1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "PPCTargetTransformInfo.h"
10 #include "llvm/Analysis/CodeMetrics.h"
11 #include "llvm/Analysis/TargetLibraryInfo.h"
12 #include "llvm/Analysis/TargetTransformInfo.h"
13 #include "llvm/CodeGen/BasicTTIImpl.h"
14 #include "llvm/CodeGen/CostTable.h"
15 #include "llvm/CodeGen/TargetLowering.h"
16 #include "llvm/CodeGen/TargetSchedule.h"
17 #include "llvm/IR/IntrinsicsPowerPC.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/KnownBits.h"
21 #include "llvm/Transforms/InstCombine/InstCombiner.h"
22 #include "llvm/Transforms/Utils/Local.h"
23
24 using namespace llvm;
25
26 #define DEBUG_TYPE "ppctti"
27
28 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
29 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
30
31 static cl::opt<bool>
32 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false),
33 cl::desc("Enable using coldcc calling conv for cold "
34 "internal functions"));
35
36 static cl::opt<bool>
37 LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false),
38 cl::desc("Do not add instruction count to lsr cost model"));
39
40 // The latency of mtctr is only justified if there are more than 4
41 // comparisons that will be removed as a result.
42 static cl::opt<unsigned>
43 SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden,
44 cl::desc("Loops with a constant trip count smaller than "
45 "this value will not use the count register."));
46
47 //===----------------------------------------------------------------------===//
48 //
49 // PPC cost model.
50 //
51 //===----------------------------------------------------------------------===//
52
53 TargetTransformInfo::PopcntSupportKind
getPopcntSupport(unsigned TyWidth)54 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
55 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
56 if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
57 return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
58 TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
59 return TTI::PSK_Software;
60 }
61
62 Optional<Instruction *>
instCombineIntrinsic(InstCombiner & IC,IntrinsicInst & II) const63 PPCTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
64 Intrinsic::ID IID = II.getIntrinsicID();
65 switch (IID) {
66 default:
67 break;
68 case Intrinsic::ppc_altivec_lvx:
69 case Intrinsic::ppc_altivec_lvxl:
70 // Turn PPC lvx -> load if the pointer is known aligned.
71 if (getOrEnforceKnownAlignment(
72 II.getArgOperand(0), Align(16), IC.getDataLayout(), &II,
73 &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
74 Value *Ptr = IC.Builder.CreateBitCast(
75 II.getArgOperand(0), PointerType::getUnqual(II.getType()));
76 return new LoadInst(II.getType(), Ptr, "", false, Align(16));
77 }
78 break;
79 case Intrinsic::ppc_vsx_lxvw4x:
80 case Intrinsic::ppc_vsx_lxvd2x: {
81 // Turn PPC VSX loads into normal loads.
82 Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(0),
83 PointerType::getUnqual(II.getType()));
84 return new LoadInst(II.getType(), Ptr, Twine(""), false, Align(1));
85 }
86 case Intrinsic::ppc_altivec_stvx:
87 case Intrinsic::ppc_altivec_stvxl:
88 // Turn stvx -> store if the pointer is known aligned.
89 if (getOrEnforceKnownAlignment(
90 II.getArgOperand(1), Align(16), IC.getDataLayout(), &II,
91 &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
92 Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType());
93 Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy);
94 return new StoreInst(II.getArgOperand(0), Ptr, false, Align(16));
95 }
96 break;
97 case Intrinsic::ppc_vsx_stxvw4x:
98 case Intrinsic::ppc_vsx_stxvd2x: {
99 // Turn PPC VSX stores into normal stores.
100 Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType());
101 Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy);
102 return new StoreInst(II.getArgOperand(0), Ptr, false, Align(1));
103 }
104 case Intrinsic::ppc_altivec_vperm:
105 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
106 // Note that ppc_altivec_vperm has a big-endian bias, so when creating
107 // a vectorshuffle for little endian, we must undo the transformation
108 // performed on vec_perm in altivec.h. That is, we must complement
109 // the permutation mask with respect to 31 and reverse the order of
110 // V1 and V2.
111 if (Constant *Mask = dyn_cast<Constant>(II.getArgOperand(2))) {
112 assert(cast<FixedVectorType>(Mask->getType())->getNumElements() == 16 &&
113 "Bad type for intrinsic!");
114
115 // Check that all of the elements are integer constants or undefs.
116 bool AllEltsOk = true;
117 for (unsigned i = 0; i != 16; ++i) {
118 Constant *Elt = Mask->getAggregateElement(i);
119 if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
120 AllEltsOk = false;
121 break;
122 }
123 }
124
125 if (AllEltsOk) {
126 // Cast the input vectors to byte vectors.
127 Value *Op0 =
128 IC.Builder.CreateBitCast(II.getArgOperand(0), Mask->getType());
129 Value *Op1 =
130 IC.Builder.CreateBitCast(II.getArgOperand(1), Mask->getType());
131 Value *Result = UndefValue::get(Op0->getType());
132
133 // Only extract each element once.
134 Value *ExtractedElts[32];
135 memset(ExtractedElts, 0, sizeof(ExtractedElts));
136
137 for (unsigned i = 0; i != 16; ++i) {
138 if (isa<UndefValue>(Mask->getAggregateElement(i)))
139 continue;
140 unsigned Idx =
141 cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
142 Idx &= 31; // Match the hardware behavior.
143 if (DL.isLittleEndian())
144 Idx = 31 - Idx;
145
146 if (!ExtractedElts[Idx]) {
147 Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
148 Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
149 ExtractedElts[Idx] = IC.Builder.CreateExtractElement(
150 Idx < 16 ? Op0ToUse : Op1ToUse, IC.Builder.getInt32(Idx & 15));
151 }
152
153 // Insert this value into the result vector.
154 Result = IC.Builder.CreateInsertElement(Result, ExtractedElts[Idx],
155 IC.Builder.getInt32(i));
156 }
157 return CastInst::Create(Instruction::BitCast, Result, II.getType());
158 }
159 }
160 break;
161 }
162 return None;
163 }
164
getIntImmCost(const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind)165 InstructionCost PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
166 TTI::TargetCostKind CostKind) {
167 if (DisablePPCConstHoist)
168 return BaseT::getIntImmCost(Imm, Ty, CostKind);
169
170 assert(Ty->isIntegerTy());
171
172 unsigned BitSize = Ty->getPrimitiveSizeInBits();
173 if (BitSize == 0)
174 return ~0U;
175
176 if (Imm == 0)
177 return TTI::TCC_Free;
178
179 if (Imm.getBitWidth() <= 64) {
180 if (isInt<16>(Imm.getSExtValue()))
181 return TTI::TCC_Basic;
182
183 if (isInt<32>(Imm.getSExtValue())) {
184 // A constant that can be materialized using lis.
185 if ((Imm.getZExtValue() & 0xFFFF) == 0)
186 return TTI::TCC_Basic;
187
188 return 2 * TTI::TCC_Basic;
189 }
190 }
191
192 return 4 * TTI::TCC_Basic;
193 }
194
getIntImmCostIntrin(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind)195 InstructionCost PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
196 const APInt &Imm, Type *Ty,
197 TTI::TargetCostKind CostKind) {
198 if (DisablePPCConstHoist)
199 return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
200
201 assert(Ty->isIntegerTy());
202
203 unsigned BitSize = Ty->getPrimitiveSizeInBits();
204 if (BitSize == 0)
205 return ~0U;
206
207 switch (IID) {
208 default:
209 return TTI::TCC_Free;
210 case Intrinsic::sadd_with_overflow:
211 case Intrinsic::uadd_with_overflow:
212 case Intrinsic::ssub_with_overflow:
213 case Intrinsic::usub_with_overflow:
214 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
215 return TTI::TCC_Free;
216 break;
217 case Intrinsic::experimental_stackmap:
218 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
219 return TTI::TCC_Free;
220 break;
221 case Intrinsic::experimental_patchpoint_void:
222 case Intrinsic::experimental_patchpoint_i64:
223 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
224 return TTI::TCC_Free;
225 break;
226 }
227 return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
228 }
229
getIntImmCostInst(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty,TTI::TargetCostKind CostKind,Instruction * Inst)230 InstructionCost PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
231 const APInt &Imm, Type *Ty,
232 TTI::TargetCostKind CostKind,
233 Instruction *Inst) {
234 if (DisablePPCConstHoist)
235 return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
236
237 assert(Ty->isIntegerTy());
238
239 unsigned BitSize = Ty->getPrimitiveSizeInBits();
240 if (BitSize == 0)
241 return ~0U;
242
243 unsigned ImmIdx = ~0U;
244 bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
245 ZeroFree = false;
246 switch (Opcode) {
247 default:
248 return TTI::TCC_Free;
249 case Instruction::GetElementPtr:
250 // Always hoist the base address of a GetElementPtr. This prevents the
251 // creation of new constants for every base constant that gets constant
252 // folded with the offset.
253 if (Idx == 0)
254 return 2 * TTI::TCC_Basic;
255 return TTI::TCC_Free;
256 case Instruction::And:
257 RunFree = true; // (for the rotate-and-mask instructions)
258 LLVM_FALLTHROUGH;
259 case Instruction::Add:
260 case Instruction::Or:
261 case Instruction::Xor:
262 ShiftedFree = true;
263 LLVM_FALLTHROUGH;
264 case Instruction::Sub:
265 case Instruction::Mul:
266 case Instruction::Shl:
267 case Instruction::LShr:
268 case Instruction::AShr:
269 ImmIdx = 1;
270 break;
271 case Instruction::ICmp:
272 UnsignedFree = true;
273 ImmIdx = 1;
274 // Zero comparisons can use record-form instructions.
275 LLVM_FALLTHROUGH;
276 case Instruction::Select:
277 ZeroFree = true;
278 break;
279 case Instruction::PHI:
280 case Instruction::Call:
281 case Instruction::Ret:
282 case Instruction::Load:
283 case Instruction::Store:
284 break;
285 }
286
287 if (ZeroFree && Imm == 0)
288 return TTI::TCC_Free;
289
290 if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
291 if (isInt<16>(Imm.getSExtValue()))
292 return TTI::TCC_Free;
293
294 if (RunFree) {
295 if (Imm.getBitWidth() <= 32 &&
296 (isShiftedMask_32(Imm.getZExtValue()) ||
297 isShiftedMask_32(~Imm.getZExtValue())))
298 return TTI::TCC_Free;
299
300 if (ST->isPPC64() &&
301 (isShiftedMask_64(Imm.getZExtValue()) ||
302 isShiftedMask_64(~Imm.getZExtValue())))
303 return TTI::TCC_Free;
304 }
305
306 if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
307 return TTI::TCC_Free;
308
309 if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
310 return TTI::TCC_Free;
311 }
312
313 return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
314 }
315
316 // Check if the current Type is an MMA vector type. Valid MMA types are
317 // v256i1 and v512i1 respectively.
isMMAType(Type * Ty)318 static bool isMMAType(Type *Ty) {
319 return Ty->isVectorTy() && (Ty->getScalarSizeInBits() == 1) &&
320 (Ty->getPrimitiveSizeInBits() > 128);
321 }
322
getUserCost(const User * U,ArrayRef<const Value * > Operands,TTI::TargetCostKind CostKind)323 InstructionCost PPCTTIImpl::getUserCost(const User *U,
324 ArrayRef<const Value *> Operands,
325 TTI::TargetCostKind CostKind) {
326 // We already implement getCastInstrCost and getMemoryOpCost where we perform
327 // the vector adjustment there.
328 if (isa<CastInst>(U) || isa<LoadInst>(U) || isa<StoreInst>(U))
329 return BaseT::getUserCost(U, Operands, CostKind);
330
331 if (U->getType()->isVectorTy()) {
332 // Instructions that need to be split should cost more.
333 std::pair<InstructionCost, MVT> LT =
334 TLI->getTypeLegalizationCost(DL, U->getType());
335 return LT.first * BaseT::getUserCost(U, Operands, CostKind);
336 }
337
338 return BaseT::getUserCost(U, Operands, CostKind);
339 }
340
341 // Determining the address of a TLS variable results in a function call in
342 // certain TLS models.
memAddrUsesCTR(const Value * MemAddr,const PPCTargetMachine & TM,SmallPtrSetImpl<const Value * > & Visited)343 static bool memAddrUsesCTR(const Value *MemAddr, const PPCTargetMachine &TM,
344 SmallPtrSetImpl<const Value *> &Visited) {
345 // No need to traverse again if we already checked this operand.
346 if (!Visited.insert(MemAddr).second)
347 return false;
348 const auto *GV = dyn_cast<GlobalValue>(MemAddr);
349 if (!GV) {
350 // Recurse to check for constants that refer to TLS global variables.
351 if (const auto *CV = dyn_cast<Constant>(MemAddr))
352 for (const auto &CO : CV->operands())
353 if (memAddrUsesCTR(CO, TM, Visited))
354 return true;
355 return false;
356 }
357
358 if (!GV->isThreadLocal())
359 return false;
360 TLSModel::Model Model = TM.getTLSModel(GV);
361 return Model == TLSModel::GeneralDynamic || Model == TLSModel::LocalDynamic;
362 }
363
mightUseCTR(BasicBlock * BB,TargetLibraryInfo * LibInfo,SmallPtrSetImpl<const Value * > & Visited)364 bool PPCTTIImpl::mightUseCTR(BasicBlock *BB, TargetLibraryInfo *LibInfo,
365 SmallPtrSetImpl<const Value *> &Visited) {
366 const PPCTargetMachine &TM = ST->getTargetMachine();
367
368 // Loop through the inline asm constraints and look for something that
369 // clobbers ctr.
370 auto asmClobbersCTR = [](InlineAsm *IA) {
371 InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints();
372 for (const InlineAsm::ConstraintInfo &C : CIV) {
373 if (C.Type != InlineAsm::isInput)
374 for (const auto &Code : C.Codes)
375 if (StringRef(Code).equals_insensitive("{ctr}"))
376 return true;
377 }
378 return false;
379 };
380
381 auto isLargeIntegerTy = [](bool Is32Bit, Type *Ty) {
382 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
383 return ITy->getBitWidth() > (Is32Bit ? 32U : 64U);
384
385 return false;
386 };
387
388 auto supportedHalfPrecisionOp = [](Instruction *Inst) {
389 switch (Inst->getOpcode()) {
390 default:
391 return false;
392 case Instruction::FPTrunc:
393 case Instruction::FPExt:
394 case Instruction::Load:
395 case Instruction::Store:
396 case Instruction::FPToUI:
397 case Instruction::UIToFP:
398 case Instruction::FPToSI:
399 case Instruction::SIToFP:
400 return true;
401 }
402 };
403
404 for (BasicBlock::iterator J = BB->begin(), JE = BB->end();
405 J != JE; ++J) {
406 // There are no direct operations on half precision so assume that
407 // anything with that type requires a call except for a few select
408 // operations with Power9.
409 if (Instruction *CurrInst = dyn_cast<Instruction>(J)) {
410 for (const auto &Op : CurrInst->operands()) {
411 if (Op->getType()->getScalarType()->isHalfTy() ||
412 CurrInst->getType()->getScalarType()->isHalfTy())
413 return !(ST->isISA3_0() && supportedHalfPrecisionOp(CurrInst));
414 }
415 }
416 if (CallInst *CI = dyn_cast<CallInst>(J)) {
417 // Inline ASM is okay, unless it clobbers the ctr register.
418 if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand())) {
419 if (asmClobbersCTR(IA))
420 return true;
421 continue;
422 }
423
424 if (Function *F = CI->getCalledFunction()) {
425 // Most intrinsics don't become function calls, but some might.
426 // sin, cos, exp and log are always calls.
427 unsigned Opcode = 0;
428 if (F->getIntrinsicID() != Intrinsic::not_intrinsic) {
429 switch (F->getIntrinsicID()) {
430 default: continue;
431 // If we have a call to loop_decrement or set_loop_iterations,
432 // we're definitely using CTR.
433 case Intrinsic::set_loop_iterations:
434 case Intrinsic::loop_decrement:
435 return true;
436
437 // Binary operations on 128-bit value will use CTR.
438 case Intrinsic::experimental_constrained_fadd:
439 case Intrinsic::experimental_constrained_fsub:
440 case Intrinsic::experimental_constrained_fmul:
441 case Intrinsic::experimental_constrained_fdiv:
442 case Intrinsic::experimental_constrained_frem:
443 if (F->getType()->getScalarType()->isFP128Ty() ||
444 F->getType()->getScalarType()->isPPC_FP128Ty())
445 return true;
446 break;
447
448 case Intrinsic::experimental_constrained_fptosi:
449 case Intrinsic::experimental_constrained_fptoui:
450 case Intrinsic::experimental_constrained_sitofp:
451 case Intrinsic::experimental_constrained_uitofp: {
452 Type *SrcType = CI->getArgOperand(0)->getType()->getScalarType();
453 Type *DstType = CI->getType()->getScalarType();
454 if (SrcType->isPPC_FP128Ty() || DstType->isPPC_FP128Ty() ||
455 isLargeIntegerTy(!TM.isPPC64(), SrcType) ||
456 isLargeIntegerTy(!TM.isPPC64(), DstType))
457 return true;
458 break;
459 }
460
461 // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp
462 // because, although it does clobber the counter register, the
463 // control can't then return to inside the loop unless there is also
464 // an eh_sjlj_setjmp.
465 case Intrinsic::eh_sjlj_setjmp:
466
467 case Intrinsic::memcpy:
468 case Intrinsic::memmove:
469 case Intrinsic::memset:
470 case Intrinsic::powi:
471 case Intrinsic::log:
472 case Intrinsic::log2:
473 case Intrinsic::log10:
474 case Intrinsic::exp:
475 case Intrinsic::exp2:
476 case Intrinsic::pow:
477 case Intrinsic::sin:
478 case Intrinsic::cos:
479 case Intrinsic::experimental_constrained_powi:
480 case Intrinsic::experimental_constrained_log:
481 case Intrinsic::experimental_constrained_log2:
482 case Intrinsic::experimental_constrained_log10:
483 case Intrinsic::experimental_constrained_exp:
484 case Intrinsic::experimental_constrained_exp2:
485 case Intrinsic::experimental_constrained_pow:
486 case Intrinsic::experimental_constrained_sin:
487 case Intrinsic::experimental_constrained_cos:
488 return true;
489 case Intrinsic::copysign:
490 if (CI->getArgOperand(0)->getType()->getScalarType()->
491 isPPC_FP128Ty())
492 return true;
493 else
494 continue; // ISD::FCOPYSIGN is never a library call.
495 case Intrinsic::fmuladd:
496 case Intrinsic::fma: Opcode = ISD::FMA; break;
497 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
498 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
499 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
500 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
501 case Intrinsic::rint: Opcode = ISD::FRINT; break;
502 case Intrinsic::lrint: Opcode = ISD::LRINT; break;
503 case Intrinsic::llrint: Opcode = ISD::LLRINT; break;
504 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
505 case Intrinsic::round: Opcode = ISD::FROUND; break;
506 case Intrinsic::lround: Opcode = ISD::LROUND; break;
507 case Intrinsic::llround: Opcode = ISD::LLROUND; break;
508 case Intrinsic::minnum: Opcode = ISD::FMINNUM; break;
509 case Intrinsic::maxnum: Opcode = ISD::FMAXNUM; break;
510 case Intrinsic::experimental_constrained_fcmp:
511 Opcode = ISD::STRICT_FSETCC;
512 break;
513 case Intrinsic::experimental_constrained_fcmps:
514 Opcode = ISD::STRICT_FSETCCS;
515 break;
516 case Intrinsic::experimental_constrained_fma:
517 Opcode = ISD::STRICT_FMA;
518 break;
519 case Intrinsic::experimental_constrained_sqrt:
520 Opcode = ISD::STRICT_FSQRT;
521 break;
522 case Intrinsic::experimental_constrained_floor:
523 Opcode = ISD::STRICT_FFLOOR;
524 break;
525 case Intrinsic::experimental_constrained_ceil:
526 Opcode = ISD::STRICT_FCEIL;
527 break;
528 case Intrinsic::experimental_constrained_trunc:
529 Opcode = ISD::STRICT_FTRUNC;
530 break;
531 case Intrinsic::experimental_constrained_rint:
532 Opcode = ISD::STRICT_FRINT;
533 break;
534 case Intrinsic::experimental_constrained_lrint:
535 Opcode = ISD::STRICT_LRINT;
536 break;
537 case Intrinsic::experimental_constrained_llrint:
538 Opcode = ISD::STRICT_LLRINT;
539 break;
540 case Intrinsic::experimental_constrained_nearbyint:
541 Opcode = ISD::STRICT_FNEARBYINT;
542 break;
543 case Intrinsic::experimental_constrained_round:
544 Opcode = ISD::STRICT_FROUND;
545 break;
546 case Intrinsic::experimental_constrained_lround:
547 Opcode = ISD::STRICT_LROUND;
548 break;
549 case Intrinsic::experimental_constrained_llround:
550 Opcode = ISD::STRICT_LLROUND;
551 break;
552 case Intrinsic::experimental_constrained_minnum:
553 Opcode = ISD::STRICT_FMINNUM;
554 break;
555 case Intrinsic::experimental_constrained_maxnum:
556 Opcode = ISD::STRICT_FMAXNUM;
557 break;
558 case Intrinsic::umul_with_overflow: Opcode = ISD::UMULO; break;
559 case Intrinsic::smul_with_overflow: Opcode = ISD::SMULO; break;
560 }
561 }
562
563 // PowerPC does not use [US]DIVREM or other library calls for
564 // operations on regular types which are not otherwise library calls
565 // (i.e. soft float or atomics). If adapting for targets that do,
566 // additional care is required here.
567
568 LibFunc Func;
569 if (!F->hasLocalLinkage() && F->hasName() && LibInfo &&
570 LibInfo->getLibFunc(F->getName(), Func) &&
571 LibInfo->hasOptimizedCodeGen(Func)) {
572 // Non-read-only functions are never treated as intrinsics.
573 if (!CI->onlyReadsMemory())
574 return true;
575
576 // Conversion happens only for FP calls.
577 if (!CI->getArgOperand(0)->getType()->isFloatingPointTy())
578 return true;
579
580 switch (Func) {
581 default: return true;
582 case LibFunc_copysign:
583 case LibFunc_copysignf:
584 continue; // ISD::FCOPYSIGN is never a library call.
585 case LibFunc_copysignl:
586 return true;
587 case LibFunc_fabs:
588 case LibFunc_fabsf:
589 case LibFunc_fabsl:
590 continue; // ISD::FABS is never a library call.
591 case LibFunc_sqrt:
592 case LibFunc_sqrtf:
593 case LibFunc_sqrtl:
594 Opcode = ISD::FSQRT; break;
595 case LibFunc_floor:
596 case LibFunc_floorf:
597 case LibFunc_floorl:
598 Opcode = ISD::FFLOOR; break;
599 case LibFunc_nearbyint:
600 case LibFunc_nearbyintf:
601 case LibFunc_nearbyintl:
602 Opcode = ISD::FNEARBYINT; break;
603 case LibFunc_ceil:
604 case LibFunc_ceilf:
605 case LibFunc_ceill:
606 Opcode = ISD::FCEIL; break;
607 case LibFunc_rint:
608 case LibFunc_rintf:
609 case LibFunc_rintl:
610 Opcode = ISD::FRINT; break;
611 case LibFunc_round:
612 case LibFunc_roundf:
613 case LibFunc_roundl:
614 Opcode = ISD::FROUND; break;
615 case LibFunc_trunc:
616 case LibFunc_truncf:
617 case LibFunc_truncl:
618 Opcode = ISD::FTRUNC; break;
619 case LibFunc_fmin:
620 case LibFunc_fminf:
621 case LibFunc_fminl:
622 Opcode = ISD::FMINNUM; break;
623 case LibFunc_fmax:
624 case LibFunc_fmaxf:
625 case LibFunc_fmaxl:
626 Opcode = ISD::FMAXNUM; break;
627 }
628 }
629
630 if (Opcode) {
631 EVT EVTy =
632 TLI->getValueType(DL, CI->getArgOperand(0)->getType(), true);
633
634 if (EVTy == MVT::Other)
635 return true;
636
637 if (TLI->isOperationLegalOrCustom(Opcode, EVTy))
638 continue;
639 else if (EVTy.isVector() &&
640 TLI->isOperationLegalOrCustom(Opcode, EVTy.getScalarType()))
641 continue;
642
643 return true;
644 }
645 }
646
647 return true;
648 } else if ((J->getType()->getScalarType()->isFP128Ty() ||
649 J->getType()->getScalarType()->isPPC_FP128Ty())) {
650 // Most operations on f128 or ppc_f128 values become calls.
651 return true;
652 } else if (isa<FCmpInst>(J) &&
653 J->getOperand(0)->getType()->getScalarType()->isFP128Ty()) {
654 return true;
655 } else if ((isa<FPTruncInst>(J) || isa<FPExtInst>(J)) &&
656 (cast<CastInst>(J)->getSrcTy()->getScalarType()->isFP128Ty() ||
657 cast<CastInst>(J)->getDestTy()->getScalarType()->isFP128Ty())) {
658 return true;
659 } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) ||
660 isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) {
661 CastInst *CI = cast<CastInst>(J);
662 if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() ||
663 CI->getDestTy()->getScalarType()->isPPC_FP128Ty() ||
664 isLargeIntegerTy(!TM.isPPC64(), CI->getSrcTy()->getScalarType()) ||
665 isLargeIntegerTy(!TM.isPPC64(), CI->getDestTy()->getScalarType()))
666 return true;
667 } else if (isLargeIntegerTy(!TM.isPPC64(),
668 J->getType()->getScalarType()) &&
669 (J->getOpcode() == Instruction::UDiv ||
670 J->getOpcode() == Instruction::SDiv ||
671 J->getOpcode() == Instruction::URem ||
672 J->getOpcode() == Instruction::SRem)) {
673 return true;
674 } else if (!TM.isPPC64() &&
675 isLargeIntegerTy(false, J->getType()->getScalarType()) &&
676 (J->getOpcode() == Instruction::Shl ||
677 J->getOpcode() == Instruction::AShr ||
678 J->getOpcode() == Instruction::LShr)) {
679 // Only on PPC32, for 128-bit integers (specifically not 64-bit
680 // integers), these might be runtime calls.
681 return true;
682 } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) {
683 // On PowerPC, indirect jumps use the counter register.
684 return true;
685 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) {
686 if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries())
687 return true;
688 }
689
690 // FREM is always a call.
691 if (J->getOpcode() == Instruction::FRem)
692 return true;
693
694 if (ST->useSoftFloat()) {
695 switch(J->getOpcode()) {
696 case Instruction::FAdd:
697 case Instruction::FSub:
698 case Instruction::FMul:
699 case Instruction::FDiv:
700 case Instruction::FPTrunc:
701 case Instruction::FPExt:
702 case Instruction::FPToUI:
703 case Instruction::FPToSI:
704 case Instruction::UIToFP:
705 case Instruction::SIToFP:
706 case Instruction::FCmp:
707 return true;
708 }
709 }
710
711 for (Value *Operand : J->operands())
712 if (memAddrUsesCTR(Operand, TM, Visited))
713 return true;
714 }
715
716 return false;
717 }
718
isHardwareLoopProfitable(Loop * L,ScalarEvolution & SE,AssumptionCache & AC,TargetLibraryInfo * LibInfo,HardwareLoopInfo & HWLoopInfo)719 bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
720 AssumptionCache &AC,
721 TargetLibraryInfo *LibInfo,
722 HardwareLoopInfo &HWLoopInfo) {
723 const PPCTargetMachine &TM = ST->getTargetMachine();
724 TargetSchedModel SchedModel;
725 SchedModel.init(ST);
726
727 // Do not convert small short loops to CTR loop.
728 unsigned ConstTripCount = SE.getSmallConstantTripCount(L);
729 if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) {
730 SmallPtrSet<const Value *, 32> EphValues;
731 CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
732 CodeMetrics Metrics;
733 for (BasicBlock *BB : L->blocks())
734 Metrics.analyzeBasicBlock(BB, *this, EphValues);
735 // 6 is an approximate latency for the mtctr instruction.
736 if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth()))
737 return false;
738 }
739
740 // We don't want to spill/restore the counter register, and so we don't
741 // want to use the counter register if the loop contains calls.
742 SmallPtrSet<const Value *, 4> Visited;
743 for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
744 I != IE; ++I)
745 if (mightUseCTR(*I, LibInfo, Visited))
746 return false;
747
748 SmallVector<BasicBlock*, 4> ExitingBlocks;
749 L->getExitingBlocks(ExitingBlocks);
750
751 // If there is an exit edge known to be frequently taken,
752 // we should not transform this loop.
753 for (auto &BB : ExitingBlocks) {
754 Instruction *TI = BB->getTerminator();
755 if (!TI) continue;
756
757 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
758 uint64_t TrueWeight = 0, FalseWeight = 0;
759 if (!BI->isConditional() ||
760 !BI->extractProfMetadata(TrueWeight, FalseWeight))
761 continue;
762
763 // If the exit path is more frequent than the loop path,
764 // we return here without further analysis for this loop.
765 bool TrueIsExit = !L->contains(BI->getSuccessor(0));
766 if (( TrueIsExit && FalseWeight < TrueWeight) ||
767 (!TrueIsExit && FalseWeight > TrueWeight))
768 return false;
769 }
770 }
771
772 // If an exit block has a PHI that accesses a TLS variable as one of the
773 // incoming values from the loop, we cannot produce a CTR loop because the
774 // address for that value will be computed in the loop.
775 SmallVector<BasicBlock *, 4> ExitBlocks;
776 L->getExitBlocks(ExitBlocks);
777 for (auto &BB : ExitBlocks) {
778 for (auto &PHI : BB->phis()) {
779 for (int Idx = 0, EndIdx = PHI.getNumIncomingValues(); Idx < EndIdx;
780 Idx++) {
781 const BasicBlock *IncomingBB = PHI.getIncomingBlock(Idx);
782 const Value *IncomingValue = PHI.getIncomingValue(Idx);
783 if (L->contains(IncomingBB) &&
784 memAddrUsesCTR(IncomingValue, TM, Visited))
785 return false;
786 }
787 }
788 }
789
790 LLVMContext &C = L->getHeader()->getContext();
791 HWLoopInfo.CountType = TM.isPPC64() ?
792 Type::getInt64Ty(C) : Type::getInt32Ty(C);
793 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
794 return true;
795 }
796
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,TTI::UnrollingPreferences & UP,OptimizationRemarkEmitter * ORE)797 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
798 TTI::UnrollingPreferences &UP,
799 OptimizationRemarkEmitter *ORE) {
800 if (ST->getCPUDirective() == PPC::DIR_A2) {
801 // The A2 is in-order with a deep pipeline, and concatenation unrolling
802 // helps expose latency-hiding opportunities to the instruction scheduler.
803 UP.Partial = UP.Runtime = true;
804
805 // We unroll a lot on the A2 (hundreds of instructions), and the benefits
806 // often outweigh the cost of a division to compute the trip count.
807 UP.AllowExpensiveTripCount = true;
808 }
809
810 BaseT::getUnrollingPreferences(L, SE, UP, ORE);
811 }
812
getPeelingPreferences(Loop * L,ScalarEvolution & SE,TTI::PeelingPreferences & PP)813 void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
814 TTI::PeelingPreferences &PP) {
815 BaseT::getPeelingPreferences(L, SE, PP);
816 }
817 // This function returns true to allow using coldcc calling convention.
818 // Returning true results in coldcc being used for functions which are cold at
819 // all call sites when the callers of the functions are not calling any other
820 // non coldcc functions.
useColdCCForColdCall(Function & F)821 bool PPCTTIImpl::useColdCCForColdCall(Function &F) {
822 return EnablePPCColdCC;
823 }
824
enableAggressiveInterleaving(bool LoopHasReductions)825 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
826 // On the A2, always unroll aggressively.
827 if (ST->getCPUDirective() == PPC::DIR_A2)
828 return true;
829
830 return LoopHasReductions;
831 }
832
833 PPCTTIImpl::TTI::MemCmpExpansionOptions
enableMemCmpExpansion(bool OptSize,bool IsZeroCmp) const834 PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
835 TTI::MemCmpExpansionOptions Options;
836 Options.LoadSizes = {8, 4, 2, 1};
837 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
838 return Options;
839 }
840
enableInterleavedAccessVectorization()841 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
842 return true;
843 }
844
getNumberOfRegisters(unsigned ClassID) const845 unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
846 assert(ClassID == GPRRC || ClassID == FPRRC ||
847 ClassID == VRRC || ClassID == VSXRC);
848 if (ST->hasVSX()) {
849 assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC);
850 return ClassID == VSXRC ? 64 : 32;
851 }
852 assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC);
853 return 32;
854 }
855
getRegisterClassForType(bool Vector,Type * Ty) const856 unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const {
857 if (Vector)
858 return ST->hasVSX() ? VSXRC : VRRC;
859 else if (Ty && (Ty->getScalarType()->isFloatTy() ||
860 Ty->getScalarType()->isDoubleTy()))
861 return ST->hasVSX() ? VSXRC : FPRRC;
862 else if (Ty && (Ty->getScalarType()->isFP128Ty() ||
863 Ty->getScalarType()->isPPC_FP128Ty()))
864 return VRRC;
865 else if (Ty && Ty->getScalarType()->isHalfTy())
866 return VSXRC;
867 else
868 return GPRRC;
869 }
870
getRegisterClassName(unsigned ClassID) const871 const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const {
872
873 switch (ClassID) {
874 default:
875 llvm_unreachable("unknown register class");
876 return "PPC::unknown register class";
877 case GPRRC: return "PPC::GPRRC";
878 case FPRRC: return "PPC::FPRRC";
879 case VRRC: return "PPC::VRRC";
880 case VSXRC: return "PPC::VSXRC";
881 }
882 }
883
884 TypeSize
getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const885 PPCTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
886 switch (K) {
887 case TargetTransformInfo::RGK_Scalar:
888 return TypeSize::getFixed(ST->isPPC64() ? 64 : 32);
889 case TargetTransformInfo::RGK_FixedWidthVector:
890 return TypeSize::getFixed(ST->hasAltivec() ? 128 : 0);
891 case TargetTransformInfo::RGK_ScalableVector:
892 return TypeSize::getScalable(0);
893 }
894
895 llvm_unreachable("Unsupported register kind");
896 }
897
getCacheLineSize() const898 unsigned PPCTTIImpl::getCacheLineSize() const {
899 // Starting with P7 we have a cache line size of 128.
900 unsigned Directive = ST->getCPUDirective();
901 // Assume that Future CPU has the same cache line size as the others.
902 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
903 Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
904 Directive == PPC::DIR_PWR_FUTURE)
905 return 128;
906
907 // On other processors return a default of 64 bytes.
908 return 64;
909 }
910
getPrefetchDistance() const911 unsigned PPCTTIImpl::getPrefetchDistance() const {
912 return 300;
913 }
914
getMaxInterleaveFactor(unsigned VF)915 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
916 unsigned Directive = ST->getCPUDirective();
917 // The 440 has no SIMD support, but floating-point instructions
918 // have a 5-cycle latency, so unroll by 5x for latency hiding.
919 if (Directive == PPC::DIR_440)
920 return 5;
921
922 // The A2 has no SIMD support, but floating-point instructions
923 // have a 6-cycle latency, so unroll by 6x for latency hiding.
924 if (Directive == PPC::DIR_A2)
925 return 6;
926
927 // FIXME: For lack of any better information, do no harm...
928 if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
929 return 1;
930
931 // For P7 and P8, floating-point instructions have a 6-cycle latency and
932 // there are two execution units, so unroll by 12x for latency hiding.
933 // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
934 // FIXME: the same for P10 as previous gen until POWER10 scheduling is ready
935 // Assume that future is the same as the others.
936 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
937 Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
938 Directive == PPC::DIR_PWR_FUTURE)
939 return 12;
940
941 // For most things, modern systems have two execution units (and
942 // out-of-order execution).
943 return 2;
944 }
945
946 // Returns a cost adjustment factor to adjust the cost of vector instructions
947 // on targets which there is overlap between the vector and scalar units,
948 // thereby reducing the overall throughput of vector code wrt. scalar code.
949 // An invalid instruction cost is returned if the type is an MMA vector type.
vectorCostAdjustmentFactor(unsigned Opcode,Type * Ty1,Type * Ty2)950 InstructionCost PPCTTIImpl::vectorCostAdjustmentFactor(unsigned Opcode,
951 Type *Ty1, Type *Ty2) {
952 // If the vector type is of an MMA type (v256i1, v512i1), an invalid
953 // instruction cost is returned. This is to signify to other cost computing
954 // functions to return the maximum instruction cost in order to prevent any
955 // opportunities for the optimizer to produce MMA types within the IR.
956 if (isMMAType(Ty1))
957 return InstructionCost::getInvalid();
958
959 if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy())
960 return InstructionCost(1);
961
962 std::pair<InstructionCost, MVT> LT1 = TLI->getTypeLegalizationCost(DL, Ty1);
963 // If type legalization involves splitting the vector, we don't want to
964 // double the cost at every step - only the last step.
965 if (LT1.first != 1 || !LT1.second.isVector())
966 return InstructionCost(1);
967
968 int ISD = TLI->InstructionOpcodeToISD(Opcode);
969 if (TLI->isOperationExpand(ISD, LT1.second))
970 return InstructionCost(1);
971
972 if (Ty2) {
973 std::pair<InstructionCost, MVT> LT2 = TLI->getTypeLegalizationCost(DL, Ty2);
974 if (LT2.first != 1 || !LT2.second.isVector())
975 return InstructionCost(1);
976 }
977
978 return InstructionCost(2);
979 }
980
getArithmeticInstrCost(unsigned Opcode,Type * Ty,TTI::TargetCostKind CostKind,TTI::OperandValueKind Op1Info,TTI::OperandValueKind Op2Info,TTI::OperandValueProperties Opd1PropInfo,TTI::OperandValueProperties Opd2PropInfo,ArrayRef<const Value * > Args,const Instruction * CxtI)981 InstructionCost PPCTTIImpl::getArithmeticInstrCost(
982 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
983 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
984 TTI::OperandValueProperties Opd1PropInfo,
985 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
986 const Instruction *CxtI) {
987 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
988
989 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Ty, nullptr);
990 if (!CostFactor.isValid())
991 return InstructionCost::getMax();
992
993 // TODO: Handle more cost kinds.
994 if (CostKind != TTI::TCK_RecipThroughput)
995 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
996 Op2Info, Opd1PropInfo,
997 Opd2PropInfo, Args, CxtI);
998
999 // Fallback to the default implementation.
1000 InstructionCost Cost = BaseT::getArithmeticInstrCost(
1001 Opcode, Ty, CostKind, Op1Info, Op2Info, Opd1PropInfo, Opd2PropInfo);
1002 return Cost * CostFactor;
1003 }
1004
getShuffleCost(TTI::ShuffleKind Kind,Type * Tp,ArrayRef<int> Mask,int Index,Type * SubTp,ArrayRef<const Value * > Args)1005 InstructionCost PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
1006 ArrayRef<int> Mask, int Index,
1007 Type *SubTp,
1008 ArrayRef<const Value *> Args) {
1009
1010 InstructionCost CostFactor =
1011 vectorCostAdjustmentFactor(Instruction::ShuffleVector, Tp, nullptr);
1012 if (!CostFactor.isValid())
1013 return InstructionCost::getMax();
1014
1015 // Legalize the type.
1016 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1017
1018 // PPC, for both Altivec/VSX, support cheap arbitrary permutations
1019 // (at least in the sense that there need only be one non-loop-invariant
1020 // instruction). We need one such shuffle instruction for each actual
1021 // register (this is not true for arbitrary shuffles, but is true for the
1022 // structured types of shuffles covered by TTI::ShuffleKind).
1023 return LT.first * CostFactor;
1024 }
1025
getCFInstrCost(unsigned Opcode,TTI::TargetCostKind CostKind,const Instruction * I)1026 InstructionCost PPCTTIImpl::getCFInstrCost(unsigned Opcode,
1027 TTI::TargetCostKind CostKind,
1028 const Instruction *I) {
1029 if (CostKind != TTI::TCK_RecipThroughput)
1030 return Opcode == Instruction::PHI ? 0 : 1;
1031 // Branches are assumed to be predicted.
1032 return 0;
1033 }
1034
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src,TTI::CastContextHint CCH,TTI::TargetCostKind CostKind,const Instruction * I)1035 InstructionCost PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
1036 Type *Src,
1037 TTI::CastContextHint CCH,
1038 TTI::TargetCostKind CostKind,
1039 const Instruction *I) {
1040 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
1041
1042 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Dst, Src);
1043 if (!CostFactor.isValid())
1044 return InstructionCost::getMax();
1045
1046 InstructionCost Cost =
1047 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
1048 Cost *= CostFactor;
1049 // TODO: Allow non-throughput costs that aren't binary.
1050 if (CostKind != TTI::TCK_RecipThroughput)
1051 return Cost == 0 ? 0 : 1;
1052 return Cost;
1053 }
1054
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy,CmpInst::Predicate VecPred,TTI::TargetCostKind CostKind,const Instruction * I)1055 InstructionCost PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
1056 Type *CondTy,
1057 CmpInst::Predicate VecPred,
1058 TTI::TargetCostKind CostKind,
1059 const Instruction *I) {
1060 InstructionCost CostFactor =
1061 vectorCostAdjustmentFactor(Opcode, ValTy, nullptr);
1062 if (!CostFactor.isValid())
1063 return InstructionCost::getMax();
1064
1065 InstructionCost Cost =
1066 BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
1067 // TODO: Handle other cost kinds.
1068 if (CostKind != TTI::TCK_RecipThroughput)
1069 return Cost;
1070 return Cost * CostFactor;
1071 }
1072
getVectorInstrCost(unsigned Opcode,Type * Val,unsigned Index)1073 InstructionCost PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
1074 unsigned Index) {
1075 assert(Val->isVectorTy() && "This must be a vector type");
1076
1077 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1078 assert(ISD && "Invalid opcode");
1079
1080 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Val, nullptr);
1081 if (!CostFactor.isValid())
1082 return InstructionCost::getMax();
1083
1084 InstructionCost Cost = BaseT::getVectorInstrCost(Opcode, Val, Index);
1085 Cost *= CostFactor;
1086
1087 if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
1088 // Double-precision scalars are already located in index #0 (or #1 if LE).
1089 if (ISD == ISD::EXTRACT_VECTOR_ELT &&
1090 Index == (ST->isLittleEndian() ? 1 : 0))
1091 return 0;
1092
1093 return Cost;
1094
1095 } else if (Val->getScalarType()->isIntegerTy() && Index != -1U) {
1096 if (ST->hasP9Altivec()) {
1097 if (ISD == ISD::INSERT_VECTOR_ELT)
1098 // A move-to VSR and a permute/insert. Assume vector operation cost
1099 // for both (cost will be 2x on P9).
1100 return 2 * CostFactor;
1101
1102 // It's an extract. Maybe we can do a cheap move-from VSR.
1103 unsigned EltSize = Val->getScalarSizeInBits();
1104 if (EltSize == 64) {
1105 unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0;
1106 if (Index == MfvsrdIndex)
1107 return 1;
1108 } else if (EltSize == 32) {
1109 unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1;
1110 if (Index == MfvsrwzIndex)
1111 return 1;
1112 }
1113
1114 // We need a vector extract (or mfvsrld). Assume vector operation cost.
1115 // The cost of the load constant for a vector extract is disregarded
1116 // (invariant, easily schedulable).
1117 return CostFactor;
1118
1119 } else if (ST->hasDirectMove())
1120 // Assume permute has standard cost.
1121 // Assume move-to/move-from VSR have 2x standard cost.
1122 return 3;
1123 }
1124
1125 // Estimated cost of a load-hit-store delay. This was obtained
1126 // experimentally as a minimum needed to prevent unprofitable
1127 // vectorization for the paq8p benchmark. It may need to be
1128 // raised further if other unprofitable cases remain.
1129 unsigned LHSPenalty = 2;
1130 if (ISD == ISD::INSERT_VECTOR_ELT)
1131 LHSPenalty += 7;
1132
1133 // Vector element insert/extract with Altivec is very expensive,
1134 // because they require store and reload with the attendant
1135 // processor stall for load-hit-store. Until VSX is available,
1136 // these need to be estimated as very costly.
1137 if (ISD == ISD::EXTRACT_VECTOR_ELT ||
1138 ISD == ISD::INSERT_VECTOR_ELT)
1139 return LHSPenalty + Cost;
1140
1141 return Cost;
1142 }
1143
getMemoryOpCost(unsigned Opcode,Type * Src,MaybeAlign Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,const Instruction * I)1144 InstructionCost PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
1145 MaybeAlign Alignment,
1146 unsigned AddressSpace,
1147 TTI::TargetCostKind CostKind,
1148 const Instruction *I) {
1149
1150 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Src, nullptr);
1151 if (!CostFactor.isValid())
1152 return InstructionCost::getMax();
1153
1154 if (TLI->getValueType(DL, Src, true) == MVT::Other)
1155 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1156 CostKind);
1157 // Legalize the type.
1158 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
1159 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1160 "Invalid Opcode");
1161
1162 InstructionCost Cost =
1163 BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
1164 // TODO: Handle other cost kinds.
1165 if (CostKind != TTI::TCK_RecipThroughput)
1166 return Cost;
1167
1168 Cost *= CostFactor;
1169
1170 bool IsAltivecType = ST->hasAltivec() &&
1171 (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
1172 LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
1173 bool IsVSXType = ST->hasVSX() &&
1174 (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
1175
1176 // VSX has 32b/64b load instructions. Legalization can handle loading of
1177 // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
1178 // PPCTargetLowering can't compute the cost appropriately. So here we
1179 // explicitly check this case.
1180 unsigned MemBytes = Src->getPrimitiveSizeInBits();
1181 if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
1182 (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
1183 return 1;
1184
1185 // Aligned loads and stores are easy.
1186 unsigned SrcBytes = LT.second.getStoreSize();
1187 if (!SrcBytes || !Alignment || *Alignment >= SrcBytes)
1188 return Cost;
1189
1190 // If we can use the permutation-based load sequence, then this is also
1191 // relatively cheap (not counting loop-invariant instructions): one load plus
1192 // one permute (the last load in a series has extra cost, but we're
1193 // neglecting that here). Note that on the P7, we could do unaligned loads
1194 // for Altivec types using the VSX instructions, but that's more expensive
1195 // than using the permutation-based load sequence. On the P8, that's no
1196 // longer true.
1197 if (Opcode == Instruction::Load && (!ST->hasP8Vector() && IsAltivecType) &&
1198 *Alignment >= LT.second.getScalarType().getStoreSize())
1199 return Cost + LT.first; // Add the cost of the permutations.
1200
1201 // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
1202 // P7, unaligned vector loads are more expensive than the permutation-based
1203 // load sequence, so that might be used instead, but regardless, the net cost
1204 // is about the same (not counting loop-invariant instructions).
1205 if (IsVSXType || (ST->hasVSX() && IsAltivecType))
1206 return Cost;
1207
1208 // Newer PPC supports unaligned memory access.
1209 if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
1210 return Cost;
1211
1212 // PPC in general does not support unaligned loads and stores. They'll need
1213 // to be decomposed based on the alignment factor.
1214
1215 // Add the cost of each scalar load or store.
1216 assert(Alignment);
1217 Cost += LT.first * ((SrcBytes / Alignment->value()) - 1);
1218
1219 // For a vector type, there is also scalarization overhead (only for
1220 // stores, loads are expanded using the vector-load + permutation sequence,
1221 // which is much less expensive).
1222 if (Src->isVectorTy() && Opcode == Instruction::Store)
1223 for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e;
1224 ++i)
1225 Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
1226
1227 return Cost;
1228 }
1229
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,bool UseMaskForCond,bool UseMaskForGaps)1230 InstructionCost PPCTTIImpl::getInterleavedMemoryOpCost(
1231 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1232 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1233 bool UseMaskForCond, bool UseMaskForGaps) {
1234 InstructionCost CostFactor =
1235 vectorCostAdjustmentFactor(Opcode, VecTy, nullptr);
1236 if (!CostFactor.isValid())
1237 return InstructionCost::getMax();
1238
1239 if (UseMaskForCond || UseMaskForGaps)
1240 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1241 Alignment, AddressSpace, CostKind,
1242 UseMaskForCond, UseMaskForGaps);
1243
1244 assert(isa<VectorType>(VecTy) &&
1245 "Expect a vector type for interleaved memory op");
1246
1247 // Legalize the type.
1248 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);
1249
1250 // Firstly, the cost of load/store operation.
1251 InstructionCost Cost = getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment),
1252 AddressSpace, CostKind);
1253
1254 // PPC, for both Altivec/VSX, support cheap arbitrary permutations
1255 // (at least in the sense that there need only be one non-loop-invariant
1256 // instruction). For each result vector, we need one shuffle per incoming
1257 // vector (except that the first shuffle can take two incoming vectors
1258 // because it does not need to take itself).
1259 Cost += Factor*(LT.first-1);
1260
1261 return Cost;
1262 }
1263
1264 InstructionCost
getIntrinsicInstrCost(const IntrinsicCostAttributes & ICA,TTI::TargetCostKind CostKind)1265 PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1266 TTI::TargetCostKind CostKind) {
1267 return BaseT::getIntrinsicInstrCost(ICA, CostKind);
1268 }
1269
areTypesABICompatible(const Function * Caller,const Function * Callee,const ArrayRef<Type * > & Types) const1270 bool PPCTTIImpl::areTypesABICompatible(const Function *Caller,
1271 const Function *Callee,
1272 const ArrayRef<Type *> &Types) const {
1273
1274 // We need to ensure that argument promotion does not
1275 // attempt to promote pointers to MMA types (__vector_pair
1276 // and __vector_quad) since these types explicitly cannot be
1277 // passed as arguments. Both of these types are larger than
1278 // the 128-bit Altivec vectors and have a scalar size of 1 bit.
1279 if (!BaseT::areTypesABICompatible(Caller, Callee, Types))
1280 return false;
1281
1282 return llvm::none_of(Types, [](Type *Ty) {
1283 if (Ty->isSized())
1284 return Ty->isIntOrIntVectorTy(1) && Ty->getPrimitiveSizeInBits() > 128;
1285 return false;
1286 });
1287 }
1288
canSaveCmp(Loop * L,BranchInst ** BI,ScalarEvolution * SE,LoopInfo * LI,DominatorTree * DT,AssumptionCache * AC,TargetLibraryInfo * LibInfo)1289 bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
1290 LoopInfo *LI, DominatorTree *DT,
1291 AssumptionCache *AC, TargetLibraryInfo *LibInfo) {
1292 // Process nested loops first.
1293 for (Loop *I : *L)
1294 if (canSaveCmp(I, BI, SE, LI, DT, AC, LibInfo))
1295 return false; // Stop search.
1296
1297 HardwareLoopInfo HWLoopInfo(L);
1298
1299 if (!HWLoopInfo.canAnalyze(*LI))
1300 return false;
1301
1302 if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo))
1303 return false;
1304
1305 if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT))
1306 return false;
1307
1308 *BI = HWLoopInfo.ExitBranch;
1309 return true;
1310 }
1311
isLSRCostLess(const TargetTransformInfo::LSRCost & C1,const TargetTransformInfo::LSRCost & C2)1312 bool PPCTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
1313 const TargetTransformInfo::LSRCost &C2) {
1314 // PowerPC default behaviour here is "instruction number 1st priority".
1315 // If LsrNoInsnsCost is set, call default implementation.
1316 if (!LsrNoInsnsCost)
1317 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls,
1318 C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
1319 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls,
1320 C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost);
1321 else
1322 return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
1323 }
1324
isNumRegsMajorCostOfLSR()1325 bool PPCTTIImpl::isNumRegsMajorCostOfLSR() {
1326 return false;
1327 }
1328
shouldBuildRelLookupTables() const1329 bool PPCTTIImpl::shouldBuildRelLookupTables() const {
1330 const PPCTargetMachine &TM = ST->getTargetMachine();
1331 // XCOFF hasn't implemented lowerRelativeReference, disable non-ELF for now.
1332 if (!TM.isELFv2ABI())
1333 return false;
1334 return BaseT::shouldBuildRelLookupTables();
1335 }
1336
getTgtMemIntrinsic(IntrinsicInst * Inst,MemIntrinsicInfo & Info)1337 bool PPCTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
1338 MemIntrinsicInfo &Info) {
1339 switch (Inst->getIntrinsicID()) {
1340 case Intrinsic::ppc_altivec_lvx:
1341 case Intrinsic::ppc_altivec_lvxl:
1342 case Intrinsic::ppc_altivec_lvebx:
1343 case Intrinsic::ppc_altivec_lvehx:
1344 case Intrinsic::ppc_altivec_lvewx:
1345 case Intrinsic::ppc_vsx_lxvd2x:
1346 case Intrinsic::ppc_vsx_lxvw4x:
1347 case Intrinsic::ppc_vsx_lxvd2x_be:
1348 case Intrinsic::ppc_vsx_lxvw4x_be:
1349 case Intrinsic::ppc_vsx_lxvl:
1350 case Intrinsic::ppc_vsx_lxvll:
1351 case Intrinsic::ppc_vsx_lxvp: {
1352 Info.PtrVal = Inst->getArgOperand(0);
1353 Info.ReadMem = true;
1354 Info.WriteMem = false;
1355 return true;
1356 }
1357 case Intrinsic::ppc_altivec_stvx:
1358 case Intrinsic::ppc_altivec_stvxl:
1359 case Intrinsic::ppc_altivec_stvebx:
1360 case Intrinsic::ppc_altivec_stvehx:
1361 case Intrinsic::ppc_altivec_stvewx:
1362 case Intrinsic::ppc_vsx_stxvd2x:
1363 case Intrinsic::ppc_vsx_stxvw4x:
1364 case Intrinsic::ppc_vsx_stxvd2x_be:
1365 case Intrinsic::ppc_vsx_stxvw4x_be:
1366 case Intrinsic::ppc_vsx_stxvl:
1367 case Intrinsic::ppc_vsx_stxvll:
1368 case Intrinsic::ppc_vsx_stxvp: {
1369 Info.PtrVal = Inst->getArgOperand(1);
1370 Info.ReadMem = false;
1371 Info.WriteMem = true;
1372 return true;
1373 }
1374 default:
1375 break;
1376 }
1377
1378 return false;
1379 }
1380
hasActiveVectorLength(unsigned Opcode,Type * DataType,Align Alignment) const1381 bool PPCTTIImpl::hasActiveVectorLength(unsigned Opcode, Type *DataType,
1382 Align Alignment) const {
1383 // Only load and stores instructions can have variable vector length on Power.
1384 if (Opcode != Instruction::Load && Opcode != Instruction::Store)
1385 return false;
1386 // Loads/stores with length instructions use bits 0-7 of the GPR operand and
1387 // therefore cannot be used in 32-bit mode.
1388 if ((!ST->hasP9Vector() && !ST->hasP10Vector()) || !ST->isPPC64())
1389 return false;
1390 if (isa<FixedVectorType>(DataType)) {
1391 unsigned VecWidth = DataType->getPrimitiveSizeInBits();
1392 return VecWidth == 128;
1393 }
1394 Type *ScalarTy = DataType->getScalarType();
1395
1396 if (ScalarTy->isPointerTy())
1397 return true;
1398
1399 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
1400 return true;
1401
1402 if (!ScalarTy->isIntegerTy())
1403 return false;
1404
1405 unsigned IntWidth = ScalarTy->getIntegerBitWidth();
1406 return IntWidth == 8 || IntWidth == 16 || IntWidth == 32 || IntWidth == 64;
1407 }
1408
getVPMemoryOpCost(unsigned Opcode,Type * Src,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,const Instruction * I)1409 InstructionCost PPCTTIImpl::getVPMemoryOpCost(unsigned Opcode, Type *Src,
1410 Align Alignment,
1411 unsigned AddressSpace,
1412 TTI::TargetCostKind CostKind,
1413 const Instruction *I) {
1414 InstructionCost Cost = BaseT::getVPMemoryOpCost(Opcode, Src, Alignment,
1415 AddressSpace, CostKind, I);
1416 if (TLI->getValueType(DL, Src, true) == MVT::Other)
1417 return Cost;
1418 // TODO: Handle other cost kinds.
1419 if (CostKind != TTI::TCK_RecipThroughput)
1420 return Cost;
1421
1422 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1423 "Invalid Opcode");
1424
1425 auto *SrcVTy = dyn_cast<FixedVectorType>(Src);
1426 assert(SrcVTy && "Expected a vector type for VP memory operations");
1427
1428 if (hasActiveVectorLength(Opcode, Src, Alignment)) {
1429 std::pair<InstructionCost, MVT> LT =
1430 TLI->getTypeLegalizationCost(DL, SrcVTy);
1431
1432 InstructionCost CostFactor =
1433 vectorCostAdjustmentFactor(Opcode, Src, nullptr);
1434 if (!CostFactor.isValid())
1435 return InstructionCost::getMax();
1436
1437 InstructionCost Cost = LT.first * CostFactor;
1438 assert(Cost.isValid() && "Expected valid cost");
1439
1440 // On P9 but not on P10, if the op is misaligned then it will cause a
1441 // pipeline flush. Otherwise the VSX masked memops cost the same as unmasked
1442 // ones.
1443 const Align DesiredAlignment(16);
1444 if (Alignment >= DesiredAlignment || ST->getCPUDirective() != PPC::DIR_PWR9)
1445 return Cost;
1446
1447 // Since alignment may be under estimated, we try to compute the probability
1448 // that the actual address is aligned to the desired boundary. For example
1449 // an 8-byte aligned load is assumed to be actually 16-byte aligned half the
1450 // time, while a 4-byte aligned load has a 25% chance of being 16-byte
1451 // aligned.
1452 float AlignmentProb = ((float)Alignment.value()) / DesiredAlignment.value();
1453 float MisalignmentProb = 1.0 - AlignmentProb;
1454 return (MisalignmentProb * P9PipelineFlushEstimate) +
1455 (AlignmentProb * *Cost.getValue());
1456 }
1457
1458 // Usually we should not get to this point, but the following is an attempt to
1459 // model the cost of legalization. Currently we can only lower intrinsics with
1460 // evl but no mask, on Power 9/10. Otherwise, we must scalarize.
1461 return getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
1462 }
1463