1 //===-- PPCRegisterInfo.cpp - PowerPC Register Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetRegisterInfo
10 // class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "PPCRegisterInfo.h"
15 #include "PPCFrameLowering.h"
16 #include "PPCInstrBuilder.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCSubtarget.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/RegisterScavenging.h"
29 #include "llvm/CodeGen/TargetFrameLowering.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/VirtRegMap.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetMachine.h"
42 #include "llvm/Target/TargetOptions.h"
43 #include <cstdlib>
44
45 using namespace llvm;
46
47 #define DEBUG_TYPE "reginfo"
48
49 #define GET_REGINFO_TARGET_DESC
50 #include "PPCGenRegisterInfo.inc"
51
52 STATISTIC(InflateGPRC, "Number of gprc inputs for getLargestLegalClass");
53 STATISTIC(InflateGP8RC, "Number of g8rc inputs for getLargestLegalClass");
54
55 static cl::opt<bool>
56 EnableBasePointer("ppc-use-base-pointer", cl::Hidden, cl::init(true),
57 cl::desc("Enable use of a base pointer for complex stack frames"));
58
59 static cl::opt<bool>
60 AlwaysBasePointer("ppc-always-use-base-pointer", cl::Hidden, cl::init(false),
61 cl::desc("Force the use of a base pointer in every function"));
62
63 static cl::opt<bool>
64 EnableGPRToVecSpills("ppc-enable-gpr-to-vsr-spills", cl::Hidden, cl::init(false),
65 cl::desc("Enable spills from gpr to vsr rather than stack"));
66
67 static cl::opt<bool>
68 StackPtrConst("ppc-stack-ptr-caller-preserved",
69 cl::desc("Consider R1 caller preserved so stack saves of "
70 "caller preserved registers can be LICM candidates"),
71 cl::init(true), cl::Hidden);
72
73 static cl::opt<unsigned>
74 MaxCRBitSpillDist("ppc-max-crbit-spill-dist",
75 cl::desc("Maximum search distance for definition of CR bit "
76 "spill on ppc"),
77 cl::Hidden, cl::init(100));
78
79 // Copies/moves of physical accumulators are expensive operations
80 // that should be avoided whenever possible. MMA instructions are
81 // meant to be used in performance-sensitive computational kernels.
82 // This option is provided, at least for the time being, to give the
83 // user a tool to detect this expensive operation and either rework
84 // their code or report a compiler bug if that turns out to be the
85 // cause.
86 #ifndef NDEBUG
87 static cl::opt<bool>
88 ReportAccMoves("ppc-report-acc-moves",
89 cl::desc("Emit information about accumulator register spills "
90 "and copies"),
91 cl::Hidden, cl::init(false));
92 #endif
93
94 extern cl::opt<bool> DisableAutoPairedVecSt;
95
96 static unsigned offsetMinAlignForOpcode(unsigned OpC);
97
PPCRegisterInfo(const PPCTargetMachine & TM)98 PPCRegisterInfo::PPCRegisterInfo(const PPCTargetMachine &TM)
99 : PPCGenRegisterInfo(TM.isPPC64() ? PPC::LR8 : PPC::LR,
100 TM.isPPC64() ? 0 : 1,
101 TM.isPPC64() ? 0 : 1),
102 TM(TM) {
103 ImmToIdxMap[PPC::LD] = PPC::LDX; ImmToIdxMap[PPC::STD] = PPC::STDX;
104 ImmToIdxMap[PPC::LBZ] = PPC::LBZX; ImmToIdxMap[PPC::STB] = PPC::STBX;
105 ImmToIdxMap[PPC::LHZ] = PPC::LHZX; ImmToIdxMap[PPC::LHA] = PPC::LHAX;
106 ImmToIdxMap[PPC::LWZ] = PPC::LWZX; ImmToIdxMap[PPC::LWA] = PPC::LWAX;
107 ImmToIdxMap[PPC::LFS] = PPC::LFSX; ImmToIdxMap[PPC::LFD] = PPC::LFDX;
108 ImmToIdxMap[PPC::STH] = PPC::STHX; ImmToIdxMap[PPC::STW] = PPC::STWX;
109 ImmToIdxMap[PPC::STFS] = PPC::STFSX; ImmToIdxMap[PPC::STFD] = PPC::STFDX;
110 ImmToIdxMap[PPC::ADDI] = PPC::ADD4;
111 ImmToIdxMap[PPC::LWA_32] = PPC::LWAX_32;
112
113 // 64-bit
114 ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8;
115 ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8;
116 ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8;
117 ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX;
118 ImmToIdxMap[PPC::ADDI8] = PPC::ADD8;
119 ImmToIdxMap[PPC::LQ] = PPC::LQX_PSEUDO;
120 ImmToIdxMap[PPC::STQ] = PPC::STQX_PSEUDO;
121
122 // VSX
123 ImmToIdxMap[PPC::DFLOADf32] = PPC::LXSSPX;
124 ImmToIdxMap[PPC::DFLOADf64] = PPC::LXSDX;
125 ImmToIdxMap[PPC::SPILLTOVSR_LD] = PPC::SPILLTOVSR_LDX;
126 ImmToIdxMap[PPC::SPILLTOVSR_ST] = PPC::SPILLTOVSR_STX;
127 ImmToIdxMap[PPC::DFSTOREf32] = PPC::STXSSPX;
128 ImmToIdxMap[PPC::DFSTOREf64] = PPC::STXSDX;
129 ImmToIdxMap[PPC::LXV] = PPC::LXVX;
130 ImmToIdxMap[PPC::LXSD] = PPC::LXSDX;
131 ImmToIdxMap[PPC::LXSSP] = PPC::LXSSPX;
132 ImmToIdxMap[PPC::STXV] = PPC::STXVX;
133 ImmToIdxMap[PPC::STXSD] = PPC::STXSDX;
134 ImmToIdxMap[PPC::STXSSP] = PPC::STXSSPX;
135
136 // SPE
137 ImmToIdxMap[PPC::EVLDD] = PPC::EVLDDX;
138 ImmToIdxMap[PPC::EVSTDD] = PPC::EVSTDDX;
139 ImmToIdxMap[PPC::SPESTW] = PPC::SPESTWX;
140 ImmToIdxMap[PPC::SPELWZ] = PPC::SPELWZX;
141
142 // Power10
143 ImmToIdxMap[PPC::PLBZ] = PPC::LBZX; ImmToIdxMap[PPC::PLBZ8] = PPC::LBZX8;
144 ImmToIdxMap[PPC::PLHZ] = PPC::LHZX; ImmToIdxMap[PPC::PLHZ8] = PPC::LHZX8;
145 ImmToIdxMap[PPC::PLHA] = PPC::LHAX; ImmToIdxMap[PPC::PLHA8] = PPC::LHAX8;
146 ImmToIdxMap[PPC::PLWZ] = PPC::LWZX; ImmToIdxMap[PPC::PLWZ8] = PPC::LWZX8;
147 ImmToIdxMap[PPC::PLWA] = PPC::LWAX; ImmToIdxMap[PPC::PLWA8] = PPC::LWAX;
148 ImmToIdxMap[PPC::PLD] = PPC::LDX; ImmToIdxMap[PPC::PSTD] = PPC::STDX;
149
150 ImmToIdxMap[PPC::PSTB] = PPC::STBX; ImmToIdxMap[PPC::PSTB8] = PPC::STBX8;
151 ImmToIdxMap[PPC::PSTH] = PPC::STHX; ImmToIdxMap[PPC::PSTH8] = PPC::STHX8;
152 ImmToIdxMap[PPC::PSTW] = PPC::STWX; ImmToIdxMap[PPC::PSTW8] = PPC::STWX8;
153
154 ImmToIdxMap[PPC::PLFS] = PPC::LFSX; ImmToIdxMap[PPC::PSTFS] = PPC::STFSX;
155 ImmToIdxMap[PPC::PLFD] = PPC::LFDX; ImmToIdxMap[PPC::PSTFD] = PPC::STFDX;
156 ImmToIdxMap[PPC::PLXSSP] = PPC::LXSSPX; ImmToIdxMap[PPC::PSTXSSP] = PPC::STXSSPX;
157 ImmToIdxMap[PPC::PLXSD] = PPC::LXSDX; ImmToIdxMap[PPC::PSTXSD] = PPC::STXSDX;
158 ImmToIdxMap[PPC::PLXV] = PPC::LXVX; ImmToIdxMap[PPC::PSTXV] = PPC::STXVX;
159
160 ImmToIdxMap[PPC::LXVP] = PPC::LXVPX;
161 ImmToIdxMap[PPC::STXVP] = PPC::STXVPX;
162 ImmToIdxMap[PPC::PLXVP] = PPC::LXVPX;
163 ImmToIdxMap[PPC::PSTXVP] = PPC::STXVPX;
164 }
165
166 /// getPointerRegClass - Return the register class to use to hold pointers.
167 /// This is used for addressing modes.
168 const TargetRegisterClass *
getPointerRegClass(const MachineFunction & MF,unsigned Kind) const169 PPCRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind)
170 const {
171 // Note that PPCInstrInfo::FoldImmediate also directly uses this Kind value
172 // when it checks for ZERO folding.
173 if (Kind == 1) {
174 if (TM.isPPC64())
175 return &PPC::G8RC_NOX0RegClass;
176 return &PPC::GPRC_NOR0RegClass;
177 }
178
179 if (TM.isPPC64())
180 return &PPC::G8RCRegClass;
181 return &PPC::GPRCRegClass;
182 }
183
184 const MCPhysReg*
getCalleeSavedRegs(const MachineFunction * MF) const185 PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
186 const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>();
187 if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) {
188 if (!TM.isPPC64() && Subtarget.isAIXABI())
189 report_fatal_error("AnyReg unimplemented on 32-bit AIX.");
190 if (Subtarget.hasVSX()) {
191 if (Subtarget.pairedVectorMemops())
192 return CSR_64_AllRegs_VSRP_SaveList;
193 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
194 return CSR_64_AllRegs_AIX_Dflt_VSX_SaveList;
195 return CSR_64_AllRegs_VSX_SaveList;
196 }
197 if (Subtarget.hasAltivec()) {
198 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
199 return CSR_64_AllRegs_AIX_Dflt_Altivec_SaveList;
200 return CSR_64_AllRegs_Altivec_SaveList;
201 }
202 return CSR_64_AllRegs_SaveList;
203 }
204
205 // On PPC64, we might need to save r2 (but only if it is not reserved).
206 // We do not need to treat R2 as callee-saved when using PC-Relative calls
207 // because any direct uses of R2 will cause it to be reserved. If the function
208 // is a leaf or the only uses of R2 are implicit uses for calls, the calls
209 // will use the @notoc relocation which will cause this function to set the
210 // st_other bit to 1, thereby communicating to its caller that it arbitrarily
211 // clobbers the TOC.
212 bool SaveR2 = MF->getRegInfo().isAllocatable(PPC::X2) &&
213 !Subtarget.isUsingPCRelativeCalls();
214
215 // Cold calling convention CSRs.
216 if (MF->getFunction().getCallingConv() == CallingConv::Cold) {
217 if (Subtarget.isAIXABI())
218 report_fatal_error("Cold calling unimplemented on AIX.");
219 if (TM.isPPC64()) {
220 if (Subtarget.pairedVectorMemops())
221 return SaveR2 ? CSR_SVR64_ColdCC_R2_VSRP_SaveList
222 : CSR_SVR64_ColdCC_VSRP_SaveList;
223 if (Subtarget.hasAltivec())
224 return SaveR2 ? CSR_SVR64_ColdCC_R2_Altivec_SaveList
225 : CSR_SVR64_ColdCC_Altivec_SaveList;
226 return SaveR2 ? CSR_SVR64_ColdCC_R2_SaveList
227 : CSR_SVR64_ColdCC_SaveList;
228 }
229 // 32-bit targets.
230 if (Subtarget.pairedVectorMemops())
231 return CSR_SVR32_ColdCC_VSRP_SaveList;
232 else if (Subtarget.hasAltivec())
233 return CSR_SVR32_ColdCC_Altivec_SaveList;
234 else if (Subtarget.hasSPE())
235 return CSR_SVR32_ColdCC_SPE_SaveList;
236 return CSR_SVR32_ColdCC_SaveList;
237 }
238 // Standard calling convention CSRs.
239 if (TM.isPPC64()) {
240 if (Subtarget.pairedVectorMemops())
241 return SaveR2 ? CSR_SVR464_R2_VSRP_SaveList : CSR_SVR464_VSRP_SaveList;
242 if (Subtarget.hasAltivec() &&
243 (!Subtarget.isAIXABI() || TM.getAIXExtendedAltivecABI())) {
244 return SaveR2 ? CSR_PPC64_R2_Altivec_SaveList
245 : CSR_PPC64_Altivec_SaveList;
246 }
247 return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList;
248 }
249 // 32-bit targets.
250 if (Subtarget.isAIXABI()) {
251 if (Subtarget.hasAltivec())
252 return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_Altivec_SaveList
253 : CSR_AIX32_SaveList;
254 return CSR_AIX32_SaveList;
255 }
256 if (Subtarget.pairedVectorMemops())
257 return CSR_SVR432_VSRP_SaveList;
258 if (Subtarget.hasAltivec())
259 return CSR_SVR432_Altivec_SaveList;
260 else if (Subtarget.hasSPE())
261 return CSR_SVR432_SPE_SaveList;
262 return CSR_SVR432_SaveList;
263 }
264
265 const uint32_t *
getCallPreservedMask(const MachineFunction & MF,CallingConv::ID CC) const266 PPCRegisterInfo::getCallPreservedMask(const MachineFunction &MF,
267 CallingConv::ID CC) const {
268 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
269 if (CC == CallingConv::AnyReg) {
270 if (Subtarget.hasVSX()) {
271 if (Subtarget.pairedVectorMemops())
272 return CSR_64_AllRegs_VSRP_RegMask;
273 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
274 return CSR_64_AllRegs_AIX_Dflt_VSX_RegMask;
275 return CSR_64_AllRegs_VSX_RegMask;
276 }
277 if (Subtarget.hasAltivec()) {
278 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
279 return CSR_64_AllRegs_AIX_Dflt_Altivec_RegMask;
280 return CSR_64_AllRegs_Altivec_RegMask;
281 }
282 return CSR_64_AllRegs_RegMask;
283 }
284
285 if (Subtarget.isAIXABI()) {
286 return TM.isPPC64()
287 ? ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
288 ? CSR_PPC64_Altivec_RegMask
289 : CSR_PPC64_RegMask)
290 : ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
291 ? CSR_AIX32_Altivec_RegMask
292 : CSR_AIX32_RegMask);
293 }
294
295 if (CC == CallingConv::Cold) {
296 if (TM.isPPC64())
297 return Subtarget.pairedVectorMemops()
298 ? CSR_SVR64_ColdCC_VSRP_RegMask
299 : (Subtarget.hasAltivec() ? CSR_SVR64_ColdCC_Altivec_RegMask
300 : CSR_SVR64_ColdCC_RegMask);
301 else
302 return Subtarget.pairedVectorMemops()
303 ? CSR_SVR32_ColdCC_VSRP_RegMask
304 : (Subtarget.hasAltivec()
305 ? CSR_SVR32_ColdCC_Altivec_RegMask
306 : (Subtarget.hasSPE() ? CSR_SVR32_ColdCC_SPE_RegMask
307 : CSR_SVR32_ColdCC_RegMask));
308 }
309
310 if (TM.isPPC64())
311 return Subtarget.pairedVectorMemops()
312 ? CSR_SVR464_VSRP_RegMask
313 : (Subtarget.hasAltivec() ? CSR_PPC64_Altivec_RegMask
314 : CSR_PPC64_RegMask);
315 else
316 return Subtarget.pairedVectorMemops()
317 ? CSR_SVR432_VSRP_RegMask
318 : (Subtarget.hasAltivec()
319 ? CSR_SVR432_Altivec_RegMask
320 : (Subtarget.hasSPE() ? CSR_SVR432_SPE_RegMask
321 : CSR_SVR432_RegMask));
322 }
323
324 const uint32_t*
getNoPreservedMask() const325 PPCRegisterInfo::getNoPreservedMask() const {
326 return CSR_NoRegs_RegMask;
327 }
328
adjustStackMapLiveOutMask(uint32_t * Mask) const329 void PPCRegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const {
330 for (unsigned PseudoReg : {PPC::ZERO, PPC::ZERO8, PPC::RM})
331 Mask[PseudoReg / 32] &= ~(1u << (PseudoReg % 32));
332 }
333
getReservedRegs(const MachineFunction & MF) const334 BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
335 BitVector Reserved(getNumRegs());
336 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
337 const PPCFrameLowering *TFI = getFrameLowering(MF);
338
339 // The ZERO register is not really a register, but the representation of r0
340 // when used in instructions that treat r0 as the constant 0.
341 markSuperRegs(Reserved, PPC::ZERO);
342
343 // The FP register is also not really a register, but is the representation
344 // of the frame pointer register used by ISD::FRAMEADDR.
345 markSuperRegs(Reserved, PPC::FP);
346
347 // The BP register is also not really a register, but is the representation
348 // of the base pointer register used by setjmp.
349 markSuperRegs(Reserved, PPC::BP);
350
351 // The counter registers must be reserved so that counter-based loops can
352 // be correctly formed (and the mtctr instructions are not DCE'd).
353 markSuperRegs(Reserved, PPC::CTR);
354 markSuperRegs(Reserved, PPC::CTR8);
355
356 markSuperRegs(Reserved, PPC::R1);
357 markSuperRegs(Reserved, PPC::LR);
358 markSuperRegs(Reserved, PPC::LR8);
359 markSuperRegs(Reserved, PPC::RM);
360
361 markSuperRegs(Reserved, PPC::VRSAVE);
362
363 // The SVR4 ABI reserves r2 and r13
364 if (Subtarget.isSVR4ABI()) {
365 // We only reserve r2 if we need to use the TOC pointer. If we have no
366 // explicit uses of the TOC pointer (meaning we're a leaf function with
367 // no constant-pool loads, etc.) and we have no potential uses inside an
368 // inline asm block, then we can treat r2 has an ordinary callee-saved
369 // register.
370 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
371 if (!TM.isPPC64() || FuncInfo->usesTOCBasePtr() || MF.hasInlineAsm())
372 markSuperRegs(Reserved, PPC::R2); // System-reserved register
373 markSuperRegs(Reserved, PPC::R13); // Small Data Area pointer register
374 }
375
376 // Always reserve r2 on AIX for now.
377 // TODO: Make r2 allocatable on AIX/XCOFF for some leaf functions.
378 if (Subtarget.isAIXABI())
379 markSuperRegs(Reserved, PPC::R2); // System-reserved register
380
381 // On PPC64, r13 is the thread pointer. Never allocate this register.
382 if (TM.isPPC64())
383 markSuperRegs(Reserved, PPC::R13);
384
385 if (TFI->needsFP(MF))
386 markSuperRegs(Reserved, PPC::R31);
387
388 bool IsPositionIndependent = TM.isPositionIndependent();
389 if (hasBasePointer(MF)) {
390 if (Subtarget.is32BitELFABI() && IsPositionIndependent)
391 markSuperRegs(Reserved, PPC::R29);
392 else
393 markSuperRegs(Reserved, PPC::R30);
394 }
395
396 if (Subtarget.is32BitELFABI() && IsPositionIndependent)
397 markSuperRegs(Reserved, PPC::R30);
398
399 // Reserve Altivec registers when Altivec is unavailable.
400 if (!Subtarget.hasAltivec())
401 for (TargetRegisterClass::iterator I = PPC::VRRCRegClass.begin(),
402 IE = PPC::VRRCRegClass.end(); I != IE; ++I)
403 markSuperRegs(Reserved, *I);
404
405 if (Subtarget.isAIXABI() && Subtarget.hasAltivec() &&
406 !TM.getAIXExtendedAltivecABI()) {
407 // In the AIX default Altivec ABI, vector registers VR20-VR31 are reserved
408 // and cannot be used.
409 for (auto Reg : CSR_Altivec_SaveList) {
410 if (Reg == 0)
411 break;
412 markSuperRegs(Reserved, Reg);
413 for (MCRegAliasIterator AS(Reg, this, true); AS.isValid(); ++AS) {
414 Reserved.set(*AS);
415 }
416 }
417 }
418
419 assert(checkAllSuperRegsMarked(Reserved));
420 return Reserved;
421 }
422
isAsmClobberable(const MachineFunction & MF,MCRegister PhysReg) const423 bool PPCRegisterInfo::isAsmClobberable(const MachineFunction &MF,
424 MCRegister PhysReg) const {
425 // We cannot use getReservedRegs() to find the registers that are not asm
426 // clobberable because there are some reserved registers which can be
427 // clobbered by inline asm. For example, when LR is clobbered, the register is
428 // saved and restored. We will hardcode the registers that are not asm
429 // cloberable in this function.
430
431 // The stack pointer (R1/X1) is not clobberable by inline asm
432 return PhysReg != PPC::R1 && PhysReg != PPC::X1;
433 }
434
requiresFrameIndexScavenging(const MachineFunction & MF) const435 bool PPCRegisterInfo::requiresFrameIndexScavenging(const MachineFunction &MF) const {
436 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
437 const PPCInstrInfo *InstrInfo = Subtarget.getInstrInfo();
438 const MachineFrameInfo &MFI = MF.getFrameInfo();
439 const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();
440
441 LLVM_DEBUG(dbgs() << "requiresFrameIndexScavenging for " << MF.getName()
442 << ".\n");
443 // If the callee saved info is invalid we have to default to true for safety.
444 if (!MFI.isCalleeSavedInfoValid()) {
445 LLVM_DEBUG(dbgs() << "TRUE - Invalid callee saved info.\n");
446 return true;
447 }
448
449 // We will require the use of X-Forms because the frame is larger than what
450 // can be represented in signed 16 bits that fit in the immediate of a D-Form.
451 // If we need an X-Form then we need a register to store the address offset.
452 unsigned FrameSize = MFI.getStackSize();
453 // Signed 16 bits means that the FrameSize cannot be more than 15 bits.
454 if (FrameSize & ~0x7FFF) {
455 LLVM_DEBUG(dbgs() << "TRUE - Frame size is too large for D-Form.\n");
456 return true;
457 }
458
459 // The callee saved info is valid so it can be traversed.
460 // Checking for registers that need saving that do not have load or store
461 // forms where the address offset is an immediate.
462 for (unsigned i = 0; i < Info.size(); i++) {
463 // If the spill is to a register no scavenging is required.
464 if (Info[i].isSpilledToReg())
465 continue;
466
467 int FrIdx = Info[i].getFrameIdx();
468 Register Reg = Info[i].getReg();
469
470 const TargetRegisterClass *RC = getMinimalPhysRegClass(Reg);
471 unsigned Opcode = InstrInfo->getStoreOpcodeForSpill(RC);
472 if (!MFI.isFixedObjectIndex(FrIdx)) {
473 // This is not a fixed object. If it requires alignment then we may still
474 // need to use the XForm.
475 if (offsetMinAlignForOpcode(Opcode) > 1) {
476 LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
477 << " for register " << printReg(Reg, this) << ".\n");
478 LLVM_DEBUG(dbgs() << "TRUE - Not fixed frame object that requires "
479 << "alignment.\n");
480 return true;
481 }
482 }
483
484 // This is eiher:
485 // 1) A fixed frame index object which we know are aligned so
486 // as long as we have a valid DForm/DSForm/DQForm (non XForm) we don't
487 // need to consider the alignment here.
488 // 2) A not fixed object but in that case we now know that the min required
489 // alignment is no more than 1 based on the previous check.
490 if (InstrInfo->isXFormMemOp(Opcode)) {
491 LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
492 << " for register " << printReg(Reg, this) << ".\n");
493 LLVM_DEBUG(dbgs() << "TRUE - Memory operand is X-Form.\n");
494 return true;
495 }
496
497 // This is a spill/restore of a quadword.
498 if ((Opcode == PPC::RESTORE_QUADWORD) || (Opcode == PPC::SPILL_QUADWORD)) {
499 LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
500 << " for register " << printReg(Reg, this) << ".\n");
501 LLVM_DEBUG(dbgs() << "TRUE - Memory operand is a quadword.\n");
502 return true;
503 }
504 }
505 LLVM_DEBUG(dbgs() << "FALSE - Scavenging is not required.\n");
506 return false;
507 }
508
requiresVirtualBaseRegisters(const MachineFunction & MF) const509 bool PPCRegisterInfo::requiresVirtualBaseRegisters(
510 const MachineFunction &MF) const {
511 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
512 // Do not use virtual base registers when ROP protection is turned on.
513 // Virtual base registers break the layout of the local variable space and may
514 // push the ROP Hash location past the 512 byte range of the ROP store
515 // instruction.
516 return !Subtarget.hasROPProtect();
517 }
518
isCallerPreservedPhysReg(MCRegister PhysReg,const MachineFunction & MF) const519 bool PPCRegisterInfo::isCallerPreservedPhysReg(MCRegister PhysReg,
520 const MachineFunction &MF) const {
521 assert(Register::isPhysicalRegister(PhysReg));
522 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
523 const MachineFrameInfo &MFI = MF.getFrameInfo();
524
525 if (!Subtarget.is64BitELFABI() && !Subtarget.isAIXABI())
526 return false;
527 if (PhysReg == Subtarget.getTOCPointerRegister())
528 // X2/R2 is guaranteed to be preserved within a function if it is reserved.
529 // The reason it's reserved is that it's the TOC pointer (and the function
530 // uses the TOC). In functions where it isn't reserved (i.e. leaf functions
531 // with no TOC access), we can't claim that it is preserved.
532 return (getReservedRegs(MF).test(PhysReg));
533 if (StackPtrConst && PhysReg == Subtarget.getStackPointerRegister() &&
534 !MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
535 // The value of the stack pointer does not change within a function after
536 // the prologue and before the epilogue if there are no dynamic allocations
537 // and no inline asm which clobbers X1/R1.
538 return true;
539 return false;
540 }
541
getRegAllocationHints(Register VirtReg,ArrayRef<MCPhysReg> Order,SmallVectorImpl<MCPhysReg> & Hints,const MachineFunction & MF,const VirtRegMap * VRM,const LiveRegMatrix * Matrix) const542 bool PPCRegisterInfo::getRegAllocationHints(Register VirtReg,
543 ArrayRef<MCPhysReg> Order,
544 SmallVectorImpl<MCPhysReg> &Hints,
545 const MachineFunction &MF,
546 const VirtRegMap *VRM,
547 const LiveRegMatrix *Matrix) const {
548 const MachineRegisterInfo *MRI = &MF.getRegInfo();
549
550 // Call the base implementation first to set any hints based on the usual
551 // heuristics and decide what the return value should be. We want to return
552 // the same value returned by the base implementation. If the base
553 // implementation decides to return true and force the allocation then we
554 // will leave it as such. On the other hand if the base implementation
555 // decides to return false the following code will not force the allocation
556 // as we are just looking to provide a hint.
557 bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints(
558 VirtReg, Order, Hints, MF, VRM, Matrix);
559 // We are interested in instructions that copy values to ACC/UACC.
560 // The copy into UACC will be simply a COPY to a subreg so we
561 // want to allocate the corresponding physical subreg for the source.
562 // The copy into ACC will be a BUILD_UACC so we want to allocate
563 // the same number UACC for the source.
564 for (MachineInstr &Use : MRI->reg_nodbg_instructions(VirtReg)) {
565 const MachineOperand *ResultOp = nullptr;
566 Register ResultReg;
567 switch (Use.getOpcode()) {
568 case TargetOpcode::COPY: {
569 ResultOp = &Use.getOperand(0);
570 ResultReg = ResultOp->getReg();
571 if (Register::isVirtualRegister(ResultReg) &&
572 MRI->getRegClass(ResultReg)->contains(PPC::UACC0) &&
573 VRM->hasPhys(ResultReg)) {
574 Register UACCPhys = VRM->getPhys(ResultReg);
575 Register HintReg = getSubReg(UACCPhys, ResultOp->getSubReg());
576 // Ensure that the hint is a VSRp register.
577 if (HintReg >= PPC::VSRp0 && HintReg <= PPC::VSRp31)
578 Hints.push_back(HintReg);
579 }
580 break;
581 }
582 case PPC::BUILD_UACC: {
583 ResultOp = &Use.getOperand(0);
584 ResultReg = ResultOp->getReg();
585 if (MRI->getRegClass(ResultReg)->contains(PPC::ACC0) &&
586 VRM->hasPhys(ResultReg)) {
587 Register ACCPhys = VRM->getPhys(ResultReg);
588 assert((ACCPhys >= PPC::ACC0 && ACCPhys <= PPC::ACC7) &&
589 "Expecting an ACC register for BUILD_UACC.");
590 Register HintReg = PPC::UACC0 + (ACCPhys - PPC::ACC0);
591 Hints.push_back(HintReg);
592 }
593 break;
594 }
595 }
596 }
597 return BaseImplRetVal;
598 }
599
getRegPressureLimit(const TargetRegisterClass * RC,MachineFunction & MF) const600 unsigned PPCRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
601 MachineFunction &MF) const {
602 const PPCFrameLowering *TFI = getFrameLowering(MF);
603 const unsigned DefaultSafety = 1;
604
605 switch (RC->getID()) {
606 default:
607 return 0;
608 case PPC::G8RC_NOX0RegClassID:
609 case PPC::GPRC_NOR0RegClassID:
610 case PPC::SPERCRegClassID:
611 case PPC::G8RCRegClassID:
612 case PPC::GPRCRegClassID: {
613 unsigned FP = TFI->hasFP(MF) ? 1 : 0;
614 return 32 - FP - DefaultSafety;
615 }
616 case PPC::F4RCRegClassID:
617 case PPC::F8RCRegClassID:
618 case PPC::VSLRCRegClassID:
619 return 32 - DefaultSafety;
620 case PPC::VFRCRegClassID:
621 case PPC::VRRCRegClassID: {
622 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
623 // Vector registers VR20-VR31 are reserved and cannot be used in the default
624 // Altivec ABI on AIX.
625 if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
626 return 20 - DefaultSafety;
627 }
628 return 32 - DefaultSafety;
629 case PPC::VSFRCRegClassID:
630 case PPC::VSSRCRegClassID:
631 case PPC::VSRCRegClassID: {
632 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
633 if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
634 // Vector registers VR20-VR31 are reserved and cannot be used in the
635 // default Altivec ABI on AIX.
636 return 52 - DefaultSafety;
637 }
638 return 64 - DefaultSafety;
639 case PPC::CRRCRegClassID:
640 return 8 - DefaultSafety;
641 }
642 }
643
644 const TargetRegisterClass *
getLargestLegalSuperClass(const TargetRegisterClass * RC,const MachineFunction & MF) const645 PPCRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
646 const MachineFunction &MF) const {
647 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
648 const auto *DefaultSuperclass =
649 TargetRegisterInfo::getLargestLegalSuperClass(RC, MF);
650 if (Subtarget.hasVSX()) {
651 // With VSX, we can inflate various sub-register classes to the full VSX
652 // register set.
653
654 // For Power9 we allow the user to enable GPR to vector spills.
655 // FIXME: Currently limited to spilling GP8RC. A follow on patch will add
656 // support to spill GPRC.
657 if (TM.isELFv2ABI() || Subtarget.isAIXABI()) {
658 if (Subtarget.hasP9Vector() && EnableGPRToVecSpills &&
659 RC == &PPC::G8RCRegClass) {
660 InflateGP8RC++;
661 return &PPC::SPILLTOVSRRCRegClass;
662 }
663 if (RC == &PPC::GPRCRegClass && EnableGPRToVecSpills)
664 InflateGPRC++;
665 }
666
667 for (const auto *I = RC->getSuperClasses(); *I; ++I) {
668 if (getRegSizeInBits(**I) != getRegSizeInBits(*RC))
669 continue;
670
671 switch ((*I)->getID()) {
672 case PPC::VSSRCRegClassID:
673 return Subtarget.hasP8Vector() ? *I : DefaultSuperclass;
674 case PPC::VSFRCRegClassID:
675 case PPC::VSRCRegClassID:
676 return *I;
677 case PPC::VSRpRCRegClassID:
678 return Subtarget.pairedVectorMemops() ? *I : DefaultSuperclass;
679 case PPC::ACCRCRegClassID:
680 case PPC::UACCRCRegClassID:
681 return Subtarget.hasMMA() ? *I : DefaultSuperclass;
682 }
683 }
684 }
685
686 return DefaultSuperclass;
687 }
688
689 //===----------------------------------------------------------------------===//
690 // Stack Frame Processing methods
691 //===----------------------------------------------------------------------===//
692
693 /// lowerDynamicAlloc - Generate the code for allocating an object in the
694 /// current frame. The sequence of code will be in the general form
695 ///
696 /// addi R0, SP, \#frameSize ; get the address of the previous frame
697 /// stwxu R0, SP, Rnegsize ; add and update the SP with the negated size
698 /// addi Rnew, SP, \#maxCalFrameSize ; get the top of the allocation
699 ///
lowerDynamicAlloc(MachineBasicBlock::iterator II) const700 void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const {
701 // Get the instruction.
702 MachineInstr &MI = *II;
703 // Get the instruction's basic block.
704 MachineBasicBlock &MBB = *MI.getParent();
705 // Get the basic block's function.
706 MachineFunction &MF = *MBB.getParent();
707 // Get the frame info.
708 MachineFrameInfo &MFI = MF.getFrameInfo();
709 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
710 // Get the instruction info.
711 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
712 // Determine whether 64-bit pointers are used.
713 bool LP64 = TM.isPPC64();
714 DebugLoc dl = MI.getDebugLoc();
715
716 // Get the maximum call stack size.
717 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
718 Align MaxAlign = MFI.getMaxAlign();
719 assert(isAligned(MaxAlign, maxCallFrameSize) &&
720 "Maximum call-frame size not sufficiently aligned");
721 (void)MaxAlign;
722
723 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
724 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
725 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
726 bool KillNegSizeReg = MI.getOperand(1).isKill();
727 Register NegSizeReg = MI.getOperand(1).getReg();
728
729 prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, Reg);
730 // Grow the stack and update the stack pointer link, then determine the
731 // address of new allocated space.
732 if (LP64) {
733 BuildMI(MBB, II, dl, TII.get(PPC::STDUX), PPC::X1)
734 .addReg(Reg, RegState::Kill)
735 .addReg(PPC::X1)
736 .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
737 BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg())
738 .addReg(PPC::X1)
739 .addImm(maxCallFrameSize);
740 } else {
741 BuildMI(MBB, II, dl, TII.get(PPC::STWUX), PPC::R1)
742 .addReg(Reg, RegState::Kill)
743 .addReg(PPC::R1)
744 .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
745 BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg())
746 .addReg(PPC::R1)
747 .addImm(maxCallFrameSize);
748 }
749
750 // Discard the DYNALLOC instruction.
751 MBB.erase(II);
752 }
753
754 /// To accomplish dynamic stack allocation, we have to calculate exact size
755 /// subtracted from the stack pointer according alignment information and get
756 /// previous frame pointer.
prepareDynamicAlloca(MachineBasicBlock::iterator II,Register & NegSizeReg,bool & KillNegSizeReg,Register & FramePointer) const757 void PPCRegisterInfo::prepareDynamicAlloca(MachineBasicBlock::iterator II,
758 Register &NegSizeReg,
759 bool &KillNegSizeReg,
760 Register &FramePointer) const {
761 // Get the instruction.
762 MachineInstr &MI = *II;
763 // Get the instruction's basic block.
764 MachineBasicBlock &MBB = *MI.getParent();
765 // Get the basic block's function.
766 MachineFunction &MF = *MBB.getParent();
767 // Get the frame info.
768 MachineFrameInfo &MFI = MF.getFrameInfo();
769 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
770 // Get the instruction info.
771 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
772 // Determine whether 64-bit pointers are used.
773 bool LP64 = TM.isPPC64();
774 DebugLoc dl = MI.getDebugLoc();
775 // Get the total frame size.
776 unsigned FrameSize = MFI.getStackSize();
777
778 // Get stack alignments.
779 const PPCFrameLowering *TFI = getFrameLowering(MF);
780 Align TargetAlign = TFI->getStackAlign();
781 Align MaxAlign = MFI.getMaxAlign();
782
783 // Determine the previous frame's address. If FrameSize can't be
784 // represented as 16 bits or we need special alignment, then we load the
785 // previous frame's address from 0(SP). Why not do an addis of the hi?
786 // Because R0 is our only safe tmp register and addi/addis treat R0 as zero.
787 // Constructing the constant and adding would take 3 instructions.
788 // Fortunately, a frame greater than 32K is rare.
789 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
790 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
791
792 if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) {
793 if (LP64)
794 BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), FramePointer)
795 .addReg(PPC::X31)
796 .addImm(FrameSize);
797 else
798 BuildMI(MBB, II, dl, TII.get(PPC::ADDI), FramePointer)
799 .addReg(PPC::R31)
800 .addImm(FrameSize);
801 } else if (LP64) {
802 BuildMI(MBB, II, dl, TII.get(PPC::LD), FramePointer)
803 .addImm(0)
804 .addReg(PPC::X1);
805 } else {
806 BuildMI(MBB, II, dl, TII.get(PPC::LWZ), FramePointer)
807 .addImm(0)
808 .addReg(PPC::R1);
809 }
810 // Determine the actual NegSizeReg according to alignment info.
811 if (LP64) {
812 if (MaxAlign > TargetAlign) {
813 unsigned UnalNegSizeReg = NegSizeReg;
814 NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
815
816 // Unfortunately, there is no andi, only andi., and we can't insert that
817 // here because we might clobber cr0 while it is live.
818 BuildMI(MBB, II, dl, TII.get(PPC::LI8), NegSizeReg)
819 .addImm(~(MaxAlign.value() - 1));
820
821 unsigned NegSizeReg1 = NegSizeReg;
822 NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
823 BuildMI(MBB, II, dl, TII.get(PPC::AND8), NegSizeReg)
824 .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
825 .addReg(NegSizeReg1, RegState::Kill);
826 KillNegSizeReg = true;
827 }
828 } else {
829 if (MaxAlign > TargetAlign) {
830 unsigned UnalNegSizeReg = NegSizeReg;
831 NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
832
833 // Unfortunately, there is no andi, only andi., and we can't insert that
834 // here because we might clobber cr0 while it is live.
835 BuildMI(MBB, II, dl, TII.get(PPC::LI), NegSizeReg)
836 .addImm(~(MaxAlign.value() - 1));
837
838 unsigned NegSizeReg1 = NegSizeReg;
839 NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
840 BuildMI(MBB, II, dl, TII.get(PPC::AND), NegSizeReg)
841 .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
842 .addReg(NegSizeReg1, RegState::Kill);
843 KillNegSizeReg = true;
844 }
845 }
846 }
847
lowerPrepareProbedAlloca(MachineBasicBlock::iterator II) const848 void PPCRegisterInfo::lowerPrepareProbedAlloca(
849 MachineBasicBlock::iterator II) const {
850 MachineInstr &MI = *II;
851 // Get the instruction's basic block.
852 MachineBasicBlock &MBB = *MI.getParent();
853 // Get the basic block's function.
854 MachineFunction &MF = *MBB.getParent();
855 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
856 // Get the instruction info.
857 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
858 // Determine whether 64-bit pointers are used.
859 bool LP64 = TM.isPPC64();
860 DebugLoc dl = MI.getDebugLoc();
861 Register FramePointer = MI.getOperand(0).getReg();
862 const Register ActualNegSizeReg = MI.getOperand(1).getReg();
863 bool KillNegSizeReg = MI.getOperand(2).isKill();
864 Register NegSizeReg = MI.getOperand(2).getReg();
865 const MCInstrDesc &CopyInst = TII.get(LP64 ? PPC::OR8 : PPC::OR);
866 // RegAllocator might allocate FramePointer and NegSizeReg in the same phyreg.
867 if (FramePointer == NegSizeReg) {
868 assert(KillNegSizeReg && "FramePointer is a def and NegSizeReg is an use, "
869 "NegSizeReg should be killed");
870 // FramePointer is clobbered earlier than the use of NegSizeReg in
871 // prepareDynamicAlloca, save NegSizeReg in ActualNegSizeReg to avoid
872 // misuse.
873 BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
874 .addReg(NegSizeReg)
875 .addReg(NegSizeReg);
876 NegSizeReg = ActualNegSizeReg;
877 KillNegSizeReg = false;
878 }
879 prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, FramePointer);
880 // NegSizeReg might be updated in prepareDynamicAlloca if MaxAlign >
881 // TargetAlign.
882 if (NegSizeReg != ActualNegSizeReg)
883 BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
884 .addReg(NegSizeReg)
885 .addReg(NegSizeReg);
886 MBB.erase(II);
887 }
888
lowerDynamicAreaOffset(MachineBasicBlock::iterator II) const889 void PPCRegisterInfo::lowerDynamicAreaOffset(
890 MachineBasicBlock::iterator II) const {
891 // Get the instruction.
892 MachineInstr &MI = *II;
893 // Get the instruction's basic block.
894 MachineBasicBlock &MBB = *MI.getParent();
895 // Get the basic block's function.
896 MachineFunction &MF = *MBB.getParent();
897 // Get the frame info.
898 MachineFrameInfo &MFI = MF.getFrameInfo();
899 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
900 // Get the instruction info.
901 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
902
903 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
904 bool is64Bit = TM.isPPC64();
905 DebugLoc dl = MI.getDebugLoc();
906 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI),
907 MI.getOperand(0).getReg())
908 .addImm(maxCallFrameSize);
909 MBB.erase(II);
910 }
911
912 /// lowerCRSpilling - Generate the code for spilling a CR register. Instead of
913 /// reserving a whole register (R0), we scrounge for one here. This generates
914 /// code like this:
915 ///
916 /// mfcr rA ; Move the conditional register into GPR rA.
917 /// rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot.
918 /// stw rA, FI ; Store rA to the frame.
919 ///
lowerCRSpilling(MachineBasicBlock::iterator II,unsigned FrameIndex) const920 void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II,
921 unsigned FrameIndex) const {
922 // Get the instruction.
923 MachineInstr &MI = *II; // ; SPILL_CR <SrcReg>, <offset>
924 // Get the instruction's basic block.
925 MachineBasicBlock &MBB = *MI.getParent();
926 MachineFunction &MF = *MBB.getParent();
927 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
928 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
929 DebugLoc dl = MI.getDebugLoc();
930
931 bool LP64 = TM.isPPC64();
932 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
933 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
934
935 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
936 Register SrcReg = MI.getOperand(0).getReg();
937
938 // We need to store the CR in the low 4-bits of the saved value. First, issue
939 // an MFOCRF to save all of the CRBits and, if needed, kill the SrcReg.
940 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
941 .addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill()));
942
943 // If the saved register wasn't CR0, shift the bits left so that they are in
944 // CR0's slot.
945 if (SrcReg != PPC::CR0) {
946 Register Reg1 = Reg;
947 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
948
949 // rlwinm rA, rA, ShiftBits, 0, 31.
950 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
951 .addReg(Reg1, RegState::Kill)
952 .addImm(getEncodingValue(SrcReg) * 4)
953 .addImm(0)
954 .addImm(31);
955 }
956
957 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
958 .addReg(Reg, RegState::Kill),
959 FrameIndex);
960
961 // Discard the pseudo instruction.
962 MBB.erase(II);
963 }
964
lowerCRRestore(MachineBasicBlock::iterator II,unsigned FrameIndex) const965 void PPCRegisterInfo::lowerCRRestore(MachineBasicBlock::iterator II,
966 unsigned FrameIndex) const {
967 // Get the instruction.
968 MachineInstr &MI = *II; // ; <DestReg> = RESTORE_CR <offset>
969 // Get the instruction's basic block.
970 MachineBasicBlock &MBB = *MI.getParent();
971 MachineFunction &MF = *MBB.getParent();
972 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
973 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
974 DebugLoc dl = MI.getDebugLoc();
975
976 bool LP64 = TM.isPPC64();
977 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
978 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
979
980 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
981 Register DestReg = MI.getOperand(0).getReg();
982 assert(MI.definesRegister(DestReg) &&
983 "RESTORE_CR does not define its destination");
984
985 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
986 Reg), FrameIndex);
987
988 // If the reloaded register isn't CR0, shift the bits right so that they are
989 // in the right CR's slot.
990 if (DestReg != PPC::CR0) {
991 Register Reg1 = Reg;
992 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
993
994 unsigned ShiftBits = getEncodingValue(DestReg)*4;
995 // rlwinm r11, r11, 32-ShiftBits, 0, 31.
996 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
997 .addReg(Reg1, RegState::Kill).addImm(32-ShiftBits).addImm(0)
998 .addImm(31);
999 }
1000
1001 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), DestReg)
1002 .addReg(Reg, RegState::Kill);
1003
1004 // Discard the pseudo instruction.
1005 MBB.erase(II);
1006 }
1007
lowerCRBitSpilling(MachineBasicBlock::iterator II,unsigned FrameIndex) const1008 void PPCRegisterInfo::lowerCRBitSpilling(MachineBasicBlock::iterator II,
1009 unsigned FrameIndex) const {
1010 // Get the instruction.
1011 MachineInstr &MI = *II; // ; SPILL_CRBIT <SrcReg>, <offset>
1012 // Get the instruction's basic block.
1013 MachineBasicBlock &MBB = *MI.getParent();
1014 MachineFunction &MF = *MBB.getParent();
1015 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1016 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1017 const TargetRegisterInfo* TRI = Subtarget.getRegisterInfo();
1018 DebugLoc dl = MI.getDebugLoc();
1019
1020 bool LP64 = TM.isPPC64();
1021 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1022 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1023
1024 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1025 Register SrcReg = MI.getOperand(0).getReg();
1026
1027 // Search up the BB to find the definition of the CR bit.
1028 MachineBasicBlock::reverse_iterator Ins = MI;
1029 MachineBasicBlock::reverse_iterator Rend = MBB.rend();
1030 ++Ins;
1031 unsigned CRBitSpillDistance = 0;
1032 bool SeenUse = false;
1033 for (; Ins != Rend; ++Ins) {
1034 // Definition found.
1035 if (Ins->modifiesRegister(SrcReg, TRI))
1036 break;
1037 // Use found.
1038 if (Ins->readsRegister(SrcReg, TRI))
1039 SeenUse = true;
1040 // Unable to find CR bit definition within maximum search distance.
1041 if (CRBitSpillDistance == MaxCRBitSpillDist) {
1042 Ins = MI;
1043 break;
1044 }
1045 // Skip debug instructions when counting CR bit spill distance.
1046 if (!Ins->isDebugInstr())
1047 CRBitSpillDistance++;
1048 }
1049
1050 // Unable to find the definition of the CR bit in the MBB.
1051 if (Ins == MBB.rend())
1052 Ins = MI;
1053
1054 bool SpillsKnownBit = false;
1055 // There is no need to extract the CR bit if its value is already known.
1056 switch (Ins->getOpcode()) {
1057 case PPC::CRUNSET:
1058 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LI8 : PPC::LI), Reg)
1059 .addImm(0);
1060 SpillsKnownBit = true;
1061 break;
1062 case PPC::CRSET:
1063 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LIS8 : PPC::LIS), Reg)
1064 .addImm(-32768);
1065 SpillsKnownBit = true;
1066 break;
1067 default:
1068 // On Power10, we can use SETNBC to spill all CR bits. SETNBC will set all
1069 // bits (specifically, it produces a -1 if the CR bit is set). Ultimately,
1070 // the bit that is of importance to us is bit 32 (bit 0 of a 32-bit
1071 // register), and SETNBC will set this.
1072 if (Subtarget.isISA3_1()) {
1073 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETNBC8 : PPC::SETNBC), Reg)
1074 .addReg(SrcReg, RegState::Undef);
1075 break;
1076 }
1077
1078 // On Power9, we can use SETB to extract the LT bit. This only works for
1079 // the LT bit since SETB produces -1/1/0 for LT/GT/<neither>. So the value
1080 // of the bit we care about (32-bit sign bit) will be set to the value of
1081 // the LT bit (regardless of the other bits in the CR field).
1082 if (Subtarget.isISA3_0()) {
1083 if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR1LT ||
1084 SrcReg == PPC::CR2LT || SrcReg == PPC::CR3LT ||
1085 SrcReg == PPC::CR4LT || SrcReg == PPC::CR5LT ||
1086 SrcReg == PPC::CR6LT || SrcReg == PPC::CR7LT) {
1087 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETB8 : PPC::SETB), Reg)
1088 .addReg(getCRFromCRBit(SrcReg), RegState::Undef);
1089 break;
1090 }
1091 }
1092
1093 // We need to move the CR field that contains the CR bit we are spilling.
1094 // The super register may not be explicitly defined (i.e. it can be defined
1095 // by a CR-logical that only defines the subreg) so we state that the CR
1096 // field is undef. Also, in order to preserve the kill flag on the CR bit,
1097 // we add it as an implicit use.
1098 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
1099 .addReg(getCRFromCRBit(SrcReg), RegState::Undef)
1100 .addReg(SrcReg,
1101 RegState::Implicit | getKillRegState(MI.getOperand(0).isKill()));
1102
1103 // If the saved register wasn't CR0LT, shift the bits left so that the bit
1104 // to store is the first one. Mask all but that bit.
1105 Register Reg1 = Reg;
1106 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1107
1108 // rlwinm rA, rA, ShiftBits, 0, 0.
1109 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
1110 .addReg(Reg1, RegState::Kill)
1111 .addImm(getEncodingValue(SrcReg))
1112 .addImm(0).addImm(0);
1113 }
1114 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
1115 .addReg(Reg, RegState::Kill),
1116 FrameIndex);
1117
1118 bool KillsCRBit = MI.killsRegister(SrcReg, TRI);
1119 // Discard the pseudo instruction.
1120 MBB.erase(II);
1121 if (SpillsKnownBit && KillsCRBit && !SeenUse) {
1122 Ins->setDesc(TII.get(PPC::UNENCODED_NOP));
1123 Ins->removeOperand(0);
1124 }
1125 }
1126
lowerCRBitRestore(MachineBasicBlock::iterator II,unsigned FrameIndex) const1127 void PPCRegisterInfo::lowerCRBitRestore(MachineBasicBlock::iterator II,
1128 unsigned FrameIndex) const {
1129 // Get the instruction.
1130 MachineInstr &MI = *II; // ; <DestReg> = RESTORE_CRBIT <offset>
1131 // Get the instruction's basic block.
1132 MachineBasicBlock &MBB = *MI.getParent();
1133 MachineFunction &MF = *MBB.getParent();
1134 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1135 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1136 DebugLoc dl = MI.getDebugLoc();
1137
1138 bool LP64 = TM.isPPC64();
1139 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1140 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1141
1142 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1143 Register DestReg = MI.getOperand(0).getReg();
1144 assert(MI.definesRegister(DestReg) &&
1145 "RESTORE_CRBIT does not define its destination");
1146
1147 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
1148 Reg), FrameIndex);
1149
1150 BuildMI(MBB, II, dl, TII.get(TargetOpcode::IMPLICIT_DEF), DestReg);
1151
1152 Register RegO = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1153 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), RegO)
1154 .addReg(getCRFromCRBit(DestReg));
1155
1156 unsigned ShiftBits = getEncodingValue(DestReg);
1157 // rlwimi r11, r10, 32-ShiftBits, ..., ...
1158 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWIMI8 : PPC::RLWIMI), RegO)
1159 .addReg(RegO, RegState::Kill)
1160 .addReg(Reg, RegState::Kill)
1161 .addImm(ShiftBits ? 32 - ShiftBits : 0)
1162 .addImm(ShiftBits)
1163 .addImm(ShiftBits);
1164
1165 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF),
1166 getCRFromCRBit(DestReg))
1167 .addReg(RegO, RegState::Kill)
1168 // Make sure we have a use dependency all the way through this
1169 // sequence of instructions. We can't have the other bits in the CR
1170 // modified in between the mfocrf and the mtocrf.
1171 .addReg(getCRFromCRBit(DestReg), RegState::Implicit);
1172
1173 // Discard the pseudo instruction.
1174 MBB.erase(II);
1175 }
1176
emitAccCopyInfo(MachineBasicBlock & MBB,MCRegister DestReg,MCRegister SrcReg)1177 void PPCRegisterInfo::emitAccCopyInfo(MachineBasicBlock &MBB,
1178 MCRegister DestReg, MCRegister SrcReg) {
1179 #ifdef NDEBUG
1180 return;
1181 #else
1182 if (ReportAccMoves) {
1183 std::string Dest = PPC::ACCRCRegClass.contains(DestReg) ? "acc" : "uacc";
1184 std::string Src = PPC::ACCRCRegClass.contains(SrcReg) ? "acc" : "uacc";
1185 dbgs() << "Emitting copy from " << Src << " to " << Dest << ":\n";
1186 MBB.dump();
1187 }
1188 #endif
1189 }
1190
emitAccSpillRestoreInfo(MachineBasicBlock & MBB,bool IsPrimed,bool IsRestore)1191 static void emitAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsPrimed,
1192 bool IsRestore) {
1193 #ifdef NDEBUG
1194 return;
1195 #else
1196 if (ReportAccMoves) {
1197 dbgs() << "Emitting " << (IsPrimed ? "acc" : "uacc") << " register "
1198 << (IsRestore ? "restore" : "spill") << ":\n";
1199 MBB.dump();
1200 }
1201 #endif
1202 }
1203
spillRegPairs(MachineBasicBlock & MBB,MachineBasicBlock::iterator II,DebugLoc DL,const TargetInstrInfo & TII,Register SrcReg,unsigned FrameIndex,bool IsLittleEndian,bool IsKilled,bool TwoPairs)1204 static void spillRegPairs(MachineBasicBlock &MBB,
1205 MachineBasicBlock::iterator II, DebugLoc DL,
1206 const TargetInstrInfo &TII, Register SrcReg,
1207 unsigned FrameIndex, bool IsLittleEndian,
1208 bool IsKilled, bool TwoPairs) {
1209 unsigned Offset = 0;
1210 if (TwoPairs)
1211 Offset = IsLittleEndian ? 48 : 0;
1212 else
1213 Offset = IsLittleEndian ? 16 : 0;
1214 Register Reg = (SrcReg > PPC::VSRp15) ? PPC::V0 + (SrcReg - PPC::VSRp16) * 2
1215 : PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2;
1216 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1217 .addReg(Reg, getKillRegState(IsKilled)),
1218 FrameIndex, Offset);
1219 Offset += IsLittleEndian ? -16 : 16;
1220 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1221 .addReg(Reg + 1, getKillRegState(IsKilled)),
1222 FrameIndex, Offset);
1223 if (TwoPairs) {
1224 Offset += IsLittleEndian ? -16 : 16;
1225 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1226 .addReg(Reg + 2, getKillRegState(IsKilled)),
1227 FrameIndex, Offset);
1228 Offset += IsLittleEndian ? -16 : 16;
1229 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1230 .addReg(Reg + 3, getKillRegState(IsKilled)),
1231 FrameIndex, Offset);
1232 }
1233 }
1234
1235 /// Remove any STXVP[X] instructions and split them out into a pair of
1236 /// STXV[X] instructions if --disable-auto-paired-vec-st is specified on
1237 /// the command line.
lowerOctWordSpilling(MachineBasicBlock::iterator II,unsigned FrameIndex) const1238 void PPCRegisterInfo::lowerOctWordSpilling(MachineBasicBlock::iterator II,
1239 unsigned FrameIndex) const {
1240 assert(DisableAutoPairedVecSt &&
1241 "Expecting to do this only if paired vector stores are disabled.");
1242 MachineInstr &MI = *II; // STXVP <SrcReg>, <offset>
1243 MachineBasicBlock &MBB = *MI.getParent();
1244 MachineFunction &MF = *MBB.getParent();
1245 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1246 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1247 DebugLoc DL = MI.getDebugLoc();
1248 Register SrcReg = MI.getOperand(0).getReg();
1249 bool IsLittleEndian = Subtarget.isLittleEndian();
1250 bool IsKilled = MI.getOperand(0).isKill();
1251 spillRegPairs(MBB, II, DL, TII, SrcReg, FrameIndex, IsLittleEndian, IsKilled,
1252 /* TwoPairs */ false);
1253 // Discard the original instruction.
1254 MBB.erase(II);
1255 }
1256
1257 /// lowerACCSpilling - Generate the code for spilling the accumulator register.
1258 /// Similarly to other spills/reloads that use pseudo-ops, we do not actually
1259 /// eliminate the FrameIndex here nor compute the stack offset. We simply
1260 /// create a real instruction with an FI and rely on eliminateFrameIndex to
1261 /// handle the FI elimination.
lowerACCSpilling(MachineBasicBlock::iterator II,unsigned FrameIndex) const1262 void PPCRegisterInfo::lowerACCSpilling(MachineBasicBlock::iterator II,
1263 unsigned FrameIndex) const {
1264 MachineInstr &MI = *II; // SPILL_ACC <SrcReg>, <offset>
1265 MachineBasicBlock &MBB = *MI.getParent();
1266 MachineFunction &MF = *MBB.getParent();
1267 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1268 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1269 DebugLoc DL = MI.getDebugLoc();
1270 Register SrcReg = MI.getOperand(0).getReg();
1271 bool IsKilled = MI.getOperand(0).isKill();
1272
1273 bool IsPrimed = PPC::ACCRCRegClass.contains(SrcReg);
1274 Register Reg =
1275 PPC::VSRp0 + (SrcReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
1276 bool IsLittleEndian = Subtarget.isLittleEndian();
1277
1278 emitAccSpillRestoreInfo(MBB, IsPrimed, false);
1279
1280 // De-prime the register being spilled, create two stores for the pair
1281 // subregisters accounting for endianness and then re-prime the register if
1282 // it isn't killed. This uses the Offset parameter to addFrameReference() to
1283 // adjust the offset of the store that is within the 64-byte stack slot.
1284 if (IsPrimed)
1285 BuildMI(MBB, II, DL, TII.get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
1286 if (DisableAutoPairedVecSt)
1287 spillRegPairs(MBB, II, DL, TII, Reg, FrameIndex, IsLittleEndian, IsKilled,
1288 /* TwoPairs */ true);
1289 else {
1290 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1291 .addReg(Reg, getKillRegState(IsKilled)),
1292 FrameIndex, IsLittleEndian ? 32 : 0);
1293 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1294 .addReg(Reg + 1, getKillRegState(IsKilled)),
1295 FrameIndex, IsLittleEndian ? 0 : 32);
1296 }
1297 if (IsPrimed && !IsKilled)
1298 BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
1299
1300 // Discard the pseudo instruction.
1301 MBB.erase(II);
1302 }
1303
1304 /// lowerACCRestore - Generate the code to restore the accumulator register.
lowerACCRestore(MachineBasicBlock::iterator II,unsigned FrameIndex) const1305 void PPCRegisterInfo::lowerACCRestore(MachineBasicBlock::iterator II,
1306 unsigned FrameIndex) const {
1307 MachineInstr &MI = *II; // <DestReg> = RESTORE_ACC <offset>
1308 MachineBasicBlock &MBB = *MI.getParent();
1309 MachineFunction &MF = *MBB.getParent();
1310 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1311 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1312 DebugLoc DL = MI.getDebugLoc();
1313
1314 Register DestReg = MI.getOperand(0).getReg();
1315 assert(MI.definesRegister(DestReg) &&
1316 "RESTORE_ACC does not define its destination");
1317
1318 bool IsPrimed = PPC::ACCRCRegClass.contains(DestReg);
1319 Register Reg =
1320 PPC::VSRp0 + (DestReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
1321 bool IsLittleEndian = Subtarget.isLittleEndian();
1322
1323 emitAccSpillRestoreInfo(MBB, IsPrimed, true);
1324
1325 // Create two loads for the pair subregisters accounting for endianness and
1326 // then prime the accumulator register being restored.
1327 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg),
1328 FrameIndex, IsLittleEndian ? 32 : 0);
1329 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg + 1),
1330 FrameIndex, IsLittleEndian ? 0 : 32);
1331 if (IsPrimed)
1332 BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), DestReg).addReg(DestReg);
1333
1334 // Discard the pseudo instruction.
1335 MBB.erase(II);
1336 }
1337
1338 /// lowerQuadwordSpilling - Generate code to spill paired general register.
lowerQuadwordSpilling(MachineBasicBlock::iterator II,unsigned FrameIndex) const1339 void PPCRegisterInfo::lowerQuadwordSpilling(MachineBasicBlock::iterator II,
1340 unsigned FrameIndex) const {
1341 MachineInstr &MI = *II;
1342 MachineBasicBlock &MBB = *MI.getParent();
1343 MachineFunction &MF = *MBB.getParent();
1344 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1345 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1346 DebugLoc DL = MI.getDebugLoc();
1347
1348 Register SrcReg = MI.getOperand(0).getReg();
1349 bool IsKilled = MI.getOperand(0).isKill();
1350
1351 Register Reg = PPC::X0 + (SrcReg - PPC::G8p0) * 2;
1352 bool IsLittleEndian = Subtarget.isLittleEndian();
1353
1354 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
1355 .addReg(Reg, getKillRegState(IsKilled)),
1356 FrameIndex, IsLittleEndian ? 8 : 0);
1357 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
1358 .addReg(Reg + 1, getKillRegState(IsKilled)),
1359 FrameIndex, IsLittleEndian ? 0 : 8);
1360
1361 // Discard the pseudo instruction.
1362 MBB.erase(II);
1363 }
1364
1365 /// lowerQuadwordRestore - Generate code to restore paired general register.
lowerQuadwordRestore(MachineBasicBlock::iterator II,unsigned FrameIndex) const1366 void PPCRegisterInfo::lowerQuadwordRestore(MachineBasicBlock::iterator II,
1367 unsigned FrameIndex) const {
1368 MachineInstr &MI = *II;
1369 MachineBasicBlock &MBB = *MI.getParent();
1370 MachineFunction &MF = *MBB.getParent();
1371 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1372 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1373 DebugLoc DL = MI.getDebugLoc();
1374
1375 Register DestReg = MI.getOperand(0).getReg();
1376 assert(MI.definesRegister(DestReg) &&
1377 "RESTORE_QUADWORD does not define its destination");
1378
1379 Register Reg = PPC::X0 + (DestReg - PPC::G8p0) * 2;
1380 bool IsLittleEndian = Subtarget.isLittleEndian();
1381
1382 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg), FrameIndex,
1383 IsLittleEndian ? 8 : 0);
1384 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg + 1), FrameIndex,
1385 IsLittleEndian ? 0 : 8);
1386
1387 // Discard the pseudo instruction.
1388 MBB.erase(II);
1389 }
1390
hasReservedSpillSlot(const MachineFunction & MF,Register Reg,int & FrameIdx) const1391 bool PPCRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
1392 Register Reg, int &FrameIdx) const {
1393 // For the nonvolatile condition registers (CR2, CR3, CR4) return true to
1394 // prevent allocating an additional frame slot.
1395 // For 64-bit ELF and AIX, the CR save area is in the linkage area at SP+8,
1396 // for 32-bit AIX the CR save area is in the linkage area at SP+4.
1397 // We have created a FrameIndex to that spill slot to keep the CalleSaveInfos
1398 // valid.
1399 // For 32-bit ELF, we have previously created the stack slot if needed, so
1400 // return its FrameIdx.
1401 if (PPC::CR2 <= Reg && Reg <= PPC::CR4) {
1402 FrameIdx = MF.getInfo<PPCFunctionInfo>()->getCRSpillFrameIndex();
1403 return true;
1404 }
1405 return false;
1406 }
1407
1408 // If the offset must be a multiple of some value, return what that value is.
offsetMinAlignForOpcode(unsigned OpC)1409 static unsigned offsetMinAlignForOpcode(unsigned OpC) {
1410 switch (OpC) {
1411 default:
1412 return 1;
1413 case PPC::LWA:
1414 case PPC::LWA_32:
1415 case PPC::LD:
1416 case PPC::LDU:
1417 case PPC::STD:
1418 case PPC::STDU:
1419 case PPC::DFLOADf32:
1420 case PPC::DFLOADf64:
1421 case PPC::DFSTOREf32:
1422 case PPC::DFSTOREf64:
1423 case PPC::LXSD:
1424 case PPC::LXSSP:
1425 case PPC::STXSD:
1426 case PPC::STXSSP:
1427 case PPC::STQ:
1428 return 4;
1429 case PPC::EVLDD:
1430 case PPC::EVSTDD:
1431 return 8;
1432 case PPC::LXV:
1433 case PPC::STXV:
1434 case PPC::LQ:
1435 case PPC::LXVP:
1436 case PPC::STXVP:
1437 return 16;
1438 }
1439 }
1440
1441 // If the offset must be a multiple of some value, return what that value is.
offsetMinAlign(const MachineInstr & MI)1442 static unsigned offsetMinAlign(const MachineInstr &MI) {
1443 unsigned OpC = MI.getOpcode();
1444 return offsetMinAlignForOpcode(OpC);
1445 }
1446
1447 // Return the OffsetOperandNo given the FIOperandNum (and the instruction).
getOffsetONFromFION(const MachineInstr & MI,unsigned FIOperandNum)1448 static unsigned getOffsetONFromFION(const MachineInstr &MI,
1449 unsigned FIOperandNum) {
1450 // Take into account whether it's an add or mem instruction
1451 unsigned OffsetOperandNo = (FIOperandNum == 2) ? 1 : 2;
1452 if (MI.isInlineAsm())
1453 OffsetOperandNo = FIOperandNum - 1;
1454 else if (MI.getOpcode() == TargetOpcode::STACKMAP ||
1455 MI.getOpcode() == TargetOpcode::PATCHPOINT)
1456 OffsetOperandNo = FIOperandNum + 1;
1457
1458 return OffsetOperandNo;
1459 }
1460
1461 void
eliminateFrameIndex(MachineBasicBlock::iterator II,int SPAdj,unsigned FIOperandNum,RegScavenger * RS) const1462 PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
1463 int SPAdj, unsigned FIOperandNum,
1464 RegScavenger *RS) const {
1465 assert(SPAdj == 0 && "Unexpected");
1466
1467 // Get the instruction.
1468 MachineInstr &MI = *II;
1469 // Get the instruction's basic block.
1470 MachineBasicBlock &MBB = *MI.getParent();
1471 // Get the basic block's function.
1472 MachineFunction &MF = *MBB.getParent();
1473 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1474 // Get the instruction info.
1475 const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1476 // Get the frame info.
1477 MachineFrameInfo &MFI = MF.getFrameInfo();
1478 DebugLoc dl = MI.getDebugLoc();
1479
1480 unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
1481
1482 // Get the frame index.
1483 int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
1484
1485 // Get the frame pointer save index. Users of this index are primarily
1486 // DYNALLOC instructions.
1487 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1488 int FPSI = FI->getFramePointerSaveIndex();
1489 // Get the instruction opcode.
1490 unsigned OpC = MI.getOpcode();
1491
1492 if ((OpC == PPC::DYNAREAOFFSET || OpC == PPC::DYNAREAOFFSET8)) {
1493 lowerDynamicAreaOffset(II);
1494 return;
1495 }
1496
1497 // Special case for dynamic alloca.
1498 if (FPSI && FrameIndex == FPSI &&
1499 (OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) {
1500 lowerDynamicAlloc(II);
1501 return;
1502 }
1503
1504 if (FPSI && FrameIndex == FPSI &&
1505 (OpC == PPC::PREPARE_PROBED_ALLOCA_64 ||
1506 OpC == PPC::PREPARE_PROBED_ALLOCA_32 ||
1507 OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 ||
1508 OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32)) {
1509 lowerPrepareProbedAlloca(II);
1510 return;
1511 }
1512
1513 // Special case for pseudo-ops SPILL_CR and RESTORE_CR, etc.
1514 if (OpC == PPC::SPILL_CR) {
1515 lowerCRSpilling(II, FrameIndex);
1516 return;
1517 } else if (OpC == PPC::RESTORE_CR) {
1518 lowerCRRestore(II, FrameIndex);
1519 return;
1520 } else if (OpC == PPC::SPILL_CRBIT) {
1521 lowerCRBitSpilling(II, FrameIndex);
1522 return;
1523 } else if (OpC == PPC::RESTORE_CRBIT) {
1524 lowerCRBitRestore(II, FrameIndex);
1525 return;
1526 } else if (OpC == PPC::SPILL_ACC || OpC == PPC::SPILL_UACC) {
1527 lowerACCSpilling(II, FrameIndex);
1528 return;
1529 } else if (OpC == PPC::RESTORE_ACC || OpC == PPC::RESTORE_UACC) {
1530 lowerACCRestore(II, FrameIndex);
1531 return;
1532 } else if (OpC == PPC::STXVP && DisableAutoPairedVecSt) {
1533 lowerOctWordSpilling(II, FrameIndex);
1534 return;
1535 } else if (OpC == PPC::SPILL_QUADWORD) {
1536 lowerQuadwordSpilling(II, FrameIndex);
1537 return;
1538 } else if (OpC == PPC::RESTORE_QUADWORD) {
1539 lowerQuadwordRestore(II, FrameIndex);
1540 return;
1541 }
1542
1543 // Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP).
1544 MI.getOperand(FIOperandNum).ChangeToRegister(
1545 FrameIndex < 0 ? getBaseRegister(MF) : getFrameRegister(MF), false);
1546
1547 // If the instruction is not present in ImmToIdxMap, then it has no immediate
1548 // form (and must be r+r).
1549 bool noImmForm = !MI.isInlineAsm() && OpC != TargetOpcode::STACKMAP &&
1550 OpC != TargetOpcode::PATCHPOINT && !ImmToIdxMap.count(OpC);
1551
1552 // Now add the frame object offset to the offset from r1.
1553 int64_t Offset = MFI.getObjectOffset(FrameIndex);
1554 Offset += MI.getOperand(OffsetOperandNo).getImm();
1555
1556 // If we're not using a Frame Pointer that has been set to the value of the
1557 // SP before having the stack size subtracted from it, then add the stack size
1558 // to Offset to get the correct offset.
1559 // Naked functions have stack size 0, although getStackSize may not reflect
1560 // that because we didn't call all the pieces that compute it for naked
1561 // functions.
1562 if (!MF.getFunction().hasFnAttribute(Attribute::Naked)) {
1563 if (!(hasBasePointer(MF) && FrameIndex < 0))
1564 Offset += MFI.getStackSize();
1565 }
1566
1567 // If we encounter an LXVP/STXVP with an offset that doesn't fit, we can
1568 // transform it to the prefixed version so we don't have to use the XForm.
1569 if ((OpC == PPC::LXVP || OpC == PPC::STXVP) &&
1570 (!isInt<16>(Offset) || (Offset % offsetMinAlign(MI)) != 0) &&
1571 Subtarget.hasPrefixInstrs()) {
1572 unsigned NewOpc = OpC == PPC::LXVP ? PPC::PLXVP : PPC::PSTXVP;
1573 MI.setDesc(TII.get(NewOpc));
1574 OpC = NewOpc;
1575 }
1576
1577 // If we can, encode the offset directly into the instruction. If this is a
1578 // normal PPC "ri" instruction, any 16-bit value can be safely encoded. If
1579 // this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits
1580 // clear can be encoded. This is extremely uncommon, because normally you
1581 // only "std" to a stack slot that is at least 4-byte aligned, but it can
1582 // happen in invalid code.
1583 assert(OpC != PPC::DBG_VALUE &&
1584 "This should be handled in a target-independent way");
1585 // FIXME: This should be factored out to a separate function as prefixed
1586 // instructions add a number of opcodes for which we can use 34-bit imm.
1587 bool OffsetFitsMnemonic = (OpC == PPC::EVSTDD || OpC == PPC::EVLDD) ?
1588 isUInt<8>(Offset) :
1589 isInt<16>(Offset);
1590 if (TII.isPrefixed(MI.getOpcode()))
1591 OffsetFitsMnemonic = isInt<34>(Offset);
1592 if (!noImmForm && ((OffsetFitsMnemonic &&
1593 ((Offset % offsetMinAlign(MI)) == 0)) ||
1594 OpC == TargetOpcode::STACKMAP ||
1595 OpC == TargetOpcode::PATCHPOINT)) {
1596 MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
1597 return;
1598 }
1599
1600 // The offset doesn't fit into a single register, scavenge one to build the
1601 // offset in.
1602
1603 bool is64Bit = TM.isPPC64();
1604 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1605 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1606 const TargetRegisterClass *RC = is64Bit ? G8RC : GPRC;
1607 Register SRegHi = MF.getRegInfo().createVirtualRegister(RC),
1608 SReg = MF.getRegInfo().createVirtualRegister(RC);
1609 unsigned NewOpcode = 0u;
1610
1611 // Insert a set of rA with the full offset value before the ld, st, or add
1612 if (isInt<16>(Offset))
1613 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), SReg)
1614 .addImm(Offset);
1615 else if (isInt<32>(Offset)) {
1616 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LIS8 : PPC::LIS), SRegHi)
1617 .addImm(Offset >> 16);
1618 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::ORI8 : PPC::ORI), SReg)
1619 .addReg(SRegHi, RegState::Kill)
1620 .addImm(Offset);
1621 } else {
1622 assert(is64Bit && "Huge stack is only supported on PPC64");
1623 TII.materializeImmPostRA(MBB, II, dl, SReg, Offset);
1624 }
1625
1626 // Convert into indexed form of the instruction:
1627 //
1628 // sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0
1629 // addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0
1630 unsigned OperandBase;
1631
1632 if (noImmForm)
1633 OperandBase = 1;
1634 else if (OpC != TargetOpcode::INLINEASM &&
1635 OpC != TargetOpcode::INLINEASM_BR) {
1636 assert(ImmToIdxMap.count(OpC) &&
1637 "No indexed form of load or store available!");
1638 NewOpcode = ImmToIdxMap.find(OpC)->second;
1639 MI.setDesc(TII.get(NewOpcode));
1640 OperandBase = 1;
1641 } else {
1642 OperandBase = OffsetOperandNo;
1643 }
1644
1645 Register StackReg = MI.getOperand(FIOperandNum).getReg();
1646 MI.getOperand(OperandBase).ChangeToRegister(StackReg, false);
1647 MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false, false, true);
1648
1649 // Since these are not real X-Form instructions, we must
1650 // add the registers and access 0(NewReg) rather than
1651 // emitting the X-Form pseudo.
1652 if (NewOpcode == PPC::LQX_PSEUDO || NewOpcode == PPC::STQX_PSEUDO) {
1653 assert(is64Bit && "Quadword loads/stores only supported in 64-bit mode");
1654 Register NewReg = MF.getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
1655 BuildMI(MBB, II, dl, TII.get(PPC::ADD8), NewReg)
1656 .addReg(SReg, RegState::Kill)
1657 .addReg(StackReg);
1658 MI.setDesc(TII.get(NewOpcode == PPC::LQX_PSEUDO ? PPC::LQ : PPC::STQ));
1659 MI.getOperand(OperandBase + 1).ChangeToRegister(NewReg, false);
1660 MI.getOperand(OperandBase).ChangeToImmediate(0);
1661 }
1662 }
1663
getFrameRegister(const MachineFunction & MF) const1664 Register PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
1665 const PPCFrameLowering *TFI = getFrameLowering(MF);
1666
1667 if (!TM.isPPC64())
1668 return TFI->hasFP(MF) ? PPC::R31 : PPC::R1;
1669 else
1670 return TFI->hasFP(MF) ? PPC::X31 : PPC::X1;
1671 }
1672
getBaseRegister(const MachineFunction & MF) const1673 Register PPCRegisterInfo::getBaseRegister(const MachineFunction &MF) const {
1674 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1675 if (!hasBasePointer(MF))
1676 return getFrameRegister(MF);
1677
1678 if (TM.isPPC64())
1679 return PPC::X30;
1680
1681 if (Subtarget.isSVR4ABI() && TM.isPositionIndependent())
1682 return PPC::R29;
1683
1684 return PPC::R30;
1685 }
1686
hasBasePointer(const MachineFunction & MF) const1687 bool PPCRegisterInfo::hasBasePointer(const MachineFunction &MF) const {
1688 if (!EnableBasePointer)
1689 return false;
1690 if (AlwaysBasePointer)
1691 return true;
1692
1693 // If we need to realign the stack, then the stack pointer can no longer
1694 // serve as an offset into the caller's stack space. As a result, we need a
1695 // base pointer.
1696 return hasStackRealignment(MF);
1697 }
1698
1699 /// Returns true if the instruction's frame index
1700 /// reference would be better served by a base register other than FP
1701 /// or SP. Used by LocalStackFrameAllocation to determine which frame index
1702 /// references it should create new base registers for.
1703 bool PPCRegisterInfo::
needsFrameBaseReg(MachineInstr * MI,int64_t Offset) const1704 needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
1705 assert(Offset < 0 && "Local offset must be negative");
1706
1707 // It's the load/store FI references that cause issues, as it can be difficult
1708 // to materialize the offset if it won't fit in the literal field. Estimate
1709 // based on the size of the local frame and some conservative assumptions
1710 // about the rest of the stack frame (note, this is pre-regalloc, so
1711 // we don't know everything for certain yet) whether this offset is likely
1712 // to be out of range of the immediate. Return true if so.
1713
1714 // We only generate virtual base registers for loads and stores that have
1715 // an r+i form. Return false for everything else.
1716 unsigned OpC = MI->getOpcode();
1717 if (!ImmToIdxMap.count(OpC))
1718 return false;
1719
1720 // Don't generate a new virtual base register just to add zero to it.
1721 if ((OpC == PPC::ADDI || OpC == PPC::ADDI8) &&
1722 MI->getOperand(2).getImm() == 0)
1723 return false;
1724
1725 MachineBasicBlock &MBB = *MI->getParent();
1726 MachineFunction &MF = *MBB.getParent();
1727 const PPCFrameLowering *TFI = getFrameLowering(MF);
1728 unsigned StackEst = TFI->determineFrameLayout(MF, true);
1729
1730 // If we likely don't need a stack frame, then we probably don't need a
1731 // virtual base register either.
1732 if (!StackEst)
1733 return false;
1734
1735 // Estimate an offset from the stack pointer.
1736 // The incoming offset is relating to the SP at the start of the function,
1737 // but when we access the local it'll be relative to the SP after local
1738 // allocation, so adjust our SP-relative offset by that allocation size.
1739 Offset += StackEst;
1740
1741 // The frame pointer will point to the end of the stack, so estimate the
1742 // offset as the difference between the object offset and the FP location.
1743 return !isFrameOffsetLegal(MI, getBaseRegister(MF), Offset);
1744 }
1745
1746 /// Insert defining instruction(s) for BaseReg to
1747 /// be a pointer to FrameIdx at the beginning of the basic block.
materializeFrameBaseRegister(MachineBasicBlock * MBB,int FrameIdx,int64_t Offset) const1748 Register PPCRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
1749 int FrameIdx,
1750 int64_t Offset) const {
1751 unsigned ADDriOpc = TM.isPPC64() ? PPC::ADDI8 : PPC::ADDI;
1752
1753 MachineBasicBlock::iterator Ins = MBB->begin();
1754 DebugLoc DL; // Defaults to "unknown"
1755 if (Ins != MBB->end())
1756 DL = Ins->getDebugLoc();
1757
1758 const MachineFunction &MF = *MBB->getParent();
1759 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1760 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1761 const MCInstrDesc &MCID = TII.get(ADDriOpc);
1762 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
1763 const TargetRegisterClass *RC = getPointerRegClass(MF);
1764 Register BaseReg = MRI.createVirtualRegister(RC);
1765 MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF));
1766
1767 BuildMI(*MBB, Ins, DL, MCID, BaseReg)
1768 .addFrameIndex(FrameIdx).addImm(Offset);
1769
1770 return BaseReg;
1771 }
1772
resolveFrameIndex(MachineInstr & MI,Register BaseReg,int64_t Offset) const1773 void PPCRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
1774 int64_t Offset) const {
1775 unsigned FIOperandNum = 0;
1776 while (!MI.getOperand(FIOperandNum).isFI()) {
1777 ++FIOperandNum;
1778 assert(FIOperandNum < MI.getNumOperands() &&
1779 "Instr doesn't have FrameIndex operand!");
1780 }
1781
1782 MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false);
1783 unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
1784 Offset += MI.getOperand(OffsetOperandNo).getImm();
1785 MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
1786
1787 MachineBasicBlock &MBB = *MI.getParent();
1788 MachineFunction &MF = *MBB.getParent();
1789 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1790 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1791 const MCInstrDesc &MCID = MI.getDesc();
1792 MachineRegisterInfo &MRI = MF.getRegInfo();
1793 MRI.constrainRegClass(BaseReg,
1794 TII.getRegClass(MCID, FIOperandNum, this, MF));
1795 }
1796
isFrameOffsetLegal(const MachineInstr * MI,Register BaseReg,int64_t Offset) const1797 bool PPCRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
1798 Register BaseReg,
1799 int64_t Offset) const {
1800 unsigned FIOperandNum = 0;
1801 while (!MI->getOperand(FIOperandNum).isFI()) {
1802 ++FIOperandNum;
1803 assert(FIOperandNum < MI->getNumOperands() &&
1804 "Instr doesn't have FrameIndex operand!");
1805 }
1806
1807 unsigned OffsetOperandNo = getOffsetONFromFION(*MI, FIOperandNum);
1808 Offset += MI->getOperand(OffsetOperandNo).getImm();
1809
1810 return MI->getOpcode() == PPC::DBG_VALUE || // DBG_VALUE is always Reg+Imm
1811 MI->getOpcode() == TargetOpcode::STACKMAP ||
1812 MI->getOpcode() == TargetOpcode::PATCHPOINT ||
1813 (isInt<16>(Offset) && (Offset % offsetMinAlign(*MI)) == 0);
1814 }
1815