1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "PPCTargetTransformInfo.h"
10 #include "llvm/Analysis/CodeMetrics.h"
11 #include "llvm/Analysis/TargetTransformInfo.h"
12 #include "llvm/CodeGen/BasicTTIImpl.h"
13 #include "llvm/CodeGen/CostTable.h"
14 #include "llvm/CodeGen/TargetLowering.h"
15 #include "llvm/CodeGen/TargetSchedule.h"
16 #include "llvm/Support/CommandLine.h"
17 #include "llvm/Support/Debug.h"
18 using namespace llvm;
19 
20 #define DEBUG_TYPE "ppctti"
21 
22 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
23 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
24 
25 // This is currently only used for the data prefetch pass which is only enabled
26 // for BG/Q by default.
27 static cl::opt<unsigned>
28 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64),
29               cl::desc("The loop prefetch cache line size"));
30 
31 static cl::opt<bool>
32 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false),
33                 cl::desc("Enable using coldcc calling conv for cold "
34                          "internal functions"));
35 
36 // The latency of mtctr is only justified if there are more than 4
37 // comparisons that will be removed as a result.
38 static cl::opt<unsigned>
39 SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden,
40                       cl::desc("Loops with a constant trip count smaller than "
41                                "this value will not use the count register."));
42 
43 //===----------------------------------------------------------------------===//
44 //
45 // PPC cost model.
46 //
47 //===----------------------------------------------------------------------===//
48 
49 TargetTransformInfo::PopcntSupportKind
50 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
51   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
52   if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
53     return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
54              TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
55   return TTI::PSK_Software;
56 }
57 
58 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
59   if (DisablePPCConstHoist)
60     return BaseT::getIntImmCost(Imm, Ty);
61 
62   assert(Ty->isIntegerTy());
63 
64   unsigned BitSize = Ty->getPrimitiveSizeInBits();
65   if (BitSize == 0)
66     return ~0U;
67 
68   if (Imm == 0)
69     return TTI::TCC_Free;
70 
71   if (Imm.getBitWidth() <= 64) {
72     if (isInt<16>(Imm.getSExtValue()))
73       return TTI::TCC_Basic;
74 
75     if (isInt<32>(Imm.getSExtValue())) {
76       // A constant that can be materialized using lis.
77       if ((Imm.getZExtValue() & 0xFFFF) == 0)
78         return TTI::TCC_Basic;
79 
80       return 2 * TTI::TCC_Basic;
81     }
82   }
83 
84   return 4 * TTI::TCC_Basic;
85 }
86 
87 int PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
88                                     const APInt &Imm, Type *Ty) {
89   if (DisablePPCConstHoist)
90     return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty);
91 
92   assert(Ty->isIntegerTy());
93 
94   unsigned BitSize = Ty->getPrimitiveSizeInBits();
95   if (BitSize == 0)
96     return ~0U;
97 
98   switch (IID) {
99   default:
100     return TTI::TCC_Free;
101   case Intrinsic::sadd_with_overflow:
102   case Intrinsic::uadd_with_overflow:
103   case Intrinsic::ssub_with_overflow:
104   case Intrinsic::usub_with_overflow:
105     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
106       return TTI::TCC_Free;
107     break;
108   case Intrinsic::experimental_stackmap:
109     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
110       return TTI::TCC_Free;
111     break;
112   case Intrinsic::experimental_patchpoint_void:
113   case Intrinsic::experimental_patchpoint_i64:
114     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
115       return TTI::TCC_Free;
116     break;
117   }
118   return PPCTTIImpl::getIntImmCost(Imm, Ty);
119 }
120 
121 int PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
122                                   const APInt &Imm, Type *Ty) {
123   if (DisablePPCConstHoist)
124     return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty);
125 
126   assert(Ty->isIntegerTy());
127 
128   unsigned BitSize = Ty->getPrimitiveSizeInBits();
129   if (BitSize == 0)
130     return ~0U;
131 
132   unsigned ImmIdx = ~0U;
133   bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
134        ZeroFree = false;
135   switch (Opcode) {
136   default:
137     return TTI::TCC_Free;
138   case Instruction::GetElementPtr:
139     // Always hoist the base address of a GetElementPtr. This prevents the
140     // creation of new constants for every base constant that gets constant
141     // folded with the offset.
142     if (Idx == 0)
143       return 2 * TTI::TCC_Basic;
144     return TTI::TCC_Free;
145   case Instruction::And:
146     RunFree = true; // (for the rotate-and-mask instructions)
147     LLVM_FALLTHROUGH;
148   case Instruction::Add:
149   case Instruction::Or:
150   case Instruction::Xor:
151     ShiftedFree = true;
152     LLVM_FALLTHROUGH;
153   case Instruction::Sub:
154   case Instruction::Mul:
155   case Instruction::Shl:
156   case Instruction::LShr:
157   case Instruction::AShr:
158     ImmIdx = 1;
159     break;
160   case Instruction::ICmp:
161     UnsignedFree = true;
162     ImmIdx = 1;
163     // Zero comparisons can use record-form instructions.
164     LLVM_FALLTHROUGH;
165   case Instruction::Select:
166     ZeroFree = true;
167     break;
168   case Instruction::PHI:
169   case Instruction::Call:
170   case Instruction::Ret:
171   case Instruction::Load:
172   case Instruction::Store:
173     break;
174   }
175 
176   if (ZeroFree && Imm == 0)
177     return TTI::TCC_Free;
178 
179   if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
180     if (isInt<16>(Imm.getSExtValue()))
181       return TTI::TCC_Free;
182 
183     if (RunFree) {
184       if (Imm.getBitWidth() <= 32 &&
185           (isShiftedMask_32(Imm.getZExtValue()) ||
186            isShiftedMask_32(~Imm.getZExtValue())))
187         return TTI::TCC_Free;
188 
189       if (ST->isPPC64() &&
190           (isShiftedMask_64(Imm.getZExtValue()) ||
191            isShiftedMask_64(~Imm.getZExtValue())))
192         return TTI::TCC_Free;
193     }
194 
195     if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
196       return TTI::TCC_Free;
197 
198     if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
199       return TTI::TCC_Free;
200   }
201 
202   return PPCTTIImpl::getIntImmCost(Imm, Ty);
203 }
204 
205 unsigned PPCTTIImpl::getUserCost(const User *U,
206                                  ArrayRef<const Value *> Operands) {
207   if (U->getType()->isVectorTy()) {
208     // Instructions that need to be split should cost more.
209     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, U->getType());
210     return LT.first * BaseT::getUserCost(U, Operands);
211   }
212 
213   return BaseT::getUserCost(U, Operands);
214 }
215 
216 bool PPCTTIImpl::mightUseCTR(BasicBlock *BB,
217                              TargetLibraryInfo *LibInfo) {
218   const PPCTargetMachine &TM = ST->getTargetMachine();
219 
220   // Loop through the inline asm constraints and look for something that
221   // clobbers ctr.
222   auto asmClobbersCTR = [](InlineAsm *IA) {
223     InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints();
224     for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) {
225       InlineAsm::ConstraintInfo &C = CIV[i];
226       if (C.Type != InlineAsm::isInput)
227         for (unsigned j = 0, je = C.Codes.size(); j < je; ++j)
228           if (StringRef(C.Codes[j]).equals_lower("{ctr}"))
229             return true;
230     }
231     return false;
232   };
233 
234   // Determining the address of a TLS variable results in a function call in
235   // certain TLS models.
236   std::function<bool(const Value*)> memAddrUsesCTR =
237     [&memAddrUsesCTR, &TM](const Value *MemAddr) -> bool {
238     const auto *GV = dyn_cast<GlobalValue>(MemAddr);
239     if (!GV) {
240       // Recurse to check for constants that refer to TLS global variables.
241       if (const auto *CV = dyn_cast<Constant>(MemAddr))
242         for (const auto &CO : CV->operands())
243           if (memAddrUsesCTR(CO))
244             return true;
245 
246       return false;
247     }
248 
249     if (!GV->isThreadLocal())
250       return false;
251     TLSModel::Model Model = TM.getTLSModel(GV);
252     return Model == TLSModel::GeneralDynamic ||
253       Model == TLSModel::LocalDynamic;
254   };
255 
256   auto isLargeIntegerTy = [](bool Is32Bit, Type *Ty) {
257     if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
258       return ITy->getBitWidth() > (Is32Bit ? 32U : 64U);
259 
260     return false;
261   };
262 
263   for (BasicBlock::iterator J = BB->begin(), JE = BB->end();
264        J != JE; ++J) {
265     if (CallInst *CI = dyn_cast<CallInst>(J)) {
266       // Inline ASM is okay, unless it clobbers the ctr register.
267       if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue())) {
268         if (asmClobbersCTR(IA))
269           return true;
270         continue;
271       }
272 
273       if (Function *F = CI->getCalledFunction()) {
274         // Most intrinsics don't become function calls, but some might.
275         // sin, cos, exp and log are always calls.
276         unsigned Opcode = 0;
277         if (F->getIntrinsicID() != Intrinsic::not_intrinsic) {
278           switch (F->getIntrinsicID()) {
279           default: continue;
280           // If we have a call to ppc_is_decremented_ctr_nonzero, or ppc_mtctr
281           // we're definitely using CTR.
282           case Intrinsic::set_loop_iterations:
283           case Intrinsic::loop_decrement:
284             return true;
285 
286           // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp
287           // because, although it does clobber the counter register, the
288           // control can't then return to inside the loop unless there is also
289           // an eh_sjlj_setjmp.
290           case Intrinsic::eh_sjlj_setjmp:
291 
292           case Intrinsic::memcpy:
293           case Intrinsic::memmove:
294           case Intrinsic::memset:
295           case Intrinsic::powi:
296           case Intrinsic::log:
297           case Intrinsic::log2:
298           case Intrinsic::log10:
299           case Intrinsic::exp:
300           case Intrinsic::exp2:
301           case Intrinsic::pow:
302           case Intrinsic::sin:
303           case Intrinsic::cos:
304             return true;
305           case Intrinsic::copysign:
306             if (CI->getArgOperand(0)->getType()->getScalarType()->
307                 isPPC_FP128Ty())
308               return true;
309             else
310               continue; // ISD::FCOPYSIGN is never a library call.
311           case Intrinsic::sqrt:               Opcode = ISD::FSQRT;      break;
312           case Intrinsic::floor:              Opcode = ISD::FFLOOR;     break;
313           case Intrinsic::ceil:               Opcode = ISD::FCEIL;      break;
314           case Intrinsic::trunc:              Opcode = ISD::FTRUNC;     break;
315           case Intrinsic::rint:               Opcode = ISD::FRINT;      break;
316           case Intrinsic::lrint:              Opcode = ISD::LRINT;      break;
317           case Intrinsic::llrint:             Opcode = ISD::LLRINT;     break;
318           case Intrinsic::nearbyint:          Opcode = ISD::FNEARBYINT; break;
319           case Intrinsic::round:              Opcode = ISD::FROUND;     break;
320           case Intrinsic::lround:             Opcode = ISD::LROUND;     break;
321           case Intrinsic::llround:            Opcode = ISD::LLROUND;    break;
322           case Intrinsic::minnum:             Opcode = ISD::FMINNUM;    break;
323           case Intrinsic::maxnum:             Opcode = ISD::FMAXNUM;    break;
324           case Intrinsic::umul_with_overflow: Opcode = ISD::UMULO;      break;
325           case Intrinsic::smul_with_overflow: Opcode = ISD::SMULO;      break;
326           }
327         }
328 
329         // PowerPC does not use [US]DIVREM or other library calls for
330         // operations on regular types which are not otherwise library calls
331         // (i.e. soft float or atomics). If adapting for targets that do,
332         // additional care is required here.
333 
334         LibFunc Func;
335         if (!F->hasLocalLinkage() && F->hasName() && LibInfo &&
336             LibInfo->getLibFunc(F->getName(), Func) &&
337             LibInfo->hasOptimizedCodeGen(Func)) {
338           // Non-read-only functions are never treated as intrinsics.
339           if (!CI->onlyReadsMemory())
340             return true;
341 
342           // Conversion happens only for FP calls.
343           if (!CI->getArgOperand(0)->getType()->isFloatingPointTy())
344             return true;
345 
346           switch (Func) {
347           default: return true;
348           case LibFunc_copysign:
349           case LibFunc_copysignf:
350             continue; // ISD::FCOPYSIGN is never a library call.
351           case LibFunc_copysignl:
352             return true;
353           case LibFunc_fabs:
354           case LibFunc_fabsf:
355           case LibFunc_fabsl:
356             continue; // ISD::FABS is never a library call.
357           case LibFunc_sqrt:
358           case LibFunc_sqrtf:
359           case LibFunc_sqrtl:
360             Opcode = ISD::FSQRT; break;
361           case LibFunc_floor:
362           case LibFunc_floorf:
363           case LibFunc_floorl:
364             Opcode = ISD::FFLOOR; break;
365           case LibFunc_nearbyint:
366           case LibFunc_nearbyintf:
367           case LibFunc_nearbyintl:
368             Opcode = ISD::FNEARBYINT; break;
369           case LibFunc_ceil:
370           case LibFunc_ceilf:
371           case LibFunc_ceill:
372             Opcode = ISD::FCEIL; break;
373           case LibFunc_rint:
374           case LibFunc_rintf:
375           case LibFunc_rintl:
376             Opcode = ISD::FRINT; break;
377           case LibFunc_round:
378           case LibFunc_roundf:
379           case LibFunc_roundl:
380             Opcode = ISD::FROUND; break;
381           case LibFunc_trunc:
382           case LibFunc_truncf:
383           case LibFunc_truncl:
384             Opcode = ISD::FTRUNC; break;
385           case LibFunc_fmin:
386           case LibFunc_fminf:
387           case LibFunc_fminl:
388             Opcode = ISD::FMINNUM; break;
389           case LibFunc_fmax:
390           case LibFunc_fmaxf:
391           case LibFunc_fmaxl:
392             Opcode = ISD::FMAXNUM; break;
393           }
394         }
395 
396         if (Opcode) {
397           EVT EVTy =
398               TLI->getValueType(DL, CI->getArgOperand(0)->getType(), true);
399 
400           if (EVTy == MVT::Other)
401             return true;
402 
403           if (TLI->isOperationLegalOrCustom(Opcode, EVTy))
404             continue;
405           else if (EVTy.isVector() &&
406                    TLI->isOperationLegalOrCustom(Opcode, EVTy.getScalarType()))
407             continue;
408 
409           return true;
410         }
411       }
412 
413       return true;
414     } else if (isa<BinaryOperator>(J) &&
415                J->getType()->getScalarType()->isPPC_FP128Ty()) {
416       // Most operations on ppc_f128 values become calls.
417       return true;
418     } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) ||
419                isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) {
420       CastInst *CI = cast<CastInst>(J);
421       if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() ||
422           CI->getDestTy()->getScalarType()->isPPC_FP128Ty() ||
423           isLargeIntegerTy(!TM.isPPC64(), CI->getSrcTy()->getScalarType()) ||
424           isLargeIntegerTy(!TM.isPPC64(), CI->getDestTy()->getScalarType()))
425         return true;
426     } else if (isLargeIntegerTy(!TM.isPPC64(),
427                                 J->getType()->getScalarType()) &&
428                (J->getOpcode() == Instruction::UDiv ||
429                 J->getOpcode() == Instruction::SDiv ||
430                 J->getOpcode() == Instruction::URem ||
431                 J->getOpcode() == Instruction::SRem)) {
432       return true;
433     } else if (!TM.isPPC64() &&
434                isLargeIntegerTy(false, J->getType()->getScalarType()) &&
435                (J->getOpcode() == Instruction::Shl ||
436                 J->getOpcode() == Instruction::AShr ||
437                 J->getOpcode() == Instruction::LShr)) {
438       // Only on PPC32, for 128-bit integers (specifically not 64-bit
439       // integers), these might be runtime calls.
440       return true;
441     } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) {
442       // On PowerPC, indirect jumps use the counter register.
443       return true;
444     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) {
445       if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries())
446         return true;
447     }
448 
449     // FREM is always a call.
450     if (J->getOpcode() == Instruction::FRem)
451       return true;
452 
453     if (ST->useSoftFloat()) {
454       switch(J->getOpcode()) {
455       case Instruction::FAdd:
456       case Instruction::FSub:
457       case Instruction::FMul:
458       case Instruction::FDiv:
459       case Instruction::FPTrunc:
460       case Instruction::FPExt:
461       case Instruction::FPToUI:
462       case Instruction::FPToSI:
463       case Instruction::UIToFP:
464       case Instruction::SIToFP:
465       case Instruction::FCmp:
466         return true;
467       }
468     }
469 
470     for (Value *Operand : J->operands())
471       if (memAddrUsesCTR(Operand))
472         return true;
473   }
474 
475   return false;
476 }
477 
478 bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
479                                           AssumptionCache &AC,
480                                           TargetLibraryInfo *LibInfo,
481                                           HardwareLoopInfo &HWLoopInfo) {
482   const PPCTargetMachine &TM = ST->getTargetMachine();
483   TargetSchedModel SchedModel;
484   SchedModel.init(ST);
485 
486   // Do not convert small short loops to CTR loop.
487   unsigned ConstTripCount = SE.getSmallConstantTripCount(L);
488   if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) {
489     SmallPtrSet<const Value *, 32> EphValues;
490     CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
491     CodeMetrics Metrics;
492     for (BasicBlock *BB : L->blocks())
493       Metrics.analyzeBasicBlock(BB, *this, EphValues);
494     // 6 is an approximate latency for the mtctr instruction.
495     if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth()))
496       return false;
497   }
498 
499   // We don't want to spill/restore the counter register, and so we don't
500   // want to use the counter register if the loop contains calls.
501   for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
502        I != IE; ++I)
503     if (mightUseCTR(*I, LibInfo))
504       return false;
505 
506   SmallVector<BasicBlock*, 4> ExitingBlocks;
507   L->getExitingBlocks(ExitingBlocks);
508 
509   // If there is an exit edge known to be frequently taken,
510   // we should not transform this loop.
511   for (auto &BB : ExitingBlocks) {
512     Instruction *TI = BB->getTerminator();
513     if (!TI) continue;
514 
515     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
516       uint64_t TrueWeight = 0, FalseWeight = 0;
517       if (!BI->isConditional() ||
518           !BI->extractProfMetadata(TrueWeight, FalseWeight))
519         continue;
520 
521       // If the exit path is more frequent than the loop path,
522       // we return here without further analysis for this loop.
523       bool TrueIsExit = !L->contains(BI->getSuccessor(0));
524       if (( TrueIsExit && FalseWeight < TrueWeight) ||
525           (!TrueIsExit && FalseWeight > TrueWeight))
526         return false;
527     }
528   }
529 
530   LLVMContext &C = L->getHeader()->getContext();
531   HWLoopInfo.CountType = TM.isPPC64() ?
532     Type::getInt64Ty(C) : Type::getInt32Ty(C);
533   HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
534   return true;
535 }
536 
537 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
538                                          TTI::UnrollingPreferences &UP) {
539   if (ST->getCPUDirective() == PPC::DIR_A2) {
540     // The A2 is in-order with a deep pipeline, and concatenation unrolling
541     // helps expose latency-hiding opportunities to the instruction scheduler.
542     UP.Partial = UP.Runtime = true;
543 
544     // We unroll a lot on the A2 (hundreds of instructions), and the benefits
545     // often outweigh the cost of a division to compute the trip count.
546     UP.AllowExpensiveTripCount = true;
547   }
548 
549   BaseT::getUnrollingPreferences(L, SE, UP);
550 }
551 
552 // This function returns true to allow using coldcc calling convention.
553 // Returning true results in coldcc being used for functions which are cold at
554 // all call sites when the callers of the functions are not calling any other
555 // non coldcc functions.
556 bool PPCTTIImpl::useColdCCForColdCall(Function &F) {
557   return EnablePPCColdCC;
558 }
559 
560 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
561   // On the A2, always unroll aggressively. For QPX unaligned loads, we depend
562   // on combining the loads generated for consecutive accesses, and failure to
563   // do so is particularly expensive. This makes it much more likely (compared
564   // to only using concatenation unrolling).
565   if (ST->getCPUDirective() == PPC::DIR_A2)
566     return true;
567 
568   return LoopHasReductions;
569 }
570 
571 PPCTTIImpl::TTI::MemCmpExpansionOptions
572 PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
573   TTI::MemCmpExpansionOptions Options;
574   Options.LoadSizes = {8, 4, 2, 1};
575   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
576   return Options;
577 }
578 
579 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
580   return true;
581 }
582 
583 unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
584   assert(ClassID == GPRRC || ClassID == FPRRC ||
585          ClassID == VRRC || ClassID == VSXRC);
586   if (ST->hasVSX()) {
587     assert(ClassID == GPRRC || ClassID == VSXRC);
588     return ClassID == GPRRC ? 32 : 64;
589   }
590   assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC);
591   return 32;
592 }
593 
594 unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const {
595   if (Vector)
596     return ST->hasVSX() ? VSXRC : VRRC;
597   else if (Ty && Ty->getScalarType()->isFloatTy())
598     return ST->hasVSX() ? VSXRC : FPRRC;
599   else
600     return GPRRC;
601 }
602 
603 const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const {
604 
605   switch (ClassID) {
606     default:
607       llvm_unreachable("unknown register class");
608       return "PPC::unknown register class";
609     case GPRRC:       return "PPC::GPRRC";
610     case FPRRC:       return "PPC::FPRRC";
611     case VRRC:        return "PPC::VRRC";
612     case VSXRC:       return "PPC::VSXRC";
613   }
614 }
615 
616 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) const {
617   if (Vector) {
618     if (ST->hasQPX()) return 256;
619     if (ST->hasAltivec()) return 128;
620     return 0;
621   }
622 
623   if (ST->isPPC64())
624     return 64;
625   return 32;
626 
627 }
628 
629 unsigned PPCTTIImpl::getCacheLineSize() const {
630   // Check first if the user specified a custom line size.
631   if (CacheLineSize.getNumOccurrences() > 0)
632     return CacheLineSize;
633 
634   // On P7, P8 or P9 we have a cache line size of 128.
635   unsigned Directive = ST->getCPUDirective();
636   // Assume that Future CPU has the same cache line size as the others.
637   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
638       Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR_FUTURE)
639     return 128;
640 
641   // On other processors return a default of 64 bytes.
642   return 64;
643 }
644 
645 unsigned PPCTTIImpl::getPrefetchDistance() const {
646   // This seems like a reasonable default for the BG/Q (this pass is enabled, by
647   // default, only on the BG/Q).
648   return 300;
649 }
650 
651 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
652   unsigned Directive = ST->getCPUDirective();
653   // The 440 has no SIMD support, but floating-point instructions
654   // have a 5-cycle latency, so unroll by 5x for latency hiding.
655   if (Directive == PPC::DIR_440)
656     return 5;
657 
658   // The A2 has no SIMD support, but floating-point instructions
659   // have a 6-cycle latency, so unroll by 6x for latency hiding.
660   if (Directive == PPC::DIR_A2)
661     return 6;
662 
663   // FIXME: For lack of any better information, do no harm...
664   if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
665     return 1;
666 
667   // For P7 and P8, floating-point instructions have a 6-cycle latency and
668   // there are two execution units, so unroll by 12x for latency hiding.
669   // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
670   // Assume that future is the same as the others.
671   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
672       Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR_FUTURE)
673     return 12;
674 
675   // For most things, modern systems have two execution units (and
676   // out-of-order execution).
677   return 2;
678 }
679 
680 // Adjust the cost of vector instructions on targets which there is overlap
681 // between the vector and scalar units, thereby reducing the overall throughput
682 // of vector code wrt. scalar code.
683 int PPCTTIImpl::vectorCostAdjustment(int Cost, unsigned Opcode, Type *Ty1,
684                                      Type *Ty2) {
685   if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy())
686     return Cost;
687 
688   std::pair<int, MVT> LT1 = TLI->getTypeLegalizationCost(DL, Ty1);
689   // If type legalization involves splitting the vector, we don't want to
690   // double the cost at every step - only the last step.
691   if (LT1.first != 1 || !LT1.second.isVector())
692     return Cost;
693 
694   int ISD = TLI->InstructionOpcodeToISD(Opcode);
695   if (TLI->isOperationExpand(ISD, LT1.second))
696     return Cost;
697 
698   if (Ty2) {
699     std::pair<int, MVT> LT2 = TLI->getTypeLegalizationCost(DL, Ty2);
700     if (LT2.first != 1 || !LT2.second.isVector())
701       return Cost;
702   }
703 
704   return Cost * 2;
705 }
706 
707 int PPCTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
708                                        TTI::OperandValueKind Op1Info,
709                                        TTI::OperandValueKind Op2Info,
710                                        TTI::OperandValueProperties Opd1PropInfo,
711                                        TTI::OperandValueProperties Opd2PropInfo,
712                                        ArrayRef<const Value *> Args,
713                                        const Instruction *CxtI) {
714   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
715 
716   // Fallback to the default implementation.
717   int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
718                                            Opd1PropInfo, Opd2PropInfo);
719   return vectorCostAdjustment(Cost, Opcode, Ty, nullptr);
720 }
721 
722 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
723                                Type *SubTp) {
724   // Legalize the type.
725   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
726 
727   // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
728   // (at least in the sense that there need only be one non-loop-invariant
729   // instruction). We need one such shuffle instruction for each actual
730   // register (this is not true for arbitrary shuffles, but is true for the
731   // structured types of shuffles covered by TTI::ShuffleKind).
732   return vectorCostAdjustment(LT.first, Instruction::ShuffleVector, Tp,
733                               nullptr);
734 }
735 
736 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
737                                  const Instruction *I) {
738   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
739 
740   int Cost = BaseT::getCastInstrCost(Opcode, Dst, Src);
741   return vectorCostAdjustment(Cost, Opcode, Dst, Src);
742 }
743 
744 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
745                                    const Instruction *I) {
746   int Cost = BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
747   return vectorCostAdjustment(Cost, Opcode, ValTy, nullptr);
748 }
749 
750 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
751   assert(Val->isVectorTy() && "This must be a vector type");
752 
753   int ISD = TLI->InstructionOpcodeToISD(Opcode);
754   assert(ISD && "Invalid opcode");
755 
756   int Cost = BaseT::getVectorInstrCost(Opcode, Val, Index);
757   Cost = vectorCostAdjustment(Cost, Opcode, Val, nullptr);
758 
759   if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
760     // Double-precision scalars are already located in index #0 (or #1 if LE).
761     if (ISD == ISD::EXTRACT_VECTOR_ELT &&
762         Index == (ST->isLittleEndian() ? 1 : 0))
763       return 0;
764 
765     return Cost;
766 
767   } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) {
768     // Floating point scalars are already located in index #0.
769     if (Index == 0)
770       return 0;
771 
772     return Cost;
773 
774   } else if (Val->getScalarType()->isIntegerTy() && Index != -1U) {
775     if (ST->hasP9Altivec()) {
776       if (ISD == ISD::INSERT_VECTOR_ELT)
777         // A move-to VSR and a permute/insert.  Assume vector operation cost
778         // for both (cost will be 2x on P9).
779         return vectorCostAdjustment(2, Opcode, Val, nullptr);
780 
781       // It's an extract.  Maybe we can do a cheap move-from VSR.
782       unsigned EltSize = Val->getScalarSizeInBits();
783       if (EltSize == 64) {
784         unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0;
785         if (Index == MfvsrdIndex)
786           return 1;
787       } else if (EltSize == 32) {
788         unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1;
789         if (Index == MfvsrwzIndex)
790           return 1;
791       }
792 
793       // We need a vector extract (or mfvsrld).  Assume vector operation cost.
794       // The cost of the load constant for a vector extract is disregarded
795       // (invariant, easily schedulable).
796       return vectorCostAdjustment(1, Opcode, Val, nullptr);
797 
798     } else if (ST->hasDirectMove())
799       // Assume permute has standard cost.
800       // Assume move-to/move-from VSR have 2x standard cost.
801       return 3;
802   }
803 
804   // Estimated cost of a load-hit-store delay.  This was obtained
805   // experimentally as a minimum needed to prevent unprofitable
806   // vectorization for the paq8p benchmark.  It may need to be
807   // raised further if other unprofitable cases remain.
808   unsigned LHSPenalty = 2;
809   if (ISD == ISD::INSERT_VECTOR_ELT)
810     LHSPenalty += 7;
811 
812   // Vector element insert/extract with Altivec is very expensive,
813   // because they require store and reload with the attendant
814   // processor stall for load-hit-store.  Until VSX is available,
815   // these need to be estimated as very costly.
816   if (ISD == ISD::EXTRACT_VECTOR_ELT ||
817       ISD == ISD::INSERT_VECTOR_ELT)
818     return LHSPenalty + Cost;
819 
820   return Cost;
821 }
822 
823 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
824                                 MaybeAlign Alignment, unsigned AddressSpace,
825                                 const Instruction *I) {
826   // Legalize the type.
827   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
828   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
829          "Invalid Opcode");
830 
831   int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
832   Cost = vectorCostAdjustment(Cost, Opcode, Src, nullptr);
833 
834   bool IsAltivecType = ST->hasAltivec() &&
835                        (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
836                         LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
837   bool IsVSXType = ST->hasVSX() &&
838                    (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
839   bool IsQPXType = ST->hasQPX() &&
840                    (LT.second == MVT::v4f64 || LT.second == MVT::v4f32);
841 
842   // VSX has 32b/64b load instructions. Legalization can handle loading of
843   // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
844   // PPCTargetLowering can't compute the cost appropriately. So here we
845   // explicitly check this case.
846   unsigned MemBytes = Src->getPrimitiveSizeInBits();
847   if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
848       (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
849     return 1;
850 
851   // Aligned loads and stores are easy.
852   unsigned SrcBytes = LT.second.getStoreSize();
853   if (!SrcBytes || !Alignment || Alignment >= SrcBytes)
854     return Cost;
855 
856   // If we can use the permutation-based load sequence, then this is also
857   // relatively cheap (not counting loop-invariant instructions): one load plus
858   // one permute (the last load in a series has extra cost, but we're
859   // neglecting that here). Note that on the P7, we could do unaligned loads
860   // for Altivec types using the VSX instructions, but that's more expensive
861   // than using the permutation-based load sequence. On the P8, that's no
862   // longer true.
863   if (Opcode == Instruction::Load &&
864       ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) &&
865       Alignment >= LT.second.getScalarType().getStoreSize())
866     return Cost + LT.first; // Add the cost of the permutations.
867 
868   // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
869   // P7, unaligned vector loads are more expensive than the permutation-based
870   // load sequence, so that might be used instead, but regardless, the net cost
871   // is about the same (not counting loop-invariant instructions).
872   if (IsVSXType || (ST->hasVSX() && IsAltivecType))
873     return Cost;
874 
875   // Newer PPC supports unaligned memory access.
876   if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
877     return Cost;
878 
879   // PPC in general does not support unaligned loads and stores. They'll need
880   // to be decomposed based on the alignment factor.
881 
882   // Add the cost of each scalar load or store.
883   assert(Alignment);
884   Cost += LT.first * ((SrcBytes / Alignment->value()) - 1);
885 
886   // For a vector type, there is also scalarization overhead (only for
887   // stores, loads are expanded using the vector-load + permutation sequence,
888   // which is much less expensive).
889   if (Src->isVectorTy() && Opcode == Instruction::Store)
890     for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i)
891       Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
892 
893   return Cost;
894 }
895 
896 int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
897                                            unsigned Factor,
898                                            ArrayRef<unsigned> Indices,
899                                            unsigned Alignment,
900                                            unsigned AddressSpace,
901                                            bool UseMaskForCond,
902                                            bool UseMaskForGaps) {
903   if (UseMaskForCond || UseMaskForGaps)
904     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
905                                              Alignment, AddressSpace,
906                                              UseMaskForCond, UseMaskForGaps);
907 
908   assert(isa<VectorType>(VecTy) &&
909          "Expect a vector type for interleaved memory op");
910 
911   // Legalize the type.
912   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);
913 
914   // Firstly, the cost of load/store operation.
915   int Cost =
916       getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), AddressSpace);
917 
918   // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations
919   // (at least in the sense that there need only be one non-loop-invariant
920   // instruction). For each result vector, we need one shuffle per incoming
921   // vector (except that the first shuffle can take two incoming vectors
922   // because it does not need to take itself).
923   Cost += Factor*(LT.first-1);
924 
925   return Cost;
926 }
927 
928 unsigned PPCTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
929       ArrayRef<Value*> Args, FastMathFlags FMF, unsigned VF) {
930   return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
931 }
932 
933 unsigned PPCTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
934       ArrayRef<Type*> Tys, FastMathFlags FMF,
935       unsigned ScalarizationCostPassed) {
936   if (ID == Intrinsic::bswap && ST->hasP9Vector())
937     return TLI->getTypeLegalizationCost(DL, RetTy).first;
938   return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
939                                       ScalarizationCostPassed);
940 }
941 
942 bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
943                             LoopInfo *LI, DominatorTree *DT,
944                             AssumptionCache *AC, TargetLibraryInfo *LibInfo) {
945   // Process nested loops first.
946   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
947     if (canSaveCmp(*I, BI, SE, LI, DT, AC, LibInfo))
948       return false; // Stop search.
949 
950   HardwareLoopInfo HWLoopInfo(L);
951 
952   if (!HWLoopInfo.canAnalyze(*LI))
953     return false;
954 
955   if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo))
956     return false;
957 
958   if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT))
959     return false;
960 
961   *BI = HWLoopInfo.ExitBranch;
962   return true;
963 }
964