1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "MCTargetDesc/SystemZInstPrinter.h" 10 #include "MCTargetDesc/SystemZMCTargetDesc.h" 11 #include "TargetInfo/SystemZTargetInfo.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/MC/MCContext.h" 16 #include "llvm/MC/MCExpr.h" 17 #include "llvm/MC/MCInst.h" 18 #include "llvm/MC/MCInstBuilder.h" 19 #include "llvm/MC/MCParser/MCAsmLexer.h" 20 #include "llvm/MC/MCParser/MCAsmParser.h" 21 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 22 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 23 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 24 #include "llvm/MC/MCStreamer.h" 25 #include "llvm/MC/MCSubtargetInfo.h" 26 #include "llvm/Support/Casting.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/SMLoc.h" 29 #include "llvm/Support/TargetRegistry.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <cstddef> 33 #include <cstdint> 34 #include <iterator> 35 #include <memory> 36 #include <string> 37 38 using namespace llvm; 39 40 // Return true if Expr is in the range [MinValue, MaxValue]. 41 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) { 42 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 43 int64_t Value = CE->getValue(); 44 return Value >= MinValue && Value <= MaxValue; 45 } 46 return false; 47 } 48 49 namespace { 50 51 enum RegisterKind { 52 GR32Reg, 53 GRH32Reg, 54 GR64Reg, 55 GR128Reg, 56 FP32Reg, 57 FP64Reg, 58 FP128Reg, 59 VR32Reg, 60 VR64Reg, 61 VR128Reg, 62 AR32Reg, 63 CR64Reg, 64 }; 65 66 enum MemoryKind { 67 BDMem, 68 BDXMem, 69 BDLMem, 70 BDRMem, 71 BDVMem 72 }; 73 74 class SystemZOperand : public MCParsedAsmOperand { 75 private: 76 enum OperandKind { 77 KindInvalid, 78 KindToken, 79 KindReg, 80 KindImm, 81 KindImmTLS, 82 KindMem 83 }; 84 85 OperandKind Kind; 86 SMLoc StartLoc, EndLoc; 87 88 // A string of length Length, starting at Data. 89 struct TokenOp { 90 const char *Data; 91 unsigned Length; 92 }; 93 94 // LLVM register Num, which has kind Kind. In some ways it might be 95 // easier for this class to have a register bank (general, floating-point 96 // or access) and a raw register number (0-15). This would postpone the 97 // interpretation of the operand to the add*() methods and avoid the need 98 // for context-dependent parsing. However, we do things the current way 99 // because of the virtual getReg() method, which needs to distinguish 100 // between (say) %r0 used as a single register and %r0 used as a pair. 101 // Context-dependent parsing can also give us slightly better error 102 // messages when invalid pairs like %r1 are used. 103 struct RegOp { 104 RegisterKind Kind; 105 unsigned Num; 106 }; 107 108 // Base + Disp + Index, where Base and Index are LLVM registers or 0. 109 // MemKind says what type of memory this is and RegKind says what type 110 // the base register has (GR32Reg or GR64Reg). Length is the operand 111 // length for D(L,B)-style operands, otherwise it is null. 112 struct MemOp { 113 unsigned Base : 12; 114 unsigned Index : 12; 115 unsigned MemKind : 4; 116 unsigned RegKind : 4; 117 const MCExpr *Disp; 118 union { 119 const MCExpr *Imm; 120 unsigned Reg; 121 } Length; 122 }; 123 124 // Imm is an immediate operand, and Sym is an optional TLS symbol 125 // for use with a __tls_get_offset marker relocation. 126 struct ImmTLSOp { 127 const MCExpr *Imm; 128 const MCExpr *Sym; 129 }; 130 131 union { 132 TokenOp Token; 133 RegOp Reg; 134 const MCExpr *Imm; 135 ImmTLSOp ImmTLS; 136 MemOp Mem; 137 }; 138 139 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 140 // Add as immediates when possible. Null MCExpr = 0. 141 if (!Expr) 142 Inst.addOperand(MCOperand::createImm(0)); 143 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) 144 Inst.addOperand(MCOperand::createImm(CE->getValue())); 145 else 146 Inst.addOperand(MCOperand::createExpr(Expr)); 147 } 148 149 public: 150 SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc) 151 : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {} 152 153 // Create particular kinds of operand. 154 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc, 155 SMLoc EndLoc) { 156 return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc); 157 } 158 159 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) { 160 auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc); 161 Op->Token.Data = Str.data(); 162 Op->Token.Length = Str.size(); 163 return Op; 164 } 165 166 static std::unique_ptr<SystemZOperand> 167 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { 168 auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc); 169 Op->Reg.Kind = Kind; 170 Op->Reg.Num = Num; 171 return Op; 172 } 173 174 static std::unique_ptr<SystemZOperand> 175 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { 176 auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc); 177 Op->Imm = Expr; 178 return Op; 179 } 180 181 static std::unique_ptr<SystemZOperand> 182 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, 183 const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm, 184 unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) { 185 auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc); 186 Op->Mem.MemKind = MemKind; 187 Op->Mem.RegKind = RegKind; 188 Op->Mem.Base = Base; 189 Op->Mem.Index = Index; 190 Op->Mem.Disp = Disp; 191 if (MemKind == BDLMem) 192 Op->Mem.Length.Imm = LengthImm; 193 if (MemKind == BDRMem) 194 Op->Mem.Length.Reg = LengthReg; 195 return Op; 196 } 197 198 static std::unique_ptr<SystemZOperand> 199 createImmTLS(const MCExpr *Imm, const MCExpr *Sym, 200 SMLoc StartLoc, SMLoc EndLoc) { 201 auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc); 202 Op->ImmTLS.Imm = Imm; 203 Op->ImmTLS.Sym = Sym; 204 return Op; 205 } 206 207 // Token operands 208 bool isToken() const override { 209 return Kind == KindToken; 210 } 211 StringRef getToken() const { 212 assert(Kind == KindToken && "Not a token"); 213 return StringRef(Token.Data, Token.Length); 214 } 215 216 // Register operands. 217 bool isReg() const override { 218 return Kind == KindReg; 219 } 220 bool isReg(RegisterKind RegKind) const { 221 return Kind == KindReg && Reg.Kind == RegKind; 222 } 223 unsigned getReg() const override { 224 assert(Kind == KindReg && "Not a register"); 225 return Reg.Num; 226 } 227 228 // Immediate operands. 229 bool isImm() const override { 230 return Kind == KindImm; 231 } 232 bool isImm(int64_t MinValue, int64_t MaxValue) const { 233 return Kind == KindImm && inRange(Imm, MinValue, MaxValue); 234 } 235 const MCExpr *getImm() const { 236 assert(Kind == KindImm && "Not an immediate"); 237 return Imm; 238 } 239 240 // Immediate operands with optional TLS symbol. 241 bool isImmTLS() const { 242 return Kind == KindImmTLS; 243 } 244 245 const ImmTLSOp getImmTLS() const { 246 assert(Kind == KindImmTLS && "Not a TLS immediate"); 247 return ImmTLS; 248 } 249 250 // Memory operands. 251 bool isMem() const override { 252 return Kind == KindMem; 253 } 254 bool isMem(MemoryKind MemKind) const { 255 return (Kind == KindMem && 256 (Mem.MemKind == MemKind || 257 // A BDMem can be treated as a BDXMem in which the index 258 // register field is 0. 259 (Mem.MemKind == BDMem && MemKind == BDXMem))); 260 } 261 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { 262 return isMem(MemKind) && Mem.RegKind == RegKind; 263 } 264 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { 265 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff); 266 } 267 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { 268 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287); 269 } 270 bool isMemDisp12Len4(RegisterKind RegKind) const { 271 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10); 272 } 273 bool isMemDisp12Len8(RegisterKind RegKind) const { 274 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100); 275 } 276 277 const MemOp& getMem() const { 278 assert(Kind == KindMem && "Not a Mem operand"); 279 return Mem; 280 } 281 282 // Override MCParsedAsmOperand. 283 SMLoc getStartLoc() const override { return StartLoc; } 284 SMLoc getEndLoc() const override { return EndLoc; } 285 void print(raw_ostream &OS) const override; 286 287 /// getLocRange - Get the range between the first and last token of this 288 /// operand. 289 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 290 291 // Used by the TableGen code to add particular types of operand 292 // to an instruction. 293 void addRegOperands(MCInst &Inst, unsigned N) const { 294 assert(N == 1 && "Invalid number of operands"); 295 Inst.addOperand(MCOperand::createReg(getReg())); 296 } 297 void addImmOperands(MCInst &Inst, unsigned N) const { 298 assert(N == 1 && "Invalid number of operands"); 299 addExpr(Inst, getImm()); 300 } 301 void addBDAddrOperands(MCInst &Inst, unsigned N) const { 302 assert(N == 2 && "Invalid number of operands"); 303 assert(isMem(BDMem) && "Invalid operand type"); 304 Inst.addOperand(MCOperand::createReg(Mem.Base)); 305 addExpr(Inst, Mem.Disp); 306 } 307 void addBDXAddrOperands(MCInst &Inst, unsigned N) const { 308 assert(N == 3 && "Invalid number of operands"); 309 assert(isMem(BDXMem) && "Invalid operand type"); 310 Inst.addOperand(MCOperand::createReg(Mem.Base)); 311 addExpr(Inst, Mem.Disp); 312 Inst.addOperand(MCOperand::createReg(Mem.Index)); 313 } 314 void addBDLAddrOperands(MCInst &Inst, unsigned N) const { 315 assert(N == 3 && "Invalid number of operands"); 316 assert(isMem(BDLMem) && "Invalid operand type"); 317 Inst.addOperand(MCOperand::createReg(Mem.Base)); 318 addExpr(Inst, Mem.Disp); 319 addExpr(Inst, Mem.Length.Imm); 320 } 321 void addBDRAddrOperands(MCInst &Inst, unsigned N) const { 322 assert(N == 3 && "Invalid number of operands"); 323 assert(isMem(BDRMem) && "Invalid operand type"); 324 Inst.addOperand(MCOperand::createReg(Mem.Base)); 325 addExpr(Inst, Mem.Disp); 326 Inst.addOperand(MCOperand::createReg(Mem.Length.Reg)); 327 } 328 void addBDVAddrOperands(MCInst &Inst, unsigned N) const { 329 assert(N == 3 && "Invalid number of operands"); 330 assert(isMem(BDVMem) && "Invalid operand type"); 331 Inst.addOperand(MCOperand::createReg(Mem.Base)); 332 addExpr(Inst, Mem.Disp); 333 Inst.addOperand(MCOperand::createReg(Mem.Index)); 334 } 335 void addImmTLSOperands(MCInst &Inst, unsigned N) const { 336 assert(N == 2 && "Invalid number of operands"); 337 assert(Kind == KindImmTLS && "Invalid operand type"); 338 addExpr(Inst, ImmTLS.Imm); 339 if (ImmTLS.Sym) 340 addExpr(Inst, ImmTLS.Sym); 341 } 342 343 // Used by the TableGen code to check for particular operand types. 344 bool isGR32() const { return isReg(GR32Reg); } 345 bool isGRH32() const { return isReg(GRH32Reg); } 346 bool isGRX32() const { return false; } 347 bool isGR64() const { return isReg(GR64Reg); } 348 bool isGR128() const { return isReg(GR128Reg); } 349 bool isADDR32() const { return isReg(GR32Reg); } 350 bool isADDR64() const { return isReg(GR64Reg); } 351 bool isADDR128() const { return false; } 352 bool isFP32() const { return isReg(FP32Reg); } 353 bool isFP64() const { return isReg(FP64Reg); } 354 bool isFP128() const { return isReg(FP128Reg); } 355 bool isVR32() const { return isReg(VR32Reg); } 356 bool isVR64() const { return isReg(VR64Reg); } 357 bool isVF128() const { return false; } 358 bool isVR128() const { return isReg(VR128Reg); } 359 bool isAR32() const { return isReg(AR32Reg); } 360 bool isCR64() const { return isReg(CR64Reg); } 361 bool isAnyReg() const { return (isReg() || isImm(0, 15)); } 362 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); } 363 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); } 364 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); } 365 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); } 366 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); } 367 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); } 368 bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); } 369 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); } 370 bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); } 371 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); } 372 bool isU1Imm() const { return isImm(0, 1); } 373 bool isU2Imm() const { return isImm(0, 3); } 374 bool isU3Imm() const { return isImm(0, 7); } 375 bool isU4Imm() const { return isImm(0, 15); } 376 bool isU6Imm() const { return isImm(0, 63); } 377 bool isU8Imm() const { return isImm(0, 255); } 378 bool isS8Imm() const { return isImm(-128, 127); } 379 bool isU12Imm() const { return isImm(0, 4095); } 380 bool isU16Imm() const { return isImm(0, 65535); } 381 bool isS16Imm() const { return isImm(-32768, 32767); } 382 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); } 383 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); } 384 bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); } 385 }; 386 387 class SystemZAsmParser : public MCTargetAsmParser { 388 #define GET_ASSEMBLER_HEADER 389 #include "SystemZGenAsmMatcher.inc" 390 391 private: 392 MCAsmParser &Parser; 393 enum RegisterGroup { 394 RegGR, 395 RegFP, 396 RegV, 397 RegAR, 398 RegCR 399 }; 400 struct Register { 401 RegisterGroup Group; 402 unsigned Num; 403 SMLoc StartLoc, EndLoc; 404 }; 405 406 bool parseRegister(Register &Reg, bool RestoreOnFailure = false); 407 408 bool parseIntegerRegister(Register &Reg, RegisterGroup Group); 409 410 OperandMatchResultTy parseRegister(OperandVector &Operands, 411 RegisterKind Kind); 412 413 OperandMatchResultTy parseAnyRegister(OperandVector &Operands); 414 415 bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2, 416 Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length, 417 bool HasLength = false, bool HasVectorIndex = false); 418 bool parseAddressRegister(Register &Reg); 419 420 bool ParseDirectiveInsn(SMLoc L); 421 422 OperandMatchResultTy parseAddress(OperandVector &Operands, 423 MemoryKind MemKind, 424 RegisterKind RegKind); 425 426 OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal, 427 int64_t MaxVal, bool AllowTLS); 428 429 bool parseOperand(OperandVector &Operands, StringRef Mnemonic); 430 431 public: 432 SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, 433 const MCInstrInfo &MII, 434 const MCTargetOptions &Options) 435 : MCTargetAsmParser(Options, sti, MII), Parser(parser) { 436 MCAsmParserExtension::Initialize(Parser); 437 438 // Alias the .word directive to .short. 439 parser.addAliasForDirective(".word", ".short"); 440 441 // Initialize the set of available features. 442 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); 443 } 444 445 // Override MCTargetAsmParser. 446 bool ParseDirective(AsmToken DirectiveID) override; 447 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 448 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc, 449 bool RestoreOnFailure); 450 OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc, 451 SMLoc &EndLoc) override; 452 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 453 SMLoc NameLoc, OperandVector &Operands) override; 454 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 455 OperandVector &Operands, MCStreamer &Out, 456 uint64_t &ErrorInfo, 457 bool MatchingInlineAsm) override; 458 459 // Used by the TableGen code to parse particular operand types. 460 OperandMatchResultTy parseGR32(OperandVector &Operands) { 461 return parseRegister(Operands, GR32Reg); 462 } 463 OperandMatchResultTy parseGRH32(OperandVector &Operands) { 464 return parseRegister(Operands, GRH32Reg); 465 } 466 OperandMatchResultTy parseGRX32(OperandVector &Operands) { 467 llvm_unreachable("GRX32 should only be used for pseudo instructions"); 468 } 469 OperandMatchResultTy parseGR64(OperandVector &Operands) { 470 return parseRegister(Operands, GR64Reg); 471 } 472 OperandMatchResultTy parseGR128(OperandVector &Operands) { 473 return parseRegister(Operands, GR128Reg); 474 } 475 OperandMatchResultTy parseADDR32(OperandVector &Operands) { 476 // For the AsmParser, we will accept %r0 for ADDR32 as well. 477 return parseRegister(Operands, GR32Reg); 478 } 479 OperandMatchResultTy parseADDR64(OperandVector &Operands) { 480 // For the AsmParser, we will accept %r0 for ADDR64 as well. 481 return parseRegister(Operands, GR64Reg); 482 } 483 OperandMatchResultTy parseADDR128(OperandVector &Operands) { 484 llvm_unreachable("Shouldn't be used as an operand"); 485 } 486 OperandMatchResultTy parseFP32(OperandVector &Operands) { 487 return parseRegister(Operands, FP32Reg); 488 } 489 OperandMatchResultTy parseFP64(OperandVector &Operands) { 490 return parseRegister(Operands, FP64Reg); 491 } 492 OperandMatchResultTy parseFP128(OperandVector &Operands) { 493 return parseRegister(Operands, FP128Reg); 494 } 495 OperandMatchResultTy parseVR32(OperandVector &Operands) { 496 return parseRegister(Operands, VR32Reg); 497 } 498 OperandMatchResultTy parseVR64(OperandVector &Operands) { 499 return parseRegister(Operands, VR64Reg); 500 } 501 OperandMatchResultTy parseVF128(OperandVector &Operands) { 502 llvm_unreachable("Shouldn't be used as an operand"); 503 } 504 OperandMatchResultTy parseVR128(OperandVector &Operands) { 505 return parseRegister(Operands, VR128Reg); 506 } 507 OperandMatchResultTy parseAR32(OperandVector &Operands) { 508 return parseRegister(Operands, AR32Reg); 509 } 510 OperandMatchResultTy parseCR64(OperandVector &Operands) { 511 return parseRegister(Operands, CR64Reg); 512 } 513 OperandMatchResultTy parseAnyReg(OperandVector &Operands) { 514 return parseAnyRegister(Operands); 515 } 516 OperandMatchResultTy parseBDAddr32(OperandVector &Operands) { 517 return parseAddress(Operands, BDMem, GR32Reg); 518 } 519 OperandMatchResultTy parseBDAddr64(OperandVector &Operands) { 520 return parseAddress(Operands, BDMem, GR64Reg); 521 } 522 OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) { 523 return parseAddress(Operands, BDXMem, GR64Reg); 524 } 525 OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) { 526 return parseAddress(Operands, BDLMem, GR64Reg); 527 } 528 OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) { 529 return parseAddress(Operands, BDRMem, GR64Reg); 530 } 531 OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) { 532 return parseAddress(Operands, BDVMem, GR64Reg); 533 } 534 OperandMatchResultTy parsePCRel12(OperandVector &Operands) { 535 return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false); 536 } 537 OperandMatchResultTy parsePCRel16(OperandVector &Operands) { 538 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false); 539 } 540 OperandMatchResultTy parsePCRel24(OperandVector &Operands) { 541 return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false); 542 } 543 OperandMatchResultTy parsePCRel32(OperandVector &Operands) { 544 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false); 545 } 546 OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) { 547 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true); 548 } 549 OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) { 550 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true); 551 } 552 }; 553 554 } // end anonymous namespace 555 556 #define GET_REGISTER_MATCHER 557 #define GET_SUBTARGET_FEATURE_NAME 558 #define GET_MATCHER_IMPLEMENTATION 559 #define GET_MNEMONIC_SPELL_CHECKER 560 #include "SystemZGenAsmMatcher.inc" 561 562 // Used for the .insn directives; contains information needed to parse the 563 // operands in the directive. 564 struct InsnMatchEntry { 565 StringRef Format; 566 uint64_t Opcode; 567 int32_t NumOperands; 568 MatchClassKind OperandKinds[7]; 569 }; 570 571 // For equal_range comparison. 572 struct CompareInsn { 573 bool operator() (const InsnMatchEntry &LHS, StringRef RHS) { 574 return LHS.Format < RHS; 575 } 576 bool operator() (StringRef LHS, const InsnMatchEntry &RHS) { 577 return LHS < RHS.Format; 578 } 579 bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) { 580 return LHS.Format < RHS.Format; 581 } 582 }; 583 584 // Table initializing information for parsing the .insn directive. 585 static struct InsnMatchEntry InsnMatchTable[] = { 586 /* Format, Opcode, NumOperands, OperandKinds */ 587 { "e", SystemZ::InsnE, 1, 588 { MCK_U16Imm } }, 589 { "ri", SystemZ::InsnRI, 3, 590 { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } }, 591 { "rie", SystemZ::InsnRIE, 4, 592 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 593 { "ril", SystemZ::InsnRIL, 3, 594 { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } }, 595 { "rilu", SystemZ::InsnRILU, 3, 596 { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } }, 597 { "ris", SystemZ::InsnRIS, 5, 598 { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 599 { "rr", SystemZ::InsnRR, 3, 600 { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } }, 601 { "rre", SystemZ::InsnRRE, 3, 602 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } }, 603 { "rrf", SystemZ::InsnRRF, 5, 604 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } }, 605 { "rrs", SystemZ::InsnRRS, 5, 606 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 607 { "rs", SystemZ::InsnRS, 4, 608 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 609 { "rse", SystemZ::InsnRSE, 4, 610 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 611 { "rsi", SystemZ::InsnRSI, 4, 612 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 613 { "rsy", SystemZ::InsnRSY, 4, 614 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } }, 615 { "rx", SystemZ::InsnRX, 3, 616 { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 617 { "rxe", SystemZ::InsnRXE, 3, 618 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 619 { "rxf", SystemZ::InsnRXF, 4, 620 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 621 { "rxy", SystemZ::InsnRXY, 3, 622 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } }, 623 { "s", SystemZ::InsnS, 2, 624 { MCK_U32Imm, MCK_BDAddr64Disp12 } }, 625 { "si", SystemZ::InsnSI, 3, 626 { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } }, 627 { "sil", SystemZ::InsnSIL, 3, 628 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } }, 629 { "siy", SystemZ::InsnSIY, 3, 630 { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } }, 631 { "ss", SystemZ::InsnSS, 4, 632 { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 633 { "sse", SystemZ::InsnSSE, 3, 634 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } }, 635 { "ssf", SystemZ::InsnSSF, 4, 636 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 637 { "vri", SystemZ::InsnVRI, 6, 638 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } }, 639 { "vrr", SystemZ::InsnVRR, 7, 640 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_U4Imm, 641 MCK_U4Imm } }, 642 { "vrs", SystemZ::InsnVRS, 5, 643 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12, MCK_U4Imm } }, 644 { "vrv", SystemZ::InsnVRV, 4, 645 { MCK_U48Imm, MCK_AnyReg, MCK_BDVAddr64Disp12, MCK_U4Imm } }, 646 { "vrx", SystemZ::InsnVRX, 4, 647 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12, MCK_U4Imm } }, 648 { "vsi", SystemZ::InsnVSI, 4, 649 { MCK_U48Imm, MCK_AnyReg, MCK_BDAddr64Disp12, MCK_U8Imm } } 650 }; 651 652 static void printMCExpr(const MCExpr *E, raw_ostream &OS) { 653 if (!E) 654 return; 655 if (auto *CE = dyn_cast<MCConstantExpr>(E)) 656 OS << *CE; 657 else if (auto *UE = dyn_cast<MCUnaryExpr>(E)) 658 OS << *UE; 659 else if (auto *BE = dyn_cast<MCBinaryExpr>(E)) 660 OS << *BE; 661 else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E)) 662 OS << *SRE; 663 else 664 OS << *E; 665 } 666 667 void SystemZOperand::print(raw_ostream &OS) const { 668 switch (Kind) { 669 case KindToken: 670 OS << "Token:" << getToken(); 671 break; 672 case KindReg: 673 OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg()); 674 break; 675 case KindImm: 676 OS << "Imm:"; 677 printMCExpr(getImm(), OS); 678 break; 679 case KindImmTLS: 680 OS << "ImmTLS:"; 681 printMCExpr(getImmTLS().Imm, OS); 682 if (getImmTLS().Sym) { 683 OS << ", "; 684 printMCExpr(getImmTLS().Sym, OS); 685 } 686 break; 687 case KindMem: { 688 const MemOp &Op = getMem(); 689 OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp); 690 if (Op.Base) { 691 OS << "("; 692 if (Op.MemKind == BDLMem) 693 OS << *cast<MCConstantExpr>(Op.Length.Imm) << ","; 694 else if (Op.MemKind == BDRMem) 695 OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ","; 696 if (Op.Index) 697 OS << SystemZInstPrinter::getRegisterName(Op.Index) << ","; 698 OS << SystemZInstPrinter::getRegisterName(Op.Base); 699 OS << ")"; 700 } 701 break; 702 } 703 case KindInvalid: 704 break; 705 } 706 } 707 708 // Parse one register of the form %<prefix><number>. 709 bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) { 710 Reg.StartLoc = Parser.getTok().getLoc(); 711 712 // Eat the % prefix. 713 if (Parser.getTok().isNot(AsmToken::Percent)) 714 return Error(Parser.getTok().getLoc(), "register expected"); 715 const AsmToken &PercentTok = Parser.getTok(); 716 Parser.Lex(); 717 718 // Expect a register name. 719 if (Parser.getTok().isNot(AsmToken::Identifier)) { 720 if (RestoreOnFailure) 721 getLexer().UnLex(PercentTok); 722 return Error(Reg.StartLoc, "invalid register"); 723 } 724 725 // Check that there's a prefix. 726 StringRef Name = Parser.getTok().getString(); 727 if (Name.size() < 2) { 728 if (RestoreOnFailure) 729 getLexer().UnLex(PercentTok); 730 return Error(Reg.StartLoc, "invalid register"); 731 } 732 char Prefix = Name[0]; 733 734 // Treat the rest of the register name as a register number. 735 if (Name.substr(1).getAsInteger(10, Reg.Num)) { 736 if (RestoreOnFailure) 737 getLexer().UnLex(PercentTok); 738 return Error(Reg.StartLoc, "invalid register"); 739 } 740 741 // Look for valid combinations of prefix and number. 742 if (Prefix == 'r' && Reg.Num < 16) 743 Reg.Group = RegGR; 744 else if (Prefix == 'f' && Reg.Num < 16) 745 Reg.Group = RegFP; 746 else if (Prefix == 'v' && Reg.Num < 32) 747 Reg.Group = RegV; 748 else if (Prefix == 'a' && Reg.Num < 16) 749 Reg.Group = RegAR; 750 else if (Prefix == 'c' && Reg.Num < 16) 751 Reg.Group = RegCR; 752 else { 753 if (RestoreOnFailure) 754 getLexer().UnLex(PercentTok); 755 return Error(Reg.StartLoc, "invalid register"); 756 } 757 758 Reg.EndLoc = Parser.getTok().getLoc(); 759 Parser.Lex(); 760 return false; 761 } 762 763 // Parse a register of kind Kind and add it to Operands. 764 OperandMatchResultTy 765 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterKind Kind) { 766 Register Reg; 767 RegisterGroup Group; 768 switch (Kind) { 769 case GR32Reg: 770 case GRH32Reg: 771 case GR64Reg: 772 case GR128Reg: 773 Group = RegGR; 774 break; 775 case FP32Reg: 776 case FP64Reg: 777 case FP128Reg: 778 Group = RegFP; 779 break; 780 case VR32Reg: 781 case VR64Reg: 782 case VR128Reg: 783 Group = RegV; 784 break; 785 case AR32Reg: 786 Group = RegAR; 787 break; 788 case CR64Reg: 789 Group = RegCR; 790 break; 791 } 792 793 // Handle register names of the form %<prefix><number> 794 if (Parser.getTok().is(AsmToken::Percent)) { 795 if (parseRegister(Reg)) 796 return MatchOperand_ParseFail; 797 798 // Check the parsed register group "Reg.Group" with the expected "Group" 799 // Have to error out if user specified wrong prefix. 800 switch (Group) { 801 case RegGR: 802 case RegFP: 803 case RegAR: 804 case RegCR: 805 if (Group != Reg.Group) { 806 Error(Reg.StartLoc, "invalid operand for instruction"); 807 return MatchOperand_ParseFail; 808 } 809 break; 810 case RegV: 811 if (Reg.Group != RegV && Reg.Group != RegFP) { 812 Error(Reg.StartLoc, "invalid operand for instruction"); 813 return MatchOperand_ParseFail; 814 } 815 break; 816 } 817 } else if (Parser.getTok().is(AsmToken::Integer)) { 818 if (parseIntegerRegister(Reg, Group)) 819 return MatchOperand_ParseFail; 820 } 821 // Otherwise we didn't match a register operand. 822 else 823 return MatchOperand_NoMatch; 824 825 // Determine the LLVM register number according to Kind. 826 const unsigned *Regs; 827 switch (Kind) { 828 case GR32Reg: Regs = SystemZMC::GR32Regs; break; 829 case GRH32Reg: Regs = SystemZMC::GRH32Regs; break; 830 case GR64Reg: Regs = SystemZMC::GR64Regs; break; 831 case GR128Reg: Regs = SystemZMC::GR128Regs; break; 832 case FP32Reg: Regs = SystemZMC::FP32Regs; break; 833 case FP64Reg: Regs = SystemZMC::FP64Regs; break; 834 case FP128Reg: Regs = SystemZMC::FP128Regs; break; 835 case VR32Reg: Regs = SystemZMC::VR32Regs; break; 836 case VR64Reg: Regs = SystemZMC::VR64Regs; break; 837 case VR128Reg: Regs = SystemZMC::VR128Regs; break; 838 case AR32Reg: Regs = SystemZMC::AR32Regs; break; 839 case CR64Reg: Regs = SystemZMC::CR64Regs; break; 840 } 841 if (Regs[Reg.Num] == 0) { 842 Error(Reg.StartLoc, "invalid register pair"); 843 return MatchOperand_ParseFail; 844 } 845 846 Operands.push_back( 847 SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc)); 848 return MatchOperand_Success; 849 } 850 851 // Parse any type of register (including integers) and add it to Operands. 852 OperandMatchResultTy 853 SystemZAsmParser::parseAnyRegister(OperandVector &Operands) { 854 // Handle integer values. 855 if (Parser.getTok().is(AsmToken::Integer)) { 856 const MCExpr *Register; 857 SMLoc StartLoc = Parser.getTok().getLoc(); 858 if (Parser.parseExpression(Register)) 859 return MatchOperand_ParseFail; 860 861 if (auto *CE = dyn_cast<MCConstantExpr>(Register)) { 862 int64_t Value = CE->getValue(); 863 if (Value < 0 || Value > 15) { 864 Error(StartLoc, "invalid register"); 865 return MatchOperand_ParseFail; 866 } 867 } 868 869 SMLoc EndLoc = 870 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 871 872 Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc)); 873 } 874 else { 875 Register Reg; 876 if (parseRegister(Reg)) 877 return MatchOperand_ParseFail; 878 879 // Map to the correct register kind. 880 RegisterKind Kind; 881 unsigned RegNo; 882 if (Reg.Group == RegGR) { 883 Kind = GR64Reg; 884 RegNo = SystemZMC::GR64Regs[Reg.Num]; 885 } 886 else if (Reg.Group == RegFP) { 887 Kind = FP64Reg; 888 RegNo = SystemZMC::FP64Regs[Reg.Num]; 889 } 890 else if (Reg.Group == RegV) { 891 Kind = VR128Reg; 892 RegNo = SystemZMC::VR128Regs[Reg.Num]; 893 } 894 else if (Reg.Group == RegAR) { 895 Kind = AR32Reg; 896 RegNo = SystemZMC::AR32Regs[Reg.Num]; 897 } 898 else if (Reg.Group == RegCR) { 899 Kind = CR64Reg; 900 RegNo = SystemZMC::CR64Regs[Reg.Num]; 901 } 902 else { 903 return MatchOperand_ParseFail; 904 } 905 906 Operands.push_back(SystemZOperand::createReg(Kind, RegNo, 907 Reg.StartLoc, Reg.EndLoc)); 908 } 909 return MatchOperand_Success; 910 } 911 912 bool SystemZAsmParser::parseIntegerRegister(Register &Reg, 913 RegisterGroup Group) { 914 Reg.StartLoc = Parser.getTok().getLoc(); 915 // We have an integer token 916 const MCExpr *Register; 917 if (Parser.parseExpression(Register)) 918 return true; 919 920 const auto *CE = dyn_cast<MCConstantExpr>(Register); 921 if (!CE) 922 return true; 923 924 int64_t MaxRegNum = (Group == RegV) ? 31 : 15; 925 int64_t Value = CE->getValue(); 926 if (Value < 0 || Value > MaxRegNum) { 927 Error(Parser.getTok().getLoc(), "invalid register"); 928 return true; 929 } 930 931 // Assign the Register Number 932 Reg.Num = (unsigned)Value; 933 Reg.Group = Group; 934 Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 935 936 // At this point, successfully parsed an integer register. 937 return false; 938 } 939 940 // Parse a memory operand into Reg1, Reg2, Disp, and Length. 941 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1, 942 bool &HaveReg2, Register &Reg2, 943 const MCExpr *&Disp, const MCExpr *&Length, 944 bool HasLength, bool HasVectorIndex) { 945 // Parse the displacement, which must always be present. 946 if (getParser().parseExpression(Disp)) 947 return true; 948 949 // Parse the optional base and index. 950 HaveReg1 = false; 951 HaveReg2 = false; 952 Length = nullptr; 953 954 // If we have a scenario as below: 955 // vgef %v0, 0(0), 0 956 // This is an example of a "BDVMem" instruction type. 957 // 958 // So when we parse this as an integer register, the register group 959 // needs to be tied to "RegV". Usually when the prefix is passed in 960 // as %<prefix><reg-number> its easy to check which group it should belong to 961 // However, if we're passing in just the integer there's no real way to 962 // "check" what register group it should belong to. 963 // 964 // When the user passes in the register as an integer, the user assumes that 965 // the compiler is responsible for substituting it as the right kind of 966 // register. Whereas, when the user specifies a "prefix", the onus is on 967 // the user to make sure they pass in the right kind of register. 968 // 969 // The restriction only applies to the first Register (i.e. Reg1). Reg2 is 970 // always a general register. Reg1 should be of group RegV if "HasVectorIndex" 971 // (i.e. insn is of type BDVMem) is true. 972 RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR; 973 974 if (getLexer().is(AsmToken::LParen)) { 975 Parser.Lex(); 976 977 if (getLexer().is(AsmToken::Percent)) { 978 // Parse the first register. 979 HaveReg1 = true; 980 if (parseRegister(Reg1)) 981 return true; 982 } 983 // So if we have an integer as the first token in ([tok1], ..), it could: 984 // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of 985 // instructions) 986 // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions) 987 else if (getLexer().is(AsmToken::Integer)) { 988 if (HasLength) { 989 // Instruction has a "Length" field, safe to parse the first token as 990 // the "Length" field 991 if (getParser().parseExpression(Length)) 992 return true; 993 } else { 994 // Otherwise, if the instruction has no "Length" field, parse the 995 // token as a "Register". We don't have to worry about whether the 996 // instruction is invalid here, because the caller will take care of 997 // error reporting. 998 HaveReg1 = true; 999 if (parseIntegerRegister(Reg1, RegGroup)) 1000 return true; 1001 } 1002 } else { 1003 // If its not an integer or a percent token, then if the instruction 1004 // is reported to have a "Length" then, parse it as "Length". 1005 if (HasLength) { 1006 if (getParser().parseExpression(Length)) 1007 return true; 1008 } 1009 } 1010 1011 // Check whether there's a second register. 1012 if (getLexer().is(AsmToken::Comma)) { 1013 Parser.Lex(); 1014 HaveReg2 = true; 1015 1016 if (getLexer().is(AsmToken::Integer)) { 1017 if (parseIntegerRegister(Reg2, RegGR)) 1018 return true; 1019 } else { 1020 if (parseRegister(Reg2)) 1021 return true; 1022 } 1023 } 1024 1025 // Consume the closing bracket. 1026 if (getLexer().isNot(AsmToken::RParen)) 1027 return Error(Parser.getTok().getLoc(), "unexpected token in address"); 1028 Parser.Lex(); 1029 } 1030 return false; 1031 } 1032 1033 // Verify that Reg is a valid address register (base or index). 1034 bool 1035 SystemZAsmParser::parseAddressRegister(Register &Reg) { 1036 if (Reg.Group == RegV) { 1037 Error(Reg.StartLoc, "invalid use of vector addressing"); 1038 return true; 1039 } else if (Reg.Group != RegGR) { 1040 Error(Reg.StartLoc, "invalid address register"); 1041 return true; 1042 } 1043 return false; 1044 } 1045 1046 // Parse a memory operand and add it to Operands. The other arguments 1047 // are as above. 1048 OperandMatchResultTy 1049 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind, 1050 RegisterKind RegKind) { 1051 SMLoc StartLoc = Parser.getTok().getLoc(); 1052 unsigned Base = 0, Index = 0, LengthReg = 0; 1053 Register Reg1, Reg2; 1054 bool HaveReg1, HaveReg2; 1055 const MCExpr *Disp; 1056 const MCExpr *Length; 1057 1058 bool HasLength = (MemKind == BDLMem) ? true : false; 1059 bool HasVectorIndex = (MemKind == BDVMem) ? true : false; 1060 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength, 1061 HasVectorIndex)) 1062 return MatchOperand_ParseFail; 1063 1064 const unsigned *Regs; 1065 switch (RegKind) { 1066 case GR32Reg: Regs = SystemZMC::GR32Regs; break; 1067 case GR64Reg: Regs = SystemZMC::GR64Regs; break; 1068 default: llvm_unreachable("invalid RegKind"); 1069 } 1070 1071 switch (MemKind) { 1072 case BDMem: 1073 // If we have Reg1, it must be an address register. 1074 if (HaveReg1) { 1075 if (parseAddressRegister(Reg1)) 1076 return MatchOperand_ParseFail; 1077 Base = Regs[Reg1.Num]; 1078 } 1079 // There must be no Reg2. 1080 if (HaveReg2) { 1081 Error(StartLoc, "invalid use of indexed addressing"); 1082 return MatchOperand_ParseFail; 1083 } 1084 break; 1085 case BDXMem: 1086 // If we have Reg1, it must be an address register. 1087 if (HaveReg1) { 1088 if (parseAddressRegister(Reg1)) 1089 return MatchOperand_ParseFail; 1090 // If the are two registers, the first one is the index and the 1091 // second is the base. 1092 if (HaveReg2) 1093 Index = Regs[Reg1.Num]; 1094 else 1095 Base = Regs[Reg1.Num]; 1096 } 1097 // If we have Reg2, it must be an address register. 1098 if (HaveReg2) { 1099 if (parseAddressRegister(Reg2)) 1100 return MatchOperand_ParseFail; 1101 Base = Regs[Reg2.Num]; 1102 } 1103 break; 1104 case BDLMem: 1105 // If we have Reg2, it must be an address register. 1106 if (HaveReg2) { 1107 if (parseAddressRegister(Reg2)) 1108 return MatchOperand_ParseFail; 1109 Base = Regs[Reg2.Num]; 1110 } 1111 // We cannot support base+index addressing. 1112 if (HaveReg1 && HaveReg2) { 1113 Error(StartLoc, "invalid use of indexed addressing"); 1114 return MatchOperand_ParseFail; 1115 } 1116 // We must have a length. 1117 if (!Length) { 1118 Error(StartLoc, "missing length in address"); 1119 return MatchOperand_ParseFail; 1120 } 1121 break; 1122 case BDRMem: 1123 // We must have Reg1, and it must be a GPR. 1124 if (!HaveReg1 || Reg1.Group != RegGR) { 1125 Error(StartLoc, "invalid operand for instruction"); 1126 return MatchOperand_ParseFail; 1127 } 1128 LengthReg = SystemZMC::GR64Regs[Reg1.Num]; 1129 // If we have Reg2, it must be an address register. 1130 if (HaveReg2) { 1131 if (parseAddressRegister(Reg2)) 1132 return MatchOperand_ParseFail; 1133 Base = Regs[Reg2.Num]; 1134 } 1135 break; 1136 case BDVMem: 1137 // We must have Reg1, and it must be a vector register. 1138 if (!HaveReg1 || Reg1.Group != RegV) { 1139 Error(StartLoc, "vector index required in address"); 1140 return MatchOperand_ParseFail; 1141 } 1142 Index = SystemZMC::VR128Regs[Reg1.Num]; 1143 // If we have Reg2, it must be an address register. 1144 if (HaveReg2) { 1145 if (parseAddressRegister(Reg2)) 1146 return MatchOperand_ParseFail; 1147 Base = Regs[Reg2.Num]; 1148 } 1149 break; 1150 } 1151 1152 SMLoc EndLoc = 1153 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1154 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp, 1155 Index, Length, LengthReg, 1156 StartLoc, EndLoc)); 1157 return MatchOperand_Success; 1158 } 1159 1160 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) { 1161 StringRef IDVal = DirectiveID.getIdentifier(); 1162 1163 if (IDVal == ".insn") 1164 return ParseDirectiveInsn(DirectiveID.getLoc()); 1165 1166 return true; 1167 } 1168 1169 /// ParseDirectiveInsn 1170 /// ::= .insn [ format, encoding, (operands (, operands)*) ] 1171 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) { 1172 MCAsmParser &Parser = getParser(); 1173 1174 // Expect instruction format as identifier. 1175 StringRef Format; 1176 SMLoc ErrorLoc = Parser.getTok().getLoc(); 1177 if (Parser.parseIdentifier(Format)) 1178 return Error(ErrorLoc, "expected instruction format"); 1179 1180 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands; 1181 1182 // Find entry for this format in InsnMatchTable. 1183 auto EntryRange = 1184 std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable), 1185 Format, CompareInsn()); 1186 1187 // If first == second, couldn't find a match in the table. 1188 if (EntryRange.first == EntryRange.second) 1189 return Error(ErrorLoc, "unrecognized format"); 1190 1191 struct InsnMatchEntry *Entry = EntryRange.first; 1192 1193 // Format should match from equal_range. 1194 assert(Entry->Format == Format); 1195 1196 // Parse the following operands using the table's information. 1197 for (int i = 0; i < Entry->NumOperands; i++) { 1198 MatchClassKind Kind = Entry->OperandKinds[i]; 1199 1200 SMLoc StartLoc = Parser.getTok().getLoc(); 1201 1202 // Always expect commas as separators for operands. 1203 if (getLexer().isNot(AsmToken::Comma)) 1204 return Error(StartLoc, "unexpected token in directive"); 1205 Lex(); 1206 1207 // Parse operands. 1208 OperandMatchResultTy ResTy; 1209 if (Kind == MCK_AnyReg) 1210 ResTy = parseAnyReg(Operands); 1211 else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20) 1212 ResTy = parseBDXAddr64(Operands); 1213 else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20) 1214 ResTy = parseBDAddr64(Operands); 1215 else if (Kind == MCK_BDVAddr64Disp12) 1216 ResTy = parseBDVAddr64(Operands); 1217 else if (Kind == MCK_PCRel32) 1218 ResTy = parsePCRel32(Operands); 1219 else if (Kind == MCK_PCRel16) 1220 ResTy = parsePCRel16(Operands); 1221 else { 1222 // Only remaining operand kind is an immediate. 1223 const MCExpr *Expr; 1224 SMLoc StartLoc = Parser.getTok().getLoc(); 1225 1226 // Expect immediate expression. 1227 if (Parser.parseExpression(Expr)) 1228 return Error(StartLoc, "unexpected token in directive"); 1229 1230 SMLoc EndLoc = 1231 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1232 1233 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1234 ResTy = MatchOperand_Success; 1235 } 1236 1237 if (ResTy != MatchOperand_Success) 1238 return true; 1239 } 1240 1241 // Build the instruction with the parsed operands. 1242 MCInst Inst = MCInstBuilder(Entry->Opcode); 1243 1244 for (size_t i = 0; i < Operands.size(); i++) { 1245 MCParsedAsmOperand &Operand = *Operands[i]; 1246 MatchClassKind Kind = Entry->OperandKinds[i]; 1247 1248 // Verify operand. 1249 unsigned Res = validateOperandClass(Operand, Kind); 1250 if (Res != Match_Success) 1251 return Error(Operand.getStartLoc(), "unexpected operand type"); 1252 1253 // Add operands to instruction. 1254 SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand); 1255 if (ZOperand.isReg()) 1256 ZOperand.addRegOperands(Inst, 1); 1257 else if (ZOperand.isMem(BDMem)) 1258 ZOperand.addBDAddrOperands(Inst, 2); 1259 else if (ZOperand.isMem(BDXMem)) 1260 ZOperand.addBDXAddrOperands(Inst, 3); 1261 else if (ZOperand.isMem(BDVMem)) 1262 ZOperand.addBDVAddrOperands(Inst, 3); 1263 else if (ZOperand.isImm()) 1264 ZOperand.addImmOperands(Inst, 1); 1265 else 1266 llvm_unreachable("unexpected operand type"); 1267 } 1268 1269 // Emit as a regular instruction. 1270 Parser.getStreamer().emitInstruction(Inst, getSTI()); 1271 1272 return false; 1273 } 1274 1275 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, 1276 SMLoc &EndLoc, bool RestoreOnFailure) { 1277 Register Reg; 1278 if (parseRegister(Reg, RestoreOnFailure)) 1279 return true; 1280 if (Reg.Group == RegGR) 1281 RegNo = SystemZMC::GR64Regs[Reg.Num]; 1282 else if (Reg.Group == RegFP) 1283 RegNo = SystemZMC::FP64Regs[Reg.Num]; 1284 else if (Reg.Group == RegV) 1285 RegNo = SystemZMC::VR128Regs[Reg.Num]; 1286 else if (Reg.Group == RegAR) 1287 RegNo = SystemZMC::AR32Regs[Reg.Num]; 1288 else if (Reg.Group == RegCR) 1289 RegNo = SystemZMC::CR64Regs[Reg.Num]; 1290 StartLoc = Reg.StartLoc; 1291 EndLoc = Reg.EndLoc; 1292 return false; 1293 } 1294 1295 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, 1296 SMLoc &EndLoc) { 1297 return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false); 1298 } 1299 1300 OperandMatchResultTy SystemZAsmParser::tryParseRegister(unsigned &RegNo, 1301 SMLoc &StartLoc, 1302 SMLoc &EndLoc) { 1303 bool Result = 1304 ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true); 1305 bool PendingErrors = getParser().hasPendingError(); 1306 getParser().clearPendingErrors(); 1307 if (PendingErrors) 1308 return MatchOperand_ParseFail; 1309 if (Result) 1310 return MatchOperand_NoMatch; 1311 return MatchOperand_Success; 1312 } 1313 1314 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info, 1315 StringRef Name, SMLoc NameLoc, 1316 OperandVector &Operands) { 1317 Operands.push_back(SystemZOperand::createToken(Name, NameLoc)); 1318 1319 // Read the remaining operands. 1320 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1321 // Read the first operand. 1322 if (parseOperand(Operands, Name)) { 1323 return true; 1324 } 1325 1326 // Read any subsequent operands. 1327 while (getLexer().is(AsmToken::Comma)) { 1328 Parser.Lex(); 1329 if (parseOperand(Operands, Name)) { 1330 return true; 1331 } 1332 } 1333 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1334 SMLoc Loc = getLexer().getLoc(); 1335 return Error(Loc, "unexpected token in argument list"); 1336 } 1337 } 1338 1339 // Consume the EndOfStatement. 1340 Parser.Lex(); 1341 return false; 1342 } 1343 1344 bool SystemZAsmParser::parseOperand(OperandVector &Operands, 1345 StringRef Mnemonic) { 1346 // Check if the current operand has a custom associated parser, if so, try to 1347 // custom parse the operand, or fallback to the general approach. Force all 1348 // features to be available during the operand check, or else we will fail to 1349 // find the custom parser, and then we will later get an InvalidOperand error 1350 // instead of a MissingFeature errror. 1351 FeatureBitset AvailableFeatures = getAvailableFeatures(); 1352 FeatureBitset All; 1353 All.set(); 1354 setAvailableFeatures(All); 1355 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 1356 setAvailableFeatures(AvailableFeatures); 1357 if (ResTy == MatchOperand_Success) 1358 return false; 1359 1360 // If there wasn't a custom match, try the generic matcher below. Otherwise, 1361 // there was a match, but an error occurred, in which case, just return that 1362 // the operand parsing failed. 1363 if (ResTy == MatchOperand_ParseFail) 1364 return true; 1365 1366 // Check for a register. All real register operands should have used 1367 // a context-dependent parse routine, which gives the required register 1368 // class. The code is here to mop up other cases, like those where 1369 // the instruction isn't recognized. 1370 if (Parser.getTok().is(AsmToken::Percent)) { 1371 Register Reg; 1372 if (parseRegister(Reg)) 1373 return true; 1374 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc)); 1375 return false; 1376 } 1377 1378 // The only other type of operand is an immediate or address. As above, 1379 // real address operands should have used a context-dependent parse routine, 1380 // so we treat any plain expression as an immediate. 1381 SMLoc StartLoc = Parser.getTok().getLoc(); 1382 Register Reg1, Reg2; 1383 bool HaveReg1, HaveReg2; 1384 const MCExpr *Expr; 1385 const MCExpr *Length; 1386 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length, 1387 /*HasLength*/ true, /*HasVectorIndex*/ true)) 1388 return true; 1389 // If the register combination is not valid for any instruction, reject it. 1390 // Otherwise, fall back to reporting an unrecognized instruction. 1391 if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV 1392 && parseAddressRegister(Reg1)) 1393 return true; 1394 if (HaveReg2 && parseAddressRegister(Reg2)) 1395 return true; 1396 1397 SMLoc EndLoc = 1398 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1399 if (HaveReg1 || HaveReg2 || Length) 1400 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc)); 1401 else 1402 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1403 return false; 1404 } 1405 1406 static std::string SystemZMnemonicSpellCheck(StringRef S, 1407 const FeatureBitset &FBS, 1408 unsigned VariantID = 0); 1409 1410 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1411 OperandVector &Operands, 1412 MCStreamer &Out, 1413 uint64_t &ErrorInfo, 1414 bool MatchingInlineAsm) { 1415 MCInst Inst; 1416 unsigned MatchResult; 1417 1418 FeatureBitset MissingFeatures; 1419 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, 1420 MissingFeatures, MatchingInlineAsm); 1421 switch (MatchResult) { 1422 case Match_Success: 1423 Inst.setLoc(IDLoc); 1424 Out.emitInstruction(Inst, getSTI()); 1425 return false; 1426 1427 case Match_MissingFeature: { 1428 assert(MissingFeatures.any() && "Unknown missing feature!"); 1429 // Special case the error message for the very common case where only 1430 // a single subtarget feature is missing 1431 std::string Msg = "instruction requires:"; 1432 for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) { 1433 if (MissingFeatures[I]) { 1434 Msg += " "; 1435 Msg += getSubtargetFeatureName(I); 1436 } 1437 } 1438 return Error(IDLoc, Msg); 1439 } 1440 1441 case Match_InvalidOperand: { 1442 SMLoc ErrorLoc = IDLoc; 1443 if (ErrorInfo != ~0ULL) { 1444 if (ErrorInfo >= Operands.size()) 1445 return Error(IDLoc, "too few operands for instruction"); 1446 1447 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); 1448 if (ErrorLoc == SMLoc()) 1449 ErrorLoc = IDLoc; 1450 } 1451 return Error(ErrorLoc, "invalid operand for instruction"); 1452 } 1453 1454 case Match_MnemonicFail: { 1455 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 1456 std::string Suggestion = SystemZMnemonicSpellCheck( 1457 ((SystemZOperand &)*Operands[0]).getToken(), FBS); 1458 return Error(IDLoc, "invalid instruction" + Suggestion, 1459 ((SystemZOperand &)*Operands[0]).getLocRange()); 1460 } 1461 } 1462 1463 llvm_unreachable("Unexpected match type"); 1464 } 1465 1466 OperandMatchResultTy 1467 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal, 1468 int64_t MaxVal, bool AllowTLS) { 1469 MCContext &Ctx = getContext(); 1470 MCStreamer &Out = getStreamer(); 1471 const MCExpr *Expr; 1472 SMLoc StartLoc = Parser.getTok().getLoc(); 1473 if (getParser().parseExpression(Expr)) 1474 return MatchOperand_NoMatch; 1475 1476 auto isOutOfRangeConstant = [&](const MCExpr *E) -> bool { 1477 if (auto *CE = dyn_cast<MCConstantExpr>(E)) { 1478 int64_t Value = CE->getValue(); 1479 if ((Value & 1) || Value < MinVal || Value > MaxVal) 1480 return true; 1481 } 1482 return false; 1483 }; 1484 1485 // For consistency with the GNU assembler, treat immediates as offsets 1486 // from ".". 1487 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 1488 if (isOutOfRangeConstant(CE)) { 1489 Error(StartLoc, "offset out of range"); 1490 return MatchOperand_ParseFail; 1491 } 1492 int64_t Value = CE->getValue(); 1493 MCSymbol *Sym = Ctx.createTempSymbol(); 1494 Out.emitLabel(Sym); 1495 const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, 1496 Ctx); 1497 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx); 1498 } 1499 1500 // For consistency with the GNU assembler, conservatively assume that a 1501 // constant offset must by itself be within the given size range. 1502 if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr)) 1503 if (isOutOfRangeConstant(BE->getLHS()) || 1504 isOutOfRangeConstant(BE->getRHS())) { 1505 Error(StartLoc, "offset out of range"); 1506 return MatchOperand_ParseFail; 1507 } 1508 1509 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. 1510 const MCExpr *Sym = nullptr; 1511 if (AllowTLS && getLexer().is(AsmToken::Colon)) { 1512 Parser.Lex(); 1513 1514 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1515 Error(Parser.getTok().getLoc(), "unexpected token"); 1516 return MatchOperand_ParseFail; 1517 } 1518 1519 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 1520 StringRef Name = Parser.getTok().getString(); 1521 if (Name == "tls_gdcall") 1522 Kind = MCSymbolRefExpr::VK_TLSGD; 1523 else if (Name == "tls_ldcall") 1524 Kind = MCSymbolRefExpr::VK_TLSLDM; 1525 else { 1526 Error(Parser.getTok().getLoc(), "unknown TLS tag"); 1527 return MatchOperand_ParseFail; 1528 } 1529 Parser.Lex(); 1530 1531 if (Parser.getTok().isNot(AsmToken::Colon)) { 1532 Error(Parser.getTok().getLoc(), "unexpected token"); 1533 return MatchOperand_ParseFail; 1534 } 1535 Parser.Lex(); 1536 1537 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1538 Error(Parser.getTok().getLoc(), "unexpected token"); 1539 return MatchOperand_ParseFail; 1540 } 1541 1542 StringRef Identifier = Parser.getTok().getString(); 1543 Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier), 1544 Kind, Ctx); 1545 Parser.Lex(); 1546 } 1547 1548 SMLoc EndLoc = 1549 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1550 1551 if (AllowTLS) 1552 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym, 1553 StartLoc, EndLoc)); 1554 else 1555 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1556 1557 return MatchOperand_Success; 1558 } 1559 1560 // Force static initialization. 1561 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() { 1562 RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget()); 1563 } 1564