1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the PowerPC-specific support for the FastISel class. Some
10 // of the target-specific code is generated by tablegen in the file
11 // PPCGenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCCCState.h"
18 #include "PPCCallingConv.h"
19 #include "PPCISelLowering.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCSubtarget.h"
22 #include "PPCTargetMachine.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Target/TargetMachine.h"
40
41 //===----------------------------------------------------------------------===//
42 //
43 // TBD:
44 // fastLowerArguments: Handle simple cases.
45 // PPCMaterializeGV: Handle TLS.
46 // SelectCall: Handle function pointers.
47 // SelectCall: Handle multi-register return values.
48 // SelectCall: Optimize away nops for local calls.
49 // processCallArgs: Handle bit-converted arguments.
50 // finishCall: Handle multi-register return values.
51 // PPCComputeAddress: Handle parameter references as FrameIndex's.
52 // PPCEmitCmp: Handle immediate as operand 1.
53 // SelectCall: Handle small byval arguments.
54 // SelectIntrinsicCall: Implement.
55 // SelectSelect: Implement.
56 // Consider factoring isTypeLegal into the base class.
57 // Implement switches and jump tables.
58 //
59 //===----------------------------------------------------------------------===//
60 using namespace llvm;
61
62 #define DEBUG_TYPE "ppcfastisel"
63
64 namespace {
65
66 struct Address {
67 enum {
68 RegBase,
69 FrameIndexBase
70 } BaseType;
71
72 union {
73 unsigned Reg;
74 int FI;
75 } Base;
76
77 long Offset;
78
79 // Innocuous defaults for our address.
Address__anonad57e5630111::Address80 Address()
81 : BaseType(RegBase), Offset(0) {
82 Base.Reg = 0;
83 }
84 };
85
86 class PPCFastISel final : public FastISel {
87
88 const TargetMachine &TM;
89 const PPCSubtarget *Subtarget;
90 PPCFunctionInfo *PPCFuncInfo;
91 const TargetInstrInfo &TII;
92 const TargetLowering &TLI;
93 LLVMContext *Context;
94
95 public:
PPCFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo)96 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
97 const TargetLibraryInfo *LibInfo)
98 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()),
99 Subtarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
100 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()),
101 TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()),
102 Context(&FuncInfo.Fn->getContext()) {}
103
104 // Backend specific FastISel code.
105 private:
106 bool fastSelectInstruction(const Instruction *I) override;
107 unsigned fastMaterializeConstant(const Constant *C) override;
108 unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
109 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
110 const LoadInst *LI) override;
111 bool fastLowerArguments() override;
112 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
113 unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
114 const TargetRegisterClass *RC,
115 unsigned Op0, uint64_t Imm);
116 unsigned fastEmitInst_r(unsigned MachineInstOpcode,
117 const TargetRegisterClass *RC, unsigned Op0);
118 unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
119 const TargetRegisterClass *RC,
120 unsigned Op0, unsigned Op1);
121
122 bool fastLowerCall(CallLoweringInfo &CLI) override;
123
124 // Instruction selection routines.
125 private:
126 bool SelectLoad(const Instruction *I);
127 bool SelectStore(const Instruction *I);
128 bool SelectBranch(const Instruction *I);
129 bool SelectIndirectBr(const Instruction *I);
130 bool SelectFPExt(const Instruction *I);
131 bool SelectFPTrunc(const Instruction *I);
132 bool SelectIToFP(const Instruction *I, bool IsSigned);
133 bool SelectFPToI(const Instruction *I, bool IsSigned);
134 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
135 bool SelectRet(const Instruction *I);
136 bool SelectTrunc(const Instruction *I);
137 bool SelectIntExt(const Instruction *I);
138
139 // Utility routines.
140 private:
141 bool isTypeLegal(Type *Ty, MVT &VT);
142 bool isLoadTypeLegal(Type *Ty, MVT &VT);
143 bool isValueAvailable(const Value *V) const;
isVSFRCRegClass(const TargetRegisterClass * RC) const144 bool isVSFRCRegClass(const TargetRegisterClass *RC) const {
145 return RC->getID() == PPC::VSFRCRegClassID;
146 }
isVSSRCRegClass(const TargetRegisterClass * RC) const147 bool isVSSRCRegClass(const TargetRegisterClass *RC) const {
148 return RC->getID() == PPC::VSSRCRegClassID;
149 }
copyRegToRegClass(const TargetRegisterClass * ToRC,unsigned SrcReg,unsigned Flag=0,unsigned SubReg=0)150 unsigned copyRegToRegClass(const TargetRegisterClass *ToRC,
151 unsigned SrcReg, unsigned Flag = 0,
152 unsigned SubReg = 0) {
153 Register TmpReg = createResultReg(ToRC);
154 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
155 TII.get(TargetOpcode::COPY), TmpReg).addReg(SrcReg, Flag, SubReg);
156 return TmpReg;
157 }
158 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
159 bool isZExt, unsigned DestReg,
160 const PPC::Predicate Pred);
161 bool PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
162 const TargetRegisterClass *RC, bool IsZExt = true,
163 unsigned FP64LoadOpc = PPC::LFD);
164 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
165 bool PPCComputeAddress(const Value *Obj, Address &Addr);
166 void PPCSimplifyAddress(Address &Addr, bool &UseOffset,
167 unsigned &IndexReg);
168 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
169 unsigned DestReg, bool IsZExt);
170 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
171 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
172 unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT,
173 bool UseSExt = true);
174 unsigned PPCMaterialize32BitInt(int64_t Imm,
175 const TargetRegisterClass *RC);
176 unsigned PPCMaterialize64BitInt(int64_t Imm,
177 const TargetRegisterClass *RC);
178 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
179 unsigned SrcReg, bool IsSigned);
180 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
181
182 // Call handling routines.
183 private:
184 bool processCallArgs(SmallVectorImpl<Value*> &Args,
185 SmallVectorImpl<unsigned> &ArgRegs,
186 SmallVectorImpl<MVT> &ArgVTs,
187 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
188 SmallVectorImpl<unsigned> &RegArgs,
189 CallingConv::ID CC,
190 unsigned &NumBytes,
191 bool IsVarArg);
192 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes);
193
194 private:
195 #include "PPCGenFastISel.inc"
196
197 };
198
199 } // end anonymous namespace
200
getComparePred(CmpInst::Predicate Pred)201 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
202 switch (Pred) {
203 // These are not representable with any single compare.
204 case CmpInst::FCMP_FALSE:
205 case CmpInst::FCMP_TRUE:
206 // Major concern about the following 6 cases is NaN result. The comparison
207 // result consists of 4 bits, indicating lt, eq, gt and un (unordered),
208 // only one of which will be set. The result is generated by fcmpu
209 // instruction. However, bc instruction only inspects one of the first 3
210 // bits, so when un is set, bc instruction may jump to an undesired
211 // place.
212 //
213 // More specifically, if we expect an unordered comparison and un is set, we
214 // expect to always go to true branch; in such case UEQ, UGT and ULT still
215 // give false, which are undesired; but UNE, UGE, ULE happen to give true,
216 // since they are tested by inspecting !eq, !lt, !gt, respectively.
217 //
218 // Similarly, for ordered comparison, when un is set, we always expect the
219 // result to be false. In such case OGT, OLT and OEQ is good, since they are
220 // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE
221 // and ONE are tested through !lt, !gt and !eq, and these are true.
222 case CmpInst::FCMP_UEQ:
223 case CmpInst::FCMP_UGT:
224 case CmpInst::FCMP_ULT:
225 case CmpInst::FCMP_OGE:
226 case CmpInst::FCMP_OLE:
227 case CmpInst::FCMP_ONE:
228 default:
229 return Optional<PPC::Predicate>();
230
231 case CmpInst::FCMP_OEQ:
232 case CmpInst::ICMP_EQ:
233 return PPC::PRED_EQ;
234
235 case CmpInst::FCMP_OGT:
236 case CmpInst::ICMP_UGT:
237 case CmpInst::ICMP_SGT:
238 return PPC::PRED_GT;
239
240 case CmpInst::FCMP_UGE:
241 case CmpInst::ICMP_UGE:
242 case CmpInst::ICMP_SGE:
243 return PPC::PRED_GE;
244
245 case CmpInst::FCMP_OLT:
246 case CmpInst::ICMP_ULT:
247 case CmpInst::ICMP_SLT:
248 return PPC::PRED_LT;
249
250 case CmpInst::FCMP_ULE:
251 case CmpInst::ICMP_ULE:
252 case CmpInst::ICMP_SLE:
253 return PPC::PRED_LE;
254
255 case CmpInst::FCMP_UNE:
256 case CmpInst::ICMP_NE:
257 return PPC::PRED_NE;
258
259 case CmpInst::FCMP_ORD:
260 return PPC::PRED_NU;
261
262 case CmpInst::FCMP_UNO:
263 return PPC::PRED_UN;
264 }
265 }
266
267 // Determine whether the type Ty is simple enough to be handled by
268 // fast-isel, and return its equivalent machine type in VT.
269 // FIXME: Copied directly from ARM -- factor into base class?
isTypeLegal(Type * Ty,MVT & VT)270 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
271 EVT Evt = TLI.getValueType(DL, Ty, true);
272
273 // Only handle simple types.
274 if (Evt == MVT::Other || !Evt.isSimple()) return false;
275 VT = Evt.getSimpleVT();
276
277 // Handle all legal types, i.e. a register that will directly hold this
278 // value.
279 return TLI.isTypeLegal(VT);
280 }
281
282 // Determine whether the type Ty is simple enough to be handled by
283 // fast-isel as a load target, and return its equivalent machine type in VT.
isLoadTypeLegal(Type * Ty,MVT & VT)284 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
285 if (isTypeLegal(Ty, VT)) return true;
286
287 // If this is a type than can be sign or zero-extended to a basic operation
288 // go ahead and accept it now.
289 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
290 return true;
291 }
292
293 return false;
294 }
295
isValueAvailable(const Value * V) const296 bool PPCFastISel::isValueAvailable(const Value *V) const {
297 if (!isa<Instruction>(V))
298 return true;
299
300 const auto *I = cast<Instruction>(V);
301 return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB;
302 }
303
304 // Given a value Obj, create an Address object Addr that represents its
305 // address. Return false if we can't handle it.
PPCComputeAddress(const Value * Obj,Address & Addr)306 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
307 const User *U = nullptr;
308 unsigned Opcode = Instruction::UserOp1;
309 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
310 // Don't walk into other basic blocks unless the object is an alloca from
311 // another block, otherwise it may not have a virtual register assigned.
312 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
313 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
314 Opcode = I->getOpcode();
315 U = I;
316 }
317 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
318 Opcode = C->getOpcode();
319 U = C;
320 }
321
322 switch (Opcode) {
323 default:
324 break;
325 case Instruction::BitCast:
326 // Look through bitcasts.
327 return PPCComputeAddress(U->getOperand(0), Addr);
328 case Instruction::IntToPtr:
329 // Look past no-op inttoptrs.
330 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
331 TLI.getPointerTy(DL))
332 return PPCComputeAddress(U->getOperand(0), Addr);
333 break;
334 case Instruction::PtrToInt:
335 // Look past no-op ptrtoints.
336 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
337 return PPCComputeAddress(U->getOperand(0), Addr);
338 break;
339 case Instruction::GetElementPtr: {
340 Address SavedAddr = Addr;
341 long TmpOffset = Addr.Offset;
342
343 // Iterate through the GEP folding the constants into offsets where
344 // we can.
345 gep_type_iterator GTI = gep_type_begin(U);
346 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
347 II != IE; ++II, ++GTI) {
348 const Value *Op = *II;
349 if (StructType *STy = GTI.getStructTypeOrNull()) {
350 const StructLayout *SL = DL.getStructLayout(STy);
351 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
352 TmpOffset += SL->getElementOffset(Idx);
353 } else {
354 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
355 for (;;) {
356 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
357 // Constant-offset addressing.
358 TmpOffset += CI->getSExtValue() * S;
359 break;
360 }
361 if (canFoldAddIntoGEP(U, Op)) {
362 // A compatible add with a constant operand. Fold the constant.
363 ConstantInt *CI =
364 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
365 TmpOffset += CI->getSExtValue() * S;
366 // Iterate on the other operand.
367 Op = cast<AddOperator>(Op)->getOperand(0);
368 continue;
369 }
370 // Unsupported
371 goto unsupported_gep;
372 }
373 }
374 }
375
376 // Try to grab the base operand now.
377 Addr.Offset = TmpOffset;
378 if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
379
380 // We failed, restore everything and try the other options.
381 Addr = SavedAddr;
382
383 unsupported_gep:
384 break;
385 }
386 case Instruction::Alloca: {
387 const AllocaInst *AI = cast<AllocaInst>(Obj);
388 DenseMap<const AllocaInst*, int>::iterator SI =
389 FuncInfo.StaticAllocaMap.find(AI);
390 if (SI != FuncInfo.StaticAllocaMap.end()) {
391 Addr.BaseType = Address::FrameIndexBase;
392 Addr.Base.FI = SI->second;
393 return true;
394 }
395 break;
396 }
397 }
398
399 // FIXME: References to parameters fall through to the behavior
400 // below. They should be able to reference a frame index since
401 // they are stored to the stack, so we can get "ld rx, offset(r1)"
402 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will
403 // just contain the parameter. Try to handle this with a FI.
404
405 // Try to get this in a register if nothing else has worked.
406 if (Addr.Base.Reg == 0)
407 Addr.Base.Reg = getRegForValue(Obj);
408
409 // Prevent assignment of base register to X0, which is inappropriate
410 // for loads and stores alike.
411 if (Addr.Base.Reg != 0)
412 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
413
414 return Addr.Base.Reg != 0;
415 }
416
417 // Fix up some addresses that can't be used directly. For example, if
418 // an offset won't fit in an instruction field, we may need to move it
419 // into an index register.
PPCSimplifyAddress(Address & Addr,bool & UseOffset,unsigned & IndexReg)420 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset,
421 unsigned &IndexReg) {
422
423 // Check whether the offset fits in the instruction field.
424 if (!isInt<16>(Addr.Offset))
425 UseOffset = false;
426
427 // If this is a stack pointer and the offset needs to be simplified then
428 // put the alloca address into a register, set the base type back to
429 // register and continue. This should almost never happen.
430 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
431 Register ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
432 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
433 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
434 Addr.Base.Reg = ResultReg;
435 Addr.BaseType = Address::RegBase;
436 }
437
438 if (!UseOffset) {
439 IntegerType *OffsetTy = Type::getInt64Ty(*Context);
440 const ConstantInt *Offset =
441 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
442 IndexReg = PPCMaterializeInt(Offset, MVT::i64);
443 assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
444 }
445 }
446
447 // Emit a load instruction if possible, returning true if we succeeded,
448 // otherwise false. See commentary below for how the register class of
449 // the load is determined.
PPCEmitLoad(MVT VT,Register & ResultReg,Address & Addr,const TargetRegisterClass * RC,bool IsZExt,unsigned FP64LoadOpc)450 bool PPCFastISel::PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
451 const TargetRegisterClass *RC,
452 bool IsZExt, unsigned FP64LoadOpc) {
453 unsigned Opc;
454 bool UseOffset = true;
455 bool HasSPE = Subtarget->hasSPE();
456
457 // If ResultReg is given, it determines the register class of the load.
458 // Otherwise, RC is the register class to use. If the result of the
459 // load isn't anticipated in this block, both may be zero, in which
460 // case we must make a conservative guess. In particular, don't assign
461 // R0 or X0 to the result register, as the result may be used in a load,
462 // store, add-immediate, or isel that won't permit this. (Though
463 // perhaps the spill and reload of live-exit values would handle this?)
464 const TargetRegisterClass *UseRC =
465 (ResultReg ? MRI.getRegClass(ResultReg) :
466 (RC ? RC :
467 (VT == MVT::f64 ? (HasSPE ? &PPC::SPERCRegClass : &PPC::F8RCRegClass) :
468 (VT == MVT::f32 ? (HasSPE ? &PPC::GPRCRegClass : &PPC::F4RCRegClass) :
469 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
470 &PPC::GPRC_and_GPRC_NOR0RegClass)))));
471
472 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
473
474 switch (VT.SimpleTy) {
475 default: // e.g., vector types not handled
476 return false;
477 case MVT::i8:
478 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
479 break;
480 case MVT::i16:
481 Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8)
482 : (Is32BitInt ? PPC::LHA : PPC::LHA8));
483 break;
484 case MVT::i32:
485 Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8)
486 : (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
487 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
488 UseOffset = false;
489 break;
490 case MVT::i64:
491 Opc = PPC::LD;
492 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
493 "64-bit load with 32-bit target??");
494 UseOffset = ((Addr.Offset & 3) == 0);
495 break;
496 case MVT::f32:
497 Opc = Subtarget->hasSPE() ? PPC::SPELWZ : PPC::LFS;
498 break;
499 case MVT::f64:
500 Opc = FP64LoadOpc;
501 break;
502 }
503
504 // If necessary, materialize the offset into a register and use
505 // the indexed form. Also handle stack pointers with special needs.
506 unsigned IndexReg = 0;
507 PPCSimplifyAddress(Addr, UseOffset, IndexReg);
508
509 // If this is a potential VSX load with an offset of 0, a VSX indexed load can
510 // be used.
511 bool IsVSSRC = isVSSRCRegClass(UseRC);
512 bool IsVSFRC = isVSFRCRegClass(UseRC);
513 bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS;
514 bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD;
515 if ((Is32VSXLoad || Is64VSXLoad) &&
516 (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
517 (Addr.Offset == 0)) {
518 UseOffset = false;
519 }
520
521 if (ResultReg == 0)
522 ResultReg = createResultReg(UseRC);
523
524 // Note: If we still have a frame index here, we know the offset is
525 // in range, as otherwise PPCSimplifyAddress would have converted it
526 // into a RegBase.
527 if (Addr.BaseType == Address::FrameIndexBase) {
528 // VSX only provides an indexed load.
529 if (Is32VSXLoad || Is64VSXLoad) return false;
530
531 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
532 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
533 Addr.Offset),
534 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
535 MFI.getObjectAlign(Addr.Base.FI));
536
537 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
538 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
539
540 // Base reg with offset in range.
541 } else if (UseOffset) {
542 // VSX only provides an indexed load.
543 if (Is32VSXLoad || Is64VSXLoad) return false;
544
545 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
546 .addImm(Addr.Offset).addReg(Addr.Base.Reg);
547
548 // Indexed form.
549 } else {
550 // Get the RR opcode corresponding to the RI one. FIXME: It would be
551 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
552 // is hard to get at.
553 switch (Opc) {
554 default: llvm_unreachable("Unexpected opcode!");
555 case PPC::LBZ: Opc = PPC::LBZX; break;
556 case PPC::LBZ8: Opc = PPC::LBZX8; break;
557 case PPC::LHZ: Opc = PPC::LHZX; break;
558 case PPC::LHZ8: Opc = PPC::LHZX8; break;
559 case PPC::LHA: Opc = PPC::LHAX; break;
560 case PPC::LHA8: Opc = PPC::LHAX8; break;
561 case PPC::LWZ: Opc = PPC::LWZX; break;
562 case PPC::LWZ8: Opc = PPC::LWZX8; break;
563 case PPC::LWA: Opc = PPC::LWAX; break;
564 case PPC::LWA_32: Opc = PPC::LWAX_32; break;
565 case PPC::LD: Opc = PPC::LDX; break;
566 case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break;
567 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break;
568 case PPC::EVLDD: Opc = PPC::EVLDDX; break;
569 case PPC::SPELWZ: Opc = PPC::SPELWZX; break;
570 }
571
572 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
573 ResultReg);
574
575 // If we have an index register defined we use it in the store inst,
576 // otherwise we use X0 as base as it makes the vector instructions to
577 // use zero in the computation of the effective address regardless the
578 // content of the register.
579 if (IndexReg)
580 MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
581 else
582 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
583 }
584
585 return true;
586 }
587
588 // Attempt to fast-select a load instruction.
SelectLoad(const Instruction * I)589 bool PPCFastISel::SelectLoad(const Instruction *I) {
590 // FIXME: No atomic loads are supported.
591 if (cast<LoadInst>(I)->isAtomic())
592 return false;
593
594 // Verify we have a legal type before going any further.
595 MVT VT;
596 if (!isLoadTypeLegal(I->getType(), VT))
597 return false;
598
599 // See if we can handle this address.
600 Address Addr;
601 if (!PPCComputeAddress(I->getOperand(0), Addr))
602 return false;
603
604 // Look at the currently assigned register for this instruction
605 // to determine the required register class. This is necessary
606 // to constrain RA from using R0/X0 when this is not legal.
607 Register AssignedReg = FuncInfo.ValueMap[I];
608 const TargetRegisterClass *RC =
609 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
610
611 Register ResultReg = 0;
612 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, true,
613 Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
614 return false;
615 updateValueMap(I, ResultReg);
616 return true;
617 }
618
619 // Emit a store instruction to store SrcReg at Addr.
PPCEmitStore(MVT VT,unsigned SrcReg,Address & Addr)620 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
621 assert(SrcReg && "Nothing to store!");
622 unsigned Opc;
623 bool UseOffset = true;
624
625 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
626 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
627
628 switch (VT.SimpleTy) {
629 default: // e.g., vector types not handled
630 return false;
631 case MVT::i8:
632 Opc = Is32BitInt ? PPC::STB : PPC::STB8;
633 break;
634 case MVT::i16:
635 Opc = Is32BitInt ? PPC::STH : PPC::STH8;
636 break;
637 case MVT::i32:
638 assert(Is32BitInt && "Not GPRC for i32??");
639 Opc = PPC::STW;
640 break;
641 case MVT::i64:
642 Opc = PPC::STD;
643 UseOffset = ((Addr.Offset & 3) == 0);
644 break;
645 case MVT::f32:
646 Opc = Subtarget->hasSPE() ? PPC::SPESTW : PPC::STFS;
647 break;
648 case MVT::f64:
649 Opc = Subtarget->hasSPE() ? PPC::EVSTDD : PPC::STFD;
650 break;
651 }
652
653 // If necessary, materialize the offset into a register and use
654 // the indexed form. Also handle stack pointers with special needs.
655 unsigned IndexReg = 0;
656 PPCSimplifyAddress(Addr, UseOffset, IndexReg);
657
658 // If this is a potential VSX store with an offset of 0, a VSX indexed store
659 // can be used.
660 bool IsVSSRC = isVSSRCRegClass(RC);
661 bool IsVSFRC = isVSFRCRegClass(RC);
662 bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS;
663 bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD;
664 if ((Is32VSXStore || Is64VSXStore) &&
665 (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
666 (Addr.Offset == 0)) {
667 UseOffset = false;
668 }
669
670 // Note: If we still have a frame index here, we know the offset is
671 // in range, as otherwise PPCSimplifyAddress would have converted it
672 // into a RegBase.
673 if (Addr.BaseType == Address::FrameIndexBase) {
674 // VSX only provides an indexed store.
675 if (Is32VSXStore || Is64VSXStore) return false;
676
677 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
678 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
679 Addr.Offset),
680 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
681 MFI.getObjectAlign(Addr.Base.FI));
682
683 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
684 .addReg(SrcReg)
685 .addImm(Addr.Offset)
686 .addFrameIndex(Addr.Base.FI)
687 .addMemOperand(MMO);
688
689 // Base reg with offset in range.
690 } else if (UseOffset) {
691 // VSX only provides an indexed store.
692 if (Is32VSXStore || Is64VSXStore)
693 return false;
694
695 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
696 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
697
698 // Indexed form.
699 } else {
700 // Get the RR opcode corresponding to the RI one. FIXME: It would be
701 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
702 // is hard to get at.
703 switch (Opc) {
704 default: llvm_unreachable("Unexpected opcode!");
705 case PPC::STB: Opc = PPC::STBX; break;
706 case PPC::STH : Opc = PPC::STHX; break;
707 case PPC::STW : Opc = PPC::STWX; break;
708 case PPC::STB8: Opc = PPC::STBX8; break;
709 case PPC::STH8: Opc = PPC::STHX8; break;
710 case PPC::STW8: Opc = PPC::STWX8; break;
711 case PPC::STD: Opc = PPC::STDX; break;
712 case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break;
713 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break;
714 case PPC::EVSTDD: Opc = PPC::EVSTDDX; break;
715 case PPC::SPESTW: Opc = PPC::SPESTWX; break;
716 }
717
718 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
719 .addReg(SrcReg);
720
721 // If we have an index register defined we use it in the store inst,
722 // otherwise we use X0 as base as it makes the vector instructions to
723 // use zero in the computation of the effective address regardless the
724 // content of the register.
725 if (IndexReg)
726 MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
727 else
728 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
729 }
730
731 return true;
732 }
733
734 // Attempt to fast-select a store instruction.
SelectStore(const Instruction * I)735 bool PPCFastISel::SelectStore(const Instruction *I) {
736 Value *Op0 = I->getOperand(0);
737 unsigned SrcReg = 0;
738
739 // FIXME: No atomics loads are supported.
740 if (cast<StoreInst>(I)->isAtomic())
741 return false;
742
743 // Verify we have a legal type before going any further.
744 MVT VT;
745 if (!isLoadTypeLegal(Op0->getType(), VT))
746 return false;
747
748 // Get the value to be stored into a register.
749 SrcReg = getRegForValue(Op0);
750 if (SrcReg == 0)
751 return false;
752
753 // See if we can handle this address.
754 Address Addr;
755 if (!PPCComputeAddress(I->getOperand(1), Addr))
756 return false;
757
758 if (!PPCEmitStore(VT, SrcReg, Addr))
759 return false;
760
761 return true;
762 }
763
764 // Attempt to fast-select a branch instruction.
SelectBranch(const Instruction * I)765 bool PPCFastISel::SelectBranch(const Instruction *I) {
766 const BranchInst *BI = cast<BranchInst>(I);
767 MachineBasicBlock *BrBB = FuncInfo.MBB;
768 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
769 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
770
771 // For now, just try the simplest case where it's fed by a compare.
772 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
773 if (isValueAvailable(CI)) {
774 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
775 if (!OptPPCPred)
776 return false;
777
778 PPC::Predicate PPCPred = *OptPPCPred;
779
780 // Take advantage of fall-through opportunities.
781 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
782 std::swap(TBB, FBB);
783 PPCPred = PPC::InvertPredicate(PPCPred);
784 }
785
786 Register CondReg = createResultReg(&PPC::CRRCRegClass);
787
788 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
789 CondReg, PPCPred))
790 return false;
791
792 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC))
793 .addImm(Subtarget->hasSPE() ? PPC::PRED_SPE : PPCPred)
794 .addReg(CondReg)
795 .addMBB(TBB);
796 finishCondBranch(BI->getParent(), TBB, FBB);
797 return true;
798 }
799 } else if (const ConstantInt *CI =
800 dyn_cast<ConstantInt>(BI->getCondition())) {
801 uint64_t Imm = CI->getZExtValue();
802 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
803 fastEmitBranch(Target, DbgLoc);
804 return true;
805 }
806
807 // FIXME: ARM looks for a case where the block containing the compare
808 // has been split from the block containing the branch. If this happens,
809 // there is a vreg available containing the result of the compare. I'm
810 // not sure we can do much, as we've lost the predicate information with
811 // the compare instruction -- we have a 4-bit CR but don't know which bit
812 // to test here.
813 return false;
814 }
815
816 // Attempt to emit a compare of the two source values. Signed and unsigned
817 // comparisons are supported. Return false if we can't handle it.
PPCEmitCmp(const Value * SrcValue1,const Value * SrcValue2,bool IsZExt,unsigned DestReg,const PPC::Predicate Pred)818 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
819 bool IsZExt, unsigned DestReg,
820 const PPC::Predicate Pred) {
821 Type *Ty = SrcValue1->getType();
822 EVT SrcEVT = TLI.getValueType(DL, Ty, true);
823 if (!SrcEVT.isSimple())
824 return false;
825 MVT SrcVT = SrcEVT.getSimpleVT();
826
827 if (SrcVT == MVT::i1 && Subtarget->useCRBits())
828 return false;
829
830 // See if operand 2 is an immediate encodeable in the compare.
831 // FIXME: Operands are not in canonical order at -O0, so an immediate
832 // operand in position 1 is a lost opportunity for now. We are
833 // similar to ARM in this regard.
834 int64_t Imm = 0;
835 bool UseImm = false;
836 const bool HasSPE = Subtarget->hasSPE();
837
838 // Only 16-bit integer constants can be represented in compares for
839 // PowerPC. Others will be materialized into a register.
840 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
841 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
842 SrcVT == MVT::i8 || SrcVT == MVT::i1) {
843 const APInt &CIVal = ConstInt->getValue();
844 Imm = (IsZExt) ? (int64_t)CIVal.getZExtValue() :
845 (int64_t)CIVal.getSExtValue();
846 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
847 UseImm = true;
848 }
849 }
850
851 Register SrcReg1 = getRegForValue(SrcValue1);
852 if (SrcReg1 == 0)
853 return false;
854
855 unsigned SrcReg2 = 0;
856 if (!UseImm) {
857 SrcReg2 = getRegForValue(SrcValue2);
858 if (SrcReg2 == 0)
859 return false;
860 }
861
862 unsigned CmpOpc;
863 bool NeedsExt = false;
864
865 auto RC1 = MRI.getRegClass(SrcReg1);
866 auto RC2 = SrcReg2 != 0 ? MRI.getRegClass(SrcReg2) : nullptr;
867
868 switch (SrcVT.SimpleTy) {
869 default: return false;
870 case MVT::f32:
871 if (HasSPE) {
872 switch (Pred) {
873 default: return false;
874 case PPC::PRED_EQ:
875 CmpOpc = PPC::EFSCMPEQ;
876 break;
877 case PPC::PRED_LT:
878 CmpOpc = PPC::EFSCMPLT;
879 break;
880 case PPC::PRED_GT:
881 CmpOpc = PPC::EFSCMPGT;
882 break;
883 }
884 } else {
885 CmpOpc = PPC::FCMPUS;
886 if (isVSSRCRegClass(RC1))
887 SrcReg1 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg1);
888 if (RC2 && isVSSRCRegClass(RC2))
889 SrcReg2 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg2);
890 }
891 break;
892 case MVT::f64:
893 if (HasSPE) {
894 switch (Pred) {
895 default: return false;
896 case PPC::PRED_EQ:
897 CmpOpc = PPC::EFDCMPEQ;
898 break;
899 case PPC::PRED_LT:
900 CmpOpc = PPC::EFDCMPLT;
901 break;
902 case PPC::PRED_GT:
903 CmpOpc = PPC::EFDCMPGT;
904 break;
905 }
906 } else if (isVSFRCRegClass(RC1) || (RC2 && isVSFRCRegClass(RC2))) {
907 CmpOpc = PPC::XSCMPUDP;
908 } else {
909 CmpOpc = PPC::FCMPUD;
910 }
911 break;
912 case MVT::i1:
913 case MVT::i8:
914 case MVT::i16:
915 NeedsExt = true;
916 LLVM_FALLTHROUGH;
917 case MVT::i32:
918 if (!UseImm)
919 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
920 else
921 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
922 break;
923 case MVT::i64:
924 if (!UseImm)
925 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
926 else
927 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
928 break;
929 }
930
931 if (NeedsExt) {
932 Register ExtReg = createResultReg(&PPC::GPRCRegClass);
933 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
934 return false;
935 SrcReg1 = ExtReg;
936
937 if (!UseImm) {
938 Register ExtReg = createResultReg(&PPC::GPRCRegClass);
939 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
940 return false;
941 SrcReg2 = ExtReg;
942 }
943 }
944
945 if (!UseImm)
946 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
947 .addReg(SrcReg1).addReg(SrcReg2);
948 else
949 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
950 .addReg(SrcReg1).addImm(Imm);
951
952 return true;
953 }
954
955 // Attempt to fast-select a floating-point extend instruction.
SelectFPExt(const Instruction * I)956 bool PPCFastISel::SelectFPExt(const Instruction *I) {
957 Value *Src = I->getOperand(0);
958 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
959 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
960
961 if (SrcVT != MVT::f32 || DestVT != MVT::f64)
962 return false;
963
964 Register SrcReg = getRegForValue(Src);
965 if (!SrcReg)
966 return false;
967
968 // No code is generated for a FP extend.
969 updateValueMap(I, SrcReg);
970 return true;
971 }
972
973 // Attempt to fast-select a floating-point truncate instruction.
SelectFPTrunc(const Instruction * I)974 bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
975 Value *Src = I->getOperand(0);
976 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
977 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
978
979 if (SrcVT != MVT::f64 || DestVT != MVT::f32)
980 return false;
981
982 Register SrcReg = getRegForValue(Src);
983 if (!SrcReg)
984 return false;
985
986 // Round the result to single precision.
987 unsigned DestReg;
988 auto RC = MRI.getRegClass(SrcReg);
989 if (Subtarget->hasSPE()) {
990 DestReg = createResultReg(&PPC::GPRCRegClass);
991 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::EFSCFD),
992 DestReg)
993 .addReg(SrcReg);
994 } else if (Subtarget->hasP8Vector() && isVSFRCRegClass(RC)) {
995 DestReg = createResultReg(&PPC::VSSRCRegClass);
996 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::XSRSP),
997 DestReg)
998 .addReg(SrcReg);
999 } else {
1000 SrcReg = copyRegToRegClass(&PPC::F8RCRegClass, SrcReg);
1001 DestReg = createResultReg(&PPC::F4RCRegClass);
1002 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1003 TII.get(PPC::FRSP), DestReg)
1004 .addReg(SrcReg);
1005 }
1006
1007 updateValueMap(I, DestReg);
1008 return true;
1009 }
1010
1011 // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
1012 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1013 // those should be used instead of moving via a stack slot when the
1014 // subtarget permits.
1015 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte
1016 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte
1017 // case to 8 bytes which produces tighter code but wastes stack space.
PPCMoveToFPReg(MVT SrcVT,unsigned SrcReg,bool IsSigned)1018 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
1019 bool IsSigned) {
1020
1021 // If necessary, extend 32-bit int to 64-bit.
1022 if (SrcVT == MVT::i32) {
1023 Register TmpReg = createResultReg(&PPC::G8RCRegClass);
1024 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
1025 return 0;
1026 SrcReg = TmpReg;
1027 }
1028
1029 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1030 Address Addr;
1031 Addr.BaseType = Address::FrameIndexBase;
1032 Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false);
1033
1034 // Store the value from the GPR.
1035 if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
1036 return 0;
1037
1038 // Load the integer value into an FPR. The kind of load used depends
1039 // on a number of conditions.
1040 unsigned LoadOpc = PPC::LFD;
1041
1042 if (SrcVT == MVT::i32) {
1043 if (!IsSigned) {
1044 LoadOpc = PPC::LFIWZX;
1045 Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1046 } else if (Subtarget->hasLFIWAX()) {
1047 LoadOpc = PPC::LFIWAX;
1048 Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1049 }
1050 }
1051
1052 const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1053 Register ResultReg = 0;
1054 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
1055 return 0;
1056
1057 return ResultReg;
1058 }
1059
1060 // Attempt to fast-select an integer-to-floating-point conversion.
1061 // FIXME: Once fast-isel has better support for VSX, conversions using
1062 // direct moves should be implemented.
SelectIToFP(const Instruction * I,bool IsSigned)1063 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
1064 MVT DstVT;
1065 Type *DstTy = I->getType();
1066 if (!isTypeLegal(DstTy, DstVT))
1067 return false;
1068
1069 if (DstVT != MVT::f32 && DstVT != MVT::f64)
1070 return false;
1071
1072 Value *Src = I->getOperand(0);
1073 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1074 if (!SrcEVT.isSimple())
1075 return false;
1076
1077 MVT SrcVT = SrcEVT.getSimpleVT();
1078
1079 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 &&
1080 SrcVT != MVT::i32 && SrcVT != MVT::i64)
1081 return false;
1082
1083 Register SrcReg = getRegForValue(Src);
1084 if (SrcReg == 0)
1085 return false;
1086
1087 // Shortcut for SPE. Doesn't need to store/load, since it's all in the GPRs
1088 if (Subtarget->hasSPE()) {
1089 unsigned Opc;
1090 if (DstVT == MVT::f32)
1091 Opc = IsSigned ? PPC::EFSCFSI : PPC::EFSCFUI;
1092 else
1093 Opc = IsSigned ? PPC::EFDCFSI : PPC::EFDCFUI;
1094
1095 Register DestReg = createResultReg(&PPC::SPERCRegClass);
1096 // Generate the convert.
1097 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1098 .addReg(SrcReg);
1099 updateValueMap(I, DestReg);
1100 return true;
1101 }
1102
1103 // We can only lower an unsigned convert if we have the newer
1104 // floating-point conversion operations.
1105 if (!IsSigned && !Subtarget->hasFPCVT())
1106 return false;
1107
1108 // FIXME: For now we require the newer floating-point conversion operations
1109 // (which are present only on P7 and A2 server models) when converting
1110 // to single-precision float. Otherwise we have to generate a lot of
1111 // fiddly code to avoid double rounding. If necessary, the fiddly code
1112 // can be found in PPCTargetLowering::LowerINT_TO_FP().
1113 if (DstVT == MVT::f32 && !Subtarget->hasFPCVT())
1114 return false;
1115
1116 // Extend the input if necessary.
1117 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
1118 Register TmpReg = createResultReg(&PPC::G8RCRegClass);
1119 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
1120 return false;
1121 SrcVT = MVT::i64;
1122 SrcReg = TmpReg;
1123 }
1124
1125 // Move the integer value to an FPR.
1126 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
1127 if (FPReg == 0)
1128 return false;
1129
1130 // Determine the opcode for the conversion.
1131 const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1132 Register DestReg = createResultReg(RC);
1133 unsigned Opc;
1134
1135 if (DstVT == MVT::f32)
1136 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
1137 else
1138 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
1139
1140 // Generate the convert.
1141 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1142 .addReg(FPReg);
1143
1144 updateValueMap(I, DestReg);
1145 return true;
1146 }
1147
1148 // Move the floating-point value in SrcReg into an integer destination
1149 // register, and return the register (or zero if we can't handle it).
1150 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1151 // those should be used instead of moving via a stack slot when the
1152 // subtarget permits.
PPCMoveToIntReg(const Instruction * I,MVT VT,unsigned SrcReg,bool IsSigned)1153 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
1154 unsigned SrcReg, bool IsSigned) {
1155 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1156 // Note that if have STFIWX available, we could use a 4-byte stack
1157 // slot for i32, but this being fast-isel we'll just go with the
1158 // easiest code gen possible.
1159 Address Addr;
1160 Addr.BaseType = Address::FrameIndexBase;
1161 Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false);
1162
1163 // Store the value from the FPR.
1164 if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
1165 return 0;
1166
1167 // Reload it into a GPR. If we want an i32 on big endian, modify the
1168 // address to have a 4-byte offset so we load from the right place.
1169 if (VT == MVT::i32)
1170 Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4;
1171
1172 // Look at the currently assigned register for this instruction
1173 // to determine the required register class.
1174 Register AssignedReg = FuncInfo.ValueMap[I];
1175 const TargetRegisterClass *RC =
1176 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
1177
1178 Register ResultReg = 0;
1179 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
1180 return 0;
1181
1182 return ResultReg;
1183 }
1184
1185 // Attempt to fast-select a floating-point-to-integer conversion.
1186 // FIXME: Once fast-isel has better support for VSX, conversions using
1187 // direct moves should be implemented.
SelectFPToI(const Instruction * I,bool IsSigned)1188 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
1189 MVT DstVT, SrcVT;
1190 Type *DstTy = I->getType();
1191 if (!isTypeLegal(DstTy, DstVT))
1192 return false;
1193
1194 if (DstVT != MVT::i32 && DstVT != MVT::i64)
1195 return false;
1196
1197 // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG.
1198 if (DstVT == MVT::i64 && !IsSigned && !Subtarget->hasFPCVT() &&
1199 !Subtarget->hasSPE())
1200 return false;
1201
1202 Value *Src = I->getOperand(0);
1203 Type *SrcTy = Src->getType();
1204 if (!isTypeLegal(SrcTy, SrcVT))
1205 return false;
1206
1207 if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1208 return false;
1209
1210 Register SrcReg = getRegForValue(Src);
1211 if (SrcReg == 0)
1212 return false;
1213
1214 // Convert f32 to f64 or convert VSSRC to VSFRC if necessary. This is just a
1215 // meaningless copy to get the register class right.
1216 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
1217 if (InRC == &PPC::F4RCRegClass)
1218 SrcReg = copyRegToRegClass(&PPC::F8RCRegClass, SrcReg);
1219 else if (InRC == &PPC::VSSRCRegClass)
1220 SrcReg = copyRegToRegClass(&PPC::VSFRCRegClass, SrcReg);
1221
1222 // Determine the opcode for the conversion, which takes place
1223 // entirely within FPRs or VSRs.
1224 unsigned DestReg;
1225 unsigned Opc;
1226 auto RC = MRI.getRegClass(SrcReg);
1227
1228 if (Subtarget->hasSPE()) {
1229 DestReg = createResultReg(&PPC::GPRCRegClass);
1230 if (IsSigned)
1231 Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTSIZ : PPC::EFDCTSIZ;
1232 else
1233 Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTUIZ : PPC::EFDCTUIZ;
1234 } else if (isVSFRCRegClass(RC)) {
1235 DestReg = createResultReg(&PPC::VSFRCRegClass);
1236 if (DstVT == MVT::i32)
1237 Opc = IsSigned ? PPC::XSCVDPSXWS : PPC::XSCVDPUXWS;
1238 else
1239 Opc = IsSigned ? PPC::XSCVDPSXDS : PPC::XSCVDPUXDS;
1240 } else {
1241 DestReg = createResultReg(&PPC::F8RCRegClass);
1242 if (DstVT == MVT::i32)
1243 if (IsSigned)
1244 Opc = PPC::FCTIWZ;
1245 else
1246 Opc = Subtarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
1247 else
1248 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
1249 }
1250
1251 // Generate the convert.
1252 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1253 .addReg(SrcReg);
1254
1255 // Now move the integer value from a float register to an integer register.
1256 unsigned IntReg = Subtarget->hasSPE()
1257 ? DestReg
1258 : PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
1259
1260 if (IntReg == 0)
1261 return false;
1262
1263 updateValueMap(I, IntReg);
1264 return true;
1265 }
1266
1267 // Attempt to fast-select a binary integer operation that isn't already
1268 // handled automatically.
SelectBinaryIntOp(const Instruction * I,unsigned ISDOpcode)1269 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1270 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1271
1272 // We can get here in the case when we have a binary operation on a non-legal
1273 // type and the target independent selector doesn't know how to handle it.
1274 if (DestVT != MVT::i16 && DestVT != MVT::i8)
1275 return false;
1276
1277 // Look at the currently assigned register for this instruction
1278 // to determine the required register class. If there is no register,
1279 // make a conservative choice (don't assign R0).
1280 Register AssignedReg = FuncInfo.ValueMap[I];
1281 const TargetRegisterClass *RC =
1282 (AssignedReg ? MRI.getRegClass(AssignedReg) :
1283 &PPC::GPRC_and_GPRC_NOR0RegClass);
1284 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1285
1286 unsigned Opc;
1287 switch (ISDOpcode) {
1288 default: return false;
1289 case ISD::ADD:
1290 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
1291 break;
1292 case ISD::OR:
1293 Opc = IsGPRC ? PPC::OR : PPC::OR8;
1294 break;
1295 case ISD::SUB:
1296 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
1297 break;
1298 }
1299
1300 Register ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
1301 Register SrcReg1 = getRegForValue(I->getOperand(0));
1302 if (SrcReg1 == 0) return false;
1303
1304 // Handle case of small immediate operand.
1305 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
1306 const APInt &CIVal = ConstInt->getValue();
1307 int Imm = (int)CIVal.getSExtValue();
1308 bool UseImm = true;
1309 if (isInt<16>(Imm)) {
1310 switch (Opc) {
1311 default:
1312 llvm_unreachable("Missing case!");
1313 case PPC::ADD4:
1314 Opc = PPC::ADDI;
1315 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1316 break;
1317 case PPC::ADD8:
1318 Opc = PPC::ADDI8;
1319 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1320 break;
1321 case PPC::OR:
1322 Opc = PPC::ORI;
1323 break;
1324 case PPC::OR8:
1325 Opc = PPC::ORI8;
1326 break;
1327 case PPC::SUBF:
1328 if (Imm == -32768)
1329 UseImm = false;
1330 else {
1331 Opc = PPC::ADDI;
1332 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1333 Imm = -Imm;
1334 }
1335 break;
1336 case PPC::SUBF8:
1337 if (Imm == -32768)
1338 UseImm = false;
1339 else {
1340 Opc = PPC::ADDI8;
1341 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1342 Imm = -Imm;
1343 }
1344 break;
1345 }
1346
1347 if (UseImm) {
1348 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
1349 ResultReg)
1350 .addReg(SrcReg1)
1351 .addImm(Imm);
1352 updateValueMap(I, ResultReg);
1353 return true;
1354 }
1355 }
1356 }
1357
1358 // Reg-reg case.
1359 Register SrcReg2 = getRegForValue(I->getOperand(1));
1360 if (SrcReg2 == 0) return false;
1361
1362 // Reverse operands for subtract-from.
1363 if (ISDOpcode == ISD::SUB)
1364 std::swap(SrcReg1, SrcReg2);
1365
1366 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1367 .addReg(SrcReg1).addReg(SrcReg2);
1368 updateValueMap(I, ResultReg);
1369 return true;
1370 }
1371
1372 // Handle arguments to a call that we're attempting to fast-select.
1373 // Return false if the arguments are too complex for us at the moment.
processCallArgs(SmallVectorImpl<Value * > & Args,SmallVectorImpl<unsigned> & ArgRegs,SmallVectorImpl<MVT> & ArgVTs,SmallVectorImpl<ISD::ArgFlagsTy> & ArgFlags,SmallVectorImpl<unsigned> & RegArgs,CallingConv::ID CC,unsigned & NumBytes,bool IsVarArg)1374 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
1375 SmallVectorImpl<unsigned> &ArgRegs,
1376 SmallVectorImpl<MVT> &ArgVTs,
1377 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1378 SmallVectorImpl<unsigned> &RegArgs,
1379 CallingConv::ID CC,
1380 unsigned &NumBytes,
1381 bool IsVarArg) {
1382 SmallVector<CCValAssign, 16> ArgLocs;
1383 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context);
1384
1385 // Reserve space for the linkage area on the stack.
1386 unsigned LinkageSize = Subtarget->getFrameLowering()->getLinkageSize();
1387 CCInfo.AllocateStack(LinkageSize, Align(8));
1388
1389 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
1390
1391 // Bail out if we can't handle any of the arguments.
1392 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1393 CCValAssign &VA = ArgLocs[I];
1394 MVT ArgVT = ArgVTs[VA.getValNo()];
1395
1396 // Skip vector arguments for now, as well as long double and
1397 // uint128_t, and anything that isn't passed in a register.
1398 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
1399 !VA.isRegLoc() || VA.needsCustom())
1400 return false;
1401
1402 // Skip bit-converted arguments for now.
1403 if (VA.getLocInfo() == CCValAssign::BCvt)
1404 return false;
1405 }
1406
1407 // Get a count of how many bytes are to be pushed onto the stack.
1408 NumBytes = CCInfo.getNextStackOffset();
1409
1410 // The prolog code of the callee may store up to 8 GPR argument registers to
1411 // the stack, allowing va_start to index over them in memory if its varargs.
1412 // Because we cannot tell if this is needed on the caller side, we have to
1413 // conservatively assume that it is needed. As such, make sure we have at
1414 // least enough stack space for the caller to store the 8 GPRs.
1415 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
1416 NumBytes = std::max(NumBytes, LinkageSize + 64);
1417
1418 // Issue CALLSEQ_START.
1419 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1420 TII.get(TII.getCallFrameSetupOpcode()))
1421 .addImm(NumBytes).addImm(0);
1422
1423 // Prepare to assign register arguments. Every argument uses up a
1424 // GPR protocol register even if it's passed in a floating-point
1425 // register (unless we're using the fast calling convention).
1426 unsigned NextGPR = PPC::X3;
1427 unsigned NextFPR = PPC::F1;
1428
1429 // Process arguments.
1430 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1431 CCValAssign &VA = ArgLocs[I];
1432 unsigned Arg = ArgRegs[VA.getValNo()];
1433 MVT ArgVT = ArgVTs[VA.getValNo()];
1434
1435 // Handle argument promotion and bitcasts.
1436 switch (VA.getLocInfo()) {
1437 default:
1438 llvm_unreachable("Unknown loc info!");
1439 case CCValAssign::Full:
1440 break;
1441 case CCValAssign::SExt: {
1442 MVT DestVT = VA.getLocVT();
1443 const TargetRegisterClass *RC =
1444 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1445 Register TmpReg = createResultReg(RC);
1446 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
1447 llvm_unreachable("Failed to emit a sext!");
1448 ArgVT = DestVT;
1449 Arg = TmpReg;
1450 break;
1451 }
1452 case CCValAssign::AExt:
1453 case CCValAssign::ZExt: {
1454 MVT DestVT = VA.getLocVT();
1455 const TargetRegisterClass *RC =
1456 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1457 Register TmpReg = createResultReg(RC);
1458 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
1459 llvm_unreachable("Failed to emit a zext!");
1460 ArgVT = DestVT;
1461 Arg = TmpReg;
1462 break;
1463 }
1464 case CCValAssign::BCvt: {
1465 // FIXME: Not yet handled.
1466 llvm_unreachable("Should have bailed before getting here!");
1467 break;
1468 }
1469 }
1470
1471 // Copy this argument to the appropriate register.
1472 unsigned ArgReg;
1473 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
1474 ArgReg = NextFPR++;
1475 if (CC != CallingConv::Fast)
1476 ++NextGPR;
1477 } else
1478 ArgReg = NextGPR++;
1479
1480 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1481 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
1482 RegArgs.push_back(ArgReg);
1483 }
1484
1485 return true;
1486 }
1487
1488 // For a call that we've determined we can fast-select, finish the
1489 // call sequence and generate a copy to obtain the return value (if any).
finishCall(MVT RetVT,CallLoweringInfo & CLI,unsigned & NumBytes)1490 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) {
1491 CallingConv::ID CC = CLI.CallConv;
1492
1493 // Issue CallSEQ_END.
1494 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1495 TII.get(TII.getCallFrameDestroyOpcode()))
1496 .addImm(NumBytes).addImm(0);
1497
1498 // Next, generate a copy to obtain the return value.
1499 // FIXME: No multi-register return values yet, though I don't foresee
1500 // any real difficulties there.
1501 if (RetVT != MVT::isVoid) {
1502 SmallVector<CCValAssign, 16> RVLocs;
1503 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1504 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1505 CCValAssign &VA = RVLocs[0];
1506 assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
1507 assert(VA.isRegLoc() && "Can only return in registers!");
1508
1509 MVT DestVT = VA.getValVT();
1510 MVT CopyVT = DestVT;
1511
1512 // Ints smaller than a register still arrive in a full 64-bit
1513 // register, so make sure we recognize this.
1514 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
1515 CopyVT = MVT::i64;
1516
1517 unsigned SourcePhysReg = VA.getLocReg();
1518 unsigned ResultReg = 0;
1519
1520 if (RetVT == CopyVT) {
1521 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
1522 ResultReg = copyRegToRegClass(CpyRC, SourcePhysReg);
1523
1524 // If necessary, round the floating result to single precision.
1525 } else if (CopyVT == MVT::f64) {
1526 ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1527 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP),
1528 ResultReg).addReg(SourcePhysReg);
1529
1530 // If only the low half of a general register is needed, generate
1531 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be
1532 // used along the fast-isel path (not lowered), and downstream logic
1533 // also doesn't like a direct subreg copy on a physical reg.)
1534 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
1535 // Convert physical register from G8RC to GPRC.
1536 SourcePhysReg -= PPC::X0 - PPC::R0;
1537 ResultReg = copyRegToRegClass(&PPC::GPRCRegClass, SourcePhysReg);
1538 }
1539
1540 assert(ResultReg && "ResultReg unset!");
1541 CLI.InRegs.push_back(SourcePhysReg);
1542 CLI.ResultReg = ResultReg;
1543 CLI.NumResultRegs = 1;
1544 }
1545
1546 return true;
1547 }
1548
fastLowerCall(CallLoweringInfo & CLI)1549 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1550 CallingConv::ID CC = CLI.CallConv;
1551 bool IsTailCall = CLI.IsTailCall;
1552 bool IsVarArg = CLI.IsVarArg;
1553 const Value *Callee = CLI.Callee;
1554 const MCSymbol *Symbol = CLI.Symbol;
1555
1556 if (!Callee && !Symbol)
1557 return false;
1558
1559 // Allow SelectionDAG isel to handle tail calls.
1560 if (IsTailCall)
1561 return false;
1562
1563 // Let SDISel handle vararg functions.
1564 if (IsVarArg)
1565 return false;
1566
1567 // If this is a PC-Rel function, let SDISel handle the call.
1568 if (Subtarget->isUsingPCRelativeCalls())
1569 return false;
1570
1571 // Handle simple calls for now, with legal return types and
1572 // those that can be extended.
1573 Type *RetTy = CLI.RetTy;
1574 MVT RetVT;
1575 if (RetTy->isVoidTy())
1576 RetVT = MVT::isVoid;
1577 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1578 RetVT != MVT::i8)
1579 return false;
1580 else if (RetVT == MVT::i1 && Subtarget->useCRBits())
1581 // We can't handle boolean returns when CR bits are in use.
1582 return false;
1583
1584 // FIXME: No multi-register return values yet.
1585 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
1586 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
1587 RetVT != MVT::f64) {
1588 SmallVector<CCValAssign, 16> RVLocs;
1589 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context);
1590 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1591 if (RVLocs.size() > 1)
1592 return false;
1593 }
1594
1595 // Bail early if more than 8 arguments, as we only currently
1596 // handle arguments passed in registers.
1597 unsigned NumArgs = CLI.OutVals.size();
1598 if (NumArgs > 8)
1599 return false;
1600
1601 // Set up the argument vectors.
1602 SmallVector<Value*, 8> Args;
1603 SmallVector<unsigned, 8> ArgRegs;
1604 SmallVector<MVT, 8> ArgVTs;
1605 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1606
1607 Args.reserve(NumArgs);
1608 ArgRegs.reserve(NumArgs);
1609 ArgVTs.reserve(NumArgs);
1610 ArgFlags.reserve(NumArgs);
1611
1612 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) {
1613 // Only handle easy calls for now. It would be reasonably easy
1614 // to handle <= 8-byte structures passed ByVal in registers, but we
1615 // have to ensure they are right-justified in the register.
1616 ISD::ArgFlagsTy Flags = CLI.OutFlags[i];
1617 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal())
1618 return false;
1619
1620 Value *ArgValue = CLI.OutVals[i];
1621 Type *ArgTy = ArgValue->getType();
1622 MVT ArgVT;
1623 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
1624 return false;
1625
1626 // FIXME: FastISel cannot handle non-simple types yet, including 128-bit FP
1627 // types, which is passed through vector register. Skip these types and
1628 // fallback to default SelectionDAG based selection.
1629 if (ArgVT.isVector() || ArgVT == MVT::f128)
1630 return false;
1631
1632 Register Arg = getRegForValue(ArgValue);
1633 if (Arg == 0)
1634 return false;
1635
1636 Args.push_back(ArgValue);
1637 ArgRegs.push_back(Arg);
1638 ArgVTs.push_back(ArgVT);
1639 ArgFlags.push_back(Flags);
1640 }
1641
1642 // Process the arguments.
1643 SmallVector<unsigned, 8> RegArgs;
1644 unsigned NumBytes;
1645
1646 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
1647 RegArgs, CC, NumBytes, IsVarArg))
1648 return false;
1649
1650 MachineInstrBuilder MIB;
1651 // FIXME: No handling for function pointers yet. This requires
1652 // implementing the function descriptor (OPD) setup.
1653 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1654 if (!GV) {
1655 // patchpoints are a special case; they always dispatch to a pointer value.
1656 // However, we don't actually want to generate the indirect call sequence
1657 // here (that will be generated, as necessary, during asm printing), and
1658 // the call we generate here will be erased by FastISel::selectPatchpoint,
1659 // so don't try very hard...
1660 if (CLI.IsPatchPoint)
1661 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP));
1662 else
1663 return false;
1664 } else {
1665 // Build direct call with NOP for TOC restore.
1666 // FIXME: We can and should optimize away the NOP for local calls.
1667 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1668 TII.get(PPC::BL8_NOP));
1669 // Add callee.
1670 MIB.addGlobalAddress(GV);
1671 }
1672
1673 // Add implicit physical register uses to the call.
1674 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
1675 MIB.addReg(RegArgs[II], RegState::Implicit);
1676
1677 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
1678 // into the call.
1679 PPCFuncInfo->setUsesTOCBasePtr();
1680 MIB.addReg(PPC::X2, RegState::Implicit);
1681
1682 // Add a register mask with the call-preserved registers. Proper
1683 // defs for return values will be added by setPhysRegsDeadExcept().
1684 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1685
1686 CLI.Call = MIB;
1687
1688 // Finish off the call including any return values.
1689 return finishCall(RetVT, CLI, NumBytes);
1690 }
1691
1692 // Attempt to fast-select a return instruction.
SelectRet(const Instruction * I)1693 bool PPCFastISel::SelectRet(const Instruction *I) {
1694
1695 if (!FuncInfo.CanLowerReturn)
1696 return false;
1697
1698 const ReturnInst *Ret = cast<ReturnInst>(I);
1699 const Function &F = *I->getParent()->getParent();
1700
1701 // Build a list of return value registers.
1702 SmallVector<unsigned, 4> RetRegs;
1703 CallingConv::ID CC = F.getCallingConv();
1704
1705 if (Ret->getNumOperands() > 0) {
1706 SmallVector<ISD::OutputArg, 4> Outs;
1707 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1708
1709 // Analyze operands of the call, assigning locations to each operand.
1710 SmallVector<CCValAssign, 16> ValLocs;
1711 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context);
1712 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
1713 const Value *RV = Ret->getOperand(0);
1714
1715 // FIXME: Only one output register for now.
1716 if (ValLocs.size() > 1)
1717 return false;
1718
1719 // Special case for returning a constant integer of any size - materialize
1720 // the constant as an i64 and copy it to the return register.
1721 if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) {
1722 CCValAssign &VA = ValLocs[0];
1723
1724 Register RetReg = VA.getLocReg();
1725 // We still need to worry about properly extending the sign. For example,
1726 // we could have only a single bit or a constant that needs zero
1727 // extension rather than sign extension. Make sure we pass the return
1728 // value extension property to integer materialization.
1729 unsigned SrcReg =
1730 PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt);
1731
1732 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1733 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);
1734
1735 RetRegs.push_back(RetReg);
1736
1737 } else {
1738 Register Reg = getRegForValue(RV);
1739
1740 if (Reg == 0)
1741 return false;
1742
1743 // Copy the result values into the output registers.
1744 for (unsigned i = 0; i < ValLocs.size(); ++i) {
1745
1746 CCValAssign &VA = ValLocs[i];
1747 assert(VA.isRegLoc() && "Can only return in registers!");
1748 RetRegs.push_back(VA.getLocReg());
1749 unsigned SrcReg = Reg + VA.getValNo();
1750
1751 EVT RVEVT = TLI.getValueType(DL, RV->getType());
1752 if (!RVEVT.isSimple())
1753 return false;
1754 MVT RVVT = RVEVT.getSimpleVT();
1755 MVT DestVT = VA.getLocVT();
1756
1757 if (RVVT != DestVT && RVVT != MVT::i8 &&
1758 RVVT != MVT::i16 && RVVT != MVT::i32)
1759 return false;
1760
1761 if (RVVT != DestVT) {
1762 switch (VA.getLocInfo()) {
1763 default:
1764 llvm_unreachable("Unknown loc info!");
1765 case CCValAssign::Full:
1766 llvm_unreachable("Full value assign but types don't match?");
1767 case CCValAssign::AExt:
1768 case CCValAssign::ZExt: {
1769 const TargetRegisterClass *RC =
1770 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1771 Register TmpReg = createResultReg(RC);
1772 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
1773 return false;
1774 SrcReg = TmpReg;
1775 break;
1776 }
1777 case CCValAssign::SExt: {
1778 const TargetRegisterClass *RC =
1779 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1780 Register TmpReg = createResultReg(RC);
1781 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
1782 return false;
1783 SrcReg = TmpReg;
1784 break;
1785 }
1786 }
1787 }
1788
1789 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1790 TII.get(TargetOpcode::COPY), RetRegs[i])
1791 .addReg(SrcReg);
1792 }
1793 }
1794 }
1795
1796 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1797 TII.get(PPC::BLR8));
1798
1799 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1800 MIB.addReg(RetRegs[i], RegState::Implicit);
1801
1802 return true;
1803 }
1804
1805 // Attempt to emit an integer extend of SrcReg into DestReg. Both
1806 // signed and zero extensions are supported. Return false if we
1807 // can't handle it.
PPCEmitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg,bool IsZExt)1808 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1809 unsigned DestReg, bool IsZExt) {
1810 if (DestVT != MVT::i32 && DestVT != MVT::i64)
1811 return false;
1812 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1813 return false;
1814
1815 // Signed extensions use EXTSB, EXTSH, EXTSW.
1816 if (!IsZExt) {
1817 unsigned Opc;
1818 if (SrcVT == MVT::i8)
1819 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1820 else if (SrcVT == MVT::i16)
1821 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1822 else {
1823 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1824 Opc = PPC::EXTSW_32_64;
1825 }
1826 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1827 .addReg(SrcReg);
1828
1829 // Unsigned 32-bit extensions use RLWINM.
1830 } else if (DestVT == MVT::i32) {
1831 unsigned MB;
1832 if (SrcVT == MVT::i8)
1833 MB = 24;
1834 else {
1835 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1836 MB = 16;
1837 }
1838 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM),
1839 DestReg)
1840 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1841
1842 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1843 } else {
1844 unsigned MB;
1845 if (SrcVT == MVT::i8)
1846 MB = 56;
1847 else if (SrcVT == MVT::i16)
1848 MB = 48;
1849 else
1850 MB = 32;
1851 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1852 TII.get(PPC::RLDICL_32_64), DestReg)
1853 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1854 }
1855
1856 return true;
1857 }
1858
1859 // Attempt to fast-select an indirect branch instruction.
SelectIndirectBr(const Instruction * I)1860 bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1861 Register AddrReg = getRegForValue(I->getOperand(0));
1862 if (AddrReg == 0)
1863 return false;
1864
1865 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8))
1866 .addReg(AddrReg);
1867 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8));
1868
1869 const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1870 for (const BasicBlock *SuccBB : IB->successors())
1871 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1872
1873 return true;
1874 }
1875
1876 // Attempt to fast-select an integer truncate instruction.
SelectTrunc(const Instruction * I)1877 bool PPCFastISel::SelectTrunc(const Instruction *I) {
1878 Value *Src = I->getOperand(0);
1879 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1880 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1881
1882 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
1883 return false;
1884
1885 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1886 return false;
1887
1888 Register SrcReg = getRegForValue(Src);
1889 if (!SrcReg)
1890 return false;
1891
1892 // The only interesting case is when we need to switch register classes.
1893 if (SrcVT == MVT::i64)
1894 SrcReg = copyRegToRegClass(&PPC::GPRCRegClass, SrcReg, 0, PPC::sub_32);
1895
1896 updateValueMap(I, SrcReg);
1897 return true;
1898 }
1899
1900 // Attempt to fast-select an integer extend instruction.
SelectIntExt(const Instruction * I)1901 bool PPCFastISel::SelectIntExt(const Instruction *I) {
1902 Type *DestTy = I->getType();
1903 Value *Src = I->getOperand(0);
1904 Type *SrcTy = Src->getType();
1905
1906 bool IsZExt = isa<ZExtInst>(I);
1907 Register SrcReg = getRegForValue(Src);
1908 if (!SrcReg) return false;
1909
1910 EVT SrcEVT, DestEVT;
1911 SrcEVT = TLI.getValueType(DL, SrcTy, true);
1912 DestEVT = TLI.getValueType(DL, DestTy, true);
1913 if (!SrcEVT.isSimple())
1914 return false;
1915 if (!DestEVT.isSimple())
1916 return false;
1917
1918 MVT SrcVT = SrcEVT.getSimpleVT();
1919 MVT DestVT = DestEVT.getSimpleVT();
1920
1921 // If we know the register class needed for the result of this
1922 // instruction, use it. Otherwise pick the register class of the
1923 // correct size that does not contain X0/R0, since we don't know
1924 // whether downstream uses permit that assignment.
1925 Register AssignedReg = FuncInfo.ValueMap[I];
1926 const TargetRegisterClass *RC =
1927 (AssignedReg ? MRI.getRegClass(AssignedReg) :
1928 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1929 &PPC::GPRC_and_GPRC_NOR0RegClass));
1930 Register ResultReg = createResultReg(RC);
1931
1932 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1933 return false;
1934
1935 updateValueMap(I, ResultReg);
1936 return true;
1937 }
1938
1939 // Attempt to fast-select an instruction that wasn't handled by
1940 // the table-generated machinery.
fastSelectInstruction(const Instruction * I)1941 bool PPCFastISel::fastSelectInstruction(const Instruction *I) {
1942
1943 switch (I->getOpcode()) {
1944 case Instruction::Load:
1945 return SelectLoad(I);
1946 case Instruction::Store:
1947 return SelectStore(I);
1948 case Instruction::Br:
1949 return SelectBranch(I);
1950 case Instruction::IndirectBr:
1951 return SelectIndirectBr(I);
1952 case Instruction::FPExt:
1953 return SelectFPExt(I);
1954 case Instruction::FPTrunc:
1955 return SelectFPTrunc(I);
1956 case Instruction::SIToFP:
1957 return SelectIToFP(I, /*IsSigned*/ true);
1958 case Instruction::UIToFP:
1959 return SelectIToFP(I, /*IsSigned*/ false);
1960 case Instruction::FPToSI:
1961 return SelectFPToI(I, /*IsSigned*/ true);
1962 case Instruction::FPToUI:
1963 return SelectFPToI(I, /*IsSigned*/ false);
1964 case Instruction::Add:
1965 return SelectBinaryIntOp(I, ISD::ADD);
1966 case Instruction::Or:
1967 return SelectBinaryIntOp(I, ISD::OR);
1968 case Instruction::Sub:
1969 return SelectBinaryIntOp(I, ISD::SUB);
1970 case Instruction::Ret:
1971 return SelectRet(I);
1972 case Instruction::Trunc:
1973 return SelectTrunc(I);
1974 case Instruction::ZExt:
1975 case Instruction::SExt:
1976 return SelectIntExt(I);
1977 // Here add other flavors of Instruction::XXX that automated
1978 // cases don't catch. For example, switches are terminators
1979 // that aren't yet handled.
1980 default:
1981 break;
1982 }
1983 return false;
1984 }
1985
1986 // Materialize a floating-point constant into a register, and return
1987 // the register number (or zero if we failed to handle it).
PPCMaterializeFP(const ConstantFP * CFP,MVT VT)1988 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1989 // If this is a PC-Rel function, let SDISel handle constant pool.
1990 if (Subtarget->isUsingPCRelativeCalls())
1991 return false;
1992
1993 // No plans to handle long double here.
1994 if (VT != MVT::f32 && VT != MVT::f64)
1995 return 0;
1996
1997 // All FP constants are loaded from the constant pool.
1998 Align Alignment = DL.getPrefTypeAlign(CFP->getType());
1999 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment);
2000 const bool HasSPE = Subtarget->hasSPE();
2001 const TargetRegisterClass *RC;
2002 if (HasSPE)
2003 RC = ((VT == MVT::f32) ? &PPC::GPRCRegClass : &PPC::SPERCRegClass);
2004 else
2005 RC = ((VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass);
2006
2007 Register DestReg = createResultReg(RC);
2008 CodeModel::Model CModel = TM.getCodeModel();
2009
2010 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
2011 MachinePointerInfo::getConstantPool(*FuncInfo.MF),
2012 MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Alignment);
2013
2014 unsigned Opc;
2015
2016 if (HasSPE)
2017 Opc = ((VT == MVT::f32) ? PPC::SPELWZ : PPC::EVLDD);
2018 else
2019 Opc = ((VT == MVT::f32) ? PPC::LFS : PPC::LFD);
2020
2021 Register TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2022
2023 PPCFuncInfo->setUsesTOCBasePtr();
2024 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
2025 if (CModel == CodeModel::Small) {
2026 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT),
2027 TmpReg)
2028 .addConstantPoolIndex(Idx).addReg(PPC::X2);
2029 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2030 .addImm(0).addReg(TmpReg).addMemOperand(MMO);
2031 } else {
2032 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA8(X2, Idx)).
2033 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA8),
2034 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
2035 // But for large code model, we must generate a LDtocL followed
2036 // by the LF[SD].
2037 if (CModel == CodeModel::Large) {
2038 Register TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2039 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
2040 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
2041 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2042 .addImm(0)
2043 .addReg(TmpReg2);
2044 } else
2045 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2046 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
2047 .addReg(TmpReg)
2048 .addMemOperand(MMO);
2049 }
2050
2051 return DestReg;
2052 }
2053
2054 // Materialize the address of a global value into a register, and return
2055 // the register number (or zero if we failed to handle it).
PPCMaterializeGV(const GlobalValue * GV,MVT VT)2056 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
2057 // If this is a PC-Rel function, let SDISel handle GV materialization.
2058 if (Subtarget->isUsingPCRelativeCalls())
2059 return false;
2060
2061 assert(VT == MVT::i64 && "Non-address!");
2062 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
2063 Register DestReg = createResultReg(RC);
2064
2065 // Global values may be plain old object addresses, TLS object
2066 // addresses, constant pool entries, or jump tables. How we generate
2067 // code for these may depend on small, medium, or large code model.
2068 CodeModel::Model CModel = TM.getCodeModel();
2069
2070 // FIXME: Jump tables are not yet required because fast-isel doesn't
2071 // handle switches; if that changes, we need them as well. For now,
2072 // what follows assumes everything's a generic (or TLS) global address.
2073
2074 // FIXME: We don't yet handle the complexity of TLS.
2075 if (GV->isThreadLocal())
2076 return 0;
2077
2078 // If the global has the toc-data attribute then fallback to DAG-ISEL.
2079 if (TM.getTargetTriple().isOSAIX())
2080 if (const GlobalVariable *Var = dyn_cast_or_null<GlobalVariable>(GV))
2081 if (Var->hasAttribute("toc-data"))
2082 return false;
2083
2084 PPCFuncInfo->setUsesTOCBasePtr();
2085 // For small code model, generate a simple TOC load.
2086 if (CModel == CodeModel::Small)
2087 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc),
2088 DestReg)
2089 .addGlobalAddress(GV)
2090 .addReg(PPC::X2);
2091 else {
2092 // If the address is an externally defined symbol, a symbol with common
2093 // or externally available linkage, a non-local function address, or a
2094 // jump table address (not yet needed), or if we are generating code
2095 // for large code model, we generate:
2096 // LDtocL(GV, ADDIStocHA8(%x2, GV))
2097 // Otherwise we generate:
2098 // ADDItocL(ADDIStocHA8(%x2, GV), GV)
2099 // Either way, start with the ADDIStocHA8:
2100 Register HighPartReg = createResultReg(RC);
2101 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA8),
2102 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
2103
2104 if (Subtarget->isGVIndirectSymbol(GV)) {
2105 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
2106 DestReg).addGlobalAddress(GV).addReg(HighPartReg);
2107 } else {
2108 // Otherwise generate the ADDItocL.
2109 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL),
2110 DestReg).addReg(HighPartReg).addGlobalAddress(GV);
2111 }
2112 }
2113
2114 return DestReg;
2115 }
2116
2117 // Materialize a 32-bit integer constant into a register, and return
2118 // the register number (or zero if we failed to handle it).
PPCMaterialize32BitInt(int64_t Imm,const TargetRegisterClass * RC)2119 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
2120 const TargetRegisterClass *RC) {
2121 unsigned Lo = Imm & 0xFFFF;
2122 unsigned Hi = (Imm >> 16) & 0xFFFF;
2123
2124 Register ResultReg = createResultReg(RC);
2125 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
2126
2127 if (isInt<16>(Imm))
2128 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2129 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
2130 .addImm(Imm);
2131 else if (Lo) {
2132 // Both Lo and Hi have nonzero bits.
2133 Register TmpReg = createResultReg(RC);
2134 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2135 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
2136 .addImm(Hi);
2137 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2138 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
2139 .addReg(TmpReg).addImm(Lo);
2140 } else
2141 // Just Hi bits.
2142 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2143 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
2144 .addImm(Hi);
2145
2146 return ResultReg;
2147 }
2148
2149 // Materialize a 64-bit integer constant into a register, and return
2150 // the register number (or zero if we failed to handle it).
PPCMaterialize64BitInt(int64_t Imm,const TargetRegisterClass * RC)2151 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
2152 const TargetRegisterClass *RC) {
2153 unsigned Remainder = 0;
2154 unsigned Shift = 0;
2155
2156 // If the value doesn't fit in 32 bits, see if we can shift it
2157 // so that it fits in 32 bits.
2158 if (!isInt<32>(Imm)) {
2159 Shift = countTrailingZeros<uint64_t>(Imm);
2160 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
2161
2162 if (isInt<32>(ImmSh))
2163 Imm = ImmSh;
2164 else {
2165 Remainder = Imm;
2166 Shift = 32;
2167 Imm >>= 32;
2168 }
2169 }
2170
2171 // Handle the high-order 32 bits (if shifted) or the whole 32 bits
2172 // (if not shifted).
2173 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
2174 if (!Shift)
2175 return TmpReg1;
2176
2177 // If upper 32 bits were not zero, we've built them and need to shift
2178 // them into place.
2179 unsigned TmpReg2;
2180 if (Imm) {
2181 TmpReg2 = createResultReg(RC);
2182 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR),
2183 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
2184 } else
2185 TmpReg2 = TmpReg1;
2186
2187 unsigned TmpReg3, Hi, Lo;
2188 if ((Hi = (Remainder >> 16) & 0xFFFF)) {
2189 TmpReg3 = createResultReg(RC);
2190 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8),
2191 TmpReg3).addReg(TmpReg2).addImm(Hi);
2192 } else
2193 TmpReg3 = TmpReg2;
2194
2195 if ((Lo = Remainder & 0xFFFF)) {
2196 Register ResultReg = createResultReg(RC);
2197 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8),
2198 ResultReg).addReg(TmpReg3).addImm(Lo);
2199 return ResultReg;
2200 }
2201
2202 return TmpReg3;
2203 }
2204
2205 // Materialize an integer constant into a register, and return
2206 // the register number (or zero if we failed to handle it).
PPCMaterializeInt(const ConstantInt * CI,MVT VT,bool UseSExt)2207 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT,
2208 bool UseSExt) {
2209 // If we're using CR bit registers for i1 values, handle that as a special
2210 // case first.
2211 if (VT == MVT::i1 && Subtarget->useCRBits()) {
2212 Register ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2213 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2214 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2215 return ImmReg;
2216 }
2217
2218 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2219 VT != MVT::i1)
2220 return 0;
2221
2222 const TargetRegisterClass *RC =
2223 ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass);
2224 int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue();
2225
2226 // If the constant is in range, use a load-immediate.
2227 // Since LI will sign extend the constant we need to make sure that for
2228 // our zeroext constants that the sign extended constant fits into 16-bits -
2229 // a range of 0..0x7fff.
2230 if (isInt<16>(Imm)) {
2231 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2232 Register ImmReg = createResultReg(RC);
2233 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg)
2234 .addImm(Imm);
2235 return ImmReg;
2236 }
2237
2238 // Construct the constant piecewise.
2239 if (VT == MVT::i64)
2240 return PPCMaterialize64BitInt(Imm, RC);
2241 else if (VT == MVT::i32)
2242 return PPCMaterialize32BitInt(Imm, RC);
2243
2244 return 0;
2245 }
2246
2247 // Materialize a constant into a register, and return the register
2248 // number (or zero if we failed to handle it).
fastMaterializeConstant(const Constant * C)2249 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) {
2250 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
2251
2252 // Only handle simple types.
2253 if (!CEVT.isSimple()) return 0;
2254 MVT VT = CEVT.getSimpleVT();
2255
2256 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
2257 return PPCMaterializeFP(CFP, VT);
2258 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
2259 return PPCMaterializeGV(GV, VT);
2260 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
2261 // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo
2262 // assumes that constant PHI operands will be zero extended, and failure to
2263 // match that assumption will cause problems if we sign extend here but
2264 // some user of a PHI is in a block for which we fall back to full SDAG
2265 // instruction selection.
2266 return PPCMaterializeInt(CI, VT, false);
2267
2268 return 0;
2269 }
2270
2271 // Materialize the address created by an alloca into a register, and
2272 // return the register number (or zero if we failed to handle it).
fastMaterializeAlloca(const AllocaInst * AI)2273 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
2274 // Don't handle dynamic allocas.
2275 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
2276
2277 MVT VT;
2278 if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
2279
2280 DenseMap<const AllocaInst*, int>::iterator SI =
2281 FuncInfo.StaticAllocaMap.find(AI);
2282
2283 if (SI != FuncInfo.StaticAllocaMap.end()) {
2284 Register ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2285 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
2286 ResultReg).addFrameIndex(SI->second).addImm(0);
2287 return ResultReg;
2288 }
2289
2290 return 0;
2291 }
2292
2293 // Fold loads into extends when possible.
2294 // FIXME: We can have multiple redundant extend/trunc instructions
2295 // following a load. The folding only picks up one. Extend this
2296 // to check subsequent instructions for the same pattern and remove
2297 // them. Thus ResultReg should be the def reg for the last redundant
2298 // instruction in a chain, and all intervening instructions can be
2299 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll
2300 // to add ELF64-NOT: rldicl to the appropriate tests when this works.
tryToFoldLoadIntoMI(MachineInstr * MI,unsigned OpNo,const LoadInst * LI)2301 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2302 const LoadInst *LI) {
2303 // Verify we have a legal type before going any further.
2304 MVT VT;
2305 if (!isLoadTypeLegal(LI->getType(), VT))
2306 return false;
2307
2308 // Combine load followed by zero- or sign-extend.
2309 bool IsZExt = false;
2310 switch(MI->getOpcode()) {
2311 default:
2312 return false;
2313
2314 case PPC::RLDICL:
2315 case PPC::RLDICL_32_64: {
2316 IsZExt = true;
2317 unsigned MB = MI->getOperand(3).getImm();
2318 if ((VT == MVT::i8 && MB <= 56) ||
2319 (VT == MVT::i16 && MB <= 48) ||
2320 (VT == MVT::i32 && MB <= 32))
2321 break;
2322 return false;
2323 }
2324
2325 case PPC::RLWINM:
2326 case PPC::RLWINM8: {
2327 IsZExt = true;
2328 unsigned MB = MI->getOperand(3).getImm();
2329 if ((VT == MVT::i8 && MB <= 24) ||
2330 (VT == MVT::i16 && MB <= 16))
2331 break;
2332 return false;
2333 }
2334
2335 case PPC::EXTSB:
2336 case PPC::EXTSB8:
2337 case PPC::EXTSB8_32_64:
2338 /* There is no sign-extending load-byte instruction. */
2339 return false;
2340
2341 case PPC::EXTSH:
2342 case PPC::EXTSH8:
2343 case PPC::EXTSH8_32_64: {
2344 if (VT != MVT::i16 && VT != MVT::i8)
2345 return false;
2346 break;
2347 }
2348
2349 case PPC::EXTSW:
2350 case PPC::EXTSW_32:
2351 case PPC::EXTSW_32_64: {
2352 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
2353 return false;
2354 break;
2355 }
2356 }
2357
2358 // See if we can handle this address.
2359 Address Addr;
2360 if (!PPCComputeAddress(LI->getOperand(0), Addr))
2361 return false;
2362
2363 Register ResultReg = MI->getOperand(0).getReg();
2364
2365 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt,
2366 Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
2367 return false;
2368
2369 MachineBasicBlock::iterator I(MI);
2370 removeDeadCode(I, std::next(I));
2371 return true;
2372 }
2373
2374 // Attempt to lower call arguments in a faster way than done by
2375 // the selection DAG code.
fastLowerArguments()2376 bool PPCFastISel::fastLowerArguments() {
2377 // Defer to normal argument lowering for now. It's reasonably
2378 // efficient. Consider doing something like ARM to handle the
2379 // case where all args fit in registers, no varargs, no float
2380 // or vector args.
2381 return false;
2382 }
2383
2384 // Handle materializing integer constants into a register. This is not
2385 // automatically generated for PowerPC, so must be explicitly created here.
fastEmit_i(MVT Ty,MVT VT,unsigned Opc,uint64_t Imm)2386 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
2387
2388 if (Opc != ISD::Constant)
2389 return 0;
2390
2391 // If we're using CR bit registers for i1 values, handle that as a special
2392 // case first.
2393 if (VT == MVT::i1 && Subtarget->useCRBits()) {
2394 Register ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2395 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2396 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2397 return ImmReg;
2398 }
2399
2400 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2401 VT != MVT::i1)
2402 return 0;
2403
2404 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2405 &PPC::GPRCRegClass);
2406 if (VT == MVT::i64)
2407 return PPCMaterialize64BitInt(Imm, RC);
2408 else
2409 return PPCMaterialize32BitInt(Imm, RC);
2410 }
2411
2412 // Override for ADDI and ADDI8 to set the correct register class
2413 // on RHS operand 0. The automatic infrastructure naively assumes
2414 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2415 // for these cases. At the moment, none of the other automatically
2416 // generated RI instructions require special treatment. However, once
2417 // SelectSelect is implemented, "isel" requires similar handling.
2418 //
2419 // Also be conservative about the output register class. Avoid
2420 // assigning R0 or X0 to the output register for GPRC and G8RC
2421 // register classes, as any such result could be used in ADDI, etc.,
2422 // where those regs have another meaning.
fastEmitInst_ri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,uint64_t Imm)2423 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2424 const TargetRegisterClass *RC,
2425 unsigned Op0,
2426 uint64_t Imm) {
2427 if (MachineInstOpcode == PPC::ADDI)
2428 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
2429 else if (MachineInstOpcode == PPC::ADDI8)
2430 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
2431
2432 const TargetRegisterClass *UseRC =
2433 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2434 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2435
2436 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, Op0, Imm);
2437 }
2438
2439 // Override for instructions with one register operand to avoid use of
2440 // R0/X0. The automatic infrastructure isn't aware of the context so
2441 // we must be conservative.
fastEmitInst_r(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0)2442 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2443 const TargetRegisterClass* RC,
2444 unsigned Op0) {
2445 const TargetRegisterClass *UseRC =
2446 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2447 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2448
2449 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0);
2450 }
2451
2452 // Override for instructions with two register operands to avoid use
2453 // of R0/X0. The automatic infrastructure isn't aware of the context
2454 // so we must be conservative.
fastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,unsigned Op1)2455 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2456 const TargetRegisterClass* RC,
2457 unsigned Op0, unsigned Op1) {
2458 const TargetRegisterClass *UseRC =
2459 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2460 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2461
2462 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op1);
2463 }
2464
2465 namespace llvm {
2466 // Create the fast instruction selector for PowerPC64 ELF.
createFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo)2467 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
2468 const TargetLibraryInfo *LibInfo) {
2469 // Only available on 64-bit for now.
2470 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>();
2471 if (Subtarget.isPPC64())
2472 return new PPCFastISel(FuncInfo, LibInfo);
2473 return nullptr;
2474 }
2475 }
2476