1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the PowerPC-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // PPCGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "PPC.h" 17 #include "MCTargetDesc/PPCPredicates.h" 18 #include "PPCCallingConv.h" 19 #include "PPCISelLowering.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCSubtarget.h" 22 #include "PPCTargetMachine.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Target/TargetLowering.h" 39 #include "llvm/Target/TargetMachine.h" 40 41 //===----------------------------------------------------------------------===// 42 // 43 // TBD: 44 // fastLowerArguments: Handle simple cases. 45 // PPCMaterializeGV: Handle TLS. 46 // SelectCall: Handle function pointers. 47 // SelectCall: Handle multi-register return values. 48 // SelectCall: Optimize away nops for local calls. 49 // processCallArgs: Handle bit-converted arguments. 50 // finishCall: Handle multi-register return values. 51 // PPCComputeAddress: Handle parameter references as FrameIndex's. 52 // PPCEmitCmp: Handle immediate as operand 1. 53 // SelectCall: Handle small byval arguments. 54 // SelectIntrinsicCall: Implement. 55 // SelectSelect: Implement. 56 // Consider factoring isTypeLegal into the base class. 57 // Implement switches and jump tables. 58 // 59 //===----------------------------------------------------------------------===// 60 using namespace llvm; 61 62 #define DEBUG_TYPE "ppcfastisel" 63 64 namespace { 65 66 typedef struct Address { 67 enum { 68 RegBase, 69 FrameIndexBase 70 } BaseType; 71 72 union { 73 unsigned Reg; 74 int FI; 75 } Base; 76 77 long Offset; 78 79 // Innocuous defaults for our address. 80 Address() 81 : BaseType(RegBase), Offset(0) { 82 Base.Reg = 0; 83 } 84 } Address; 85 86 class PPCFastISel final : public FastISel { 87 88 const TargetMachine &TM; 89 const PPCSubtarget *PPCSubTarget; 90 PPCFunctionInfo *PPCFuncInfo; 91 const TargetInstrInfo &TII; 92 const TargetLowering &TLI; 93 LLVMContext *Context; 94 95 public: 96 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, 97 const TargetLibraryInfo *LibInfo) 98 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()), 99 PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()), 100 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()), 101 TII(*PPCSubTarget->getInstrInfo()), 102 TLI(*PPCSubTarget->getTargetLowering()), 103 Context(&FuncInfo.Fn->getContext()) {} 104 105 // Backend specific FastISel code. 106 private: 107 bool fastSelectInstruction(const Instruction *I) override; 108 unsigned fastMaterializeConstant(const Constant *C) override; 109 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 110 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 111 const LoadInst *LI) override; 112 bool fastLowerArguments() override; 113 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override; 114 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 115 const TargetRegisterClass *RC, 116 unsigned Op0, bool Op0IsKill, 117 uint64_t Imm); 118 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 119 const TargetRegisterClass *RC, 120 unsigned Op0, bool Op0IsKill); 121 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 122 const TargetRegisterClass *RC, 123 unsigned Op0, bool Op0IsKill, 124 unsigned Op1, bool Op1IsKill); 125 126 bool fastLowerCall(CallLoweringInfo &CLI) override; 127 128 // Instruction selection routines. 129 private: 130 bool SelectLoad(const Instruction *I); 131 bool SelectStore(const Instruction *I); 132 bool SelectBranch(const Instruction *I); 133 bool SelectIndirectBr(const Instruction *I); 134 bool SelectFPExt(const Instruction *I); 135 bool SelectFPTrunc(const Instruction *I); 136 bool SelectIToFP(const Instruction *I, bool IsSigned); 137 bool SelectFPToI(const Instruction *I, bool IsSigned); 138 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 139 bool SelectRet(const Instruction *I); 140 bool SelectTrunc(const Instruction *I); 141 bool SelectIntExt(const Instruction *I); 142 143 // Utility routines. 144 private: 145 bool isTypeLegal(Type *Ty, MVT &VT); 146 bool isLoadTypeLegal(Type *Ty, MVT &VT); 147 bool isVSFRCRegister(unsigned Register) const { 148 return MRI.getRegClass(Register)->getID() == PPC::VSFRCRegClassID; 149 } 150 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, 151 bool isZExt, unsigned DestReg); 152 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 153 const TargetRegisterClass *RC, bool IsZExt = true, 154 unsigned FP64LoadOpc = PPC::LFD); 155 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); 156 bool PPCComputeAddress(const Value *Obj, Address &Addr); 157 void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 158 unsigned &IndexReg); 159 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 160 unsigned DestReg, bool IsZExt); 161 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); 162 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); 163 unsigned PPCMaterializeInt(const Constant *C, MVT VT, bool UseSExt = true); 164 unsigned PPCMaterialize32BitInt(int64_t Imm, 165 const TargetRegisterClass *RC); 166 unsigned PPCMaterialize64BitInt(int64_t Imm, 167 const TargetRegisterClass *RC); 168 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT, 169 unsigned SrcReg, bool IsSigned); 170 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned); 171 172 // Call handling routines. 173 private: 174 bool processCallArgs(SmallVectorImpl<Value*> &Args, 175 SmallVectorImpl<unsigned> &ArgRegs, 176 SmallVectorImpl<MVT> &ArgVTs, 177 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 178 SmallVectorImpl<unsigned> &RegArgs, 179 CallingConv::ID CC, 180 unsigned &NumBytes, 181 bool IsVarArg); 182 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes); 183 CCAssignFn *usePPC32CCs(unsigned Flag); 184 185 private: 186 #include "PPCGenFastISel.inc" 187 188 }; 189 190 } // end anonymous namespace 191 192 #include "PPCGenCallingConv.inc" 193 194 // Function whose sole purpose is to kill compiler warnings 195 // stemming from unused functions included from PPCGenCallingConv.inc. 196 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) { 197 if (Flag == 1) 198 return CC_PPC32_SVR4; 199 else if (Flag == 2) 200 return CC_PPC32_SVR4_ByVal; 201 else if (Flag == 3) 202 return CC_PPC32_SVR4_VarArg; 203 else 204 return RetCC_PPC; 205 } 206 207 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { 208 switch (Pred) { 209 // These are not representable with any single compare. 210 case CmpInst::FCMP_FALSE: 211 case CmpInst::FCMP_UEQ: 212 case CmpInst::FCMP_UGT: 213 case CmpInst::FCMP_UGE: 214 case CmpInst::FCMP_ULT: 215 case CmpInst::FCMP_ULE: 216 case CmpInst::FCMP_UNE: 217 case CmpInst::FCMP_TRUE: 218 default: 219 return Optional<PPC::Predicate>(); 220 221 case CmpInst::FCMP_OEQ: 222 case CmpInst::ICMP_EQ: 223 return PPC::PRED_EQ; 224 225 case CmpInst::FCMP_OGT: 226 case CmpInst::ICMP_UGT: 227 case CmpInst::ICMP_SGT: 228 return PPC::PRED_GT; 229 230 case CmpInst::FCMP_OGE: 231 case CmpInst::ICMP_UGE: 232 case CmpInst::ICMP_SGE: 233 return PPC::PRED_GE; 234 235 case CmpInst::FCMP_OLT: 236 case CmpInst::ICMP_ULT: 237 case CmpInst::ICMP_SLT: 238 return PPC::PRED_LT; 239 240 case CmpInst::FCMP_OLE: 241 case CmpInst::ICMP_ULE: 242 case CmpInst::ICMP_SLE: 243 return PPC::PRED_LE; 244 245 case CmpInst::FCMP_ONE: 246 case CmpInst::ICMP_NE: 247 return PPC::PRED_NE; 248 249 case CmpInst::FCMP_ORD: 250 return PPC::PRED_NU; 251 252 case CmpInst::FCMP_UNO: 253 return PPC::PRED_UN; 254 } 255 } 256 257 // Determine whether the type Ty is simple enough to be handled by 258 // fast-isel, and return its equivalent machine type in VT. 259 // FIXME: Copied directly from ARM -- factor into base class? 260 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { 261 EVT Evt = TLI.getValueType(Ty, true); 262 263 // Only handle simple types. 264 if (Evt == MVT::Other || !Evt.isSimple()) return false; 265 VT = Evt.getSimpleVT(); 266 267 // Handle all legal types, i.e. a register that will directly hold this 268 // value. 269 return TLI.isTypeLegal(VT); 270 } 271 272 // Determine whether the type Ty is simple enough to be handled by 273 // fast-isel as a load target, and return its equivalent machine type in VT. 274 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 275 if (isTypeLegal(Ty, VT)) return true; 276 277 // If this is a type than can be sign or zero-extended to a basic operation 278 // go ahead and accept it now. 279 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { 280 return true; 281 } 282 283 return false; 284 } 285 286 // Given a value Obj, create an Address object Addr that represents its 287 // address. Return false if we can't handle it. 288 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { 289 const User *U = nullptr; 290 unsigned Opcode = Instruction::UserOp1; 291 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 292 // Don't walk into other basic blocks unless the object is an alloca from 293 // another block, otherwise it may not have a virtual register assigned. 294 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 295 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 296 Opcode = I->getOpcode(); 297 U = I; 298 } 299 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 300 Opcode = C->getOpcode(); 301 U = C; 302 } 303 304 switch (Opcode) { 305 default: 306 break; 307 case Instruction::BitCast: 308 // Look through bitcasts. 309 return PPCComputeAddress(U->getOperand(0), Addr); 310 case Instruction::IntToPtr: 311 // Look past no-op inttoptrs. 312 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) 313 return PPCComputeAddress(U->getOperand(0), Addr); 314 break; 315 case Instruction::PtrToInt: 316 // Look past no-op ptrtoints. 317 if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) 318 return PPCComputeAddress(U->getOperand(0), Addr); 319 break; 320 case Instruction::GetElementPtr: { 321 Address SavedAddr = Addr; 322 long TmpOffset = Addr.Offset; 323 324 // Iterate through the GEP folding the constants into offsets where 325 // we can. 326 gep_type_iterator GTI = gep_type_begin(U); 327 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); 328 II != IE; ++II, ++GTI) { 329 const Value *Op = *II; 330 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 331 const StructLayout *SL = DL.getStructLayout(STy); 332 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 333 TmpOffset += SL->getElementOffset(Idx); 334 } else { 335 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 336 for (;;) { 337 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 338 // Constant-offset addressing. 339 TmpOffset += CI->getSExtValue() * S; 340 break; 341 } 342 if (canFoldAddIntoGEP(U, Op)) { 343 // A compatible add with a constant operand. Fold the constant. 344 ConstantInt *CI = 345 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 346 TmpOffset += CI->getSExtValue() * S; 347 // Iterate on the other operand. 348 Op = cast<AddOperator>(Op)->getOperand(0); 349 continue; 350 } 351 // Unsupported 352 goto unsupported_gep; 353 } 354 } 355 } 356 357 // Try to grab the base operand now. 358 Addr.Offset = TmpOffset; 359 if (PPCComputeAddress(U->getOperand(0), Addr)) return true; 360 361 // We failed, restore everything and try the other options. 362 Addr = SavedAddr; 363 364 unsupported_gep: 365 break; 366 } 367 case Instruction::Alloca: { 368 const AllocaInst *AI = cast<AllocaInst>(Obj); 369 DenseMap<const AllocaInst*, int>::iterator SI = 370 FuncInfo.StaticAllocaMap.find(AI); 371 if (SI != FuncInfo.StaticAllocaMap.end()) { 372 Addr.BaseType = Address::FrameIndexBase; 373 Addr.Base.FI = SI->second; 374 return true; 375 } 376 break; 377 } 378 } 379 380 // FIXME: References to parameters fall through to the behavior 381 // below. They should be able to reference a frame index since 382 // they are stored to the stack, so we can get "ld rx, offset(r1)" 383 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will 384 // just contain the parameter. Try to handle this with a FI. 385 386 // Try to get this in a register if nothing else has worked. 387 if (Addr.Base.Reg == 0) 388 Addr.Base.Reg = getRegForValue(Obj); 389 390 // Prevent assignment of base register to X0, which is inappropriate 391 // for loads and stores alike. 392 if (Addr.Base.Reg != 0) 393 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); 394 395 return Addr.Base.Reg != 0; 396 } 397 398 // Fix up some addresses that can't be used directly. For example, if 399 // an offset won't fit in an instruction field, we may need to move it 400 // into an index register. 401 void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset, 402 unsigned &IndexReg) { 403 404 // Check whether the offset fits in the instruction field. 405 if (!isInt<16>(Addr.Offset)) 406 UseOffset = false; 407 408 // If this is a stack pointer and the offset needs to be simplified then 409 // put the alloca address into a register, set the base type back to 410 // register and continue. This should almost never happen. 411 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { 412 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 413 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 414 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); 415 Addr.Base.Reg = ResultReg; 416 Addr.BaseType = Address::RegBase; 417 } 418 419 if (!UseOffset) { 420 IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context) 421 : Type::getInt64Ty(*Context)); 422 const ConstantInt *Offset = 423 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset)); 424 IndexReg = PPCMaterializeInt(Offset, MVT::i64); 425 assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); 426 } 427 } 428 429 // Emit a load instruction if possible, returning true if we succeeded, 430 // otherwise false. See commentary below for how the register class of 431 // the load is determined. 432 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 433 const TargetRegisterClass *RC, 434 bool IsZExt, unsigned FP64LoadOpc) { 435 unsigned Opc; 436 bool UseOffset = true; 437 438 // If ResultReg is given, it determines the register class of the load. 439 // Otherwise, RC is the register class to use. If the result of the 440 // load isn't anticipated in this block, both may be zero, in which 441 // case we must make a conservative guess. In particular, don't assign 442 // R0 or X0 to the result register, as the result may be used in a load, 443 // store, add-immediate, or isel that won't permit this. (Though 444 // perhaps the spill and reload of live-exit values would handle this?) 445 const TargetRegisterClass *UseRC = 446 (ResultReg ? MRI.getRegClass(ResultReg) : 447 (RC ? RC : 448 (VT == MVT::f64 ? &PPC::F8RCRegClass : 449 (VT == MVT::f32 ? &PPC::F4RCRegClass : 450 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 451 &PPC::GPRC_and_GPRC_NOR0RegClass))))); 452 453 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); 454 455 switch (VT.SimpleTy) { 456 default: // e.g., vector types not handled 457 return false; 458 case MVT::i8: 459 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; 460 break; 461 case MVT::i16: 462 Opc = (IsZExt ? 463 (Is32BitInt ? PPC::LHZ : PPC::LHZ8) : 464 (Is32BitInt ? PPC::LHA : PPC::LHA8)); 465 break; 466 case MVT::i32: 467 Opc = (IsZExt ? 468 (Is32BitInt ? PPC::LWZ : PPC::LWZ8) : 469 (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); 470 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) 471 UseOffset = false; 472 break; 473 case MVT::i64: 474 Opc = PPC::LD; 475 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 476 "64-bit load with 32-bit target??"); 477 UseOffset = ((Addr.Offset & 3) == 0); 478 break; 479 case MVT::f32: 480 Opc = PPC::LFS; 481 break; 482 case MVT::f64: 483 Opc = FP64LoadOpc; 484 break; 485 } 486 487 // If necessary, materialize the offset into a register and use 488 // the indexed form. Also handle stack pointers with special needs. 489 unsigned IndexReg = 0; 490 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 491 492 // If this is a potential VSX load with an offset of 0, a VSX indexed load can 493 // be used. 494 bool IsVSFRC = (ResultReg != 0) && isVSFRCRegister(ResultReg); 495 if (IsVSFRC && (Opc == PPC::LFD) && 496 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 497 (Addr.Offset == 0)) { 498 UseOffset = false; 499 } 500 501 if (ResultReg == 0) 502 ResultReg = createResultReg(UseRC); 503 504 // Note: If we still have a frame index here, we know the offset is 505 // in range, as otherwise PPCSimplifyAddress would have converted it 506 // into a RegBase. 507 if (Addr.BaseType == Address::FrameIndexBase) { 508 // VSX only provides an indexed load. 509 if (IsVSFRC && Opc == PPC::LFD) return false; 510 511 MachineMemOperand *MMO = 512 FuncInfo.MF->getMachineMemOperand( 513 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset), 514 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), 515 MFI.getObjectAlignment(Addr.Base.FI)); 516 517 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 518 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); 519 520 // Base reg with offset in range. 521 } else if (UseOffset) { 522 // VSX only provides an indexed load. 523 if (IsVSFRC && Opc == PPC::LFD) return false; 524 525 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 526 .addImm(Addr.Offset).addReg(Addr.Base.Reg); 527 528 // Indexed form. 529 } else { 530 // Get the RR opcode corresponding to the RI one. FIXME: It would be 531 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 532 // is hard to get at. 533 switch (Opc) { 534 default: llvm_unreachable("Unexpected opcode!"); 535 case PPC::LBZ: Opc = PPC::LBZX; break; 536 case PPC::LBZ8: Opc = PPC::LBZX8; break; 537 case PPC::LHZ: Opc = PPC::LHZX; break; 538 case PPC::LHZ8: Opc = PPC::LHZX8; break; 539 case PPC::LHA: Opc = PPC::LHAX; break; 540 case PPC::LHA8: Opc = PPC::LHAX8; break; 541 case PPC::LWZ: Opc = PPC::LWZX; break; 542 case PPC::LWZ8: Opc = PPC::LWZX8; break; 543 case PPC::LWA: Opc = PPC::LWAX; break; 544 case PPC::LWA_32: Opc = PPC::LWAX_32; break; 545 case PPC::LD: Opc = PPC::LDX; break; 546 case PPC::LFS: Opc = PPC::LFSX; break; 547 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break; 548 } 549 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 550 .addReg(Addr.Base.Reg).addReg(IndexReg); 551 } 552 553 return true; 554 } 555 556 // Attempt to fast-select a load instruction. 557 bool PPCFastISel::SelectLoad(const Instruction *I) { 558 // FIXME: No atomic loads are supported. 559 if (cast<LoadInst>(I)->isAtomic()) 560 return false; 561 562 // Verify we have a legal type before going any further. 563 MVT VT; 564 if (!isLoadTypeLegal(I->getType(), VT)) 565 return false; 566 567 // See if we can handle this address. 568 Address Addr; 569 if (!PPCComputeAddress(I->getOperand(0), Addr)) 570 return false; 571 572 // Look at the currently assigned register for this instruction 573 // to determine the required register class. This is necessary 574 // to constrain RA from using R0/X0 when this is not legal. 575 unsigned AssignedReg = FuncInfo.ValueMap[I]; 576 const TargetRegisterClass *RC = 577 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 578 579 unsigned ResultReg = 0; 580 if (!PPCEmitLoad(VT, ResultReg, Addr, RC)) 581 return false; 582 updateValueMap(I, ResultReg); 583 return true; 584 } 585 586 // Emit a store instruction to store SrcReg at Addr. 587 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { 588 assert(SrcReg && "Nothing to store!"); 589 unsigned Opc; 590 bool UseOffset = true; 591 592 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); 593 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); 594 595 switch (VT.SimpleTy) { 596 default: // e.g., vector types not handled 597 return false; 598 case MVT::i8: 599 Opc = Is32BitInt ? PPC::STB : PPC::STB8; 600 break; 601 case MVT::i16: 602 Opc = Is32BitInt ? PPC::STH : PPC::STH8; 603 break; 604 case MVT::i32: 605 assert(Is32BitInt && "Not GPRC for i32??"); 606 Opc = PPC::STW; 607 break; 608 case MVT::i64: 609 Opc = PPC::STD; 610 UseOffset = ((Addr.Offset & 3) == 0); 611 break; 612 case MVT::f32: 613 Opc = PPC::STFS; 614 break; 615 case MVT::f64: 616 Opc = PPC::STFD; 617 break; 618 } 619 620 // If necessary, materialize the offset into a register and use 621 // the indexed form. Also handle stack pointers with special needs. 622 unsigned IndexReg = 0; 623 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg); 624 625 // If this is a potential VSX store with an offset of 0, a VSX indexed store 626 // can be used. 627 bool IsVSFRC = isVSFRCRegister(SrcReg); 628 if (IsVSFRC && (Opc == PPC::STFD) && 629 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 630 (Addr.Offset == 0)) { 631 UseOffset = false; 632 } 633 634 // Note: If we still have a frame index here, we know the offset is 635 // in range, as otherwise PPCSimplifyAddress would have converted it 636 // into a RegBase. 637 if (Addr.BaseType == Address::FrameIndexBase) { 638 // VSX only provides an indexed store. 639 if (IsVSFRC && Opc == PPC::STFD) return false; 640 641 MachineMemOperand *MMO = 642 FuncInfo.MF->getMachineMemOperand( 643 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset), 644 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), 645 MFI.getObjectAlignment(Addr.Base.FI)); 646 647 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 648 .addReg(SrcReg) 649 .addImm(Addr.Offset) 650 .addFrameIndex(Addr.Base.FI) 651 .addMemOperand(MMO); 652 653 // Base reg with offset in range. 654 } else if (UseOffset) { 655 // VSX only provides an indexed store. 656 if (IsVSFRC && Opc == PPC::STFD) return false; 657 658 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 659 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); 660 661 // Indexed form. 662 } else { 663 // Get the RR opcode corresponding to the RI one. FIXME: It would be 664 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 665 // is hard to get at. 666 switch (Opc) { 667 default: llvm_unreachable("Unexpected opcode!"); 668 case PPC::STB: Opc = PPC::STBX; break; 669 case PPC::STH : Opc = PPC::STHX; break; 670 case PPC::STW : Opc = PPC::STWX; break; 671 case PPC::STB8: Opc = PPC::STBX8; break; 672 case PPC::STH8: Opc = PPC::STHX8; break; 673 case PPC::STW8: Opc = PPC::STWX8; break; 674 case PPC::STD: Opc = PPC::STDX; break; 675 case PPC::STFS: Opc = PPC::STFSX; break; 676 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break; 677 } 678 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 679 .addReg(SrcReg).addReg(Addr.Base.Reg).addReg(IndexReg); 680 } 681 682 return true; 683 } 684 685 // Attempt to fast-select a store instruction. 686 bool PPCFastISel::SelectStore(const Instruction *I) { 687 Value *Op0 = I->getOperand(0); 688 unsigned SrcReg = 0; 689 690 // FIXME: No atomics loads are supported. 691 if (cast<StoreInst>(I)->isAtomic()) 692 return false; 693 694 // Verify we have a legal type before going any further. 695 MVT VT; 696 if (!isLoadTypeLegal(Op0->getType(), VT)) 697 return false; 698 699 // Get the value to be stored into a register. 700 SrcReg = getRegForValue(Op0); 701 if (SrcReg == 0) 702 return false; 703 704 // See if we can handle this address. 705 Address Addr; 706 if (!PPCComputeAddress(I->getOperand(1), Addr)) 707 return false; 708 709 if (!PPCEmitStore(VT, SrcReg, Addr)) 710 return false; 711 712 return true; 713 } 714 715 // Attempt to fast-select a branch instruction. 716 bool PPCFastISel::SelectBranch(const Instruction *I) { 717 const BranchInst *BI = cast<BranchInst>(I); 718 MachineBasicBlock *BrBB = FuncInfo.MBB; 719 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 720 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 721 722 // For now, just try the simplest case where it's fed by a compare. 723 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 724 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate()); 725 if (!OptPPCPred) 726 return false; 727 728 PPC::Predicate PPCPred = OptPPCPred.getValue(); 729 730 // Take advantage of fall-through opportunities. 731 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 732 std::swap(TBB, FBB); 733 PPCPred = PPC::InvertPredicate(PPCPred); 734 } 735 736 unsigned CondReg = createResultReg(&PPC::CRRCRegClass); 737 738 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 739 CondReg)) 740 return false; 741 742 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC)) 743 .addImm(PPCPred).addReg(CondReg).addMBB(TBB); 744 fastEmitBranch(FBB, DbgLoc); 745 FuncInfo.MBB->addSuccessor(TBB); 746 return true; 747 748 } else if (const ConstantInt *CI = 749 dyn_cast<ConstantInt>(BI->getCondition())) { 750 uint64_t Imm = CI->getZExtValue(); 751 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 752 fastEmitBranch(Target, DbgLoc); 753 return true; 754 } 755 756 // FIXME: ARM looks for a case where the block containing the compare 757 // has been split from the block containing the branch. If this happens, 758 // there is a vreg available containing the result of the compare. I'm 759 // not sure we can do much, as we've lost the predicate information with 760 // the compare instruction -- we have a 4-bit CR but don't know which bit 761 // to test here. 762 return false; 763 } 764 765 // Attempt to emit a compare of the two source values. Signed and unsigned 766 // comparisons are supported. Return false if we can't handle it. 767 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, 768 bool IsZExt, unsigned DestReg) { 769 Type *Ty = SrcValue1->getType(); 770 EVT SrcEVT = TLI.getValueType(Ty, true); 771 if (!SrcEVT.isSimple()) 772 return false; 773 MVT SrcVT = SrcEVT.getSimpleVT(); 774 775 if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits()) 776 return false; 777 778 // See if operand 2 is an immediate encodeable in the compare. 779 // FIXME: Operands are not in canonical order at -O0, so an immediate 780 // operand in position 1 is a lost opportunity for now. We are 781 // similar to ARM in this regard. 782 long Imm = 0; 783 bool UseImm = false; 784 785 // Only 16-bit integer constants can be represented in compares for 786 // PowerPC. Others will be materialized into a register. 787 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) { 788 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || 789 SrcVT == MVT::i8 || SrcVT == MVT::i1) { 790 const APInt &CIVal = ConstInt->getValue(); 791 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue(); 792 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) 793 UseImm = true; 794 } 795 } 796 797 unsigned CmpOpc; 798 bool NeedsExt = false; 799 switch (SrcVT.SimpleTy) { 800 default: return false; 801 case MVT::f32: 802 CmpOpc = PPC::FCMPUS; 803 break; 804 case MVT::f64: 805 CmpOpc = PPC::FCMPUD; 806 break; 807 case MVT::i1: 808 case MVT::i8: 809 case MVT::i16: 810 NeedsExt = true; 811 // Intentional fall-through. 812 case MVT::i32: 813 if (!UseImm) 814 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; 815 else 816 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; 817 break; 818 case MVT::i64: 819 if (!UseImm) 820 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; 821 else 822 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; 823 break; 824 } 825 826 unsigned SrcReg1 = getRegForValue(SrcValue1); 827 if (SrcReg1 == 0) 828 return false; 829 830 unsigned SrcReg2 = 0; 831 if (!UseImm) { 832 SrcReg2 = getRegForValue(SrcValue2); 833 if (SrcReg2 == 0) 834 return false; 835 } 836 837 if (NeedsExt) { 838 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 839 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) 840 return false; 841 SrcReg1 = ExtReg; 842 843 if (!UseImm) { 844 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 845 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) 846 return false; 847 SrcReg2 = ExtReg; 848 } 849 } 850 851 if (!UseImm) 852 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 853 .addReg(SrcReg1).addReg(SrcReg2); 854 else 855 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 856 .addReg(SrcReg1).addImm(Imm); 857 858 return true; 859 } 860 861 // Attempt to fast-select a floating-point extend instruction. 862 bool PPCFastISel::SelectFPExt(const Instruction *I) { 863 Value *Src = I->getOperand(0); 864 EVT SrcVT = TLI.getValueType(Src->getType(), true); 865 EVT DestVT = TLI.getValueType(I->getType(), true); 866 867 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 868 return false; 869 870 unsigned SrcReg = getRegForValue(Src); 871 if (!SrcReg) 872 return false; 873 874 // No code is generated for a FP extend. 875 updateValueMap(I, SrcReg); 876 return true; 877 } 878 879 // Attempt to fast-select a floating-point truncate instruction. 880 bool PPCFastISel::SelectFPTrunc(const Instruction *I) { 881 Value *Src = I->getOperand(0); 882 EVT SrcVT = TLI.getValueType(Src->getType(), true); 883 EVT DestVT = TLI.getValueType(I->getType(), true); 884 885 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 886 return false; 887 888 unsigned SrcReg = getRegForValue(Src); 889 if (!SrcReg) 890 return false; 891 892 // Round the result to single precision. 893 unsigned DestReg = createResultReg(&PPC::F4RCRegClass); 894 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg) 895 .addReg(SrcReg); 896 897 updateValueMap(I, DestReg); 898 return true; 899 } 900 901 // Move an i32 or i64 value in a GPR to an f64 value in an FPR. 902 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 903 // those should be used instead of moving via a stack slot when the 904 // subtarget permits. 905 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte 906 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte 907 // case to 8 bytes which produces tighter code but wastes stack space. 908 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg, 909 bool IsSigned) { 910 911 // If necessary, extend 32-bit int to 64-bit. 912 if (SrcVT == MVT::i32) { 913 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 914 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned)) 915 return 0; 916 SrcReg = TmpReg; 917 } 918 919 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 920 Address Addr; 921 Addr.BaseType = Address::FrameIndexBase; 922 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 923 924 // Store the value from the GPR. 925 if (!PPCEmitStore(MVT::i64, SrcReg, Addr)) 926 return 0; 927 928 // Load the integer value into an FPR. The kind of load used depends 929 // on a number of conditions. 930 unsigned LoadOpc = PPC::LFD; 931 932 if (SrcVT == MVT::i32) { 933 if (!IsSigned) { 934 LoadOpc = PPC::LFIWZX; 935 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 936 } else if (PPCSubTarget->hasLFIWAX()) { 937 LoadOpc = PPC::LFIWAX; 938 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 939 } 940 } 941 942 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 943 unsigned ResultReg = 0; 944 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc)) 945 return 0; 946 947 return ResultReg; 948 } 949 950 // Attempt to fast-select an integer-to-floating-point conversion. 951 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { 952 MVT DstVT; 953 Type *DstTy = I->getType(); 954 if (!isTypeLegal(DstTy, DstVT)) 955 return false; 956 957 if (DstVT != MVT::f32 && DstVT != MVT::f64) 958 return false; 959 960 Value *Src = I->getOperand(0); 961 EVT SrcEVT = TLI.getValueType(Src->getType(), true); 962 if (!SrcEVT.isSimple()) 963 return false; 964 965 MVT SrcVT = SrcEVT.getSimpleVT(); 966 967 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && 968 SrcVT != MVT::i32 && SrcVT != MVT::i64) 969 return false; 970 971 unsigned SrcReg = getRegForValue(Src); 972 if (SrcReg == 0) 973 return false; 974 975 // We can only lower an unsigned convert if we have the newer 976 // floating-point conversion operations. 977 if (!IsSigned && !PPCSubTarget->hasFPCVT()) 978 return false; 979 980 // FIXME: For now we require the newer floating-point conversion operations 981 // (which are present only on P7 and A2 server models) when converting 982 // to single-precision float. Otherwise we have to generate a lot of 983 // fiddly code to avoid double rounding. If necessary, the fiddly code 984 // can be found in PPCTargetLowering::LowerINT_TO_FP(). 985 if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT()) 986 return false; 987 988 // Extend the input if necessary. 989 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { 990 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 991 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned)) 992 return false; 993 SrcVT = MVT::i64; 994 SrcReg = TmpReg; 995 } 996 997 // Move the integer value to an FPR. 998 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); 999 if (FPReg == 0) 1000 return false; 1001 1002 // Determine the opcode for the conversion. 1003 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1004 unsigned DestReg = createResultReg(RC); 1005 unsigned Opc; 1006 1007 if (DstVT == MVT::f32) 1008 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; 1009 else 1010 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; 1011 1012 // Generate the convert. 1013 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1014 .addReg(FPReg); 1015 1016 updateValueMap(I, DestReg); 1017 return true; 1018 } 1019 1020 // Move the floating-point value in SrcReg into an integer destination 1021 // register, and return the register (or zero if we can't handle it). 1022 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1023 // those should be used instead of moving via a stack slot when the 1024 // subtarget permits. 1025 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, 1026 unsigned SrcReg, bool IsSigned) { 1027 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1028 // Note that if have STFIWX available, we could use a 4-byte stack 1029 // slot for i32, but this being fast-isel we'll just go with the 1030 // easiest code gen possible. 1031 Address Addr; 1032 Addr.BaseType = Address::FrameIndexBase; 1033 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 1034 1035 // Store the value from the FPR. 1036 if (!PPCEmitStore(MVT::f64, SrcReg, Addr)) 1037 return 0; 1038 1039 // Reload it into a GPR. If we want an i32, modify the address 1040 // to have a 4-byte offset so we load from the right place. 1041 if (VT == MVT::i32) 1042 Addr.Offset = 4; 1043 1044 // Look at the currently assigned register for this instruction 1045 // to determine the required register class. 1046 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1047 const TargetRegisterClass *RC = 1048 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 1049 1050 unsigned ResultReg = 0; 1051 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned)) 1052 return 0; 1053 1054 return ResultReg; 1055 } 1056 1057 // Attempt to fast-select a floating-point-to-integer conversion. 1058 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { 1059 MVT DstVT, SrcVT; 1060 Type *DstTy = I->getType(); 1061 if (!isTypeLegal(DstTy, DstVT)) 1062 return false; 1063 1064 if (DstVT != MVT::i32 && DstVT != MVT::i64) 1065 return false; 1066 1067 // If we don't have FCTIDUZ and we need it, punt to SelectionDAG. 1068 if (DstVT == MVT::i64 && !IsSigned && !PPCSubTarget->hasFPCVT()) 1069 return false; 1070 1071 Value *Src = I->getOperand(0); 1072 Type *SrcTy = Src->getType(); 1073 if (!isTypeLegal(SrcTy, SrcVT)) 1074 return false; 1075 1076 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1077 return false; 1078 1079 unsigned SrcReg = getRegForValue(Src); 1080 if (SrcReg == 0) 1081 return false; 1082 1083 // Convert f32 to f64 if necessary. This is just a meaningless copy 1084 // to get the register class right. COPY_TO_REGCLASS is needed since 1085 // a COPY from F4RC to F8RC is converted to a F4RC-F4RC copy downstream. 1086 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg); 1087 if (InRC == &PPC::F4RCRegClass) { 1088 unsigned TmpReg = createResultReg(&PPC::F8RCRegClass); 1089 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1090 TII.get(TargetOpcode::COPY_TO_REGCLASS), TmpReg) 1091 .addReg(SrcReg).addImm(PPC::F8RCRegClassID); 1092 SrcReg = TmpReg; 1093 } 1094 1095 // Determine the opcode for the conversion, which takes place 1096 // entirely within FPRs. 1097 unsigned DestReg = createResultReg(&PPC::F8RCRegClass); 1098 unsigned Opc; 1099 1100 if (DstVT == MVT::i32) 1101 if (IsSigned) 1102 Opc = PPC::FCTIWZ; 1103 else 1104 Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; 1105 else 1106 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; 1107 1108 // Generate the convert. 1109 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1110 .addReg(SrcReg); 1111 1112 // Now move the integer value from a float register to an integer register. 1113 unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned); 1114 if (IntReg == 0) 1115 return false; 1116 1117 updateValueMap(I, IntReg); 1118 return true; 1119 } 1120 1121 // Attempt to fast-select a binary integer operation that isn't already 1122 // handled automatically. 1123 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1124 EVT DestVT = TLI.getValueType(I->getType(), true); 1125 1126 // We can get here in the case when we have a binary operation on a non-legal 1127 // type and the target independent selector doesn't know how to handle it. 1128 if (DestVT != MVT::i16 && DestVT != MVT::i8) 1129 return false; 1130 1131 // Look at the currently assigned register for this instruction 1132 // to determine the required register class. If there is no register, 1133 // make a conservative choice (don't assign R0). 1134 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1135 const TargetRegisterClass *RC = 1136 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1137 &PPC::GPRC_and_GPRC_NOR0RegClass); 1138 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1139 1140 unsigned Opc; 1141 switch (ISDOpcode) { 1142 default: return false; 1143 case ISD::ADD: 1144 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; 1145 break; 1146 case ISD::OR: 1147 Opc = IsGPRC ? PPC::OR : PPC::OR8; 1148 break; 1149 case ISD::SUB: 1150 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; 1151 break; 1152 } 1153 1154 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); 1155 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1156 if (SrcReg1 == 0) return false; 1157 1158 // Handle case of small immediate operand. 1159 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) { 1160 const APInt &CIVal = ConstInt->getValue(); 1161 int Imm = (int)CIVal.getSExtValue(); 1162 bool UseImm = true; 1163 if (isInt<16>(Imm)) { 1164 switch (Opc) { 1165 default: 1166 llvm_unreachable("Missing case!"); 1167 case PPC::ADD4: 1168 Opc = PPC::ADDI; 1169 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1170 break; 1171 case PPC::ADD8: 1172 Opc = PPC::ADDI8; 1173 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1174 break; 1175 case PPC::OR: 1176 Opc = PPC::ORI; 1177 break; 1178 case PPC::OR8: 1179 Opc = PPC::ORI8; 1180 break; 1181 case PPC::SUBF: 1182 if (Imm == -32768) 1183 UseImm = false; 1184 else { 1185 Opc = PPC::ADDI; 1186 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1187 Imm = -Imm; 1188 } 1189 break; 1190 case PPC::SUBF8: 1191 if (Imm == -32768) 1192 UseImm = false; 1193 else { 1194 Opc = PPC::ADDI8; 1195 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1196 Imm = -Imm; 1197 } 1198 break; 1199 } 1200 1201 if (UseImm) { 1202 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 1203 ResultReg) 1204 .addReg(SrcReg1) 1205 .addImm(Imm); 1206 updateValueMap(I, ResultReg); 1207 return true; 1208 } 1209 } 1210 } 1211 1212 // Reg-reg case. 1213 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1214 if (SrcReg2 == 0) return false; 1215 1216 // Reverse operands for subtract-from. 1217 if (ISDOpcode == ISD::SUB) 1218 std::swap(SrcReg1, SrcReg2); 1219 1220 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 1221 .addReg(SrcReg1).addReg(SrcReg2); 1222 updateValueMap(I, ResultReg); 1223 return true; 1224 } 1225 1226 // Handle arguments to a call that we're attempting to fast-select. 1227 // Return false if the arguments are too complex for us at the moment. 1228 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args, 1229 SmallVectorImpl<unsigned> &ArgRegs, 1230 SmallVectorImpl<MVT> &ArgVTs, 1231 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1232 SmallVectorImpl<unsigned> &RegArgs, 1233 CallingConv::ID CC, 1234 unsigned &NumBytes, 1235 bool IsVarArg) { 1236 SmallVector<CCValAssign, 16> ArgLocs; 1237 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context); 1238 1239 // Reserve space for the linkage area on the stack. 1240 unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize(); 1241 CCInfo.AllocateStack(LinkageSize, 8); 1242 1243 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS); 1244 1245 // Bail out if we can't handle any of the arguments. 1246 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1247 CCValAssign &VA = ArgLocs[I]; 1248 MVT ArgVT = ArgVTs[VA.getValNo()]; 1249 1250 // Skip vector arguments for now, as well as long double and 1251 // uint128_t, and anything that isn't passed in a register. 1252 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 || 1253 !VA.isRegLoc() || VA.needsCustom()) 1254 return false; 1255 1256 // Skip bit-converted arguments for now. 1257 if (VA.getLocInfo() == CCValAssign::BCvt) 1258 return false; 1259 } 1260 1261 // Get a count of how many bytes are to be pushed onto the stack. 1262 NumBytes = CCInfo.getNextStackOffset(); 1263 1264 // The prolog code of the callee may store up to 8 GPR argument registers to 1265 // the stack, allowing va_start to index over them in memory if its varargs. 1266 // Because we cannot tell if this is needed on the caller side, we have to 1267 // conservatively assume that it is needed. As such, make sure we have at 1268 // least enough stack space for the caller to store the 8 GPRs. 1269 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 1270 NumBytes = std::max(NumBytes, LinkageSize + 64); 1271 1272 // Issue CALLSEQ_START. 1273 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1274 TII.get(TII.getCallFrameSetupOpcode())) 1275 .addImm(NumBytes); 1276 1277 // Prepare to assign register arguments. Every argument uses up a 1278 // GPR protocol register even if it's passed in a floating-point 1279 // register (unless we're using the fast calling convention). 1280 unsigned NextGPR = PPC::X3; 1281 unsigned NextFPR = PPC::F1; 1282 1283 // Process arguments. 1284 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1285 CCValAssign &VA = ArgLocs[I]; 1286 unsigned Arg = ArgRegs[VA.getValNo()]; 1287 MVT ArgVT = ArgVTs[VA.getValNo()]; 1288 1289 // Handle argument promotion and bitcasts. 1290 switch (VA.getLocInfo()) { 1291 default: 1292 llvm_unreachable("Unknown loc info!"); 1293 case CCValAssign::Full: 1294 break; 1295 case CCValAssign::SExt: { 1296 MVT DestVT = VA.getLocVT(); 1297 const TargetRegisterClass *RC = 1298 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1299 unsigned TmpReg = createResultReg(RC); 1300 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false)) 1301 llvm_unreachable("Failed to emit a sext!"); 1302 ArgVT = DestVT; 1303 Arg = TmpReg; 1304 break; 1305 } 1306 case CCValAssign::AExt: 1307 case CCValAssign::ZExt: { 1308 MVT DestVT = VA.getLocVT(); 1309 const TargetRegisterClass *RC = 1310 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1311 unsigned TmpReg = createResultReg(RC); 1312 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true)) 1313 llvm_unreachable("Failed to emit a zext!"); 1314 ArgVT = DestVT; 1315 Arg = TmpReg; 1316 break; 1317 } 1318 case CCValAssign::BCvt: { 1319 // FIXME: Not yet handled. 1320 llvm_unreachable("Should have bailed before getting here!"); 1321 break; 1322 } 1323 } 1324 1325 // Copy this argument to the appropriate register. 1326 unsigned ArgReg; 1327 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { 1328 ArgReg = NextFPR++; 1329 if (CC != CallingConv::Fast) 1330 ++NextGPR; 1331 } else 1332 ArgReg = NextGPR++; 1333 1334 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1335 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg); 1336 RegArgs.push_back(ArgReg); 1337 } 1338 1339 return true; 1340 } 1341 1342 // For a call that we've determined we can fast-select, finish the 1343 // call sequence and generate a copy to obtain the return value (if any). 1344 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) { 1345 CallingConv::ID CC = CLI.CallConv; 1346 1347 // Issue CallSEQ_END. 1348 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1349 TII.get(TII.getCallFrameDestroyOpcode())) 1350 .addImm(NumBytes).addImm(0); 1351 1352 // Next, generate a copy to obtain the return value. 1353 // FIXME: No multi-register return values yet, though I don't foresee 1354 // any real difficulties there. 1355 if (RetVT != MVT::isVoid) { 1356 SmallVector<CCValAssign, 16> RVLocs; 1357 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 1358 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1359 CCValAssign &VA = RVLocs[0]; 1360 assert(RVLocs.size() == 1 && "No support for multi-reg return values!"); 1361 assert(VA.isRegLoc() && "Can only return in registers!"); 1362 1363 MVT DestVT = VA.getValVT(); 1364 MVT CopyVT = DestVT; 1365 1366 // Ints smaller than a register still arrive in a full 64-bit 1367 // register, so make sure we recognize this. 1368 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) 1369 CopyVT = MVT::i64; 1370 1371 unsigned SourcePhysReg = VA.getLocReg(); 1372 unsigned ResultReg = 0; 1373 1374 if (RetVT == CopyVT) { 1375 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT); 1376 ResultReg = createResultReg(CpyRC); 1377 1378 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1379 TII.get(TargetOpcode::COPY), ResultReg) 1380 .addReg(SourcePhysReg); 1381 1382 // If necessary, round the floating result to single precision. 1383 } else if (CopyVT == MVT::f64) { 1384 ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1385 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), 1386 ResultReg).addReg(SourcePhysReg); 1387 1388 // If only the low half of a general register is needed, generate 1389 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be 1390 // used along the fast-isel path (not lowered), and downstream logic 1391 // also doesn't like a direct subreg copy on a physical reg.) 1392 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { 1393 ResultReg = createResultReg(&PPC::GPRCRegClass); 1394 // Convert physical register from G8RC to GPRC. 1395 SourcePhysReg -= PPC::X0 - PPC::R0; 1396 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1397 TII.get(TargetOpcode::COPY), ResultReg) 1398 .addReg(SourcePhysReg); 1399 } 1400 1401 assert(ResultReg && "ResultReg unset!"); 1402 CLI.InRegs.push_back(SourcePhysReg); 1403 CLI.ResultReg = ResultReg; 1404 CLI.NumResultRegs = 1; 1405 } 1406 1407 return true; 1408 } 1409 1410 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) { 1411 CallingConv::ID CC = CLI.CallConv; 1412 bool IsTailCall = CLI.IsTailCall; 1413 bool IsVarArg = CLI.IsVarArg; 1414 const Value *Callee = CLI.Callee; 1415 const char *SymName = CLI.SymName; 1416 1417 if (!Callee && !SymName) 1418 return false; 1419 1420 // Allow SelectionDAG isel to handle tail calls. 1421 if (IsTailCall) 1422 return false; 1423 1424 // Let SDISel handle vararg functions. 1425 if (IsVarArg) 1426 return false; 1427 1428 // Handle simple calls for now, with legal return types and 1429 // those that can be extended. 1430 Type *RetTy = CLI.RetTy; 1431 MVT RetVT; 1432 if (RetTy->isVoidTy()) 1433 RetVT = MVT::isVoid; 1434 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 1435 RetVT != MVT::i8) 1436 return false; 1437 1438 // FIXME: No multi-register return values yet. 1439 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && 1440 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && 1441 RetVT != MVT::f64) { 1442 SmallVector<CCValAssign, 16> RVLocs; 1443 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context); 1444 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1445 if (RVLocs.size() > 1) 1446 return false; 1447 } 1448 1449 // Bail early if more than 8 arguments, as we only currently 1450 // handle arguments passed in registers. 1451 unsigned NumArgs = CLI.OutVals.size(); 1452 if (NumArgs > 8) 1453 return false; 1454 1455 // Set up the argument vectors. 1456 SmallVector<Value*, 8> Args; 1457 SmallVector<unsigned, 8> ArgRegs; 1458 SmallVector<MVT, 8> ArgVTs; 1459 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1460 1461 Args.reserve(NumArgs); 1462 ArgRegs.reserve(NumArgs); 1463 ArgVTs.reserve(NumArgs); 1464 ArgFlags.reserve(NumArgs); 1465 1466 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) { 1467 // Only handle easy calls for now. It would be reasonably easy 1468 // to handle <= 8-byte structures passed ByVal in registers, but we 1469 // have to ensure they are right-justified in the register. 1470 ISD::ArgFlagsTy Flags = CLI.OutFlags[i]; 1471 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal()) 1472 return false; 1473 1474 Value *ArgValue = CLI.OutVals[i]; 1475 Type *ArgTy = ArgValue->getType(); 1476 MVT ArgVT; 1477 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) 1478 return false; 1479 1480 if (ArgVT.isVector()) 1481 return false; 1482 1483 unsigned Arg = getRegForValue(ArgValue); 1484 if (Arg == 0) 1485 return false; 1486 1487 Args.push_back(ArgValue); 1488 ArgRegs.push_back(Arg); 1489 ArgVTs.push_back(ArgVT); 1490 ArgFlags.push_back(Flags); 1491 } 1492 1493 // Process the arguments. 1494 SmallVector<unsigned, 8> RegArgs; 1495 unsigned NumBytes; 1496 1497 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 1498 RegArgs, CC, NumBytes, IsVarArg)) 1499 return false; 1500 1501 MachineInstrBuilder MIB; 1502 // FIXME: No handling for function pointers yet. This requires 1503 // implementing the function descriptor (OPD) setup. 1504 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 1505 if (!GV) { 1506 // patchpoints are a special case; they always dispatch to a pointer value. 1507 // However, we don't actually want to generate the indirect call sequence 1508 // here (that will be generated, as necessary, during asm printing), and 1509 // the call we generate here will be erased by FastISel::selectPatchpoint, 1510 // so don't try very hard... 1511 if (CLI.IsPatchPoint) 1512 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP)); 1513 else 1514 return false; 1515 } else { 1516 // Build direct call with NOP for TOC restore. 1517 // FIXME: We can and should optimize away the NOP for local calls. 1518 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1519 TII.get(PPC::BL8_NOP)); 1520 // Add callee. 1521 MIB.addGlobalAddress(GV); 1522 } 1523 1524 // Add implicit physical register uses to the call. 1525 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II) 1526 MIB.addReg(RegArgs[II], RegState::Implicit); 1527 1528 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live 1529 // into the call. 1530 PPCFuncInfo->setUsesTOCBasePtr(); 1531 MIB.addReg(PPC::X2, RegState::Implicit); 1532 1533 // Add a register mask with the call-preserved registers. Proper 1534 // defs for return values will be added by setPhysRegsDeadExcept(). 1535 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 1536 1537 CLI.Call = MIB; 1538 1539 // Finish off the call including any return values. 1540 return finishCall(RetVT, CLI, NumBytes); 1541 } 1542 1543 // Attempt to fast-select a return instruction. 1544 bool PPCFastISel::SelectRet(const Instruction *I) { 1545 1546 if (!FuncInfo.CanLowerReturn) 1547 return false; 1548 1549 const ReturnInst *Ret = cast<ReturnInst>(I); 1550 const Function &F = *I->getParent()->getParent(); 1551 1552 // Build a list of return value registers. 1553 SmallVector<unsigned, 4> RetRegs; 1554 CallingConv::ID CC = F.getCallingConv(); 1555 1556 if (Ret->getNumOperands() > 0) { 1557 SmallVector<ISD::OutputArg, 4> Outs; 1558 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI); 1559 1560 // Analyze operands of the call, assigning locations to each operand. 1561 SmallVector<CCValAssign, 16> ValLocs; 1562 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context); 1563 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); 1564 const Value *RV = Ret->getOperand(0); 1565 1566 // FIXME: Only one output register for now. 1567 if (ValLocs.size() > 1) 1568 return false; 1569 1570 // Special case for returning a constant integer of any size. 1571 // Materialize the constant as an i64 and copy it to the return 1572 // register. We still need to worry about properly extending the sign. E.g: 1573 // If the constant has only one bit, it means it is a boolean. Therefore 1574 // we can't use PPCMaterializeInt because it extends the sign which will 1575 // cause negations of the returned value to be incorrect as they are 1576 // implemented as the flip of the least significant bit. 1577 if (isa<ConstantInt>(*RV)) { 1578 const Constant *C = cast<Constant>(RV); 1579 1580 CCValAssign &VA = ValLocs[0]; 1581 1582 unsigned RetReg = VA.getLocReg(); 1583 unsigned SrcReg = PPCMaterializeInt(C, MVT::i64, 1584 VA.getLocInfo() == CCValAssign::SExt); 1585 1586 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1587 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg); 1588 1589 RetRegs.push_back(RetReg); 1590 1591 } else { 1592 unsigned Reg = getRegForValue(RV); 1593 1594 if (Reg == 0) 1595 return false; 1596 1597 // Copy the result values into the output registers. 1598 for (unsigned i = 0; i < ValLocs.size(); ++i) { 1599 1600 CCValAssign &VA = ValLocs[i]; 1601 assert(VA.isRegLoc() && "Can only return in registers!"); 1602 RetRegs.push_back(VA.getLocReg()); 1603 unsigned SrcReg = Reg + VA.getValNo(); 1604 1605 EVT RVEVT = TLI.getValueType(RV->getType()); 1606 if (!RVEVT.isSimple()) 1607 return false; 1608 MVT RVVT = RVEVT.getSimpleVT(); 1609 MVT DestVT = VA.getLocVT(); 1610 1611 if (RVVT != DestVT && RVVT != MVT::i8 && 1612 RVVT != MVT::i16 && RVVT != MVT::i32) 1613 return false; 1614 1615 if (RVVT != DestVT) { 1616 switch (VA.getLocInfo()) { 1617 default: 1618 llvm_unreachable("Unknown loc info!"); 1619 case CCValAssign::Full: 1620 llvm_unreachable("Full value assign but types don't match?"); 1621 case CCValAssign::AExt: 1622 case CCValAssign::ZExt: { 1623 const TargetRegisterClass *RC = 1624 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1625 unsigned TmpReg = createResultReg(RC); 1626 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) 1627 return false; 1628 SrcReg = TmpReg; 1629 break; 1630 } 1631 case CCValAssign::SExt: { 1632 const TargetRegisterClass *RC = 1633 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1634 unsigned TmpReg = createResultReg(RC); 1635 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) 1636 return false; 1637 SrcReg = TmpReg; 1638 break; 1639 } 1640 } 1641 } 1642 1643 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1644 TII.get(TargetOpcode::COPY), RetRegs[i]) 1645 .addReg(SrcReg); 1646 } 1647 } 1648 } 1649 1650 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1651 TII.get(PPC::BLR8)); 1652 1653 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1654 MIB.addReg(RetRegs[i], RegState::Implicit); 1655 1656 return true; 1657 } 1658 1659 // Attempt to emit an integer extend of SrcReg into DestReg. Both 1660 // signed and zero extensions are supported. Return false if we 1661 // can't handle it. 1662 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1663 unsigned DestReg, bool IsZExt) { 1664 if (DestVT != MVT::i32 && DestVT != MVT::i64) 1665 return false; 1666 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) 1667 return false; 1668 1669 // Signed extensions use EXTSB, EXTSH, EXTSW. 1670 if (!IsZExt) { 1671 unsigned Opc; 1672 if (SrcVT == MVT::i8) 1673 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; 1674 else if (SrcVT == MVT::i16) 1675 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; 1676 else { 1677 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); 1678 Opc = PPC::EXTSW_32_64; 1679 } 1680 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1681 .addReg(SrcReg); 1682 1683 // Unsigned 32-bit extensions use RLWINM. 1684 } else if (DestVT == MVT::i32) { 1685 unsigned MB; 1686 if (SrcVT == MVT::i8) 1687 MB = 24; 1688 else { 1689 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); 1690 MB = 16; 1691 } 1692 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM), 1693 DestReg) 1694 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); 1695 1696 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). 1697 } else { 1698 unsigned MB; 1699 if (SrcVT == MVT::i8) 1700 MB = 56; 1701 else if (SrcVT == MVT::i16) 1702 MB = 48; 1703 else 1704 MB = 32; 1705 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1706 TII.get(PPC::RLDICL_32_64), DestReg) 1707 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); 1708 } 1709 1710 return true; 1711 } 1712 1713 // Attempt to fast-select an indirect branch instruction. 1714 bool PPCFastISel::SelectIndirectBr(const Instruction *I) { 1715 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1716 if (AddrReg == 0) 1717 return false; 1718 1719 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8)) 1720 .addReg(AddrReg); 1721 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8)); 1722 1723 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1724 for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i) 1725 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]); 1726 1727 return true; 1728 } 1729 1730 // Attempt to fast-select an integer truncate instruction. 1731 bool PPCFastISel::SelectTrunc(const Instruction *I) { 1732 Value *Src = I->getOperand(0); 1733 EVT SrcVT = TLI.getValueType(Src->getType(), true); 1734 EVT DestVT = TLI.getValueType(I->getType(), true); 1735 1736 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) 1737 return false; 1738 1739 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 1740 return false; 1741 1742 unsigned SrcReg = getRegForValue(Src); 1743 if (!SrcReg) 1744 return false; 1745 1746 // The only interesting case is when we need to switch register classes. 1747 if (SrcVT == MVT::i64) { 1748 unsigned ResultReg = createResultReg(&PPC::GPRCRegClass); 1749 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1750 TII.get(TargetOpcode::COPY), 1751 ResultReg).addReg(SrcReg, 0, PPC::sub_32); 1752 SrcReg = ResultReg; 1753 } 1754 1755 updateValueMap(I, SrcReg); 1756 return true; 1757 } 1758 1759 // Attempt to fast-select an integer extend instruction. 1760 bool PPCFastISel::SelectIntExt(const Instruction *I) { 1761 Type *DestTy = I->getType(); 1762 Value *Src = I->getOperand(0); 1763 Type *SrcTy = Src->getType(); 1764 1765 bool IsZExt = isa<ZExtInst>(I); 1766 unsigned SrcReg = getRegForValue(Src); 1767 if (!SrcReg) return false; 1768 1769 EVT SrcEVT, DestEVT; 1770 SrcEVT = TLI.getValueType(SrcTy, true); 1771 DestEVT = TLI.getValueType(DestTy, true); 1772 if (!SrcEVT.isSimple()) 1773 return false; 1774 if (!DestEVT.isSimple()) 1775 return false; 1776 1777 MVT SrcVT = SrcEVT.getSimpleVT(); 1778 MVT DestVT = DestEVT.getSimpleVT(); 1779 1780 // If we know the register class needed for the result of this 1781 // instruction, use it. Otherwise pick the register class of the 1782 // correct size that does not contain X0/R0, since we don't know 1783 // whether downstream uses permit that assignment. 1784 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1785 const TargetRegisterClass *RC = 1786 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1787 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 1788 &PPC::GPRC_and_GPRC_NOR0RegClass)); 1789 unsigned ResultReg = createResultReg(RC); 1790 1791 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) 1792 return false; 1793 1794 updateValueMap(I, ResultReg); 1795 return true; 1796 } 1797 1798 // Attempt to fast-select an instruction that wasn't handled by 1799 // the table-generated machinery. 1800 bool PPCFastISel::fastSelectInstruction(const Instruction *I) { 1801 1802 switch (I->getOpcode()) { 1803 case Instruction::Load: 1804 return SelectLoad(I); 1805 case Instruction::Store: 1806 return SelectStore(I); 1807 case Instruction::Br: 1808 return SelectBranch(I); 1809 case Instruction::IndirectBr: 1810 return SelectIndirectBr(I); 1811 case Instruction::FPExt: 1812 return SelectFPExt(I); 1813 case Instruction::FPTrunc: 1814 return SelectFPTrunc(I); 1815 case Instruction::SIToFP: 1816 return SelectIToFP(I, /*IsSigned*/ true); 1817 case Instruction::UIToFP: 1818 return SelectIToFP(I, /*IsSigned*/ false); 1819 case Instruction::FPToSI: 1820 return SelectFPToI(I, /*IsSigned*/ true); 1821 case Instruction::FPToUI: 1822 return SelectFPToI(I, /*IsSigned*/ false); 1823 case Instruction::Add: 1824 return SelectBinaryIntOp(I, ISD::ADD); 1825 case Instruction::Or: 1826 return SelectBinaryIntOp(I, ISD::OR); 1827 case Instruction::Sub: 1828 return SelectBinaryIntOp(I, ISD::SUB); 1829 case Instruction::Call: 1830 return selectCall(I); 1831 case Instruction::Ret: 1832 return SelectRet(I); 1833 case Instruction::Trunc: 1834 return SelectTrunc(I); 1835 case Instruction::ZExt: 1836 case Instruction::SExt: 1837 return SelectIntExt(I); 1838 // Here add other flavors of Instruction::XXX that automated 1839 // cases don't catch. For example, switches are terminators 1840 // that aren't yet handled. 1841 default: 1842 break; 1843 } 1844 return false; 1845 } 1846 1847 // Materialize a floating-point constant into a register, and return 1848 // the register number (or zero if we failed to handle it). 1849 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { 1850 // No plans to handle long double here. 1851 if (VT != MVT::f32 && VT != MVT::f64) 1852 return 0; 1853 1854 // All FP constants are loaded from the constant pool. 1855 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 1856 assert(Align > 0 && "Unexpectedly missing alignment information!"); 1857 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 1858 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 1859 CodeModel::Model CModel = TM.getCodeModel(); 1860 1861 MachineMemOperand *MMO = 1862 FuncInfo.MF->getMachineMemOperand( 1863 MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad, 1864 (VT == MVT::f32) ? 4 : 8, Align); 1865 1866 unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD; 1867 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1868 1869 PPCFuncInfo->setUsesTOCBasePtr(); 1870 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). 1871 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) { 1872 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT), 1873 TmpReg) 1874 .addConstantPoolIndex(Idx).addReg(PPC::X2); 1875 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1876 .addImm(0).addReg(TmpReg).addMemOperand(MMO); 1877 } else { 1878 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)). 1879 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1880 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); 1881 // But for large code model, we must generate a LDtocL followed 1882 // by the LF[SD]. 1883 if (CModel == CodeModel::Large) { 1884 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 1885 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1886 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg); 1887 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1888 .addImm(0).addReg(TmpReg2); 1889 } else 1890 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1891 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) 1892 .addReg(TmpReg) 1893 .addMemOperand(MMO); 1894 } 1895 1896 return DestReg; 1897 } 1898 1899 // Materialize the address of a global value into a register, and return 1900 // the register number (or zero if we failed to handle it). 1901 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { 1902 assert(VT == MVT::i64 && "Non-address!"); 1903 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; 1904 unsigned DestReg = createResultReg(RC); 1905 1906 // Global values may be plain old object addresses, TLS object 1907 // addresses, constant pool entries, or jump tables. How we generate 1908 // code for these may depend on small, medium, or large code model. 1909 CodeModel::Model CModel = TM.getCodeModel(); 1910 1911 // FIXME: Jump tables are not yet required because fast-isel doesn't 1912 // handle switches; if that changes, we need them as well. For now, 1913 // what follows assumes everything's a generic (or TLS) global address. 1914 1915 // FIXME: We don't yet handle the complexity of TLS. 1916 if (GV->isThreadLocal()) 1917 return 0; 1918 1919 PPCFuncInfo->setUsesTOCBasePtr(); 1920 // For small code model, generate a simple TOC load. 1921 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) 1922 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc), 1923 DestReg) 1924 .addGlobalAddress(GV) 1925 .addReg(PPC::X2); 1926 else { 1927 // If the address is an externally defined symbol, a symbol with common 1928 // or externally available linkage, a non-local function address, or a 1929 // jump table address (not yet needed), or if we are generating code 1930 // for large code model, we generate: 1931 // LDtocL(GV, ADDIStocHA(%X2, GV)) 1932 // Otherwise we generate: 1933 // ADDItocL(ADDIStocHA(%X2, GV), GV) 1934 // Either way, start with the ADDIStocHA: 1935 unsigned HighPartReg = createResultReg(RC); 1936 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 1937 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); 1938 1939 // If/when switches are implemented, jump tables should be handled 1940 // on the "if" path here. 1941 if (CModel == CodeModel::Large || 1942 (GV->getType()->getElementType()->isFunctionTy() && 1943 (GV->isDeclaration() || GV->isWeakForLinker())) || 1944 GV->isDeclaration() || GV->hasCommonLinkage() || 1945 GV->hasAvailableExternallyLinkage()) 1946 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 1947 DestReg).addGlobalAddress(GV).addReg(HighPartReg); 1948 else 1949 // Otherwise generate the ADDItocL. 1950 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL), 1951 DestReg).addReg(HighPartReg).addGlobalAddress(GV); 1952 } 1953 1954 return DestReg; 1955 } 1956 1957 // Materialize a 32-bit integer constant into a register, and return 1958 // the register number (or zero if we failed to handle it). 1959 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, 1960 const TargetRegisterClass *RC) { 1961 unsigned Lo = Imm & 0xFFFF; 1962 unsigned Hi = (Imm >> 16) & 0xFFFF; 1963 1964 unsigned ResultReg = createResultReg(RC); 1965 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1966 1967 if (isInt<16>(Imm)) 1968 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1969 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) 1970 .addImm(Imm); 1971 else if (Lo) { 1972 // Both Lo and Hi have nonzero bits. 1973 unsigned TmpReg = createResultReg(RC); 1974 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1975 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) 1976 .addImm(Hi); 1977 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1978 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) 1979 .addReg(TmpReg).addImm(Lo); 1980 } else 1981 // Just Hi bits. 1982 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1983 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) 1984 .addImm(Hi); 1985 1986 return ResultReg; 1987 } 1988 1989 // Materialize a 64-bit integer constant into a register, and return 1990 // the register number (or zero if we failed to handle it). 1991 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, 1992 const TargetRegisterClass *RC) { 1993 unsigned Remainder = 0; 1994 unsigned Shift = 0; 1995 1996 // If the value doesn't fit in 32 bits, see if we can shift it 1997 // so that it fits in 32 bits. 1998 if (!isInt<32>(Imm)) { 1999 Shift = countTrailingZeros<uint64_t>(Imm); 2000 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 2001 2002 if (isInt<32>(ImmSh)) 2003 Imm = ImmSh; 2004 else { 2005 Remainder = Imm; 2006 Shift = 32; 2007 Imm >>= 32; 2008 } 2009 } 2010 2011 // Handle the high-order 32 bits (if shifted) or the whole 32 bits 2012 // (if not shifted). 2013 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); 2014 if (!Shift) 2015 return TmpReg1; 2016 2017 // If upper 32 bits were not zero, we've built them and need to shift 2018 // them into place. 2019 unsigned TmpReg2; 2020 if (Imm) { 2021 TmpReg2 = createResultReg(RC); 2022 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR), 2023 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); 2024 } else 2025 TmpReg2 = TmpReg1; 2026 2027 unsigned TmpReg3, Hi, Lo; 2028 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 2029 TmpReg3 = createResultReg(RC); 2030 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8), 2031 TmpReg3).addReg(TmpReg2).addImm(Hi); 2032 } else 2033 TmpReg3 = TmpReg2; 2034 2035 if ((Lo = Remainder & 0xFFFF)) { 2036 unsigned ResultReg = createResultReg(RC); 2037 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8), 2038 ResultReg).addReg(TmpReg3).addImm(Lo); 2039 return ResultReg; 2040 } 2041 2042 return TmpReg3; 2043 } 2044 2045 2046 // Materialize an integer constant into a register, and return 2047 // the register number (or zero if we failed to handle it). 2048 unsigned PPCFastISel::PPCMaterializeInt(const Constant *C, MVT VT, 2049 bool UseSExt) { 2050 // If we're using CR bit registers for i1 values, handle that as a special 2051 // case first. 2052 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2053 const ConstantInt *CI = cast<ConstantInt>(C); 2054 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2055 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2056 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2057 return ImmReg; 2058 } 2059 2060 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2061 VT != MVT::i8 && VT != MVT::i1) 2062 return 0; 2063 2064 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2065 &PPC::GPRCRegClass); 2066 2067 // If the constant is in range, use a load-immediate. 2068 const ConstantInt *CI = cast<ConstantInt>(C); 2069 if (isInt<16>(CI->getSExtValue())) { 2070 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 2071 unsigned ImmReg = createResultReg(RC); 2072 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg) 2073 .addImm( (UseSExt) ? CI->getSExtValue() : CI->getZExtValue() ); 2074 return ImmReg; 2075 } 2076 2077 // Construct the constant piecewise. 2078 int64_t Imm = CI->getZExtValue(); 2079 2080 if (VT == MVT::i64) 2081 return PPCMaterialize64BitInt(Imm, RC); 2082 else if (VT == MVT::i32) 2083 return PPCMaterialize32BitInt(Imm, RC); 2084 2085 return 0; 2086 } 2087 2088 // Materialize a constant into a register, and return the register 2089 // number (or zero if we failed to handle it). 2090 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) { 2091 EVT CEVT = TLI.getValueType(C->getType(), true); 2092 2093 // Only handle simple types. 2094 if (!CEVT.isSimple()) return 0; 2095 MVT VT = CEVT.getSimpleVT(); 2096 2097 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 2098 return PPCMaterializeFP(CFP, VT); 2099 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 2100 return PPCMaterializeGV(GV, VT); 2101 else if (isa<ConstantInt>(C)) 2102 return PPCMaterializeInt(C, VT, VT != MVT::i1); 2103 2104 return 0; 2105 } 2106 2107 // Materialize the address created by an alloca into a register, and 2108 // return the register number (or zero if we failed to handle it). 2109 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 2110 // Don't handle dynamic allocas. 2111 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 2112 2113 MVT VT; 2114 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 2115 2116 DenseMap<const AllocaInst*, int>::iterator SI = 2117 FuncInfo.StaticAllocaMap.find(AI); 2118 2119 if (SI != FuncInfo.StaticAllocaMap.end()) { 2120 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2121 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 2122 ResultReg).addFrameIndex(SI->second).addImm(0); 2123 return ResultReg; 2124 } 2125 2126 return 0; 2127 } 2128 2129 // Fold loads into extends when possible. 2130 // FIXME: We can have multiple redundant extend/trunc instructions 2131 // following a load. The folding only picks up one. Extend this 2132 // to check subsequent instructions for the same pattern and remove 2133 // them. Thus ResultReg should be the def reg for the last redundant 2134 // instruction in a chain, and all intervening instructions can be 2135 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll 2136 // to add ELF64-NOT: rldicl to the appropriate tests when this works. 2137 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2138 const LoadInst *LI) { 2139 // Verify we have a legal type before going any further. 2140 MVT VT; 2141 if (!isLoadTypeLegal(LI->getType(), VT)) 2142 return false; 2143 2144 // Combine load followed by zero- or sign-extend. 2145 bool IsZExt = false; 2146 switch(MI->getOpcode()) { 2147 default: 2148 return false; 2149 2150 case PPC::RLDICL: 2151 case PPC::RLDICL_32_64: { 2152 IsZExt = true; 2153 unsigned MB = MI->getOperand(3).getImm(); 2154 if ((VT == MVT::i8 && MB <= 56) || 2155 (VT == MVT::i16 && MB <= 48) || 2156 (VT == MVT::i32 && MB <= 32)) 2157 break; 2158 return false; 2159 } 2160 2161 case PPC::RLWINM: 2162 case PPC::RLWINM8: { 2163 IsZExt = true; 2164 unsigned MB = MI->getOperand(3).getImm(); 2165 if ((VT == MVT::i8 && MB <= 24) || 2166 (VT == MVT::i16 && MB <= 16)) 2167 break; 2168 return false; 2169 } 2170 2171 case PPC::EXTSB: 2172 case PPC::EXTSB8: 2173 case PPC::EXTSB8_32_64: 2174 /* There is no sign-extending load-byte instruction. */ 2175 return false; 2176 2177 case PPC::EXTSH: 2178 case PPC::EXTSH8: 2179 case PPC::EXTSH8_32_64: { 2180 if (VT != MVT::i16 && VT != MVT::i8) 2181 return false; 2182 break; 2183 } 2184 2185 case PPC::EXTSW: 2186 case PPC::EXTSW_32_64: { 2187 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) 2188 return false; 2189 break; 2190 } 2191 } 2192 2193 // See if we can handle this address. 2194 Address Addr; 2195 if (!PPCComputeAddress(LI->getOperand(0), Addr)) 2196 return false; 2197 2198 unsigned ResultReg = MI->getOperand(0).getReg(); 2199 2200 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt)) 2201 return false; 2202 2203 MI->eraseFromParent(); 2204 return true; 2205 } 2206 2207 // Attempt to lower call arguments in a faster way than done by 2208 // the selection DAG code. 2209 bool PPCFastISel::fastLowerArguments() { 2210 // Defer to normal argument lowering for now. It's reasonably 2211 // efficient. Consider doing something like ARM to handle the 2212 // case where all args fit in registers, no varargs, no float 2213 // or vector args. 2214 return false; 2215 } 2216 2217 // Handle materializing integer constants into a register. This is not 2218 // automatically generated for PowerPC, so must be explicitly created here. 2219 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { 2220 2221 if (Opc != ISD::Constant) 2222 return 0; 2223 2224 // If we're using CR bit registers for i1 values, handle that as a special 2225 // case first. 2226 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2227 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2228 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2229 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2230 return ImmReg; 2231 } 2232 2233 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && 2234 VT != MVT::i8 && VT != MVT::i1) 2235 return 0; 2236 2237 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2238 &PPC::GPRCRegClass); 2239 if (VT == MVT::i64) 2240 return PPCMaterialize64BitInt(Imm, RC); 2241 else 2242 return PPCMaterialize32BitInt(Imm, RC); 2243 } 2244 2245 // Override for ADDI and ADDI8 to set the correct register class 2246 // on RHS operand 0. The automatic infrastructure naively assumes 2247 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost 2248 // for these cases. At the moment, none of the other automatically 2249 // generated RI instructions require special treatment. However, once 2250 // SelectSelect is implemented, "isel" requires similar handling. 2251 // 2252 // Also be conservative about the output register class. Avoid 2253 // assigning R0 or X0 to the output register for GPRC and G8RC 2254 // register classes, as any such result could be used in ADDI, etc., 2255 // where those regs have another meaning. 2256 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2257 const TargetRegisterClass *RC, 2258 unsigned Op0, bool Op0IsKill, 2259 uint64_t Imm) { 2260 if (MachineInstOpcode == PPC::ADDI) 2261 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); 2262 else if (MachineInstOpcode == PPC::ADDI8) 2263 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); 2264 2265 const TargetRegisterClass *UseRC = 2266 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2267 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2268 2269 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, 2270 Op0, Op0IsKill, Imm); 2271 } 2272 2273 // Override for instructions with one register operand to avoid use of 2274 // R0/X0. The automatic infrastructure isn't aware of the context so 2275 // we must be conservative. 2276 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2277 const TargetRegisterClass* RC, 2278 unsigned Op0, bool Op0IsKill) { 2279 const TargetRegisterClass *UseRC = 2280 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2281 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2282 2283 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill); 2284 } 2285 2286 // Override for instructions with two register operands to avoid use 2287 // of R0/X0. The automatic infrastructure isn't aware of the context 2288 // so we must be conservative. 2289 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2290 const TargetRegisterClass* RC, 2291 unsigned Op0, bool Op0IsKill, 2292 unsigned Op1, bool Op1IsKill) { 2293 const TargetRegisterClass *UseRC = 2294 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2295 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2296 2297 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill, 2298 Op1, Op1IsKill); 2299 } 2300 2301 namespace llvm { 2302 // Create the fast instruction selector for PowerPC64 ELF. 2303 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, 2304 const TargetLibraryInfo *LibInfo) { 2305 // Only available on 64-bit ELF for now. 2306 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>(); 2307 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) 2308 return new PPCFastISel(FuncInfo, LibInfo); 2309 return nullptr; 2310 } 2311 } 2312