1 //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 //
9 // This pass performs peephole optimizations to clean up ugly code
10 // sequences at the MachineInstruction layer. It runs at the end of
11 // the SSA phases, following VSX swap removal. A pass of dead code
12 // elimination follows this one for quick clean-up of any dead
13 // instructions introduced here. Although we could do this as callbacks
14 // from the generic peephole pass, this would have a couple of bad
15 // effects: it might remove optimization opportunities for VSX swap
16 // removal, and it would miss cleanups made possible following VSX
17 // swap removal.
18 //
19 //===---------------------------------------------------------------------===//
20
21 #include "MCTargetDesc/PPCMCTargetDesc.h"
22 #include "MCTargetDesc/PPCPredicates.h"
23 #include "PPC.h"
24 #include "PPCInstrBuilder.h"
25 #include "PPCInstrInfo.h"
26 #include "PPCMachineFunctionInfo.h"
27 #include "PPCTargetMachine.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachinePostDominators.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Support/Debug.h"
38
39 using namespace llvm;
40
41 #define DEBUG_TYPE "ppc-mi-peepholes"
42
43 STATISTIC(RemoveTOCSave, "Number of TOC saves removed");
44 STATISTIC(MultiTOCSaves,
45 "Number of functions with multiple TOC saves that must be kept");
46 STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue");
47 STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions");
48 STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions");
49 STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI");
50 STATISTIC(NumConvertedToImmediateForm,
51 "Number of instructions converted to their immediate form");
52 STATISTIC(NumFunctionsEnteredInMIPeephole,
53 "Number of functions entered in PPC MI Peepholes");
54 STATISTIC(NumFixedPointIterations,
55 "Number of fixed-point iterations converting reg-reg instructions "
56 "to reg-imm ones");
57 STATISTIC(NumRotatesCollapsed,
58 "Number of pairs of rotate left, clear left/right collapsed");
59 STATISTIC(NumEXTSWAndSLDICombined,
60 "Number of pairs of EXTSW and SLDI combined as EXTSWSLI");
61 STATISTIC(NumLoadImmZeroFoldedAndRemoved,
62 "Number of LI(8) reg, 0 that are folded to r0 and removed");
63
64 static cl::opt<bool>
65 FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true),
66 cl::desc("Iterate to a fixed point when attempting to "
67 "convert reg-reg instructions to reg-imm"));
68
69 static cl::opt<bool>
70 ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true),
71 cl::desc("Convert eligible reg+reg instructions to reg+imm"));
72
73 static cl::opt<bool>
74 EnableSExtElimination("ppc-eliminate-signext",
75 cl::desc("enable elimination of sign-extensions"),
76 cl::init(false), cl::Hidden);
77
78 static cl::opt<bool>
79 EnableZExtElimination("ppc-eliminate-zeroext",
80 cl::desc("enable elimination of zero-extensions"),
81 cl::init(false), cl::Hidden);
82
83 static cl::opt<bool>
84 EnableTrapOptimization("ppc-opt-conditional-trap",
85 cl::desc("enable optimization of conditional traps"),
86 cl::init(false), cl::Hidden);
87
88 namespace {
89
90 struct PPCMIPeephole : public MachineFunctionPass {
91
92 static char ID;
93 const PPCInstrInfo *TII;
94 MachineFunction *MF;
95 MachineRegisterInfo *MRI;
96
PPCMIPeephole__anonee9fa6900111::PPCMIPeephole97 PPCMIPeephole() : MachineFunctionPass(ID) {
98 initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
99 }
100
101 private:
102 MachineDominatorTree *MDT;
103 MachinePostDominatorTree *MPDT;
104 MachineBlockFrequencyInfo *MBFI;
105 uint64_t EntryFreq;
106
107 // Initialize class variables.
108 void initialize(MachineFunction &MFParm);
109
110 // Perform peepholes.
111 bool simplifyCode();
112
113 // Perform peepholes.
114 bool eliminateRedundantCompare();
115 bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves);
116 bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase);
117 bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI);
118 void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves,
119 MachineInstr *MI);
120
121 public:
122
getAnalysisUsage__anonee9fa6900111::PPCMIPeephole123 void getAnalysisUsage(AnalysisUsage &AU) const override {
124 AU.addRequired<MachineDominatorTree>();
125 AU.addRequired<MachinePostDominatorTree>();
126 AU.addRequired<MachineBlockFrequencyInfo>();
127 AU.addPreserved<MachineDominatorTree>();
128 AU.addPreserved<MachinePostDominatorTree>();
129 AU.addPreserved<MachineBlockFrequencyInfo>();
130 MachineFunctionPass::getAnalysisUsage(AU);
131 }
132
133 // Main entry point for this pass.
runOnMachineFunction__anonee9fa6900111::PPCMIPeephole134 bool runOnMachineFunction(MachineFunction &MF) override {
135 initialize(MF);
136 // At this point, TOC pointer should not be used in a function that uses
137 // PC-Relative addressing.
138 assert((MF.getRegInfo().use_empty(PPC::X2) ||
139 !MF.getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls()) &&
140 "TOC pointer used in a function using PC-Relative addressing!");
141 if (skipFunction(MF.getFunction()))
142 return false;
143 return simplifyCode();
144 }
145 };
146
147 // Initialize class variables.
initialize(MachineFunction & MFParm)148 void PPCMIPeephole::initialize(MachineFunction &MFParm) {
149 MF = &MFParm;
150 MRI = &MF->getRegInfo();
151 MDT = &getAnalysis<MachineDominatorTree>();
152 MPDT = &getAnalysis<MachinePostDominatorTree>();
153 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
154 EntryFreq = MBFI->getEntryFreq();
155 TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
156 LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
157 LLVM_DEBUG(MF->dump());
158 }
159
getVRegDefOrNull(MachineOperand * Op,MachineRegisterInfo * MRI)160 static MachineInstr *getVRegDefOrNull(MachineOperand *Op,
161 MachineRegisterInfo *MRI) {
162 assert(Op && "Invalid Operand!");
163 if (!Op->isReg())
164 return nullptr;
165
166 Register Reg = Op->getReg();
167 if (!Register::isVirtualRegister(Reg))
168 return nullptr;
169
170 return MRI->getVRegDef(Reg);
171 }
172
173 // This function returns number of known zero bits in output of MI
174 // starting from the most significant bit.
175 static unsigned
getKnownLeadingZeroCount(MachineInstr * MI,const PPCInstrInfo * TII)176 getKnownLeadingZeroCount(MachineInstr *MI, const PPCInstrInfo *TII) {
177 unsigned Opcode = MI->getOpcode();
178 if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
179 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec)
180 return MI->getOperand(3).getImm();
181
182 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
183 MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
184 return MI->getOperand(3).getImm();
185
186 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
187 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
188 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
189 MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
190 return 32 + MI->getOperand(3).getImm();
191
192 if (Opcode == PPC::ANDI_rec) {
193 uint16_t Imm = MI->getOperand(2).getImm();
194 return 48 + countLeadingZeros(Imm);
195 }
196
197 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
198 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
199 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8)
200 // The result ranges from 0 to 32.
201 return 58;
202
203 if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
204 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec)
205 // The result ranges from 0 to 64.
206 return 57;
207
208 if (Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
209 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 ||
210 Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
211 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8)
212 return 48;
213
214 if (Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
215 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
216 Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
217 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8)
218 return 56;
219
220 if (TII->isZeroExtended(*MI))
221 return 32;
222
223 return 0;
224 }
225
226 // This function maintains a map for the pairs <TOC Save Instr, Keep>
227 // Each time a new TOC save is encountered, it checks if any of the existing
228 // ones are dominated by the new one. If so, it marks the existing one as
229 // redundant by setting it's entry in the map as false. It then adds the new
230 // instruction to the map with either true or false depending on if any
231 // existing instructions dominated the new one.
UpdateTOCSaves(std::map<MachineInstr *,bool> & TOCSaves,MachineInstr * MI)232 void PPCMIPeephole::UpdateTOCSaves(
233 std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) {
234 assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here");
235 // FIXME: Saving TOC in prologue hasn't been implemented well in AIX ABI part,
236 // here only support it under ELFv2.
237 if (MF->getSubtarget<PPCSubtarget>().isELFv2ABI()) {
238 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
239
240 MachineBasicBlock *Entry = &MF->front();
241 uint64_t CurrBlockFreq = MBFI->getBlockFreq(MI->getParent()).getFrequency();
242
243 // If the block in which the TOC save resides is in a block that
244 // post-dominates Entry, or a block that is hotter than entry (keep in mind
245 // that early MachineLICM has already run so the TOC save won't be hoisted)
246 // we can just do the save in the prologue.
247 if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry))
248 FI->setMustSaveTOC(true);
249
250 // If we are saving the TOC in the prologue, all the TOC saves can be
251 // removed from the code.
252 if (FI->mustSaveTOC()) {
253 for (auto &TOCSave : TOCSaves)
254 TOCSave.second = false;
255 // Add new instruction to map.
256 TOCSaves[MI] = false;
257 return;
258 }
259 }
260
261 bool Keep = true;
262 for (auto &I : TOCSaves) {
263 MachineInstr *CurrInst = I.first;
264 // If new instruction dominates an existing one, mark existing one as
265 // redundant.
266 if (I.second && MDT->dominates(MI, CurrInst))
267 I.second = false;
268 // Check if the new instruction is redundant.
269 if (MDT->dominates(CurrInst, MI)) {
270 Keep = false;
271 break;
272 }
273 }
274 // Add new instruction to map.
275 TOCSaves[MI] = Keep;
276 }
277
278 // This function returns a list of all PHI nodes in the tree starting from
279 // the RootPHI node. We perform a BFS traversal to get an ordered list of nodes.
280 // The list initially only contains the root PHI. When we visit a PHI node, we
281 // add it to the list. We continue to look for other PHI node operands while
282 // there are nodes to visit in the list. The function returns false if the
283 // optimization cannot be applied on this tree.
collectUnprimedAccPHIs(MachineRegisterInfo * MRI,MachineInstr * RootPHI,SmallVectorImpl<MachineInstr * > & PHIs)284 static bool collectUnprimedAccPHIs(MachineRegisterInfo *MRI,
285 MachineInstr *RootPHI,
286 SmallVectorImpl<MachineInstr *> &PHIs) {
287 PHIs.push_back(RootPHI);
288 unsigned VisitedIndex = 0;
289 while (VisitedIndex < PHIs.size()) {
290 MachineInstr *VisitedPHI = PHIs[VisitedIndex];
291 for (unsigned PHIOp = 1, NumOps = VisitedPHI->getNumOperands();
292 PHIOp != NumOps; PHIOp += 2) {
293 Register RegOp = VisitedPHI->getOperand(PHIOp).getReg();
294 if (!Register::isVirtualRegister(RegOp))
295 return false;
296 MachineInstr *Instr = MRI->getVRegDef(RegOp);
297 // While collecting the PHI nodes, we check if they can be converted (i.e.
298 // all the operands are either copies, implicit defs or PHI nodes).
299 unsigned Opcode = Instr->getOpcode();
300 if (Opcode == PPC::COPY) {
301 Register Reg = Instr->getOperand(1).getReg();
302 if (!Register::isVirtualRegister(Reg) ||
303 MRI->getRegClass(Reg) != &PPC::ACCRCRegClass)
304 return false;
305 } else if (Opcode != PPC::IMPLICIT_DEF && Opcode != PPC::PHI)
306 return false;
307 // If we detect a cycle in the PHI nodes, we exit. It would be
308 // possible to change cycles as well, but that would add a lot
309 // of complexity for a case that is unlikely to occur with MMA
310 // code.
311 if (Opcode != PPC::PHI)
312 continue;
313 if (llvm::is_contained(PHIs, Instr))
314 return false;
315 PHIs.push_back(Instr);
316 }
317 VisitedIndex++;
318 }
319 return true;
320 }
321
322 // This function changes the unprimed accumulator PHI nodes in the PHIs list to
323 // primed accumulator PHI nodes. The list is traversed in reverse order to
324 // change all the PHI operands of a PHI node before changing the node itself.
325 // We keep a map to associate each changed PHI node to its non-changed form.
convertUnprimedAccPHIs(const PPCInstrInfo * TII,MachineRegisterInfo * MRI,SmallVectorImpl<MachineInstr * > & PHIs,Register Dst)326 static void convertUnprimedAccPHIs(const PPCInstrInfo *TII,
327 MachineRegisterInfo *MRI,
328 SmallVectorImpl<MachineInstr *> &PHIs,
329 Register Dst) {
330 DenseMap<MachineInstr *, MachineInstr *> ChangedPHIMap;
331 for (MachineInstr *PHI : llvm::reverse(PHIs)) {
332 SmallVector<std::pair<MachineOperand, MachineOperand>, 4> PHIOps;
333 // We check if the current PHI node can be changed by looking at its
334 // operands. If all the operands are either copies from primed
335 // accumulators, implicit definitions or other unprimed accumulator
336 // PHI nodes, we change it.
337 for (unsigned PHIOp = 1, NumOps = PHI->getNumOperands(); PHIOp != NumOps;
338 PHIOp += 2) {
339 Register RegOp = PHI->getOperand(PHIOp).getReg();
340 MachineInstr *PHIInput = MRI->getVRegDef(RegOp);
341 unsigned Opcode = PHIInput->getOpcode();
342 assert((Opcode == PPC::COPY || Opcode == PPC::IMPLICIT_DEF ||
343 Opcode == PPC::PHI) &&
344 "Unexpected instruction");
345 if (Opcode == PPC::COPY) {
346 assert(MRI->getRegClass(PHIInput->getOperand(1).getReg()) ==
347 &PPC::ACCRCRegClass &&
348 "Unexpected register class");
349 PHIOps.push_back({PHIInput->getOperand(1), PHI->getOperand(PHIOp + 1)});
350 } else if (Opcode == PPC::IMPLICIT_DEF) {
351 Register AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass);
352 BuildMI(*PHIInput->getParent(), PHIInput, PHIInput->getDebugLoc(),
353 TII->get(PPC::IMPLICIT_DEF), AccReg);
354 PHIOps.push_back({MachineOperand::CreateReg(AccReg, false),
355 PHI->getOperand(PHIOp + 1)});
356 } else if (Opcode == PPC::PHI) {
357 // We found a PHI operand. At this point we know this operand
358 // has already been changed so we get its associated changed form
359 // from the map.
360 assert(ChangedPHIMap.count(PHIInput) == 1 &&
361 "This PHI node should have already been changed.");
362 MachineInstr *PrimedAccPHI = ChangedPHIMap.lookup(PHIInput);
363 PHIOps.push_back({MachineOperand::CreateReg(
364 PrimedAccPHI->getOperand(0).getReg(), false),
365 PHI->getOperand(PHIOp + 1)});
366 }
367 }
368 Register AccReg = Dst;
369 // If the PHI node we are changing is the root node, the register it defines
370 // will be the destination register of the original copy (of the PHI def).
371 // For all other PHI's in the list, we need to create another primed
372 // accumulator virtual register as the PHI will no longer define the
373 // unprimed accumulator.
374 if (PHI != PHIs[0])
375 AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass);
376 MachineInstrBuilder NewPHI = BuildMI(
377 *PHI->getParent(), PHI, PHI->getDebugLoc(), TII->get(PPC::PHI), AccReg);
378 for (auto RegMBB : PHIOps)
379 NewPHI.add(RegMBB.first).add(RegMBB.second);
380 ChangedPHIMap[PHI] = NewPHI.getInstr();
381 }
382 }
383
384 // Perform peephole optimizations.
simplifyCode()385 bool PPCMIPeephole::simplifyCode() {
386 bool Simplified = false;
387 bool TrapOpt = false;
388 MachineInstr* ToErase = nullptr;
389 std::map<MachineInstr *, bool> TOCSaves;
390 const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
391 NumFunctionsEnteredInMIPeephole++;
392 if (ConvertRegReg) {
393 // Fixed-point conversion of reg/reg instructions fed by load-immediate
394 // into reg/imm instructions. FIXME: This is expensive, control it with
395 // an option.
396 bool SomethingChanged = false;
397 do {
398 NumFixedPointIterations++;
399 SomethingChanged = false;
400 for (MachineBasicBlock &MBB : *MF) {
401 for (MachineInstr &MI : MBB) {
402 if (MI.isDebugInstr())
403 continue;
404
405 if (TII->convertToImmediateForm(MI)) {
406 // We don't erase anything in case the def has other uses. Let DCE
407 // remove it if it can be removed.
408 LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
409 LLVM_DEBUG(MI.dump());
410 NumConvertedToImmediateForm++;
411 SomethingChanged = true;
412 Simplified = true;
413 continue;
414 }
415 }
416 }
417 } while (SomethingChanged && FixedPointRegToImm);
418 }
419
420 for (MachineBasicBlock &MBB : *MF) {
421 for (MachineInstr &MI : MBB) {
422
423 // If the previous instruction was marked for elimination,
424 // remove it now.
425 if (ToErase) {
426 ToErase->eraseFromParent();
427 ToErase = nullptr;
428 }
429 // If a conditional trap instruction got optimized to an
430 // unconditional trap, eliminate all the instructions after
431 // the trap.
432 if (EnableTrapOptimization && TrapOpt) {
433 ToErase = &MI;
434 continue;
435 }
436
437 // Ignore debug instructions.
438 if (MI.isDebugInstr())
439 continue;
440
441 // Per-opcode peepholes.
442 switch (MI.getOpcode()) {
443
444 default:
445 break;
446 case PPC::COPY: {
447 Register Src = MI.getOperand(1).getReg();
448 Register Dst = MI.getOperand(0).getReg();
449 if (!Register::isVirtualRegister(Src) ||
450 !Register::isVirtualRegister(Dst))
451 break;
452 if (MRI->getRegClass(Src) != &PPC::UACCRCRegClass ||
453 MRI->getRegClass(Dst) != &PPC::ACCRCRegClass)
454 break;
455
456 // We are copying an unprimed accumulator to a primed accumulator.
457 // If the input to the copy is a PHI that is fed only by (i) copies in
458 // the other direction (ii) implicitly defined unprimed accumulators or
459 // (iii) other PHI nodes satisfying (i) and (ii), we can change
460 // the PHI to a PHI on primed accumulators (as long as we also change
461 // its operands). To detect and change such copies, we first get a list
462 // of all the PHI nodes starting from the root PHI node in BFS order.
463 // We then visit all these PHI nodes to check if they can be changed to
464 // primed accumulator PHI nodes and if so, we change them.
465 MachineInstr *RootPHI = MRI->getVRegDef(Src);
466 if (RootPHI->getOpcode() != PPC::PHI)
467 break;
468
469 SmallVector<MachineInstr *, 4> PHIs;
470 if (!collectUnprimedAccPHIs(MRI, RootPHI, PHIs))
471 break;
472
473 convertUnprimedAccPHIs(TII, MRI, PHIs, Dst);
474
475 ToErase = &MI;
476 break;
477 }
478 case PPC::LI:
479 case PPC::LI8: {
480 // If we are materializing a zero, look for any use operands for which
481 // zero means immediate zero. All such operands can be replaced with
482 // PPC::ZERO.
483 if (!MI.getOperand(1).isImm() || MI.getOperand(1).getImm() != 0)
484 break;
485 Register MIDestReg = MI.getOperand(0).getReg();
486 for (MachineInstr& UseMI : MRI->use_instructions(MIDestReg))
487 Simplified |= TII->onlyFoldImmediate(UseMI, MI, MIDestReg);
488 if (MRI->use_nodbg_empty(MIDestReg)) {
489 ++NumLoadImmZeroFoldedAndRemoved;
490 ToErase = &MI;
491 }
492 break;
493 }
494 case PPC::STW:
495 case PPC::STD: {
496 MachineFrameInfo &MFI = MF->getFrameInfo();
497 if (MFI.hasVarSizedObjects() ||
498 (!MF->getSubtarget<PPCSubtarget>().isELFv2ABI() &&
499 !MF->getSubtarget<PPCSubtarget>().isAIXABI()))
500 break;
501 // When encountering a TOC save instruction, call UpdateTOCSaves
502 // to add it to the TOCSaves map and mark any existing TOC saves
503 // it dominates as redundant.
504 if (TII->isTOCSaveMI(MI))
505 UpdateTOCSaves(TOCSaves, &MI);
506 break;
507 }
508 case PPC::XXPERMDI: {
509 // Perform simplifications of 2x64 vector swaps and splats.
510 // A swap is identified by an immediate value of 2, and a splat
511 // is identified by an immediate value of 0 or 3.
512 int Immed = MI.getOperand(3).getImm();
513
514 if (Immed == 1)
515 break;
516
517 // For each of these simplifications, we need the two source
518 // regs to match. Unfortunately, MachineCSE ignores COPY and
519 // SUBREG_TO_REG, so for example we can see
520 // XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
521 // We have to look through chains of COPY and SUBREG_TO_REG
522 // to find the real source values for comparison.
523 Register TrueReg1 =
524 TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
525 Register TrueReg2 =
526 TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI);
527
528 if (!(TrueReg1 == TrueReg2 && Register::isVirtualRegister(TrueReg1)))
529 break;
530
531 MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);
532
533 if (!DefMI)
534 break;
535
536 unsigned DefOpc = DefMI->getOpcode();
537
538 // If this is a splat fed by a splatting load, the splat is
539 // redundant. Replace with a copy. This doesn't happen directly due
540 // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
541 // a load of a double to a vector of 64-bit integers.
542 auto isConversionOfLoadAndSplat = [=]() -> bool {
543 if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
544 return false;
545 Register FeedReg1 =
546 TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
547 if (Register::isVirtualRegister(FeedReg1)) {
548 MachineInstr *LoadMI = MRI->getVRegDef(FeedReg1);
549 if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
550 return true;
551 }
552 return false;
553 };
554 if ((Immed == 0 || Immed == 3) &&
555 (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat())) {
556 LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
557 "to load-and-splat/copy: ");
558 LLVM_DEBUG(MI.dump());
559 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
560 MI.getOperand(0).getReg())
561 .add(MI.getOperand(1));
562 ToErase = &MI;
563 Simplified = true;
564 }
565
566 // If this is a splat or a swap fed by another splat, we
567 // can replace it with a copy.
568 if (DefOpc == PPC::XXPERMDI) {
569 Register DefReg1 = DefMI->getOperand(1).getReg();
570 Register DefReg2 = DefMI->getOperand(2).getReg();
571 unsigned DefImmed = DefMI->getOperand(3).getImm();
572
573 // If the two inputs are not the same register, check to see if
574 // they originate from the same virtual register after only
575 // copy-like instructions.
576 if (DefReg1 != DefReg2) {
577 Register FeedReg1 = TRI->lookThruCopyLike(DefReg1, MRI);
578 Register FeedReg2 = TRI->lookThruCopyLike(DefReg2, MRI);
579
580 if (!(FeedReg1 == FeedReg2 &&
581 Register::isVirtualRegister(FeedReg1)))
582 break;
583 }
584
585 if (DefImmed == 0 || DefImmed == 3) {
586 LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
587 "to splat/copy: ");
588 LLVM_DEBUG(MI.dump());
589 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
590 MI.getOperand(0).getReg())
591 .add(MI.getOperand(1));
592 ToErase = &MI;
593 Simplified = true;
594 }
595
596 // If this is a splat fed by a swap, we can simplify modify
597 // the splat to splat the other value from the swap's input
598 // parameter.
599 else if ((Immed == 0 || Immed == 3) && DefImmed == 2) {
600 LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
601 LLVM_DEBUG(MI.dump());
602 MI.getOperand(1).setReg(DefReg1);
603 MI.getOperand(2).setReg(DefReg2);
604 MI.getOperand(3).setImm(3 - Immed);
605 Simplified = true;
606 }
607
608 // If this is a swap fed by a swap, we can replace it
609 // with a copy from the first swap's input.
610 else if (Immed == 2 && DefImmed == 2) {
611 LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
612 LLVM_DEBUG(MI.dump());
613 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
614 MI.getOperand(0).getReg())
615 .add(DefMI->getOperand(1));
616 ToErase = &MI;
617 Simplified = true;
618 }
619 } else if ((Immed == 0 || Immed == 3 || Immed == 2) &&
620 DefOpc == PPC::XXPERMDIs &&
621 (DefMI->getOperand(2).getImm() == 0 ||
622 DefMI->getOperand(2).getImm() == 3)) {
623 ToErase = &MI;
624 Simplified = true;
625 // Swap of a splat, convert to copy.
626 if (Immed == 2) {
627 LLVM_DEBUG(dbgs() << "Optimizing swap(splat) => copy(splat): ");
628 LLVM_DEBUG(MI.dump());
629 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
630 MI.getOperand(0).getReg())
631 .add(MI.getOperand(1));
632 break;
633 }
634 // Splat fed by another splat - switch the output of the first
635 // and remove the second.
636 DefMI->getOperand(0).setReg(MI.getOperand(0).getReg());
637 LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
638 LLVM_DEBUG(MI.dump());
639 }
640 break;
641 }
642 case PPC::VSPLTB:
643 case PPC::VSPLTH:
644 case PPC::XXSPLTW: {
645 unsigned MyOpcode = MI.getOpcode();
646 unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
647 Register TrueReg =
648 TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI);
649 if (!Register::isVirtualRegister(TrueReg))
650 break;
651 MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
652 if (!DefMI)
653 break;
654 unsigned DefOpcode = DefMI->getOpcode();
655 auto isConvertOfSplat = [=]() -> bool {
656 if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
657 return false;
658 Register ConvReg = DefMI->getOperand(1).getReg();
659 if (!Register::isVirtualRegister(ConvReg))
660 return false;
661 MachineInstr *Splt = MRI->getVRegDef(ConvReg);
662 return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
663 Splt->getOpcode() == PPC::XXSPLTW);
664 };
665 bool AlreadySplat = (MyOpcode == DefOpcode) ||
666 (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
667 (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
668 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
669 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
670 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
671 (MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
672 // If the instruction[s] that feed this splat have already splat
673 // the value, this splat is redundant.
674 if (AlreadySplat) {
675 LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
676 LLVM_DEBUG(MI.dump());
677 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
678 MI.getOperand(0).getReg())
679 .add(MI.getOperand(OpNo));
680 ToErase = &MI;
681 Simplified = true;
682 }
683 // Splat fed by a shift. Usually when we align value to splat into
684 // vector element zero.
685 if (DefOpcode == PPC::XXSLDWI) {
686 Register ShiftRes = DefMI->getOperand(0).getReg();
687 Register ShiftOp1 = DefMI->getOperand(1).getReg();
688 Register ShiftOp2 = DefMI->getOperand(2).getReg();
689 unsigned ShiftImm = DefMI->getOperand(3).getImm();
690 unsigned SplatImm =
691 MI.getOperand(MyOpcode == PPC::XXSPLTW ? 2 : 1).getImm();
692 if (ShiftOp1 == ShiftOp2) {
693 unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
694 if (MRI->hasOneNonDBGUse(ShiftRes)) {
695 LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
696 LLVM_DEBUG(DefMI->dump());
697 ToErase = DefMI;
698 }
699 Simplified = true;
700 LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
701 << " to " << NewElem << " in instruction: ");
702 LLVM_DEBUG(MI.dump());
703 MI.getOperand(1).setReg(ShiftOp1);
704 MI.getOperand(2).setImm(NewElem);
705 }
706 }
707 break;
708 }
709 case PPC::XVCVDPSP: {
710 // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
711 Register TrueReg =
712 TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
713 if (!Register::isVirtualRegister(TrueReg))
714 break;
715 MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
716
717 // This can occur when building a vector of single precision or integer
718 // values.
719 if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
720 Register DefsReg1 =
721 TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
722 Register DefsReg2 =
723 TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
724 if (!Register::isVirtualRegister(DefsReg1) ||
725 !Register::isVirtualRegister(DefsReg2))
726 break;
727 MachineInstr *P1 = MRI->getVRegDef(DefsReg1);
728 MachineInstr *P2 = MRI->getVRegDef(DefsReg2);
729
730 if (!P1 || !P2)
731 break;
732
733 // Remove the passed FRSP/XSRSP instruction if it only feeds this MI
734 // and set any uses of that FRSP/XSRSP (in this MI) to the source of
735 // the FRSP/XSRSP.
736 auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
737 unsigned Opc = RoundInstr->getOpcode();
738 if ((Opc == PPC::FRSP || Opc == PPC::XSRSP) &&
739 MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
740 Simplified = true;
741 Register ConvReg1 = RoundInstr->getOperand(1).getReg();
742 Register FRSPDefines = RoundInstr->getOperand(0).getReg();
743 MachineInstr &Use = *(MRI->use_instr_nodbg_begin(FRSPDefines));
744 for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
745 if (Use.getOperand(i).isReg() &&
746 Use.getOperand(i).getReg() == FRSPDefines)
747 Use.getOperand(i).setReg(ConvReg1);
748 LLVM_DEBUG(dbgs() << "Removing redundant FRSP/XSRSP:\n");
749 LLVM_DEBUG(RoundInstr->dump());
750 LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
751 LLVM_DEBUG(MI.dump());
752 LLVM_DEBUG(dbgs() << "Through instruction:\n");
753 LLVM_DEBUG(DefMI->dump());
754 RoundInstr->eraseFromParent();
755 }
756 };
757
758 // If the input to XVCVDPSP is a vector that was built (even
759 // partially) out of FRSP's, the FRSP(s) can safely be removed
760 // since this instruction performs the same operation.
761 if (P1 != P2) {
762 removeFRSPIfPossible(P1);
763 removeFRSPIfPossible(P2);
764 break;
765 }
766 removeFRSPIfPossible(P1);
767 }
768 break;
769 }
770 case PPC::EXTSH:
771 case PPC::EXTSH8:
772 case PPC::EXTSH8_32_64: {
773 if (!EnableSExtElimination) break;
774 Register NarrowReg = MI.getOperand(1).getReg();
775 if (!Register::isVirtualRegister(NarrowReg))
776 break;
777
778 MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
779 // If we've used a zero-extending load that we will sign-extend,
780 // just do a sign-extending load.
781 if (SrcMI->getOpcode() == PPC::LHZ ||
782 SrcMI->getOpcode() == PPC::LHZX) {
783 if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
784 break;
785 auto is64Bit = [] (unsigned Opcode) {
786 return Opcode == PPC::EXTSH8;
787 };
788 auto isXForm = [] (unsigned Opcode) {
789 return Opcode == PPC::LHZX;
790 };
791 auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
792 if (is64Bit)
793 if (isXForm) return PPC::LHAX8;
794 else return PPC::LHA8;
795 else
796 if (isXForm) return PPC::LHAX;
797 else return PPC::LHA;
798 };
799 unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
800 isXForm(SrcMI->getOpcode()));
801 LLVM_DEBUG(dbgs() << "Zero-extending load\n");
802 LLVM_DEBUG(SrcMI->dump());
803 LLVM_DEBUG(dbgs() << "and sign-extension\n");
804 LLVM_DEBUG(MI.dump());
805 LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
806 SrcMI->setDesc(TII->get(Opc));
807 SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
808 ToErase = &MI;
809 Simplified = true;
810 NumEliminatedSExt++;
811 }
812 break;
813 }
814 case PPC::EXTSW:
815 case PPC::EXTSW_32:
816 case PPC::EXTSW_32_64: {
817 if (!EnableSExtElimination) break;
818 Register NarrowReg = MI.getOperand(1).getReg();
819 if (!Register::isVirtualRegister(NarrowReg))
820 break;
821
822 MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
823 // If we've used a zero-extending load that we will sign-extend,
824 // just do a sign-extending load.
825 if (SrcMI->getOpcode() == PPC::LWZ ||
826 SrcMI->getOpcode() == PPC::LWZX) {
827 if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
828 break;
829 auto is64Bit = [] (unsigned Opcode) {
830 return Opcode == PPC::EXTSW || Opcode == PPC::EXTSW_32_64;
831 };
832 auto isXForm = [] (unsigned Opcode) {
833 return Opcode == PPC::LWZX;
834 };
835 auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
836 if (is64Bit)
837 if (isXForm) return PPC::LWAX;
838 else return PPC::LWA;
839 else
840 if (isXForm) return PPC::LWAX_32;
841 else return PPC::LWA_32;
842 };
843 unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
844 isXForm(SrcMI->getOpcode()));
845 LLVM_DEBUG(dbgs() << "Zero-extending load\n");
846 LLVM_DEBUG(SrcMI->dump());
847 LLVM_DEBUG(dbgs() << "and sign-extension\n");
848 LLVM_DEBUG(MI.dump());
849 LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
850 SrcMI->setDesc(TII->get(Opc));
851 SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
852 ToErase = &MI;
853 Simplified = true;
854 NumEliminatedSExt++;
855 } else if (MI.getOpcode() == PPC::EXTSW_32_64 &&
856 TII->isSignExtended(*SrcMI)) {
857 // We can eliminate EXTSW if the input is known to be already
858 // sign-extended.
859 LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
860 Register TmpReg =
861 MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
862 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF),
863 TmpReg);
864 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG),
865 MI.getOperand(0).getReg())
866 .addReg(TmpReg)
867 .addReg(NarrowReg)
868 .addImm(PPC::sub_32);
869 ToErase = &MI;
870 Simplified = true;
871 NumEliminatedSExt++;
872 }
873 break;
874 }
875 case PPC::RLDICL: {
876 // We can eliminate RLDICL (e.g. for zero-extension)
877 // if all bits to clear are already zero in the input.
878 // This code assume following code sequence for zero-extension.
879 // %6 = COPY %5:sub_32; (optional)
880 // %8 = IMPLICIT_DEF;
881 // %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
882 if (!EnableZExtElimination) break;
883
884 if (MI.getOperand(2).getImm() != 0)
885 break;
886
887 Register SrcReg = MI.getOperand(1).getReg();
888 if (!Register::isVirtualRegister(SrcReg))
889 break;
890
891 MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
892 if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG &&
893 SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg()))
894 break;
895
896 MachineInstr *ImpDefMI, *SubRegMI;
897 ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg());
898 SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg());
899 if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break;
900
901 SrcMI = SubRegMI;
902 if (SubRegMI->getOpcode() == PPC::COPY) {
903 Register CopyReg = SubRegMI->getOperand(1).getReg();
904 if (Register::isVirtualRegister(CopyReg))
905 SrcMI = MRI->getVRegDef(CopyReg);
906 }
907
908 unsigned KnownZeroCount = getKnownLeadingZeroCount(SrcMI, TII);
909 if (MI.getOperand(3).getImm() <= KnownZeroCount) {
910 LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
911 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
912 MI.getOperand(0).getReg())
913 .addReg(SrcReg);
914 ToErase = &MI;
915 Simplified = true;
916 NumEliminatedZExt++;
917 }
918 break;
919 }
920
921 // TODO: Any instruction that has an immediate form fed only by a PHI
922 // whose operands are all load immediate can be folded away. We currently
923 // do this for ADD instructions, but should expand it to arithmetic and
924 // binary instructions with immediate forms in the future.
925 case PPC::ADD4:
926 case PPC::ADD8: {
927 auto isSingleUsePHI = [&](MachineOperand *PhiOp) {
928 assert(PhiOp && "Invalid Operand!");
929 MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
930
931 return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) &&
932 MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg());
933 };
934
935 auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp,
936 MachineOperand *PhiOp) {
937 assert(PhiOp && "Invalid Operand!");
938 assert(DominatorOp && "Invalid Operand!");
939 MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
940 MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI);
941
942 // Note: the vregs only show up at odd indices position of PHI Node,
943 // the even indices position save the BB info.
944 for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
945 MachineInstr *LiMI =
946 getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
947 if (!LiMI ||
948 (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8)
949 || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) ||
950 !MDT->dominates(DefDomMI, LiMI))
951 return false;
952 }
953
954 return true;
955 };
956
957 MachineOperand Op1 = MI.getOperand(1);
958 MachineOperand Op2 = MI.getOperand(2);
959 if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2))
960 std::swap(Op1, Op2);
961 else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1))
962 break; // We don't have an ADD fed by LI's that can be transformed
963
964 // Now we know that Op1 is the PHI node and Op2 is the dominator
965 Register DominatorReg = Op2.getReg();
966
967 const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8
968 ? &PPC::G8RC_and_G8RC_NOX0RegClass
969 : &PPC::GPRC_and_GPRC_NOR0RegClass;
970 MRI->setRegClass(DominatorReg, TRC);
971
972 // replace LIs with ADDIs
973 MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI);
974 for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
975 MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
976 LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
977 LLVM_DEBUG(LiMI->dump());
978
979 // There could be repeated registers in the PHI, e.g: %1 =
980 // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
981 // already replaced the def instruction, skip.
982 if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8)
983 continue;
984
985 assert((LiMI->getOpcode() == PPC::LI ||
986 LiMI->getOpcode() == PPC::LI8) &&
987 "Invalid Opcode!");
988 auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI
989 LiMI->removeOperand(1); // remove the imm of LI
990 LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI
991 : PPC::ADDI8));
992 MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI)
993 .addReg(DominatorReg)
994 .addImm(LiImm); // restore the imm of LI
995 LLVM_DEBUG(LiMI->dump());
996 }
997
998 // Replace ADD with COPY
999 LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
1000 LLVM_DEBUG(MI.dump());
1001 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
1002 MI.getOperand(0).getReg())
1003 .add(Op1);
1004 ToErase = &MI;
1005 Simplified = true;
1006 NumOptADDLIs++;
1007 break;
1008 }
1009 case PPC::RLDICR: {
1010 Simplified |= emitRLDICWhenLoweringJumpTables(MI) ||
1011 combineSEXTAndSHL(MI, ToErase);
1012 break;
1013 }
1014 case PPC::RLWINM:
1015 case PPC::RLWINM_rec:
1016 case PPC::RLWINM8:
1017 case PPC::RLWINM8_rec: {
1018 Simplified = TII->combineRLWINM(MI, &ToErase);
1019 if (Simplified)
1020 ++NumRotatesCollapsed;
1021 break;
1022 }
1023 // We will replace TD/TW/TDI/TWI with an unconditional trap if it will
1024 // always trap, we will delete the node if it will never trap.
1025 case PPC::TDI:
1026 case PPC::TWI:
1027 case PPC::TD:
1028 case PPC::TW: {
1029 if (!EnableTrapOptimization) break;
1030 MachineInstr *LiMI1 = getVRegDefOrNull(&MI.getOperand(1), MRI);
1031 MachineInstr *LiMI2 = getVRegDefOrNull(&MI.getOperand(2), MRI);
1032 bool IsOperand2Immediate = MI.getOperand(2).isImm();
1033 // We can only do the optimization if we can get immediates
1034 // from both operands
1035 if (!(LiMI1 && (LiMI1->getOpcode() == PPC::LI ||
1036 LiMI1->getOpcode() == PPC::LI8)))
1037 break;
1038 if (!IsOperand2Immediate &&
1039 !(LiMI2 && (LiMI2->getOpcode() == PPC::LI ||
1040 LiMI2->getOpcode() == PPC::LI8)))
1041 break;
1042
1043 auto ImmOperand0 = MI.getOperand(0).getImm();
1044 auto ImmOperand1 = LiMI1->getOperand(1).getImm();
1045 auto ImmOperand2 = IsOperand2Immediate ? MI.getOperand(2).getImm()
1046 : LiMI2->getOperand(1).getImm();
1047
1048 // We will replace the MI with an unconditional trap if it will always
1049 // trap.
1050 if ((ImmOperand0 == 31) ||
1051 ((ImmOperand0 & 0x10) &&
1052 ((int64_t)ImmOperand1 < (int64_t)ImmOperand2)) ||
1053 ((ImmOperand0 & 0x8) &&
1054 ((int64_t)ImmOperand1 > (int64_t)ImmOperand2)) ||
1055 ((ImmOperand0 & 0x2) &&
1056 ((uint64_t)ImmOperand1 < (uint64_t)ImmOperand2)) ||
1057 ((ImmOperand0 & 0x1) &&
1058 ((uint64_t)ImmOperand1 > (uint64_t)ImmOperand2)) ||
1059 ((ImmOperand0 & 0x4) && (ImmOperand1 == ImmOperand2))) {
1060 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::TRAP));
1061 TrapOpt = true;
1062 }
1063 // We will delete the MI if it will never trap.
1064 ToErase = &MI;
1065 Simplified = true;
1066 break;
1067 }
1068 }
1069 }
1070
1071 // If the last instruction was marked for elimination,
1072 // remove it now.
1073 if (ToErase) {
1074 ToErase->eraseFromParent();
1075 ToErase = nullptr;
1076 }
1077 // Reset TrapOpt to false at the end of the basic block.
1078 if (EnableTrapOptimization)
1079 TrapOpt = false;
1080 }
1081
1082 // Eliminate all the TOC save instructions which are redundant.
1083 Simplified |= eliminateRedundantTOCSaves(TOCSaves);
1084 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
1085 if (FI->mustSaveTOC())
1086 NumTOCSavesInPrologue++;
1087
1088 // We try to eliminate redundant compare instruction.
1089 Simplified |= eliminateRedundantCompare();
1090
1091 return Simplified;
1092 }
1093
1094 // helper functions for eliminateRedundantCompare
isEqOrNe(MachineInstr * BI)1095 static bool isEqOrNe(MachineInstr *BI) {
1096 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1097 unsigned PredCond = PPC::getPredicateCondition(Pred);
1098 return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE);
1099 }
1100
isSupportedCmpOp(unsigned opCode)1101 static bool isSupportedCmpOp(unsigned opCode) {
1102 return (opCode == PPC::CMPLD || opCode == PPC::CMPD ||
1103 opCode == PPC::CMPLW || opCode == PPC::CMPW ||
1104 opCode == PPC::CMPLDI || opCode == PPC::CMPDI ||
1105 opCode == PPC::CMPLWI || opCode == PPC::CMPWI);
1106 }
1107
is64bitCmpOp(unsigned opCode)1108 static bool is64bitCmpOp(unsigned opCode) {
1109 return (opCode == PPC::CMPLD || opCode == PPC::CMPD ||
1110 opCode == PPC::CMPLDI || opCode == PPC::CMPDI);
1111 }
1112
isSignedCmpOp(unsigned opCode)1113 static bool isSignedCmpOp(unsigned opCode) {
1114 return (opCode == PPC::CMPD || opCode == PPC::CMPW ||
1115 opCode == PPC::CMPDI || opCode == PPC::CMPWI);
1116 }
1117
getSignedCmpOpCode(unsigned opCode)1118 static unsigned getSignedCmpOpCode(unsigned opCode) {
1119 if (opCode == PPC::CMPLD) return PPC::CMPD;
1120 if (opCode == PPC::CMPLW) return PPC::CMPW;
1121 if (opCode == PPC::CMPLDI) return PPC::CMPDI;
1122 if (opCode == PPC::CMPLWI) return PPC::CMPWI;
1123 return opCode;
1124 }
1125
1126 // We can decrement immediate x in (GE x) by changing it to (GT x-1) or
1127 // (LT x) to (LE x-1)
getPredicateToDecImm(MachineInstr * BI,MachineInstr * CMPI)1128 static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) {
1129 uint64_t Imm = CMPI->getOperand(2).getImm();
1130 bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1131 if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000))
1132 return 0;
1133
1134 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1135 unsigned PredCond = PPC::getPredicateCondition(Pred);
1136 unsigned PredHint = PPC::getPredicateHint(Pred);
1137 if (PredCond == PPC::PRED_GE)
1138 return PPC::getPredicate(PPC::PRED_GT, PredHint);
1139 if (PredCond == PPC::PRED_LT)
1140 return PPC::getPredicate(PPC::PRED_LE, PredHint);
1141
1142 return 0;
1143 }
1144
1145 // We can increment immediate x in (GT x) by changing it to (GE x+1) or
1146 // (LE x) to (LT x+1)
getPredicateToIncImm(MachineInstr * BI,MachineInstr * CMPI)1147 static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) {
1148 uint64_t Imm = CMPI->getOperand(2).getImm();
1149 bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1150 if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF))
1151 return 0;
1152
1153 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1154 unsigned PredCond = PPC::getPredicateCondition(Pred);
1155 unsigned PredHint = PPC::getPredicateHint(Pred);
1156 if (PredCond == PPC::PRED_GT)
1157 return PPC::getPredicate(PPC::PRED_GE, PredHint);
1158 if (PredCond == PPC::PRED_LE)
1159 return PPC::getPredicate(PPC::PRED_LT, PredHint);
1160
1161 return 0;
1162 }
1163
1164 // This takes a Phi node and returns a register value for the specified BB.
getIncomingRegForBlock(MachineInstr * Phi,MachineBasicBlock * MBB)1165 static unsigned getIncomingRegForBlock(MachineInstr *Phi,
1166 MachineBasicBlock *MBB) {
1167 for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) {
1168 MachineOperand &MO = Phi->getOperand(I);
1169 if (MO.getMBB() == MBB)
1170 return Phi->getOperand(I-1).getReg();
1171 }
1172 llvm_unreachable("invalid src basic block for this Phi node\n");
1173 return 0;
1174 }
1175
1176 // This function tracks the source of the register through register copy.
1177 // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
1178 // assuming that the control comes from BB1 into BB2.
getSrcVReg(unsigned Reg,MachineBasicBlock * BB1,MachineBasicBlock * BB2,MachineRegisterInfo * MRI)1179 static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1,
1180 MachineBasicBlock *BB2, MachineRegisterInfo *MRI) {
1181 unsigned SrcReg = Reg;
1182 while (true) {
1183 unsigned NextReg = SrcReg;
1184 MachineInstr *Inst = MRI->getVRegDef(SrcReg);
1185 if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) {
1186 NextReg = getIncomingRegForBlock(Inst, BB1);
1187 // We track through PHI only once to avoid infinite loop.
1188 BB1 = nullptr;
1189 }
1190 else if (Inst->isFullCopy())
1191 NextReg = Inst->getOperand(1).getReg();
1192 if (NextReg == SrcReg || !Register::isVirtualRegister(NextReg))
1193 break;
1194 SrcReg = NextReg;
1195 }
1196 return SrcReg;
1197 }
1198
eligibleForCompareElimination(MachineBasicBlock & MBB,MachineBasicBlock * & PredMBB,MachineBasicBlock * & MBBtoMoveCmp,MachineRegisterInfo * MRI)1199 static bool eligibleForCompareElimination(MachineBasicBlock &MBB,
1200 MachineBasicBlock *&PredMBB,
1201 MachineBasicBlock *&MBBtoMoveCmp,
1202 MachineRegisterInfo *MRI) {
1203
1204 auto isEligibleBB = [&](MachineBasicBlock &BB) {
1205 auto BII = BB.getFirstInstrTerminator();
1206 // We optimize BBs ending with a conditional branch.
1207 // We check only for BCC here, not BCCLR, because BCCLR
1208 // will be formed only later in the pipeline.
1209 if (BB.succ_size() == 2 &&
1210 BII != BB.instr_end() &&
1211 (*BII).getOpcode() == PPC::BCC &&
1212 (*BII).getOperand(1).isReg()) {
1213 // We optimize only if the condition code is used only by one BCC.
1214 Register CndReg = (*BII).getOperand(1).getReg();
1215 if (!Register::isVirtualRegister(CndReg) || !MRI->hasOneNonDBGUse(CndReg))
1216 return false;
1217
1218 MachineInstr *CMPI = MRI->getVRegDef(CndReg);
1219 // We assume compare and branch are in the same BB for ease of analysis.
1220 if (CMPI->getParent() != &BB)
1221 return false;
1222
1223 // We skip this BB if a physical register is used in comparison.
1224 for (MachineOperand &MO : CMPI->operands())
1225 if (MO.isReg() && !Register::isVirtualRegister(MO.getReg()))
1226 return false;
1227
1228 return true;
1229 }
1230 return false;
1231 };
1232
1233 // If this BB has more than one successor, we can create a new BB and
1234 // move the compare instruction in the new BB.
1235 // So far, we do not move compare instruction to a BB having multiple
1236 // successors to avoid potentially increasing code size.
1237 auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) {
1238 return BB.succ_size() == 1;
1239 };
1240
1241 if (!isEligibleBB(MBB))
1242 return false;
1243
1244 unsigned NumPredBBs = MBB.pred_size();
1245 if (NumPredBBs == 1) {
1246 MachineBasicBlock *TmpMBB = *MBB.pred_begin();
1247 if (isEligibleBB(*TmpMBB)) {
1248 PredMBB = TmpMBB;
1249 MBBtoMoveCmp = nullptr;
1250 return true;
1251 }
1252 }
1253 else if (NumPredBBs == 2) {
1254 // We check for partially redundant case.
1255 // So far, we support cases with only two predecessors
1256 // to avoid increasing the number of instructions.
1257 MachineBasicBlock::pred_iterator PI = MBB.pred_begin();
1258 MachineBasicBlock *Pred1MBB = *PI;
1259 MachineBasicBlock *Pred2MBB = *(PI+1);
1260
1261 if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) {
1262 // We assume Pred1MBB is the BB containing the compare to be merged and
1263 // Pred2MBB is the BB to which we will append a compare instruction.
1264 // Hence we can proceed as is.
1265 }
1266 else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) {
1267 // We need to swap Pred1MBB and Pred2MBB to canonicalize.
1268 std::swap(Pred1MBB, Pred2MBB);
1269 }
1270 else return false;
1271
1272 // Here, Pred2MBB is the BB to which we need to append a compare inst.
1273 // We cannot move the compare instruction if operands are not available
1274 // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
1275 MachineInstr *BI = &*MBB.getFirstInstrTerminator();
1276 MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg());
1277 for (int I = 1; I <= 2; I++)
1278 if (CMPI->getOperand(I).isReg()) {
1279 MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg());
1280 if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI)
1281 return false;
1282 }
1283
1284 PredMBB = Pred1MBB;
1285 MBBtoMoveCmp = Pred2MBB;
1286 return true;
1287 }
1288
1289 return false;
1290 }
1291
1292 // This function will iterate over the input map containing a pair of TOC save
1293 // instruction and a flag. The flag will be set to false if the TOC save is
1294 // proven redundant. This function will erase from the basic block all the TOC
1295 // saves marked as redundant.
eliminateRedundantTOCSaves(std::map<MachineInstr *,bool> & TOCSaves)1296 bool PPCMIPeephole::eliminateRedundantTOCSaves(
1297 std::map<MachineInstr *, bool> &TOCSaves) {
1298 bool Simplified = false;
1299 int NumKept = 0;
1300 for (auto TOCSave : TOCSaves) {
1301 if (!TOCSave.second) {
1302 TOCSave.first->eraseFromParent();
1303 RemoveTOCSave++;
1304 Simplified = true;
1305 } else {
1306 NumKept++;
1307 }
1308 }
1309
1310 if (NumKept > 1)
1311 MultiTOCSaves++;
1312
1313 return Simplified;
1314 }
1315
1316 // If multiple conditional branches are executed based on the (essentially)
1317 // same comparison, we merge compare instructions into one and make multiple
1318 // conditional branches on this comparison.
1319 // For example,
1320 // if (a == 0) { ... }
1321 // else if (a < 0) { ... }
1322 // can be executed by one compare and two conditional branches instead of
1323 // two pairs of a compare and a conditional branch.
1324 //
1325 // This method merges two compare instructions in two MBBs and modifies the
1326 // compare and conditional branch instructions if needed.
1327 // For the above example, the input for this pass looks like:
1328 // cmplwi r3, 0
1329 // beq 0, .LBB0_3
1330 // cmpwi r3, -1
1331 // bgt 0, .LBB0_4
1332 // So, before merging two compares, we need to modify these instructions as
1333 // cmpwi r3, 0 ; cmplwi and cmpwi yield same result for beq
1334 // beq 0, .LBB0_3
1335 // cmpwi r3, 0 ; greather than -1 means greater or equal to 0
1336 // bge 0, .LBB0_4
1337
eliminateRedundantCompare()1338 bool PPCMIPeephole::eliminateRedundantCompare() {
1339 bool Simplified = false;
1340
1341 for (MachineBasicBlock &MBB2 : *MF) {
1342 MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr;
1343
1344 // For fully redundant case, we select two basic blocks MBB1 and MBB2
1345 // as an optimization target if
1346 // - both MBBs end with a conditional branch,
1347 // - MBB1 is the only predecessor of MBB2, and
1348 // - compare does not take a physical register as a operand in both MBBs.
1349 // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
1350 //
1351 // As partially redundant case, we additionally handle if MBB2 has one
1352 // additional predecessor, which has only one successor (MBB2).
1353 // In this case, we move the compare instruction originally in MBB2 into
1354 // MBBtoMoveCmp. This partially redundant case is typically appear by
1355 // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
1356 //
1357 // Overview of CFG of related basic blocks
1358 // Fully redundant case Partially redundant case
1359 // -------- ---------------- --------
1360 // | MBB1 | (w/ 2 succ) | MBBtoMoveCmp | | MBB1 | (w/ 2 succ)
1361 // -------- ---------------- --------
1362 // | \ (w/ 1 succ) \ | \
1363 // | \ \ | \
1364 // | \ |
1365 // -------- --------
1366 // | MBB2 | (w/ 1 pred | MBB2 | (w/ 2 pred
1367 // -------- and 2 succ) -------- and 2 succ)
1368 // | \ | \
1369 // | \ | \
1370 //
1371 if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI))
1372 continue;
1373
1374 MachineInstr *BI1 = &*MBB1->getFirstInstrTerminator();
1375 MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg());
1376
1377 MachineInstr *BI2 = &*MBB2.getFirstInstrTerminator();
1378 MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg());
1379 bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr);
1380
1381 // We cannot optimize an unsupported compare opcode or
1382 // a mix of 32-bit and 64-bit comaprisons
1383 if (!isSupportedCmpOp(CMPI1->getOpcode()) ||
1384 !isSupportedCmpOp(CMPI2->getOpcode()) ||
1385 is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode()))
1386 continue;
1387
1388 unsigned NewOpCode = 0;
1389 unsigned NewPredicate1 = 0, NewPredicate2 = 0;
1390 int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0;
1391 bool SwapOperands = false;
1392
1393 if (CMPI1->getOpcode() != CMPI2->getOpcode()) {
1394 // Typically, unsigned comparison is used for equality check, but
1395 // we replace it with a signed comparison if the comparison
1396 // to be merged is a signed comparison.
1397 // In other cases of opcode mismatch, we cannot optimize this.
1398
1399 // We cannot change opcode when comparing against an immediate
1400 // if the most significant bit of the immediate is one
1401 // due to the difference in sign extension.
1402 auto CmpAgainstImmWithSignBit = [](MachineInstr *I) {
1403 if (!I->getOperand(2).isImm())
1404 return false;
1405 int16_t Imm = (int16_t)I->getOperand(2).getImm();
1406 return Imm < 0;
1407 };
1408
1409 if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) &&
1410 CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode()))
1411 NewOpCode = CMPI1->getOpcode();
1412 else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) &&
1413 getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode())
1414 NewOpCode = CMPI2->getOpcode();
1415 else continue;
1416 }
1417
1418 if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) {
1419 // In case of comparisons between two registers, these two registers
1420 // must be same to merge two comparisons.
1421 unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1422 nullptr, nullptr, MRI);
1423 unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(),
1424 nullptr, nullptr, MRI);
1425 unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1426 MBB1, &MBB2, MRI);
1427 unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(),
1428 MBB1, &MBB2, MRI);
1429
1430 if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) {
1431 // Same pair of registers in the same order; ready to merge as is.
1432 }
1433 else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) {
1434 // Same pair of registers in different order.
1435 // We reverse the predicate to merge compare instructions.
1436 PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm();
1437 NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred);
1438 // In case of partial redundancy, we need to swap operands
1439 // in another compare instruction.
1440 SwapOperands = true;
1441 }
1442 else continue;
1443 }
1444 else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) {
1445 // In case of comparisons between a register and an immediate,
1446 // the operand register must be same for two compare instructions.
1447 unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1448 nullptr, nullptr, MRI);
1449 unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1450 MBB1, &MBB2, MRI);
1451 if (Cmp1Operand1 != Cmp2Operand1)
1452 continue;
1453
1454 NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm();
1455 NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm();
1456
1457 // If immediate are not same, we try to adjust by changing predicate;
1458 // e.g. GT imm means GE (imm+1).
1459 if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) {
1460 int Diff = Imm1 - Imm2;
1461 if (Diff < -2 || Diff > 2)
1462 continue;
1463
1464 unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1);
1465 unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1);
1466 unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2);
1467 unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2);
1468 if (Diff == 2) {
1469 if (PredToInc2 && PredToDec1) {
1470 NewPredicate2 = PredToInc2;
1471 NewPredicate1 = PredToDec1;
1472 NewImm2++;
1473 NewImm1--;
1474 }
1475 }
1476 else if (Diff == 1) {
1477 if (PredToInc2) {
1478 NewImm2++;
1479 NewPredicate2 = PredToInc2;
1480 }
1481 else if (PredToDec1) {
1482 NewImm1--;
1483 NewPredicate1 = PredToDec1;
1484 }
1485 }
1486 else if (Diff == -1) {
1487 if (PredToDec2) {
1488 NewImm2--;
1489 NewPredicate2 = PredToDec2;
1490 }
1491 else if (PredToInc1) {
1492 NewImm1++;
1493 NewPredicate1 = PredToInc1;
1494 }
1495 }
1496 else if (Diff == -2) {
1497 if (PredToDec2 && PredToInc1) {
1498 NewPredicate2 = PredToDec2;
1499 NewPredicate1 = PredToInc1;
1500 NewImm2--;
1501 NewImm1++;
1502 }
1503 }
1504 }
1505
1506 // We cannot merge two compares if the immediates are not same.
1507 if (NewImm2 != NewImm1)
1508 continue;
1509 }
1510
1511 LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
1512 LLVM_DEBUG(CMPI1->dump());
1513 LLVM_DEBUG(BI1->dump());
1514 LLVM_DEBUG(CMPI2->dump());
1515 LLVM_DEBUG(BI2->dump());
1516
1517 // We adjust opcode, predicates and immediate as we determined above.
1518 if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) {
1519 CMPI1->setDesc(TII->get(NewOpCode));
1520 }
1521 if (NewPredicate1) {
1522 BI1->getOperand(0).setImm(NewPredicate1);
1523 }
1524 if (NewPredicate2) {
1525 BI2->getOperand(0).setImm(NewPredicate2);
1526 }
1527 if (NewImm1 != Imm1) {
1528 CMPI1->getOperand(2).setImm(NewImm1);
1529 }
1530
1531 if (IsPartiallyRedundant) {
1532 // We touch up the compare instruction in MBB2 and move it to
1533 // a previous BB to handle partially redundant case.
1534 if (SwapOperands) {
1535 Register Op1 = CMPI2->getOperand(1).getReg();
1536 Register Op2 = CMPI2->getOperand(2).getReg();
1537 CMPI2->getOperand(1).setReg(Op2);
1538 CMPI2->getOperand(2).setReg(Op1);
1539 }
1540 if (NewImm2 != Imm2)
1541 CMPI2->getOperand(2).setImm(NewImm2);
1542
1543 for (int I = 1; I <= 2; I++) {
1544 if (CMPI2->getOperand(I).isReg()) {
1545 MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg());
1546 if (Inst->getParent() != &MBB2)
1547 continue;
1548
1549 assert(Inst->getOpcode() == PPC::PHI &&
1550 "We cannot support if an operand comes from this BB.");
1551 unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp);
1552 CMPI2->getOperand(I).setReg(SrcReg);
1553 }
1554 }
1555 auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator());
1556 MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2));
1557
1558 DebugLoc DL = CMPI2->getDebugLoc();
1559 Register NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass);
1560 BuildMI(MBB2, MBB2.begin(), DL,
1561 TII->get(PPC::PHI), NewVReg)
1562 .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1)
1563 .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp);
1564 BI2->getOperand(1).setReg(NewVReg);
1565 }
1566 else {
1567 // We finally eliminate compare instruction in MBB2.
1568 BI2->getOperand(1).setReg(BI1->getOperand(1).getReg());
1569 CMPI2->eraseFromParent();
1570 }
1571 BI2->getOperand(1).setIsKill(true);
1572 BI1->getOperand(1).setIsKill(false);
1573
1574 LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
1575 LLVM_DEBUG(CMPI1->dump());
1576 LLVM_DEBUG(BI1->dump());
1577 LLVM_DEBUG(BI2->dump());
1578 if (IsPartiallyRedundant) {
1579 LLVM_DEBUG(dbgs() << "The following compare is moved into "
1580 << printMBBReference(*MBBtoMoveCmp)
1581 << " to handle partial redundancy.\n");
1582 LLVM_DEBUG(CMPI2->dump());
1583 }
1584
1585 Simplified = true;
1586 }
1587
1588 return Simplified;
1589 }
1590
1591 // We miss the opportunity to emit an RLDIC when lowering jump tables
1592 // since ISEL sees only a single basic block. When selecting, the clear
1593 // and shift left will be in different blocks.
emitRLDICWhenLoweringJumpTables(MachineInstr & MI)1594 bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI) {
1595 if (MI.getOpcode() != PPC::RLDICR)
1596 return false;
1597
1598 Register SrcReg = MI.getOperand(1).getReg();
1599 if (!Register::isVirtualRegister(SrcReg))
1600 return false;
1601
1602 MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1603 if (SrcMI->getOpcode() != PPC::RLDICL)
1604 return false;
1605
1606 MachineOperand MOpSHSrc = SrcMI->getOperand(2);
1607 MachineOperand MOpMBSrc = SrcMI->getOperand(3);
1608 MachineOperand MOpSHMI = MI.getOperand(2);
1609 MachineOperand MOpMEMI = MI.getOperand(3);
1610 if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() &&
1611 MOpMEMI.isImm()))
1612 return false;
1613
1614 uint64_t SHSrc = MOpSHSrc.getImm();
1615 uint64_t MBSrc = MOpMBSrc.getImm();
1616 uint64_t SHMI = MOpSHMI.getImm();
1617 uint64_t MEMI = MOpMEMI.getImm();
1618 uint64_t NewSH = SHSrc + SHMI;
1619 uint64_t NewMB = MBSrc - SHMI;
1620 if (NewMB > 63 || NewSH > 63)
1621 return false;
1622
1623 // The bits cleared with RLDICL are [0, MBSrc).
1624 // The bits cleared with RLDICR are (MEMI, 63].
1625 // After the sequence, the bits cleared are:
1626 // [0, MBSrc-SHMI) and (MEMI, 63).
1627 //
1628 // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63].
1629 if ((63 - NewSH) != MEMI)
1630 return false;
1631
1632 LLVM_DEBUG(dbgs() << "Converting pair: ");
1633 LLVM_DEBUG(SrcMI->dump());
1634 LLVM_DEBUG(MI.dump());
1635
1636 MI.setDesc(TII->get(PPC::RLDIC));
1637 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
1638 MI.getOperand(2).setImm(NewSH);
1639 MI.getOperand(3).setImm(NewMB);
1640 MI.getOperand(1).setIsKill(SrcMI->getOperand(1).isKill());
1641 SrcMI->getOperand(1).setIsKill(false);
1642
1643 LLVM_DEBUG(dbgs() << "To: ");
1644 LLVM_DEBUG(MI.dump());
1645 NumRotatesCollapsed++;
1646 // If SrcReg has no non-debug use it's safe to delete its def SrcMI.
1647 if (MRI->use_nodbg_empty(SrcReg)) {
1648 assert(!SrcMI->hasImplicitDef() &&
1649 "Not expecting an implicit def with this instr.");
1650 SrcMI->eraseFromParent();
1651 }
1652 return true;
1653 }
1654
1655 // For case in LLVM IR
1656 // entry:
1657 // %iconv = sext i32 %index to i64
1658 // br i1 undef label %true, label %false
1659 // true:
1660 // %ptr = getelementptr inbounds i32, i32* null, i64 %iconv
1661 // ...
1662 // PPCISelLowering::combineSHL fails to combine, because sext and shl are in
1663 // different BBs when conducting instruction selection. We can do a peephole
1664 // optimization to combine these two instructions into extswsli after
1665 // instruction selection.
combineSEXTAndSHL(MachineInstr & MI,MachineInstr * & ToErase)1666 bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI,
1667 MachineInstr *&ToErase) {
1668 if (MI.getOpcode() != PPC::RLDICR)
1669 return false;
1670
1671 if (!MF->getSubtarget<PPCSubtarget>().isISA3_0())
1672 return false;
1673
1674 assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands");
1675
1676 MachineOperand MOpSHMI = MI.getOperand(2);
1677 MachineOperand MOpMEMI = MI.getOperand(3);
1678 if (!(MOpSHMI.isImm() && MOpMEMI.isImm()))
1679 return false;
1680
1681 uint64_t SHMI = MOpSHMI.getImm();
1682 uint64_t MEMI = MOpMEMI.getImm();
1683 if (SHMI + MEMI != 63)
1684 return false;
1685
1686 Register SrcReg = MI.getOperand(1).getReg();
1687 if (!Register::isVirtualRegister(SrcReg))
1688 return false;
1689
1690 MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1691 if (SrcMI->getOpcode() != PPC::EXTSW &&
1692 SrcMI->getOpcode() != PPC::EXTSW_32_64)
1693 return false;
1694
1695 // If the register defined by extsw has more than one use, combination is not
1696 // needed.
1697 if (!MRI->hasOneNonDBGUse(SrcReg))
1698 return false;
1699
1700 assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands");
1701 assert(SrcMI->getOperand(1).isReg() &&
1702 "EXTSW's second operand should be a register");
1703 if (!Register::isVirtualRegister(SrcMI->getOperand(1).getReg()))
1704 return false;
1705
1706 LLVM_DEBUG(dbgs() << "Combining pair: ");
1707 LLVM_DEBUG(SrcMI->dump());
1708 LLVM_DEBUG(MI.dump());
1709
1710 MachineInstr *NewInstr =
1711 BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(),
1712 SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI)
1713 : TII->get(PPC::EXTSWSLI_32_64),
1714 MI.getOperand(0).getReg())
1715 .add(SrcMI->getOperand(1))
1716 .add(MOpSHMI);
1717 (void)NewInstr;
1718
1719 LLVM_DEBUG(dbgs() << "TO: ");
1720 LLVM_DEBUG(NewInstr->dump());
1721 ++NumEXTSWAndSLDICombined;
1722 ToErase = &MI;
1723 // SrcMI, which is extsw, is of no use now, erase it.
1724 SrcMI->eraseFromParent();
1725 return true;
1726 }
1727
1728 } // end default namespace
1729
1730 INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
1731 "PowerPC MI Peephole Optimization", false, false)
1732 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1733 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1734 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
1735 INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
1736 "PowerPC MI Peephole Optimization", false, false)
1737
1738 char PPCMIPeephole::ID = 0;
1739 FunctionPass*
createPPCMIPeepholePass()1740 llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }
1741