, 3, 578 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } }, 579 { "rrf", SystemZ::InsnRRF, 5, 580 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } }, 581 { "rrs", SystemZ::InsnRRS, 5, 582 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 583 { "rs", SystemZ::InsnRS, 4, 584 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 585 { "rse", SystemZ::InsnRSE, 4, 586 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 587 { "rsi", SystemZ::InsnRSI, 4, 588 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 589 { "rsy", SystemZ::InsnRSY, 4, 590 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } }, 591 { "rx", SystemZ::InsnRX, 3, 592 { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 593 { "rxe", SystemZ::InsnRXE, 3, 594 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 595 { "rxf", SystemZ::InsnRXF, 4, 596 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 597 { "rxy", SystemZ::InsnRXY, 3, 598 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } }, 599 { "s", SystemZ::InsnS, 2, 600 { MCK_U32Imm, MCK_BDAddr64Disp12 } }, 601 { "si", SystemZ::InsnSI, 3, 602 { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } }, 603 { "sil", SystemZ::InsnSIL, 3, 604 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } }, 605 { "siy", SystemZ::InsnSIY, 3, 606 { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } }, 607 { "ss", SystemZ::InsnSS, 4, 608 { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 609 { "sse", SystemZ::InsnSSE, 3, 610 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } }, 611 { "ssf", SystemZ::InsnSSF, 4, 612 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } } 613 }; 614 615 void SystemZOperand::print(raw_ostream &OS) const { 616 llvm_unreachable("Not implemented"); 617 } 618 619 // Parse one register of the form %<prefix><number>. 620 bool SystemZAsmParser::parseRegister(Register &Reg) { 621 Reg.StartLoc = Parser.getTok().getLoc(); 622 623 // Eat the % prefix. 624 if (Parser.getTok().isNot(AsmToken::Percent)) 625 return Error(Parser.getTok().getLoc(), "register expected"); 626 Parser.Lex(); 627 628 // Expect a register name. 629 if (Parser.getTok().isNot(AsmToken::Identifier)) 630 return Error(Reg.StartLoc, "invalid register"); 631 632 // Check that there's a prefix. 633 StringRef Name = Parser.getTok().getString(); 634 if (Name.size() < 2) 635 return Error(Reg.StartLoc, "invalid register"); 636 char Prefix = Name[0]; 637 638 // Treat the rest of the register name as a register number. 639 if (Name.substr(1).getAsInteger(10, Reg.Num)) 640 return Error(Reg.StartLoc, "invalid register"); 641 642 // Look for valid combinations of prefix and number. 643 if (Prefix == 'r' && Reg.Num < 16) 644 Reg.Group = RegGR; 645 else if (Prefix == 'f' && Reg.Num < 16) 646 Reg.Group = RegFP; 647 else if (Prefix == 'v' && Reg.Num < 32) 648 Reg.Group = RegV; 649 else if (Prefix == 'a' && Reg.Num < 16) 650 Reg.Group = RegAR; 651 else 652 return Error(Reg.StartLoc, "invalid register"); 653 654 Reg.EndLoc = Parser.getTok().getLoc(); 655 Parser.Lex(); 656 return false; 657 } 658 659 // Parse a register of group Group. If Regs is nonnull, use it to map 660 // the raw register number to LLVM numbering, with zero entries 661 // indicating an invalid register. IsAddress says whether the 662 // register appears in an address context. Allow FP Group if expecting 663 // RegV Group, since the f-prefix yields the FP group even while used 664 // with vector instructions. 665 bool SystemZAsmParser::parseRegister(Register &Reg, RegisterGroup Group, 666 const unsigned *Regs, bool IsAddress) { 667 if (parseRegister(Reg)) 668 return true; 669 if (Reg.Group != Group && !(Reg.Group == RegFP && Group == RegV)) 670 return Error(Reg.StartLoc, "invalid operand for instruction"); 671 if (Regs && Regs[Reg.Num] == 0) 672 return Error(Reg.StartLoc, "invalid register pair"); 673 if (Reg.Num == 0 && IsAddress) 674 return Error(Reg.StartLoc, "%r0 used in an address"); 675 if (Regs) 676 Reg.Num = Regs[Reg.Num]; 677 return false; 678 } 679 680 // Parse a register and add it to Operands. The other arguments are as above. 681 OperandMatchResultTy 682 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterGroup Group, 683 const unsigned *Regs, RegisterKind Kind) { 684 if (Parser.getTok().isNot(AsmToken::Percent)) 685 return MatchOperand_NoMatch; 686 687 Register Reg; 688 bool IsAddress = (Kind == ADDR32Reg || Kind == ADDR64Reg); 689 if (parseRegister(Reg, Group, Regs, IsAddress)) 690 return MatchOperand_ParseFail; 691 692 Operands.push_back(SystemZOperand::createReg(Kind, Reg.Num, 693 Reg.StartLoc, Reg.EndLoc)); 694 return MatchOperand_Success; 695 } 696 697 // Parse any type of register (including integers) and add it to Operands. 698 OperandMatchResultTy 699 SystemZAsmParser::parseAnyRegister(OperandVector &Operands) { 700 // Handle integer values. 701 if (Parser.getTok().is(AsmToken::Integer)) { 702 const MCExpr *Register; 703 SMLoc StartLoc = Parser.getTok().getLoc(); 704 if (Parser.parseExpression(Register)) 705 return MatchOperand_ParseFail; 706 707 if (auto *CE = dyn_cast<MCConstantExpr>(Register)) { 708 int64_t Value = CE->getValue(); 709 if (Value < 0 || Value > 15) { 710 Error(StartLoc, "invalid register"); 711 return MatchOperand_ParseFail; 712 } 713 } 714 715 SMLoc EndLoc = 716 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 717 718 Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc)); 719 } 720 else { 721 Register Reg; 722 if (parseRegister(Reg)) 723 return MatchOperand_ParseFail; 724 725 // Map to the correct register kind. 726 RegisterKind Kind; 727 unsigned RegNo; 728 if (Reg.Group == RegGR) { 729 Kind = GR64Reg; 730 RegNo = SystemZMC::GR64Regs[Reg.Num]; 731 } 732 else if (Reg.Group == RegFP) { 733 Kind = FP64Reg; 734 RegNo = SystemZMC::FP64Regs[Reg.Num]; 735 } 736 else if (Reg.Group == RegV) { 737 Kind = VR128Reg; 738 RegNo = SystemZMC::VR128Regs[Reg.Num]; 739 } 740 else if (Reg.Group == RegAR) { 741 Kind = AR32Reg; 742 RegNo = SystemZMC::AR32Regs[Reg.Num]; 743 } 744 else { 745 return MatchOperand_ParseFail; 746 } 747 748 Operands.push_back(SystemZOperand::createReg(Kind, RegNo, 749 Reg.StartLoc, Reg.EndLoc)); 750 } 751 return MatchOperand_Success; 752 } 753 754 // Parse a memory operand into Reg1, Reg2, Disp, and Length. 755 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1, 756 bool &HaveReg2, Register &Reg2, 757 const MCExpr *&Disp, 758 const MCExpr *&Length) { 759 // Parse the displacement, which must always be present. 760 if (getParser().parseExpression(Disp)) 761 return true; 762 763 // Parse the optional base and index. 764 HaveReg1 = false; 765 HaveReg2 = false; 766 Length = nullptr; 767 if (getLexer().is(AsmToken::LParen)) { 768 Parser.Lex(); 769 770 if (getLexer().is(AsmToken::Percent)) { 771 // Parse the first register. 772 HaveReg1 = true; 773 if (parseRegister(Reg1)) 774 return true; 775 } else { 776 // Parse the length. 777 if (getParser().parseExpression(Length)) 778 return true; 779 } 780 781 // Check whether there's a second register. 782 if (getLexer().is(AsmToken::Comma)) { 783 Parser.Lex(); 784 HaveReg2 = true; 785 if (parseRegister(Reg2)) 786 return true; 787 } 788 789 // Consume the closing bracket. 790 if (getLexer().isNot(AsmToken::RParen)) 791 return Error(Parser.getTok().getLoc(), "unexpected token in address"); 792 Parser.Lex(); 793 } 794 return false; 795 } 796 797 // Verify that Reg is a valid address register (base or index). 798 bool 799 SystemZAsmParser::parseAddressRegister(Register &Reg) { 800 if (Reg.Group == RegV) { 801 Error(Reg.StartLoc, "invalid use of vector addressing"); 802 return true; 803 } else if (Reg.Group != RegGR) { 804 Error(Reg.StartLoc, "invalid address register"); 805 return true; 806 } else if (Reg.Num == 0) { 807 Error(Reg.StartLoc, "%r0 used in an address"); 808 return true; 809 } 810 return false; 811 } 812 813 // Parse a memory operand and add it to Operands. The other arguments 814 // are as above. 815 OperandMatchResultTy 816 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind, 817 const unsigned *Regs, RegisterKind RegKind) { 818 SMLoc StartLoc = Parser.getTok().getLoc(); 819 unsigned Base = 0, Index = 0, LengthReg = 0; 820 Register Reg1, Reg2; 821 bool HaveReg1, HaveReg2; 822 const MCExpr *Disp; 823 const MCExpr *Length; 824 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length)) 825 return MatchOperand_ParseFail; 826 827 switch (MemKind) { 828 case BDMem: 829 // If we have Reg1, it must be an address register. 830 if (HaveReg1) { 831 if (parseAddressRegister(Reg1)) 832 return MatchOperand_ParseFail; 833 Base = Regs[Reg1.Num]; 834 } 835 // There must be no Reg2 or length. 836 if (Length) { 837 Error(StartLoc, "invalid use of length addressing"); 838 return MatchOperand_ParseFail; 839 } 840 if (HaveReg2) { 841 Error(StartLoc, "invalid use of indexed addressing"); 842 return MatchOperand_ParseFail; 843 } 844 break; 845 case BDXMem: 846 // If we have Reg1, it must be an address register. 847 if (HaveReg1) { 848 if (parseAddressRegister(Reg1)) 849 return MatchOperand_ParseFail; 850 // If the are two registers, the first one is the index and the 851 // second is the base. 852 if (HaveReg2) 853 Index = Regs[Reg1.Num]; 854 else 855 Base = Regs[Reg1.Num]; 856 } 857 // If we have Reg2, it must be an address register. 858 if (HaveReg2) { 859 if (parseAddressRegister(Reg2)) 860 return MatchOperand_ParseFail; 861 Base = Regs[Reg2.Num]; 862 } 863 // There must be no length. 864 if (Length) { 865 Error(StartLoc, "invalid use of length addressing"); 866 return MatchOperand_ParseFail; 867 } 868 break; 869 case BDLMem: 870 // If we have Reg2, it must be an address register. 871 if (HaveReg2) { 872 if (parseAddressRegister(Reg2)) 873 return MatchOperand_ParseFail; 874 Base = Regs[Reg2.Num]; 875 } 876 // We cannot support base+index addressing. 877 if (HaveReg1 && HaveReg2) { 878 Error(StartLoc, "invalid use of indexed addressing"); 879 return MatchOperand_ParseFail; 880 } 881 // We must have a length. 882 if (!Length) { 883 Error(StartLoc, "missing length in address"); 884 return MatchOperand_ParseFail; 885 } 886 break; 887 case BDRMem: 888 // We must have Reg1, and it must be a GPR. 889 if (!HaveReg1 || Reg1.Group != RegGR) { 890 Error(StartLoc, "invalid operand for instruction"); 891 return MatchOperand_ParseFail; 892 } 893 LengthReg = SystemZMC::GR64Regs[Reg1.Num]; 894 // If we have Reg2, it must be an address register. 895 if (HaveReg2) { 896 if (parseAddressRegister(Reg2)) 897 return MatchOperand_ParseFail; 898 Base = Regs[Reg2.Num]; 899 } 900 // There must be no length. 901 if (Length) { 902 Error(StartLoc, "invalid use of length addressing"); 903 return MatchOperand_ParseFail; 904 } 905 break; 906 case BDVMem: 907 // We must have Reg1, and it must be a vector register. 908 if (!HaveReg1 || Reg1.Group != RegV) { 909 Error(StartLoc, "vector index required in address"); 910 return MatchOperand_ParseFail; 911 } 912 Index = SystemZMC::VR128Regs[Reg1.Num]; 913 // If we have Reg2, it must be an address register. 914 if (HaveReg2) { 915 if (parseAddressRegister(Reg2)) 916 return MatchOperand_ParseFail; 917 Base = Regs[Reg2.Num]; 918 } 919 // There must be no length. 920 if (Length) { 921 Error(StartLoc, "invalid use of length addressing"); 922 return MatchOperand_ParseFail; 923 } 924 break; 925 } 926 927 SMLoc EndLoc = 928 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 929 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp, 930 Index, Length, LengthReg, 931 StartLoc, EndLoc)); 932 return MatchOperand_Success; 933 } 934 935 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) { 936 StringRef IDVal = DirectiveID.getIdentifier(); 937 938 if (IDVal == ".insn") 939 return ParseDirectiveInsn(DirectiveID.getLoc()); 940 941 return true; 942 } 943 944 /// ParseDirectiveInsn 945 /// ::= .insn [ format, encoding, (operands (, operands)*) ] 946 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) { 947 MCAsmParser &Parser = getParser(); 948 949 // Expect instruction format as identifier. 950 StringRef Format; 951 SMLoc ErrorLoc = Parser.getTok().getLoc(); 952 if (Parser.parseIdentifier(Format)) 953 return Error(ErrorLoc, "expected instruction format"); 954 955 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands; 956 957 // Find entry for this format in InsnMatchTable. 958 auto EntryRange = 959 std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable), 960 Format, CompareInsn()); 961 962 // If first == second, couldn't find a match in the table. 963 if (EntryRange.first == EntryRange.second) 964 return Error(ErrorLoc, "unrecognized format"); 965 966 struct InsnMatchEntry *Entry = EntryRange.first; 967 968 // Format should match from equal_range. 969 assert(Entry->Format == Format); 970 971 // Parse the following operands using the table's information. 972 for (int i = 0; i < Entry->NumOperands; i++) { 973 MatchClassKind Kind = Entry->OperandKinds[i]; 974 975 SMLoc StartLoc = Parser.getTok().getLoc(); 976 977 // Always expect commas as separators for operands. 978 if (getLexer().isNot(AsmToken::Comma)) 979 return Error(StartLoc, "unexpected token in directive"); 980 Lex(); 981 982 // Parse operands. 983 OperandMatchResultTy ResTy; 984 if (Kind == MCK_AnyReg) 985 ResTy = parseAnyReg(Operands); 986 else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20) 987 ResTy = parseBDXAddr64(Operands); 988 else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20) 989 ResTy = parseBDAddr64(Operands); 990 else if (Kind == MCK_PCRel32) 991 ResTy = parsePCRel32(Operands); 992 else if (Kind == MCK_PCRel16) 993 ResTy = parsePCRel16(Operands); 994 else { 995 // Only remaining operand kind is an immediate. 996 const MCExpr *Expr; 997 SMLoc StartLoc = Parser.getTok().getLoc(); 998 999 // Expect immediate expression. 1000 if (Parser.parseExpression(Expr)) 1001 return Error(StartLoc, "unexpected token in directive"); 1002 1003 SMLoc EndLoc = 1004 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1005 1006 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1007 ResTy = MatchOperand_Success; 1008 } 1009 1010 if (ResTy != MatchOperand_Success) 1011 return true; 1012 } 1013 1014 // Build the instruction with the parsed operands. 1015 MCInst Inst = MCInstBuilder(Entry->Opcode); 1016 1017 for (size_t i = 0; i < Operands.size(); i++) { 1018 MCParsedAsmOperand &Operand = *Operands[i]; 1019 MatchClassKind Kind = Entry->OperandKinds[i]; 1020 1021 // Verify operand. 1022 unsigned Res = validateOperandClass(Operand, Kind); 1023 if (Res != Match_Success) 1024 return Error(Operand.getStartLoc(), "unexpected operand type"); 1025 1026 // Add operands to instruction. 1027 SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand); 1028 if (ZOperand.isReg()) 1029 ZOperand.addRegOperands(Inst, 1); 1030 else if (ZOperand.isMem(BDMem)) 1031 ZOperand.addBDAddrOperands(Inst, 2); 1032 else if (ZOperand.isMem(BDXMem)) 1033 ZOperand.addBDXAddrOperands(Inst, 3); 1034 else if (ZOperand.isImm()) 1035 ZOperand.addImmOperands(Inst, 1); 1036 else 1037 llvm_unreachable("unexpected operand type"); 1038 } 1039 1040 // Emit as a regular instruction. 1041 Parser.getStreamer().EmitInstruction(Inst, getSTI()); 1042 1043 return false; 1044 } 1045 1046 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, 1047 SMLoc &EndLoc) { 1048 Register Reg; 1049 if (parseRegister(Reg)) 1050 return true; 1051 if (Reg.Group == RegGR) 1052 RegNo = SystemZMC::GR64Regs[Reg.Num]; 1053 else if (Reg.Group == RegFP) 1054 RegNo = SystemZMC::FP64Regs[Reg.Num]; 1055 else if (Reg.Group == RegV) 1056 RegNo = SystemZMC::VR128Regs[Reg.Num]; 1057 else if (Reg.Group == RegAR) 1058 RegNo = SystemZMC::AR32Regs[Reg.Num]; 1059 StartLoc = Reg.StartLoc; 1060 EndLoc = Reg.EndLoc; 1061 return false; 1062 } 1063 1064 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info, 1065 StringRef Name, SMLoc NameLoc, 1066 OperandVector &Operands) { 1067 Operands.push_back(SystemZOperand::createToken(Name, NameLoc)); 1068 1069 // Read the remaining operands. 1070 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1071 // Read the first operand. 1072 if (parseOperand(Operands, Name)) { 1073 return true; 1074 } 1075 1076 // Read any subsequent operands. 1077 while (getLexer().is(AsmToken::Comma)) { 1078 Parser.Lex(); 1079 if (parseOperand(Operands, Name)) { 1080 return true; 1081 } 1082 } 1083 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1084 SMLoc Loc = getLexer().getLoc(); 1085 return Error(Loc, "unexpected token in argument list"); 1086 } 1087 } 1088 1089 // Consume the EndOfStatement. 1090 Parser.Lex(); 1091 return false; 1092 } 1093 1094 bool SystemZAsmParser::parseOperand(OperandVector &Operands, 1095 StringRef Mnemonic) { 1096 // Check if the current operand has a custom associated parser, if so, try to 1097 // custom parse the operand, or fallback to the general approach. Force all 1098 // features to be available during the operand check, or else we will fail to 1099 // find the custom parser, and then we will later get an InvalidOperand error 1100 // instead of a MissingFeature errror. 1101 uint64_t AvailableFeatures = getAvailableFeatures(); 1102 setAvailableFeatures(~(uint64_t)0); 1103 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 1104 setAvailableFeatures(AvailableFeatures); 1105 if (ResTy == MatchOperand_Success) 1106 return false; 1107 1108 // If there wasn't a custom match, try the generic matcher below. Otherwise, 1109 // there was a match, but an error occurred, in which case, just return that 1110 // the operand parsing failed. 1111 if (ResTy == MatchOperand_ParseFail) 1112 return true; 1113 1114 // Check for a register. All real register operands should have used 1115 // a context-dependent parse routine, which gives the required register 1116 // class. The code is here to mop up other cases, like those where 1117 // the instruction isn't recognized. 1118 if (Parser.getTok().is(AsmToken::Percent)) { 1119 Register Reg; 1120 if (parseRegister(Reg)) 1121 return true; 1122 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc)); 1123 return false; 1124 } 1125 1126 // The only other type of operand is an immediate or address. As above, 1127 // real address operands should have used a context-dependent parse routine, 1128 // so we treat any plain expression as an immediate. 1129 SMLoc StartLoc = Parser.getTok().getLoc(); 1130 Register Reg1, Reg2; 1131 bool HaveReg1, HaveReg2; 1132 const MCExpr *Expr; 1133 const MCExpr *Length; 1134 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length)) 1135 return true; 1136 // If the register combination is not valid for any instruction, reject it. 1137 // Otherwise, fall back to reporting an unrecognized instruction. 1138 if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV 1139 && parseAddressRegister(Reg1)) 1140 return true; 1141 if (HaveReg2 && parseAddressRegister(Reg2)) 1142 return true; 1143 1144 SMLoc EndLoc = 1145 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1146 if (HaveReg1 || HaveReg2 || Length) 1147 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc)); 1148 else 1149 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1150 return false; 1151 } 1152 1153 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1154 OperandVector &Operands, 1155 MCStreamer &Out, 1156 uint64_t &ErrorInfo, 1157 bool MatchingInlineAsm) { 1158 MCInst Inst; 1159 unsigned MatchResult; 1160 1161 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, 1162 MatchingInlineAsm); 1163 switch (MatchResult) { 1164 case Match_Success: 1165 Inst.setLoc(IDLoc); 1166 Out.EmitInstruction(Inst, getSTI()); 1167 return false; 1168 1169 case Match_MissingFeature: { 1170 assert(ErrorInfo && "Unknown missing feature!"); 1171 // Special case the error message for the very common case where only 1172 // a single subtarget feature is missing 1173 std::string Msg = "instruction requires:"; 1174 uint64_t Mask = 1; 1175 for (unsigned I = 0; I < sizeof(ErrorInfo) * 8 - 1; ++I) { 1176 if (ErrorInfo & Mask) { 1177 Msg += " "; 1178 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 1179 } 1180 Mask <<= 1; 1181 } 1182 return Error(IDLoc, Msg); 1183 } 1184 1185 case Match_InvalidOperand: { 1186 SMLoc ErrorLoc = IDLoc; 1187 if (ErrorInfo != ~0ULL) { 1188 if (ErrorInfo >= Operands.size()) 1189 return Error(IDLoc, "too few operands for instruction"); 1190 1191 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); 1192 if (ErrorLoc == SMLoc()) 1193 ErrorLoc = IDLoc; 1194 } 1195 return Error(ErrorLoc, "invalid operand for instruction"); 1196 } 1197 1198 case Match_MnemonicFail: 1199 return Error(IDLoc, "invalid instruction"); 1200 } 1201 1202 llvm_unreachable("Unexpected match type"); 1203 } 1204 1205 OperandMatchResultTy 1206 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal, 1207 int64_t MaxVal, bool AllowTLS) { 1208 MCContext &Ctx = getContext(); 1209 MCStreamer &Out = getStreamer(); 1210 const MCExpr *Expr; 1211 SMLoc StartLoc = Parser.getTok().getLoc(); 1212 if (getParser().parseExpression(Expr)) 1213 return MatchOperand_NoMatch; 1214 1215 // For consistency with the GNU assembler, treat immediates as offsets 1216 // from ".". 1217 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 1218 int64_t Value = CE->getValue(); 1219 if ((Value & 1) || Value < MinVal || Value > MaxVal) { 1220 Error(StartLoc, "offset out of range"); 1221 return MatchOperand_ParseFail; 1222 } 1223 MCSymbol *Sym = Ctx.createTempSymbol(); 1224 Out.EmitLabel(Sym); 1225 const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, 1226 Ctx); 1227 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx); 1228 } 1229 1230 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. 1231 const MCExpr *Sym = nullptr; 1232 if (AllowTLS && getLexer().is(AsmToken::Colon)) { 1233 Parser.Lex(); 1234 1235 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1236 Error(Parser.getTok().getLoc(), "unexpected token"); 1237 return MatchOperand_ParseFail; 1238 } 1239 1240 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 1241 StringRef Name = Parser.getTok().getString(); 1242 if (Name == "tls_gdcall") 1243 Kind = MCSymbolRefExpr::VK_TLSGD; 1244 else if (Name == "tls_ldcall") 1245 Kind = MCSymbolRefExpr::VK_TLSLDM; 1246 else { 1247 Error(Parser.getTok().getLoc(), "unknown TLS tag"); 1248 return MatchOperand_ParseFail; 1249 } 1250 Parser.Lex(); 1251 1252 if (Parser.getTok().isNot(AsmToken::Colon)) { 1253 Error(Parser.getTok().getLoc(), "unexpected token"); 1254 return MatchOperand_ParseFail; 1255 } 1256 Parser.Lex(); 1257 1258 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1259 Error(Parser.getTok().getLoc(), "unexpected token"); 1260 return MatchOperand_ParseFail; 1261 } 1262 1263 StringRef Identifier = Parser.getTok().getString(); 1264 Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier), 1265 Kind, Ctx); 1266 Parser.Lex(); 1267 } 1268 1269 SMLoc EndLoc = 1270 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1271 1272 if (AllowTLS) 1273 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym, 1274 StartLoc, EndLoc)); 1275 else 1276 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1277 1278 return MatchOperand_Success; 1279 } 1280 1281 // Force static initialization. 1282 extern "C" void LLVMInitializeSystemZAsmParser() { 1283 RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget()); 1284 } 1285