1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "PPCTargetTransformInfo.h"
10 #include "llvm/Analysis/CodeMetrics.h"
11 #include "llvm/Analysis/TargetLibraryInfo.h"
12 #include "llvm/Analysis/TargetTransformInfo.h"
13 #include "llvm/CodeGen/BasicTTIImpl.h"
14 #include "llvm/CodeGen/CostTable.h"
15 #include "llvm/CodeGen/TargetLowering.h"
16 #include "llvm/CodeGen/TargetSchedule.h"
17 #include "llvm/IR/IntrinsicsPowerPC.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/KnownBits.h"
21 #include "llvm/Transforms/InstCombine/InstCombiner.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 
24 using namespace llvm;
25 
26 #define DEBUG_TYPE "ppctti"
27 
28 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
29 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
30 
31 // This is currently only used for the data prefetch pass
32 static cl::opt<unsigned>
33 CacheLineSize("ppc-loop-prefetch-cache-line", cl::Hidden, cl::init(64),
34               cl::desc("The loop prefetch cache line size"));
35 
36 static cl::opt<bool>
37 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false),
38                 cl::desc("Enable using coldcc calling conv for cold "
39                          "internal functions"));
40 
41 static cl::opt<bool>
42 LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false),
43                cl::desc("Do not add instruction count to lsr cost model"));
44 
45 // The latency of mtctr is only justified if there are more than 4
46 // comparisons that will be removed as a result.
47 static cl::opt<unsigned>
48 SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden,
49                       cl::desc("Loops with a constant trip count smaller than "
50                                "this value will not use the count register."));
51 
52 //===----------------------------------------------------------------------===//
53 //
54 // PPC cost model.
55 //
56 //===----------------------------------------------------------------------===//
57 
58 TargetTransformInfo::PopcntSupportKind
59 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
60   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
61   if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
62     return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
63              TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
64   return TTI::PSK_Software;
65 }
66 
67 Optional<Instruction *>
68 PPCTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
69   Intrinsic::ID IID = II.getIntrinsicID();
70   switch (IID) {
71   default:
72     break;
73   case Intrinsic::ppc_altivec_lvx:
74   case Intrinsic::ppc_altivec_lvxl:
75     // Turn PPC lvx -> load if the pointer is known aligned.
76     if (getOrEnforceKnownAlignment(
77             II.getArgOperand(0), Align(16), IC.getDataLayout(), &II,
78             &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
79       Value *Ptr = IC.Builder.CreateBitCast(
80           II.getArgOperand(0), PointerType::getUnqual(II.getType()));
81       return new LoadInst(II.getType(), Ptr, "", false, Align(16));
82     }
83     break;
84   case Intrinsic::ppc_vsx_lxvw4x:
85   case Intrinsic::ppc_vsx_lxvd2x: {
86     // Turn PPC VSX loads into normal loads.
87     Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(0),
88                                           PointerType::getUnqual(II.getType()));
89     return new LoadInst(II.getType(), Ptr, Twine(""), false, Align(1));
90   }
91   case Intrinsic::ppc_altivec_stvx:
92   case Intrinsic::ppc_altivec_stvxl:
93     // Turn stvx -> store if the pointer is known aligned.
94     if (getOrEnforceKnownAlignment(
95             II.getArgOperand(1), Align(16), IC.getDataLayout(), &II,
96             &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
97       Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType());
98       Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy);
99       return new StoreInst(II.getArgOperand(0), Ptr, false, Align(16));
100     }
101     break;
102   case Intrinsic::ppc_vsx_stxvw4x:
103   case Intrinsic::ppc_vsx_stxvd2x: {
104     // Turn PPC VSX stores into normal stores.
105     Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType());
106     Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy);
107     return new StoreInst(II.getArgOperand(0), Ptr, false, Align(1));
108   }
109   case Intrinsic::ppc_altivec_vperm:
110     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
111     // Note that ppc_altivec_vperm has a big-endian bias, so when creating
112     // a vectorshuffle for little endian, we must undo the transformation
113     // performed on vec_perm in altivec.h.  That is, we must complement
114     // the permutation mask with respect to 31 and reverse the order of
115     // V1 and V2.
116     if (Constant *Mask = dyn_cast<Constant>(II.getArgOperand(2))) {
117       assert(cast<FixedVectorType>(Mask->getType())->getNumElements() == 16 &&
118              "Bad type for intrinsic!");
119 
120       // Check that all of the elements are integer constants or undefs.
121       bool AllEltsOk = true;
122       for (unsigned i = 0; i != 16; ++i) {
123         Constant *Elt = Mask->getAggregateElement(i);
124         if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
125           AllEltsOk = false;
126           break;
127         }
128       }
129 
130       if (AllEltsOk) {
131         // Cast the input vectors to byte vectors.
132         Value *Op0 =
133             IC.Builder.CreateBitCast(II.getArgOperand(0), Mask->getType());
134         Value *Op1 =
135             IC.Builder.CreateBitCast(II.getArgOperand(1), Mask->getType());
136         Value *Result = UndefValue::get(Op0->getType());
137 
138         // Only extract each element once.
139         Value *ExtractedElts[32];
140         memset(ExtractedElts, 0, sizeof(ExtractedElts));
141 
142         for (unsigned i = 0; i != 16; ++i) {
143           if (isa<UndefValue>(Mask->getAggregateElement(i)))
144             continue;
145           unsigned Idx =
146               cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
147           Idx &= 31; // Match the hardware behavior.
148           if (DL.isLittleEndian())
149             Idx = 31 - Idx;
150 
151           if (!ExtractedElts[Idx]) {
152             Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
153             Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
154             ExtractedElts[Idx] = IC.Builder.CreateExtractElement(
155                 Idx < 16 ? Op0ToUse : Op1ToUse, IC.Builder.getInt32(Idx & 15));
156           }
157 
158           // Insert this value into the result vector.
159           Result = IC.Builder.CreateInsertElement(Result, ExtractedElts[Idx],
160                                                   IC.Builder.getInt32(i));
161         }
162         return CastInst::Create(Instruction::BitCast, Result, II.getType());
163       }
164     }
165     break;
166   }
167   return None;
168 }
169 
170 InstructionCost PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
171                                           TTI::TargetCostKind CostKind) {
172   if (DisablePPCConstHoist)
173     return BaseT::getIntImmCost(Imm, Ty, CostKind);
174 
175   assert(Ty->isIntegerTy());
176 
177   unsigned BitSize = Ty->getPrimitiveSizeInBits();
178   if (BitSize == 0)
179     return ~0U;
180 
181   if (Imm == 0)
182     return TTI::TCC_Free;
183 
184   if (Imm.getBitWidth() <= 64) {
185     if (isInt<16>(Imm.getSExtValue()))
186       return TTI::TCC_Basic;
187 
188     if (isInt<32>(Imm.getSExtValue())) {
189       // A constant that can be materialized using lis.
190       if ((Imm.getZExtValue() & 0xFFFF) == 0)
191         return TTI::TCC_Basic;
192 
193       return 2 * TTI::TCC_Basic;
194     }
195   }
196 
197   return 4 * TTI::TCC_Basic;
198 }
199 
200 InstructionCost PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
201                                                 const APInt &Imm, Type *Ty,
202                                                 TTI::TargetCostKind CostKind) {
203   if (DisablePPCConstHoist)
204     return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
205 
206   assert(Ty->isIntegerTy());
207 
208   unsigned BitSize = Ty->getPrimitiveSizeInBits();
209   if (BitSize == 0)
210     return ~0U;
211 
212   switch (IID) {
213   default:
214     return TTI::TCC_Free;
215   case Intrinsic::sadd_with_overflow:
216   case Intrinsic::uadd_with_overflow:
217   case Intrinsic::ssub_with_overflow:
218   case Intrinsic::usub_with_overflow:
219     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
220       return TTI::TCC_Free;
221     break;
222   case Intrinsic::experimental_stackmap:
223     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
224       return TTI::TCC_Free;
225     break;
226   case Intrinsic::experimental_patchpoint_void:
227   case Intrinsic::experimental_patchpoint_i64:
228     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
229       return TTI::TCC_Free;
230     break;
231   }
232   return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
233 }
234 
235 InstructionCost PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
236                                               const APInt &Imm, Type *Ty,
237                                               TTI::TargetCostKind CostKind,
238                                               Instruction *Inst) {
239   if (DisablePPCConstHoist)
240     return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
241 
242   assert(Ty->isIntegerTy());
243 
244   unsigned BitSize = Ty->getPrimitiveSizeInBits();
245   if (BitSize == 0)
246     return ~0U;
247 
248   unsigned ImmIdx = ~0U;
249   bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
250        ZeroFree = false;
251   switch (Opcode) {
252   default:
253     return TTI::TCC_Free;
254   case Instruction::GetElementPtr:
255     // Always hoist the base address of a GetElementPtr. This prevents the
256     // creation of new constants for every base constant that gets constant
257     // folded with the offset.
258     if (Idx == 0)
259       return 2 * TTI::TCC_Basic;
260     return TTI::TCC_Free;
261   case Instruction::And:
262     RunFree = true; // (for the rotate-and-mask instructions)
263     LLVM_FALLTHROUGH;
264   case Instruction::Add:
265   case Instruction::Or:
266   case Instruction::Xor:
267     ShiftedFree = true;
268     LLVM_FALLTHROUGH;
269   case Instruction::Sub:
270   case Instruction::Mul:
271   case Instruction::Shl:
272   case Instruction::LShr:
273   case Instruction::AShr:
274     ImmIdx = 1;
275     break;
276   case Instruction::ICmp:
277     UnsignedFree = true;
278     ImmIdx = 1;
279     // Zero comparisons can use record-form instructions.
280     LLVM_FALLTHROUGH;
281   case Instruction::Select:
282     ZeroFree = true;
283     break;
284   case Instruction::PHI:
285   case Instruction::Call:
286   case Instruction::Ret:
287   case Instruction::Load:
288   case Instruction::Store:
289     break;
290   }
291 
292   if (ZeroFree && Imm == 0)
293     return TTI::TCC_Free;
294 
295   if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
296     if (isInt<16>(Imm.getSExtValue()))
297       return TTI::TCC_Free;
298 
299     if (RunFree) {
300       if (Imm.getBitWidth() <= 32 &&
301           (isShiftedMask_32(Imm.getZExtValue()) ||
302            isShiftedMask_32(~Imm.getZExtValue())))
303         return TTI::TCC_Free;
304 
305       if (ST->isPPC64() &&
306           (isShiftedMask_64(Imm.getZExtValue()) ||
307            isShiftedMask_64(~Imm.getZExtValue())))
308         return TTI::TCC_Free;
309     }
310 
311     if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
312       return TTI::TCC_Free;
313 
314     if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
315       return TTI::TCC_Free;
316   }
317 
318   return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
319 }
320 
321 // Check if the current Type is an MMA vector type. Valid MMA types are
322 // v256i1 and v512i1 respectively.
323 static bool isMMAType(Type *Ty) {
324   return Ty->isVectorTy() && (Ty->getScalarSizeInBits() == 1) &&
325          (Ty->getPrimitiveSizeInBits() > 128);
326 }
327 
328 InstructionCost PPCTTIImpl::getUserCost(const User *U,
329                                         ArrayRef<const Value *> Operands,
330                                         TTI::TargetCostKind CostKind) {
331   // Set the max cost if an MMA type is present (v256i1, v512i1).
332   if (isMMAType(U->getType()))
333     return InstructionCost::getMax();
334 
335   // We already implement getCastInstrCost and getMemoryOpCost where we perform
336   // the vector adjustment there.
337   if (isa<CastInst>(U) || isa<LoadInst>(U) || isa<StoreInst>(U))
338     return BaseT::getUserCost(U, Operands, CostKind);
339 
340   if (U->getType()->isVectorTy()) {
341     // Instructions that need to be split should cost more.
342     std::pair<InstructionCost, MVT> LT =
343         TLI->getTypeLegalizationCost(DL, U->getType());
344     return LT.first * BaseT::getUserCost(U, Operands, CostKind);
345   }
346 
347   return BaseT::getUserCost(U, Operands, CostKind);
348 }
349 
350 // Determining the address of a TLS variable results in a function call in
351 // certain TLS models.
352 static bool memAddrUsesCTR(const Value *MemAddr, const PPCTargetMachine &TM,
353                            SmallPtrSetImpl<const Value *> &Visited) {
354   // No need to traverse again if we already checked this operand.
355   if (!Visited.insert(MemAddr).second)
356     return false;
357   const auto *GV = dyn_cast<GlobalValue>(MemAddr);
358   if (!GV) {
359     // Recurse to check for constants that refer to TLS global variables.
360     if (const auto *CV = dyn_cast<Constant>(MemAddr))
361       for (const auto &CO : CV->operands())
362         if (memAddrUsesCTR(CO, TM, Visited))
363           return true;
364     return false;
365   }
366 
367   if (!GV->isThreadLocal())
368     return false;
369   TLSModel::Model Model = TM.getTLSModel(GV);
370   return Model == TLSModel::GeneralDynamic || Model == TLSModel::LocalDynamic;
371 }
372 
373 bool PPCTTIImpl::mightUseCTR(BasicBlock *BB, TargetLibraryInfo *LibInfo,
374                              SmallPtrSetImpl<const Value *> &Visited) {
375   const PPCTargetMachine &TM = ST->getTargetMachine();
376 
377   // Loop through the inline asm constraints and look for something that
378   // clobbers ctr.
379   auto asmClobbersCTR = [](InlineAsm *IA) {
380     InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints();
381     for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) {
382       InlineAsm::ConstraintInfo &C = CIV[i];
383       if (C.Type != InlineAsm::isInput)
384         for (unsigned j = 0, je = C.Codes.size(); j < je; ++j)
385           if (StringRef(C.Codes[j]).equals_insensitive("{ctr}"))
386             return true;
387     }
388     return false;
389   };
390 
391   auto isLargeIntegerTy = [](bool Is32Bit, Type *Ty) {
392     if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
393       return ITy->getBitWidth() > (Is32Bit ? 32U : 64U);
394 
395     return false;
396   };
397 
398   auto supportedHalfPrecisionOp = [](Instruction *Inst) {
399     switch (Inst->getOpcode()) {
400     default:
401       return false;
402     case Instruction::FPTrunc:
403     case Instruction::FPExt:
404     case Instruction::Load:
405     case Instruction::Store:
406     case Instruction::FPToUI:
407     case Instruction::UIToFP:
408     case Instruction::FPToSI:
409     case Instruction::SIToFP:
410       return true;
411     }
412   };
413 
414   for (BasicBlock::iterator J = BB->begin(), JE = BB->end();
415        J != JE; ++J) {
416     // There are no direct operations on half precision so assume that
417     // anything with that type requires a call except for a few select
418     // operations with Power9.
419     if (Instruction *CurrInst = dyn_cast<Instruction>(J)) {
420       for (const auto &Op : CurrInst->operands()) {
421         if (Op->getType()->getScalarType()->isHalfTy() ||
422             CurrInst->getType()->getScalarType()->isHalfTy())
423           return !(ST->isISA3_0() && supportedHalfPrecisionOp(CurrInst));
424       }
425     }
426     if (CallInst *CI = dyn_cast<CallInst>(J)) {
427       // Inline ASM is okay, unless it clobbers the ctr register.
428       if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand())) {
429         if (asmClobbersCTR(IA))
430           return true;
431         continue;
432       }
433 
434       if (Function *F = CI->getCalledFunction()) {
435         // Most intrinsics don't become function calls, but some might.
436         // sin, cos, exp and log are always calls.
437         unsigned Opcode = 0;
438         if (F->getIntrinsicID() != Intrinsic::not_intrinsic) {
439           switch (F->getIntrinsicID()) {
440           default: continue;
441           // If we have a call to loop_decrement or set_loop_iterations,
442           // we're definitely using CTR.
443           case Intrinsic::set_loop_iterations:
444           case Intrinsic::loop_decrement:
445             return true;
446 
447           // Binary operations on 128-bit value will use CTR.
448           case Intrinsic::experimental_constrained_fadd:
449           case Intrinsic::experimental_constrained_fsub:
450           case Intrinsic::experimental_constrained_fmul:
451           case Intrinsic::experimental_constrained_fdiv:
452           case Intrinsic::experimental_constrained_frem:
453             if (F->getType()->getScalarType()->isFP128Ty() ||
454                 F->getType()->getScalarType()->isPPC_FP128Ty())
455               return true;
456             break;
457 
458           case Intrinsic::experimental_constrained_fptosi:
459           case Intrinsic::experimental_constrained_fptoui:
460           case Intrinsic::experimental_constrained_sitofp:
461           case Intrinsic::experimental_constrained_uitofp: {
462             Type *SrcType = CI->getArgOperand(0)->getType()->getScalarType();
463             Type *DstType = CI->getType()->getScalarType();
464             if (SrcType->isPPC_FP128Ty() || DstType->isPPC_FP128Ty() ||
465                 isLargeIntegerTy(!TM.isPPC64(), SrcType) ||
466                 isLargeIntegerTy(!TM.isPPC64(), DstType))
467               return true;
468             break;
469           }
470 
471           // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp
472           // because, although it does clobber the counter register, the
473           // control can't then return to inside the loop unless there is also
474           // an eh_sjlj_setjmp.
475           case Intrinsic::eh_sjlj_setjmp:
476 
477           case Intrinsic::memcpy:
478           case Intrinsic::memmove:
479           case Intrinsic::memset:
480           case Intrinsic::powi:
481           case Intrinsic::log:
482           case Intrinsic::log2:
483           case Intrinsic::log10:
484           case Intrinsic::exp:
485           case Intrinsic::exp2:
486           case Intrinsic::pow:
487           case Intrinsic::sin:
488           case Intrinsic::cos:
489           case Intrinsic::experimental_constrained_powi:
490           case Intrinsic::experimental_constrained_log:
491           case Intrinsic::experimental_constrained_log2:
492           case Intrinsic::experimental_constrained_log10:
493           case Intrinsic::experimental_constrained_exp:
494           case Intrinsic::experimental_constrained_exp2:
495           case Intrinsic::experimental_constrained_pow:
496           case Intrinsic::experimental_constrained_sin:
497           case Intrinsic::experimental_constrained_cos:
498             return true;
499           // There is no corresponding FMA instruction for PPC double double.
500           // Thus, we need to disable CTR loop generation for this type.
501           case Intrinsic::fmuladd:
502           case Intrinsic::copysign:
503             if (CI->getArgOperand(0)->getType()->getScalarType()->
504                 isPPC_FP128Ty())
505               return true;
506             else
507               continue; // ISD::FCOPYSIGN is never a library call.
508           case Intrinsic::fma:                Opcode = ISD::FMA;        break;
509           case Intrinsic::sqrt:               Opcode = ISD::FSQRT;      break;
510           case Intrinsic::floor:              Opcode = ISD::FFLOOR;     break;
511           case Intrinsic::ceil:               Opcode = ISD::FCEIL;      break;
512           case Intrinsic::trunc:              Opcode = ISD::FTRUNC;     break;
513           case Intrinsic::rint:               Opcode = ISD::FRINT;      break;
514           case Intrinsic::lrint:              Opcode = ISD::LRINT;      break;
515           case Intrinsic::llrint:             Opcode = ISD::LLRINT;     break;
516           case Intrinsic::nearbyint:          Opcode = ISD::FNEARBYINT; break;
517           case Intrinsic::round:              Opcode = ISD::FROUND;     break;
518           case Intrinsic::lround:             Opcode = ISD::LROUND;     break;
519           case Intrinsic::llround:            Opcode = ISD::LLROUND;    break;
520           case Intrinsic::minnum:             Opcode = ISD::FMINNUM;    break;
521           case Intrinsic::maxnum:             Opcode = ISD::FMAXNUM;    break;
522           case Intrinsic::experimental_constrained_fcmp:
523             Opcode = ISD::STRICT_FSETCC;
524             break;
525           case Intrinsic::experimental_constrained_fcmps:
526             Opcode = ISD::STRICT_FSETCCS;
527             break;
528           case Intrinsic::experimental_constrained_fma:
529             Opcode = ISD::STRICT_FMA;
530             break;
531           case Intrinsic::experimental_constrained_sqrt:
532             Opcode = ISD::STRICT_FSQRT;
533             break;
534           case Intrinsic::experimental_constrained_floor:
535             Opcode = ISD::STRICT_FFLOOR;
536             break;
537           case Intrinsic::experimental_constrained_ceil:
538             Opcode = ISD::STRICT_FCEIL;
539             break;
540           case Intrinsic::experimental_constrained_trunc:
541             Opcode = ISD::STRICT_FTRUNC;
542             break;
543           case Intrinsic::experimental_constrained_rint:
544             Opcode = ISD::STRICT_FRINT;
545             break;
546           case Intrinsic::experimental_constrained_lrint:
547             Opcode = ISD::STRICT_LRINT;
548             break;
549           case Intrinsic::experimental_constrained_llrint:
550             Opcode = ISD::STRICT_LLRINT;
551             break;
552           case Intrinsic::experimental_constrained_nearbyint:
553             Opcode = ISD::STRICT_FNEARBYINT;
554             break;
555           case Intrinsic::experimental_constrained_round:
556             Opcode = ISD::STRICT_FROUND;
557             break;
558           case Intrinsic::experimental_constrained_lround:
559             Opcode = ISD::STRICT_LROUND;
560             break;
561           case Intrinsic::experimental_constrained_llround:
562             Opcode = ISD::STRICT_LLROUND;
563             break;
564           case Intrinsic::experimental_constrained_minnum:
565             Opcode = ISD::STRICT_FMINNUM;
566             break;
567           case Intrinsic::experimental_constrained_maxnum:
568             Opcode = ISD::STRICT_FMAXNUM;
569             break;
570           case Intrinsic::umul_with_overflow: Opcode = ISD::UMULO;      break;
571           case Intrinsic::smul_with_overflow: Opcode = ISD::SMULO;      break;
572           }
573         }
574 
575         // PowerPC does not use [US]DIVREM or other library calls for
576         // operations on regular types which are not otherwise library calls
577         // (i.e. soft float or atomics). If adapting for targets that do,
578         // additional care is required here.
579 
580         LibFunc Func;
581         if (!F->hasLocalLinkage() && F->hasName() && LibInfo &&
582             LibInfo->getLibFunc(F->getName(), Func) &&
583             LibInfo->hasOptimizedCodeGen(Func)) {
584           // Non-read-only functions are never treated as intrinsics.
585           if (!CI->onlyReadsMemory())
586             return true;
587 
588           // Conversion happens only for FP calls.
589           if (!CI->getArgOperand(0)->getType()->isFloatingPointTy())
590             return true;
591 
592           switch (Func) {
593           default: return true;
594           case LibFunc_copysign:
595           case LibFunc_copysignf:
596             continue; // ISD::FCOPYSIGN is never a library call.
597           case LibFunc_copysignl:
598             return true;
599           case LibFunc_fabs:
600           case LibFunc_fabsf:
601           case LibFunc_fabsl:
602             continue; // ISD::FABS is never a library call.
603           case LibFunc_sqrt:
604           case LibFunc_sqrtf:
605           case LibFunc_sqrtl:
606             Opcode = ISD::FSQRT; break;
607           case LibFunc_floor:
608           case LibFunc_floorf:
609           case LibFunc_floorl:
610             Opcode = ISD::FFLOOR; break;
611           case LibFunc_nearbyint:
612           case LibFunc_nearbyintf:
613           case LibFunc_nearbyintl:
614             Opcode = ISD::FNEARBYINT; break;
615           case LibFunc_ceil:
616           case LibFunc_ceilf:
617           case LibFunc_ceill:
618             Opcode = ISD::FCEIL; break;
619           case LibFunc_rint:
620           case LibFunc_rintf:
621           case LibFunc_rintl:
622             Opcode = ISD::FRINT; break;
623           case LibFunc_round:
624           case LibFunc_roundf:
625           case LibFunc_roundl:
626             Opcode = ISD::FROUND; break;
627           case LibFunc_trunc:
628           case LibFunc_truncf:
629           case LibFunc_truncl:
630             Opcode = ISD::FTRUNC; break;
631           case LibFunc_fmin:
632           case LibFunc_fminf:
633           case LibFunc_fminl:
634             Opcode = ISD::FMINNUM; break;
635           case LibFunc_fmax:
636           case LibFunc_fmaxf:
637           case LibFunc_fmaxl:
638             Opcode = ISD::FMAXNUM; break;
639           }
640         }
641 
642         if (Opcode) {
643           EVT EVTy =
644               TLI->getValueType(DL, CI->getArgOperand(0)->getType(), true);
645 
646           if (EVTy == MVT::Other)
647             return true;
648 
649           if (TLI->isOperationLegalOrCustom(Opcode, EVTy))
650             continue;
651           else if (EVTy.isVector() &&
652                    TLI->isOperationLegalOrCustom(Opcode, EVTy.getScalarType()))
653             continue;
654 
655           return true;
656         }
657       }
658 
659       return true;
660     } else if (isa<BinaryOperator>(J) &&
661                (J->getType()->getScalarType()->isFP128Ty() ||
662                 J->getType()->getScalarType()->isPPC_FP128Ty())) {
663       // Most operations on f128 or ppc_f128 values become calls.
664       return true;
665     } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) ||
666                isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) {
667       CastInst *CI = cast<CastInst>(J);
668       if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() ||
669           CI->getDestTy()->getScalarType()->isPPC_FP128Ty() ||
670           isLargeIntegerTy(!TM.isPPC64(), CI->getSrcTy()->getScalarType()) ||
671           isLargeIntegerTy(!TM.isPPC64(), CI->getDestTy()->getScalarType()))
672         return true;
673     } else if (isLargeIntegerTy(!TM.isPPC64(),
674                                 J->getType()->getScalarType()) &&
675                (J->getOpcode() == Instruction::UDiv ||
676                 J->getOpcode() == Instruction::SDiv ||
677                 J->getOpcode() == Instruction::URem ||
678                 J->getOpcode() == Instruction::SRem)) {
679       return true;
680     } else if (!TM.isPPC64() &&
681                isLargeIntegerTy(false, J->getType()->getScalarType()) &&
682                (J->getOpcode() == Instruction::Shl ||
683                 J->getOpcode() == Instruction::AShr ||
684                 J->getOpcode() == Instruction::LShr)) {
685       // Only on PPC32, for 128-bit integers (specifically not 64-bit
686       // integers), these might be runtime calls.
687       return true;
688     } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) {
689       // On PowerPC, indirect jumps use the counter register.
690       return true;
691     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) {
692       if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries())
693         return true;
694     }
695 
696     // FREM is always a call.
697     if (J->getOpcode() == Instruction::FRem)
698       return true;
699 
700     if (ST->useSoftFloat()) {
701       switch(J->getOpcode()) {
702       case Instruction::FAdd:
703       case Instruction::FSub:
704       case Instruction::FMul:
705       case Instruction::FDiv:
706       case Instruction::FPTrunc:
707       case Instruction::FPExt:
708       case Instruction::FPToUI:
709       case Instruction::FPToSI:
710       case Instruction::UIToFP:
711       case Instruction::SIToFP:
712       case Instruction::FCmp:
713         return true;
714       }
715     }
716 
717     for (Value *Operand : J->operands())
718       if (memAddrUsesCTR(Operand, TM, Visited))
719         return true;
720   }
721 
722   return false;
723 }
724 
725 bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
726                                           AssumptionCache &AC,
727                                           TargetLibraryInfo *LibInfo,
728                                           HardwareLoopInfo &HWLoopInfo) {
729   const PPCTargetMachine &TM = ST->getTargetMachine();
730   TargetSchedModel SchedModel;
731   SchedModel.init(ST);
732 
733   // Do not convert small short loops to CTR loop.
734   unsigned ConstTripCount = SE.getSmallConstantTripCount(L);
735   if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) {
736     SmallPtrSet<const Value *, 32> EphValues;
737     CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
738     CodeMetrics Metrics;
739     for (BasicBlock *BB : L->blocks())
740       Metrics.analyzeBasicBlock(BB, *this, EphValues);
741     // 6 is an approximate latency for the mtctr instruction.
742     if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth()))
743       return false;
744   }
745 
746   // We don't want to spill/restore the counter register, and so we don't
747   // want to use the counter register if the loop contains calls.
748   SmallPtrSet<const Value *, 4> Visited;
749   for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
750        I != IE; ++I)
751     if (mightUseCTR(*I, LibInfo, Visited))
752       return false;
753 
754   SmallVector<BasicBlock*, 4> ExitingBlocks;
755   L->getExitingBlocks(ExitingBlocks);
756 
757   // If there is an exit edge known to be frequently taken,
758   // we should not transform this loop.
759   for (auto &BB : ExitingBlocks) {
760     Instruction *TI = BB->getTerminator();
761     if (!TI) continue;
762 
763     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
764       uint64_t TrueWeight = 0, FalseWeight = 0;
765       if (!BI->isConditional() ||
766           !BI->extractProfMetadata(TrueWeight, FalseWeight))
767         continue;
768 
769       // If the exit path is more frequent than the loop path,
770       // we return here without further analysis for this loop.
771       bool TrueIsExit = !L->contains(BI->getSuccessor(0));
772       if (( TrueIsExit && FalseWeight < TrueWeight) ||
773           (!TrueIsExit && FalseWeight > TrueWeight))
774         return false;
775     }
776   }
777 
778   // If an exit block has a PHI that accesses a TLS variable as one of the
779   // incoming values from the loop, we cannot produce a CTR loop because the
780   // address for that value will be computed in the loop.
781   SmallVector<BasicBlock *, 4> ExitBlocks;
782   L->getExitBlocks(ExitBlocks);
783   for (auto &BB : ExitBlocks) {
784     for (auto &PHI : BB->phis()) {
785       for (int Idx = 0, EndIdx = PHI.getNumIncomingValues(); Idx < EndIdx;
786            Idx++) {
787         const BasicBlock *IncomingBB = PHI.getIncomingBlock(Idx);
788         const Value *IncomingValue = PHI.getIncomingValue(Idx);
789         if (L->contains(IncomingBB) &&
790             memAddrUsesCTR(IncomingValue, TM, Visited))
791           return false;
792       }
793     }
794   }
795 
796   LLVMContext &C = L->getHeader()->getContext();
797   HWLoopInfo.CountType = TM.isPPC64() ?
798     Type::getInt64Ty(C) : Type::getInt32Ty(C);
799   HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
800   return true;
801 }
802 
803 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
804                                          TTI::UnrollingPreferences &UP,
805                                          OptimizationRemarkEmitter *ORE) {
806   if (ST->getCPUDirective() == PPC::DIR_A2) {
807     // The A2 is in-order with a deep pipeline, and concatenation unrolling
808     // helps expose latency-hiding opportunities to the instruction scheduler.
809     UP.Partial = UP.Runtime = true;
810 
811     // We unroll a lot on the A2 (hundreds of instructions), and the benefits
812     // often outweigh the cost of a division to compute the trip count.
813     UP.AllowExpensiveTripCount = true;
814   }
815 
816   BaseT::getUnrollingPreferences(L, SE, UP, ORE);
817 }
818 
819 void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
820                                        TTI::PeelingPreferences &PP) {
821   BaseT::getPeelingPreferences(L, SE, PP);
822 }
823 // This function returns true to allow using coldcc calling convention.
824 // Returning true results in coldcc being used for functions which are cold at
825 // all call sites when the callers of the functions are not calling any other
826 // non coldcc functions.
827 bool PPCTTIImpl::useColdCCForColdCall(Function &F) {
828   return EnablePPCColdCC;
829 }
830 
831 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
832   // On the A2, always unroll aggressively.
833   if (ST->getCPUDirective() == PPC::DIR_A2)
834     return true;
835 
836   return LoopHasReductions;
837 }
838 
839 PPCTTIImpl::TTI::MemCmpExpansionOptions
840 PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
841   TTI::MemCmpExpansionOptions Options;
842   Options.LoadSizes = {8, 4, 2, 1};
843   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
844   return Options;
845 }
846 
847 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
848   return true;
849 }
850 
851 unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
852   assert(ClassID == GPRRC || ClassID == FPRRC ||
853          ClassID == VRRC || ClassID == VSXRC);
854   if (ST->hasVSX()) {
855     assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC);
856     return ClassID == VSXRC ? 64 : 32;
857   }
858   assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC);
859   return 32;
860 }
861 
862 unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const {
863   if (Vector)
864     return ST->hasVSX() ? VSXRC : VRRC;
865   else if (Ty && (Ty->getScalarType()->isFloatTy() ||
866                   Ty->getScalarType()->isDoubleTy()))
867     return ST->hasVSX() ? VSXRC : FPRRC;
868   else if (Ty && (Ty->getScalarType()->isFP128Ty() ||
869                   Ty->getScalarType()->isPPC_FP128Ty()))
870     return VRRC;
871   else if (Ty && Ty->getScalarType()->isHalfTy())
872     return VSXRC;
873   else
874     return GPRRC;
875 }
876 
877 const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const {
878 
879   switch (ClassID) {
880     default:
881       llvm_unreachable("unknown register class");
882       return "PPC::unknown register class";
883     case GPRRC:       return "PPC::GPRRC";
884     case FPRRC:       return "PPC::FPRRC";
885     case VRRC:        return "PPC::VRRC";
886     case VSXRC:       return "PPC::VSXRC";
887   }
888 }
889 
890 TypeSize
891 PPCTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
892   switch (K) {
893   case TargetTransformInfo::RGK_Scalar:
894     return TypeSize::getFixed(ST->isPPC64() ? 64 : 32);
895   case TargetTransformInfo::RGK_FixedWidthVector:
896     return TypeSize::getFixed(ST->hasAltivec() ? 128 : 0);
897   case TargetTransformInfo::RGK_ScalableVector:
898     return TypeSize::getScalable(0);
899   }
900 
901   llvm_unreachable("Unsupported register kind");
902 }
903 
904 unsigned PPCTTIImpl::getCacheLineSize() const {
905   // Check first if the user specified a custom line size.
906   if (CacheLineSize.getNumOccurrences() > 0)
907     return CacheLineSize;
908 
909   // Starting with P7 we have a cache line size of 128.
910   unsigned Directive = ST->getCPUDirective();
911   // Assume that Future CPU has the same cache line size as the others.
912   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
913       Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
914       Directive == PPC::DIR_PWR_FUTURE)
915     return 128;
916 
917   // On other processors return a default of 64 bytes.
918   return 64;
919 }
920 
921 unsigned PPCTTIImpl::getPrefetchDistance() const {
922   return 300;
923 }
924 
925 unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) {
926   unsigned Directive = ST->getCPUDirective();
927   // The 440 has no SIMD support, but floating-point instructions
928   // have a 5-cycle latency, so unroll by 5x for latency hiding.
929   if (Directive == PPC::DIR_440)
930     return 5;
931 
932   // The A2 has no SIMD support, but floating-point instructions
933   // have a 6-cycle latency, so unroll by 6x for latency hiding.
934   if (Directive == PPC::DIR_A2)
935     return 6;
936 
937   // FIXME: For lack of any better information, do no harm...
938   if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
939     return 1;
940 
941   // For P7 and P8, floating-point instructions have a 6-cycle latency and
942   // there are two execution units, so unroll by 12x for latency hiding.
943   // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
944   // FIXME: the same for P10 as previous gen until POWER10 scheduling is ready
945   // Assume that future is the same as the others.
946   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
947       Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
948       Directive == PPC::DIR_PWR_FUTURE)
949     return 12;
950 
951   // For most things, modern systems have two execution units (and
952   // out-of-order execution).
953   return 2;
954 }
955 
956 // Returns a cost adjustment factor to adjust the cost of vector instructions
957 // on targets which there is overlap between the vector and scalar units,
958 // thereby reducing the overall throughput of vector code wrt. scalar code.
959 // An invalid instruction cost is returned if the type is an MMA vector type.
960 InstructionCost PPCTTIImpl::vectorCostAdjustmentFactor(unsigned Opcode,
961                                                        Type *Ty1, Type *Ty2) {
962   // If the vector type is of an MMA type (v256i1, v512i1), an invalid
963   // instruction cost is returned. This is to signify to other cost computing
964   // functions to return the maximum instruction cost in order to prevent any
965   // opportunities for the optimizer to produce MMA types within the IR.
966   if (isMMAType(Ty1))
967     return InstructionCost::getInvalid();
968 
969   if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy())
970     return InstructionCost(1);
971 
972   std::pair<InstructionCost, MVT> LT1 = TLI->getTypeLegalizationCost(DL, Ty1);
973   // If type legalization involves splitting the vector, we don't want to
974   // double the cost at every step - only the last step.
975   if (LT1.first != 1 || !LT1.second.isVector())
976     return InstructionCost(1);
977 
978   int ISD = TLI->InstructionOpcodeToISD(Opcode);
979   if (TLI->isOperationExpand(ISD, LT1.second))
980     return InstructionCost(1);
981 
982   if (Ty2) {
983     std::pair<InstructionCost, MVT> LT2 = TLI->getTypeLegalizationCost(DL, Ty2);
984     if (LT2.first != 1 || !LT2.second.isVector())
985       return InstructionCost(1);
986   }
987 
988   return InstructionCost(2);
989 }
990 
991 InstructionCost PPCTTIImpl::getArithmeticInstrCost(
992     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
993     TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
994     TTI::OperandValueProperties Opd1PropInfo,
995     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
996     const Instruction *CxtI) {
997   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
998 
999   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Ty, nullptr);
1000   if (!CostFactor.isValid())
1001     return InstructionCost::getMax();
1002 
1003   // TODO: Handle more cost kinds.
1004   if (CostKind != TTI::TCK_RecipThroughput)
1005     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
1006                                          Op2Info, Opd1PropInfo,
1007                                          Opd2PropInfo, Args, CxtI);
1008 
1009   // Fallback to the default implementation.
1010   InstructionCost Cost = BaseT::getArithmeticInstrCost(
1011       Opcode, Ty, CostKind, Op1Info, Op2Info, Opd1PropInfo, Opd2PropInfo);
1012   return Cost * CostFactor;
1013 }
1014 
1015 InstructionCost PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
1016                                            ArrayRef<int> Mask, int Index,
1017                                            Type *SubTp) {
1018 
1019   InstructionCost CostFactor =
1020       vectorCostAdjustmentFactor(Instruction::ShuffleVector, Tp, nullptr);
1021   if (!CostFactor.isValid())
1022     return InstructionCost::getMax();
1023 
1024   // Legalize the type.
1025   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1026 
1027   // PPC, for both Altivec/VSX, support cheap arbitrary permutations
1028   // (at least in the sense that there need only be one non-loop-invariant
1029   // instruction). We need one such shuffle instruction for each actual
1030   // register (this is not true for arbitrary shuffles, but is true for the
1031   // structured types of shuffles covered by TTI::ShuffleKind).
1032   return LT.first * CostFactor;
1033 }
1034 
1035 InstructionCost PPCTTIImpl::getCFInstrCost(unsigned Opcode,
1036                                            TTI::TargetCostKind CostKind,
1037                                            const Instruction *I) {
1038   if (CostKind != TTI::TCK_RecipThroughput)
1039     return Opcode == Instruction::PHI ? 0 : 1;
1040   // Branches are assumed to be predicted.
1041   return 0;
1042 }
1043 
1044 InstructionCost PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
1045                                              Type *Src,
1046                                              TTI::CastContextHint CCH,
1047                                              TTI::TargetCostKind CostKind,
1048                                              const Instruction *I) {
1049   assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
1050 
1051   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Dst, Src);
1052   if (!CostFactor.isValid())
1053     return InstructionCost::getMax();
1054 
1055   InstructionCost Cost =
1056       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
1057   Cost *= CostFactor;
1058   // TODO: Allow non-throughput costs that aren't binary.
1059   if (CostKind != TTI::TCK_RecipThroughput)
1060     return Cost == 0 ? 0 : 1;
1061   return Cost;
1062 }
1063 
1064 InstructionCost PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
1065                                                Type *CondTy,
1066                                                CmpInst::Predicate VecPred,
1067                                                TTI::TargetCostKind CostKind,
1068                                                const Instruction *I) {
1069   InstructionCost CostFactor =
1070       vectorCostAdjustmentFactor(Opcode, ValTy, nullptr);
1071   if (!CostFactor.isValid())
1072     return InstructionCost::getMax();
1073 
1074   InstructionCost Cost =
1075       BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
1076   // TODO: Handle other cost kinds.
1077   if (CostKind != TTI::TCK_RecipThroughput)
1078     return Cost;
1079   return Cost * CostFactor;
1080 }
1081 
1082 InstructionCost PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
1083                                                unsigned Index) {
1084   assert(Val->isVectorTy() && "This must be a vector type");
1085 
1086   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1087   assert(ISD && "Invalid opcode");
1088 
1089   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Val, nullptr);
1090   if (!CostFactor.isValid())
1091     return InstructionCost::getMax();
1092 
1093   InstructionCost Cost = BaseT::getVectorInstrCost(Opcode, Val, Index);
1094   Cost *= CostFactor;
1095 
1096   if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
1097     // Double-precision scalars are already located in index #0 (or #1 if LE).
1098     if (ISD == ISD::EXTRACT_VECTOR_ELT &&
1099         Index == (ST->isLittleEndian() ? 1 : 0))
1100       return 0;
1101 
1102     return Cost;
1103 
1104   } else if (Val->getScalarType()->isIntegerTy() && Index != -1U) {
1105     if (ST->hasP9Altivec()) {
1106       if (ISD == ISD::INSERT_VECTOR_ELT)
1107         // A move-to VSR and a permute/insert.  Assume vector operation cost
1108         // for both (cost will be 2x on P9).
1109         return 2 * CostFactor;
1110 
1111       // It's an extract.  Maybe we can do a cheap move-from VSR.
1112       unsigned EltSize = Val->getScalarSizeInBits();
1113       if (EltSize == 64) {
1114         unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0;
1115         if (Index == MfvsrdIndex)
1116           return 1;
1117       } else if (EltSize == 32) {
1118         unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1;
1119         if (Index == MfvsrwzIndex)
1120           return 1;
1121       }
1122 
1123       // We need a vector extract (or mfvsrld).  Assume vector operation cost.
1124       // The cost of the load constant for a vector extract is disregarded
1125       // (invariant, easily schedulable).
1126       return CostFactor;
1127 
1128     } else if (ST->hasDirectMove())
1129       // Assume permute has standard cost.
1130       // Assume move-to/move-from VSR have 2x standard cost.
1131       return 3;
1132   }
1133 
1134   // Estimated cost of a load-hit-store delay.  This was obtained
1135   // experimentally as a minimum needed to prevent unprofitable
1136   // vectorization for the paq8p benchmark.  It may need to be
1137   // raised further if other unprofitable cases remain.
1138   unsigned LHSPenalty = 2;
1139   if (ISD == ISD::INSERT_VECTOR_ELT)
1140     LHSPenalty += 7;
1141 
1142   // Vector element insert/extract with Altivec is very expensive,
1143   // because they require store and reload with the attendant
1144   // processor stall for load-hit-store.  Until VSX is available,
1145   // these need to be estimated as very costly.
1146   if (ISD == ISD::EXTRACT_VECTOR_ELT ||
1147       ISD == ISD::INSERT_VECTOR_ELT)
1148     return LHSPenalty + Cost;
1149 
1150   return Cost;
1151 }
1152 
1153 InstructionCost PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
1154                                             MaybeAlign Alignment,
1155                                             unsigned AddressSpace,
1156                                             TTI::TargetCostKind CostKind,
1157                                             const Instruction *I) {
1158 
1159   InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Src, nullptr);
1160   if (!CostFactor.isValid())
1161     return InstructionCost::getMax();
1162 
1163   if (TLI->getValueType(DL, Src,  true) == MVT::Other)
1164     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1165                                   CostKind);
1166   // Legalize the type.
1167   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
1168   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1169          "Invalid Opcode");
1170 
1171   InstructionCost Cost =
1172       BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
1173   // TODO: Handle other cost kinds.
1174   if (CostKind != TTI::TCK_RecipThroughput)
1175     return Cost;
1176 
1177   Cost *= CostFactor;
1178 
1179   bool IsAltivecType = ST->hasAltivec() &&
1180                        (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
1181                         LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
1182   bool IsVSXType = ST->hasVSX() &&
1183                    (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
1184 
1185   // VSX has 32b/64b load instructions. Legalization can handle loading of
1186   // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
1187   // PPCTargetLowering can't compute the cost appropriately. So here we
1188   // explicitly check this case.
1189   unsigned MemBytes = Src->getPrimitiveSizeInBits();
1190   if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType &&
1191       (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32)))
1192     return 1;
1193 
1194   // Aligned loads and stores are easy.
1195   unsigned SrcBytes = LT.second.getStoreSize();
1196   if (!SrcBytes || !Alignment || *Alignment >= SrcBytes)
1197     return Cost;
1198 
1199   // If we can use the permutation-based load sequence, then this is also
1200   // relatively cheap (not counting loop-invariant instructions): one load plus
1201   // one permute (the last load in a series has extra cost, but we're
1202   // neglecting that here). Note that on the P7, we could do unaligned loads
1203   // for Altivec types using the VSX instructions, but that's more expensive
1204   // than using the permutation-based load sequence. On the P8, that's no
1205   // longer true.
1206   if (Opcode == Instruction::Load && (!ST->hasP8Vector() && IsAltivecType) &&
1207       *Alignment >= LT.second.getScalarType().getStoreSize())
1208     return Cost + LT.first; // Add the cost of the permutations.
1209 
1210   // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
1211   // P7, unaligned vector loads are more expensive than the permutation-based
1212   // load sequence, so that might be used instead, but regardless, the net cost
1213   // is about the same (not counting loop-invariant instructions).
1214   if (IsVSXType || (ST->hasVSX() && IsAltivecType))
1215     return Cost;
1216 
1217   // Newer PPC supports unaligned memory access.
1218   if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
1219     return Cost;
1220 
1221   // PPC in general does not support unaligned loads and stores. They'll need
1222   // to be decomposed based on the alignment factor.
1223 
1224   // Add the cost of each scalar load or store.
1225   assert(Alignment);
1226   Cost += LT.first * ((SrcBytes / Alignment->value()) - 1);
1227 
1228   // For a vector type, there is also scalarization overhead (only for
1229   // stores, loads are expanded using the vector-load + permutation sequence,
1230   // which is much less expensive).
1231   if (Src->isVectorTy() && Opcode == Instruction::Store)
1232     for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e;
1233          ++i)
1234       Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
1235 
1236   return Cost;
1237 }
1238 
1239 InstructionCost PPCTTIImpl::getInterleavedMemoryOpCost(
1240     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1241     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1242     bool UseMaskForCond, bool UseMaskForGaps) {
1243   InstructionCost CostFactor =
1244       vectorCostAdjustmentFactor(Opcode, VecTy, nullptr);
1245   if (!CostFactor.isValid())
1246     return InstructionCost::getMax();
1247 
1248   if (UseMaskForCond || UseMaskForGaps)
1249     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1250                                              Alignment, AddressSpace, CostKind,
1251                                              UseMaskForCond, UseMaskForGaps);
1252 
1253   assert(isa<VectorType>(VecTy) &&
1254          "Expect a vector type for interleaved memory op");
1255 
1256   // Legalize the type.
1257   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy);
1258 
1259   // Firstly, the cost of load/store operation.
1260   InstructionCost Cost = getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment),
1261                                          AddressSpace, CostKind);
1262 
1263   // PPC, for both Altivec/VSX, support cheap arbitrary permutations
1264   // (at least in the sense that there need only be one non-loop-invariant
1265   // instruction). For each result vector, we need one shuffle per incoming
1266   // vector (except that the first shuffle can take two incoming vectors
1267   // because it does not need to take itself).
1268   Cost += Factor*(LT.first-1);
1269 
1270   return Cost;
1271 }
1272 
1273 InstructionCost
1274 PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1275                                   TTI::TargetCostKind CostKind) {
1276   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
1277 }
1278 
1279 bool PPCTTIImpl::areFunctionArgsABICompatible(
1280     const Function *Caller, const Function *Callee,
1281     SmallPtrSetImpl<Argument *> &Args) const {
1282 
1283   // We need to ensure that argument promotion does not
1284   // attempt to promote pointers to MMA types (__vector_pair
1285   // and __vector_quad) since these types explicitly cannot be
1286   // passed as arguments. Both of these types are larger than
1287   // the 128-bit Altivec vectors and have a scalar size of 1 bit.
1288   if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
1289     return false;
1290 
1291   return llvm::none_of(Args, [](Argument *A) {
1292     auto *EltTy = cast<PointerType>(A->getType())->getElementType();
1293     if (EltTy->isSized())
1294       return (EltTy->isIntOrIntVectorTy(1) &&
1295               EltTy->getPrimitiveSizeInBits() > 128);
1296     return false;
1297   });
1298 }
1299 
1300 bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
1301                             LoopInfo *LI, DominatorTree *DT,
1302                             AssumptionCache *AC, TargetLibraryInfo *LibInfo) {
1303   // Process nested loops first.
1304   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
1305     if (canSaveCmp(*I, BI, SE, LI, DT, AC, LibInfo))
1306       return false; // Stop search.
1307 
1308   HardwareLoopInfo HWLoopInfo(L);
1309 
1310   if (!HWLoopInfo.canAnalyze(*LI))
1311     return false;
1312 
1313   if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo))
1314     return false;
1315 
1316   if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT))
1317     return false;
1318 
1319   *BI = HWLoopInfo.ExitBranch;
1320   return true;
1321 }
1322 
1323 bool PPCTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
1324                                TargetTransformInfo::LSRCost &C2) {
1325   // PowerPC default behaviour here is "instruction number 1st priority".
1326   // If LsrNoInsnsCost is set, call default implementation.
1327   if (!LsrNoInsnsCost)
1328     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls,
1329                     C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
1330            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls,
1331                     C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost);
1332   else
1333     return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
1334 }
1335 
1336 bool PPCTTIImpl::isNumRegsMajorCostOfLSR() {
1337   return false;
1338 }
1339 
1340 bool PPCTTIImpl::shouldBuildRelLookupTables() const {
1341   const PPCTargetMachine &TM = ST->getTargetMachine();
1342   // XCOFF hasn't implemented lowerRelativeReference, disable non-ELF for now.
1343   if (!TM.isELFv2ABI())
1344     return false;
1345   return BaseT::shouldBuildRelLookupTables();
1346 }
1347 
1348 bool PPCTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
1349                                     MemIntrinsicInfo &Info) {
1350   switch (Inst->getIntrinsicID()) {
1351   case Intrinsic::ppc_altivec_lvx:
1352   case Intrinsic::ppc_altivec_lvxl:
1353   case Intrinsic::ppc_altivec_lvebx:
1354   case Intrinsic::ppc_altivec_lvehx:
1355   case Intrinsic::ppc_altivec_lvewx:
1356   case Intrinsic::ppc_vsx_lxvd2x:
1357   case Intrinsic::ppc_vsx_lxvw4x:
1358   case Intrinsic::ppc_vsx_lxvd2x_be:
1359   case Intrinsic::ppc_vsx_lxvw4x_be:
1360   case Intrinsic::ppc_vsx_lxvl:
1361   case Intrinsic::ppc_vsx_lxvll:
1362   case Intrinsic::ppc_vsx_lxvp: {
1363     Info.PtrVal = Inst->getArgOperand(0);
1364     Info.ReadMem = true;
1365     Info.WriteMem = false;
1366     return true;
1367   }
1368   case Intrinsic::ppc_altivec_stvx:
1369   case Intrinsic::ppc_altivec_stvxl:
1370   case Intrinsic::ppc_altivec_stvebx:
1371   case Intrinsic::ppc_altivec_stvehx:
1372   case Intrinsic::ppc_altivec_stvewx:
1373   case Intrinsic::ppc_vsx_stxvd2x:
1374   case Intrinsic::ppc_vsx_stxvw4x:
1375   case Intrinsic::ppc_vsx_stxvd2x_be:
1376   case Intrinsic::ppc_vsx_stxvw4x_be:
1377   case Intrinsic::ppc_vsx_stxvl:
1378   case Intrinsic::ppc_vsx_stxvll:
1379   case Intrinsic::ppc_vsx_stxvp: {
1380     Info.PtrVal = Inst->getArgOperand(1);
1381     Info.ReadMem = false;
1382     Info.WriteMem = true;
1383     return true;
1384   }
1385   default:
1386     break;
1387   }
1388 
1389   return false;
1390 }
1391