1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "PPCTargetTransformInfo.h" 10 #include "llvm/Analysis/CodeMetrics.h" 11 #include "llvm/Analysis/TargetTransformInfo.h" 12 #include "llvm/CodeGen/BasicTTIImpl.h" 13 #include "llvm/CodeGen/CostTable.h" 14 #include "llvm/CodeGen/TargetLowering.h" 15 #include "llvm/CodeGen/TargetSchedule.h" 16 #include "llvm/IR/IntrinsicsPowerPC.h" 17 #include "llvm/Support/CommandLine.h" 18 #include "llvm/Support/Debug.h" 19 #include "llvm/Transforms/InstCombine/InstCombiner.h" 20 #include "llvm/Transforms/Utils/Local.h" 21 using namespace llvm; 22 23 #define DEBUG_TYPE "ppctti" 24 25 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting", 26 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden); 27 28 // This is currently only used for the data prefetch pass which is only enabled 29 // for BG/Q by default. 30 static cl::opt<unsigned> 31 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64), 32 cl::desc("The loop prefetch cache line size")); 33 34 static cl::opt<bool> 35 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false), 36 cl::desc("Enable using coldcc calling conv for cold " 37 "internal functions")); 38 39 static cl::opt<bool> 40 LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false), 41 cl::desc("Do not add instruction count to lsr cost model")); 42 43 // The latency of mtctr is only justified if there are more than 4 44 // comparisons that will be removed as a result. 45 static cl::opt<unsigned> 46 SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden, 47 cl::desc("Loops with a constant trip count smaller than " 48 "this value will not use the count register.")); 49 50 //===----------------------------------------------------------------------===// 51 // 52 // PPC cost model. 53 // 54 //===----------------------------------------------------------------------===// 55 56 TargetTransformInfo::PopcntSupportKind 57 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) { 58 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 59 if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64) 60 return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ? 61 TTI::PSK_SlowHardware : TTI::PSK_FastHardware; 62 return TTI::PSK_Software; 63 } 64 65 Optional<Instruction *> 66 PPCTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { 67 Intrinsic::ID IID = II.getIntrinsicID(); 68 switch (IID) { 69 default: 70 break; 71 case Intrinsic::ppc_altivec_lvx: 72 case Intrinsic::ppc_altivec_lvxl: 73 // Turn PPC lvx -> load if the pointer is known aligned. 74 if (getOrEnforceKnownAlignment( 75 II.getArgOperand(0), Align(16), IC.getDataLayout(), &II, 76 &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) { 77 Value *Ptr = IC.Builder.CreateBitCast( 78 II.getArgOperand(0), PointerType::getUnqual(II.getType())); 79 return new LoadInst(II.getType(), Ptr, "", false, Align(16)); 80 } 81 break; 82 case Intrinsic::ppc_vsx_lxvw4x: 83 case Intrinsic::ppc_vsx_lxvd2x: { 84 // Turn PPC VSX loads into normal loads. 85 Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(0), 86 PointerType::getUnqual(II.getType())); 87 return new LoadInst(II.getType(), Ptr, Twine(""), false, Align(1)); 88 } 89 case Intrinsic::ppc_altivec_stvx: 90 case Intrinsic::ppc_altivec_stvxl: 91 // Turn stvx -> store if the pointer is known aligned. 92 if (getOrEnforceKnownAlignment( 93 II.getArgOperand(1), Align(16), IC.getDataLayout(), &II, 94 &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) { 95 Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType()); 96 Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy); 97 return new StoreInst(II.getArgOperand(0), Ptr, false, Align(16)); 98 } 99 break; 100 case Intrinsic::ppc_vsx_stxvw4x: 101 case Intrinsic::ppc_vsx_stxvd2x: { 102 // Turn PPC VSX stores into normal stores. 103 Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType()); 104 Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy); 105 return new StoreInst(II.getArgOperand(0), Ptr, false, Align(1)); 106 } 107 case Intrinsic::ppc_qpx_qvlfs: 108 // Turn PPC QPX qvlfs -> load if the pointer is known aligned. 109 if (getOrEnforceKnownAlignment( 110 II.getArgOperand(0), Align(16), IC.getDataLayout(), &II, 111 &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) { 112 Type *VTy = 113 VectorType::get(IC.Builder.getFloatTy(), 114 cast<VectorType>(II.getType())->getElementCount()); 115 Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(0), 116 PointerType::getUnqual(VTy)); 117 Value *Load = IC.Builder.CreateLoad(VTy, Ptr); 118 return new FPExtInst(Load, II.getType()); 119 } 120 break; 121 case Intrinsic::ppc_qpx_qvlfd: 122 // Turn PPC QPX qvlfd -> load if the pointer is known aligned. 123 if (getOrEnforceKnownAlignment( 124 II.getArgOperand(0), Align(32), IC.getDataLayout(), &II, 125 &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 32) { 126 Value *Ptr = IC.Builder.CreateBitCast( 127 II.getArgOperand(0), PointerType::getUnqual(II.getType())); 128 return new LoadInst(II.getType(), Ptr, "", false, Align(32)); 129 } 130 break; 131 case Intrinsic::ppc_qpx_qvstfs: 132 // Turn PPC QPX qvstfs -> store if the pointer is known aligned. 133 if (getOrEnforceKnownAlignment( 134 II.getArgOperand(1), Align(16), IC.getDataLayout(), &II, 135 &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) { 136 Type *VTy = VectorType::get( 137 IC.Builder.getFloatTy(), 138 cast<VectorType>(II.getArgOperand(0)->getType())->getElementCount()); 139 Value *TOp = IC.Builder.CreateFPTrunc(II.getArgOperand(0), VTy); 140 Type *OpPtrTy = PointerType::getUnqual(VTy); 141 Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy); 142 return new StoreInst(TOp, Ptr, false, Align(16)); 143 } 144 break; 145 case Intrinsic::ppc_qpx_qvstfd: 146 // Turn PPC QPX qvstfd -> store if the pointer is known aligned. 147 if (getOrEnforceKnownAlignment( 148 II.getArgOperand(1), Align(32), IC.getDataLayout(), &II, 149 &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 32) { 150 Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType()); 151 Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy); 152 return new StoreInst(II.getArgOperand(0), Ptr, false, Align(32)); 153 } 154 break; 155 156 case Intrinsic::ppc_altivec_vperm: 157 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. 158 // Note that ppc_altivec_vperm has a big-endian bias, so when creating 159 // a vectorshuffle for little endian, we must undo the transformation 160 // performed on vec_perm in altivec.h. That is, we must complement 161 // the permutation mask with respect to 31 and reverse the order of 162 // V1 and V2. 163 if (Constant *Mask = dyn_cast<Constant>(II.getArgOperand(2))) { 164 assert(cast<VectorType>(Mask->getType())->getNumElements() == 16 && 165 "Bad type for intrinsic!"); 166 167 // Check that all of the elements are integer constants or undefs. 168 bool AllEltsOk = true; 169 for (unsigned i = 0; i != 16; ++i) { 170 Constant *Elt = Mask->getAggregateElement(i); 171 if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) { 172 AllEltsOk = false; 173 break; 174 } 175 } 176 177 if (AllEltsOk) { 178 // Cast the input vectors to byte vectors. 179 Value *Op0 = 180 IC.Builder.CreateBitCast(II.getArgOperand(0), Mask->getType()); 181 Value *Op1 = 182 IC.Builder.CreateBitCast(II.getArgOperand(1), Mask->getType()); 183 Value *Result = UndefValue::get(Op0->getType()); 184 185 // Only extract each element once. 186 Value *ExtractedElts[32]; 187 memset(ExtractedElts, 0, sizeof(ExtractedElts)); 188 189 for (unsigned i = 0; i != 16; ++i) { 190 if (isa<UndefValue>(Mask->getAggregateElement(i))) 191 continue; 192 unsigned Idx = 193 cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue(); 194 Idx &= 31; // Match the hardware behavior. 195 if (DL.isLittleEndian()) 196 Idx = 31 - Idx; 197 198 if (!ExtractedElts[Idx]) { 199 Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0; 200 Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1; 201 ExtractedElts[Idx] = IC.Builder.CreateExtractElement( 202 Idx < 16 ? Op0ToUse : Op1ToUse, IC.Builder.getInt32(Idx & 15)); 203 } 204 205 // Insert this value into the result vector. 206 Result = IC.Builder.CreateInsertElement(Result, ExtractedElts[Idx], 207 IC.Builder.getInt32(i)); 208 } 209 return CastInst::Create(Instruction::BitCast, Result, II.getType()); 210 } 211 } 212 break; 213 } 214 return None; 215 } 216 217 int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 218 TTI::TargetCostKind CostKind) { 219 if (DisablePPCConstHoist) 220 return BaseT::getIntImmCost(Imm, Ty, CostKind); 221 222 assert(Ty->isIntegerTy()); 223 224 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 225 if (BitSize == 0) 226 return ~0U; 227 228 if (Imm == 0) 229 return TTI::TCC_Free; 230 231 if (Imm.getBitWidth() <= 64) { 232 if (isInt<16>(Imm.getSExtValue())) 233 return TTI::TCC_Basic; 234 235 if (isInt<32>(Imm.getSExtValue())) { 236 // A constant that can be materialized using lis. 237 if ((Imm.getZExtValue() & 0xFFFF) == 0) 238 return TTI::TCC_Basic; 239 240 return 2 * TTI::TCC_Basic; 241 } 242 } 243 244 return 4 * TTI::TCC_Basic; 245 } 246 247 int PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 248 const APInt &Imm, Type *Ty, 249 TTI::TargetCostKind CostKind) { 250 if (DisablePPCConstHoist) 251 return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); 252 253 assert(Ty->isIntegerTy()); 254 255 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 256 if (BitSize == 0) 257 return ~0U; 258 259 switch (IID) { 260 default: 261 return TTI::TCC_Free; 262 case Intrinsic::sadd_with_overflow: 263 case Intrinsic::uadd_with_overflow: 264 case Intrinsic::ssub_with_overflow: 265 case Intrinsic::usub_with_overflow: 266 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue())) 267 return TTI::TCC_Free; 268 break; 269 case Intrinsic::experimental_stackmap: 270 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 271 return TTI::TCC_Free; 272 break; 273 case Intrinsic::experimental_patchpoint_void: 274 case Intrinsic::experimental_patchpoint_i64: 275 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 276 return TTI::TCC_Free; 277 break; 278 } 279 return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind); 280 } 281 282 int PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 283 const APInt &Imm, Type *Ty, 284 TTI::TargetCostKind CostKind) { 285 if (DisablePPCConstHoist) 286 return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind); 287 288 assert(Ty->isIntegerTy()); 289 290 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 291 if (BitSize == 0) 292 return ~0U; 293 294 unsigned ImmIdx = ~0U; 295 bool ShiftedFree = false, RunFree = false, UnsignedFree = false, 296 ZeroFree = false; 297 switch (Opcode) { 298 default: 299 return TTI::TCC_Free; 300 case Instruction::GetElementPtr: 301 // Always hoist the base address of a GetElementPtr. This prevents the 302 // creation of new constants for every base constant that gets constant 303 // folded with the offset. 304 if (Idx == 0) 305 return 2 * TTI::TCC_Basic; 306 return TTI::TCC_Free; 307 case Instruction::And: 308 RunFree = true; // (for the rotate-and-mask instructions) 309 LLVM_FALLTHROUGH; 310 case Instruction::Add: 311 case Instruction::Or: 312 case Instruction::Xor: 313 ShiftedFree = true; 314 LLVM_FALLTHROUGH; 315 case Instruction::Sub: 316 case Instruction::Mul: 317 case Instruction::Shl: 318 case Instruction::LShr: 319 case Instruction::AShr: 320 ImmIdx = 1; 321 break; 322 case Instruction::ICmp: 323 UnsignedFree = true; 324 ImmIdx = 1; 325 // Zero comparisons can use record-form instructions. 326 LLVM_FALLTHROUGH; 327 case Instruction::Select: 328 ZeroFree = true; 329 break; 330 case Instruction::PHI: 331 case Instruction::Call: 332 case Instruction::Ret: 333 case Instruction::Load: 334 case Instruction::Store: 335 break; 336 } 337 338 if (ZeroFree && Imm == 0) 339 return TTI::TCC_Free; 340 341 if (Idx == ImmIdx && Imm.getBitWidth() <= 64) { 342 if (isInt<16>(Imm.getSExtValue())) 343 return TTI::TCC_Free; 344 345 if (RunFree) { 346 if (Imm.getBitWidth() <= 32 && 347 (isShiftedMask_32(Imm.getZExtValue()) || 348 isShiftedMask_32(~Imm.getZExtValue()))) 349 return TTI::TCC_Free; 350 351 if (ST->isPPC64() && 352 (isShiftedMask_64(Imm.getZExtValue()) || 353 isShiftedMask_64(~Imm.getZExtValue()))) 354 return TTI::TCC_Free; 355 } 356 357 if (UnsignedFree && isUInt<16>(Imm.getZExtValue())) 358 return TTI::TCC_Free; 359 360 if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0) 361 return TTI::TCC_Free; 362 } 363 364 return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind); 365 } 366 367 unsigned 368 PPCTTIImpl::getUserCost(const User *U, ArrayRef<const Value *> Operands, 369 TTI::TargetCostKind CostKind) { 370 // We already implement getCastInstrCost and getMemoryOpCost where we perform 371 // the vector adjustment there. 372 if (isa<CastInst>(U) || isa<LoadInst>(U) || isa<StoreInst>(U)) 373 return BaseT::getUserCost(U, Operands, CostKind); 374 375 if (U->getType()->isVectorTy()) { 376 // Instructions that need to be split should cost more. 377 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, U->getType()); 378 return LT.first * BaseT::getUserCost(U, Operands, CostKind); 379 } 380 381 return BaseT::getUserCost(U, Operands, CostKind); 382 } 383 384 bool PPCTTIImpl::mightUseCTR(BasicBlock *BB, TargetLibraryInfo *LibInfo, 385 SmallPtrSetImpl<const Value *> &Visited) { 386 const PPCTargetMachine &TM = ST->getTargetMachine(); 387 388 // Loop through the inline asm constraints and look for something that 389 // clobbers ctr. 390 auto asmClobbersCTR = [](InlineAsm *IA) { 391 InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints(); 392 for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) { 393 InlineAsm::ConstraintInfo &C = CIV[i]; 394 if (C.Type != InlineAsm::isInput) 395 for (unsigned j = 0, je = C.Codes.size(); j < je; ++j) 396 if (StringRef(C.Codes[j]).equals_lower("{ctr}")) 397 return true; 398 } 399 return false; 400 }; 401 402 // Determining the address of a TLS variable results in a function call in 403 // certain TLS models. 404 std::function<bool(const Value *)> memAddrUsesCTR = 405 [&memAddrUsesCTR, &TM, &Visited](const Value *MemAddr) -> bool { 406 // No need to traverse again if we already checked this operand. 407 if (!Visited.insert(MemAddr).second) 408 return false; 409 const auto *GV = dyn_cast<GlobalValue>(MemAddr); 410 if (!GV) { 411 // Recurse to check for constants that refer to TLS global variables. 412 if (const auto *CV = dyn_cast<Constant>(MemAddr)) 413 for (const auto &CO : CV->operands()) 414 if (memAddrUsesCTR(CO)) 415 return true; 416 417 return false; 418 } 419 420 if (!GV->isThreadLocal()) 421 return false; 422 TLSModel::Model Model = TM.getTLSModel(GV); 423 return Model == TLSModel::GeneralDynamic || 424 Model == TLSModel::LocalDynamic; 425 }; 426 427 auto isLargeIntegerTy = [](bool Is32Bit, Type *Ty) { 428 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) 429 return ITy->getBitWidth() > (Is32Bit ? 32U : 64U); 430 431 return false; 432 }; 433 434 for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); 435 J != JE; ++J) { 436 if (CallInst *CI = dyn_cast<CallInst>(J)) { 437 // Inline ASM is okay, unless it clobbers the ctr register. 438 if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand())) { 439 if (asmClobbersCTR(IA)) 440 return true; 441 continue; 442 } 443 444 if (Function *F = CI->getCalledFunction()) { 445 // Most intrinsics don't become function calls, but some might. 446 // sin, cos, exp and log are always calls. 447 unsigned Opcode = 0; 448 if (F->getIntrinsicID() != Intrinsic::not_intrinsic) { 449 switch (F->getIntrinsicID()) { 450 default: continue; 451 // If we have a call to loop_decrement or set_loop_iterations, 452 // we're definitely using CTR. 453 case Intrinsic::set_loop_iterations: 454 case Intrinsic::loop_decrement: 455 return true; 456 457 // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp 458 // because, although it does clobber the counter register, the 459 // control can't then return to inside the loop unless there is also 460 // an eh_sjlj_setjmp. 461 case Intrinsic::eh_sjlj_setjmp: 462 463 case Intrinsic::memcpy: 464 case Intrinsic::memmove: 465 case Intrinsic::memset: 466 case Intrinsic::powi: 467 case Intrinsic::log: 468 case Intrinsic::log2: 469 case Intrinsic::log10: 470 case Intrinsic::exp: 471 case Intrinsic::exp2: 472 case Intrinsic::pow: 473 case Intrinsic::sin: 474 case Intrinsic::cos: 475 return true; 476 case Intrinsic::copysign: 477 if (CI->getArgOperand(0)->getType()->getScalarType()-> 478 isPPC_FP128Ty()) 479 return true; 480 else 481 continue; // ISD::FCOPYSIGN is never a library call. 482 case Intrinsic::fma: Opcode = ISD::FMA; break; 483 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 484 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 485 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 486 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 487 case Intrinsic::rint: Opcode = ISD::FRINT; break; 488 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 489 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 490 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 491 case Intrinsic::round: Opcode = ISD::FROUND; break; 492 case Intrinsic::lround: Opcode = ISD::LROUND; break; 493 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 494 case Intrinsic::minnum: Opcode = ISD::FMINNUM; break; 495 case Intrinsic::maxnum: Opcode = ISD::FMAXNUM; break; 496 case Intrinsic::umul_with_overflow: Opcode = ISD::UMULO; break; 497 case Intrinsic::smul_with_overflow: Opcode = ISD::SMULO; break; 498 } 499 } 500 501 // PowerPC does not use [US]DIVREM or other library calls for 502 // operations on regular types which are not otherwise library calls 503 // (i.e. soft float or atomics). If adapting for targets that do, 504 // additional care is required here. 505 506 LibFunc Func; 507 if (!F->hasLocalLinkage() && F->hasName() && LibInfo && 508 LibInfo->getLibFunc(F->getName(), Func) && 509 LibInfo->hasOptimizedCodeGen(Func)) { 510 // Non-read-only functions are never treated as intrinsics. 511 if (!CI->onlyReadsMemory()) 512 return true; 513 514 // Conversion happens only for FP calls. 515 if (!CI->getArgOperand(0)->getType()->isFloatingPointTy()) 516 return true; 517 518 switch (Func) { 519 default: return true; 520 case LibFunc_copysign: 521 case LibFunc_copysignf: 522 continue; // ISD::FCOPYSIGN is never a library call. 523 case LibFunc_copysignl: 524 return true; 525 case LibFunc_fabs: 526 case LibFunc_fabsf: 527 case LibFunc_fabsl: 528 continue; // ISD::FABS is never a library call. 529 case LibFunc_sqrt: 530 case LibFunc_sqrtf: 531 case LibFunc_sqrtl: 532 Opcode = ISD::FSQRT; break; 533 case LibFunc_floor: 534 case LibFunc_floorf: 535 case LibFunc_floorl: 536 Opcode = ISD::FFLOOR; break; 537 case LibFunc_nearbyint: 538 case LibFunc_nearbyintf: 539 case LibFunc_nearbyintl: 540 Opcode = ISD::FNEARBYINT; break; 541 case LibFunc_ceil: 542 case LibFunc_ceilf: 543 case LibFunc_ceill: 544 Opcode = ISD::FCEIL; break; 545 case LibFunc_rint: 546 case LibFunc_rintf: 547 case LibFunc_rintl: 548 Opcode = ISD::FRINT; break; 549 case LibFunc_round: 550 case LibFunc_roundf: 551 case LibFunc_roundl: 552 Opcode = ISD::FROUND; break; 553 case LibFunc_trunc: 554 case LibFunc_truncf: 555 case LibFunc_truncl: 556 Opcode = ISD::FTRUNC; break; 557 case LibFunc_fmin: 558 case LibFunc_fminf: 559 case LibFunc_fminl: 560 Opcode = ISD::FMINNUM; break; 561 case LibFunc_fmax: 562 case LibFunc_fmaxf: 563 case LibFunc_fmaxl: 564 Opcode = ISD::FMAXNUM; break; 565 } 566 } 567 568 if (Opcode) { 569 EVT EVTy = 570 TLI->getValueType(DL, CI->getArgOperand(0)->getType(), true); 571 572 if (EVTy == MVT::Other) 573 return true; 574 575 if (TLI->isOperationLegalOrCustom(Opcode, EVTy)) 576 continue; 577 else if (EVTy.isVector() && 578 TLI->isOperationLegalOrCustom(Opcode, EVTy.getScalarType())) 579 continue; 580 581 return true; 582 } 583 } 584 585 return true; 586 } else if (isa<BinaryOperator>(J) && 587 (J->getType()->getScalarType()->isFP128Ty() || 588 J->getType()->getScalarType()->isPPC_FP128Ty())) { 589 // Most operations on f128 or ppc_f128 values become calls. 590 return true; 591 } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) || 592 isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) { 593 CastInst *CI = cast<CastInst>(J); 594 if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() || 595 CI->getDestTy()->getScalarType()->isPPC_FP128Ty() || 596 isLargeIntegerTy(!TM.isPPC64(), CI->getSrcTy()->getScalarType()) || 597 isLargeIntegerTy(!TM.isPPC64(), CI->getDestTy()->getScalarType())) 598 return true; 599 } else if (isLargeIntegerTy(!TM.isPPC64(), 600 J->getType()->getScalarType()) && 601 (J->getOpcode() == Instruction::UDiv || 602 J->getOpcode() == Instruction::SDiv || 603 J->getOpcode() == Instruction::URem || 604 J->getOpcode() == Instruction::SRem)) { 605 return true; 606 } else if (!TM.isPPC64() && 607 isLargeIntegerTy(false, J->getType()->getScalarType()) && 608 (J->getOpcode() == Instruction::Shl || 609 J->getOpcode() == Instruction::AShr || 610 J->getOpcode() == Instruction::LShr)) { 611 // Only on PPC32, for 128-bit integers (specifically not 64-bit 612 // integers), these might be runtime calls. 613 return true; 614 } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) { 615 // On PowerPC, indirect jumps use the counter register. 616 return true; 617 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) { 618 if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries()) 619 return true; 620 } 621 622 // FREM is always a call. 623 if (J->getOpcode() == Instruction::FRem) 624 return true; 625 626 if (ST->useSoftFloat()) { 627 switch(J->getOpcode()) { 628 case Instruction::FAdd: 629 case Instruction::FSub: 630 case Instruction::FMul: 631 case Instruction::FDiv: 632 case Instruction::FPTrunc: 633 case Instruction::FPExt: 634 case Instruction::FPToUI: 635 case Instruction::FPToSI: 636 case Instruction::UIToFP: 637 case Instruction::SIToFP: 638 case Instruction::FCmp: 639 return true; 640 } 641 } 642 643 for (Value *Operand : J->operands()) 644 if (memAddrUsesCTR(Operand)) 645 return true; 646 } 647 648 return false; 649 } 650 651 bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, 652 AssumptionCache &AC, 653 TargetLibraryInfo *LibInfo, 654 HardwareLoopInfo &HWLoopInfo) { 655 const PPCTargetMachine &TM = ST->getTargetMachine(); 656 TargetSchedModel SchedModel; 657 SchedModel.init(ST); 658 659 // Do not convert small short loops to CTR loop. 660 unsigned ConstTripCount = SE.getSmallConstantTripCount(L); 661 if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) { 662 SmallPtrSet<const Value *, 32> EphValues; 663 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 664 CodeMetrics Metrics; 665 for (BasicBlock *BB : L->blocks()) 666 Metrics.analyzeBasicBlock(BB, *this, EphValues); 667 // 6 is an approximate latency for the mtctr instruction. 668 if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth())) 669 return false; 670 } 671 672 // We don't want to spill/restore the counter register, and so we don't 673 // want to use the counter register if the loop contains calls. 674 SmallPtrSet<const Value *, 4> Visited; 675 for (Loop::block_iterator I = L->block_begin(), IE = L->block_end(); 676 I != IE; ++I) 677 if (mightUseCTR(*I, LibInfo, Visited)) 678 return false; 679 680 SmallVector<BasicBlock*, 4> ExitingBlocks; 681 L->getExitingBlocks(ExitingBlocks); 682 683 // If there is an exit edge known to be frequently taken, 684 // we should not transform this loop. 685 for (auto &BB : ExitingBlocks) { 686 Instruction *TI = BB->getTerminator(); 687 if (!TI) continue; 688 689 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 690 uint64_t TrueWeight = 0, FalseWeight = 0; 691 if (!BI->isConditional() || 692 !BI->extractProfMetadata(TrueWeight, FalseWeight)) 693 continue; 694 695 // If the exit path is more frequent than the loop path, 696 // we return here without further analysis for this loop. 697 bool TrueIsExit = !L->contains(BI->getSuccessor(0)); 698 if (( TrueIsExit && FalseWeight < TrueWeight) || 699 (!TrueIsExit && FalseWeight > TrueWeight)) 700 return false; 701 } 702 } 703 704 LLVMContext &C = L->getHeader()->getContext(); 705 HWLoopInfo.CountType = TM.isPPC64() ? 706 Type::getInt64Ty(C) : Type::getInt32Ty(C); 707 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1); 708 return true; 709 } 710 711 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 712 TTI::UnrollingPreferences &UP) { 713 if (ST->getCPUDirective() == PPC::DIR_A2) { 714 // The A2 is in-order with a deep pipeline, and concatenation unrolling 715 // helps expose latency-hiding opportunities to the instruction scheduler. 716 UP.Partial = UP.Runtime = true; 717 718 // We unroll a lot on the A2 (hundreds of instructions), and the benefits 719 // often outweigh the cost of a division to compute the trip count. 720 UP.AllowExpensiveTripCount = true; 721 } 722 723 BaseT::getUnrollingPreferences(L, SE, UP); 724 } 725 726 void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 727 TTI::PeelingPreferences &PP) { 728 BaseT::getPeelingPreferences(L, SE, PP); 729 } 730 // This function returns true to allow using coldcc calling convention. 731 // Returning true results in coldcc being used for functions which are cold at 732 // all call sites when the callers of the functions are not calling any other 733 // non coldcc functions. 734 bool PPCTTIImpl::useColdCCForColdCall(Function &F) { 735 return EnablePPCColdCC; 736 } 737 738 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) { 739 // On the A2, always unroll aggressively. For QPX unaligned loads, we depend 740 // on combining the loads generated for consecutive accesses, and failure to 741 // do so is particularly expensive. This makes it much more likely (compared 742 // to only using concatenation unrolling). 743 if (ST->getCPUDirective() == PPC::DIR_A2) 744 return true; 745 746 return LoopHasReductions; 747 } 748 749 PPCTTIImpl::TTI::MemCmpExpansionOptions 750 PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 751 TTI::MemCmpExpansionOptions Options; 752 Options.LoadSizes = {8, 4, 2, 1}; 753 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); 754 return Options; 755 } 756 757 bool PPCTTIImpl::enableInterleavedAccessVectorization() { 758 return true; 759 } 760 761 unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const { 762 assert(ClassID == GPRRC || ClassID == FPRRC || 763 ClassID == VRRC || ClassID == VSXRC); 764 if (ST->hasVSX()) { 765 assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC); 766 return ClassID == VSXRC ? 64 : 32; 767 } 768 assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC); 769 return 32; 770 } 771 772 unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const { 773 if (Vector) 774 return ST->hasVSX() ? VSXRC : VRRC; 775 else if (Ty && (Ty->getScalarType()->isFloatTy() || 776 Ty->getScalarType()->isDoubleTy())) 777 return ST->hasVSX() ? VSXRC : FPRRC; 778 else if (Ty && (Ty->getScalarType()->isFP128Ty() || 779 Ty->getScalarType()->isPPC_FP128Ty())) 780 return VRRC; 781 else if (Ty && Ty->getScalarType()->isHalfTy()) 782 return VSXRC; 783 else 784 return GPRRC; 785 } 786 787 const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const { 788 789 switch (ClassID) { 790 default: 791 llvm_unreachable("unknown register class"); 792 return "PPC::unknown register class"; 793 case GPRRC: return "PPC::GPRRC"; 794 case FPRRC: return "PPC::FPRRC"; 795 case VRRC: return "PPC::VRRC"; 796 case VSXRC: return "PPC::VSXRC"; 797 } 798 } 799 800 unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) const { 801 if (Vector) { 802 if (ST->hasQPX()) return 256; 803 if (ST->hasAltivec()) return 128; 804 return 0; 805 } 806 807 if (ST->isPPC64()) 808 return 64; 809 return 32; 810 811 } 812 813 unsigned PPCTTIImpl::getCacheLineSize() const { 814 // Check first if the user specified a custom line size. 815 if (CacheLineSize.getNumOccurrences() > 0) 816 return CacheLineSize; 817 818 // Starting with P7 we have a cache line size of 128. 819 unsigned Directive = ST->getCPUDirective(); 820 // Assume that Future CPU has the same cache line size as the others. 821 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || 822 Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 || 823 Directive == PPC::DIR_PWR_FUTURE) 824 return 128; 825 826 // On other processors return a default of 64 bytes. 827 return 64; 828 } 829 830 unsigned PPCTTIImpl::getPrefetchDistance() const { 831 // This seems like a reasonable default for the BG/Q (this pass is enabled, by 832 // default, only on the BG/Q). 833 return 300; 834 } 835 836 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) { 837 unsigned Directive = ST->getCPUDirective(); 838 // The 440 has no SIMD support, but floating-point instructions 839 // have a 5-cycle latency, so unroll by 5x for latency hiding. 840 if (Directive == PPC::DIR_440) 841 return 5; 842 843 // The A2 has no SIMD support, but floating-point instructions 844 // have a 6-cycle latency, so unroll by 6x for latency hiding. 845 if (Directive == PPC::DIR_A2) 846 return 6; 847 848 // FIXME: For lack of any better information, do no harm... 849 if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) 850 return 1; 851 852 // For P7 and P8, floating-point instructions have a 6-cycle latency and 853 // there are two execution units, so unroll by 12x for latency hiding. 854 // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready 855 // FIXME: the same for P10 as previous gen until POWER10 scheduling is ready 856 // Assume that future is the same as the others. 857 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || 858 Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 || 859 Directive == PPC::DIR_PWR_FUTURE) 860 return 12; 861 862 // For most things, modern systems have two execution units (and 863 // out-of-order execution). 864 return 2; 865 } 866 867 // Adjust the cost of vector instructions on targets which there is overlap 868 // between the vector and scalar units, thereby reducing the overall throughput 869 // of vector code wrt. scalar code. 870 int PPCTTIImpl::vectorCostAdjustment(int Cost, unsigned Opcode, Type *Ty1, 871 Type *Ty2) { 872 if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy()) 873 return Cost; 874 875 std::pair<int, MVT> LT1 = TLI->getTypeLegalizationCost(DL, Ty1); 876 // If type legalization involves splitting the vector, we don't want to 877 // double the cost at every step - only the last step. 878 if (LT1.first != 1 || !LT1.second.isVector()) 879 return Cost; 880 881 int ISD = TLI->InstructionOpcodeToISD(Opcode); 882 if (TLI->isOperationExpand(ISD, LT1.second)) 883 return Cost; 884 885 if (Ty2) { 886 std::pair<int, MVT> LT2 = TLI->getTypeLegalizationCost(DL, Ty2); 887 if (LT2.first != 1 || !LT2.second.isVector()) 888 return Cost; 889 } 890 891 return Cost * 2; 892 } 893 894 int PPCTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 895 TTI::TargetCostKind CostKind, 896 TTI::OperandValueKind Op1Info, 897 TTI::OperandValueKind Op2Info, 898 TTI::OperandValueProperties Opd1PropInfo, 899 TTI::OperandValueProperties Opd2PropInfo, 900 ArrayRef<const Value *> Args, 901 const Instruction *CxtI) { 902 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 903 // TODO: Handle more cost kinds. 904 if (CostKind != TTI::TCK_RecipThroughput) 905 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, 906 Op2Info, Opd1PropInfo, 907 Opd2PropInfo, Args, CxtI); 908 909 // Fallback to the default implementation. 910 int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, 911 Op2Info, 912 Opd1PropInfo, Opd2PropInfo); 913 return vectorCostAdjustment(Cost, Opcode, Ty, nullptr); 914 } 915 916 int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 917 Type *SubTp) { 918 // Legalize the type. 919 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 920 921 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations 922 // (at least in the sense that there need only be one non-loop-invariant 923 // instruction). We need one such shuffle instruction for each actual 924 // register (this is not true for arbitrary shuffles, but is true for the 925 // structured types of shuffles covered by TTI::ShuffleKind). 926 return vectorCostAdjustment(LT.first, Instruction::ShuffleVector, Tp, 927 nullptr); 928 } 929 930 int PPCTTIImpl::getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) { 931 if (CostKind != TTI::TCK_RecipThroughput) 932 return Opcode == Instruction::PHI ? 0 : 1; 933 // Branches are assumed to be predicted. 934 return CostKind == TTI::TCK_RecipThroughput ? 0 : 1; 935 } 936 937 int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 938 TTI::TargetCostKind CostKind, 939 const Instruction *I) { 940 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 941 942 int Cost = BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I); 943 Cost = vectorCostAdjustment(Cost, Opcode, Dst, Src); 944 // TODO: Allow non-throughput costs that aren't binary. 945 if (CostKind != TTI::TCK_RecipThroughput) 946 return Cost == 0 ? 0 : 1; 947 return Cost; 948 } 949 950 int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, 951 TTI::TargetCostKind CostKind, 952 const Instruction *I) { 953 int Cost = BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I); 954 // TODO: Handle other cost kinds. 955 if (CostKind != TTI::TCK_RecipThroughput) 956 return Cost; 957 return vectorCostAdjustment(Cost, Opcode, ValTy, nullptr); 958 } 959 960 int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 961 assert(Val->isVectorTy() && "This must be a vector type"); 962 963 int ISD = TLI->InstructionOpcodeToISD(Opcode); 964 assert(ISD && "Invalid opcode"); 965 966 int Cost = BaseT::getVectorInstrCost(Opcode, Val, Index); 967 Cost = vectorCostAdjustment(Cost, Opcode, Val, nullptr); 968 969 if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) { 970 // Double-precision scalars are already located in index #0 (or #1 if LE). 971 if (ISD == ISD::EXTRACT_VECTOR_ELT && 972 Index == (ST->isLittleEndian() ? 1 : 0)) 973 return 0; 974 975 return Cost; 976 977 } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) { 978 // Floating point scalars are already located in index #0. 979 if (Index == 0) 980 return 0; 981 982 return Cost; 983 984 } else if (Val->getScalarType()->isIntegerTy() && Index != -1U) { 985 if (ST->hasP9Altivec()) { 986 if (ISD == ISD::INSERT_VECTOR_ELT) 987 // A move-to VSR and a permute/insert. Assume vector operation cost 988 // for both (cost will be 2x on P9). 989 return vectorCostAdjustment(2, Opcode, Val, nullptr); 990 991 // It's an extract. Maybe we can do a cheap move-from VSR. 992 unsigned EltSize = Val->getScalarSizeInBits(); 993 if (EltSize == 64) { 994 unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0; 995 if (Index == MfvsrdIndex) 996 return 1; 997 } else if (EltSize == 32) { 998 unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1; 999 if (Index == MfvsrwzIndex) 1000 return 1; 1001 } 1002 1003 // We need a vector extract (or mfvsrld). Assume vector operation cost. 1004 // The cost of the load constant for a vector extract is disregarded 1005 // (invariant, easily schedulable). 1006 return vectorCostAdjustment(1, Opcode, Val, nullptr); 1007 1008 } else if (ST->hasDirectMove()) 1009 // Assume permute has standard cost. 1010 // Assume move-to/move-from VSR have 2x standard cost. 1011 return 3; 1012 } 1013 1014 // Estimated cost of a load-hit-store delay. This was obtained 1015 // experimentally as a minimum needed to prevent unprofitable 1016 // vectorization for the paq8p benchmark. It may need to be 1017 // raised further if other unprofitable cases remain. 1018 unsigned LHSPenalty = 2; 1019 if (ISD == ISD::INSERT_VECTOR_ELT) 1020 LHSPenalty += 7; 1021 1022 // Vector element insert/extract with Altivec is very expensive, 1023 // because they require store and reload with the attendant 1024 // processor stall for load-hit-store. Until VSX is available, 1025 // these need to be estimated as very costly. 1026 if (ISD == ISD::EXTRACT_VECTOR_ELT || 1027 ISD == ISD::INSERT_VECTOR_ELT) 1028 return LHSPenalty + Cost; 1029 1030 return Cost; 1031 } 1032 1033 int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 1034 MaybeAlign Alignment, unsigned AddressSpace, 1035 TTI::TargetCostKind CostKind, 1036 const Instruction *I) { 1037 if (TLI->getValueType(DL, Src, true) == MVT::Other) 1038 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1039 CostKind); 1040 // Legalize the type. 1041 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 1042 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && 1043 "Invalid Opcode"); 1044 1045 int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1046 CostKind); 1047 // TODO: Handle other cost kinds. 1048 if (CostKind != TTI::TCK_RecipThroughput) 1049 return Cost; 1050 1051 Cost = vectorCostAdjustment(Cost, Opcode, Src, nullptr); 1052 1053 bool IsAltivecType = ST->hasAltivec() && 1054 (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 || 1055 LT.second == MVT::v4i32 || LT.second == MVT::v4f32); 1056 bool IsVSXType = ST->hasVSX() && 1057 (LT.second == MVT::v2f64 || LT.second == MVT::v2i64); 1058 bool IsQPXType = ST->hasQPX() && 1059 (LT.second == MVT::v4f64 || LT.second == MVT::v4f32); 1060 1061 // VSX has 32b/64b load instructions. Legalization can handle loading of 1062 // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and 1063 // PPCTargetLowering can't compute the cost appropriately. So here we 1064 // explicitly check this case. 1065 unsigned MemBytes = Src->getPrimitiveSizeInBits(); 1066 if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType && 1067 (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32))) 1068 return 1; 1069 1070 // Aligned loads and stores are easy. 1071 unsigned SrcBytes = LT.second.getStoreSize(); 1072 if (!SrcBytes || !Alignment || *Alignment >= SrcBytes) 1073 return Cost; 1074 1075 // If we can use the permutation-based load sequence, then this is also 1076 // relatively cheap (not counting loop-invariant instructions): one load plus 1077 // one permute (the last load in a series has extra cost, but we're 1078 // neglecting that here). Note that on the P7, we could do unaligned loads 1079 // for Altivec types using the VSX instructions, but that's more expensive 1080 // than using the permutation-based load sequence. On the P8, that's no 1081 // longer true. 1082 if (Opcode == Instruction::Load && 1083 ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) && 1084 *Alignment >= LT.second.getScalarType().getStoreSize()) 1085 return Cost + LT.first; // Add the cost of the permutations. 1086 1087 // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the 1088 // P7, unaligned vector loads are more expensive than the permutation-based 1089 // load sequence, so that might be used instead, but regardless, the net cost 1090 // is about the same (not counting loop-invariant instructions). 1091 if (IsVSXType || (ST->hasVSX() && IsAltivecType)) 1092 return Cost; 1093 1094 // Newer PPC supports unaligned memory access. 1095 if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0)) 1096 return Cost; 1097 1098 // PPC in general does not support unaligned loads and stores. They'll need 1099 // to be decomposed based on the alignment factor. 1100 1101 // Add the cost of each scalar load or store. 1102 assert(Alignment); 1103 Cost += LT.first * ((SrcBytes / Alignment->value()) - 1); 1104 1105 // For a vector type, there is also scalarization overhead (only for 1106 // stores, loads are expanded using the vector-load + permutation sequence, 1107 // which is much less expensive). 1108 if (Src->isVectorTy() && Opcode == Instruction::Store) 1109 for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e; 1110 ++i) 1111 Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i); 1112 1113 return Cost; 1114 } 1115 1116 int PPCTTIImpl::getInterleavedMemoryOpCost( 1117 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 1118 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 1119 bool UseMaskForCond, bool UseMaskForGaps) { 1120 if (UseMaskForCond || UseMaskForGaps) 1121 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1122 Alignment, AddressSpace, CostKind, 1123 UseMaskForCond, UseMaskForGaps); 1124 1125 assert(isa<VectorType>(VecTy) && 1126 "Expect a vector type for interleaved memory op"); 1127 1128 // Legalize the type. 1129 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy); 1130 1131 // Firstly, the cost of load/store operation. 1132 int Cost = 1133 getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), AddressSpace, 1134 CostKind); 1135 1136 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations 1137 // (at least in the sense that there need only be one non-loop-invariant 1138 // instruction). For each result vector, we need one shuffle per incoming 1139 // vector (except that the first shuffle can take two incoming vectors 1140 // because it does not need to take itself). 1141 Cost += Factor*(LT.first-1); 1142 1143 return Cost; 1144 } 1145 1146 unsigned PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 1147 TTI::TargetCostKind CostKind) { 1148 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 1149 } 1150 1151 bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, 1152 LoopInfo *LI, DominatorTree *DT, 1153 AssumptionCache *AC, TargetLibraryInfo *LibInfo) { 1154 // Process nested loops first. 1155 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 1156 if (canSaveCmp(*I, BI, SE, LI, DT, AC, LibInfo)) 1157 return false; // Stop search. 1158 1159 HardwareLoopInfo HWLoopInfo(L); 1160 1161 if (!HWLoopInfo.canAnalyze(*LI)) 1162 return false; 1163 1164 if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo)) 1165 return false; 1166 1167 if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT)) 1168 return false; 1169 1170 *BI = HWLoopInfo.ExitBranch; 1171 return true; 1172 } 1173 1174 bool PPCTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, 1175 TargetTransformInfo::LSRCost &C2) { 1176 // PowerPC default behaviour here is "instruction number 1st priority". 1177 // If LsrNoInsnsCost is set, call default implementation. 1178 if (!LsrNoInsnsCost) 1179 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, 1180 C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) < 1181 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, 1182 C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost); 1183 else 1184 return TargetTransformInfoImplBase::isLSRCostLess(C1, C2); 1185 } 1186