1 //===-- PPCRegisterInfo.cpp - PowerPC Register Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetRegisterInfo 10 // class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCRegisterInfo.h" 15 #include "PPCFrameLowering.h" 16 #include "PPCInstrBuilder.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCSubtarget.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/RegisterScavenging.h" 29 #include "llvm/CodeGen/TargetFrameLowering.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetMachine.h" 41 #include "llvm/Target/TargetOptions.h" 42 #include <cstdlib> 43 44 using namespace llvm; 45 46 #define DEBUG_TYPE "reginfo" 47 48 #define GET_REGINFO_TARGET_DESC 49 #include "PPCGenRegisterInfo.inc" 50 51 STATISTIC(InflateGPRC, "Number of gprc inputs for getLargestLegalClass"); 52 STATISTIC(InflateGP8RC, "Number of g8rc inputs for getLargestLegalClass"); 53 54 static cl::opt<bool> 55 EnableBasePointer("ppc-use-base-pointer", cl::Hidden, cl::init(true), 56 cl::desc("Enable use of a base pointer for complex stack frames")); 57 58 static cl::opt<bool> 59 AlwaysBasePointer("ppc-always-use-base-pointer", cl::Hidden, cl::init(false), 60 cl::desc("Force the use of a base pointer in every function")); 61 62 static cl::opt<bool> 63 EnableGPRToVecSpills("ppc-enable-gpr-to-vsr-spills", cl::Hidden, cl::init(false), 64 cl::desc("Enable spills from gpr to vsr rather than stack")); 65 66 static cl::opt<bool> 67 StackPtrConst("ppc-stack-ptr-caller-preserved", 68 cl::desc("Consider R1 caller preserved so stack saves of " 69 "caller preserved registers can be LICM candidates"), 70 cl::init(true), cl::Hidden); 71 72 static cl::opt<unsigned> 73 MaxCRBitSpillDist("ppc-max-crbit-spill-dist", 74 cl::desc("Maximum search distance for definition of CR bit " 75 "spill on ppc"), 76 cl::Hidden, cl::init(100)); 77 78 // Copies/moves of physical accumulators are expensive operations 79 // that should be avoided whenever possible. MMA instructions are 80 // meant to be used in performance-sensitive computational kernels. 81 // This option is provided, at least for the time being, to give the 82 // user a tool to detect this expensive operation and either rework 83 // their code or report a compiler bug if that turns out to be the 84 // cause. 85 #ifndef NDEBUG 86 static cl::opt<bool> 87 ReportAccMoves("ppc-report-acc-moves", 88 cl::desc("Emit information about accumulator register spills " 89 "and copies"), 90 cl::Hidden, cl::init(false)); 91 #endif 92 93 static unsigned offsetMinAlignForOpcode(unsigned OpC); 94 95 PPCRegisterInfo::PPCRegisterInfo(const PPCTargetMachine &TM) 96 : PPCGenRegisterInfo(TM.isPPC64() ? PPC::LR8 : PPC::LR, 97 TM.isPPC64() ? 0 : 1, 98 TM.isPPC64() ? 0 : 1), 99 TM(TM) { 100 ImmToIdxMap[PPC::LD] = PPC::LDX; ImmToIdxMap[PPC::STD] = PPC::STDX; 101 ImmToIdxMap[PPC::LBZ] = PPC::LBZX; ImmToIdxMap[PPC::STB] = PPC::STBX; 102 ImmToIdxMap[PPC::LHZ] = PPC::LHZX; ImmToIdxMap[PPC::LHA] = PPC::LHAX; 103 ImmToIdxMap[PPC::LWZ] = PPC::LWZX; ImmToIdxMap[PPC::LWA] = PPC::LWAX; 104 ImmToIdxMap[PPC::LFS] = PPC::LFSX; ImmToIdxMap[PPC::LFD] = PPC::LFDX; 105 ImmToIdxMap[PPC::STH] = PPC::STHX; ImmToIdxMap[PPC::STW] = PPC::STWX; 106 ImmToIdxMap[PPC::STFS] = PPC::STFSX; ImmToIdxMap[PPC::STFD] = PPC::STFDX; 107 ImmToIdxMap[PPC::ADDI] = PPC::ADD4; 108 ImmToIdxMap[PPC::LWA_32] = PPC::LWAX_32; 109 110 // 64-bit 111 ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8; 112 ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8; 113 ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8; 114 ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX; 115 ImmToIdxMap[PPC::ADDI8] = PPC::ADD8; 116 117 // VSX 118 ImmToIdxMap[PPC::DFLOADf32] = PPC::LXSSPX; 119 ImmToIdxMap[PPC::DFLOADf64] = PPC::LXSDX; 120 ImmToIdxMap[PPC::SPILLTOVSR_LD] = PPC::SPILLTOVSR_LDX; 121 ImmToIdxMap[PPC::SPILLTOVSR_ST] = PPC::SPILLTOVSR_STX; 122 ImmToIdxMap[PPC::DFSTOREf32] = PPC::STXSSPX; 123 ImmToIdxMap[PPC::DFSTOREf64] = PPC::STXSDX; 124 ImmToIdxMap[PPC::LXV] = PPC::LXVX; 125 ImmToIdxMap[PPC::LXSD] = PPC::LXSDX; 126 ImmToIdxMap[PPC::LXSSP] = PPC::LXSSPX; 127 ImmToIdxMap[PPC::STXV] = PPC::STXVX; 128 ImmToIdxMap[PPC::STXSD] = PPC::STXSDX; 129 ImmToIdxMap[PPC::STXSSP] = PPC::STXSSPX; 130 131 // SPE 132 ImmToIdxMap[PPC::EVLDD] = PPC::EVLDDX; 133 ImmToIdxMap[PPC::EVSTDD] = PPC::EVSTDDX; 134 ImmToIdxMap[PPC::SPESTW] = PPC::SPESTWX; 135 ImmToIdxMap[PPC::SPELWZ] = PPC::SPELWZX; 136 } 137 138 /// getPointerRegClass - Return the register class to use to hold pointers. 139 /// This is used for addressing modes. 140 const TargetRegisterClass * 141 PPCRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind) 142 const { 143 // Note that PPCInstrInfo::FoldImmediate also directly uses this Kind value 144 // when it checks for ZERO folding. 145 if (Kind == 1) { 146 if (TM.isPPC64()) 147 return &PPC::G8RC_NOX0RegClass; 148 return &PPC::GPRC_NOR0RegClass; 149 } 150 151 if (TM.isPPC64()) 152 return &PPC::G8RCRegClass; 153 return &PPC::GPRCRegClass; 154 } 155 156 const MCPhysReg* 157 PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { 158 const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>(); 159 if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) { 160 if (!TM.isPPC64() && Subtarget.isAIXABI()) 161 report_fatal_error("AnyReg unimplemented on 32-bit AIX."); 162 if (Subtarget.hasVSX()) { 163 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 164 return CSR_64_AllRegs_AIX_Dflt_VSX_SaveList; 165 return CSR_64_AllRegs_VSX_SaveList; 166 } 167 if (Subtarget.hasAltivec()) { 168 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 169 return CSR_64_AllRegs_AIX_Dflt_Altivec_SaveList; 170 return CSR_64_AllRegs_Altivec_SaveList; 171 } 172 return CSR_64_AllRegs_SaveList; 173 } 174 175 // On PPC64, we might need to save r2 (but only if it is not reserved). 176 // We do not need to treat R2 as callee-saved when using PC-Relative calls 177 // because any direct uses of R2 will cause it to be reserved. If the function 178 // is a leaf or the only uses of R2 are implicit uses for calls, the calls 179 // will use the @notoc relocation which will cause this function to set the 180 // st_other bit to 1, thereby communicating to its caller that it arbitrarily 181 // clobbers the TOC. 182 bool SaveR2 = MF->getRegInfo().isAllocatable(PPC::X2) && 183 !Subtarget.isUsingPCRelativeCalls(); 184 185 // Cold calling convention CSRs. 186 if (MF->getFunction().getCallingConv() == CallingConv::Cold) { 187 if (Subtarget.isAIXABI()) 188 report_fatal_error("Cold calling unimplemented on AIX."); 189 if (TM.isPPC64()) { 190 if (Subtarget.hasAltivec()) 191 return SaveR2 ? CSR_SVR64_ColdCC_R2_Altivec_SaveList 192 : CSR_SVR64_ColdCC_Altivec_SaveList; 193 return SaveR2 ? CSR_SVR64_ColdCC_R2_SaveList 194 : CSR_SVR64_ColdCC_SaveList; 195 } 196 // 32-bit targets. 197 if (Subtarget.hasAltivec()) 198 return CSR_SVR32_ColdCC_Altivec_SaveList; 199 else if (Subtarget.hasSPE()) 200 return CSR_SVR32_ColdCC_SPE_SaveList; 201 return CSR_SVR32_ColdCC_SaveList; 202 } 203 // Standard calling convention CSRs. 204 if (TM.isPPC64()) { 205 if (Subtarget.hasAltivec() && 206 (!Subtarget.isAIXABI() || TM.getAIXExtendedAltivecABI())) { 207 return SaveR2 ? CSR_PPC64_R2_Altivec_SaveList 208 : CSR_PPC64_Altivec_SaveList; 209 } 210 return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList; 211 } 212 // 32-bit targets. 213 if (Subtarget.isAIXABI()) { 214 if (Subtarget.hasAltivec()) 215 return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_Altivec_SaveList 216 : CSR_AIX32_SaveList; 217 return CSR_AIX32_SaveList; 218 } 219 if (Subtarget.hasAltivec()) 220 return CSR_SVR432_Altivec_SaveList; 221 else if (Subtarget.hasSPE()) 222 return CSR_SVR432_SPE_SaveList; 223 return CSR_SVR432_SaveList; 224 } 225 226 const uint32_t * 227 PPCRegisterInfo::getCallPreservedMask(const MachineFunction &MF, 228 CallingConv::ID CC) const { 229 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 230 if (CC == CallingConv::AnyReg) { 231 if (Subtarget.hasVSX()) { 232 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 233 return CSR_64_AllRegs_AIX_Dflt_VSX_RegMask; 234 return CSR_64_AllRegs_VSX_RegMask; 235 } 236 if (Subtarget.hasAltivec()) { 237 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 238 return CSR_64_AllRegs_AIX_Dflt_Altivec_RegMask; 239 return CSR_64_AllRegs_Altivec_RegMask; 240 } 241 return CSR_64_AllRegs_RegMask; 242 } 243 244 if (Subtarget.isAIXABI()) { 245 return TM.isPPC64() 246 ? ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI()) 247 ? CSR_PPC64_Altivec_RegMask 248 : CSR_PPC64_RegMask) 249 : ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI()) 250 ? CSR_AIX32_Altivec_RegMask 251 : CSR_AIX32_RegMask); 252 } 253 254 if (CC == CallingConv::Cold) { 255 return TM.isPPC64() ? (Subtarget.hasAltivec() ? CSR_SVR64_ColdCC_Altivec_RegMask 256 : CSR_SVR64_ColdCC_RegMask) 257 : (Subtarget.hasAltivec() ? CSR_SVR32_ColdCC_Altivec_RegMask 258 : (Subtarget.hasSPE() 259 ? CSR_SVR32_ColdCC_SPE_RegMask 260 : CSR_SVR32_ColdCC_RegMask)); 261 } 262 263 return TM.isPPC64() ? (Subtarget.hasAltivec() ? CSR_PPC64_Altivec_RegMask 264 : CSR_PPC64_RegMask) 265 : (Subtarget.hasAltivec() 266 ? CSR_SVR432_Altivec_RegMask 267 : (Subtarget.hasSPE() ? CSR_SVR432_SPE_RegMask 268 : CSR_SVR432_RegMask)); 269 } 270 271 const uint32_t* 272 PPCRegisterInfo::getNoPreservedMask() const { 273 return CSR_NoRegs_RegMask; 274 } 275 276 void PPCRegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const { 277 for (unsigned PseudoReg : {PPC::ZERO, PPC::ZERO8, PPC::RM}) 278 Mask[PseudoReg / 32] &= ~(1u << (PseudoReg % 32)); 279 } 280 281 BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const { 282 BitVector Reserved(getNumRegs()); 283 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 284 const PPCFrameLowering *TFI = getFrameLowering(MF); 285 286 // The ZERO register is not really a register, but the representation of r0 287 // when used in instructions that treat r0 as the constant 0. 288 markSuperRegs(Reserved, PPC::ZERO); 289 290 // The FP register is also not really a register, but is the representation 291 // of the frame pointer register used by ISD::FRAMEADDR. 292 markSuperRegs(Reserved, PPC::FP); 293 294 // The BP register is also not really a register, but is the representation 295 // of the base pointer register used by setjmp. 296 markSuperRegs(Reserved, PPC::BP); 297 298 // The counter registers must be reserved so that counter-based loops can 299 // be correctly formed (and the mtctr instructions are not DCE'd). 300 markSuperRegs(Reserved, PPC::CTR); 301 markSuperRegs(Reserved, PPC::CTR8); 302 303 markSuperRegs(Reserved, PPC::R1); 304 markSuperRegs(Reserved, PPC::LR); 305 markSuperRegs(Reserved, PPC::LR8); 306 markSuperRegs(Reserved, PPC::RM); 307 308 markSuperRegs(Reserved, PPC::VRSAVE); 309 310 // The SVR4 ABI reserves r2 and r13 311 if (Subtarget.isSVR4ABI()) { 312 // We only reserve r2 if we need to use the TOC pointer. If we have no 313 // explicit uses of the TOC pointer (meaning we're a leaf function with 314 // no constant-pool loads, etc.) and we have no potential uses inside an 315 // inline asm block, then we can treat r2 has an ordinary callee-saved 316 // register. 317 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 318 if (!TM.isPPC64() || FuncInfo->usesTOCBasePtr() || MF.hasInlineAsm()) 319 markSuperRegs(Reserved, PPC::R2); // System-reserved register 320 markSuperRegs(Reserved, PPC::R13); // Small Data Area pointer register 321 } 322 323 // Always reserve r2 on AIX for now. 324 // TODO: Make r2 allocatable on AIX/XCOFF for some leaf functions. 325 if (Subtarget.isAIXABI()) 326 markSuperRegs(Reserved, PPC::R2); // System-reserved register 327 328 // On PPC64, r13 is the thread pointer. Never allocate this register. 329 if (TM.isPPC64()) 330 markSuperRegs(Reserved, PPC::R13); 331 332 if (TFI->needsFP(MF)) 333 markSuperRegs(Reserved, PPC::R31); 334 335 bool IsPositionIndependent = TM.isPositionIndependent(); 336 if (hasBasePointer(MF)) { 337 if (Subtarget.is32BitELFABI() && IsPositionIndependent) 338 markSuperRegs(Reserved, PPC::R29); 339 else 340 markSuperRegs(Reserved, PPC::R30); 341 } 342 343 if (Subtarget.is32BitELFABI() && IsPositionIndependent) 344 markSuperRegs(Reserved, PPC::R30); 345 346 // Reserve Altivec registers when Altivec is unavailable. 347 if (!Subtarget.hasAltivec()) 348 for (TargetRegisterClass::iterator I = PPC::VRRCRegClass.begin(), 349 IE = PPC::VRRCRegClass.end(); I != IE; ++I) 350 markSuperRegs(Reserved, *I); 351 352 if (Subtarget.isAIXABI() && Subtarget.hasAltivec() && 353 !TM.getAIXExtendedAltivecABI()) { 354 // In the AIX default Altivec ABI, vector registers VR20-VR31 are reserved 355 // and cannot be used. 356 for (auto Reg : CSR_Altivec_SaveList) { 357 if (Reg == 0) 358 break; 359 markSuperRegs(Reserved, Reg); 360 for (MCRegAliasIterator AS(Reg, this, true); AS.isValid(); ++AS) { 361 Reserved.set(*AS); 362 } 363 } 364 } 365 366 assert(checkAllSuperRegsMarked(Reserved)); 367 return Reserved; 368 } 369 370 bool PPCRegisterInfo::requiresFrameIndexScavenging(const MachineFunction &MF) const { 371 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 372 const PPCInstrInfo *InstrInfo = Subtarget.getInstrInfo(); 373 const MachineFrameInfo &MFI = MF.getFrameInfo(); 374 const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo(); 375 376 LLVM_DEBUG(dbgs() << "requiresFrameIndexScavenging for " << MF.getName() 377 << ".\n"); 378 // If the callee saved info is invalid we have to default to true for safety. 379 if (!MFI.isCalleeSavedInfoValid()) { 380 LLVM_DEBUG(dbgs() << "TRUE - Invalid callee saved info.\n"); 381 return true; 382 } 383 384 // We will require the use of X-Forms because the frame is larger than what 385 // can be represented in signed 16 bits that fit in the immediate of a D-Form. 386 // If we need an X-Form then we need a register to store the address offset. 387 unsigned FrameSize = MFI.getStackSize(); 388 // Signed 16 bits means that the FrameSize cannot be more than 15 bits. 389 if (FrameSize & ~0x7FFF) { 390 LLVM_DEBUG(dbgs() << "TRUE - Frame size is too large for D-Form.\n"); 391 return true; 392 } 393 394 // The callee saved info is valid so it can be traversed. 395 // Checking for registers that need saving that do not have load or store 396 // forms where the address offset is an immediate. 397 for (unsigned i = 0; i < Info.size(); i++) { 398 // If the spill is to a register no scavenging is required. 399 if (Info[i].isSpilledToReg()) 400 continue; 401 402 int FrIdx = Info[i].getFrameIdx(); 403 unsigned Reg = Info[i].getReg(); 404 405 const TargetRegisterClass *RC = getMinimalPhysRegClass(Reg); 406 unsigned Opcode = InstrInfo->getStoreOpcodeForSpill(RC); 407 if (!MFI.isFixedObjectIndex(FrIdx)) { 408 // This is not a fixed object. If it requires alignment then we may still 409 // need to use the XForm. 410 if (offsetMinAlignForOpcode(Opcode) > 1) { 411 LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode) 412 << " for register " << printReg(Reg, this) << ".\n"); 413 LLVM_DEBUG(dbgs() << "TRUE - Not fixed frame object that requires " 414 << "alignment.\n"); 415 return true; 416 } 417 } 418 419 // This is eiher: 420 // 1) A fixed frame index object which we know are aligned so 421 // as long as we have a valid DForm/DSForm/DQForm (non XForm) we don't 422 // need to consider the alignment here. 423 // 2) A not fixed object but in that case we now know that the min required 424 // alignment is no more than 1 based on the previous check. 425 if (InstrInfo->isXFormMemOp(Opcode)) { 426 LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode) 427 << " for register " << printReg(Reg, this) << ".\n"); 428 LLVM_DEBUG(dbgs() << "TRUE - Memory operand is X-Form.\n"); 429 return true; 430 } 431 } 432 LLVM_DEBUG(dbgs() << "FALSE - Scavenging is not required.\n"); 433 return false; 434 } 435 436 bool PPCRegisterInfo::requiresVirtualBaseRegisters( 437 const MachineFunction &MF) const { 438 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 439 // Do not use virtual base registers when ROP protection is turned on. 440 // Virtual base registers break the layout of the local variable space and may 441 // push the ROP Hash location past the 512 byte range of the ROP store 442 // instruction. 443 return !Subtarget.hasROPProtect(); 444 } 445 446 bool PPCRegisterInfo::isCallerPreservedPhysReg(MCRegister PhysReg, 447 const MachineFunction &MF) const { 448 assert(Register::isPhysicalRegister(PhysReg)); 449 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 450 const MachineFrameInfo &MFI = MF.getFrameInfo(); 451 452 if (!Subtarget.is64BitELFABI() && !Subtarget.isAIXABI()) 453 return false; 454 if (PhysReg == Subtarget.getTOCPointerRegister()) 455 // X2/R2 is guaranteed to be preserved within a function if it is reserved. 456 // The reason it's reserved is that it's the TOC pointer (and the function 457 // uses the TOC). In functions where it isn't reserved (i.e. leaf functions 458 // with no TOC access), we can't claim that it is preserved. 459 return (getReservedRegs(MF).test(PhysReg)); 460 if (StackPtrConst && PhysReg == Subtarget.getStackPointerRegister() && 461 !MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment()) 462 // The value of the stack pointer does not change within a function after 463 // the prologue and before the epilogue if there are no dynamic allocations 464 // and no inline asm which clobbers X1/R1. 465 return true; 466 return false; 467 } 468 469 unsigned PPCRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC, 470 MachineFunction &MF) const { 471 const PPCFrameLowering *TFI = getFrameLowering(MF); 472 const unsigned DefaultSafety = 1; 473 474 switch (RC->getID()) { 475 default: 476 return 0; 477 case PPC::G8RC_NOX0RegClassID: 478 case PPC::GPRC_NOR0RegClassID: 479 case PPC::SPERCRegClassID: 480 case PPC::G8RCRegClassID: 481 case PPC::GPRCRegClassID: { 482 unsigned FP = TFI->hasFP(MF) ? 1 : 0; 483 return 32 - FP - DefaultSafety; 484 } 485 case PPC::F4RCRegClassID: 486 case PPC::F8RCRegClassID: 487 case PPC::VSLRCRegClassID: 488 return 32 - DefaultSafety; 489 case PPC::VFRCRegClassID: 490 case PPC::VRRCRegClassID: { 491 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 492 // Vector registers VR20-VR31 are reserved and cannot be used in the default 493 // Altivec ABI on AIX. 494 if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI()) 495 return 20 - DefaultSafety; 496 } 497 return 32 - DefaultSafety; 498 case PPC::VSFRCRegClassID: 499 case PPC::VSSRCRegClassID: 500 case PPC::VSRCRegClassID: { 501 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 502 if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI()) 503 // Vector registers VR20-VR31 are reserved and cannot be used in the 504 // default Altivec ABI on AIX. 505 return 52 - DefaultSafety; 506 } 507 return 64 - DefaultSafety; 508 case PPC::CRRCRegClassID: 509 return 8 - DefaultSafety; 510 } 511 } 512 513 const TargetRegisterClass * 514 PPCRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC, 515 const MachineFunction &MF) const { 516 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 517 if (Subtarget.hasVSX()) { 518 // With VSX, we can inflate various sub-register classes to the full VSX 519 // register set. 520 521 // For Power9 we allow the user to enable GPR to vector spills. 522 // FIXME: Currently limited to spilling GP8RC. A follow on patch will add 523 // support to spill GPRC. 524 if (TM.isELFv2ABI() || Subtarget.isAIXABI()) { 525 if (Subtarget.hasP9Vector() && EnableGPRToVecSpills && 526 RC == &PPC::G8RCRegClass) { 527 InflateGP8RC++; 528 return &PPC::SPILLTOVSRRCRegClass; 529 } 530 if (RC == &PPC::GPRCRegClass && EnableGPRToVecSpills) 531 InflateGPRC++; 532 } 533 if (RC == &PPC::F8RCRegClass) 534 return &PPC::VSFRCRegClass; 535 else if (RC == &PPC::VRRCRegClass) 536 return &PPC::VSRCRegClass; 537 else if (RC == &PPC::F4RCRegClass && Subtarget.hasP8Vector()) 538 return &PPC::VSSRCRegClass; 539 } 540 541 return TargetRegisterInfo::getLargestLegalSuperClass(RC, MF); 542 } 543 544 //===----------------------------------------------------------------------===// 545 // Stack Frame Processing methods 546 //===----------------------------------------------------------------------===// 547 548 /// lowerDynamicAlloc - Generate the code for allocating an object in the 549 /// current frame. The sequence of code will be in the general form 550 /// 551 /// addi R0, SP, \#frameSize ; get the address of the previous frame 552 /// stwxu R0, SP, Rnegsize ; add and update the SP with the negated size 553 /// addi Rnew, SP, \#maxCalFrameSize ; get the top of the allocation 554 /// 555 void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const { 556 // Get the instruction. 557 MachineInstr &MI = *II; 558 // Get the instruction's basic block. 559 MachineBasicBlock &MBB = *MI.getParent(); 560 // Get the basic block's function. 561 MachineFunction &MF = *MBB.getParent(); 562 // Get the frame info. 563 MachineFrameInfo &MFI = MF.getFrameInfo(); 564 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 565 // Get the instruction info. 566 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 567 // Determine whether 64-bit pointers are used. 568 bool LP64 = TM.isPPC64(); 569 DebugLoc dl = MI.getDebugLoc(); 570 571 // Get the maximum call stack size. 572 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize(); 573 Align MaxAlign = MFI.getMaxAlign(); 574 assert(isAligned(MaxAlign, maxCallFrameSize) && 575 "Maximum call-frame size not sufficiently aligned"); 576 (void)MaxAlign; 577 578 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 579 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 580 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 581 bool KillNegSizeReg = MI.getOperand(1).isKill(); 582 Register NegSizeReg = MI.getOperand(1).getReg(); 583 584 prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, Reg); 585 // Grow the stack and update the stack pointer link, then determine the 586 // address of new allocated space. 587 if (LP64) { 588 BuildMI(MBB, II, dl, TII.get(PPC::STDUX), PPC::X1) 589 .addReg(Reg, RegState::Kill) 590 .addReg(PPC::X1) 591 .addReg(NegSizeReg, getKillRegState(KillNegSizeReg)); 592 BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg()) 593 .addReg(PPC::X1) 594 .addImm(maxCallFrameSize); 595 } else { 596 BuildMI(MBB, II, dl, TII.get(PPC::STWUX), PPC::R1) 597 .addReg(Reg, RegState::Kill) 598 .addReg(PPC::R1) 599 .addReg(NegSizeReg, getKillRegState(KillNegSizeReg)); 600 BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg()) 601 .addReg(PPC::R1) 602 .addImm(maxCallFrameSize); 603 } 604 605 // Discard the DYNALLOC instruction. 606 MBB.erase(II); 607 } 608 609 /// To accomplish dynamic stack allocation, we have to calculate exact size 610 /// subtracted from the stack pointer according alignment information and get 611 /// previous frame pointer. 612 void PPCRegisterInfo::prepareDynamicAlloca(MachineBasicBlock::iterator II, 613 Register &NegSizeReg, 614 bool &KillNegSizeReg, 615 Register &FramePointer) const { 616 // Get the instruction. 617 MachineInstr &MI = *II; 618 // Get the instruction's basic block. 619 MachineBasicBlock &MBB = *MI.getParent(); 620 // Get the basic block's function. 621 MachineFunction &MF = *MBB.getParent(); 622 // Get the frame info. 623 MachineFrameInfo &MFI = MF.getFrameInfo(); 624 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 625 // Get the instruction info. 626 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 627 // Determine whether 64-bit pointers are used. 628 bool LP64 = TM.isPPC64(); 629 DebugLoc dl = MI.getDebugLoc(); 630 // Get the total frame size. 631 unsigned FrameSize = MFI.getStackSize(); 632 633 // Get stack alignments. 634 const PPCFrameLowering *TFI = getFrameLowering(MF); 635 Align TargetAlign = TFI->getStackAlign(); 636 Align MaxAlign = MFI.getMaxAlign(); 637 638 // Determine the previous frame's address. If FrameSize can't be 639 // represented as 16 bits or we need special alignment, then we load the 640 // previous frame's address from 0(SP). Why not do an addis of the hi? 641 // Because R0 is our only safe tmp register and addi/addis treat R0 as zero. 642 // Constructing the constant and adding would take 3 instructions. 643 // Fortunately, a frame greater than 32K is rare. 644 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 645 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 646 647 if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) { 648 if (LP64) 649 BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), FramePointer) 650 .addReg(PPC::X31) 651 .addImm(FrameSize); 652 else 653 BuildMI(MBB, II, dl, TII.get(PPC::ADDI), FramePointer) 654 .addReg(PPC::R31) 655 .addImm(FrameSize); 656 } else if (LP64) { 657 BuildMI(MBB, II, dl, TII.get(PPC::LD), FramePointer) 658 .addImm(0) 659 .addReg(PPC::X1); 660 } else { 661 BuildMI(MBB, II, dl, TII.get(PPC::LWZ), FramePointer) 662 .addImm(0) 663 .addReg(PPC::R1); 664 } 665 // Determine the actual NegSizeReg according to alignment info. 666 if (LP64) { 667 if (MaxAlign > TargetAlign) { 668 unsigned UnalNegSizeReg = NegSizeReg; 669 NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC); 670 671 // Unfortunately, there is no andi, only andi., and we can't insert that 672 // here because we might clobber cr0 while it is live. 673 BuildMI(MBB, II, dl, TII.get(PPC::LI8), NegSizeReg) 674 .addImm(~(MaxAlign.value() - 1)); 675 676 unsigned NegSizeReg1 = NegSizeReg; 677 NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC); 678 BuildMI(MBB, II, dl, TII.get(PPC::AND8), NegSizeReg) 679 .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg)) 680 .addReg(NegSizeReg1, RegState::Kill); 681 KillNegSizeReg = true; 682 } 683 } else { 684 if (MaxAlign > TargetAlign) { 685 unsigned UnalNegSizeReg = NegSizeReg; 686 NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC); 687 688 // Unfortunately, there is no andi, only andi., and we can't insert that 689 // here because we might clobber cr0 while it is live. 690 BuildMI(MBB, II, dl, TII.get(PPC::LI), NegSizeReg) 691 .addImm(~(MaxAlign.value() - 1)); 692 693 unsigned NegSizeReg1 = NegSizeReg; 694 NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC); 695 BuildMI(MBB, II, dl, TII.get(PPC::AND), NegSizeReg) 696 .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg)) 697 .addReg(NegSizeReg1, RegState::Kill); 698 KillNegSizeReg = true; 699 } 700 } 701 } 702 703 void PPCRegisterInfo::lowerPrepareProbedAlloca( 704 MachineBasicBlock::iterator II) const { 705 MachineInstr &MI = *II; 706 // Get the instruction's basic block. 707 MachineBasicBlock &MBB = *MI.getParent(); 708 // Get the basic block's function. 709 MachineFunction &MF = *MBB.getParent(); 710 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 711 // Get the instruction info. 712 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 713 // Determine whether 64-bit pointers are used. 714 bool LP64 = TM.isPPC64(); 715 DebugLoc dl = MI.getDebugLoc(); 716 Register FramePointer = MI.getOperand(0).getReg(); 717 const Register ActualNegSizeReg = MI.getOperand(1).getReg(); 718 bool KillNegSizeReg = MI.getOperand(2).isKill(); 719 Register NegSizeReg = MI.getOperand(2).getReg(); 720 const MCInstrDesc &CopyInst = TII.get(LP64 ? PPC::OR8 : PPC::OR); 721 // RegAllocator might allocate FramePointer and NegSizeReg in the same phyreg. 722 if (FramePointer == NegSizeReg) { 723 assert(KillNegSizeReg && "FramePointer is a def and NegSizeReg is an use, " 724 "NegSizeReg should be killed"); 725 // FramePointer is clobbered earlier than the use of NegSizeReg in 726 // prepareDynamicAlloca, save NegSizeReg in ActualNegSizeReg to avoid 727 // misuse. 728 BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg) 729 .addReg(NegSizeReg) 730 .addReg(NegSizeReg); 731 NegSizeReg = ActualNegSizeReg; 732 KillNegSizeReg = false; 733 } 734 prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, FramePointer); 735 // NegSizeReg might be updated in prepareDynamicAlloca if MaxAlign > 736 // TargetAlign. 737 if (NegSizeReg != ActualNegSizeReg) 738 BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg) 739 .addReg(NegSizeReg) 740 .addReg(NegSizeReg); 741 MBB.erase(II); 742 } 743 744 void PPCRegisterInfo::lowerDynamicAreaOffset( 745 MachineBasicBlock::iterator II) const { 746 // Get the instruction. 747 MachineInstr &MI = *II; 748 // Get the instruction's basic block. 749 MachineBasicBlock &MBB = *MI.getParent(); 750 // Get the basic block's function. 751 MachineFunction &MF = *MBB.getParent(); 752 // Get the frame info. 753 MachineFrameInfo &MFI = MF.getFrameInfo(); 754 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 755 // Get the instruction info. 756 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 757 758 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize(); 759 bool is64Bit = TM.isPPC64(); 760 DebugLoc dl = MI.getDebugLoc(); 761 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), 762 MI.getOperand(0).getReg()) 763 .addImm(maxCallFrameSize); 764 MBB.erase(II); 765 } 766 767 /// lowerCRSpilling - Generate the code for spilling a CR register. Instead of 768 /// reserving a whole register (R0), we scrounge for one here. This generates 769 /// code like this: 770 /// 771 /// mfcr rA ; Move the conditional register into GPR rA. 772 /// rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot. 773 /// stw rA, FI ; Store rA to the frame. 774 /// 775 void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II, 776 unsigned FrameIndex) const { 777 // Get the instruction. 778 MachineInstr &MI = *II; // ; SPILL_CR <SrcReg>, <offset> 779 // Get the instruction's basic block. 780 MachineBasicBlock &MBB = *MI.getParent(); 781 MachineFunction &MF = *MBB.getParent(); 782 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 783 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 784 DebugLoc dl = MI.getDebugLoc(); 785 786 bool LP64 = TM.isPPC64(); 787 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 788 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 789 790 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 791 Register SrcReg = MI.getOperand(0).getReg(); 792 793 // We need to store the CR in the low 4-bits of the saved value. First, issue 794 // an MFOCRF to save all of the CRBits and, if needed, kill the SrcReg. 795 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg) 796 .addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill())); 797 798 // If the saved register wasn't CR0, shift the bits left so that they are in 799 // CR0's slot. 800 if (SrcReg != PPC::CR0) { 801 Register Reg1 = Reg; 802 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 803 804 // rlwinm rA, rA, ShiftBits, 0, 31. 805 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg) 806 .addReg(Reg1, RegState::Kill) 807 .addImm(getEncodingValue(SrcReg) * 4) 808 .addImm(0) 809 .addImm(31); 810 } 811 812 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW)) 813 .addReg(Reg, RegState::Kill), 814 FrameIndex); 815 816 // Discard the pseudo instruction. 817 MBB.erase(II); 818 } 819 820 void PPCRegisterInfo::lowerCRRestore(MachineBasicBlock::iterator II, 821 unsigned FrameIndex) const { 822 // Get the instruction. 823 MachineInstr &MI = *II; // ; <DestReg> = RESTORE_CR <offset> 824 // Get the instruction's basic block. 825 MachineBasicBlock &MBB = *MI.getParent(); 826 MachineFunction &MF = *MBB.getParent(); 827 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 828 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 829 DebugLoc dl = MI.getDebugLoc(); 830 831 bool LP64 = TM.isPPC64(); 832 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 833 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 834 835 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 836 Register DestReg = MI.getOperand(0).getReg(); 837 assert(MI.definesRegister(DestReg) && 838 "RESTORE_CR does not define its destination"); 839 840 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ), 841 Reg), FrameIndex); 842 843 // If the reloaded register isn't CR0, shift the bits right so that they are 844 // in the right CR's slot. 845 if (DestReg != PPC::CR0) { 846 Register Reg1 = Reg; 847 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 848 849 unsigned ShiftBits = getEncodingValue(DestReg)*4; 850 // rlwinm r11, r11, 32-ShiftBits, 0, 31. 851 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg) 852 .addReg(Reg1, RegState::Kill).addImm(32-ShiftBits).addImm(0) 853 .addImm(31); 854 } 855 856 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), DestReg) 857 .addReg(Reg, RegState::Kill); 858 859 // Discard the pseudo instruction. 860 MBB.erase(II); 861 } 862 863 void PPCRegisterInfo::lowerCRBitSpilling(MachineBasicBlock::iterator II, 864 unsigned FrameIndex) const { 865 // Get the instruction. 866 MachineInstr &MI = *II; // ; SPILL_CRBIT <SrcReg>, <offset> 867 // Get the instruction's basic block. 868 MachineBasicBlock &MBB = *MI.getParent(); 869 MachineFunction &MF = *MBB.getParent(); 870 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 871 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 872 const TargetRegisterInfo* TRI = Subtarget.getRegisterInfo(); 873 DebugLoc dl = MI.getDebugLoc(); 874 875 bool LP64 = TM.isPPC64(); 876 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 877 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 878 879 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 880 Register SrcReg = MI.getOperand(0).getReg(); 881 882 // Search up the BB to find the definition of the CR bit. 883 MachineBasicBlock::reverse_iterator Ins = MI; 884 MachineBasicBlock::reverse_iterator Rend = MBB.rend(); 885 ++Ins; 886 unsigned CRBitSpillDistance = 0; 887 bool SeenUse = false; 888 for (; Ins != Rend; ++Ins) { 889 // Definition found. 890 if (Ins->modifiesRegister(SrcReg, TRI)) 891 break; 892 // Use found. 893 if (Ins->readsRegister(SrcReg, TRI)) 894 SeenUse = true; 895 // Unable to find CR bit definition within maximum search distance. 896 if (CRBitSpillDistance == MaxCRBitSpillDist) { 897 Ins = MI; 898 break; 899 } 900 // Skip debug instructions when counting CR bit spill distance. 901 if (!Ins->isDebugInstr()) 902 CRBitSpillDistance++; 903 } 904 905 // Unable to find the definition of the CR bit in the MBB. 906 if (Ins == MBB.rend()) 907 Ins = MI; 908 909 bool SpillsKnownBit = false; 910 // There is no need to extract the CR bit if its value is already known. 911 switch (Ins->getOpcode()) { 912 case PPC::CRUNSET: 913 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LI8 : PPC::LI), Reg) 914 .addImm(0); 915 SpillsKnownBit = true; 916 break; 917 case PPC::CRSET: 918 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LIS8 : PPC::LIS), Reg) 919 .addImm(-32768); 920 SpillsKnownBit = true; 921 break; 922 default: 923 // On Power10, we can use SETNBC to spill all CR bits. SETNBC will set all 924 // bits (specifically, it produces a -1 if the CR bit is set). Ultimately, 925 // the bit that is of importance to us is bit 32 (bit 0 of a 32-bit 926 // register), and SETNBC will set this. 927 if (Subtarget.isISA3_1()) { 928 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETNBC8 : PPC::SETNBC), Reg) 929 .addReg(SrcReg, RegState::Undef); 930 break; 931 } 932 933 // On Power9, we can use SETB to extract the LT bit. This only works for 934 // the LT bit since SETB produces -1/1/0 for LT/GT/<neither>. So the value 935 // of the bit we care about (32-bit sign bit) will be set to the value of 936 // the LT bit (regardless of the other bits in the CR field). 937 if (Subtarget.isISA3_0()) { 938 if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR1LT || 939 SrcReg == PPC::CR2LT || SrcReg == PPC::CR3LT || 940 SrcReg == PPC::CR4LT || SrcReg == PPC::CR5LT || 941 SrcReg == PPC::CR6LT || SrcReg == PPC::CR7LT) { 942 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETB8 : PPC::SETB), Reg) 943 .addReg(getCRFromCRBit(SrcReg), RegState::Undef); 944 break; 945 } 946 } 947 948 // We need to move the CR field that contains the CR bit we are spilling. 949 // The super register may not be explicitly defined (i.e. it can be defined 950 // by a CR-logical that only defines the subreg) so we state that the CR 951 // field is undef. Also, in order to preserve the kill flag on the CR bit, 952 // we add it as an implicit use. 953 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg) 954 .addReg(getCRFromCRBit(SrcReg), RegState::Undef) 955 .addReg(SrcReg, 956 RegState::Implicit | getKillRegState(MI.getOperand(0).isKill())); 957 958 // If the saved register wasn't CR0LT, shift the bits left so that the bit 959 // to store is the first one. Mask all but that bit. 960 Register Reg1 = Reg; 961 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 962 963 // rlwinm rA, rA, ShiftBits, 0, 0. 964 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg) 965 .addReg(Reg1, RegState::Kill) 966 .addImm(getEncodingValue(SrcReg)) 967 .addImm(0).addImm(0); 968 } 969 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW)) 970 .addReg(Reg, RegState::Kill), 971 FrameIndex); 972 973 bool KillsCRBit = MI.killsRegister(SrcReg, TRI); 974 // Discard the pseudo instruction. 975 MBB.erase(II); 976 if (SpillsKnownBit && KillsCRBit && !SeenUse) { 977 Ins->setDesc(TII.get(PPC::UNENCODED_NOP)); 978 Ins->RemoveOperand(0); 979 } 980 } 981 982 void PPCRegisterInfo::lowerCRBitRestore(MachineBasicBlock::iterator II, 983 unsigned FrameIndex) const { 984 // Get the instruction. 985 MachineInstr &MI = *II; // ; <DestReg> = RESTORE_CRBIT <offset> 986 // Get the instruction's basic block. 987 MachineBasicBlock &MBB = *MI.getParent(); 988 MachineFunction &MF = *MBB.getParent(); 989 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 990 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 991 DebugLoc dl = MI.getDebugLoc(); 992 993 bool LP64 = TM.isPPC64(); 994 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 995 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 996 997 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 998 Register DestReg = MI.getOperand(0).getReg(); 999 assert(MI.definesRegister(DestReg) && 1000 "RESTORE_CRBIT does not define its destination"); 1001 1002 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ), 1003 Reg), FrameIndex); 1004 1005 BuildMI(MBB, II, dl, TII.get(TargetOpcode::IMPLICIT_DEF), DestReg); 1006 1007 Register RegO = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 1008 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), RegO) 1009 .addReg(getCRFromCRBit(DestReg)); 1010 1011 unsigned ShiftBits = getEncodingValue(DestReg); 1012 // rlwimi r11, r10, 32-ShiftBits, ..., ... 1013 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWIMI8 : PPC::RLWIMI), RegO) 1014 .addReg(RegO, RegState::Kill) 1015 .addReg(Reg, RegState::Kill) 1016 .addImm(ShiftBits ? 32 - ShiftBits : 0) 1017 .addImm(ShiftBits) 1018 .addImm(ShiftBits); 1019 1020 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), 1021 getCRFromCRBit(DestReg)) 1022 .addReg(RegO, RegState::Kill) 1023 // Make sure we have a use dependency all the way through this 1024 // sequence of instructions. We can't have the other bits in the CR 1025 // modified in between the mfocrf and the mtocrf. 1026 .addReg(getCRFromCRBit(DestReg), RegState::Implicit); 1027 1028 // Discard the pseudo instruction. 1029 MBB.erase(II); 1030 } 1031 1032 void PPCRegisterInfo::emitAccCopyInfo(MachineBasicBlock &MBB, 1033 MCRegister DestReg, MCRegister SrcReg) { 1034 #ifdef NDEBUG 1035 return; 1036 #else 1037 if (ReportAccMoves) { 1038 std::string Dest = PPC::ACCRCRegClass.contains(DestReg) ? "acc" : "uacc"; 1039 std::string Src = PPC::ACCRCRegClass.contains(SrcReg) ? "acc" : "uacc"; 1040 dbgs() << "Emitting copy from " << Src << " to " << Dest << ":\n"; 1041 MBB.dump(); 1042 } 1043 #endif 1044 } 1045 1046 static void emitAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsPrimed, 1047 bool IsRestore) { 1048 #ifdef NDEBUG 1049 return; 1050 #else 1051 if (ReportAccMoves) { 1052 dbgs() << "Emitting " << (IsPrimed ? "acc" : "uacc") << " register " 1053 << (IsRestore ? "restore" : "spill") << ":\n"; 1054 MBB.dump(); 1055 } 1056 #endif 1057 } 1058 1059 /// lowerACCSpilling - Generate the code for spilling the accumulator register. 1060 /// Similarly to other spills/reloads that use pseudo-ops, we do not actually 1061 /// eliminate the FrameIndex here nor compute the stack offset. We simply 1062 /// create a real instruction with an FI and rely on eliminateFrameIndex to 1063 /// handle the FI elimination. 1064 void PPCRegisterInfo::lowerACCSpilling(MachineBasicBlock::iterator II, 1065 unsigned FrameIndex) const { 1066 MachineInstr &MI = *II; // SPILL_ACC <SrcReg>, <offset> 1067 MachineBasicBlock &MBB = *MI.getParent(); 1068 MachineFunction &MF = *MBB.getParent(); 1069 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1070 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1071 DebugLoc DL = MI.getDebugLoc(); 1072 Register SrcReg = MI.getOperand(0).getReg(); 1073 bool IsKilled = MI.getOperand(0).isKill(); 1074 1075 bool IsPrimed = PPC::ACCRCRegClass.contains(SrcReg); 1076 Register Reg = 1077 PPC::VSRp0 + (SrcReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2; 1078 bool IsLittleEndian = Subtarget.isLittleEndian(); 1079 1080 emitAccSpillRestoreInfo(MBB, IsPrimed, false); 1081 1082 // De-prime the register being spilled, create two stores for the pair 1083 // subregisters accounting for endianness and then re-prime the register if 1084 // it isn't killed. This uses the Offset parameter to addFrameReference() to 1085 // adjust the offset of the store that is within the 64-byte stack slot. 1086 if (IsPrimed) 1087 BuildMI(MBB, II, DL, TII.get(PPC::XXMFACC), SrcReg).addReg(SrcReg); 1088 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP)) 1089 .addReg(Reg, getKillRegState(IsKilled)), 1090 FrameIndex, IsLittleEndian ? 32 : 0); 1091 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP)) 1092 .addReg(Reg + 1, getKillRegState(IsKilled)), 1093 FrameIndex, IsLittleEndian ? 0 : 32); 1094 if (IsPrimed && !IsKilled) 1095 BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), SrcReg).addReg(SrcReg); 1096 1097 // Discard the pseudo instruction. 1098 MBB.erase(II); 1099 } 1100 1101 /// lowerACCRestore - Generate the code to restore the accumulator register. 1102 void PPCRegisterInfo::lowerACCRestore(MachineBasicBlock::iterator II, 1103 unsigned FrameIndex) const { 1104 MachineInstr &MI = *II; // <DestReg> = RESTORE_ACC <offset> 1105 MachineBasicBlock &MBB = *MI.getParent(); 1106 MachineFunction &MF = *MBB.getParent(); 1107 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1108 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1109 DebugLoc DL = MI.getDebugLoc(); 1110 1111 Register DestReg = MI.getOperand(0).getReg(); 1112 assert(MI.definesRegister(DestReg) && 1113 "RESTORE_ACC does not define its destination"); 1114 1115 bool IsPrimed = PPC::ACCRCRegClass.contains(DestReg); 1116 Register Reg = 1117 PPC::VSRp0 + (DestReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2; 1118 bool IsLittleEndian = Subtarget.isLittleEndian(); 1119 1120 emitAccSpillRestoreInfo(MBB, IsPrimed, true); 1121 1122 // Create two loads for the pair subregisters accounting for endianness and 1123 // then prime the accumulator register being restored. 1124 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg), 1125 FrameIndex, IsLittleEndian ? 32 : 0); 1126 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg + 1), 1127 FrameIndex, IsLittleEndian ? 0 : 32); 1128 if (IsPrimed) 1129 BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), DestReg).addReg(DestReg); 1130 1131 // Discard the pseudo instruction. 1132 MBB.erase(II); 1133 } 1134 1135 bool PPCRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF, 1136 Register Reg, int &FrameIdx) const { 1137 // For the nonvolatile condition registers (CR2, CR3, CR4) return true to 1138 // prevent allocating an additional frame slot. 1139 // For 64-bit ELF and AIX, the CR save area is in the linkage area at SP+8, 1140 // for 32-bit AIX the CR save area is in the linkage area at SP+4. 1141 // We have created a FrameIndex to that spill slot to keep the CalleSaveInfos 1142 // valid. 1143 // For 32-bit ELF, we have previously created the stack slot if needed, so 1144 // return its FrameIdx. 1145 if (PPC::CR2 <= Reg && Reg <= PPC::CR4) { 1146 FrameIdx = MF.getInfo<PPCFunctionInfo>()->getCRSpillFrameIndex(); 1147 return true; 1148 } 1149 return false; 1150 } 1151 1152 // If the offset must be a multiple of some value, return what that value is. 1153 static unsigned offsetMinAlignForOpcode(unsigned OpC) { 1154 switch (OpC) { 1155 default: 1156 return 1; 1157 case PPC::LWA: 1158 case PPC::LWA_32: 1159 case PPC::LD: 1160 case PPC::LDU: 1161 case PPC::STD: 1162 case PPC::STDU: 1163 case PPC::DFLOADf32: 1164 case PPC::DFLOADf64: 1165 case PPC::DFSTOREf32: 1166 case PPC::DFSTOREf64: 1167 case PPC::LXSD: 1168 case PPC::LXSSP: 1169 case PPC::STXSD: 1170 case PPC::STXSSP: 1171 return 4; 1172 case PPC::EVLDD: 1173 case PPC::EVSTDD: 1174 return 8; 1175 case PPC::LXV: 1176 case PPC::STXV: 1177 return 16; 1178 } 1179 } 1180 1181 // If the offset must be a multiple of some value, return what that value is. 1182 static unsigned offsetMinAlign(const MachineInstr &MI) { 1183 unsigned OpC = MI.getOpcode(); 1184 return offsetMinAlignForOpcode(OpC); 1185 } 1186 1187 // Return the OffsetOperandNo given the FIOperandNum (and the instruction). 1188 static unsigned getOffsetONFromFION(const MachineInstr &MI, 1189 unsigned FIOperandNum) { 1190 // Take into account whether it's an add or mem instruction 1191 unsigned OffsetOperandNo = (FIOperandNum == 2) ? 1 : 2; 1192 if (MI.isInlineAsm()) 1193 OffsetOperandNo = FIOperandNum - 1; 1194 else if (MI.getOpcode() == TargetOpcode::STACKMAP || 1195 MI.getOpcode() == TargetOpcode::PATCHPOINT) 1196 OffsetOperandNo = FIOperandNum + 1; 1197 1198 return OffsetOperandNo; 1199 } 1200 1201 void 1202 PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, 1203 int SPAdj, unsigned FIOperandNum, 1204 RegScavenger *RS) const { 1205 assert(SPAdj == 0 && "Unexpected"); 1206 1207 // Get the instruction. 1208 MachineInstr &MI = *II; 1209 // Get the instruction's basic block. 1210 MachineBasicBlock &MBB = *MI.getParent(); 1211 // Get the basic block's function. 1212 MachineFunction &MF = *MBB.getParent(); 1213 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1214 // Get the instruction info. 1215 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1216 // Get the frame info. 1217 MachineFrameInfo &MFI = MF.getFrameInfo(); 1218 DebugLoc dl = MI.getDebugLoc(); 1219 1220 unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum); 1221 1222 // Get the frame index. 1223 int FrameIndex = MI.getOperand(FIOperandNum).getIndex(); 1224 1225 // Get the frame pointer save index. Users of this index are primarily 1226 // DYNALLOC instructions. 1227 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1228 int FPSI = FI->getFramePointerSaveIndex(); 1229 // Get the instruction opcode. 1230 unsigned OpC = MI.getOpcode(); 1231 1232 if ((OpC == PPC::DYNAREAOFFSET || OpC == PPC::DYNAREAOFFSET8)) { 1233 lowerDynamicAreaOffset(II); 1234 return; 1235 } 1236 1237 // Special case for dynamic alloca. 1238 if (FPSI && FrameIndex == FPSI && 1239 (OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) { 1240 lowerDynamicAlloc(II); 1241 return; 1242 } 1243 1244 if (FPSI && FrameIndex == FPSI && 1245 (OpC == PPC::PREPARE_PROBED_ALLOCA_64 || 1246 OpC == PPC::PREPARE_PROBED_ALLOCA_32 || 1247 OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 || 1248 OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32)) { 1249 lowerPrepareProbedAlloca(II); 1250 return; 1251 } 1252 1253 // Special case for pseudo-ops SPILL_CR and RESTORE_CR, etc. 1254 if (OpC == PPC::SPILL_CR) { 1255 lowerCRSpilling(II, FrameIndex); 1256 return; 1257 } else if (OpC == PPC::RESTORE_CR) { 1258 lowerCRRestore(II, FrameIndex); 1259 return; 1260 } else if (OpC == PPC::SPILL_CRBIT) { 1261 lowerCRBitSpilling(II, FrameIndex); 1262 return; 1263 } else if (OpC == PPC::RESTORE_CRBIT) { 1264 lowerCRBitRestore(II, FrameIndex); 1265 return; 1266 } else if (OpC == PPC::SPILL_ACC || OpC == PPC::SPILL_UACC) { 1267 lowerACCSpilling(II, FrameIndex); 1268 return; 1269 } else if (OpC == PPC::RESTORE_ACC || OpC == PPC::RESTORE_UACC) { 1270 lowerACCRestore(II, FrameIndex); 1271 return; 1272 } 1273 1274 // Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP). 1275 MI.getOperand(FIOperandNum).ChangeToRegister( 1276 FrameIndex < 0 ? getBaseRegister(MF) : getFrameRegister(MF), false); 1277 1278 // If the instruction is not present in ImmToIdxMap, then it has no immediate 1279 // form (and must be r+r). 1280 bool noImmForm = !MI.isInlineAsm() && OpC != TargetOpcode::STACKMAP && 1281 OpC != TargetOpcode::PATCHPOINT && !ImmToIdxMap.count(OpC); 1282 1283 // Now add the frame object offset to the offset from r1. 1284 int Offset = MFI.getObjectOffset(FrameIndex); 1285 Offset += MI.getOperand(OffsetOperandNo).getImm(); 1286 1287 // If we're not using a Frame Pointer that has been set to the value of the 1288 // SP before having the stack size subtracted from it, then add the stack size 1289 // to Offset to get the correct offset. 1290 // Naked functions have stack size 0, although getStackSize may not reflect 1291 // that because we didn't call all the pieces that compute it for naked 1292 // functions. 1293 if (!MF.getFunction().hasFnAttribute(Attribute::Naked)) { 1294 if (!(hasBasePointer(MF) && FrameIndex < 0)) 1295 Offset += MFI.getStackSize(); 1296 } 1297 1298 // If we can, encode the offset directly into the instruction. If this is a 1299 // normal PPC "ri" instruction, any 16-bit value can be safely encoded. If 1300 // this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits 1301 // clear can be encoded. This is extremely uncommon, because normally you 1302 // only "std" to a stack slot that is at least 4-byte aligned, but it can 1303 // happen in invalid code. 1304 assert(OpC != PPC::DBG_VALUE && 1305 "This should be handled in a target-independent way"); 1306 bool OffsetFitsMnemonic = (OpC == PPC::EVSTDD || OpC == PPC::EVLDD) ? 1307 isUInt<8>(Offset) : 1308 isInt<16>(Offset); 1309 if (!noImmForm && ((OffsetFitsMnemonic && 1310 ((Offset % offsetMinAlign(MI)) == 0)) || 1311 OpC == TargetOpcode::STACKMAP || 1312 OpC == TargetOpcode::PATCHPOINT)) { 1313 MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset); 1314 return; 1315 } 1316 1317 // The offset doesn't fit into a single register, scavenge one to build the 1318 // offset in. 1319 1320 bool is64Bit = TM.isPPC64(); 1321 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 1322 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 1323 const TargetRegisterClass *RC = is64Bit ? G8RC : GPRC; 1324 Register SRegHi = MF.getRegInfo().createVirtualRegister(RC), 1325 SReg = MF.getRegInfo().createVirtualRegister(RC); 1326 1327 // Insert a set of rA with the full offset value before the ld, st, or add 1328 if (isInt<16>(Offset)) 1329 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), SReg) 1330 .addImm(Offset); 1331 else { 1332 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LIS8 : PPC::LIS), SRegHi) 1333 .addImm(Offset >> 16); 1334 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::ORI8 : PPC::ORI), SReg) 1335 .addReg(SRegHi, RegState::Kill) 1336 .addImm(Offset); 1337 } 1338 1339 // Convert into indexed form of the instruction: 1340 // 1341 // sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0 1342 // addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0 1343 unsigned OperandBase; 1344 1345 if (noImmForm) 1346 OperandBase = 1; 1347 else if (OpC != TargetOpcode::INLINEASM && 1348 OpC != TargetOpcode::INLINEASM_BR) { 1349 assert(ImmToIdxMap.count(OpC) && 1350 "No indexed form of load or store available!"); 1351 unsigned NewOpcode = ImmToIdxMap.find(OpC)->second; 1352 MI.setDesc(TII.get(NewOpcode)); 1353 OperandBase = 1; 1354 } else { 1355 OperandBase = OffsetOperandNo; 1356 } 1357 1358 Register StackReg = MI.getOperand(FIOperandNum).getReg(); 1359 MI.getOperand(OperandBase).ChangeToRegister(StackReg, false); 1360 MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false, false, true); 1361 } 1362 1363 Register PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const { 1364 const PPCFrameLowering *TFI = getFrameLowering(MF); 1365 1366 if (!TM.isPPC64()) 1367 return TFI->hasFP(MF) ? PPC::R31 : PPC::R1; 1368 else 1369 return TFI->hasFP(MF) ? PPC::X31 : PPC::X1; 1370 } 1371 1372 Register PPCRegisterInfo::getBaseRegister(const MachineFunction &MF) const { 1373 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1374 if (!hasBasePointer(MF)) 1375 return getFrameRegister(MF); 1376 1377 if (TM.isPPC64()) 1378 return PPC::X30; 1379 1380 if (Subtarget.isSVR4ABI() && TM.isPositionIndependent()) 1381 return PPC::R29; 1382 1383 return PPC::R30; 1384 } 1385 1386 bool PPCRegisterInfo::hasBasePointer(const MachineFunction &MF) const { 1387 if (!EnableBasePointer) 1388 return false; 1389 if (AlwaysBasePointer) 1390 return true; 1391 1392 // If we need to realign the stack, then the stack pointer can no longer 1393 // serve as an offset into the caller's stack space. As a result, we need a 1394 // base pointer. 1395 return hasStackRealignment(MF); 1396 } 1397 1398 /// Returns true if the instruction's frame index 1399 /// reference would be better served by a base register other than FP 1400 /// or SP. Used by LocalStackFrameAllocation to determine which frame index 1401 /// references it should create new base registers for. 1402 bool PPCRegisterInfo:: 1403 needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { 1404 assert(Offset < 0 && "Local offset must be negative"); 1405 1406 // It's the load/store FI references that cause issues, as it can be difficult 1407 // to materialize the offset if it won't fit in the literal field. Estimate 1408 // based on the size of the local frame and some conservative assumptions 1409 // about the rest of the stack frame (note, this is pre-regalloc, so 1410 // we don't know everything for certain yet) whether this offset is likely 1411 // to be out of range of the immediate. Return true if so. 1412 1413 // We only generate virtual base registers for loads and stores that have 1414 // an r+i form. Return false for everything else. 1415 unsigned OpC = MI->getOpcode(); 1416 if (!ImmToIdxMap.count(OpC)) 1417 return false; 1418 1419 // Don't generate a new virtual base register just to add zero to it. 1420 if ((OpC == PPC::ADDI || OpC == PPC::ADDI8) && 1421 MI->getOperand(2).getImm() == 0) 1422 return false; 1423 1424 MachineBasicBlock &MBB = *MI->getParent(); 1425 MachineFunction &MF = *MBB.getParent(); 1426 const PPCFrameLowering *TFI = getFrameLowering(MF); 1427 unsigned StackEst = TFI->determineFrameLayout(MF, true); 1428 1429 // If we likely don't need a stack frame, then we probably don't need a 1430 // virtual base register either. 1431 if (!StackEst) 1432 return false; 1433 1434 // Estimate an offset from the stack pointer. 1435 // The incoming offset is relating to the SP at the start of the function, 1436 // but when we access the local it'll be relative to the SP after local 1437 // allocation, so adjust our SP-relative offset by that allocation size. 1438 Offset += StackEst; 1439 1440 // The frame pointer will point to the end of the stack, so estimate the 1441 // offset as the difference between the object offset and the FP location. 1442 return !isFrameOffsetLegal(MI, getBaseRegister(MF), Offset); 1443 } 1444 1445 /// Insert defining instruction(s) for BaseReg to 1446 /// be a pointer to FrameIdx at the beginning of the basic block. 1447 Register PPCRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB, 1448 int FrameIdx, 1449 int64_t Offset) const { 1450 unsigned ADDriOpc = TM.isPPC64() ? PPC::ADDI8 : PPC::ADDI; 1451 1452 MachineBasicBlock::iterator Ins = MBB->begin(); 1453 DebugLoc DL; // Defaults to "unknown" 1454 if (Ins != MBB->end()) 1455 DL = Ins->getDebugLoc(); 1456 1457 const MachineFunction &MF = *MBB->getParent(); 1458 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1459 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1460 const MCInstrDesc &MCID = TII.get(ADDriOpc); 1461 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 1462 const TargetRegisterClass *RC = getPointerRegClass(MF); 1463 Register BaseReg = MRI.createVirtualRegister(RC); 1464 MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF)); 1465 1466 BuildMI(*MBB, Ins, DL, MCID, BaseReg) 1467 .addFrameIndex(FrameIdx).addImm(Offset); 1468 1469 return BaseReg; 1470 } 1471 1472 void PPCRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg, 1473 int64_t Offset) const { 1474 unsigned FIOperandNum = 0; 1475 while (!MI.getOperand(FIOperandNum).isFI()) { 1476 ++FIOperandNum; 1477 assert(FIOperandNum < MI.getNumOperands() && 1478 "Instr doesn't have FrameIndex operand!"); 1479 } 1480 1481 MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false); 1482 unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum); 1483 Offset += MI.getOperand(OffsetOperandNo).getImm(); 1484 MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset); 1485 1486 MachineBasicBlock &MBB = *MI.getParent(); 1487 MachineFunction &MF = *MBB.getParent(); 1488 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1489 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1490 const MCInstrDesc &MCID = MI.getDesc(); 1491 MachineRegisterInfo &MRI = MF.getRegInfo(); 1492 MRI.constrainRegClass(BaseReg, 1493 TII.getRegClass(MCID, FIOperandNum, this, MF)); 1494 } 1495 1496 bool PPCRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI, 1497 Register BaseReg, 1498 int64_t Offset) const { 1499 unsigned FIOperandNum = 0; 1500 while (!MI->getOperand(FIOperandNum).isFI()) { 1501 ++FIOperandNum; 1502 assert(FIOperandNum < MI->getNumOperands() && 1503 "Instr doesn't have FrameIndex operand!"); 1504 } 1505 1506 unsigned OffsetOperandNo = getOffsetONFromFION(*MI, FIOperandNum); 1507 Offset += MI->getOperand(OffsetOperandNo).getImm(); 1508 1509 return MI->getOpcode() == PPC::DBG_VALUE || // DBG_VALUE is always Reg+Imm 1510 MI->getOpcode() == TargetOpcode::STACKMAP || 1511 MI->getOpcode() == TargetOpcode::PATCHPOINT || 1512 (isInt<16>(Offset) && (Offset % offsetMinAlign(*MI)) == 0); 1513 } 1514