1 //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 //
9 // This pass performs peephole optimizations to clean up ugly code
10 // sequences at the MachineInstruction layer.  It runs at the end of
11 // the SSA phases, following VSX swap removal.  A pass of dead code
12 // elimination follows this one for quick clean-up of any dead
13 // instructions introduced here.  Although we could do this as callbacks
14 // from the generic peephole pass, this would have a couple of bad
15 // effects:  it might remove optimization opportunities for VSX swap
16 // removal, and it would miss cleanups made possible following VSX
17 // swap removal.
18 //
19 //===---------------------------------------------------------------------===//
20 
21 #include "MCTargetDesc/PPCMCTargetDesc.h"
22 #include "MCTargetDesc/PPCPredicates.h"
23 #include "PPC.h"
24 #include "PPCInstrBuilder.h"
25 #include "PPCInstrInfo.h"
26 #include "PPCMachineFunctionInfo.h"
27 #include "PPCTargetMachine.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachinePostDominators.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Support/Debug.h"
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "ppc-mi-peepholes"
41 
42 STATISTIC(RemoveTOCSave, "Number of TOC saves removed");
43 STATISTIC(MultiTOCSaves,
44           "Number of functions with multiple TOC saves that must be kept");
45 STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue");
46 STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions");
47 STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions");
48 STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI");
49 STATISTIC(NumConvertedToImmediateForm,
50           "Number of instructions converted to their immediate form");
51 STATISTIC(NumFunctionsEnteredInMIPeephole,
52           "Number of functions entered in PPC MI Peepholes");
53 STATISTIC(NumFixedPointIterations,
54           "Number of fixed-point iterations converting reg-reg instructions "
55           "to reg-imm ones");
56 STATISTIC(NumRotatesCollapsed,
57           "Number of pairs of rotate left, clear left/right collapsed");
58 STATISTIC(NumEXTSWAndSLDICombined,
59           "Number of pairs of EXTSW and SLDI combined as EXTSWSLI");
60 
61 static cl::opt<bool>
62 FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true),
63                    cl::desc("Iterate to a fixed point when attempting to "
64                             "convert reg-reg instructions to reg-imm"));
65 
66 static cl::opt<bool>
67 ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true),
68               cl::desc("Convert eligible reg+reg instructions to reg+imm"));
69 
70 static cl::opt<bool>
71     EnableSExtElimination("ppc-eliminate-signext",
72                           cl::desc("enable elimination of sign-extensions"),
73                           cl::init(false), cl::Hidden);
74 
75 static cl::opt<bool>
76     EnableZExtElimination("ppc-eliminate-zeroext",
77                           cl::desc("enable elimination of zero-extensions"),
78                           cl::init(false), cl::Hidden);
79 
80 namespace {
81 
82 struct PPCMIPeephole : public MachineFunctionPass {
83 
84   static char ID;
85   const PPCInstrInfo *TII;
86   MachineFunction *MF;
87   MachineRegisterInfo *MRI;
88 
89   PPCMIPeephole() : MachineFunctionPass(ID) {
90     initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
91   }
92 
93 private:
94   MachineDominatorTree *MDT;
95   MachinePostDominatorTree *MPDT;
96   MachineBlockFrequencyInfo *MBFI;
97   uint64_t EntryFreq;
98 
99   // Initialize class variables.
100   void initialize(MachineFunction &MFParm);
101 
102   // Perform peepholes.
103   bool simplifyCode(void);
104 
105   // Perform peepholes.
106   bool eliminateRedundantCompare(void);
107   bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves);
108   bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase);
109   bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI);
110   void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves,
111                       MachineInstr *MI);
112 
113 public:
114 
115   void getAnalysisUsage(AnalysisUsage &AU) const override {
116     AU.addRequired<MachineDominatorTree>();
117     AU.addRequired<MachinePostDominatorTree>();
118     AU.addRequired<MachineBlockFrequencyInfo>();
119     AU.addPreserved<MachineDominatorTree>();
120     AU.addPreserved<MachinePostDominatorTree>();
121     AU.addPreserved<MachineBlockFrequencyInfo>();
122     MachineFunctionPass::getAnalysisUsage(AU);
123   }
124 
125   // Main entry point for this pass.
126   bool runOnMachineFunction(MachineFunction &MF) override {
127     if (skipFunction(MF.getFunction()))
128       return false;
129     initialize(MF);
130     return simplifyCode();
131   }
132 };
133 
134 // Initialize class variables.
135 void PPCMIPeephole::initialize(MachineFunction &MFParm) {
136   MF = &MFParm;
137   MRI = &MF->getRegInfo();
138   MDT = &getAnalysis<MachineDominatorTree>();
139   MPDT = &getAnalysis<MachinePostDominatorTree>();
140   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
141   EntryFreq = MBFI->getEntryFreq();
142   TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
143   LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
144   LLVM_DEBUG(MF->dump());
145 }
146 
147 static MachineInstr *getVRegDefOrNull(MachineOperand *Op,
148                                       MachineRegisterInfo *MRI) {
149   assert(Op && "Invalid Operand!");
150   if (!Op->isReg())
151     return nullptr;
152 
153   Register Reg = Op->getReg();
154   if (!Register::isVirtualRegister(Reg))
155     return nullptr;
156 
157   return MRI->getVRegDef(Reg);
158 }
159 
160 // This function returns number of known zero bits in output of MI
161 // starting from the most significant bit.
162 static unsigned
163 getKnownLeadingZeroCount(MachineInstr *MI, const PPCInstrInfo *TII) {
164   unsigned Opcode = MI->getOpcode();
165   if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
166       Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec)
167     return MI->getOperand(3).getImm();
168 
169   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
170       MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
171     return MI->getOperand(3).getImm();
172 
173   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
174        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
175        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
176       MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
177     return 32 + MI->getOperand(3).getImm();
178 
179   if (Opcode == PPC::ANDI_rec) {
180     uint16_t Imm = MI->getOperand(2).getImm();
181     return 48 + countLeadingZeros(Imm);
182   }
183 
184   if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
185       Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
186       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8)
187     // The result ranges from 0 to 32.
188     return 58;
189 
190   if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
191       Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec)
192     // The result ranges from 0 to 64.
193     return 57;
194 
195   if (Opcode == PPC::LHZ   || Opcode == PPC::LHZX  ||
196       Opcode == PPC::LHZ8  || Opcode == PPC::LHZX8 ||
197       Opcode == PPC::LHZU  || Opcode == PPC::LHZUX ||
198       Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8)
199     return 48;
200 
201   if (Opcode == PPC::LBZ   || Opcode == PPC::LBZX  ||
202       Opcode == PPC::LBZ8  || Opcode == PPC::LBZX8 ||
203       Opcode == PPC::LBZU  || Opcode == PPC::LBZUX ||
204       Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8)
205     return 56;
206 
207   if (TII->isZeroExtended(*MI))
208     return 32;
209 
210   return 0;
211 }
212 
213 // This function maintains a map for the pairs <TOC Save Instr, Keep>
214 // Each time a new TOC save is encountered, it checks if any of the existing
215 // ones are dominated by the new one. If so, it marks the existing one as
216 // redundant by setting it's entry in the map as false. It then adds the new
217 // instruction to the map with either true or false depending on if any
218 // existing instructions dominated the new one.
219 void PPCMIPeephole::UpdateTOCSaves(
220   std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) {
221   assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here");
222   assert(MF->getSubtarget<PPCSubtarget>().isELFv2ABI() &&
223          "TOC-save removal only supported on ELFv2");
224   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
225 
226   MachineBasicBlock *Entry = &MF->front();
227   uint64_t CurrBlockFreq = MBFI->getBlockFreq(MI->getParent()).getFrequency();
228 
229   // If the block in which the TOC save resides is in a block that
230   // post-dominates Entry, or a block that is hotter than entry (keep in mind
231   // that early MachineLICM has already run so the TOC save won't be hoisted)
232   // we can just do the save in the prologue.
233   if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry))
234     FI->setMustSaveTOC(true);
235 
236   // If we are saving the TOC in the prologue, all the TOC saves can be removed
237   // from the code.
238   if (FI->mustSaveTOC()) {
239     for (auto &TOCSave : TOCSaves)
240       TOCSave.second = false;
241     // Add new instruction to map.
242     TOCSaves[MI] = false;
243     return;
244   }
245 
246   bool Keep = true;
247   for (auto It = TOCSaves.begin(); It != TOCSaves.end(); It++ ) {
248     MachineInstr *CurrInst = It->first;
249     // If new instruction dominates an existing one, mark existing one as
250     // redundant.
251     if (It->second && MDT->dominates(MI, CurrInst))
252       It->second = false;
253     // Check if the new instruction is redundant.
254     if (MDT->dominates(CurrInst, MI)) {
255       Keep = false;
256       break;
257     }
258   }
259   // Add new instruction to map.
260   TOCSaves[MI] = Keep;
261 }
262 
263 // Perform peephole optimizations.
264 bool PPCMIPeephole::simplifyCode(void) {
265   bool Simplified = false;
266   MachineInstr* ToErase = nullptr;
267   std::map<MachineInstr *, bool> TOCSaves;
268   const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
269   NumFunctionsEnteredInMIPeephole++;
270   if (ConvertRegReg) {
271     // Fixed-point conversion of reg/reg instructions fed by load-immediate
272     // into reg/imm instructions. FIXME: This is expensive, control it with
273     // an option.
274     bool SomethingChanged = false;
275     do {
276       NumFixedPointIterations++;
277       SomethingChanged = false;
278       for (MachineBasicBlock &MBB : *MF) {
279         for (MachineInstr &MI : MBB) {
280           if (MI.isDebugInstr())
281             continue;
282 
283           if (TII->convertToImmediateForm(MI)) {
284             // We don't erase anything in case the def has other uses. Let DCE
285             // remove it if it can be removed.
286             LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
287             LLVM_DEBUG(MI.dump());
288             NumConvertedToImmediateForm++;
289             SomethingChanged = true;
290             Simplified = true;
291             continue;
292           }
293         }
294       }
295     } while (SomethingChanged && FixedPointRegToImm);
296   }
297 
298   for (MachineBasicBlock &MBB : *MF) {
299     for (MachineInstr &MI : MBB) {
300 
301       // If the previous instruction was marked for elimination,
302       // remove it now.
303       if (ToErase) {
304         ToErase->eraseFromParent();
305         ToErase = nullptr;
306       }
307 
308       // Ignore debug instructions.
309       if (MI.isDebugInstr())
310         continue;
311 
312       // Per-opcode peepholes.
313       switch (MI.getOpcode()) {
314 
315       default:
316         break;
317 
318       case PPC::STD: {
319         MachineFrameInfo &MFI = MF->getFrameInfo();
320         if (MFI.hasVarSizedObjects() ||
321             !MF->getSubtarget<PPCSubtarget>().isELFv2ABI())
322           break;
323         // When encountering a TOC save instruction, call UpdateTOCSaves
324         // to add it to the TOCSaves map and mark any existing TOC saves
325         // it dominates as redundant.
326         if (TII->isTOCSaveMI(MI))
327           UpdateTOCSaves(TOCSaves, &MI);
328         break;
329       }
330       case PPC::XXPERMDI: {
331         // Perform simplifications of 2x64 vector swaps and splats.
332         // A swap is identified by an immediate value of 2, and a splat
333         // is identified by an immediate value of 0 or 3.
334         int Immed = MI.getOperand(3).getImm();
335 
336         if (Immed == 1)
337           break;
338 
339         // For each of these simplifications, we need the two source
340         // regs to match.  Unfortunately, MachineCSE ignores COPY and
341         // SUBREG_TO_REG, so for example we can see
342         //   XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
343         // We have to look through chains of COPY and SUBREG_TO_REG
344         // to find the real source values for comparison.
345         unsigned TrueReg1 =
346           TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
347         unsigned TrueReg2 =
348           TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI);
349 
350         if (!(TrueReg1 == TrueReg2 && Register::isVirtualRegister(TrueReg1)))
351           break;
352 
353         MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);
354 
355         if (!DefMI)
356           break;
357 
358         unsigned DefOpc = DefMI->getOpcode();
359 
360         // If this is a splat fed by a splatting load, the splat is
361         // redundant. Replace with a copy. This doesn't happen directly due
362         // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
363         // a load of a double to a vector of 64-bit integers.
364         auto isConversionOfLoadAndSplat = [=]() -> bool {
365           if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
366             return false;
367           unsigned FeedReg1 =
368             TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
369           if (Register::isVirtualRegister(FeedReg1)) {
370             MachineInstr *LoadMI = MRI->getVRegDef(FeedReg1);
371             if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
372               return true;
373           }
374           return false;
375         };
376         if ((Immed == 0 || Immed == 3) &&
377             (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat())) {
378           LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
379                                "to load-and-splat/copy: ");
380           LLVM_DEBUG(MI.dump());
381           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
382                   MI.getOperand(0).getReg())
383               .add(MI.getOperand(1));
384           ToErase = &MI;
385           Simplified = true;
386         }
387 
388         // If this is a splat or a swap fed by another splat, we
389         // can replace it with a copy.
390         if (DefOpc == PPC::XXPERMDI) {
391           unsigned DefReg1 = DefMI->getOperand(1).getReg();
392           unsigned DefReg2 = DefMI->getOperand(2).getReg();
393           unsigned DefImmed = DefMI->getOperand(3).getImm();
394 
395           // If the two inputs are not the same register, check to see if
396           // they originate from the same virtual register after only
397           // copy-like instructions.
398           if (DefReg1 != DefReg2) {
399             unsigned FeedReg1 = TRI->lookThruCopyLike(DefReg1, MRI);
400             unsigned FeedReg2 = TRI->lookThruCopyLike(DefReg2, MRI);
401 
402             if (!(FeedReg1 == FeedReg2 &&
403                   Register::isVirtualRegister(FeedReg1)))
404               break;
405           }
406 
407           if (DefImmed == 0 || DefImmed == 3) {
408             LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
409                                  "to splat/copy: ");
410             LLVM_DEBUG(MI.dump());
411             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
412                     MI.getOperand(0).getReg())
413                 .add(MI.getOperand(1));
414             ToErase = &MI;
415             Simplified = true;
416           }
417 
418           // If this is a splat fed by a swap, we can simplify modify
419           // the splat to splat the other value from the swap's input
420           // parameter.
421           else if ((Immed == 0 || Immed == 3) && DefImmed == 2) {
422             LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
423             LLVM_DEBUG(MI.dump());
424             MI.getOperand(1).setReg(DefReg1);
425             MI.getOperand(2).setReg(DefReg2);
426             MI.getOperand(3).setImm(3 - Immed);
427             Simplified = true;
428           }
429 
430           // If this is a swap fed by a swap, we can replace it
431           // with a copy from the first swap's input.
432           else if (Immed == 2 && DefImmed == 2) {
433             LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
434             LLVM_DEBUG(MI.dump());
435             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
436                     MI.getOperand(0).getReg())
437                 .add(DefMI->getOperand(1));
438             ToErase = &MI;
439             Simplified = true;
440           }
441         } else if ((Immed == 0 || Immed == 3) && DefOpc == PPC::XXPERMDIs &&
442                    (DefMI->getOperand(2).getImm() == 0 ||
443                     DefMI->getOperand(2).getImm() == 3)) {
444           // Splat fed by another splat - switch the output of the first
445           // and remove the second.
446           DefMI->getOperand(0).setReg(MI.getOperand(0).getReg());
447           ToErase = &MI;
448           Simplified = true;
449           LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
450           LLVM_DEBUG(MI.dump());
451         }
452         break;
453       }
454       case PPC::VSPLTB:
455       case PPC::VSPLTH:
456       case PPC::XXSPLTW: {
457         unsigned MyOpcode = MI.getOpcode();
458         unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
459         unsigned TrueReg =
460           TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI);
461         if (!Register::isVirtualRegister(TrueReg))
462           break;
463         MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
464         if (!DefMI)
465           break;
466         unsigned DefOpcode = DefMI->getOpcode();
467         auto isConvertOfSplat = [=]() -> bool {
468           if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
469             return false;
470           Register ConvReg = DefMI->getOperand(1).getReg();
471           if (!Register::isVirtualRegister(ConvReg))
472             return false;
473           MachineInstr *Splt = MRI->getVRegDef(ConvReg);
474           return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
475             Splt->getOpcode() == PPC::XXSPLTW);
476         };
477         bool AlreadySplat = (MyOpcode == DefOpcode) ||
478           (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
479           (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
480           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
481           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
482           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
483           (MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
484         // If the instruction[s] that feed this splat have already splat
485         // the value, this splat is redundant.
486         if (AlreadySplat) {
487           LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
488           LLVM_DEBUG(MI.dump());
489           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
490                   MI.getOperand(0).getReg())
491               .add(MI.getOperand(OpNo));
492           ToErase = &MI;
493           Simplified = true;
494         }
495         // Splat fed by a shift. Usually when we align value to splat into
496         // vector element zero.
497         if (DefOpcode == PPC::XXSLDWI) {
498           Register ShiftRes = DefMI->getOperand(0).getReg();
499           Register ShiftOp1 = DefMI->getOperand(1).getReg();
500           Register ShiftOp2 = DefMI->getOperand(2).getReg();
501           unsigned ShiftImm = DefMI->getOperand(3).getImm();
502           unsigned SplatImm = MI.getOperand(2).getImm();
503           if (ShiftOp1 == ShiftOp2) {
504             unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
505             if (MRI->hasOneNonDBGUse(ShiftRes)) {
506               LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
507               LLVM_DEBUG(DefMI->dump());
508               ToErase = DefMI;
509             }
510             Simplified = true;
511             LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
512                               << " to " << NewElem << " in instruction: ");
513             LLVM_DEBUG(MI.dump());
514             MI.getOperand(1).setReg(ShiftOp1);
515             MI.getOperand(2).setImm(NewElem);
516           }
517         }
518         break;
519       }
520       case PPC::XVCVDPSP: {
521         // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
522         unsigned TrueReg =
523           TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
524         if (!Register::isVirtualRegister(TrueReg))
525           break;
526         MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
527 
528         // This can occur when building a vector of single precision or integer
529         // values.
530         if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
531           unsigned DefsReg1 =
532             TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
533           unsigned DefsReg2 =
534             TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
535           if (!Register::isVirtualRegister(DefsReg1) ||
536               !Register::isVirtualRegister(DefsReg2))
537             break;
538           MachineInstr *P1 = MRI->getVRegDef(DefsReg1);
539           MachineInstr *P2 = MRI->getVRegDef(DefsReg2);
540 
541           if (!P1 || !P2)
542             break;
543 
544           // Remove the passed FRSP/XSRSP instruction if it only feeds this MI
545           // and set any uses of that FRSP/XSRSP (in this MI) to the source of
546           // the FRSP/XSRSP.
547           auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
548             unsigned Opc = RoundInstr->getOpcode();
549             if ((Opc == PPC::FRSP || Opc == PPC::XSRSP) &&
550                 MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
551               Simplified = true;
552               Register ConvReg1 = RoundInstr->getOperand(1).getReg();
553               Register FRSPDefines = RoundInstr->getOperand(0).getReg();
554               MachineInstr &Use = *(MRI->use_instr_begin(FRSPDefines));
555               for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
556                 if (Use.getOperand(i).isReg() &&
557                     Use.getOperand(i).getReg() == FRSPDefines)
558                   Use.getOperand(i).setReg(ConvReg1);
559               LLVM_DEBUG(dbgs() << "Removing redundant FRSP/XSRSP:\n");
560               LLVM_DEBUG(RoundInstr->dump());
561               LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
562               LLVM_DEBUG(MI.dump());
563               LLVM_DEBUG(dbgs() << "Through instruction:\n");
564               LLVM_DEBUG(DefMI->dump());
565               RoundInstr->eraseFromParent();
566             }
567           };
568 
569           // If the input to XVCVDPSP is a vector that was built (even
570           // partially) out of FRSP's, the FRSP(s) can safely be removed
571           // since this instruction performs the same operation.
572           if (P1 != P2) {
573             removeFRSPIfPossible(P1);
574             removeFRSPIfPossible(P2);
575             break;
576           }
577           removeFRSPIfPossible(P1);
578         }
579         break;
580       }
581       case PPC::EXTSH:
582       case PPC::EXTSH8:
583       case PPC::EXTSH8_32_64: {
584         if (!EnableSExtElimination) break;
585         Register NarrowReg = MI.getOperand(1).getReg();
586         if (!Register::isVirtualRegister(NarrowReg))
587           break;
588 
589         MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
590         // If we've used a zero-extending load that we will sign-extend,
591         // just do a sign-extending load.
592         if (SrcMI->getOpcode() == PPC::LHZ ||
593             SrcMI->getOpcode() == PPC::LHZX) {
594           if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
595             break;
596           auto is64Bit = [] (unsigned Opcode) {
597             return Opcode == PPC::EXTSH8;
598           };
599           auto isXForm = [] (unsigned Opcode) {
600             return Opcode == PPC::LHZX;
601           };
602           auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
603             if (is64Bit)
604               if (isXForm) return PPC::LHAX8;
605               else         return PPC::LHA8;
606             else
607               if (isXForm) return PPC::LHAX;
608               else         return PPC::LHA;
609           };
610           unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
611                                        isXForm(SrcMI->getOpcode()));
612           LLVM_DEBUG(dbgs() << "Zero-extending load\n");
613           LLVM_DEBUG(SrcMI->dump());
614           LLVM_DEBUG(dbgs() << "and sign-extension\n");
615           LLVM_DEBUG(MI.dump());
616           LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
617           SrcMI->setDesc(TII->get(Opc));
618           SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
619           ToErase = &MI;
620           Simplified = true;
621           NumEliminatedSExt++;
622         }
623         break;
624       }
625       case PPC::EXTSW:
626       case PPC::EXTSW_32:
627       case PPC::EXTSW_32_64: {
628         if (!EnableSExtElimination) break;
629         Register NarrowReg = MI.getOperand(1).getReg();
630         if (!Register::isVirtualRegister(NarrowReg))
631           break;
632 
633         MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
634         // If we've used a zero-extending load that we will sign-extend,
635         // just do a sign-extending load.
636         if (SrcMI->getOpcode() == PPC::LWZ ||
637             SrcMI->getOpcode() == PPC::LWZX) {
638           if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
639             break;
640           auto is64Bit = [] (unsigned Opcode) {
641             return Opcode == PPC::EXTSW || Opcode == PPC::EXTSW_32_64;
642           };
643           auto isXForm = [] (unsigned Opcode) {
644             return Opcode == PPC::LWZX;
645           };
646           auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
647             if (is64Bit)
648               if (isXForm) return PPC::LWAX;
649               else         return PPC::LWA;
650             else
651               if (isXForm) return PPC::LWAX_32;
652               else         return PPC::LWA_32;
653           };
654           unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
655                                        isXForm(SrcMI->getOpcode()));
656           LLVM_DEBUG(dbgs() << "Zero-extending load\n");
657           LLVM_DEBUG(SrcMI->dump());
658           LLVM_DEBUG(dbgs() << "and sign-extension\n");
659           LLVM_DEBUG(MI.dump());
660           LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
661           SrcMI->setDesc(TII->get(Opc));
662           SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
663           ToErase = &MI;
664           Simplified = true;
665           NumEliminatedSExt++;
666         } else if (MI.getOpcode() == PPC::EXTSW_32_64 &&
667                    TII->isSignExtended(*SrcMI)) {
668           // We can eliminate EXTSW if the input is known to be already
669           // sign-extended.
670           LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
671           Register TmpReg =
672               MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
673           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF),
674                   TmpReg);
675           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG),
676                   MI.getOperand(0).getReg())
677               .addReg(TmpReg)
678               .addReg(NarrowReg)
679               .addImm(PPC::sub_32);
680           ToErase = &MI;
681           Simplified = true;
682           NumEliminatedSExt++;
683         }
684         break;
685       }
686       case PPC::RLDICL: {
687         // We can eliminate RLDICL (e.g. for zero-extension)
688         // if all bits to clear are already zero in the input.
689         // This code assume following code sequence for zero-extension.
690         //   %6 = COPY %5:sub_32; (optional)
691         //   %8 = IMPLICIT_DEF;
692         //   %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
693         if (!EnableZExtElimination) break;
694 
695         if (MI.getOperand(2).getImm() != 0)
696           break;
697 
698         Register SrcReg = MI.getOperand(1).getReg();
699         if (!Register::isVirtualRegister(SrcReg))
700           break;
701 
702         MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
703         if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG &&
704               SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg()))
705           break;
706 
707         MachineInstr *ImpDefMI, *SubRegMI;
708         ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg());
709         SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg());
710         if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break;
711 
712         SrcMI = SubRegMI;
713         if (SubRegMI->getOpcode() == PPC::COPY) {
714           Register CopyReg = SubRegMI->getOperand(1).getReg();
715           if (Register::isVirtualRegister(CopyReg))
716             SrcMI = MRI->getVRegDef(CopyReg);
717         }
718 
719         unsigned KnownZeroCount = getKnownLeadingZeroCount(SrcMI, TII);
720         if (MI.getOperand(3).getImm() <= KnownZeroCount) {
721           LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
722           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
723                   MI.getOperand(0).getReg())
724               .addReg(SrcReg);
725           ToErase = &MI;
726           Simplified = true;
727           NumEliminatedZExt++;
728         }
729         break;
730       }
731 
732       // TODO: Any instruction that has an immediate form fed only by a PHI
733       // whose operands are all load immediate can be folded away. We currently
734       // do this for ADD instructions, but should expand it to arithmetic and
735       // binary instructions with immediate forms in the future.
736       case PPC::ADD4:
737       case PPC::ADD8: {
738         auto isSingleUsePHI = [&](MachineOperand *PhiOp) {
739           assert(PhiOp && "Invalid Operand!");
740           MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
741 
742           return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) &&
743                  MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg());
744         };
745 
746         auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp,
747                                             MachineOperand *PhiOp) {
748           assert(PhiOp && "Invalid Operand!");
749           assert(DominatorOp && "Invalid Operand!");
750           MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
751           MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI);
752 
753           // Note: the vregs only show up at odd indices position of PHI Node,
754           // the even indices position save the BB info.
755           for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
756             MachineInstr *LiMI =
757                 getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
758             if (!LiMI ||
759                 (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8)
760                 || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) ||
761                 !MDT->dominates(DefDomMI, LiMI))
762               return false;
763           }
764 
765           return true;
766         };
767 
768         MachineOperand Op1 = MI.getOperand(1);
769         MachineOperand Op2 = MI.getOperand(2);
770         if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2))
771           std::swap(Op1, Op2);
772         else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1))
773           break; // We don't have an ADD fed by LI's that can be transformed
774 
775         // Now we know that Op1 is the PHI node and Op2 is the dominator
776         Register DominatorReg = Op2.getReg();
777 
778         const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8
779                                              ? &PPC::G8RC_and_G8RC_NOX0RegClass
780                                              : &PPC::GPRC_and_GPRC_NOR0RegClass;
781         MRI->setRegClass(DominatorReg, TRC);
782 
783         // replace LIs with ADDIs
784         MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI);
785         for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
786           MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
787           LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
788           LLVM_DEBUG(LiMI->dump());
789 
790           // There could be repeated registers in the PHI, e.g: %1 =
791           // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
792           // already replaced the def instruction, skip.
793           if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8)
794             continue;
795 
796           assert((LiMI->getOpcode() == PPC::LI ||
797                   LiMI->getOpcode() == PPC::LI8) &&
798                  "Invalid Opcode!");
799           auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI
800           LiMI->RemoveOperand(1);                    // remove the imm of LI
801           LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI
802                                                               : PPC::ADDI8));
803           MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI)
804               .addReg(DominatorReg)
805               .addImm(LiImm); // restore the imm of LI
806           LLVM_DEBUG(LiMI->dump());
807         }
808 
809         // Replace ADD with COPY
810         LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
811         LLVM_DEBUG(MI.dump());
812         BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
813                 MI.getOperand(0).getReg())
814             .add(Op1);
815         ToErase = &MI;
816         Simplified = true;
817         NumOptADDLIs++;
818         break;
819       }
820       case PPC::RLDICR: {
821         Simplified |= emitRLDICWhenLoweringJumpTables(MI) ||
822                       combineSEXTAndSHL(MI, ToErase);
823         break;
824       }
825       case PPC::RLWINM:
826       case PPC::RLWINM_rec:
827       case PPC::RLWINM8:
828       case PPC::RLWINM8_rec: {
829         unsigned FoldingReg = MI.getOperand(1).getReg();
830         if (!Register::isVirtualRegister(FoldingReg))
831           break;
832 
833         MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg);
834         if (SrcMI->getOpcode() != PPC::RLWINM &&
835             SrcMI->getOpcode() != PPC::RLWINM_rec &&
836             SrcMI->getOpcode() != PPC::RLWINM8 &&
837             SrcMI->getOpcode() != PPC::RLWINM8_rec)
838           break;
839         assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() &&
840                 MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() &&
841                 SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) &&
842                "Invalid PPC::RLWINM Instruction!");
843         uint64_t SHSrc = SrcMI->getOperand(2).getImm();
844         uint64_t SHMI = MI.getOperand(2).getImm();
845         uint64_t MBSrc = SrcMI->getOperand(3).getImm();
846         uint64_t MBMI = MI.getOperand(3).getImm();
847         uint64_t MESrc = SrcMI->getOperand(4).getImm();
848         uint64_t MEMI = MI.getOperand(4).getImm();
849 
850         assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) &&
851                "Invalid PPC::RLWINM Instruction!");
852 
853         // If MBMI is bigger than MEMI, we always can not get run of ones.
854         // RotatedSrcMask non-wrap:
855         //                 0........31|32........63
856         // RotatedSrcMask:   B---E        B---E
857         // MaskMI:         -----------|--E  B------
858         // Result:           -----          ---      (Bad candidate)
859         //
860         // RotatedSrcMask wrap:
861         //                 0........31|32........63
862         // RotatedSrcMask: --E   B----|--E    B----
863         // MaskMI:         -----------|--E  B------
864         // Result:         ---   -----|---    -----  (Bad candidate)
865         //
866         // One special case is RotatedSrcMask is a full set mask.
867         // RotatedSrcMask full:
868         //                 0........31|32........63
869         // RotatedSrcMask: ------EB---|-------EB---
870         // MaskMI:         -----------|--E  B------
871         // Result:         -----------|---  -------  (Good candidate)
872 
873         // Mark special case.
874         bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31);
875 
876         // For other MBMI > MEMI cases, just return.
877         if ((MBMI > MEMI) && !SrcMaskFull)
878           break;
879 
880         // Handle MBMI <= MEMI cases.
881         APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI);
882         // In MI, we only need low 32 bits of SrcMI, just consider about low 32
883         // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0,
884         // while in PowerPC ISA, lowerest bit is at index 63.
885         APInt MaskSrc =
886             APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc);
887         // Current APInt::getBitsSetWithWrap sets all bits to 0 if loBit is
888         // equal to highBit.
889         // If MBSrc - MESrc == 1, we expect a full set mask instead of Null.
890         if (SrcMaskFull && (MBSrc - MESrc == 1))
891           MaskSrc.setAllBits();
892 
893         APInt RotatedSrcMask = MaskSrc.rotl(SHMI);
894         APInt FinalMask = RotatedSrcMask & MaskMI;
895         uint32_t NewMB, NewME;
896 
897         // If final mask is 0, MI result should be 0 too.
898         if (FinalMask.isNullValue()) {
899           bool Is64Bit = (MI.getOpcode() == PPC::RLWINM8 ||
900                           MI.getOpcode() == PPC::RLWINM8_rec);
901 
902           Simplified = true;
903 
904           LLVM_DEBUG(dbgs() << "Replace Instr: ");
905           LLVM_DEBUG(MI.dump());
906 
907           if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) {
908             // Replace MI with "LI 0"
909             MI.RemoveOperand(4);
910             MI.RemoveOperand(3);
911             MI.RemoveOperand(2);
912             MI.getOperand(1).ChangeToImmediate(0);
913             MI.setDesc(TII->get(Is64Bit ? PPC::LI8 : PPC::LI));
914           } else {
915             // Replace MI with "ANDI_rec reg, 0"
916             MI.RemoveOperand(4);
917             MI.RemoveOperand(3);
918             MI.getOperand(2).setImm(0);
919             MI.setDesc(TII->get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
920             MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
921             if (SrcMI->getOperand(1).isKill()) {
922               MI.getOperand(1).setIsKill(true);
923               SrcMI->getOperand(1).setIsKill(false);
924             } else
925               // About to replace MI.getOperand(1), clear its kill flag.
926               MI.getOperand(1).setIsKill(false);
927           }
928 
929           LLVM_DEBUG(dbgs() << "With: ");
930           LLVM_DEBUG(MI.dump());
931         } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB,
932                                NewME) && NewMB <= NewME)|| SrcMaskFull) {
933           // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger
934           // than NewME. Otherwise we get a 64 bit value after folding, but MI
935           // return a 32 bit value.
936 
937           Simplified = true;
938           LLVM_DEBUG(dbgs() << "Converting Instr: ");
939           LLVM_DEBUG(MI.dump());
940 
941           uint16_t NewSH = (SHSrc + SHMI) % 32;
942           MI.getOperand(2).setImm(NewSH);
943           // If SrcMI mask is full, no need to update MBMI and MEMI.
944           if (!SrcMaskFull) {
945             MI.getOperand(3).setImm(NewMB);
946             MI.getOperand(4).setImm(NewME);
947           }
948           MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
949           if (SrcMI->getOperand(1).isKill()) {
950             MI.getOperand(1).setIsKill(true);
951             SrcMI->getOperand(1).setIsKill(false);
952           } else
953             // About to replace MI.getOperand(1), clear its kill flag.
954             MI.getOperand(1).setIsKill(false);
955 
956           LLVM_DEBUG(dbgs() << "To: ");
957           LLVM_DEBUG(MI.dump());
958         }
959         if (Simplified) {
960           // If FoldingReg has no non-debug use and it has no implicit def (it
961           // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI.
962           // Otherwise keep it.
963           ++NumRotatesCollapsed;
964           if (MRI->use_nodbg_empty(FoldingReg) && !SrcMI->hasImplicitDef()) {
965             ToErase = SrcMI;
966             LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
967             LLVM_DEBUG(SrcMI->dump());
968           }
969         }
970         break;
971       }
972       }
973     }
974 
975     // If the last instruction was marked for elimination,
976     // remove it now.
977     if (ToErase) {
978       ToErase->eraseFromParent();
979       ToErase = nullptr;
980     }
981   }
982 
983   // Eliminate all the TOC save instructions which are redundant.
984   Simplified |= eliminateRedundantTOCSaves(TOCSaves);
985   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
986   if (FI->mustSaveTOC())
987     NumTOCSavesInPrologue++;
988 
989   // We try to eliminate redundant compare instruction.
990   Simplified |= eliminateRedundantCompare();
991 
992   return Simplified;
993 }
994 
995 // helper functions for eliminateRedundantCompare
996 static bool isEqOrNe(MachineInstr *BI) {
997   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
998   unsigned PredCond = PPC::getPredicateCondition(Pred);
999   return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE);
1000 }
1001 
1002 static bool isSupportedCmpOp(unsigned opCode) {
1003   return (opCode == PPC::CMPLD  || opCode == PPC::CMPD  ||
1004           opCode == PPC::CMPLW  || opCode == PPC::CMPW  ||
1005           opCode == PPC::CMPLDI || opCode == PPC::CMPDI ||
1006           opCode == PPC::CMPLWI || opCode == PPC::CMPWI);
1007 }
1008 
1009 static bool is64bitCmpOp(unsigned opCode) {
1010   return (opCode == PPC::CMPLD  || opCode == PPC::CMPD ||
1011           opCode == PPC::CMPLDI || opCode == PPC::CMPDI);
1012 }
1013 
1014 static bool isSignedCmpOp(unsigned opCode) {
1015   return (opCode == PPC::CMPD  || opCode == PPC::CMPW ||
1016           opCode == PPC::CMPDI || opCode == PPC::CMPWI);
1017 }
1018 
1019 static unsigned getSignedCmpOpCode(unsigned opCode) {
1020   if (opCode == PPC::CMPLD)  return PPC::CMPD;
1021   if (opCode == PPC::CMPLW)  return PPC::CMPW;
1022   if (opCode == PPC::CMPLDI) return PPC::CMPDI;
1023   if (opCode == PPC::CMPLWI) return PPC::CMPWI;
1024   return opCode;
1025 }
1026 
1027 // We can decrement immediate x in (GE x) by changing it to (GT x-1) or
1028 // (LT x) to (LE x-1)
1029 static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) {
1030   uint64_t Imm = CMPI->getOperand(2).getImm();
1031   bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1032   if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000))
1033     return 0;
1034 
1035   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1036   unsigned PredCond = PPC::getPredicateCondition(Pred);
1037   unsigned PredHint = PPC::getPredicateHint(Pred);
1038   if (PredCond == PPC::PRED_GE)
1039     return PPC::getPredicate(PPC::PRED_GT, PredHint);
1040   if (PredCond == PPC::PRED_LT)
1041     return PPC::getPredicate(PPC::PRED_LE, PredHint);
1042 
1043   return 0;
1044 }
1045 
1046 // We can increment immediate x in (GT x) by changing it to (GE x+1) or
1047 // (LE x) to (LT x+1)
1048 static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) {
1049   uint64_t Imm = CMPI->getOperand(2).getImm();
1050   bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1051   if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF))
1052     return 0;
1053 
1054   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1055   unsigned PredCond = PPC::getPredicateCondition(Pred);
1056   unsigned PredHint = PPC::getPredicateHint(Pred);
1057   if (PredCond == PPC::PRED_GT)
1058     return PPC::getPredicate(PPC::PRED_GE, PredHint);
1059   if (PredCond == PPC::PRED_LE)
1060     return PPC::getPredicate(PPC::PRED_LT, PredHint);
1061 
1062   return 0;
1063 }
1064 
1065 // This takes a Phi node and returns a register value for the specified BB.
1066 static unsigned getIncomingRegForBlock(MachineInstr *Phi,
1067                                        MachineBasicBlock *MBB) {
1068   for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) {
1069     MachineOperand &MO = Phi->getOperand(I);
1070     if (MO.getMBB() == MBB)
1071       return Phi->getOperand(I-1).getReg();
1072   }
1073   llvm_unreachable("invalid src basic block for this Phi node\n");
1074   return 0;
1075 }
1076 
1077 // This function tracks the source of the register through register copy.
1078 // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
1079 // assuming that the control comes from BB1 into BB2.
1080 static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1,
1081                            MachineBasicBlock *BB2, MachineRegisterInfo *MRI) {
1082   unsigned SrcReg = Reg;
1083   while (1) {
1084     unsigned NextReg = SrcReg;
1085     MachineInstr *Inst = MRI->getVRegDef(SrcReg);
1086     if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) {
1087       NextReg = getIncomingRegForBlock(Inst, BB1);
1088       // We track through PHI only once to avoid infinite loop.
1089       BB1 = nullptr;
1090     }
1091     else if (Inst->isFullCopy())
1092       NextReg = Inst->getOperand(1).getReg();
1093     if (NextReg == SrcReg || !Register::isVirtualRegister(NextReg))
1094       break;
1095     SrcReg = NextReg;
1096   }
1097   return SrcReg;
1098 }
1099 
1100 static bool eligibleForCompareElimination(MachineBasicBlock &MBB,
1101                                           MachineBasicBlock *&PredMBB,
1102                                           MachineBasicBlock *&MBBtoMoveCmp,
1103                                           MachineRegisterInfo *MRI) {
1104 
1105   auto isEligibleBB = [&](MachineBasicBlock &BB) {
1106     auto BII = BB.getFirstInstrTerminator();
1107     // We optimize BBs ending with a conditional branch.
1108     // We check only for BCC here, not BCCLR, because BCCLR
1109     // will be formed only later in the pipeline.
1110     if (BB.succ_size() == 2 &&
1111         BII != BB.instr_end() &&
1112         (*BII).getOpcode() == PPC::BCC &&
1113         (*BII).getOperand(1).isReg()) {
1114       // We optimize only if the condition code is used only by one BCC.
1115       Register CndReg = (*BII).getOperand(1).getReg();
1116       if (!Register::isVirtualRegister(CndReg) || !MRI->hasOneNonDBGUse(CndReg))
1117         return false;
1118 
1119       MachineInstr *CMPI = MRI->getVRegDef(CndReg);
1120       // We assume compare and branch are in the same BB for ease of analysis.
1121       if (CMPI->getParent() != &BB)
1122         return false;
1123 
1124       // We skip this BB if a physical register is used in comparison.
1125       for (MachineOperand &MO : CMPI->operands())
1126         if (MO.isReg() && !Register::isVirtualRegister(MO.getReg()))
1127           return false;
1128 
1129       return true;
1130     }
1131     return false;
1132   };
1133 
1134   // If this BB has more than one successor, we can create a new BB and
1135   // move the compare instruction in the new BB.
1136   // So far, we do not move compare instruction to a BB having multiple
1137   // successors to avoid potentially increasing code size.
1138   auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) {
1139     return BB.succ_size() == 1;
1140   };
1141 
1142   if (!isEligibleBB(MBB))
1143     return false;
1144 
1145   unsigned NumPredBBs = MBB.pred_size();
1146   if (NumPredBBs == 1) {
1147     MachineBasicBlock *TmpMBB = *MBB.pred_begin();
1148     if (isEligibleBB(*TmpMBB)) {
1149       PredMBB = TmpMBB;
1150       MBBtoMoveCmp = nullptr;
1151       return true;
1152     }
1153   }
1154   else if (NumPredBBs == 2) {
1155     // We check for partially redundant case.
1156     // So far, we support cases with only two predecessors
1157     // to avoid increasing the number of instructions.
1158     MachineBasicBlock::pred_iterator PI = MBB.pred_begin();
1159     MachineBasicBlock *Pred1MBB = *PI;
1160     MachineBasicBlock *Pred2MBB = *(PI+1);
1161 
1162     if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) {
1163       // We assume Pred1MBB is the BB containing the compare to be merged and
1164       // Pred2MBB is the BB to which we will append a compare instruction.
1165       // Hence we can proceed as is.
1166     }
1167     else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) {
1168       // We need to swap Pred1MBB and Pred2MBB to canonicalize.
1169       std::swap(Pred1MBB, Pred2MBB);
1170     }
1171     else return false;
1172 
1173     // Here, Pred2MBB is the BB to which we need to append a compare inst.
1174     // We cannot move the compare instruction if operands are not available
1175     // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
1176     MachineInstr *BI = &*MBB.getFirstInstrTerminator();
1177     MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg());
1178     for (int I = 1; I <= 2; I++)
1179       if (CMPI->getOperand(I).isReg()) {
1180         MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg());
1181         if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI)
1182           return false;
1183       }
1184 
1185     PredMBB = Pred1MBB;
1186     MBBtoMoveCmp = Pred2MBB;
1187     return true;
1188   }
1189 
1190   return false;
1191 }
1192 
1193 // This function will iterate over the input map containing a pair of TOC save
1194 // instruction and a flag. The flag will be set to false if the TOC save is
1195 // proven redundant. This function will erase from the basic block all the TOC
1196 // saves marked as redundant.
1197 bool PPCMIPeephole::eliminateRedundantTOCSaves(
1198     std::map<MachineInstr *, bool> &TOCSaves) {
1199   bool Simplified = false;
1200   int NumKept = 0;
1201   for (auto TOCSave : TOCSaves) {
1202     if (!TOCSave.second) {
1203       TOCSave.first->eraseFromParent();
1204       RemoveTOCSave++;
1205       Simplified = true;
1206     } else {
1207       NumKept++;
1208     }
1209   }
1210 
1211   if (NumKept > 1)
1212     MultiTOCSaves++;
1213 
1214   return Simplified;
1215 }
1216 
1217 // If multiple conditional branches are executed based on the (essentially)
1218 // same comparison, we merge compare instructions into one and make multiple
1219 // conditional branches on this comparison.
1220 // For example,
1221 //   if (a == 0) { ... }
1222 //   else if (a < 0) { ... }
1223 // can be executed by one compare and two conditional branches instead of
1224 // two pairs of a compare and a conditional branch.
1225 //
1226 // This method merges two compare instructions in two MBBs and modifies the
1227 // compare and conditional branch instructions if needed.
1228 // For the above example, the input for this pass looks like:
1229 //   cmplwi r3, 0
1230 //   beq    0, .LBB0_3
1231 //   cmpwi  r3, -1
1232 //   bgt    0, .LBB0_4
1233 // So, before merging two compares, we need to modify these instructions as
1234 //   cmpwi  r3, 0       ; cmplwi and cmpwi yield same result for beq
1235 //   beq    0, .LBB0_3
1236 //   cmpwi  r3, 0       ; greather than -1 means greater or equal to 0
1237 //   bge    0, .LBB0_4
1238 
1239 bool PPCMIPeephole::eliminateRedundantCompare(void) {
1240   bool Simplified = false;
1241 
1242   for (MachineBasicBlock &MBB2 : *MF) {
1243     MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr;
1244 
1245     // For fully redundant case, we select two basic blocks MBB1 and MBB2
1246     // as an optimization target if
1247     // - both MBBs end with a conditional branch,
1248     // - MBB1 is the only predecessor of MBB2, and
1249     // - compare does not take a physical register as a operand in both MBBs.
1250     // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
1251     //
1252     // As partially redundant case, we additionally handle if MBB2 has one
1253     // additional predecessor, which has only one successor (MBB2).
1254     // In this case, we move the compare instruction originally in MBB2 into
1255     // MBBtoMoveCmp. This partially redundant case is typically appear by
1256     // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
1257     //
1258     // Overview of CFG of related basic blocks
1259     // Fully redundant case        Partially redundant case
1260     //   --------                   ----------------  --------
1261     //   | MBB1 | (w/ 2 succ)       | MBBtoMoveCmp |  | MBB1 | (w/ 2 succ)
1262     //   --------                   ----------------  --------
1263     //      |    \                     (w/ 1 succ) \     |    \
1264     //      |     \                                 \    |     \
1265     //      |                                        \   |
1266     //   --------                                     --------
1267     //   | MBB2 | (w/ 1 pred                          | MBB2 | (w/ 2 pred
1268     //   -------- and 2 succ)                         -------- and 2 succ)
1269     //      |    \                                       |    \
1270     //      |     \                                      |     \
1271     //
1272     if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI))
1273       continue;
1274 
1275     MachineInstr *BI1   = &*MBB1->getFirstInstrTerminator();
1276     MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg());
1277 
1278     MachineInstr *BI2   = &*MBB2.getFirstInstrTerminator();
1279     MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg());
1280     bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr);
1281 
1282     // We cannot optimize an unsupported compare opcode or
1283     // a mix of 32-bit and 64-bit comaprisons
1284     if (!isSupportedCmpOp(CMPI1->getOpcode()) ||
1285         !isSupportedCmpOp(CMPI2->getOpcode()) ||
1286         is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode()))
1287       continue;
1288 
1289     unsigned NewOpCode = 0;
1290     unsigned NewPredicate1 = 0, NewPredicate2 = 0;
1291     int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0;
1292     bool SwapOperands = false;
1293 
1294     if (CMPI1->getOpcode() != CMPI2->getOpcode()) {
1295       // Typically, unsigned comparison is used for equality check, but
1296       // we replace it with a signed comparison if the comparison
1297       // to be merged is a signed comparison.
1298       // In other cases of opcode mismatch, we cannot optimize this.
1299 
1300       // We cannot change opcode when comparing against an immediate
1301       // if the most significant bit of the immediate is one
1302       // due to the difference in sign extension.
1303       auto CmpAgainstImmWithSignBit = [](MachineInstr *I) {
1304         if (!I->getOperand(2).isImm())
1305           return false;
1306         int16_t Imm = (int16_t)I->getOperand(2).getImm();
1307         return Imm < 0;
1308       };
1309 
1310       if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) &&
1311           CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode()))
1312         NewOpCode = CMPI1->getOpcode();
1313       else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) &&
1314                getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode())
1315         NewOpCode = CMPI2->getOpcode();
1316       else continue;
1317     }
1318 
1319     if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) {
1320       // In case of comparisons between two registers, these two registers
1321       // must be same to merge two comparisons.
1322       unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1323                                          nullptr, nullptr, MRI);
1324       unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(),
1325                                          nullptr, nullptr, MRI);
1326       unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1327                                          MBB1, &MBB2, MRI);
1328       unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(),
1329                                          MBB1, &MBB2, MRI);
1330 
1331       if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) {
1332         // Same pair of registers in the same order; ready to merge as is.
1333       }
1334       else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) {
1335         // Same pair of registers in different order.
1336         // We reverse the predicate to merge compare instructions.
1337         PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm();
1338         NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred);
1339         // In case of partial redundancy, we need to swap operands
1340         // in another compare instruction.
1341         SwapOperands = true;
1342       }
1343       else continue;
1344     }
1345     else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) {
1346       // In case of comparisons between a register and an immediate,
1347       // the operand register must be same for two compare instructions.
1348       unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1349                                          nullptr, nullptr, MRI);
1350       unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1351                                          MBB1, &MBB2, MRI);
1352       if (Cmp1Operand1 != Cmp2Operand1)
1353         continue;
1354 
1355       NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm();
1356       NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm();
1357 
1358       // If immediate are not same, we try to adjust by changing predicate;
1359       // e.g. GT imm means GE (imm+1).
1360       if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) {
1361         int Diff = Imm1 - Imm2;
1362         if (Diff < -2 || Diff > 2)
1363           continue;
1364 
1365         unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1);
1366         unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1);
1367         unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2);
1368         unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2);
1369         if (Diff == 2) {
1370           if (PredToInc2 && PredToDec1) {
1371             NewPredicate2 = PredToInc2;
1372             NewPredicate1 = PredToDec1;
1373             NewImm2++;
1374             NewImm1--;
1375           }
1376         }
1377         else if (Diff == 1) {
1378           if (PredToInc2) {
1379             NewImm2++;
1380             NewPredicate2 = PredToInc2;
1381           }
1382           else if (PredToDec1) {
1383             NewImm1--;
1384             NewPredicate1 = PredToDec1;
1385           }
1386         }
1387         else if (Diff == -1) {
1388           if (PredToDec2) {
1389             NewImm2--;
1390             NewPredicate2 = PredToDec2;
1391           }
1392           else if (PredToInc1) {
1393             NewImm1++;
1394             NewPredicate1 = PredToInc1;
1395           }
1396         }
1397         else if (Diff == -2) {
1398           if (PredToDec2 && PredToInc1) {
1399             NewPredicate2 = PredToDec2;
1400             NewPredicate1 = PredToInc1;
1401             NewImm2--;
1402             NewImm1++;
1403           }
1404         }
1405       }
1406 
1407       // We cannot merge two compares if the immediates are not same.
1408       if (NewImm2 != NewImm1)
1409         continue;
1410     }
1411 
1412     LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
1413     LLVM_DEBUG(CMPI1->dump());
1414     LLVM_DEBUG(BI1->dump());
1415     LLVM_DEBUG(CMPI2->dump());
1416     LLVM_DEBUG(BI2->dump());
1417 
1418     // We adjust opcode, predicates and immediate as we determined above.
1419     if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) {
1420       CMPI1->setDesc(TII->get(NewOpCode));
1421     }
1422     if (NewPredicate1) {
1423       BI1->getOperand(0).setImm(NewPredicate1);
1424     }
1425     if (NewPredicate2) {
1426       BI2->getOperand(0).setImm(NewPredicate2);
1427     }
1428     if (NewImm1 != Imm1) {
1429       CMPI1->getOperand(2).setImm(NewImm1);
1430     }
1431 
1432     if (IsPartiallyRedundant) {
1433       // We touch up the compare instruction in MBB2 and move it to
1434       // a previous BB to handle partially redundant case.
1435       if (SwapOperands) {
1436         Register Op1 = CMPI2->getOperand(1).getReg();
1437         Register Op2 = CMPI2->getOperand(2).getReg();
1438         CMPI2->getOperand(1).setReg(Op2);
1439         CMPI2->getOperand(2).setReg(Op1);
1440       }
1441       if (NewImm2 != Imm2)
1442         CMPI2->getOperand(2).setImm(NewImm2);
1443 
1444       for (int I = 1; I <= 2; I++) {
1445         if (CMPI2->getOperand(I).isReg()) {
1446           MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg());
1447           if (Inst->getParent() != &MBB2)
1448             continue;
1449 
1450           assert(Inst->getOpcode() == PPC::PHI &&
1451                  "We cannot support if an operand comes from this BB.");
1452           unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp);
1453           CMPI2->getOperand(I).setReg(SrcReg);
1454         }
1455       }
1456       auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator());
1457       MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2));
1458 
1459       DebugLoc DL = CMPI2->getDebugLoc();
1460       Register NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass);
1461       BuildMI(MBB2, MBB2.begin(), DL,
1462               TII->get(PPC::PHI), NewVReg)
1463         .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1)
1464         .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp);
1465       BI2->getOperand(1).setReg(NewVReg);
1466     }
1467     else {
1468       // We finally eliminate compare instruction in MBB2.
1469       BI2->getOperand(1).setReg(BI1->getOperand(1).getReg());
1470       CMPI2->eraseFromParent();
1471     }
1472     BI2->getOperand(1).setIsKill(true);
1473     BI1->getOperand(1).setIsKill(false);
1474 
1475     LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
1476     LLVM_DEBUG(CMPI1->dump());
1477     LLVM_DEBUG(BI1->dump());
1478     LLVM_DEBUG(BI2->dump());
1479     if (IsPartiallyRedundant) {
1480       LLVM_DEBUG(dbgs() << "The following compare is moved into "
1481                         << printMBBReference(*MBBtoMoveCmp)
1482                         << " to handle partial redundancy.\n");
1483       LLVM_DEBUG(CMPI2->dump());
1484     }
1485 
1486     Simplified = true;
1487   }
1488 
1489   return Simplified;
1490 }
1491 
1492 // We miss the opportunity to emit an RLDIC when lowering jump tables
1493 // since ISEL sees only a single basic block. When selecting, the clear
1494 // and shift left will be in different blocks.
1495 bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI) {
1496   if (MI.getOpcode() != PPC::RLDICR)
1497     return false;
1498 
1499   Register SrcReg = MI.getOperand(1).getReg();
1500   if (!Register::isVirtualRegister(SrcReg))
1501     return false;
1502 
1503   MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1504   if (SrcMI->getOpcode() != PPC::RLDICL)
1505     return false;
1506 
1507   MachineOperand MOpSHSrc = SrcMI->getOperand(2);
1508   MachineOperand MOpMBSrc = SrcMI->getOperand(3);
1509   MachineOperand MOpSHMI = MI.getOperand(2);
1510   MachineOperand MOpMEMI = MI.getOperand(3);
1511   if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() &&
1512         MOpMEMI.isImm()))
1513     return false;
1514 
1515   uint64_t SHSrc = MOpSHSrc.getImm();
1516   uint64_t MBSrc = MOpMBSrc.getImm();
1517   uint64_t SHMI = MOpSHMI.getImm();
1518   uint64_t MEMI = MOpMEMI.getImm();
1519   uint64_t NewSH = SHSrc + SHMI;
1520   uint64_t NewMB = MBSrc - SHMI;
1521   if (NewMB > 63 || NewSH > 63)
1522     return false;
1523 
1524   // The bits cleared with RLDICL are [0, MBSrc).
1525   // The bits cleared with RLDICR are (MEMI, 63].
1526   // After the sequence, the bits cleared are:
1527   // [0, MBSrc-SHMI) and (MEMI, 63).
1528   //
1529   // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63].
1530   if ((63 - NewSH) != MEMI)
1531     return false;
1532 
1533   LLVM_DEBUG(dbgs() << "Converting pair: ");
1534   LLVM_DEBUG(SrcMI->dump());
1535   LLVM_DEBUG(MI.dump());
1536 
1537   MI.setDesc(TII->get(PPC::RLDIC));
1538   MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
1539   MI.getOperand(2).setImm(NewSH);
1540   MI.getOperand(3).setImm(NewMB);
1541 
1542   LLVM_DEBUG(dbgs() << "To: ");
1543   LLVM_DEBUG(MI.dump());
1544   NumRotatesCollapsed++;
1545   return true;
1546 }
1547 
1548 // For case in LLVM IR
1549 // entry:
1550 //   %iconv = sext i32 %index to i64
1551 //   br i1 undef label %true, label %false
1552 // true:
1553 //   %ptr = getelementptr inbounds i32, i32* null, i64 %iconv
1554 // ...
1555 // PPCISelLowering::combineSHL fails to combine, because sext and shl are in
1556 // different BBs when conducting instruction selection. We can do a peephole
1557 // optimization to combine these two instructions into extswsli after
1558 // instruction selection.
1559 bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI,
1560                                       MachineInstr *&ToErase) {
1561   if (MI.getOpcode() != PPC::RLDICR)
1562     return false;
1563 
1564   if (!MF->getSubtarget<PPCSubtarget>().isISA3_0())
1565     return false;
1566 
1567   assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands");
1568 
1569   MachineOperand MOpSHMI = MI.getOperand(2);
1570   MachineOperand MOpMEMI = MI.getOperand(3);
1571   if (!(MOpSHMI.isImm() && MOpMEMI.isImm()))
1572     return false;
1573 
1574   uint64_t SHMI = MOpSHMI.getImm();
1575   uint64_t MEMI = MOpMEMI.getImm();
1576   if (SHMI + MEMI != 63)
1577     return false;
1578 
1579   Register SrcReg = MI.getOperand(1).getReg();
1580   if (!Register::isVirtualRegister(SrcReg))
1581     return false;
1582 
1583   MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1584   if (SrcMI->getOpcode() != PPC::EXTSW &&
1585       SrcMI->getOpcode() != PPC::EXTSW_32_64)
1586     return false;
1587 
1588   // If the register defined by extsw has more than one use, combination is not
1589   // needed.
1590   if (!MRI->hasOneNonDBGUse(SrcReg))
1591     return false;
1592 
1593   assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands");
1594   assert(SrcMI->getOperand(1).isReg() &&
1595          "EXTSW's second operand should be a register");
1596   if (!Register::isVirtualRegister(SrcMI->getOperand(1).getReg()))
1597     return false;
1598 
1599   LLVM_DEBUG(dbgs() << "Combining pair: ");
1600   LLVM_DEBUG(SrcMI->dump());
1601   LLVM_DEBUG(MI.dump());
1602 
1603   MachineInstr *NewInstr =
1604       BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(),
1605               SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI)
1606                                                : TII->get(PPC::EXTSWSLI_32_64),
1607               MI.getOperand(0).getReg())
1608           .add(SrcMI->getOperand(1))
1609           .add(MOpSHMI);
1610   (void)NewInstr;
1611 
1612   LLVM_DEBUG(dbgs() << "TO: ");
1613   LLVM_DEBUG(NewInstr->dump());
1614   ++NumEXTSWAndSLDICombined;
1615   ToErase = &MI;
1616   // SrcMI, which is extsw, is of no use now, erase it.
1617   SrcMI->eraseFromParent();
1618   return true;
1619 }
1620 
1621 } // end default namespace
1622 
1623 INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
1624                       "PowerPC MI Peephole Optimization", false, false)
1625 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1626 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1627 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
1628 INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
1629                     "PowerPC MI Peephole Optimization", false, false)
1630 
1631 char PPCMIPeephole::ID = 0;
1632 FunctionPass*
1633 llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }
1634 
1635