1 //===-- PPCRegisterInfo.cpp - PowerPC Register Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetRegisterInfo
10 // class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCRegisterInfo.h"
15 #include "PPCFrameLowering.h"
16 #include "PPCInstrBuilder.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCSubtarget.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/RegisterScavenging.h"
29 #include "llvm/CodeGen/TargetFrameLowering.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/VirtRegMap.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetMachine.h"
42 #include "llvm/Target/TargetOptions.h"
43 #include <cstdlib>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "reginfo"
48 
49 #define GET_REGINFO_TARGET_DESC
50 #include "PPCGenRegisterInfo.inc"
51 
52 STATISTIC(InflateGPRC, "Number of gprc inputs for getLargestLegalClass");
53 STATISTIC(InflateGP8RC, "Number of g8rc inputs for getLargestLegalClass");
54 
55 static cl::opt<bool>
56 EnableBasePointer("ppc-use-base-pointer", cl::Hidden, cl::init(true),
57          cl::desc("Enable use of a base pointer for complex stack frames"));
58 
59 static cl::opt<bool>
60 AlwaysBasePointer("ppc-always-use-base-pointer", cl::Hidden, cl::init(false),
61          cl::desc("Force the use of a base pointer in every function"));
62 
63 static cl::opt<bool>
64 EnableGPRToVecSpills("ppc-enable-gpr-to-vsr-spills", cl::Hidden, cl::init(false),
65          cl::desc("Enable spills from gpr to vsr rather than stack"));
66 
67 static cl::opt<bool>
68 StackPtrConst("ppc-stack-ptr-caller-preserved",
69                 cl::desc("Consider R1 caller preserved so stack saves of "
70                          "caller preserved registers can be LICM candidates"),
71                 cl::init(true), cl::Hidden);
72 
73 static cl::opt<unsigned>
74 MaxCRBitSpillDist("ppc-max-crbit-spill-dist",
75                   cl::desc("Maximum search distance for definition of CR bit "
76                            "spill on ppc"),
77                   cl::Hidden, cl::init(100));
78 
79 // Copies/moves of physical accumulators are expensive operations
80 // that should be avoided whenever possible. MMA instructions are
81 // meant to be used in performance-sensitive computational kernels.
82 // This option is provided, at least for the time being, to give the
83 // user a tool to detect this expensive operation and either rework
84 // their code or report a compiler bug if that turns out to be the
85 // cause.
86 #ifndef NDEBUG
87 static cl::opt<bool>
88 ReportAccMoves("ppc-report-acc-moves",
89                cl::desc("Emit information about accumulator register spills "
90                         "and copies"),
91                cl::Hidden, cl::init(false));
92 #endif
93 
94 static unsigned offsetMinAlignForOpcode(unsigned OpC);
95 
96 PPCRegisterInfo::PPCRegisterInfo(const PPCTargetMachine &TM)
97   : PPCGenRegisterInfo(TM.isPPC64() ? PPC::LR8 : PPC::LR,
98                        TM.isPPC64() ? 0 : 1,
99                        TM.isPPC64() ? 0 : 1),
100     TM(TM) {
101   ImmToIdxMap[PPC::LD]   = PPC::LDX;    ImmToIdxMap[PPC::STD]  = PPC::STDX;
102   ImmToIdxMap[PPC::LBZ]  = PPC::LBZX;   ImmToIdxMap[PPC::STB]  = PPC::STBX;
103   ImmToIdxMap[PPC::LHZ]  = PPC::LHZX;   ImmToIdxMap[PPC::LHA]  = PPC::LHAX;
104   ImmToIdxMap[PPC::LWZ]  = PPC::LWZX;   ImmToIdxMap[PPC::LWA]  = PPC::LWAX;
105   ImmToIdxMap[PPC::LFS]  = PPC::LFSX;   ImmToIdxMap[PPC::LFD]  = PPC::LFDX;
106   ImmToIdxMap[PPC::STH]  = PPC::STHX;   ImmToIdxMap[PPC::STW]  = PPC::STWX;
107   ImmToIdxMap[PPC::STFS] = PPC::STFSX;  ImmToIdxMap[PPC::STFD] = PPC::STFDX;
108   ImmToIdxMap[PPC::ADDI] = PPC::ADD4;
109   ImmToIdxMap[PPC::LWA_32] = PPC::LWAX_32;
110 
111   // 64-bit
112   ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8;
113   ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8;
114   ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8;
115   ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX;
116   ImmToIdxMap[PPC::ADDI8] = PPC::ADD8;
117   ImmToIdxMap[PPC::LQ] = PPC::LQX_PSEUDO;
118   ImmToIdxMap[PPC::STQ] = PPC::STQX_PSEUDO;
119 
120   // VSX
121   ImmToIdxMap[PPC::DFLOADf32] = PPC::LXSSPX;
122   ImmToIdxMap[PPC::DFLOADf64] = PPC::LXSDX;
123   ImmToIdxMap[PPC::SPILLTOVSR_LD] = PPC::SPILLTOVSR_LDX;
124   ImmToIdxMap[PPC::SPILLTOVSR_ST] = PPC::SPILLTOVSR_STX;
125   ImmToIdxMap[PPC::DFSTOREf32] = PPC::STXSSPX;
126   ImmToIdxMap[PPC::DFSTOREf64] = PPC::STXSDX;
127   ImmToIdxMap[PPC::LXV] = PPC::LXVX;
128   ImmToIdxMap[PPC::LXSD] = PPC::LXSDX;
129   ImmToIdxMap[PPC::LXSSP] = PPC::LXSSPX;
130   ImmToIdxMap[PPC::STXV] = PPC::STXVX;
131   ImmToIdxMap[PPC::STXSD] = PPC::STXSDX;
132   ImmToIdxMap[PPC::STXSSP] = PPC::STXSSPX;
133 
134   // SPE
135   ImmToIdxMap[PPC::EVLDD] = PPC::EVLDDX;
136   ImmToIdxMap[PPC::EVSTDD] = PPC::EVSTDDX;
137   ImmToIdxMap[PPC::SPESTW] = PPC::SPESTWX;
138   ImmToIdxMap[PPC::SPELWZ] = PPC::SPELWZX;
139 
140   // Power10
141   ImmToIdxMap[PPC::PLBZ]   = PPC::LBZX; ImmToIdxMap[PPC::PLBZ8]   = PPC::LBZX8;
142   ImmToIdxMap[PPC::PLHZ]   = PPC::LHZX; ImmToIdxMap[PPC::PLHZ8]   = PPC::LHZX8;
143   ImmToIdxMap[PPC::PLHA]   = PPC::LHAX; ImmToIdxMap[PPC::PLHA8]   = PPC::LHAX8;
144   ImmToIdxMap[PPC::PLWZ]   = PPC::LWZX; ImmToIdxMap[PPC::PLWZ8]   = PPC::LWZX8;
145   ImmToIdxMap[PPC::PLWA]   = PPC::LWAX; ImmToIdxMap[PPC::PLWA8]   = PPC::LWAX;
146   ImmToIdxMap[PPC::PLD]    = PPC::LDX;  ImmToIdxMap[PPC::PSTD]   = PPC::STDX;
147 
148   ImmToIdxMap[PPC::PSTB]   = PPC::STBX; ImmToIdxMap[PPC::PSTB8]   = PPC::STBX8;
149   ImmToIdxMap[PPC::PSTH]   = PPC::STHX; ImmToIdxMap[PPC::PSTH8]   = PPC::STHX8;
150   ImmToIdxMap[PPC::PSTW]   = PPC::STWX; ImmToIdxMap[PPC::PSTW8]   = PPC::STWX8;
151 
152   ImmToIdxMap[PPC::PLFS]   = PPC::LFSX; ImmToIdxMap[PPC::PSTFS]   = PPC::STFSX;
153   ImmToIdxMap[PPC::PLFD]   = PPC::LFDX; ImmToIdxMap[PPC::PSTFD]   = PPC::STFDX;
154   ImmToIdxMap[PPC::PLXSSP] = PPC::LXSSPX; ImmToIdxMap[PPC::PSTXSSP] = PPC::STXSSPX;
155   ImmToIdxMap[PPC::PLXSD]  = PPC::LXSDX; ImmToIdxMap[PPC::PSTXSD]  = PPC::STXSDX;
156   ImmToIdxMap[PPC::PLXV]   = PPC::LXVX; ImmToIdxMap[PPC::PSTXV]  = PPC::STXVX;
157 
158   ImmToIdxMap[PPC::LXVP]   = PPC::LXVPX;
159   ImmToIdxMap[PPC::STXVP]  = PPC::STXVPX;
160   ImmToIdxMap[PPC::PLXVP]  = PPC::LXVPX;
161   ImmToIdxMap[PPC::PSTXVP] = PPC::STXVPX;
162 }
163 
164 /// getPointerRegClass - Return the register class to use to hold pointers.
165 /// This is used for addressing modes.
166 const TargetRegisterClass *
167 PPCRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind)
168                                                                        const {
169   // Note that PPCInstrInfo::FoldImmediate also directly uses this Kind value
170   // when it checks for ZERO folding.
171   if (Kind == 1) {
172     if (TM.isPPC64())
173       return &PPC::G8RC_NOX0RegClass;
174     return &PPC::GPRC_NOR0RegClass;
175   }
176 
177   if (TM.isPPC64())
178     return &PPC::G8RCRegClass;
179   return &PPC::GPRCRegClass;
180 }
181 
182 const MCPhysReg*
183 PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
184   const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>();
185   if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) {
186     if (!TM.isPPC64() && Subtarget.isAIXABI())
187       report_fatal_error("AnyReg unimplemented on 32-bit AIX.");
188     if (Subtarget.hasVSX()) {
189       if (Subtarget.pairedVectorMemops())
190         return CSR_64_AllRegs_VSRP_SaveList;
191       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
192         return CSR_64_AllRegs_AIX_Dflt_VSX_SaveList;
193       return CSR_64_AllRegs_VSX_SaveList;
194     }
195     if (Subtarget.hasAltivec()) {
196       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
197         return CSR_64_AllRegs_AIX_Dflt_Altivec_SaveList;
198       return CSR_64_AllRegs_Altivec_SaveList;
199     }
200     return CSR_64_AllRegs_SaveList;
201   }
202 
203   // On PPC64, we might need to save r2 (but only if it is not reserved).
204   // We do not need to treat R2 as callee-saved when using PC-Relative calls
205   // because any direct uses of R2 will cause it to be reserved. If the function
206   // is a leaf or the only uses of R2 are implicit uses for calls, the calls
207   // will use the @notoc relocation which will cause this function to set the
208   // st_other bit to 1, thereby communicating to its caller that it arbitrarily
209   // clobbers the TOC.
210   bool SaveR2 = MF->getRegInfo().isAllocatable(PPC::X2) &&
211                 !Subtarget.isUsingPCRelativeCalls();
212 
213   // Cold calling convention CSRs.
214   if (MF->getFunction().getCallingConv() == CallingConv::Cold) {
215     if (Subtarget.isAIXABI())
216       report_fatal_error("Cold calling unimplemented on AIX.");
217     if (TM.isPPC64()) {
218       if (Subtarget.pairedVectorMemops())
219         return SaveR2 ? CSR_SVR64_ColdCC_R2_VSRP_SaveList
220                       : CSR_SVR64_ColdCC_VSRP_SaveList;
221       if (Subtarget.hasAltivec())
222         return SaveR2 ? CSR_SVR64_ColdCC_R2_Altivec_SaveList
223                       : CSR_SVR64_ColdCC_Altivec_SaveList;
224       return SaveR2 ? CSR_SVR64_ColdCC_R2_SaveList
225                     : CSR_SVR64_ColdCC_SaveList;
226     }
227     // 32-bit targets.
228     if (Subtarget.pairedVectorMemops())
229       return CSR_SVR32_ColdCC_VSRP_SaveList;
230     else if (Subtarget.hasAltivec())
231       return CSR_SVR32_ColdCC_Altivec_SaveList;
232     else if (Subtarget.hasSPE())
233       return CSR_SVR32_ColdCC_SPE_SaveList;
234     return CSR_SVR32_ColdCC_SaveList;
235   }
236   // Standard calling convention CSRs.
237   if (TM.isPPC64()) {
238     if (Subtarget.pairedVectorMemops())
239       return SaveR2 ? CSR_SVR464_R2_VSRP_SaveList : CSR_SVR464_VSRP_SaveList;
240     if (Subtarget.hasAltivec() &&
241         (!Subtarget.isAIXABI() || TM.getAIXExtendedAltivecABI())) {
242       return SaveR2 ? CSR_PPC64_R2_Altivec_SaveList
243                     : CSR_PPC64_Altivec_SaveList;
244     }
245     return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList;
246   }
247   // 32-bit targets.
248   if (Subtarget.isAIXABI()) {
249     if (Subtarget.hasAltivec())
250       return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_Altivec_SaveList
251                                            : CSR_AIX32_SaveList;
252     return CSR_AIX32_SaveList;
253   }
254   if (Subtarget.pairedVectorMemops())
255     return CSR_SVR432_VSRP_SaveList;
256   if (Subtarget.hasAltivec())
257     return CSR_SVR432_Altivec_SaveList;
258   else if (Subtarget.hasSPE())
259     return CSR_SVR432_SPE_SaveList;
260   return CSR_SVR432_SaveList;
261 }
262 
263 const uint32_t *
264 PPCRegisterInfo::getCallPreservedMask(const MachineFunction &MF,
265                                       CallingConv::ID CC) const {
266   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
267   if (CC == CallingConv::AnyReg) {
268     if (Subtarget.hasVSX()) {
269       if (Subtarget.pairedVectorMemops())
270         return CSR_64_AllRegs_VSRP_RegMask;
271       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
272         return CSR_64_AllRegs_AIX_Dflt_VSX_RegMask;
273       return CSR_64_AllRegs_VSX_RegMask;
274     }
275     if (Subtarget.hasAltivec()) {
276       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
277         return CSR_64_AllRegs_AIX_Dflt_Altivec_RegMask;
278       return CSR_64_AllRegs_Altivec_RegMask;
279     }
280     return CSR_64_AllRegs_RegMask;
281   }
282 
283   if (Subtarget.isAIXABI()) {
284     return TM.isPPC64()
285                ? ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
286                       ? CSR_PPC64_Altivec_RegMask
287                       : CSR_PPC64_RegMask)
288                : ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
289                       ? CSR_AIX32_Altivec_RegMask
290                       : CSR_AIX32_RegMask);
291   }
292 
293   if (CC == CallingConv::Cold) {
294     if (TM.isPPC64())
295       return Subtarget.pairedVectorMemops()
296                  ? CSR_SVR64_ColdCC_VSRP_RegMask
297                  : (Subtarget.hasAltivec() ? CSR_SVR64_ColdCC_Altivec_RegMask
298                                            : CSR_SVR64_ColdCC_RegMask);
299     else
300       return Subtarget.pairedVectorMemops()
301                  ? CSR_SVR32_ColdCC_VSRP_RegMask
302                  : (Subtarget.hasAltivec()
303                         ? CSR_SVR32_ColdCC_Altivec_RegMask
304                         : (Subtarget.hasSPE() ? CSR_SVR32_ColdCC_SPE_RegMask
305                                               : CSR_SVR32_ColdCC_RegMask));
306   }
307 
308   if (TM.isPPC64())
309     return Subtarget.pairedVectorMemops()
310                ? CSR_SVR464_VSRP_RegMask
311                : (Subtarget.hasAltivec() ? CSR_PPC64_Altivec_RegMask
312                                          : CSR_PPC64_RegMask);
313   else
314     return Subtarget.pairedVectorMemops()
315                ? CSR_SVR432_VSRP_RegMask
316                : (Subtarget.hasAltivec()
317                       ? CSR_SVR432_Altivec_RegMask
318                       : (Subtarget.hasSPE() ? CSR_SVR432_SPE_RegMask
319                                             : CSR_SVR432_RegMask));
320 }
321 
322 const uint32_t*
323 PPCRegisterInfo::getNoPreservedMask() const {
324   return CSR_NoRegs_RegMask;
325 }
326 
327 void PPCRegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const {
328   for (unsigned PseudoReg : {PPC::ZERO, PPC::ZERO8, PPC::RM})
329     Mask[PseudoReg / 32] &= ~(1u << (PseudoReg % 32));
330 }
331 
332 BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
333   BitVector Reserved(getNumRegs());
334   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
335   const PPCFrameLowering *TFI = getFrameLowering(MF);
336 
337   // The ZERO register is not really a register, but the representation of r0
338   // when used in instructions that treat r0 as the constant 0.
339   markSuperRegs(Reserved, PPC::ZERO);
340 
341   // The FP register is also not really a register, but is the representation
342   // of the frame pointer register used by ISD::FRAMEADDR.
343   markSuperRegs(Reserved, PPC::FP);
344 
345   // The BP register is also not really a register, but is the representation
346   // of the base pointer register used by setjmp.
347   markSuperRegs(Reserved, PPC::BP);
348 
349   // The counter registers must be reserved so that counter-based loops can
350   // be correctly formed (and the mtctr instructions are not DCE'd).
351   markSuperRegs(Reserved, PPC::CTR);
352   markSuperRegs(Reserved, PPC::CTR8);
353 
354   markSuperRegs(Reserved, PPC::R1);
355   markSuperRegs(Reserved, PPC::LR);
356   markSuperRegs(Reserved, PPC::LR8);
357   markSuperRegs(Reserved, PPC::RM);
358 
359   markSuperRegs(Reserved, PPC::VRSAVE);
360 
361   // The SVR4 ABI reserves r2 and r13
362   if (Subtarget.isSVR4ABI()) {
363     // We only reserve r2 if we need to use the TOC pointer. If we have no
364     // explicit uses of the TOC pointer (meaning we're a leaf function with
365     // no constant-pool loads, etc.) and we have no potential uses inside an
366     // inline asm block, then we can treat r2 has an ordinary callee-saved
367     // register.
368     const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
369     if (!TM.isPPC64() || FuncInfo->usesTOCBasePtr() || MF.hasInlineAsm())
370       markSuperRegs(Reserved, PPC::R2);  // System-reserved register
371     markSuperRegs(Reserved, PPC::R13); // Small Data Area pointer register
372   }
373 
374   // Always reserve r2 on AIX for now.
375   // TODO: Make r2 allocatable on AIX/XCOFF for some leaf functions.
376   if (Subtarget.isAIXABI())
377     markSuperRegs(Reserved, PPC::R2);  // System-reserved register
378 
379   // On PPC64, r13 is the thread pointer. Never allocate this register.
380   if (TM.isPPC64())
381     markSuperRegs(Reserved, PPC::R13);
382 
383   if (TFI->needsFP(MF))
384     markSuperRegs(Reserved, PPC::R31);
385 
386   bool IsPositionIndependent = TM.isPositionIndependent();
387   if (hasBasePointer(MF)) {
388     if (Subtarget.is32BitELFABI() && IsPositionIndependent)
389       markSuperRegs(Reserved, PPC::R29);
390     else
391       markSuperRegs(Reserved, PPC::R30);
392   }
393 
394   if (Subtarget.is32BitELFABI() && IsPositionIndependent)
395     markSuperRegs(Reserved, PPC::R30);
396 
397   // Reserve Altivec registers when Altivec is unavailable.
398   if (!Subtarget.hasAltivec())
399     for (TargetRegisterClass::iterator I = PPC::VRRCRegClass.begin(),
400          IE = PPC::VRRCRegClass.end(); I != IE; ++I)
401       markSuperRegs(Reserved, *I);
402 
403   if (Subtarget.isAIXABI() && Subtarget.hasAltivec() &&
404       !TM.getAIXExtendedAltivecABI()) {
405     //  In the AIX default Altivec ABI, vector registers VR20-VR31 are reserved
406     //  and cannot be used.
407     for (auto Reg : CSR_Altivec_SaveList) {
408       if (Reg == 0)
409         break;
410       markSuperRegs(Reserved, Reg);
411       for (MCRegAliasIterator AS(Reg, this, true); AS.isValid(); ++AS) {
412         Reserved.set(*AS);
413       }
414     }
415   }
416 
417   assert(checkAllSuperRegsMarked(Reserved));
418   return Reserved;
419 }
420 
421 bool PPCRegisterInfo::isAsmClobberable(const MachineFunction &MF,
422                                        MCRegister PhysReg) const {
423   // We cannot use getReservedRegs() to find the registers that are not asm
424   // clobberable because there are some reserved registers which can be
425   // clobbered by inline asm. For example, when LR is clobbered, the register is
426   // saved and restored. We will hardcode the registers that are not asm
427   // cloberable in this function.
428 
429   // The stack pointer (R1/X1) is not clobberable by inline asm
430   return PhysReg != PPC::R1 && PhysReg != PPC::X1;
431 }
432 
433 bool PPCRegisterInfo::requiresFrameIndexScavenging(const MachineFunction &MF) const {
434   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
435   const PPCInstrInfo *InstrInfo =  Subtarget.getInstrInfo();
436   const MachineFrameInfo &MFI = MF.getFrameInfo();
437   const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();
438 
439   LLVM_DEBUG(dbgs() << "requiresFrameIndexScavenging for " << MF.getName()
440                     << ".\n");
441   // If the callee saved info is invalid we have to default to true for safety.
442   if (!MFI.isCalleeSavedInfoValid()) {
443     LLVM_DEBUG(dbgs() << "TRUE - Invalid callee saved info.\n");
444     return true;
445   }
446 
447   // We will require the use of X-Forms because the frame is larger than what
448   // can be represented in signed 16 bits that fit in the immediate of a D-Form.
449   // If we need an X-Form then we need a register to store the address offset.
450   unsigned FrameSize = MFI.getStackSize();
451   // Signed 16 bits means that the FrameSize cannot be more than 15 bits.
452   if (FrameSize & ~0x7FFF) {
453     LLVM_DEBUG(dbgs() << "TRUE - Frame size is too large for D-Form.\n");
454     return true;
455   }
456 
457   // The callee saved info is valid so it can be traversed.
458   // Checking for registers that need saving that do not have load or store
459   // forms where the address offset is an immediate.
460   for (unsigned i = 0; i < Info.size(); i++) {
461     // If the spill is to a register no scavenging is required.
462     if (Info[i].isSpilledToReg())
463       continue;
464 
465     int FrIdx = Info[i].getFrameIdx();
466     Register Reg = Info[i].getReg();
467 
468     const TargetRegisterClass *RC = getMinimalPhysRegClass(Reg);
469     unsigned Opcode = InstrInfo->getStoreOpcodeForSpill(RC);
470     if (!MFI.isFixedObjectIndex(FrIdx)) {
471       // This is not a fixed object. If it requires alignment then we may still
472       // need to use the XForm.
473       if (offsetMinAlignForOpcode(Opcode) > 1) {
474         LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
475                           << " for register " << printReg(Reg, this) << ".\n");
476         LLVM_DEBUG(dbgs() << "TRUE - Not fixed frame object that requires "
477                           << "alignment.\n");
478         return true;
479       }
480     }
481 
482     // This is eiher:
483     // 1) A fixed frame index object which we know are aligned so
484     // as long as we have a valid DForm/DSForm/DQForm (non XForm) we don't
485     // need to consider the alignment here.
486     // 2) A not fixed object but in that case we now know that the min required
487     // alignment is no more than 1 based on the previous check.
488     if (InstrInfo->isXFormMemOp(Opcode)) {
489       LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
490                         << " for register " << printReg(Reg, this) << ".\n");
491       LLVM_DEBUG(dbgs() << "TRUE - Memory operand is X-Form.\n");
492       return true;
493     }
494 
495     // This is a spill/restore of a quadword.
496     if ((Opcode == PPC::RESTORE_QUADWORD) || (Opcode == PPC::SPILL_QUADWORD)) {
497       LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
498                         << " for register " << printReg(Reg, this) << ".\n");
499       LLVM_DEBUG(dbgs() << "TRUE - Memory operand is a quadword.\n");
500       return true;
501     }
502   }
503   LLVM_DEBUG(dbgs() << "FALSE - Scavenging is not required.\n");
504   return false;
505 }
506 
507 bool PPCRegisterInfo::requiresVirtualBaseRegisters(
508     const MachineFunction &MF) const {
509   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
510   // Do not use virtual base registers when ROP protection is turned on.
511   // Virtual base registers break the layout of the local variable space and may
512   // push the ROP Hash location past the 512 byte range of the ROP store
513   // instruction.
514   return !Subtarget.hasROPProtect();
515 }
516 
517 bool PPCRegisterInfo::isCallerPreservedPhysReg(MCRegister PhysReg,
518                                                const MachineFunction &MF) const {
519   assert(Register::isPhysicalRegister(PhysReg));
520   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
521   const MachineFrameInfo &MFI = MF.getFrameInfo();
522 
523   if (!Subtarget.is64BitELFABI() && !Subtarget.isAIXABI())
524     return false;
525   if (PhysReg == Subtarget.getTOCPointerRegister())
526     // X2/R2 is guaranteed to be preserved within a function if it is reserved.
527     // The reason it's reserved is that it's the TOC pointer (and the function
528     // uses the TOC). In functions where it isn't reserved (i.e. leaf functions
529     // with no TOC access), we can't claim that it is preserved.
530     return (getReservedRegs(MF).test(PhysReg));
531   if (StackPtrConst && PhysReg == Subtarget.getStackPointerRegister() &&
532       !MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
533     // The value of the stack pointer does not change within a function after
534     // the prologue and before the epilogue if there are no dynamic allocations
535     // and no inline asm which clobbers X1/R1.
536     return true;
537   return false;
538 }
539 
540 bool PPCRegisterInfo::getRegAllocationHints(Register VirtReg,
541                                             ArrayRef<MCPhysReg> Order,
542                                             SmallVectorImpl<MCPhysReg> &Hints,
543                                             const MachineFunction &MF,
544                                             const VirtRegMap *VRM,
545                                             const LiveRegMatrix *Matrix) const {
546   const MachineRegisterInfo *MRI = &MF.getRegInfo();
547 
548   // Call the base implementation first to set any hints based on the usual
549   // heuristics and decide what the return value should be. We want to return
550   // the same value returned by the base implementation. If the base
551   // implementation decides to return true and force the allocation then we
552   // will leave it as such. On the other hand if the base implementation
553   // decides to return false the following code will not force the allocation
554   // as we are just looking to provide a hint.
555   bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints(
556       VirtReg, Order, Hints, MF, VRM, Matrix);
557   // We are interested in instructions that copy values to ACC/UACC.
558   // The copy into UACC will be simply a COPY to a subreg so we
559   // want to allocate the corresponding physical subreg for the source.
560   // The copy into ACC will be a BUILD_UACC so we want to allocate
561   // the same number UACC for the source.
562   for (MachineInstr &Use : MRI->reg_nodbg_instructions(VirtReg)) {
563     const MachineOperand *ResultOp = nullptr;
564     Register ResultReg;
565     switch (Use.getOpcode()) {
566     case TargetOpcode::COPY: {
567       ResultOp = &Use.getOperand(0);
568       ResultReg = ResultOp->getReg();
569       if (Register::isVirtualRegister(ResultReg) &&
570           MRI->getRegClass(ResultReg)->contains(PPC::UACC0) &&
571           VRM->hasPhys(ResultReg)) {
572         Register UACCPhys = VRM->getPhys(ResultReg);
573         Register HintReg = getSubReg(UACCPhys, ResultOp->getSubReg());
574         // Ensure that the hint is a VSRp register.
575         if (HintReg >= PPC::VSRp0 && HintReg <= PPC::VSRp31)
576           Hints.push_back(HintReg);
577       }
578       break;
579     }
580     case PPC::BUILD_UACC: {
581       ResultOp = &Use.getOperand(0);
582       ResultReg = ResultOp->getReg();
583       if (MRI->getRegClass(ResultReg)->contains(PPC::ACC0) &&
584           VRM->hasPhys(ResultReg)) {
585         Register ACCPhys = VRM->getPhys(ResultReg);
586         assert((ACCPhys >= PPC::ACC0 && ACCPhys <= PPC::ACC7) &&
587                "Expecting an ACC register for BUILD_UACC.");
588         Register HintReg = PPC::UACC0 + (ACCPhys - PPC::ACC0);
589         Hints.push_back(HintReg);
590       }
591       break;
592     }
593     }
594   }
595   return BaseImplRetVal;
596 }
597 
598 unsigned PPCRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
599                                               MachineFunction &MF) const {
600   const PPCFrameLowering *TFI = getFrameLowering(MF);
601   const unsigned DefaultSafety = 1;
602 
603   switch (RC->getID()) {
604   default:
605     return 0;
606   case PPC::G8RC_NOX0RegClassID:
607   case PPC::GPRC_NOR0RegClassID:
608   case PPC::SPERCRegClassID:
609   case PPC::G8RCRegClassID:
610   case PPC::GPRCRegClassID: {
611     unsigned FP = TFI->hasFP(MF) ? 1 : 0;
612     return 32 - FP - DefaultSafety;
613   }
614   case PPC::F4RCRegClassID:
615   case PPC::F8RCRegClassID:
616   case PPC::VSLRCRegClassID:
617     return 32 - DefaultSafety;
618   case PPC::VFRCRegClassID:
619   case PPC::VRRCRegClassID: {
620     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
621     // Vector registers VR20-VR31 are reserved and cannot be used in the default
622     // Altivec ABI on AIX.
623     if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
624       return 20 - DefaultSafety;
625   }
626     return 32 - DefaultSafety;
627   case PPC::VSFRCRegClassID:
628   case PPC::VSSRCRegClassID:
629   case PPC::VSRCRegClassID: {
630     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
631     if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
632       // Vector registers VR20-VR31 are reserved and cannot be used in the
633       // default Altivec ABI on AIX.
634       return 52 - DefaultSafety;
635   }
636     return 64 - DefaultSafety;
637   case PPC::CRRCRegClassID:
638     return 8 - DefaultSafety;
639   }
640 }
641 
642 const TargetRegisterClass *
643 PPCRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
644                                            const MachineFunction &MF) const {
645   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
646   const auto *DefaultSuperclass =
647       TargetRegisterInfo::getLargestLegalSuperClass(RC, MF);
648   if (Subtarget.hasVSX()) {
649     // With VSX, we can inflate various sub-register classes to the full VSX
650     // register set.
651 
652     // For Power9 we allow the user to enable GPR to vector spills.
653     // FIXME: Currently limited to spilling GP8RC. A follow on patch will add
654     // support to spill GPRC.
655     if (TM.isELFv2ABI() || Subtarget.isAIXABI()) {
656       if (Subtarget.hasP9Vector() && EnableGPRToVecSpills &&
657           RC == &PPC::G8RCRegClass) {
658         InflateGP8RC++;
659         return &PPC::SPILLTOVSRRCRegClass;
660       }
661       if (RC == &PPC::GPRCRegClass && EnableGPRToVecSpills)
662         InflateGPRC++;
663     }
664 
665     for (const auto *I = RC->getSuperClasses(); *I; ++I) {
666       if (getRegSizeInBits(**I) != getRegSizeInBits(*RC))
667         continue;
668 
669       switch ((*I)->getID()) {
670       case PPC::VSSRCRegClassID:
671         return Subtarget.hasP8Vector() ? *I : DefaultSuperclass;
672       case PPC::VSFRCRegClassID:
673       case PPC::VSRCRegClassID:
674         return *I;
675       case PPC::VSRpRCRegClassID:
676         return Subtarget.pairedVectorMemops() ? *I : DefaultSuperclass;
677       case PPC::ACCRCRegClassID:
678       case PPC::UACCRCRegClassID:
679         return Subtarget.hasMMA() ? *I : DefaultSuperclass;
680       }
681     }
682   }
683 
684   return DefaultSuperclass;
685 }
686 
687 //===----------------------------------------------------------------------===//
688 // Stack Frame Processing methods
689 //===----------------------------------------------------------------------===//
690 
691 /// lowerDynamicAlloc - Generate the code for allocating an object in the
692 /// current frame.  The sequence of code will be in the general form
693 ///
694 ///   addi   R0, SP, \#frameSize ; get the address of the previous frame
695 ///   stwxu  R0, SP, Rnegsize   ; add and update the SP with the negated size
696 ///   addi   Rnew, SP, \#maxCalFrameSize ; get the top of the allocation
697 ///
698 void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const {
699   // Get the instruction.
700   MachineInstr &MI = *II;
701   // Get the instruction's basic block.
702   MachineBasicBlock &MBB = *MI.getParent();
703   // Get the basic block's function.
704   MachineFunction &MF = *MBB.getParent();
705   // Get the frame info.
706   MachineFrameInfo &MFI = MF.getFrameInfo();
707   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
708   // Get the instruction info.
709   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
710   // Determine whether 64-bit pointers are used.
711   bool LP64 = TM.isPPC64();
712   DebugLoc dl = MI.getDebugLoc();
713 
714   // Get the maximum call stack size.
715   unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
716   Align MaxAlign = MFI.getMaxAlign();
717   assert(isAligned(MaxAlign, maxCallFrameSize) &&
718          "Maximum call-frame size not sufficiently aligned");
719   (void)MaxAlign;
720 
721   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
722   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
723   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
724   bool KillNegSizeReg = MI.getOperand(1).isKill();
725   Register NegSizeReg = MI.getOperand(1).getReg();
726 
727   prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, Reg);
728   // Grow the stack and update the stack pointer link, then determine the
729   // address of new allocated space.
730   if (LP64) {
731     BuildMI(MBB, II, dl, TII.get(PPC::STDUX), PPC::X1)
732         .addReg(Reg, RegState::Kill)
733         .addReg(PPC::X1)
734         .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
735     BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg())
736         .addReg(PPC::X1)
737         .addImm(maxCallFrameSize);
738   } else {
739     BuildMI(MBB, II, dl, TII.get(PPC::STWUX), PPC::R1)
740         .addReg(Reg, RegState::Kill)
741         .addReg(PPC::R1)
742         .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
743     BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg())
744         .addReg(PPC::R1)
745         .addImm(maxCallFrameSize);
746   }
747 
748   // Discard the DYNALLOC instruction.
749   MBB.erase(II);
750 }
751 
752 /// To accomplish dynamic stack allocation, we have to calculate exact size
753 /// subtracted from the stack pointer according alignment information and get
754 /// previous frame pointer.
755 void PPCRegisterInfo::prepareDynamicAlloca(MachineBasicBlock::iterator II,
756                                            Register &NegSizeReg,
757                                            bool &KillNegSizeReg,
758                                            Register &FramePointer) const {
759   // Get the instruction.
760   MachineInstr &MI = *II;
761   // Get the instruction's basic block.
762   MachineBasicBlock &MBB = *MI.getParent();
763   // Get the basic block's function.
764   MachineFunction &MF = *MBB.getParent();
765   // Get the frame info.
766   MachineFrameInfo &MFI = MF.getFrameInfo();
767   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
768   // Get the instruction info.
769   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
770   // Determine whether 64-bit pointers are used.
771   bool LP64 = TM.isPPC64();
772   DebugLoc dl = MI.getDebugLoc();
773   // Get the total frame size.
774   unsigned FrameSize = MFI.getStackSize();
775 
776   // Get stack alignments.
777   const PPCFrameLowering *TFI = getFrameLowering(MF);
778   Align TargetAlign = TFI->getStackAlign();
779   Align MaxAlign = MFI.getMaxAlign();
780 
781   // Determine the previous frame's address.  If FrameSize can't be
782   // represented as 16 bits or we need special alignment, then we load the
783   // previous frame's address from 0(SP).  Why not do an addis of the hi?
784   // Because R0 is our only safe tmp register and addi/addis treat R0 as zero.
785   // Constructing the constant and adding would take 3 instructions.
786   // Fortunately, a frame greater than 32K is rare.
787   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
788   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
789 
790   if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) {
791     if (LP64)
792       BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), FramePointer)
793           .addReg(PPC::X31)
794           .addImm(FrameSize);
795     else
796       BuildMI(MBB, II, dl, TII.get(PPC::ADDI), FramePointer)
797           .addReg(PPC::R31)
798           .addImm(FrameSize);
799   } else if (LP64) {
800     BuildMI(MBB, II, dl, TII.get(PPC::LD), FramePointer)
801         .addImm(0)
802         .addReg(PPC::X1);
803   } else {
804     BuildMI(MBB, II, dl, TII.get(PPC::LWZ), FramePointer)
805         .addImm(0)
806         .addReg(PPC::R1);
807   }
808   // Determine the actual NegSizeReg according to alignment info.
809   if (LP64) {
810     if (MaxAlign > TargetAlign) {
811       unsigned UnalNegSizeReg = NegSizeReg;
812       NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
813 
814       // Unfortunately, there is no andi, only andi., and we can't insert that
815       // here because we might clobber cr0 while it is live.
816       BuildMI(MBB, II, dl, TII.get(PPC::LI8), NegSizeReg)
817           .addImm(~(MaxAlign.value() - 1));
818 
819       unsigned NegSizeReg1 = NegSizeReg;
820       NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
821       BuildMI(MBB, II, dl, TII.get(PPC::AND8), NegSizeReg)
822           .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
823           .addReg(NegSizeReg1, RegState::Kill);
824       KillNegSizeReg = true;
825     }
826   } else {
827     if (MaxAlign > TargetAlign) {
828       unsigned UnalNegSizeReg = NegSizeReg;
829       NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
830 
831       // Unfortunately, there is no andi, only andi., and we can't insert that
832       // here because we might clobber cr0 while it is live.
833       BuildMI(MBB, II, dl, TII.get(PPC::LI), NegSizeReg)
834           .addImm(~(MaxAlign.value() - 1));
835 
836       unsigned NegSizeReg1 = NegSizeReg;
837       NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
838       BuildMI(MBB, II, dl, TII.get(PPC::AND), NegSizeReg)
839           .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
840           .addReg(NegSizeReg1, RegState::Kill);
841       KillNegSizeReg = true;
842     }
843   }
844 }
845 
846 void PPCRegisterInfo::lowerPrepareProbedAlloca(
847     MachineBasicBlock::iterator II) const {
848   MachineInstr &MI = *II;
849   // Get the instruction's basic block.
850   MachineBasicBlock &MBB = *MI.getParent();
851   // Get the basic block's function.
852   MachineFunction &MF = *MBB.getParent();
853   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
854   // Get the instruction info.
855   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
856   // Determine whether 64-bit pointers are used.
857   bool LP64 = TM.isPPC64();
858   DebugLoc dl = MI.getDebugLoc();
859   Register FramePointer = MI.getOperand(0).getReg();
860   const Register ActualNegSizeReg = MI.getOperand(1).getReg();
861   bool KillNegSizeReg = MI.getOperand(2).isKill();
862   Register NegSizeReg = MI.getOperand(2).getReg();
863   const MCInstrDesc &CopyInst = TII.get(LP64 ? PPC::OR8 : PPC::OR);
864   // RegAllocator might allocate FramePointer and NegSizeReg in the same phyreg.
865   if (FramePointer == NegSizeReg) {
866     assert(KillNegSizeReg && "FramePointer is a def and NegSizeReg is an use, "
867                              "NegSizeReg should be killed");
868     // FramePointer is clobbered earlier than the use of NegSizeReg in
869     // prepareDynamicAlloca, save NegSizeReg in ActualNegSizeReg to avoid
870     // misuse.
871     BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
872         .addReg(NegSizeReg)
873         .addReg(NegSizeReg);
874     NegSizeReg = ActualNegSizeReg;
875     KillNegSizeReg = false;
876   }
877   prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, FramePointer);
878   // NegSizeReg might be updated in prepareDynamicAlloca if MaxAlign >
879   // TargetAlign.
880   if (NegSizeReg != ActualNegSizeReg)
881     BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
882         .addReg(NegSizeReg)
883         .addReg(NegSizeReg);
884   MBB.erase(II);
885 }
886 
887 void PPCRegisterInfo::lowerDynamicAreaOffset(
888     MachineBasicBlock::iterator II) const {
889   // Get the instruction.
890   MachineInstr &MI = *II;
891   // Get the instruction's basic block.
892   MachineBasicBlock &MBB = *MI.getParent();
893   // Get the basic block's function.
894   MachineFunction &MF = *MBB.getParent();
895   // Get the frame info.
896   MachineFrameInfo &MFI = MF.getFrameInfo();
897   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
898   // Get the instruction info.
899   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
900 
901   unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
902   bool is64Bit = TM.isPPC64();
903   DebugLoc dl = MI.getDebugLoc();
904   BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI),
905           MI.getOperand(0).getReg())
906       .addImm(maxCallFrameSize);
907   MBB.erase(II);
908 }
909 
910 /// lowerCRSpilling - Generate the code for spilling a CR register. Instead of
911 /// reserving a whole register (R0), we scrounge for one here. This generates
912 /// code like this:
913 ///
914 ///   mfcr rA                  ; Move the conditional register into GPR rA.
915 ///   rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot.
916 ///   stw rA, FI               ; Store rA to the frame.
917 ///
918 void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II,
919                                       unsigned FrameIndex) const {
920   // Get the instruction.
921   MachineInstr &MI = *II;       // ; SPILL_CR <SrcReg>, <offset>
922   // Get the instruction's basic block.
923   MachineBasicBlock &MBB = *MI.getParent();
924   MachineFunction &MF = *MBB.getParent();
925   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
926   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
927   DebugLoc dl = MI.getDebugLoc();
928 
929   bool LP64 = TM.isPPC64();
930   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
931   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
932 
933   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
934   Register SrcReg = MI.getOperand(0).getReg();
935 
936   // We need to store the CR in the low 4-bits of the saved value. First, issue
937   // an MFOCRF to save all of the CRBits and, if needed, kill the SrcReg.
938   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
939       .addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill()));
940 
941   // If the saved register wasn't CR0, shift the bits left so that they are in
942   // CR0's slot.
943   if (SrcReg != PPC::CR0) {
944     Register Reg1 = Reg;
945     Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
946 
947     // rlwinm rA, rA, ShiftBits, 0, 31.
948     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
949       .addReg(Reg1, RegState::Kill)
950       .addImm(getEncodingValue(SrcReg) * 4)
951       .addImm(0)
952       .addImm(31);
953   }
954 
955   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
956                     .addReg(Reg, RegState::Kill),
957                     FrameIndex);
958 
959   // Discard the pseudo instruction.
960   MBB.erase(II);
961 }
962 
963 void PPCRegisterInfo::lowerCRRestore(MachineBasicBlock::iterator II,
964                                       unsigned FrameIndex) const {
965   // Get the instruction.
966   MachineInstr &MI = *II;       // ; <DestReg> = RESTORE_CR <offset>
967   // Get the instruction's basic block.
968   MachineBasicBlock &MBB = *MI.getParent();
969   MachineFunction &MF = *MBB.getParent();
970   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
971   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
972   DebugLoc dl = MI.getDebugLoc();
973 
974   bool LP64 = TM.isPPC64();
975   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
976   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
977 
978   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
979   Register DestReg = MI.getOperand(0).getReg();
980   assert(MI.definesRegister(DestReg) &&
981     "RESTORE_CR does not define its destination");
982 
983   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
984                               Reg), FrameIndex);
985 
986   // If the reloaded register isn't CR0, shift the bits right so that they are
987   // in the right CR's slot.
988   if (DestReg != PPC::CR0) {
989     Register Reg1 = Reg;
990     Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
991 
992     unsigned ShiftBits = getEncodingValue(DestReg)*4;
993     // rlwinm r11, r11, 32-ShiftBits, 0, 31.
994     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
995              .addReg(Reg1, RegState::Kill).addImm(32-ShiftBits).addImm(0)
996              .addImm(31);
997   }
998 
999   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), DestReg)
1000              .addReg(Reg, RegState::Kill);
1001 
1002   // Discard the pseudo instruction.
1003   MBB.erase(II);
1004 }
1005 
1006 void PPCRegisterInfo::lowerCRBitSpilling(MachineBasicBlock::iterator II,
1007                                          unsigned FrameIndex) const {
1008   // Get the instruction.
1009   MachineInstr &MI = *II;       // ; SPILL_CRBIT <SrcReg>, <offset>
1010   // Get the instruction's basic block.
1011   MachineBasicBlock &MBB = *MI.getParent();
1012   MachineFunction &MF = *MBB.getParent();
1013   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1014   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1015   const TargetRegisterInfo* TRI = Subtarget.getRegisterInfo();
1016   DebugLoc dl = MI.getDebugLoc();
1017 
1018   bool LP64 = TM.isPPC64();
1019   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1020   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1021 
1022   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1023   Register SrcReg = MI.getOperand(0).getReg();
1024 
1025   // Search up the BB to find the definition of the CR bit.
1026   MachineBasicBlock::reverse_iterator Ins = MI;
1027   MachineBasicBlock::reverse_iterator Rend = MBB.rend();
1028   ++Ins;
1029   unsigned CRBitSpillDistance = 0;
1030   bool SeenUse = false;
1031   for (; Ins != Rend; ++Ins) {
1032     // Definition found.
1033     if (Ins->modifiesRegister(SrcReg, TRI))
1034       break;
1035     // Use found.
1036     if (Ins->readsRegister(SrcReg, TRI))
1037       SeenUse = true;
1038     // Unable to find CR bit definition within maximum search distance.
1039     if (CRBitSpillDistance == MaxCRBitSpillDist) {
1040       Ins = MI;
1041       break;
1042     }
1043     // Skip debug instructions when counting CR bit spill distance.
1044     if (!Ins->isDebugInstr())
1045       CRBitSpillDistance++;
1046   }
1047 
1048   // Unable to find the definition of the CR bit in the MBB.
1049   if (Ins == MBB.rend())
1050     Ins = MI;
1051 
1052   bool SpillsKnownBit = false;
1053   // There is no need to extract the CR bit if its value is already known.
1054   switch (Ins->getOpcode()) {
1055   case PPC::CRUNSET:
1056     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LI8 : PPC::LI), Reg)
1057       .addImm(0);
1058     SpillsKnownBit = true;
1059     break;
1060   case PPC::CRSET:
1061     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LIS8 : PPC::LIS), Reg)
1062       .addImm(-32768);
1063     SpillsKnownBit = true;
1064     break;
1065   default:
1066     // On Power10, we can use SETNBC to spill all CR bits. SETNBC will set all
1067     // bits (specifically, it produces a -1 if the CR bit is set). Ultimately,
1068     // the bit that is of importance to us is bit 32 (bit 0 of a 32-bit
1069     // register), and SETNBC will set this.
1070     if (Subtarget.isISA3_1()) {
1071       BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETNBC8 : PPC::SETNBC), Reg)
1072           .addReg(SrcReg, RegState::Undef);
1073       break;
1074     }
1075 
1076     // On Power9, we can use SETB to extract the LT bit. This only works for
1077     // the LT bit since SETB produces -1/1/0 for LT/GT/<neither>. So the value
1078     // of the bit we care about (32-bit sign bit) will be set to the value of
1079     // the LT bit (regardless of the other bits in the CR field).
1080     if (Subtarget.isISA3_0()) {
1081       if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR1LT ||
1082           SrcReg == PPC::CR2LT || SrcReg == PPC::CR3LT ||
1083           SrcReg == PPC::CR4LT || SrcReg == PPC::CR5LT ||
1084           SrcReg == PPC::CR6LT || SrcReg == PPC::CR7LT) {
1085         BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETB8 : PPC::SETB), Reg)
1086           .addReg(getCRFromCRBit(SrcReg), RegState::Undef);
1087         break;
1088       }
1089     }
1090 
1091     // We need to move the CR field that contains the CR bit we are spilling.
1092     // The super register may not be explicitly defined (i.e. it can be defined
1093     // by a CR-logical that only defines the subreg) so we state that the CR
1094     // field is undef. Also, in order to preserve the kill flag on the CR bit,
1095     // we add it as an implicit use.
1096     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
1097       .addReg(getCRFromCRBit(SrcReg), RegState::Undef)
1098       .addReg(SrcReg,
1099               RegState::Implicit | getKillRegState(MI.getOperand(0).isKill()));
1100 
1101     // If the saved register wasn't CR0LT, shift the bits left so that the bit
1102     // to store is the first one. Mask all but that bit.
1103     Register Reg1 = Reg;
1104     Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1105 
1106     // rlwinm rA, rA, ShiftBits, 0, 0.
1107     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
1108       .addReg(Reg1, RegState::Kill)
1109       .addImm(getEncodingValue(SrcReg))
1110       .addImm(0).addImm(0);
1111   }
1112   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
1113                     .addReg(Reg, RegState::Kill),
1114                     FrameIndex);
1115 
1116   bool KillsCRBit = MI.killsRegister(SrcReg, TRI);
1117   // Discard the pseudo instruction.
1118   MBB.erase(II);
1119   if (SpillsKnownBit && KillsCRBit && !SeenUse) {
1120     Ins->setDesc(TII.get(PPC::UNENCODED_NOP));
1121     Ins->removeOperand(0);
1122   }
1123 }
1124 
1125 void PPCRegisterInfo::lowerCRBitRestore(MachineBasicBlock::iterator II,
1126                                       unsigned FrameIndex) const {
1127   // Get the instruction.
1128   MachineInstr &MI = *II;       // ; <DestReg> = RESTORE_CRBIT <offset>
1129   // Get the instruction's basic block.
1130   MachineBasicBlock &MBB = *MI.getParent();
1131   MachineFunction &MF = *MBB.getParent();
1132   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1133   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1134   DebugLoc dl = MI.getDebugLoc();
1135 
1136   bool LP64 = TM.isPPC64();
1137   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1138   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1139 
1140   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1141   Register DestReg = MI.getOperand(0).getReg();
1142   assert(MI.definesRegister(DestReg) &&
1143     "RESTORE_CRBIT does not define its destination");
1144 
1145   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
1146                               Reg), FrameIndex);
1147 
1148   BuildMI(MBB, II, dl, TII.get(TargetOpcode::IMPLICIT_DEF), DestReg);
1149 
1150   Register RegO = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1151   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), RegO)
1152           .addReg(getCRFromCRBit(DestReg));
1153 
1154   unsigned ShiftBits = getEncodingValue(DestReg);
1155   // rlwimi r11, r10, 32-ShiftBits, ..., ...
1156   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWIMI8 : PPC::RLWIMI), RegO)
1157       .addReg(RegO, RegState::Kill)
1158       .addReg(Reg, RegState::Kill)
1159       .addImm(ShiftBits ? 32 - ShiftBits : 0)
1160       .addImm(ShiftBits)
1161       .addImm(ShiftBits);
1162 
1163   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF),
1164           getCRFromCRBit(DestReg))
1165       .addReg(RegO, RegState::Kill)
1166       // Make sure we have a use dependency all the way through this
1167       // sequence of instructions. We can't have the other bits in the CR
1168       // modified in between the mfocrf and the mtocrf.
1169       .addReg(getCRFromCRBit(DestReg), RegState::Implicit);
1170 
1171   // Discard the pseudo instruction.
1172   MBB.erase(II);
1173 }
1174 
1175 void PPCRegisterInfo::emitAccCopyInfo(MachineBasicBlock &MBB,
1176                                       MCRegister DestReg, MCRegister SrcReg) {
1177 #ifdef NDEBUG
1178   return;
1179 #else
1180   if (ReportAccMoves) {
1181     std::string Dest = PPC::ACCRCRegClass.contains(DestReg) ? "acc" : "uacc";
1182     std::string Src = PPC::ACCRCRegClass.contains(SrcReg) ? "acc" : "uacc";
1183     dbgs() << "Emitting copy from " << Src << " to " << Dest << ":\n";
1184     MBB.dump();
1185   }
1186 #endif
1187 }
1188 
1189 static void emitAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsPrimed,
1190                                     bool IsRestore) {
1191 #ifdef NDEBUG
1192   return;
1193 #else
1194   if (ReportAccMoves) {
1195     dbgs() << "Emitting " << (IsPrimed ? "acc" : "uacc") << " register "
1196            << (IsRestore ? "restore" : "spill") << ":\n";
1197     MBB.dump();
1198   }
1199 #endif
1200 }
1201 
1202 /// lowerACCSpilling - Generate the code for spilling the accumulator register.
1203 /// Similarly to other spills/reloads that use pseudo-ops, we do not actually
1204 /// eliminate the FrameIndex here nor compute the stack offset. We simply
1205 /// create a real instruction with an FI and rely on eliminateFrameIndex to
1206 /// handle the FI elimination.
1207 void PPCRegisterInfo::lowerACCSpilling(MachineBasicBlock::iterator II,
1208                                        unsigned FrameIndex) const {
1209   MachineInstr &MI = *II; // SPILL_ACC <SrcReg>, <offset>
1210   MachineBasicBlock &MBB = *MI.getParent();
1211   MachineFunction &MF = *MBB.getParent();
1212   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1213   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1214   DebugLoc DL = MI.getDebugLoc();
1215   Register SrcReg = MI.getOperand(0).getReg();
1216   bool IsKilled = MI.getOperand(0).isKill();
1217 
1218   bool IsPrimed = PPC::ACCRCRegClass.contains(SrcReg);
1219   Register Reg =
1220       PPC::VSRp0 + (SrcReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
1221   bool IsLittleEndian = Subtarget.isLittleEndian();
1222 
1223   emitAccSpillRestoreInfo(MBB, IsPrimed, false);
1224 
1225   // De-prime the register being spilled, create two stores for the pair
1226   // subregisters accounting for endianness and then re-prime the register if
1227   // it isn't killed.  This uses the Offset parameter to addFrameReference() to
1228   // adjust the offset of the store that is within the 64-byte stack slot.
1229   if (IsPrimed)
1230     BuildMI(MBB, II, DL, TII.get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
1231   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1232                         .addReg(Reg, getKillRegState(IsKilled)),
1233                     FrameIndex, IsLittleEndian ? 32 : 0);
1234   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1235                         .addReg(Reg + 1, getKillRegState(IsKilled)),
1236                     FrameIndex, IsLittleEndian ? 0 : 32);
1237   if (IsPrimed && !IsKilled)
1238     BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
1239 
1240   // Discard the pseudo instruction.
1241   MBB.erase(II);
1242 }
1243 
1244 /// lowerACCRestore - Generate the code to restore the accumulator register.
1245 void PPCRegisterInfo::lowerACCRestore(MachineBasicBlock::iterator II,
1246                                       unsigned FrameIndex) const {
1247   MachineInstr &MI = *II; // <DestReg> = RESTORE_ACC <offset>
1248   MachineBasicBlock &MBB = *MI.getParent();
1249   MachineFunction &MF = *MBB.getParent();
1250   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1251   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1252   DebugLoc DL = MI.getDebugLoc();
1253 
1254   Register DestReg = MI.getOperand(0).getReg();
1255   assert(MI.definesRegister(DestReg) &&
1256          "RESTORE_ACC does not define its destination");
1257 
1258   bool IsPrimed = PPC::ACCRCRegClass.contains(DestReg);
1259   Register Reg =
1260       PPC::VSRp0 + (DestReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
1261   bool IsLittleEndian = Subtarget.isLittleEndian();
1262 
1263   emitAccSpillRestoreInfo(MBB, IsPrimed, true);
1264 
1265   // Create two loads for the pair subregisters accounting for endianness and
1266   // then prime the accumulator register being restored.
1267   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg),
1268                     FrameIndex, IsLittleEndian ? 32 : 0);
1269   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg + 1),
1270                     FrameIndex, IsLittleEndian ? 0 : 32);
1271   if (IsPrimed)
1272     BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), DestReg).addReg(DestReg);
1273 
1274   // Discard the pseudo instruction.
1275   MBB.erase(II);
1276 }
1277 
1278 /// lowerQuadwordSpilling - Generate code to spill paired general register.
1279 void PPCRegisterInfo::lowerQuadwordSpilling(MachineBasicBlock::iterator II,
1280                                             unsigned FrameIndex) const {
1281   MachineInstr &MI = *II;
1282   MachineBasicBlock &MBB = *MI.getParent();
1283   MachineFunction &MF = *MBB.getParent();
1284   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1285   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1286   DebugLoc DL = MI.getDebugLoc();
1287 
1288   Register SrcReg = MI.getOperand(0).getReg();
1289   bool IsKilled = MI.getOperand(0).isKill();
1290 
1291   Register Reg = PPC::X0 + (SrcReg - PPC::G8p0) * 2;
1292   bool IsLittleEndian = Subtarget.isLittleEndian();
1293 
1294   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
1295                         .addReg(Reg, getKillRegState(IsKilled)),
1296                     FrameIndex, IsLittleEndian ? 8 : 0);
1297   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
1298                         .addReg(Reg + 1, getKillRegState(IsKilled)),
1299                     FrameIndex, IsLittleEndian ? 0 : 8);
1300 
1301   // Discard the pseudo instruction.
1302   MBB.erase(II);
1303 }
1304 
1305 /// lowerQuadwordRestore - Generate code to restore paired general register.
1306 void PPCRegisterInfo::lowerQuadwordRestore(MachineBasicBlock::iterator II,
1307                                            unsigned FrameIndex) const {
1308   MachineInstr &MI = *II;
1309   MachineBasicBlock &MBB = *MI.getParent();
1310   MachineFunction &MF = *MBB.getParent();
1311   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1312   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1313   DebugLoc DL = MI.getDebugLoc();
1314 
1315   Register DestReg = MI.getOperand(0).getReg();
1316   assert(MI.definesRegister(DestReg) &&
1317          "RESTORE_QUADWORD does not define its destination");
1318 
1319   Register Reg = PPC::X0 + (DestReg - PPC::G8p0) * 2;
1320   bool IsLittleEndian = Subtarget.isLittleEndian();
1321 
1322   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg), FrameIndex,
1323                     IsLittleEndian ? 8 : 0);
1324   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg + 1), FrameIndex,
1325                     IsLittleEndian ? 0 : 8);
1326 
1327   // Discard the pseudo instruction.
1328   MBB.erase(II);
1329 }
1330 
1331 bool PPCRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
1332                                            Register Reg, int &FrameIdx) const {
1333   // For the nonvolatile condition registers (CR2, CR3, CR4) return true to
1334   // prevent allocating an additional frame slot.
1335   // For 64-bit ELF and AIX, the CR save area is in the linkage area at SP+8,
1336   // for 32-bit AIX the CR save area is in the linkage area at SP+4.
1337   // We have created a FrameIndex to that spill slot to keep the CalleSaveInfos
1338   // valid.
1339   // For 32-bit ELF, we have previously created the stack slot if needed, so
1340   // return its FrameIdx.
1341   if (PPC::CR2 <= Reg && Reg <= PPC::CR4) {
1342     FrameIdx = MF.getInfo<PPCFunctionInfo>()->getCRSpillFrameIndex();
1343     return true;
1344   }
1345   return false;
1346 }
1347 
1348 // If the offset must be a multiple of some value, return what that value is.
1349 static unsigned offsetMinAlignForOpcode(unsigned OpC) {
1350   switch (OpC) {
1351   default:
1352     return 1;
1353   case PPC::LWA:
1354   case PPC::LWA_32:
1355   case PPC::LD:
1356   case PPC::LDU:
1357   case PPC::STD:
1358   case PPC::STDU:
1359   case PPC::DFLOADf32:
1360   case PPC::DFLOADf64:
1361   case PPC::DFSTOREf32:
1362   case PPC::DFSTOREf64:
1363   case PPC::LXSD:
1364   case PPC::LXSSP:
1365   case PPC::STXSD:
1366   case PPC::STXSSP:
1367   case PPC::STQ:
1368     return 4;
1369   case PPC::EVLDD:
1370   case PPC::EVSTDD:
1371     return 8;
1372   case PPC::LXV:
1373   case PPC::STXV:
1374   case PPC::LQ:
1375   case PPC::LXVP:
1376   case PPC::STXVP:
1377     return 16;
1378   }
1379 }
1380 
1381 // If the offset must be a multiple of some value, return what that value is.
1382 static unsigned offsetMinAlign(const MachineInstr &MI) {
1383   unsigned OpC = MI.getOpcode();
1384   return offsetMinAlignForOpcode(OpC);
1385 }
1386 
1387 // Return the OffsetOperandNo given the FIOperandNum (and the instruction).
1388 static unsigned getOffsetONFromFION(const MachineInstr &MI,
1389                                     unsigned FIOperandNum) {
1390   // Take into account whether it's an add or mem instruction
1391   unsigned OffsetOperandNo = (FIOperandNum == 2) ? 1 : 2;
1392   if (MI.isInlineAsm())
1393     OffsetOperandNo = FIOperandNum - 1;
1394   else if (MI.getOpcode() == TargetOpcode::STACKMAP ||
1395            MI.getOpcode() == TargetOpcode::PATCHPOINT)
1396     OffsetOperandNo = FIOperandNum + 1;
1397 
1398   return OffsetOperandNo;
1399 }
1400 
1401 void
1402 PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
1403                                      int SPAdj, unsigned FIOperandNum,
1404                                      RegScavenger *RS) const {
1405   assert(SPAdj == 0 && "Unexpected");
1406 
1407   // Get the instruction.
1408   MachineInstr &MI = *II;
1409   // Get the instruction's basic block.
1410   MachineBasicBlock &MBB = *MI.getParent();
1411   // Get the basic block's function.
1412   MachineFunction &MF = *MBB.getParent();
1413   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1414   // Get the instruction info.
1415   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1416   // Get the frame info.
1417   MachineFrameInfo &MFI = MF.getFrameInfo();
1418   DebugLoc dl = MI.getDebugLoc();
1419 
1420   unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
1421 
1422   // Get the frame index.
1423   int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
1424 
1425   // Get the frame pointer save index.  Users of this index are primarily
1426   // DYNALLOC instructions.
1427   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1428   int FPSI = FI->getFramePointerSaveIndex();
1429   // Get the instruction opcode.
1430   unsigned OpC = MI.getOpcode();
1431 
1432   if ((OpC == PPC::DYNAREAOFFSET || OpC == PPC::DYNAREAOFFSET8)) {
1433     lowerDynamicAreaOffset(II);
1434     return;
1435   }
1436 
1437   // Special case for dynamic alloca.
1438   if (FPSI && FrameIndex == FPSI &&
1439       (OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) {
1440     lowerDynamicAlloc(II);
1441     return;
1442   }
1443 
1444   if (FPSI && FrameIndex == FPSI &&
1445       (OpC == PPC::PREPARE_PROBED_ALLOCA_64 ||
1446        OpC == PPC::PREPARE_PROBED_ALLOCA_32 ||
1447        OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 ||
1448        OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32)) {
1449     lowerPrepareProbedAlloca(II);
1450     return;
1451   }
1452 
1453   // Special case for pseudo-ops SPILL_CR and RESTORE_CR, etc.
1454   if (OpC == PPC::SPILL_CR) {
1455     lowerCRSpilling(II, FrameIndex);
1456     return;
1457   } else if (OpC == PPC::RESTORE_CR) {
1458     lowerCRRestore(II, FrameIndex);
1459     return;
1460   } else if (OpC == PPC::SPILL_CRBIT) {
1461     lowerCRBitSpilling(II, FrameIndex);
1462     return;
1463   } else if (OpC == PPC::RESTORE_CRBIT) {
1464     lowerCRBitRestore(II, FrameIndex);
1465     return;
1466   } else if (OpC == PPC::SPILL_ACC || OpC == PPC::SPILL_UACC) {
1467     lowerACCSpilling(II, FrameIndex);
1468     return;
1469   } else if (OpC == PPC::RESTORE_ACC || OpC == PPC::RESTORE_UACC) {
1470     lowerACCRestore(II, FrameIndex);
1471     return;
1472   } else if (OpC == PPC::SPILL_QUADWORD) {
1473     lowerQuadwordSpilling(II, FrameIndex);
1474     return;
1475   } else if (OpC == PPC::RESTORE_QUADWORD) {
1476     lowerQuadwordRestore(II, FrameIndex);
1477     return;
1478   }
1479 
1480   // Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP).
1481   MI.getOperand(FIOperandNum).ChangeToRegister(
1482     FrameIndex < 0 ? getBaseRegister(MF) : getFrameRegister(MF), false);
1483 
1484   // If the instruction is not present in ImmToIdxMap, then it has no immediate
1485   // form (and must be r+r).
1486   bool noImmForm = !MI.isInlineAsm() && OpC != TargetOpcode::STACKMAP &&
1487                    OpC != TargetOpcode::PATCHPOINT && !ImmToIdxMap.count(OpC);
1488 
1489   // Now add the frame object offset to the offset from r1.
1490   int64_t Offset = MFI.getObjectOffset(FrameIndex);
1491   Offset += MI.getOperand(OffsetOperandNo).getImm();
1492 
1493   // If we're not using a Frame Pointer that has been set to the value of the
1494   // SP before having the stack size subtracted from it, then add the stack size
1495   // to Offset to get the correct offset.
1496   // Naked functions have stack size 0, although getStackSize may not reflect
1497   // that because we didn't call all the pieces that compute it for naked
1498   // functions.
1499   if (!MF.getFunction().hasFnAttribute(Attribute::Naked)) {
1500     if (!(hasBasePointer(MF) && FrameIndex < 0))
1501       Offset += MFI.getStackSize();
1502   }
1503 
1504   // If we encounter an LXVP/STXVP with an offset that doesn't fit, we can
1505   // transform it to the prefixed version so we don't have to use the XForm.
1506   if ((OpC == PPC::LXVP || OpC == PPC::STXVP) &&
1507       (!isInt<16>(Offset) || (Offset % offsetMinAlign(MI)) != 0) &&
1508       Subtarget.hasPrefixInstrs()) {
1509     unsigned NewOpc = OpC == PPC::LXVP ? PPC::PLXVP : PPC::PSTXVP;
1510     MI.setDesc(TII.get(NewOpc));
1511     OpC = NewOpc;
1512   }
1513 
1514   // If we can, encode the offset directly into the instruction.  If this is a
1515   // normal PPC "ri" instruction, any 16-bit value can be safely encoded.  If
1516   // this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits
1517   // clear can be encoded.  This is extremely uncommon, because normally you
1518   // only "std" to a stack slot that is at least 4-byte aligned, but it can
1519   // happen in invalid code.
1520   assert(OpC != PPC::DBG_VALUE &&
1521          "This should be handled in a target-independent way");
1522   // FIXME: This should be factored out to a separate function as prefixed
1523   // instructions add a number of opcodes for which we can use 34-bit imm.
1524   bool OffsetFitsMnemonic = (OpC == PPC::EVSTDD || OpC == PPC::EVLDD) ?
1525                             isUInt<8>(Offset) :
1526                             isInt<16>(Offset);
1527   if (TII.isPrefixed(MI.getOpcode()))
1528     OffsetFitsMnemonic = isInt<34>(Offset);
1529   if (!noImmForm && ((OffsetFitsMnemonic &&
1530                       ((Offset % offsetMinAlign(MI)) == 0)) ||
1531                      OpC == TargetOpcode::STACKMAP ||
1532                      OpC == TargetOpcode::PATCHPOINT)) {
1533     MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
1534     return;
1535   }
1536 
1537   // The offset doesn't fit into a single register, scavenge one to build the
1538   // offset in.
1539 
1540   bool is64Bit = TM.isPPC64();
1541   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1542   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1543   const TargetRegisterClass *RC = is64Bit ? G8RC : GPRC;
1544   Register SRegHi = MF.getRegInfo().createVirtualRegister(RC),
1545            SReg = MF.getRegInfo().createVirtualRegister(RC);
1546   unsigned NewOpcode = 0u;
1547 
1548   // Insert a set of rA with the full offset value before the ld, st, or add
1549   if (isInt<16>(Offset))
1550     BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), SReg)
1551         .addImm(Offset);
1552   else if (isInt<32>(Offset)) {
1553     BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LIS8 : PPC::LIS), SRegHi)
1554         .addImm(Offset >> 16);
1555     BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::ORI8 : PPC::ORI), SReg)
1556         .addReg(SRegHi, RegState::Kill)
1557         .addImm(Offset);
1558   } else {
1559     assert(is64Bit && "Huge stack is only supported on PPC64");
1560     TII.materializeImmPostRA(MBB, II, dl, SReg, Offset);
1561   }
1562 
1563   // Convert into indexed form of the instruction:
1564   //
1565   //   sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0
1566   //   addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0
1567   unsigned OperandBase;
1568 
1569   if (noImmForm)
1570     OperandBase = 1;
1571   else if (OpC != TargetOpcode::INLINEASM &&
1572            OpC != TargetOpcode::INLINEASM_BR) {
1573     assert(ImmToIdxMap.count(OpC) &&
1574            "No indexed form of load or store available!");
1575     NewOpcode = ImmToIdxMap.find(OpC)->second;
1576     MI.setDesc(TII.get(NewOpcode));
1577     OperandBase = 1;
1578   } else {
1579     OperandBase = OffsetOperandNo;
1580   }
1581 
1582   Register StackReg = MI.getOperand(FIOperandNum).getReg();
1583   MI.getOperand(OperandBase).ChangeToRegister(StackReg, false);
1584   MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false, false, true);
1585 
1586   // Since these are not real X-Form instructions, we must
1587   // add the registers and access 0(NewReg) rather than
1588   // emitting the X-Form pseudo.
1589   if (NewOpcode == PPC::LQX_PSEUDO || NewOpcode == PPC::STQX_PSEUDO) {
1590     assert(is64Bit && "Quadword loads/stores only supported in 64-bit mode");
1591     Register NewReg = MF.getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
1592     BuildMI(MBB, II, dl, TII.get(PPC::ADD8), NewReg)
1593         .addReg(SReg, RegState::Kill)
1594         .addReg(StackReg);
1595     MI.setDesc(TII.get(NewOpcode == PPC::LQX_PSEUDO ? PPC::LQ : PPC::STQ));
1596     MI.getOperand(OperandBase + 1).ChangeToRegister(NewReg, false);
1597     MI.getOperand(OperandBase).ChangeToImmediate(0);
1598   }
1599 }
1600 
1601 Register PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
1602   const PPCFrameLowering *TFI = getFrameLowering(MF);
1603 
1604   if (!TM.isPPC64())
1605     return TFI->hasFP(MF) ? PPC::R31 : PPC::R1;
1606   else
1607     return TFI->hasFP(MF) ? PPC::X31 : PPC::X1;
1608 }
1609 
1610 Register PPCRegisterInfo::getBaseRegister(const MachineFunction &MF) const {
1611   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1612   if (!hasBasePointer(MF))
1613     return getFrameRegister(MF);
1614 
1615   if (TM.isPPC64())
1616     return PPC::X30;
1617 
1618   if (Subtarget.isSVR4ABI() && TM.isPositionIndependent())
1619     return PPC::R29;
1620 
1621   return PPC::R30;
1622 }
1623 
1624 bool PPCRegisterInfo::hasBasePointer(const MachineFunction &MF) const {
1625   if (!EnableBasePointer)
1626     return false;
1627   if (AlwaysBasePointer)
1628     return true;
1629 
1630   // If we need to realign the stack, then the stack pointer can no longer
1631   // serve as an offset into the caller's stack space. As a result, we need a
1632   // base pointer.
1633   return hasStackRealignment(MF);
1634 }
1635 
1636 /// Returns true if the instruction's frame index
1637 /// reference would be better served by a base register other than FP
1638 /// or SP. Used by LocalStackFrameAllocation to determine which frame index
1639 /// references it should create new base registers for.
1640 bool PPCRegisterInfo::
1641 needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
1642   assert(Offset < 0 && "Local offset must be negative");
1643 
1644   // It's the load/store FI references that cause issues, as it can be difficult
1645   // to materialize the offset if it won't fit in the literal field. Estimate
1646   // based on the size of the local frame and some conservative assumptions
1647   // about the rest of the stack frame (note, this is pre-regalloc, so
1648   // we don't know everything for certain yet) whether this offset is likely
1649   // to be out of range of the immediate. Return true if so.
1650 
1651   // We only generate virtual base registers for loads and stores that have
1652   // an r+i form. Return false for everything else.
1653   unsigned OpC = MI->getOpcode();
1654   if (!ImmToIdxMap.count(OpC))
1655     return false;
1656 
1657   // Don't generate a new virtual base register just to add zero to it.
1658   if ((OpC == PPC::ADDI || OpC == PPC::ADDI8) &&
1659       MI->getOperand(2).getImm() == 0)
1660     return false;
1661 
1662   MachineBasicBlock &MBB = *MI->getParent();
1663   MachineFunction &MF = *MBB.getParent();
1664   const PPCFrameLowering *TFI = getFrameLowering(MF);
1665   unsigned StackEst = TFI->determineFrameLayout(MF, true);
1666 
1667   // If we likely don't need a stack frame, then we probably don't need a
1668   // virtual base register either.
1669   if (!StackEst)
1670     return false;
1671 
1672   // Estimate an offset from the stack pointer.
1673   // The incoming offset is relating to the SP at the start of the function,
1674   // but when we access the local it'll be relative to the SP after local
1675   // allocation, so adjust our SP-relative offset by that allocation size.
1676   Offset += StackEst;
1677 
1678   // The frame pointer will point to the end of the stack, so estimate the
1679   // offset as the difference between the object offset and the FP location.
1680   return !isFrameOffsetLegal(MI, getBaseRegister(MF), Offset);
1681 }
1682 
1683 /// Insert defining instruction(s) for BaseReg to
1684 /// be a pointer to FrameIdx at the beginning of the basic block.
1685 Register PPCRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
1686                                                        int FrameIdx,
1687                                                        int64_t Offset) const {
1688   unsigned ADDriOpc = TM.isPPC64() ? PPC::ADDI8 : PPC::ADDI;
1689 
1690   MachineBasicBlock::iterator Ins = MBB->begin();
1691   DebugLoc DL;                  // Defaults to "unknown"
1692   if (Ins != MBB->end())
1693     DL = Ins->getDebugLoc();
1694 
1695   const MachineFunction &MF = *MBB->getParent();
1696   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1697   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1698   const MCInstrDesc &MCID = TII.get(ADDriOpc);
1699   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
1700   const TargetRegisterClass *RC = getPointerRegClass(MF);
1701   Register BaseReg = MRI.createVirtualRegister(RC);
1702   MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF));
1703 
1704   BuildMI(*MBB, Ins, DL, MCID, BaseReg)
1705     .addFrameIndex(FrameIdx).addImm(Offset);
1706 
1707   return BaseReg;
1708 }
1709 
1710 void PPCRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
1711                                         int64_t Offset) const {
1712   unsigned FIOperandNum = 0;
1713   while (!MI.getOperand(FIOperandNum).isFI()) {
1714     ++FIOperandNum;
1715     assert(FIOperandNum < MI.getNumOperands() &&
1716            "Instr doesn't have FrameIndex operand!");
1717   }
1718 
1719   MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false);
1720   unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
1721   Offset += MI.getOperand(OffsetOperandNo).getImm();
1722   MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
1723 
1724   MachineBasicBlock &MBB = *MI.getParent();
1725   MachineFunction &MF = *MBB.getParent();
1726   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1727   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1728   const MCInstrDesc &MCID = MI.getDesc();
1729   MachineRegisterInfo &MRI = MF.getRegInfo();
1730   MRI.constrainRegClass(BaseReg,
1731                         TII.getRegClass(MCID, FIOperandNum, this, MF));
1732 }
1733 
1734 bool PPCRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
1735                                          Register BaseReg,
1736                                          int64_t Offset) const {
1737   unsigned FIOperandNum = 0;
1738   while (!MI->getOperand(FIOperandNum).isFI()) {
1739     ++FIOperandNum;
1740     assert(FIOperandNum < MI->getNumOperands() &&
1741            "Instr doesn't have FrameIndex operand!");
1742   }
1743 
1744   unsigned OffsetOperandNo = getOffsetONFromFION(*MI, FIOperandNum);
1745   Offset += MI->getOperand(OffsetOperandNo).getImm();
1746 
1747   return MI->getOpcode() == PPC::DBG_VALUE || // DBG_VALUE is always Reg+Imm
1748          MI->getOpcode() == TargetOpcode::STACKMAP ||
1749          MI->getOpcode() == TargetOpcode::PATCHPOINT ||
1750          (isInt<16>(Offset) && (Offset % offsetMinAlign(*MI)) == 0);
1751 }
1752