1 //===------ PPCLoopInstrFormPrep.cpp - Loop Instr Form Prep Pass ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a pass to prepare loops for ppc preferred addressing
10 // modes, leveraging different instruction form. (eg: DS/DQ form, D/DS form with
11 // update)
12 // Additional PHIs are created for loop induction variables used by load/store
13 // instructions so that preferred addressing modes can be used.
14 //
15 // 1: DS/DQ form preparation, prepare the load/store instructions so that they
16 // can satisfy the DS/DQ form displacement requirements.
17 // Generically, this means transforming loops like this:
18 // for (int i = 0; i < n; ++i) {
19 // unsigned long x1 = *(unsigned long *)(p + i + 5);
20 // unsigned long x2 = *(unsigned long *)(p + i + 9);
21 // }
22 //
23 // to look like this:
24 //
25 // unsigned NewP = p + 5;
26 // for (int i = 0; i < n; ++i) {
27 // unsigned long x1 = *(unsigned long *)(i + NewP);
28 // unsigned long x2 = *(unsigned long *)(i + NewP + 4);
29 // }
30 //
31 // 2: D/DS form with update preparation, prepare the load/store instructions so
32 // that we can use update form to do pre-increment.
33 // Generically, this means transforming loops like this:
34 // for (int i = 0; i < n; ++i)
35 // array[i] = c;
36 //
37 // to look like this:
38 //
39 // T *p = array[-1];
40 // for (int i = 0; i < n; ++i)
41 // *++p = c;
42 //
43 // 3: common multiple chains for the load/stores with same offsets in the loop,
44 // so that we can reuse the offsets and reduce the register pressure in the
45 // loop. This transformation can also increase the loop ILP as now each chain
46 // uses its own loop induction add/addi. But this will increase the number of
47 // add/addi in the loop.
48 //
49 // Generically, this means transforming loops like this:
50 //
51 // char *p;
52 // A1 = p + base1
53 // A2 = p + base1 + offset
54 // B1 = p + base2
55 // B2 = p + base2 + offset
56 //
57 // for (int i = 0; i < n; i++)
58 // unsigned long x1 = *(unsigned long *)(A1 + i);
59 // unsigned long x2 = *(unsigned long *)(A2 + i)
60 // unsigned long x3 = *(unsigned long *)(B1 + i);
61 // unsigned long x4 = *(unsigned long *)(B2 + i);
62 // }
63 //
64 // to look like this:
65 //
66 // A1_new = p + base1 // chain 1
67 // B1_new = p + base2 // chain 2, now inside the loop, common offset is
68 // // reused.
69 //
70 // for (long long i = 0; i < n; i+=count) {
71 // unsigned long x1 = *(unsigned long *)(A1_new + i);
72 // unsigned long x2 = *(unsigned long *)((A1_new + i) + offset);
73 // unsigned long x3 = *(unsigned long *)(B1_new + i);
74 // unsigned long x4 = *(unsigned long *)((B1_new + i) + offset);
75 // }
76 //===----------------------------------------------------------------------===//
77
78 #include "PPC.h"
79 #include "PPCSubtarget.h"
80 #include "PPCTargetMachine.h"
81 #include "llvm/ADT/DepthFirstIterator.h"
82 #include "llvm/ADT/SmallPtrSet.h"
83 #include "llvm/ADT/SmallSet.h"
84 #include "llvm/ADT/SmallVector.h"
85 #include "llvm/ADT/Statistic.h"
86 #include "llvm/Analysis/LoopInfo.h"
87 #include "llvm/Analysis/ScalarEvolution.h"
88 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
89 #include "llvm/IR/BasicBlock.h"
90 #include "llvm/IR/CFG.h"
91 #include "llvm/IR/Dominators.h"
92 #include "llvm/IR/Instruction.h"
93 #include "llvm/IR/Instructions.h"
94 #include "llvm/IR/IntrinsicInst.h"
95 #include "llvm/IR/IntrinsicsPowerPC.h"
96 #include "llvm/IR/Module.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/InitializePasses.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Transforms/Scalar.h"
105 #include "llvm/Transforms/Utils.h"
106 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
107 #include "llvm/Transforms/Utils/Local.h"
108 #include "llvm/Transforms/Utils/LoopUtils.h"
109 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
110 #include <cassert>
111 #include <iterator>
112 #include <utility>
113
114 #define DEBUG_TYPE "ppc-loop-instr-form-prep"
115
116 using namespace llvm;
117
118 static cl::opt<unsigned>
119 MaxVarsPrep("ppc-formprep-max-vars", cl::Hidden, cl::init(24),
120 cl::desc("Potential common base number threshold per function "
121 "for PPC loop prep"));
122
123 static cl::opt<bool> PreferUpdateForm("ppc-formprep-prefer-update",
124 cl::init(true), cl::Hidden,
125 cl::desc("prefer update form when ds form is also a update form"));
126
127 static cl::opt<bool> EnableUpdateFormForNonConstInc(
128 "ppc-formprep-update-nonconst-inc", cl::init(false), cl::Hidden,
129 cl::desc("prepare update form when the load/store increment is a loop "
130 "invariant non-const value."));
131
132 static cl::opt<bool> EnableChainCommoning(
133 "ppc-formprep-chain-commoning", cl::init(false), cl::Hidden,
134 cl::desc("Enable chain commoning in PPC loop prepare pass."));
135
136 // Sum of following 3 per loop thresholds for all loops can not be larger
137 // than MaxVarsPrep.
138 // now the thresholds for each kind prep are exterimental values on Power9.
139 static cl::opt<unsigned> MaxVarsUpdateForm("ppc-preinc-prep-max-vars",
140 cl::Hidden, cl::init(3),
141 cl::desc("Potential PHI threshold per loop for PPC loop prep of update "
142 "form"));
143
144 static cl::opt<unsigned> MaxVarsDSForm("ppc-dsprep-max-vars",
145 cl::Hidden, cl::init(3),
146 cl::desc("Potential PHI threshold per loop for PPC loop prep of DS form"));
147
148 static cl::opt<unsigned> MaxVarsDQForm("ppc-dqprep-max-vars",
149 cl::Hidden, cl::init(8),
150 cl::desc("Potential PHI threshold per loop for PPC loop prep of DQ form"));
151
152 // Commoning chain will reduce the register pressure, so we don't consider about
153 // the PHI nodes number.
154 // But commoning chain will increase the addi/add number in the loop and also
155 // increase loop ILP. Maximum chain number should be same with hardware
156 // IssueWidth, because we won't benefit from ILP if the parallel chains number
157 // is bigger than IssueWidth. We assume there are 2 chains in one bucket, so
158 // there would be 4 buckets at most on P9(IssueWidth is 8).
159 static cl::opt<unsigned> MaxVarsChainCommon(
160 "ppc-chaincommon-max-vars", cl::Hidden, cl::init(4),
161 cl::desc("Bucket number per loop for PPC loop chain common"));
162
163 // If would not be profitable if the common base has only one load/store, ISEL
164 // should already be able to choose best load/store form based on offset for
165 // single load/store. Set minimal profitable value default to 2 and make it as
166 // an option.
167 static cl::opt<unsigned> DispFormPrepMinThreshold("ppc-dispprep-min-threshold",
168 cl::Hidden, cl::init(2),
169 cl::desc("Minimal common base load/store instructions triggering DS/DQ form "
170 "preparation"));
171
172 static cl::opt<unsigned> ChainCommonPrepMinThreshold(
173 "ppc-chaincommon-min-threshold", cl::Hidden, cl::init(4),
174 cl::desc("Minimal common base load/store instructions triggering chain "
175 "commoning preparation. Must be not smaller than 4"));
176
177 STATISTIC(PHINodeAlreadyExistsUpdate, "PHI node already in pre-increment form");
178 STATISTIC(PHINodeAlreadyExistsDS, "PHI node already in DS form");
179 STATISTIC(PHINodeAlreadyExistsDQ, "PHI node already in DQ form");
180 STATISTIC(DSFormChainRewritten, "Num of DS form chain rewritten");
181 STATISTIC(DQFormChainRewritten, "Num of DQ form chain rewritten");
182 STATISTIC(UpdFormChainRewritten, "Num of update form chain rewritten");
183 STATISTIC(ChainCommoningRewritten, "Num of commoning chains");
184
185 namespace {
186 struct BucketElement {
BucketElement__anonfe56763d0111::BucketElement187 BucketElement(const SCEV *O, Instruction *I) : Offset(O), Instr(I) {}
BucketElement__anonfe56763d0111::BucketElement188 BucketElement(Instruction *I) : Offset(nullptr), Instr(I) {}
189
190 const SCEV *Offset;
191 Instruction *Instr;
192 };
193
194 struct Bucket {
Bucket__anonfe56763d0111::Bucket195 Bucket(const SCEV *B, Instruction *I)
196 : BaseSCEV(B), Elements(1, BucketElement(I)) {
197 ChainSize = 0;
198 }
199
200 // The base of the whole bucket.
201 const SCEV *BaseSCEV;
202
203 // All elements in the bucket. In the bucket, the element with the BaseSCEV
204 // has no offset and all other elements are stored as offsets to the
205 // BaseSCEV.
206 SmallVector<BucketElement, 16> Elements;
207
208 // The potential chains size. This is used for chain commoning only.
209 unsigned ChainSize;
210
211 // The base for each potential chain. This is used for chain commoning only.
212 SmallVector<BucketElement, 16> ChainBases;
213 };
214
215 // "UpdateForm" is not a real PPC instruction form, it stands for dform
216 // load/store with update like ldu/stdu, or Prefetch intrinsic.
217 // For DS form instructions, their displacements must be multiple of 4.
218 // For DQ form instructions, their displacements must be multiple of 16.
219 enum PrepForm { UpdateForm = 1, DSForm = 4, DQForm = 16, ChainCommoning };
220
221 class PPCLoopInstrFormPrep : public FunctionPass {
222 public:
223 static char ID; // Pass ID, replacement for typeid
224
PPCLoopInstrFormPrep()225 PPCLoopInstrFormPrep() : FunctionPass(ID) {
226 initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry());
227 }
228
PPCLoopInstrFormPrep(PPCTargetMachine & TM)229 PPCLoopInstrFormPrep(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) {
230 initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry());
231 }
232
getAnalysisUsage(AnalysisUsage & AU) const233 void getAnalysisUsage(AnalysisUsage &AU) const override {
234 AU.addPreserved<DominatorTreeWrapperPass>();
235 AU.addRequired<LoopInfoWrapperPass>();
236 AU.addPreserved<LoopInfoWrapperPass>();
237 AU.addRequired<ScalarEvolutionWrapperPass>();
238 }
239
240 bool runOnFunction(Function &F) override;
241
242 private:
243 PPCTargetMachine *TM = nullptr;
244 const PPCSubtarget *ST;
245 DominatorTree *DT;
246 LoopInfo *LI;
247 ScalarEvolution *SE;
248 bool PreserveLCSSA;
249 bool HasCandidateForPrepare;
250
251 /// Successful preparation number for Update/DS/DQ form in all inner most
252 /// loops. One successful preparation will put one common base out of loop,
253 /// this may leads to register presure like LICM does.
254 /// Make sure total preparation number can be controlled by option.
255 unsigned SuccPrepCount;
256
257 bool runOnLoop(Loop *L);
258
259 /// Check if required PHI node is already exist in Loop \p L.
260 bool alreadyPrepared(Loop *L, Instruction *MemI,
261 const SCEV *BasePtrStartSCEV,
262 const SCEV *BasePtrIncSCEV, PrepForm Form);
263
264 /// Get the value which defines the increment SCEV \p BasePtrIncSCEV.
265 Value *getNodeForInc(Loop *L, Instruction *MemI,
266 const SCEV *BasePtrIncSCEV);
267
268 /// Common chains to reuse offsets for a loop to reduce register pressure.
269 bool chainCommoning(Loop *L, SmallVector<Bucket, 16> &Buckets);
270
271 /// Find out the potential commoning chains and their bases.
272 bool prepareBasesForCommoningChains(Bucket &BucketChain);
273
274 /// Rewrite load/store according to the common chains.
275 bool
276 rewriteLoadStoresForCommoningChains(Loop *L, Bucket &Bucket,
277 SmallSet<BasicBlock *, 16> &BBChanged);
278
279 /// Collect condition matched(\p isValidCandidate() returns true)
280 /// candidates in Loop \p L.
281 SmallVector<Bucket, 16> collectCandidates(
282 Loop *L,
283 std::function<bool(const Instruction *, Value *, const Type *)>
284 isValidCandidate,
285 std::function<bool(const SCEV *)> isValidDiff,
286 unsigned MaxCandidateNum);
287
288 /// Add a candidate to candidates \p Buckets if diff between candidate and
289 /// one base in \p Buckets matches \p isValidDiff.
290 void addOneCandidate(Instruction *MemI, const SCEV *LSCEV,
291 SmallVector<Bucket, 16> &Buckets,
292 std::function<bool(const SCEV *)> isValidDiff,
293 unsigned MaxCandidateNum);
294
295 /// Prepare all candidates in \p Buckets for update form.
296 bool updateFormPrep(Loop *L, SmallVector<Bucket, 16> &Buckets);
297
298 /// Prepare all candidates in \p Buckets for displacement form, now for
299 /// ds/dq.
300 bool dispFormPrep(Loop *L, SmallVector<Bucket, 16> &Buckets, PrepForm Form);
301
302 /// Prepare for one chain \p BucketChain, find the best base element and
303 /// update all other elements in \p BucketChain accordingly.
304 /// \p Form is used to find the best base element.
305 /// If success, best base element must be stored as the first element of
306 /// \p BucketChain.
307 /// Return false if no base element found, otherwise return true.
308 bool prepareBaseForDispFormChain(Bucket &BucketChain, PrepForm Form);
309
310 /// Prepare for one chain \p BucketChain, find the best base element and
311 /// update all other elements in \p BucketChain accordingly.
312 /// If success, best base element must be stored as the first element of
313 /// \p BucketChain.
314 /// Return false if no base element found, otherwise return true.
315 bool prepareBaseForUpdateFormChain(Bucket &BucketChain);
316
317 /// Rewrite load/store instructions in \p BucketChain according to
318 /// preparation.
319 bool rewriteLoadStores(Loop *L, Bucket &BucketChain,
320 SmallSet<BasicBlock *, 16> &BBChanged,
321 PrepForm Form);
322
323 /// Rewrite for the base load/store of a chain.
324 std::pair<Instruction *, Instruction *>
325 rewriteForBase(Loop *L, const SCEVAddRecExpr *BasePtrSCEV,
326 Instruction *BaseMemI, bool CanPreInc, PrepForm Form,
327 SCEVExpander &SCEVE, SmallPtrSet<Value *, 16> &DeletedPtrs);
328
329 /// Rewrite for the other load/stores of a chain according to the new \p
330 /// Base.
331 Instruction *
332 rewriteForBucketElement(std::pair<Instruction *, Instruction *> Base,
333 const BucketElement &Element, Value *OffToBase,
334 SmallPtrSet<Value *, 16> &DeletedPtrs);
335 };
336
337 } // end anonymous namespace
338
339 char PPCLoopInstrFormPrep::ID = 0;
340 static const char *name = "Prepare loop for ppc preferred instruction forms";
341 INITIALIZE_PASS_BEGIN(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false)
342 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
343 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
344 INITIALIZE_PASS_END(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false)
345
346 static constexpr StringRef PHINodeNameSuffix = ".phi";
347 static constexpr StringRef CastNodeNameSuffix = ".cast";
348 static constexpr StringRef GEPNodeIncNameSuffix = ".inc";
349 static constexpr StringRef GEPNodeOffNameSuffix = ".off";
350
createPPCLoopInstrFormPrepPass(PPCTargetMachine & TM)351 FunctionPass *llvm::createPPCLoopInstrFormPrepPass(PPCTargetMachine &TM) {
352 return new PPCLoopInstrFormPrep(TM);
353 }
354
IsPtrInBounds(Value * BasePtr)355 static bool IsPtrInBounds(Value *BasePtr) {
356 Value *StrippedBasePtr = BasePtr;
357 while (BitCastInst *BC = dyn_cast<BitCastInst>(StrippedBasePtr))
358 StrippedBasePtr = BC->getOperand(0);
359 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(StrippedBasePtr))
360 return GEP->isInBounds();
361
362 return false;
363 }
364
getInstrName(const Value * I,StringRef Suffix)365 static std::string getInstrName(const Value *I, StringRef Suffix) {
366 assert(I && "Invalid paramater!");
367 if (I->hasName())
368 return (I->getName() + Suffix).str();
369 else
370 return "";
371 }
372
getPointerOperandAndType(Value * MemI,Type ** PtrElementType=nullptr)373 static Value *getPointerOperandAndType(Value *MemI,
374 Type **PtrElementType = nullptr) {
375
376 Value *PtrValue = nullptr;
377 Type *PointerElementType = nullptr;
378
379 if (LoadInst *LMemI = dyn_cast<LoadInst>(MemI)) {
380 PtrValue = LMemI->getPointerOperand();
381 PointerElementType = LMemI->getType();
382 } else if (StoreInst *SMemI = dyn_cast<StoreInst>(MemI)) {
383 PtrValue = SMemI->getPointerOperand();
384 PointerElementType = SMemI->getValueOperand()->getType();
385 } else if (IntrinsicInst *IMemI = dyn_cast<IntrinsicInst>(MemI)) {
386 PointerElementType = Type::getInt8Ty(MemI->getContext());
387 if (IMemI->getIntrinsicID() == Intrinsic::prefetch ||
388 IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) {
389 PtrValue = IMemI->getArgOperand(0);
390 } else if (IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp) {
391 PtrValue = IMemI->getArgOperand(1);
392 }
393 }
394 /*Get ElementType if PtrElementType is not null.*/
395 if (PtrElementType)
396 *PtrElementType = PointerElementType;
397
398 return PtrValue;
399 }
400
runOnFunction(Function & F)401 bool PPCLoopInstrFormPrep::runOnFunction(Function &F) {
402 if (skipFunction(F))
403 return false;
404
405 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
406 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
407 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
408 DT = DTWP ? &DTWP->getDomTree() : nullptr;
409 PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
410 ST = TM ? TM->getSubtargetImpl(F) : nullptr;
411 SuccPrepCount = 0;
412
413 bool MadeChange = false;
414
415 for (Loop *I : *LI)
416 for (Loop *L : depth_first(I))
417 MadeChange |= runOnLoop(L);
418
419 return MadeChange;
420 }
421
422 // Finding the minimal(chain_number + reusable_offset_number) is a complicated
423 // algorithmic problem.
424 // For now, the algorithm used here is simply adjusted to handle the case for
425 // manually unrolling cases.
426 // FIXME: use a more powerful algorithm to find minimal sum of chain_number and
427 // reusable_offset_number for one base with multiple offsets.
prepareBasesForCommoningChains(Bucket & CBucket)428 bool PPCLoopInstrFormPrep::prepareBasesForCommoningChains(Bucket &CBucket) {
429 // The minimal size for profitable chain commoning:
430 // A1 = base + offset1
431 // A2 = base + offset2 (offset2 - offset1 = X)
432 // A3 = base + offset3
433 // A4 = base + offset4 (offset4 - offset3 = X)
434 // ======>
435 // base1 = base + offset1
436 // base2 = base + offset3
437 // A1 = base1
438 // A2 = base1 + X
439 // A3 = base2
440 // A4 = base2 + X
441 //
442 // There is benefit because of reuse of offest 'X'.
443
444 assert(ChainCommonPrepMinThreshold >= 4 &&
445 "Thredhold can not be smaller than 4!\n");
446 if (CBucket.Elements.size() < ChainCommonPrepMinThreshold)
447 return false;
448
449 // We simply select the FirstOffset as the first reusable offset between each
450 // chain element 1 and element 0.
451 const SCEV *FirstOffset = CBucket.Elements[1].Offset;
452
453 // Figure out how many times above FirstOffset is used in the chain.
454 // For a success commoning chain candidate, offset difference between each
455 // chain element 1 and element 0 must be also FirstOffset.
456 unsigned FirstOffsetReusedCount = 1;
457
458 // Figure out how many times above FirstOffset is used in the first chain.
459 // Chain number is FirstOffsetReusedCount / FirstOffsetReusedCountInFirstChain
460 unsigned FirstOffsetReusedCountInFirstChain = 1;
461
462 unsigned EleNum = CBucket.Elements.size();
463 bool SawChainSeparater = false;
464 for (unsigned j = 2; j != EleNum; ++j) {
465 if (SE->getMinusSCEV(CBucket.Elements[j].Offset,
466 CBucket.Elements[j - 1].Offset) == FirstOffset) {
467 if (!SawChainSeparater)
468 FirstOffsetReusedCountInFirstChain++;
469 FirstOffsetReusedCount++;
470 } else
471 // For now, if we meet any offset which is not FirstOffset, we assume we
472 // find a new Chain.
473 // This makes us miss some opportunities.
474 // For example, we can common:
475 //
476 // {OffsetA, Offset A, OffsetB, OffsetA, OffsetA, OffsetB}
477 //
478 // as two chains:
479 // {{OffsetA, Offset A, OffsetB}, {OffsetA, OffsetA, OffsetB}}
480 // FirstOffsetReusedCount = 4; FirstOffsetReusedCountInFirstChain = 2
481 //
482 // But we fail to common:
483 //
484 // {OffsetA, OffsetB, OffsetA, OffsetA, OffsetB, OffsetA}
485 // FirstOffsetReusedCount = 4; FirstOffsetReusedCountInFirstChain = 1
486
487 SawChainSeparater = true;
488 }
489
490 // FirstOffset is not reused, skip this bucket.
491 if (FirstOffsetReusedCount == 1)
492 return false;
493
494 unsigned ChainNum =
495 FirstOffsetReusedCount / FirstOffsetReusedCountInFirstChain;
496
497 // All elements are increased by FirstOffset.
498 // The number of chains should be sqrt(EleNum).
499 if (!SawChainSeparater)
500 ChainNum = (unsigned)sqrt((double)EleNum);
501
502 CBucket.ChainSize = (unsigned)(EleNum / ChainNum);
503
504 // If this is not a perfect chain(eg: not all elements can be put inside
505 // commoning chains.), skip now.
506 if (CBucket.ChainSize * ChainNum != EleNum)
507 return false;
508
509 if (SawChainSeparater) {
510 // Check that the offset seqs are the same for all chains.
511 for (unsigned i = 1; i < CBucket.ChainSize; i++)
512 for (unsigned j = 1; j < ChainNum; j++)
513 if (CBucket.Elements[i].Offset !=
514 SE->getMinusSCEV(CBucket.Elements[i + j * CBucket.ChainSize].Offset,
515 CBucket.Elements[j * CBucket.ChainSize].Offset))
516 return false;
517 }
518
519 for (unsigned i = 0; i < ChainNum; i++)
520 CBucket.ChainBases.push_back(CBucket.Elements[i * CBucket.ChainSize]);
521
522 LLVM_DEBUG(dbgs() << "Bucket has " << ChainNum << " chains.\n");
523
524 return true;
525 }
526
chainCommoning(Loop * L,SmallVector<Bucket,16> & Buckets)527 bool PPCLoopInstrFormPrep::chainCommoning(Loop *L,
528 SmallVector<Bucket, 16> &Buckets) {
529 bool MadeChange = false;
530
531 if (Buckets.empty())
532 return MadeChange;
533
534 SmallSet<BasicBlock *, 16> BBChanged;
535
536 for (auto &Bucket : Buckets) {
537 if (prepareBasesForCommoningChains(Bucket))
538 MadeChange |= rewriteLoadStoresForCommoningChains(L, Bucket, BBChanged);
539 }
540
541 if (MadeChange)
542 for (auto *BB : BBChanged)
543 DeleteDeadPHIs(BB);
544 return MadeChange;
545 }
546
rewriteLoadStoresForCommoningChains(Loop * L,Bucket & Bucket,SmallSet<BasicBlock *,16> & BBChanged)547 bool PPCLoopInstrFormPrep::rewriteLoadStoresForCommoningChains(
548 Loop *L, Bucket &Bucket, SmallSet<BasicBlock *, 16> &BBChanged) {
549 bool MadeChange = false;
550
551 assert(Bucket.Elements.size() ==
552 Bucket.ChainBases.size() * Bucket.ChainSize &&
553 "invalid bucket for chain commoning!\n");
554 SmallPtrSet<Value *, 16> DeletedPtrs;
555
556 BasicBlock *Header = L->getHeader();
557 BasicBlock *LoopPredecessor = L->getLoopPredecessor();
558
559 SCEVExpander SCEVE(*SE, Header->getModule()->getDataLayout(),
560 "loopprepare-chaincommon");
561
562 for (unsigned ChainIdx = 0; ChainIdx < Bucket.ChainBases.size(); ++ChainIdx) {
563 unsigned BaseElemIdx = Bucket.ChainSize * ChainIdx;
564 const SCEV *BaseSCEV =
565 ChainIdx ? SE->getAddExpr(Bucket.BaseSCEV,
566 Bucket.Elements[BaseElemIdx].Offset)
567 : Bucket.BaseSCEV;
568 const SCEVAddRecExpr *BasePtrSCEV = cast<SCEVAddRecExpr>(BaseSCEV);
569
570 // Make sure the base is able to expand.
571 if (!SCEVE.isSafeToExpand(BasePtrSCEV->getStart()))
572 return MadeChange;
573
574 assert(BasePtrSCEV->isAffine() &&
575 "Invalid SCEV type for the base ptr for a candidate chain!\n");
576
577 std::pair<Instruction *, Instruction *> Base = rewriteForBase(
578 L, BasePtrSCEV, Bucket.Elements[BaseElemIdx].Instr,
579 false /* CanPreInc */, ChainCommoning, SCEVE, DeletedPtrs);
580
581 if (!Base.first || !Base.second)
582 return MadeChange;
583
584 // Keep track of the replacement pointer values we've inserted so that we
585 // don't generate more pointer values than necessary.
586 SmallPtrSet<Value *, 16> NewPtrs;
587 NewPtrs.insert(Base.first);
588
589 for (unsigned Idx = BaseElemIdx + 1; Idx < BaseElemIdx + Bucket.ChainSize;
590 ++Idx) {
591 BucketElement &I = Bucket.Elements[Idx];
592 Value *Ptr = getPointerOperandAndType(I.Instr);
593 assert(Ptr && "No pointer operand");
594 if (NewPtrs.count(Ptr))
595 continue;
596
597 const SCEV *OffsetSCEV =
598 BaseElemIdx ? SE->getMinusSCEV(Bucket.Elements[Idx].Offset,
599 Bucket.Elements[BaseElemIdx].Offset)
600 : Bucket.Elements[Idx].Offset;
601
602 // Make sure offset is able to expand. Only need to check one time as the
603 // offsets are reused between different chains.
604 if (!BaseElemIdx)
605 if (!SCEVE.isSafeToExpand(OffsetSCEV))
606 return false;
607
608 Value *OffsetValue = SCEVE.expandCodeFor(
609 OffsetSCEV, OffsetSCEV->getType(), LoopPredecessor->getTerminator());
610
611 Instruction *NewPtr = rewriteForBucketElement(Base, Bucket.Elements[Idx],
612 OffsetValue, DeletedPtrs);
613
614 assert(NewPtr && "Wrong rewrite!\n");
615 NewPtrs.insert(NewPtr);
616 }
617
618 ++ChainCommoningRewritten;
619 }
620
621 // Clear the rewriter cache, because values that are in the rewriter's cache
622 // can be deleted below, causing the AssertingVH in the cache to trigger.
623 SCEVE.clear();
624
625 for (auto *Ptr : DeletedPtrs) {
626 if (Instruction *IDel = dyn_cast<Instruction>(Ptr))
627 BBChanged.insert(IDel->getParent());
628 RecursivelyDeleteTriviallyDeadInstructions(Ptr);
629 }
630
631 MadeChange = true;
632 return MadeChange;
633 }
634
635 // Rewrite the new base according to BasePtrSCEV.
636 // bb.loop.preheader:
637 // %newstart = ...
638 // bb.loop.body:
639 // %phinode = phi [ %newstart, %bb.loop.preheader ], [ %add, %bb.loop.body ]
640 // ...
641 // %add = getelementptr %phinode, %inc
642 //
643 // First returned instruciton is %phinode (or a type cast to %phinode), caller
644 // needs this value to rewrite other load/stores in the same chain.
645 // Second returned instruction is %add, caller needs this value to rewrite other
646 // load/stores in the same chain.
647 std::pair<Instruction *, Instruction *>
rewriteForBase(Loop * L,const SCEVAddRecExpr * BasePtrSCEV,Instruction * BaseMemI,bool CanPreInc,PrepForm Form,SCEVExpander & SCEVE,SmallPtrSet<Value *,16> & DeletedPtrs)648 PPCLoopInstrFormPrep::rewriteForBase(Loop *L, const SCEVAddRecExpr *BasePtrSCEV,
649 Instruction *BaseMemI, bool CanPreInc,
650 PrepForm Form, SCEVExpander &SCEVE,
651 SmallPtrSet<Value *, 16> &DeletedPtrs) {
652
653 LLVM_DEBUG(dbgs() << "PIP: Transforming: " << *BasePtrSCEV << "\n");
654
655 assert(BasePtrSCEV->getLoop() == L && "AddRec for the wrong loop?");
656
657 Value *BasePtr = getPointerOperandAndType(BaseMemI);
658 assert(BasePtr && "No pointer operand");
659
660 Type *I8Ty = Type::getInt8Ty(BaseMemI->getParent()->getContext());
661 Type *I8PtrTy =
662 Type::getInt8PtrTy(BaseMemI->getParent()->getContext(),
663 BasePtr->getType()->getPointerAddressSpace());
664
665 bool IsConstantInc = false;
666 const SCEV *BasePtrIncSCEV = BasePtrSCEV->getStepRecurrence(*SE);
667 Value *IncNode = getNodeForInc(L, BaseMemI, BasePtrIncSCEV);
668
669 const SCEVConstant *BasePtrIncConstantSCEV =
670 dyn_cast<SCEVConstant>(BasePtrIncSCEV);
671 if (BasePtrIncConstantSCEV)
672 IsConstantInc = true;
673
674 // No valid representation for the increment.
675 if (!IncNode) {
676 LLVM_DEBUG(dbgs() << "Loop Increasement can not be represented!\n");
677 return std::make_pair(nullptr, nullptr);
678 }
679
680 if (Form == UpdateForm && !IsConstantInc && !EnableUpdateFormForNonConstInc) {
681 LLVM_DEBUG(
682 dbgs()
683 << "Update form prepare for non-const increment is not enabled!\n");
684 return std::make_pair(nullptr, nullptr);
685 }
686
687 const SCEV *BasePtrStartSCEV = nullptr;
688 if (CanPreInc) {
689 assert(SE->isLoopInvariant(BasePtrIncSCEV, L) &&
690 "Increment is not loop invariant!\n");
691 BasePtrStartSCEV = SE->getMinusSCEV(BasePtrSCEV->getStart(),
692 IsConstantInc ? BasePtrIncConstantSCEV
693 : BasePtrIncSCEV);
694 } else
695 BasePtrStartSCEV = BasePtrSCEV->getStart();
696
697 if (alreadyPrepared(L, BaseMemI, BasePtrStartSCEV, BasePtrIncSCEV, Form)) {
698 LLVM_DEBUG(dbgs() << "Instruction form is already prepared!\n");
699 return std::make_pair(nullptr, nullptr);
700 }
701
702 LLVM_DEBUG(dbgs() << "PIP: New start is: " << *BasePtrStartSCEV << "\n");
703
704 BasicBlock *Header = L->getHeader();
705 unsigned HeaderLoopPredCount = pred_size(Header);
706 BasicBlock *LoopPredecessor = L->getLoopPredecessor();
707
708 PHINode *NewPHI = PHINode::Create(I8PtrTy, HeaderLoopPredCount,
709 getInstrName(BaseMemI, PHINodeNameSuffix),
710 Header->getFirstNonPHI());
711
712 Value *BasePtrStart = SCEVE.expandCodeFor(BasePtrStartSCEV, I8PtrTy,
713 LoopPredecessor->getTerminator());
714
715 // Note that LoopPredecessor might occur in the predecessor list multiple
716 // times, and we need to add it the right number of times.
717 for (auto PI : predecessors(Header)) {
718 if (PI != LoopPredecessor)
719 continue;
720
721 NewPHI->addIncoming(BasePtrStart, LoopPredecessor);
722 }
723
724 Instruction *PtrInc = nullptr;
725 Instruction *NewBasePtr = nullptr;
726 if (CanPreInc) {
727 Instruction *InsPoint = &*Header->getFirstInsertionPt();
728 PtrInc = GetElementPtrInst::Create(
729 I8Ty, NewPHI, IncNode, getInstrName(BaseMemI, GEPNodeIncNameSuffix),
730 InsPoint);
731 cast<GetElementPtrInst>(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr));
732 for (auto PI : predecessors(Header)) {
733 if (PI == LoopPredecessor)
734 continue;
735
736 NewPHI->addIncoming(PtrInc, PI);
737 }
738 if (PtrInc->getType() != BasePtr->getType())
739 NewBasePtr =
740 new BitCastInst(PtrInc, BasePtr->getType(),
741 getInstrName(PtrInc, CastNodeNameSuffix), InsPoint);
742 else
743 NewBasePtr = PtrInc;
744 } else {
745 // Note that LoopPredecessor might occur in the predecessor list multiple
746 // times, and we need to make sure no more incoming value for them in PHI.
747 for (auto PI : predecessors(Header)) {
748 if (PI == LoopPredecessor)
749 continue;
750
751 // For the latch predecessor, we need to insert a GEP just before the
752 // terminator to increase the address.
753 BasicBlock *BB = PI;
754 Instruction *InsPoint = BB->getTerminator();
755 PtrInc = GetElementPtrInst::Create(
756 I8Ty, NewPHI, IncNode, getInstrName(BaseMemI, GEPNodeIncNameSuffix),
757 InsPoint);
758 cast<GetElementPtrInst>(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr));
759
760 NewPHI->addIncoming(PtrInc, PI);
761 }
762 PtrInc = NewPHI;
763 if (NewPHI->getType() != BasePtr->getType())
764 NewBasePtr = new BitCastInst(NewPHI, BasePtr->getType(),
765 getInstrName(NewPHI, CastNodeNameSuffix),
766 &*Header->getFirstInsertionPt());
767 else
768 NewBasePtr = NewPHI;
769 }
770
771 BasePtr->replaceAllUsesWith(NewBasePtr);
772
773 DeletedPtrs.insert(BasePtr);
774
775 return std::make_pair(NewBasePtr, PtrInc);
776 }
777
rewriteForBucketElement(std::pair<Instruction *,Instruction * > Base,const BucketElement & Element,Value * OffToBase,SmallPtrSet<Value *,16> & DeletedPtrs)778 Instruction *PPCLoopInstrFormPrep::rewriteForBucketElement(
779 std::pair<Instruction *, Instruction *> Base, const BucketElement &Element,
780 Value *OffToBase, SmallPtrSet<Value *, 16> &DeletedPtrs) {
781 Instruction *NewBasePtr = Base.first;
782 Instruction *PtrInc = Base.second;
783 assert((NewBasePtr && PtrInc) && "base does not exist!\n");
784
785 Type *I8Ty = Type::getInt8Ty(PtrInc->getParent()->getContext());
786
787 Value *Ptr = getPointerOperandAndType(Element.Instr);
788 assert(Ptr && "No pointer operand");
789
790 Instruction *RealNewPtr;
791 if (!Element.Offset ||
792 (isa<SCEVConstant>(Element.Offset) &&
793 cast<SCEVConstant>(Element.Offset)->getValue()->isZero())) {
794 RealNewPtr = NewBasePtr;
795 } else {
796 Instruction *PtrIP = dyn_cast<Instruction>(Ptr);
797 if (PtrIP && isa<Instruction>(NewBasePtr) &&
798 cast<Instruction>(NewBasePtr)->getParent() == PtrIP->getParent())
799 PtrIP = nullptr;
800 else if (PtrIP && isa<PHINode>(PtrIP))
801 PtrIP = &*PtrIP->getParent()->getFirstInsertionPt();
802 else if (!PtrIP)
803 PtrIP = Element.Instr;
804
805 assert(OffToBase && "There should be an offset for non base element!\n");
806 GetElementPtrInst *NewPtr = GetElementPtrInst::Create(
807 I8Ty, PtrInc, OffToBase,
808 getInstrName(Element.Instr, GEPNodeOffNameSuffix), PtrIP);
809 if (!PtrIP)
810 NewPtr->insertAfter(cast<Instruction>(PtrInc));
811 NewPtr->setIsInBounds(IsPtrInBounds(Ptr));
812 RealNewPtr = NewPtr;
813 }
814
815 Instruction *ReplNewPtr;
816 if (Ptr->getType() != RealNewPtr->getType()) {
817 ReplNewPtr = new BitCastInst(RealNewPtr, Ptr->getType(),
818 getInstrName(Ptr, CastNodeNameSuffix));
819 ReplNewPtr->insertAfter(RealNewPtr);
820 } else
821 ReplNewPtr = RealNewPtr;
822
823 Ptr->replaceAllUsesWith(ReplNewPtr);
824 DeletedPtrs.insert(Ptr);
825
826 return ReplNewPtr;
827 }
828
addOneCandidate(Instruction * MemI,const SCEV * LSCEV,SmallVector<Bucket,16> & Buckets,std::function<bool (const SCEV *)> isValidDiff,unsigned MaxCandidateNum)829 void PPCLoopInstrFormPrep::addOneCandidate(
830 Instruction *MemI, const SCEV *LSCEV, SmallVector<Bucket, 16> &Buckets,
831 std::function<bool(const SCEV *)> isValidDiff, unsigned MaxCandidateNum) {
832 assert((MemI && getPointerOperandAndType(MemI)) &&
833 "Candidate should be a memory instruction.");
834 assert(LSCEV && "Invalid SCEV for Ptr value.");
835
836 bool FoundBucket = false;
837 for (auto &B : Buckets) {
838 if (cast<SCEVAddRecExpr>(B.BaseSCEV)->getStepRecurrence(*SE) !=
839 cast<SCEVAddRecExpr>(LSCEV)->getStepRecurrence(*SE))
840 continue;
841 const SCEV *Diff = SE->getMinusSCEV(LSCEV, B.BaseSCEV);
842 if (isValidDiff(Diff)) {
843 B.Elements.push_back(BucketElement(Diff, MemI));
844 FoundBucket = true;
845 break;
846 }
847 }
848
849 if (!FoundBucket) {
850 if (Buckets.size() == MaxCandidateNum) {
851 LLVM_DEBUG(dbgs() << "Can not prepare more chains, reach maximum limit "
852 << MaxCandidateNum << "\n");
853 return;
854 }
855 Buckets.push_back(Bucket(LSCEV, MemI));
856 }
857 }
858
collectCandidates(Loop * L,std::function<bool (const Instruction *,Value *,const Type *)> isValidCandidate,std::function<bool (const SCEV *)> isValidDiff,unsigned MaxCandidateNum)859 SmallVector<Bucket, 16> PPCLoopInstrFormPrep::collectCandidates(
860 Loop *L,
861 std::function<bool(const Instruction *, Value *, const Type *)>
862 isValidCandidate,
863 std::function<bool(const SCEV *)> isValidDiff, unsigned MaxCandidateNum) {
864 SmallVector<Bucket, 16> Buckets;
865
866 for (const auto &BB : L->blocks())
867 for (auto &J : *BB) {
868 Value *PtrValue = nullptr;
869 Type *PointerElementType = nullptr;
870 PtrValue = getPointerOperandAndType(&J, &PointerElementType);
871
872 if (!PtrValue)
873 continue;
874
875 if (PtrValue->getType()->getPointerAddressSpace())
876 continue;
877
878 if (L->isLoopInvariant(PtrValue))
879 continue;
880
881 const SCEV *LSCEV = SE->getSCEVAtScope(PtrValue, L);
882 const SCEVAddRecExpr *LARSCEV = dyn_cast<SCEVAddRecExpr>(LSCEV);
883 if (!LARSCEV || LARSCEV->getLoop() != L)
884 continue;
885
886 // Mark that we have candidates for preparing.
887 HasCandidateForPrepare = true;
888
889 if (isValidCandidate(&J, PtrValue, PointerElementType))
890 addOneCandidate(&J, LSCEV, Buckets, isValidDiff, MaxCandidateNum);
891 }
892 return Buckets;
893 }
894
prepareBaseForDispFormChain(Bucket & BucketChain,PrepForm Form)895 bool PPCLoopInstrFormPrep::prepareBaseForDispFormChain(Bucket &BucketChain,
896 PrepForm Form) {
897 // RemainderOffsetInfo details:
898 // key: value of (Offset urem DispConstraint). For DSForm, it can
899 // be [0, 4).
900 // first of pair: the index of first BucketElement whose remainder is equal
901 // to key. For key 0, this value must be 0.
902 // second of pair: number of load/stores with the same remainder.
903 DenseMap<unsigned, std::pair<unsigned, unsigned>> RemainderOffsetInfo;
904
905 for (unsigned j = 0, je = BucketChain.Elements.size(); j != je; ++j) {
906 if (!BucketChain.Elements[j].Offset)
907 RemainderOffsetInfo[0] = std::make_pair(0, 1);
908 else {
909 unsigned Remainder = cast<SCEVConstant>(BucketChain.Elements[j].Offset)
910 ->getAPInt()
911 .urem(Form);
912 if (RemainderOffsetInfo.find(Remainder) == RemainderOffsetInfo.end())
913 RemainderOffsetInfo[Remainder] = std::make_pair(j, 1);
914 else
915 RemainderOffsetInfo[Remainder].second++;
916 }
917 }
918 // Currently we choose the most profitable base as the one which has the max
919 // number of load/store with same remainder.
920 // FIXME: adjust the base selection strategy according to load/store offset
921 // distribution.
922 // For example, if we have one candidate chain for DS form preparation, which
923 // contains following load/stores with different remainders:
924 // 1: 10 load/store whose remainder is 1;
925 // 2: 9 load/store whose remainder is 2;
926 // 3: 1 for remainder 3 and 0 for remainder 0;
927 // Now we will choose the first load/store whose remainder is 1 as base and
928 // adjust all other load/stores according to new base, so we will get 10 DS
929 // form and 10 X form.
930 // But we should be more clever, for this case we could use two bases, one for
931 // remainder 1 and the other for remainder 2, thus we could get 19 DS form and
932 // 1 X form.
933 unsigned MaxCountRemainder = 0;
934 for (unsigned j = 0; j < (unsigned)Form; j++)
935 if ((RemainderOffsetInfo.find(j) != RemainderOffsetInfo.end()) &&
936 RemainderOffsetInfo[j].second >
937 RemainderOffsetInfo[MaxCountRemainder].second)
938 MaxCountRemainder = j;
939
940 // Abort when there are too few insts with common base.
941 if (RemainderOffsetInfo[MaxCountRemainder].second < DispFormPrepMinThreshold)
942 return false;
943
944 // If the first value is most profitable, no needed to adjust BucketChain
945 // elements as they are substracted the first value when collecting.
946 if (MaxCountRemainder == 0)
947 return true;
948
949 // Adjust load/store to the new chosen base.
950 const SCEV *Offset =
951 BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first].Offset;
952 BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset);
953 for (auto &E : BucketChain.Elements) {
954 if (E.Offset)
955 E.Offset = cast<SCEVConstant>(SE->getMinusSCEV(E.Offset, Offset));
956 else
957 E.Offset = cast<SCEVConstant>(SE->getNegativeSCEV(Offset));
958 }
959
960 std::swap(BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first],
961 BucketChain.Elements[0]);
962 return true;
963 }
964
965 // FIXME: implement a more clever base choosing policy.
966 // Currently we always choose an exist load/store offset. This maybe lead to
967 // suboptimal code sequences. For example, for one DS chain with offsets
968 // {-32769, 2003, 2007, 2011}, we choose -32769 as base offset, and left disp
969 // for load/stores are {0, 34772, 34776, 34780}. Though each offset now is a
970 // multipler of 4, it cannot be represented by sint16.
prepareBaseForUpdateFormChain(Bucket & BucketChain)971 bool PPCLoopInstrFormPrep::prepareBaseForUpdateFormChain(Bucket &BucketChain) {
972 // We have a choice now of which instruction's memory operand we use as the
973 // base for the generated PHI. Always picking the first instruction in each
974 // bucket does not work well, specifically because that instruction might
975 // be a prefetch (and there are no pre-increment dcbt variants). Otherwise,
976 // the choice is somewhat arbitrary, because the backend will happily
977 // generate direct offsets from both the pre-incremented and
978 // post-incremented pointer values. Thus, we'll pick the first non-prefetch
979 // instruction in each bucket, and adjust the recurrence and other offsets
980 // accordingly.
981 for (int j = 0, je = BucketChain.Elements.size(); j != je; ++j) {
982 if (auto *II = dyn_cast<IntrinsicInst>(BucketChain.Elements[j].Instr))
983 if (II->getIntrinsicID() == Intrinsic::prefetch)
984 continue;
985
986 // If we'd otherwise pick the first element anyway, there's nothing to do.
987 if (j == 0)
988 break;
989
990 // If our chosen element has no offset from the base pointer, there's
991 // nothing to do.
992 if (!BucketChain.Elements[j].Offset ||
993 cast<SCEVConstant>(BucketChain.Elements[j].Offset)->isZero())
994 break;
995
996 const SCEV *Offset = BucketChain.Elements[j].Offset;
997 BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset);
998 for (auto &E : BucketChain.Elements) {
999 if (E.Offset)
1000 E.Offset = cast<SCEVConstant>(SE->getMinusSCEV(E.Offset, Offset));
1001 else
1002 E.Offset = cast<SCEVConstant>(SE->getNegativeSCEV(Offset));
1003 }
1004
1005 std::swap(BucketChain.Elements[j], BucketChain.Elements[0]);
1006 break;
1007 }
1008 return true;
1009 }
1010
rewriteLoadStores(Loop * L,Bucket & BucketChain,SmallSet<BasicBlock *,16> & BBChanged,PrepForm Form)1011 bool PPCLoopInstrFormPrep::rewriteLoadStores(
1012 Loop *L, Bucket &BucketChain, SmallSet<BasicBlock *, 16> &BBChanged,
1013 PrepForm Form) {
1014 bool MadeChange = false;
1015
1016 const SCEVAddRecExpr *BasePtrSCEV =
1017 cast<SCEVAddRecExpr>(BucketChain.BaseSCEV);
1018 if (!BasePtrSCEV->isAffine())
1019 return MadeChange;
1020
1021 BasicBlock *Header = L->getHeader();
1022 SCEVExpander SCEVE(*SE, Header->getModule()->getDataLayout(),
1023 "loopprepare-formrewrite");
1024 if (!SCEVE.isSafeToExpand(BasePtrSCEV->getStart()))
1025 return MadeChange;
1026
1027 SmallPtrSet<Value *, 16> DeletedPtrs;
1028
1029 // For some DS form load/store instructions, it can also be an update form,
1030 // if the stride is constant and is a multipler of 4. Use update form if
1031 // prefer it.
1032 bool CanPreInc = (Form == UpdateForm ||
1033 ((Form == DSForm) &&
1034 isa<SCEVConstant>(BasePtrSCEV->getStepRecurrence(*SE)) &&
1035 !cast<SCEVConstant>(BasePtrSCEV->getStepRecurrence(*SE))
1036 ->getAPInt()
1037 .urem(4) &&
1038 PreferUpdateForm));
1039
1040 std::pair<Instruction *, Instruction *> Base =
1041 rewriteForBase(L, BasePtrSCEV, BucketChain.Elements.begin()->Instr,
1042 CanPreInc, Form, SCEVE, DeletedPtrs);
1043
1044 if (!Base.first || !Base.second)
1045 return MadeChange;
1046
1047 // Keep track of the replacement pointer values we've inserted so that we
1048 // don't generate more pointer values than necessary.
1049 SmallPtrSet<Value *, 16> NewPtrs;
1050 NewPtrs.insert(Base.first);
1051
1052 for (auto I = std::next(BucketChain.Elements.begin()),
1053 IE = BucketChain.Elements.end(); I != IE; ++I) {
1054 Value *Ptr = getPointerOperandAndType(I->Instr);
1055 assert(Ptr && "No pointer operand");
1056 if (NewPtrs.count(Ptr))
1057 continue;
1058
1059 Instruction *NewPtr = rewriteForBucketElement(
1060 Base, *I,
1061 I->Offset ? cast<SCEVConstant>(I->Offset)->getValue() : nullptr,
1062 DeletedPtrs);
1063 assert(NewPtr && "wrong rewrite!\n");
1064 NewPtrs.insert(NewPtr);
1065 }
1066
1067 // Clear the rewriter cache, because values that are in the rewriter's cache
1068 // can be deleted below, causing the AssertingVH in the cache to trigger.
1069 SCEVE.clear();
1070
1071 for (auto *Ptr : DeletedPtrs) {
1072 if (Instruction *IDel = dyn_cast<Instruction>(Ptr))
1073 BBChanged.insert(IDel->getParent());
1074 RecursivelyDeleteTriviallyDeadInstructions(Ptr);
1075 }
1076
1077 MadeChange = true;
1078
1079 SuccPrepCount++;
1080
1081 if (Form == DSForm && !CanPreInc)
1082 DSFormChainRewritten++;
1083 else if (Form == DQForm)
1084 DQFormChainRewritten++;
1085 else if (Form == UpdateForm || (Form == DSForm && CanPreInc))
1086 UpdFormChainRewritten++;
1087
1088 return MadeChange;
1089 }
1090
updateFormPrep(Loop * L,SmallVector<Bucket,16> & Buckets)1091 bool PPCLoopInstrFormPrep::updateFormPrep(Loop *L,
1092 SmallVector<Bucket, 16> &Buckets) {
1093 bool MadeChange = false;
1094 if (Buckets.empty())
1095 return MadeChange;
1096 SmallSet<BasicBlock *, 16> BBChanged;
1097 for (auto &Bucket : Buckets)
1098 // The base address of each bucket is transformed into a phi and the others
1099 // are rewritten based on new base.
1100 if (prepareBaseForUpdateFormChain(Bucket))
1101 MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, UpdateForm);
1102
1103 if (MadeChange)
1104 for (auto *BB : BBChanged)
1105 DeleteDeadPHIs(BB);
1106 return MadeChange;
1107 }
1108
dispFormPrep(Loop * L,SmallVector<Bucket,16> & Buckets,PrepForm Form)1109 bool PPCLoopInstrFormPrep::dispFormPrep(Loop *L,
1110 SmallVector<Bucket, 16> &Buckets,
1111 PrepForm Form) {
1112 bool MadeChange = false;
1113
1114 if (Buckets.empty())
1115 return MadeChange;
1116
1117 SmallSet<BasicBlock *, 16> BBChanged;
1118 for (auto &Bucket : Buckets) {
1119 if (Bucket.Elements.size() < DispFormPrepMinThreshold)
1120 continue;
1121 if (prepareBaseForDispFormChain(Bucket, Form))
1122 MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, Form);
1123 }
1124
1125 if (MadeChange)
1126 for (auto *BB : BBChanged)
1127 DeleteDeadPHIs(BB);
1128 return MadeChange;
1129 }
1130
1131 // Find the loop invariant increment node for SCEV BasePtrIncSCEV.
1132 // bb.loop.preheader:
1133 // %start = ...
1134 // bb.loop.body:
1135 // %phinode = phi [ %start, %bb.loop.preheader ], [ %add, %bb.loop.body ]
1136 // ...
1137 // %add = add %phinode, %inc ; %inc is what we want to get.
1138 //
getNodeForInc(Loop * L,Instruction * MemI,const SCEV * BasePtrIncSCEV)1139 Value *PPCLoopInstrFormPrep::getNodeForInc(Loop *L, Instruction *MemI,
1140 const SCEV *BasePtrIncSCEV) {
1141 // If the increment is a constant, no definition is needed.
1142 // Return the value directly.
1143 if (isa<SCEVConstant>(BasePtrIncSCEV))
1144 return cast<SCEVConstant>(BasePtrIncSCEV)->getValue();
1145
1146 if (!SE->isLoopInvariant(BasePtrIncSCEV, L))
1147 return nullptr;
1148
1149 BasicBlock *BB = MemI->getParent();
1150 if (!BB)
1151 return nullptr;
1152
1153 BasicBlock *LatchBB = L->getLoopLatch();
1154
1155 if (!LatchBB)
1156 return nullptr;
1157
1158 // Run through the PHIs and check their operands to find valid representation
1159 // for the increment SCEV.
1160 iterator_range<BasicBlock::phi_iterator> PHIIter = BB->phis();
1161 for (auto &CurrentPHI : PHIIter) {
1162 PHINode *CurrentPHINode = dyn_cast<PHINode>(&CurrentPHI);
1163 if (!CurrentPHINode)
1164 continue;
1165
1166 if (!SE->isSCEVable(CurrentPHINode->getType()))
1167 continue;
1168
1169 const SCEV *PHISCEV = SE->getSCEVAtScope(CurrentPHINode, L);
1170
1171 const SCEVAddRecExpr *PHIBasePtrSCEV = dyn_cast<SCEVAddRecExpr>(PHISCEV);
1172 if (!PHIBasePtrSCEV)
1173 continue;
1174
1175 const SCEV *PHIBasePtrIncSCEV = PHIBasePtrSCEV->getStepRecurrence(*SE);
1176
1177 if (!PHIBasePtrIncSCEV || (PHIBasePtrIncSCEV != BasePtrIncSCEV))
1178 continue;
1179
1180 // Get the incoming value from the loop latch and check if the value has
1181 // the add form with the required increment.
1182 if (Instruction *I = dyn_cast<Instruction>(
1183 CurrentPHINode->getIncomingValueForBlock(LatchBB))) {
1184 Value *StrippedBaseI = I;
1185 while (BitCastInst *BC = dyn_cast<BitCastInst>(StrippedBaseI))
1186 StrippedBaseI = BC->getOperand(0);
1187
1188 Instruction *StrippedI = dyn_cast<Instruction>(StrippedBaseI);
1189 if (!StrippedI)
1190 continue;
1191
1192 // LSR pass may add a getelementptr instruction to do the loop increment,
1193 // also search in that getelementptr instruction.
1194 if (StrippedI->getOpcode() == Instruction::Add ||
1195 (StrippedI->getOpcode() == Instruction::GetElementPtr &&
1196 StrippedI->getNumOperands() == 2)) {
1197 if (SE->getSCEVAtScope(StrippedI->getOperand(0), L) == BasePtrIncSCEV)
1198 return StrippedI->getOperand(0);
1199 if (SE->getSCEVAtScope(StrippedI->getOperand(1), L) == BasePtrIncSCEV)
1200 return StrippedI->getOperand(1);
1201 }
1202 }
1203 }
1204 return nullptr;
1205 }
1206
1207 // In order to prepare for the preferred instruction form, a PHI is added.
1208 // This function will check to see if that PHI already exists and will return
1209 // true if it found an existing PHI with the matched start and increment as the
1210 // one we wanted to create.
alreadyPrepared(Loop * L,Instruction * MemI,const SCEV * BasePtrStartSCEV,const SCEV * BasePtrIncSCEV,PrepForm Form)1211 bool PPCLoopInstrFormPrep::alreadyPrepared(Loop *L, Instruction *MemI,
1212 const SCEV *BasePtrStartSCEV,
1213 const SCEV *BasePtrIncSCEV,
1214 PrepForm Form) {
1215 BasicBlock *BB = MemI->getParent();
1216 if (!BB)
1217 return false;
1218
1219 BasicBlock *PredBB = L->getLoopPredecessor();
1220 BasicBlock *LatchBB = L->getLoopLatch();
1221
1222 if (!PredBB || !LatchBB)
1223 return false;
1224
1225 // Run through the PHIs and see if we have some that looks like a preparation
1226 iterator_range<BasicBlock::phi_iterator> PHIIter = BB->phis();
1227 for (auto & CurrentPHI : PHIIter) {
1228 PHINode *CurrentPHINode = dyn_cast<PHINode>(&CurrentPHI);
1229 if (!CurrentPHINode)
1230 continue;
1231
1232 if (!SE->isSCEVable(CurrentPHINode->getType()))
1233 continue;
1234
1235 const SCEV *PHISCEV = SE->getSCEVAtScope(CurrentPHINode, L);
1236
1237 const SCEVAddRecExpr *PHIBasePtrSCEV = dyn_cast<SCEVAddRecExpr>(PHISCEV);
1238 if (!PHIBasePtrSCEV)
1239 continue;
1240
1241 const SCEVConstant *PHIBasePtrIncSCEV =
1242 dyn_cast<SCEVConstant>(PHIBasePtrSCEV->getStepRecurrence(*SE));
1243 if (!PHIBasePtrIncSCEV)
1244 continue;
1245
1246 if (CurrentPHINode->getNumIncomingValues() == 2) {
1247 if ((CurrentPHINode->getIncomingBlock(0) == LatchBB &&
1248 CurrentPHINode->getIncomingBlock(1) == PredBB) ||
1249 (CurrentPHINode->getIncomingBlock(1) == LatchBB &&
1250 CurrentPHINode->getIncomingBlock(0) == PredBB)) {
1251 if (PHIBasePtrIncSCEV == BasePtrIncSCEV) {
1252 // The existing PHI (CurrentPHINode) has the same start and increment
1253 // as the PHI that we wanted to create.
1254 if ((Form == UpdateForm || Form == ChainCommoning ) &&
1255 PHIBasePtrSCEV->getStart() == BasePtrStartSCEV) {
1256 ++PHINodeAlreadyExistsUpdate;
1257 return true;
1258 }
1259 if (Form == DSForm || Form == DQForm) {
1260 const SCEVConstant *Diff = dyn_cast<SCEVConstant>(
1261 SE->getMinusSCEV(PHIBasePtrSCEV->getStart(), BasePtrStartSCEV));
1262 if (Diff && !Diff->getAPInt().urem(Form)) {
1263 if (Form == DSForm)
1264 ++PHINodeAlreadyExistsDS;
1265 else
1266 ++PHINodeAlreadyExistsDQ;
1267 return true;
1268 }
1269 }
1270 }
1271 }
1272 }
1273 }
1274 return false;
1275 }
1276
runOnLoop(Loop * L)1277 bool PPCLoopInstrFormPrep::runOnLoop(Loop *L) {
1278 bool MadeChange = false;
1279
1280 // Only prep. the inner-most loop
1281 if (!L->isInnermost())
1282 return MadeChange;
1283
1284 // Return if already done enough preparation.
1285 if (SuccPrepCount >= MaxVarsPrep)
1286 return MadeChange;
1287
1288 LLVM_DEBUG(dbgs() << "PIP: Examining: " << *L << "\n");
1289
1290 BasicBlock *LoopPredecessor = L->getLoopPredecessor();
1291 // If there is no loop predecessor, or the loop predecessor's terminator
1292 // returns a value (which might contribute to determining the loop's
1293 // iteration space), insert a new preheader for the loop.
1294 if (!LoopPredecessor ||
1295 !LoopPredecessor->getTerminator()->getType()->isVoidTy()) {
1296 LoopPredecessor = InsertPreheaderForLoop(L, DT, LI, nullptr, PreserveLCSSA);
1297 if (LoopPredecessor)
1298 MadeChange = true;
1299 }
1300 if (!LoopPredecessor) {
1301 LLVM_DEBUG(dbgs() << "PIP fails since no predecessor for current loop.\n");
1302 return MadeChange;
1303 }
1304 // Check if a load/store has update form. This lambda is used by function
1305 // collectCandidates which can collect candidates for types defined by lambda.
1306 auto isUpdateFormCandidate = [&](const Instruction *I, Value *PtrValue,
1307 const Type *PointerElementType) {
1308 assert((PtrValue && I) && "Invalid parameter!");
1309 // There are no update forms for Altivec vector load/stores.
1310 if (ST && ST->hasAltivec() && PointerElementType->isVectorTy())
1311 return false;
1312 // There are no update forms for P10 lxvp/stxvp intrinsic.
1313 auto *II = dyn_cast<IntrinsicInst>(I);
1314 if (II && ((II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) ||
1315 II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp))
1316 return false;
1317 // See getPreIndexedAddressParts, the displacement for LDU/STDU has to
1318 // be 4's multiple (DS-form). For i64 loads/stores when the displacement
1319 // fits in a 16-bit signed field but isn't a multiple of 4, it will be
1320 // useless and possible to break some original well-form addressing mode
1321 // to make this pre-inc prep for it.
1322 if (PointerElementType->isIntegerTy(64)) {
1323 const SCEV *LSCEV = SE->getSCEVAtScope(const_cast<Value *>(PtrValue), L);
1324 const SCEVAddRecExpr *LARSCEV = dyn_cast<SCEVAddRecExpr>(LSCEV);
1325 if (!LARSCEV || LARSCEV->getLoop() != L)
1326 return false;
1327 if (const SCEVConstant *StepConst =
1328 dyn_cast<SCEVConstant>(LARSCEV->getStepRecurrence(*SE))) {
1329 const APInt &ConstInt = StepConst->getValue()->getValue();
1330 if (ConstInt.isSignedIntN(16) && ConstInt.srem(4) != 0)
1331 return false;
1332 }
1333 }
1334 return true;
1335 };
1336
1337 // Check if a load/store has DS form.
1338 auto isDSFormCandidate = [](const Instruction *I, Value *PtrValue,
1339 const Type *PointerElementType) {
1340 assert((PtrValue && I) && "Invalid parameter!");
1341 if (isa<IntrinsicInst>(I))
1342 return false;
1343 return (PointerElementType->isIntegerTy(64)) ||
1344 (PointerElementType->isFloatTy()) ||
1345 (PointerElementType->isDoubleTy()) ||
1346 (PointerElementType->isIntegerTy(32) &&
1347 llvm::any_of(I->users(),
1348 [](const User *U) { return isa<SExtInst>(U); }));
1349 };
1350
1351 // Check if a load/store has DQ form.
1352 auto isDQFormCandidate = [&](const Instruction *I, Value *PtrValue,
1353 const Type *PointerElementType) {
1354 assert((PtrValue && I) && "Invalid parameter!");
1355 // Check if it is a P10 lxvp/stxvp intrinsic.
1356 auto *II = dyn_cast<IntrinsicInst>(I);
1357 if (II)
1358 return II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp ||
1359 II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp;
1360 // Check if it is a P9 vector load/store.
1361 return ST && ST->hasP9Vector() && (PointerElementType->isVectorTy());
1362 };
1363
1364 // Check if a load/store is candidate for chain commoning.
1365 // If the SCEV is only with one ptr operand in its start, we can use that
1366 // start as a chain separator. Mark this load/store as a candidate.
1367 auto isChainCommoningCandidate = [&](const Instruction *I, Value *PtrValue,
1368 const Type *PointerElementType) {
1369 const SCEVAddRecExpr *ARSCEV =
1370 cast<SCEVAddRecExpr>(SE->getSCEVAtScope(PtrValue, L));
1371 if (!ARSCEV)
1372 return false;
1373
1374 if (!ARSCEV->isAffine())
1375 return false;
1376
1377 const SCEV *Start = ARSCEV->getStart();
1378
1379 // A single pointer. We can treat it as offset 0.
1380 if (isa<SCEVUnknown>(Start) && Start->getType()->isPointerTy())
1381 return true;
1382
1383 const SCEVAddExpr *ASCEV = dyn_cast<SCEVAddExpr>(Start);
1384
1385 // We need a SCEVAddExpr to include both base and offset.
1386 if (!ASCEV)
1387 return false;
1388
1389 // Make sure there is only one pointer operand(base) and all other operands
1390 // are integer type.
1391 bool SawPointer = false;
1392 for (const SCEV *Op : ASCEV->operands()) {
1393 if (Op->getType()->isPointerTy()) {
1394 if (SawPointer)
1395 return false;
1396 SawPointer = true;
1397 } else if (!Op->getType()->isIntegerTy())
1398 return false;
1399 }
1400
1401 return SawPointer;
1402 };
1403
1404 // Check if the diff is a constant type. This is used for update/DS/DQ form
1405 // preparation.
1406 auto isValidConstantDiff = [](const SCEV *Diff) {
1407 return dyn_cast<SCEVConstant>(Diff) != nullptr;
1408 };
1409
1410 // Make sure the diff between the base and new candidate is required type.
1411 // This is used for chain commoning preparation.
1412 auto isValidChainCommoningDiff = [](const SCEV *Diff) {
1413 assert(Diff && "Invalid Diff!\n");
1414
1415 // Don't mess up previous dform prepare.
1416 if (isa<SCEVConstant>(Diff))
1417 return false;
1418
1419 // A single integer type offset.
1420 if (isa<SCEVUnknown>(Diff) && Diff->getType()->isIntegerTy())
1421 return true;
1422
1423 const SCEVNAryExpr *ADiff = dyn_cast<SCEVNAryExpr>(Diff);
1424 if (!ADiff)
1425 return false;
1426
1427 for (const SCEV *Op : ADiff->operands())
1428 if (!Op->getType()->isIntegerTy())
1429 return false;
1430
1431 return true;
1432 };
1433
1434 HasCandidateForPrepare = false;
1435
1436 LLVM_DEBUG(dbgs() << "Start to prepare for update form.\n");
1437 // Collect buckets of comparable addresses used by loads and stores for update
1438 // form.
1439 SmallVector<Bucket, 16> UpdateFormBuckets = collectCandidates(
1440 L, isUpdateFormCandidate, isValidConstantDiff, MaxVarsUpdateForm);
1441
1442 // Prepare for update form.
1443 if (!UpdateFormBuckets.empty())
1444 MadeChange |= updateFormPrep(L, UpdateFormBuckets);
1445 else if (!HasCandidateForPrepare) {
1446 LLVM_DEBUG(
1447 dbgs()
1448 << "No prepare candidates found, stop praparation for current loop!\n");
1449 // If no candidate for preparing, return early.
1450 return MadeChange;
1451 }
1452
1453 LLVM_DEBUG(dbgs() << "Start to prepare for DS form.\n");
1454 // Collect buckets of comparable addresses used by loads and stores for DS
1455 // form.
1456 SmallVector<Bucket, 16> DSFormBuckets = collectCandidates(
1457 L, isDSFormCandidate, isValidConstantDiff, MaxVarsDSForm);
1458
1459 // Prepare for DS form.
1460 if (!DSFormBuckets.empty())
1461 MadeChange |= dispFormPrep(L, DSFormBuckets, DSForm);
1462
1463 LLVM_DEBUG(dbgs() << "Start to prepare for DQ form.\n");
1464 // Collect buckets of comparable addresses used by loads and stores for DQ
1465 // form.
1466 SmallVector<Bucket, 16> DQFormBuckets = collectCandidates(
1467 L, isDQFormCandidate, isValidConstantDiff, MaxVarsDQForm);
1468
1469 // Prepare for DQ form.
1470 if (!DQFormBuckets.empty())
1471 MadeChange |= dispFormPrep(L, DQFormBuckets, DQForm);
1472
1473 // Collect buckets of comparable addresses used by loads and stores for chain
1474 // commoning. With chain commoning, we reuse offsets between the chains, so
1475 // the register pressure will be reduced.
1476 if (!EnableChainCommoning) {
1477 LLVM_DEBUG(dbgs() << "Chain commoning is not enabled.\n");
1478 return MadeChange;
1479 }
1480
1481 LLVM_DEBUG(dbgs() << "Start to prepare for chain commoning.\n");
1482 SmallVector<Bucket, 16> Buckets =
1483 collectCandidates(L, isChainCommoningCandidate, isValidChainCommoningDiff,
1484 MaxVarsChainCommon);
1485
1486 // Prepare for chain commoning.
1487 if (!Buckets.empty())
1488 MadeChange |= chainCommoning(L, Buckets);
1489
1490 return MadeChange;
1491 }
1492