1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the PowerPC-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // PPCGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "MCTargetDesc/PPCPredicates.h" 17 #include "PPC.h" 18 #include "PPCCCState.h" 19 #include "PPCCallingConv.h" 20 #include "PPCISelLowering.h" 21 #include "PPCMachineFunctionInfo.h" 22 #include "PPCSubtarget.h" 23 #include "PPCTargetMachine.h" 24 #include "llvm/ADT/Optional.h" 25 #include "llvm/CodeGen/CallingConvLower.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/MachineConstantPool.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/TargetLowering.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalAlias.h" 36 #include "llvm/IR/GlobalVariable.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Target/TargetMachine.h" 41 42 //===----------------------------------------------------------------------===// 43 // 44 // TBD: 45 // fastLowerArguments: Handle simple cases. 46 // PPCMaterializeGV: Handle TLS. 47 // SelectCall: Handle function pointers. 48 // SelectCall: Handle multi-register return values. 49 // SelectCall: Optimize away nops for local calls. 50 // processCallArgs: Handle bit-converted arguments. 51 // finishCall: Handle multi-register return values. 52 // PPCComputeAddress: Handle parameter references as FrameIndex's. 53 // PPCEmitCmp: Handle immediate as operand 1. 54 // SelectCall: Handle small byval arguments. 55 // SelectIntrinsicCall: Implement. 56 // SelectSelect: Implement. 57 // Consider factoring isTypeLegal into the base class. 58 // Implement switches and jump tables. 59 // 60 //===----------------------------------------------------------------------===// 61 using namespace llvm; 62 63 #define DEBUG_TYPE "ppcfastisel" 64 65 namespace { 66 67 typedef struct Address { 68 enum { 69 RegBase, 70 FrameIndexBase 71 } BaseType; 72 73 union { 74 unsigned Reg; 75 int FI; 76 } Base; 77 78 long Offset; 79 80 // Innocuous defaults for our address. 81 Address() 82 : BaseType(RegBase), Offset(0) { 83 Base.Reg = 0; 84 } 85 } Address; 86 87 class PPCFastISel final : public FastISel { 88 89 const TargetMachine &TM; 90 const PPCSubtarget *PPCSubTarget; 91 PPCFunctionInfo *PPCFuncInfo; 92 const TargetInstrInfo &TII; 93 const TargetLowering &TLI; 94 LLVMContext *Context; 95 96 public: 97 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, 98 const TargetLibraryInfo *LibInfo) 99 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()), 100 PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()), 101 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()), 102 TII(*PPCSubTarget->getInstrInfo()), 103 TLI(*PPCSubTarget->getTargetLowering()), 104 Context(&FuncInfo.Fn->getContext()) {} 105 106 // Backend specific FastISel code. 107 private: 108 bool fastSelectInstruction(const Instruction *I) override; 109 unsigned fastMaterializeConstant(const Constant *C) override; 110 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 111 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 112 const LoadInst *LI) override; 113 bool fastLowerArguments() override; 114 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override; 115 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 116 const TargetRegisterClass *RC, 117 unsigned Op0, bool Op0IsKill, 118 uint64_t Imm); 119 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 120 const TargetRegisterClass *RC, 121 unsigned Op0, bool Op0IsKill); 122 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 123 const TargetRegisterClass *RC, 124 unsigned Op0, bool Op0IsKill, 125 unsigned Op1, bool Op1IsKill); 126 127 bool fastLowerCall(CallLoweringInfo &CLI) override; 128 129 // Instruction selection routines. 130 private: 131 bool SelectLoad(const Instruction *I); 132 bool SelectStore(const Instruction *I); 133 bool SelectBranch(const Instruction *I); 134 bool SelectIndirectBr(const Instruction *I); 135 bool SelectFPExt(const Instruction *I); 136 bool SelectFPTrunc(const Instruction *I); 137 bool SelectIToFP(const Instruction *I, bool IsSigned); 138 bool SelectFPToI(const Instruction *I, bool IsSigned); 139 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 140 bool SelectRet(const Instruction *I); 141 bool SelectTrunc(const Instruction *I); 142 bool SelectIntExt(const Instruction *I); 143 144 // Utility routines. 145 private: 146 bool isTypeLegal(Type *Ty, MVT &VT); 147 bool isLoadTypeLegal(Type *Ty, MVT &VT); 148 bool isValueAvailable(const Value *V) const; 149 bool isVSFRCRegClass(const TargetRegisterClass *RC) const { 150 return RC->getID() == PPC::VSFRCRegClassID; 151 } 152 bool isVSSRCRegClass(const TargetRegisterClass *RC) const { 153 return RC->getID() == PPC::VSSRCRegClassID; 154 } 155 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, 156 bool isZExt, unsigned DestReg, 157 const PPC::Predicate Pred); 158 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 159 const TargetRegisterClass *RC, bool IsZExt = true, 160 unsigned FP64LoadOpc = PPC::LFD); 161 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); 162 bool PPCComputeAddress(const Value *Obj, Address &Addr); 163 void PPCSimplifyAddress(Address &Addr, bool &UseOffset, 164 unsigned &IndexReg); 165 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 166 unsigned DestReg, bool IsZExt); 167 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); 168 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); 169 unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT, 170 bool UseSExt = true); 171 unsigned PPCMaterialize32BitInt(int64_t Imm, 172 const TargetRegisterClass *RC); 173 unsigned PPCMaterialize64BitInt(int64_t Imm, 174 const TargetRegisterClass *RC); 175 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT, 176 unsigned SrcReg, bool IsSigned); 177 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned); 178 179 // Call handling routines. 180 private: 181 bool processCallArgs(SmallVectorImpl<Value*> &Args, 182 SmallVectorImpl<unsigned> &ArgRegs, 183 SmallVectorImpl<MVT> &ArgVTs, 184 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 185 SmallVectorImpl<unsigned> &RegArgs, 186 CallingConv::ID CC, 187 unsigned &NumBytes, 188 bool IsVarArg); 189 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes); 190 LLVM_ATTRIBUTE_UNUSED CCAssignFn *usePPC32CCs(unsigned Flag); 191 192 private: 193 #include "PPCGenFastISel.inc" 194 195 }; 196 197 } // end anonymous namespace 198 199 #include "PPCGenCallingConv.inc" 200 201 // Function whose sole purpose is to kill compiler warnings 202 // stemming from unused functions included from PPCGenCallingConv.inc. 203 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) { 204 if (Flag == 1) 205 return CC_PPC32_SVR4; 206 else if (Flag == 2) 207 return CC_PPC32_SVR4_ByVal; 208 else if (Flag == 3) 209 return CC_PPC32_SVR4_VarArg; 210 else if (Flag == 4) 211 return RetCC_PPC_Cold; 212 else 213 return RetCC_PPC; 214 } 215 216 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { 217 switch (Pred) { 218 // These are not representable with any single compare. 219 case CmpInst::FCMP_FALSE: 220 case CmpInst::FCMP_TRUE: 221 // Major concern about the following 6 cases is NaN result. The comparison 222 // result consists of 4 bits, indicating lt, eq, gt and un (unordered), 223 // only one of which will be set. The result is generated by fcmpu 224 // instruction. However, bc instruction only inspects one of the first 3 225 // bits, so when un is set, bc instruction may jump to an undesired 226 // place. 227 // 228 // More specifically, if we expect an unordered comparison and un is set, we 229 // expect to always go to true branch; in such case UEQ, UGT and ULT still 230 // give false, which are undesired; but UNE, UGE, ULE happen to give true, 231 // since they are tested by inspecting !eq, !lt, !gt, respectively. 232 // 233 // Similarly, for ordered comparison, when un is set, we always expect the 234 // result to be false. In such case OGT, OLT and OEQ is good, since they are 235 // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE 236 // and ONE are tested through !lt, !gt and !eq, and these are true. 237 case CmpInst::FCMP_UEQ: 238 case CmpInst::FCMP_UGT: 239 case CmpInst::FCMP_ULT: 240 case CmpInst::FCMP_OGE: 241 case CmpInst::FCMP_OLE: 242 case CmpInst::FCMP_ONE: 243 default: 244 return Optional<PPC::Predicate>(); 245 246 case CmpInst::FCMP_OEQ: 247 case CmpInst::ICMP_EQ: 248 return PPC::PRED_EQ; 249 250 case CmpInst::FCMP_OGT: 251 case CmpInst::ICMP_UGT: 252 case CmpInst::ICMP_SGT: 253 return PPC::PRED_GT; 254 255 case CmpInst::FCMP_UGE: 256 case CmpInst::ICMP_UGE: 257 case CmpInst::ICMP_SGE: 258 return PPC::PRED_GE; 259 260 case CmpInst::FCMP_OLT: 261 case CmpInst::ICMP_ULT: 262 case CmpInst::ICMP_SLT: 263 return PPC::PRED_LT; 264 265 case CmpInst::FCMP_ULE: 266 case CmpInst::ICMP_ULE: 267 case CmpInst::ICMP_SLE: 268 return PPC::PRED_LE; 269 270 case CmpInst::FCMP_UNE: 271 case CmpInst::ICMP_NE: 272 return PPC::PRED_NE; 273 274 case CmpInst::FCMP_ORD: 275 return PPC::PRED_NU; 276 277 case CmpInst::FCMP_UNO: 278 return PPC::PRED_UN; 279 } 280 } 281 282 // Determine whether the type Ty is simple enough to be handled by 283 // fast-isel, and return its equivalent machine type in VT. 284 // FIXME: Copied directly from ARM -- factor into base class? 285 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { 286 EVT Evt = TLI.getValueType(DL, Ty, true); 287 288 // Only handle simple types. 289 if (Evt == MVT::Other || !Evt.isSimple()) return false; 290 VT = Evt.getSimpleVT(); 291 292 // Handle all legal types, i.e. a register that will directly hold this 293 // value. 294 return TLI.isTypeLegal(VT); 295 } 296 297 // Determine whether the type Ty is simple enough to be handled by 298 // fast-isel as a load target, and return its equivalent machine type in VT. 299 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 300 if (isTypeLegal(Ty, VT)) return true; 301 302 // If this is a type than can be sign or zero-extended to a basic operation 303 // go ahead and accept it now. 304 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { 305 return true; 306 } 307 308 return false; 309 } 310 311 bool PPCFastISel::isValueAvailable(const Value *V) const { 312 if (!isa<Instruction>(V)) 313 return true; 314 315 const auto *I = cast<Instruction>(V); 316 return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB; 317 } 318 319 // Given a value Obj, create an Address object Addr that represents its 320 // address. Return false if we can't handle it. 321 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { 322 const User *U = nullptr; 323 unsigned Opcode = Instruction::UserOp1; 324 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 325 // Don't walk into other basic blocks unless the object is an alloca from 326 // another block, otherwise it may not have a virtual register assigned. 327 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 328 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 329 Opcode = I->getOpcode(); 330 U = I; 331 } 332 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 333 Opcode = C->getOpcode(); 334 U = C; 335 } 336 337 switch (Opcode) { 338 default: 339 break; 340 case Instruction::BitCast: 341 // Look through bitcasts. 342 return PPCComputeAddress(U->getOperand(0), Addr); 343 case Instruction::IntToPtr: 344 // Look past no-op inttoptrs. 345 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 346 TLI.getPointerTy(DL)) 347 return PPCComputeAddress(U->getOperand(0), Addr); 348 break; 349 case Instruction::PtrToInt: 350 // Look past no-op ptrtoints. 351 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 352 return PPCComputeAddress(U->getOperand(0), Addr); 353 break; 354 case Instruction::GetElementPtr: { 355 Address SavedAddr = Addr; 356 long TmpOffset = Addr.Offset; 357 358 // Iterate through the GEP folding the constants into offsets where 359 // we can. 360 gep_type_iterator GTI = gep_type_begin(U); 361 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); 362 II != IE; ++II, ++GTI) { 363 const Value *Op = *II; 364 if (StructType *STy = GTI.getStructTypeOrNull()) { 365 const StructLayout *SL = DL.getStructLayout(STy); 366 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 367 TmpOffset += SL->getElementOffset(Idx); 368 } else { 369 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 370 for (;;) { 371 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 372 // Constant-offset addressing. 373 TmpOffset += CI->getSExtValue() * S; 374 break; 375 } 376 if (canFoldAddIntoGEP(U, Op)) { 377 // A compatible add with a constant operand. Fold the constant. 378 ConstantInt *CI = 379 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 380 TmpOffset += CI->getSExtValue() * S; 381 // Iterate on the other operand. 382 Op = cast<AddOperator>(Op)->getOperand(0); 383 continue; 384 } 385 // Unsupported 386 goto unsupported_gep; 387 } 388 } 389 } 390 391 // Try to grab the base operand now. 392 Addr.Offset = TmpOffset; 393 if (PPCComputeAddress(U->getOperand(0), Addr)) return true; 394 395 // We failed, restore everything and try the other options. 396 Addr = SavedAddr; 397 398 unsupported_gep: 399 break; 400 } 401 case Instruction::Alloca: { 402 const AllocaInst *AI = cast<AllocaInst>(Obj); 403 DenseMap<const AllocaInst*, int>::iterator SI = 404 FuncInfo.StaticAllocaMap.find(AI); 405 if (SI != FuncInfo.StaticAllocaMap.end()) { 406 Addr.BaseType = Address::FrameIndexBase; 407 Addr.Base.FI = SI->second; 408 return true; 409 } 410 break; 411 } 412 } 413 414 // FIXME: References to parameters fall through to the behavior 415 // below. They should be able to reference a frame index since 416 // they are stored to the stack, so we can get "ld rx, offset(r1)" 417 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will 418 // just contain the parameter. Try to handle this with a FI. 419 420 // Try to get this in a register if nothing else has worked. 421 if (Addr.Base.Reg == 0) 422 Addr.Base.Reg = getRegForValue(Obj); 423 424 // Prevent assignment of base register to X0, which is inappropriate 425 // for loads and stores alike. 426 if (Addr.Base.Reg != 0) 427 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); 428 429 return Addr.Base.Reg != 0; 430 } 431 432 // Fix up some addresses that can't be used directly. For example, if 433 // an offset won't fit in an instruction field, we may need to move it 434 // into an index register. 435 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset, 436 unsigned &IndexReg) { 437 438 // Check whether the offset fits in the instruction field. 439 if (!isInt<16>(Addr.Offset)) 440 UseOffset = false; 441 442 // If this is a stack pointer and the offset needs to be simplified then 443 // put the alloca address into a register, set the base type back to 444 // register and continue. This should almost never happen. 445 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { 446 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 447 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 448 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); 449 Addr.Base.Reg = ResultReg; 450 Addr.BaseType = Address::RegBase; 451 } 452 453 if (!UseOffset) { 454 IntegerType *OffsetTy = Type::getInt64Ty(*Context); 455 const ConstantInt *Offset = 456 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset)); 457 IndexReg = PPCMaterializeInt(Offset, MVT::i64); 458 assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); 459 } 460 } 461 462 // Emit a load instruction if possible, returning true if we succeeded, 463 // otherwise false. See commentary below for how the register class of 464 // the load is determined. 465 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 466 const TargetRegisterClass *RC, 467 bool IsZExt, unsigned FP64LoadOpc) { 468 unsigned Opc; 469 bool UseOffset = true; 470 bool HasSPE = PPCSubTarget->hasSPE(); 471 472 // If ResultReg is given, it determines the register class of the load. 473 // Otherwise, RC is the register class to use. If the result of the 474 // load isn't anticipated in this block, both may be zero, in which 475 // case we must make a conservative guess. In particular, don't assign 476 // R0 or X0 to the result register, as the result may be used in a load, 477 // store, add-immediate, or isel that won't permit this. (Though 478 // perhaps the spill and reload of live-exit values would handle this?) 479 const TargetRegisterClass *UseRC = 480 (ResultReg ? MRI.getRegClass(ResultReg) : 481 (RC ? RC : 482 (VT == MVT::f64 ? (HasSPE ? &PPC::SPERCRegClass : &PPC::F8RCRegClass) : 483 (VT == MVT::f32 ? (HasSPE ? &PPC::SPE4RCRegClass : &PPC::F4RCRegClass) : 484 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 485 &PPC::GPRC_and_GPRC_NOR0RegClass))))); 486 487 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); 488 489 switch (VT.SimpleTy) { 490 default: // e.g., vector types not handled 491 return false; 492 case MVT::i8: 493 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; 494 break; 495 case MVT::i16: 496 Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8) 497 : (Is32BitInt ? PPC::LHA : PPC::LHA8)); 498 break; 499 case MVT::i32: 500 Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8) 501 : (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); 502 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) 503 UseOffset = false; 504 break; 505 case MVT::i64: 506 Opc = PPC::LD; 507 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 508 "64-bit load with 32-bit target??"); 509 UseOffset = ((Addr.Offset & 3) == 0); 510 break; 511 case MVT::f32: 512 Opc = PPCSubTarget->hasSPE() ? PPC::SPELWZ : PPC::LFS; 513 break; 514 case MVT::f64: 515 Opc = FP64LoadOpc; 516 break; 517 } 518 519 // If necessary, materialize the offset into a register and use 520 // the indexed form. Also handle stack pointers with special needs. 521 unsigned IndexReg = 0; 522 PPCSimplifyAddress(Addr, UseOffset, IndexReg); 523 524 // If this is a potential VSX load with an offset of 0, a VSX indexed load can 525 // be used. 526 bool IsVSSRC = isVSSRCRegClass(UseRC); 527 bool IsVSFRC = isVSFRCRegClass(UseRC); 528 bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS; 529 bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD; 530 if ((Is32VSXLoad || Is64VSXLoad) && 531 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 532 (Addr.Offset == 0)) { 533 UseOffset = false; 534 } 535 536 if (ResultReg == 0) 537 ResultReg = createResultReg(UseRC); 538 539 // Note: If we still have a frame index here, we know the offset is 540 // in range, as otherwise PPCSimplifyAddress would have converted it 541 // into a RegBase. 542 if (Addr.BaseType == Address::FrameIndexBase) { 543 // VSX only provides an indexed load. 544 if (Is32VSXLoad || Is64VSXLoad) return false; 545 546 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 547 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 548 Addr.Offset), 549 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), 550 MFI.getObjectAlignment(Addr.Base.FI)); 551 552 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 553 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); 554 555 // Base reg with offset in range. 556 } else if (UseOffset) { 557 // VSX only provides an indexed load. 558 if (Is32VSXLoad || Is64VSXLoad) return false; 559 560 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 561 .addImm(Addr.Offset).addReg(Addr.Base.Reg); 562 563 // Indexed form. 564 } else { 565 // Get the RR opcode corresponding to the RI one. FIXME: It would be 566 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 567 // is hard to get at. 568 switch (Opc) { 569 default: llvm_unreachable("Unexpected opcode!"); 570 case PPC::LBZ: Opc = PPC::LBZX; break; 571 case PPC::LBZ8: Opc = PPC::LBZX8; break; 572 case PPC::LHZ: Opc = PPC::LHZX; break; 573 case PPC::LHZ8: Opc = PPC::LHZX8; break; 574 case PPC::LHA: Opc = PPC::LHAX; break; 575 case PPC::LHA8: Opc = PPC::LHAX8; break; 576 case PPC::LWZ: Opc = PPC::LWZX; break; 577 case PPC::LWZ8: Opc = PPC::LWZX8; break; 578 case PPC::LWA: Opc = PPC::LWAX; break; 579 case PPC::LWA_32: Opc = PPC::LWAX_32; break; 580 case PPC::LD: Opc = PPC::LDX; break; 581 case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break; 582 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break; 583 case PPC::EVLDD: Opc = PPC::EVLDDX; break; 584 case PPC::SPELWZ: Opc = PPC::SPELWZX; break; 585 } 586 587 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 588 ResultReg); 589 590 // If we have an index register defined we use it in the store inst, 591 // otherwise we use X0 as base as it makes the vector instructions to 592 // use zero in the computation of the effective address regardless the 593 // content of the register. 594 if (IndexReg) 595 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 596 else 597 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 598 } 599 600 return true; 601 } 602 603 // Attempt to fast-select a load instruction. 604 bool PPCFastISel::SelectLoad(const Instruction *I) { 605 // FIXME: No atomic loads are supported. 606 if (cast<LoadInst>(I)->isAtomic()) 607 return false; 608 609 // Verify we have a legal type before going any further. 610 MVT VT; 611 if (!isLoadTypeLegal(I->getType(), VT)) 612 return false; 613 614 // See if we can handle this address. 615 Address Addr; 616 if (!PPCComputeAddress(I->getOperand(0), Addr)) 617 return false; 618 619 // Look at the currently assigned register for this instruction 620 // to determine the required register class. This is necessary 621 // to constrain RA from using R0/X0 when this is not legal. 622 unsigned AssignedReg = FuncInfo.ValueMap[I]; 623 const TargetRegisterClass *RC = 624 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 625 626 unsigned ResultReg = 0; 627 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, true, 628 PPCSubTarget->hasSPE() ? PPC::EVLDD : PPC::LFD)) 629 return false; 630 updateValueMap(I, ResultReg); 631 return true; 632 } 633 634 // Emit a store instruction to store SrcReg at Addr. 635 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { 636 assert(SrcReg && "Nothing to store!"); 637 unsigned Opc; 638 bool UseOffset = true; 639 640 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); 641 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); 642 643 switch (VT.SimpleTy) { 644 default: // e.g., vector types not handled 645 return false; 646 case MVT::i8: 647 Opc = Is32BitInt ? PPC::STB : PPC::STB8; 648 break; 649 case MVT::i16: 650 Opc = Is32BitInt ? PPC::STH : PPC::STH8; 651 break; 652 case MVT::i32: 653 assert(Is32BitInt && "Not GPRC for i32??"); 654 Opc = PPC::STW; 655 break; 656 case MVT::i64: 657 Opc = PPC::STD; 658 UseOffset = ((Addr.Offset & 3) == 0); 659 break; 660 case MVT::f32: 661 Opc = PPCSubTarget->hasSPE() ? PPC::SPESTW : PPC::STFS; 662 break; 663 case MVT::f64: 664 Opc = PPCSubTarget->hasSPE() ? PPC::EVSTDD : PPC::STFD; 665 break; 666 } 667 668 // If necessary, materialize the offset into a register and use 669 // the indexed form. Also handle stack pointers with special needs. 670 unsigned IndexReg = 0; 671 PPCSimplifyAddress(Addr, UseOffset, IndexReg); 672 673 // If this is a potential VSX store with an offset of 0, a VSX indexed store 674 // can be used. 675 bool IsVSSRC = isVSSRCRegClass(RC); 676 bool IsVSFRC = isVSFRCRegClass(RC); 677 bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS; 678 bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD; 679 if ((Is32VSXStore || Is64VSXStore) && 680 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 681 (Addr.Offset == 0)) { 682 UseOffset = false; 683 } 684 685 // Note: If we still have a frame index here, we know the offset is 686 // in range, as otherwise PPCSimplifyAddress would have converted it 687 // into a RegBase. 688 if (Addr.BaseType == Address::FrameIndexBase) { 689 // VSX only provides an indexed store. 690 if (Is32VSXStore || Is64VSXStore) return false; 691 692 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 693 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 694 Addr.Offset), 695 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), 696 MFI.getObjectAlignment(Addr.Base.FI)); 697 698 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 699 .addReg(SrcReg) 700 .addImm(Addr.Offset) 701 .addFrameIndex(Addr.Base.FI) 702 .addMemOperand(MMO); 703 704 // Base reg with offset in range. 705 } else if (UseOffset) { 706 // VSX only provides an indexed store. 707 if (Is32VSXStore || Is64VSXStore) 708 return false; 709 710 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 711 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); 712 713 // Indexed form. 714 } else { 715 // Get the RR opcode corresponding to the RI one. FIXME: It would be 716 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 717 // is hard to get at. 718 switch (Opc) { 719 default: llvm_unreachable("Unexpected opcode!"); 720 case PPC::STB: Opc = PPC::STBX; break; 721 case PPC::STH : Opc = PPC::STHX; break; 722 case PPC::STW : Opc = PPC::STWX; break; 723 case PPC::STB8: Opc = PPC::STBX8; break; 724 case PPC::STH8: Opc = PPC::STHX8; break; 725 case PPC::STW8: Opc = PPC::STWX8; break; 726 case PPC::STD: Opc = PPC::STDX; break; 727 case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break; 728 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break; 729 case PPC::EVSTDD: Opc = PPC::EVSTDDX; break; 730 case PPC::SPESTW: Opc = PPC::SPESTWX; break; 731 } 732 733 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)) 734 .addReg(SrcReg); 735 736 // If we have an index register defined we use it in the store inst, 737 // otherwise we use X0 as base as it makes the vector instructions to 738 // use zero in the computation of the effective address regardless the 739 // content of the register. 740 if (IndexReg) 741 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 742 else 743 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 744 } 745 746 return true; 747 } 748 749 // Attempt to fast-select a store instruction. 750 bool PPCFastISel::SelectStore(const Instruction *I) { 751 Value *Op0 = I->getOperand(0); 752 unsigned SrcReg = 0; 753 754 // FIXME: No atomics loads are supported. 755 if (cast<StoreInst>(I)->isAtomic()) 756 return false; 757 758 // Verify we have a legal type before going any further. 759 MVT VT; 760 if (!isLoadTypeLegal(Op0->getType(), VT)) 761 return false; 762 763 // Get the value to be stored into a register. 764 SrcReg = getRegForValue(Op0); 765 if (SrcReg == 0) 766 return false; 767 768 // See if we can handle this address. 769 Address Addr; 770 if (!PPCComputeAddress(I->getOperand(1), Addr)) 771 return false; 772 773 if (!PPCEmitStore(VT, SrcReg, Addr)) 774 return false; 775 776 return true; 777 } 778 779 // Attempt to fast-select a branch instruction. 780 bool PPCFastISel::SelectBranch(const Instruction *I) { 781 const BranchInst *BI = cast<BranchInst>(I); 782 MachineBasicBlock *BrBB = FuncInfo.MBB; 783 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 784 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 785 786 // For now, just try the simplest case where it's fed by a compare. 787 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 788 if (isValueAvailable(CI)) { 789 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate()); 790 if (!OptPPCPred) 791 return false; 792 793 PPC::Predicate PPCPred = OptPPCPred.getValue(); 794 795 // Take advantage of fall-through opportunities. 796 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 797 std::swap(TBB, FBB); 798 PPCPred = PPC::InvertPredicate(PPCPred); 799 } 800 801 unsigned CondReg = createResultReg(&PPC::CRRCRegClass); 802 803 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 804 CondReg, PPCPred)) 805 return false; 806 807 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC)) 808 .addImm(PPCSubTarget->hasSPE() ? PPC::PRED_SPE : PPCPred) 809 .addReg(CondReg).addMBB(TBB); 810 finishCondBranch(BI->getParent(), TBB, FBB); 811 return true; 812 } 813 } else if (const ConstantInt *CI = 814 dyn_cast<ConstantInt>(BI->getCondition())) { 815 uint64_t Imm = CI->getZExtValue(); 816 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 817 fastEmitBranch(Target, DbgLoc); 818 return true; 819 } 820 821 // FIXME: ARM looks for a case where the block containing the compare 822 // has been split from the block containing the branch. If this happens, 823 // there is a vreg available containing the result of the compare. I'm 824 // not sure we can do much, as we've lost the predicate information with 825 // the compare instruction -- we have a 4-bit CR but don't know which bit 826 // to test here. 827 return false; 828 } 829 830 // Attempt to emit a compare of the two source values. Signed and unsigned 831 // comparisons are supported. Return false if we can't handle it. 832 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, 833 bool IsZExt, unsigned DestReg, 834 const PPC::Predicate Pred) { 835 Type *Ty = SrcValue1->getType(); 836 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 837 if (!SrcEVT.isSimple()) 838 return false; 839 MVT SrcVT = SrcEVT.getSimpleVT(); 840 841 if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits()) 842 return false; 843 844 // See if operand 2 is an immediate encodeable in the compare. 845 // FIXME: Operands are not in canonical order at -O0, so an immediate 846 // operand in position 1 is a lost opportunity for now. We are 847 // similar to ARM in this regard. 848 long Imm = 0; 849 bool UseImm = false; 850 const bool HasSPE = PPCSubTarget->hasSPE(); 851 852 // Only 16-bit integer constants can be represented in compares for 853 // PowerPC. Others will be materialized into a register. 854 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) { 855 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || 856 SrcVT == MVT::i8 || SrcVT == MVT::i1) { 857 const APInt &CIVal = ConstInt->getValue(); 858 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue(); 859 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) 860 UseImm = true; 861 } 862 } 863 864 unsigned CmpOpc; 865 bool NeedsExt = false; 866 switch (SrcVT.SimpleTy) { 867 default: return false; 868 case MVT::f32: 869 if (HasSPE) { 870 switch (Pred) { 871 default: return false; 872 case PPC::PRED_EQ: 873 CmpOpc = PPC::EFSCMPEQ; 874 break; 875 case PPC::PRED_LT: 876 CmpOpc = PPC::EFSCMPLT; 877 break; 878 case PPC::PRED_GT: 879 CmpOpc = PPC::EFSCMPGT; 880 break; 881 } 882 } else 883 CmpOpc = PPC::FCMPUS; 884 break; 885 case MVT::f64: 886 if (HasSPE) { 887 switch (Pred) { 888 default: return false; 889 case PPC::PRED_EQ: 890 CmpOpc = PPC::EFDCMPEQ; 891 break; 892 case PPC::PRED_LT: 893 CmpOpc = PPC::EFDCMPLT; 894 break; 895 case PPC::PRED_GT: 896 CmpOpc = PPC::EFDCMPGT; 897 break; 898 } 899 } else 900 CmpOpc = PPC::FCMPUD; 901 break; 902 case MVT::i1: 903 case MVT::i8: 904 case MVT::i16: 905 NeedsExt = true; 906 // Intentional fall-through. 907 case MVT::i32: 908 if (!UseImm) 909 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; 910 else 911 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; 912 break; 913 case MVT::i64: 914 if (!UseImm) 915 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; 916 else 917 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; 918 break; 919 } 920 921 unsigned SrcReg1 = getRegForValue(SrcValue1); 922 if (SrcReg1 == 0) 923 return false; 924 925 unsigned SrcReg2 = 0; 926 if (!UseImm) { 927 SrcReg2 = getRegForValue(SrcValue2); 928 if (SrcReg2 == 0) 929 return false; 930 } 931 932 if (NeedsExt) { 933 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 934 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) 935 return false; 936 SrcReg1 = ExtReg; 937 938 if (!UseImm) { 939 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass); 940 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) 941 return false; 942 SrcReg2 = ExtReg; 943 } 944 } 945 946 if (!UseImm) 947 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 948 .addReg(SrcReg1).addReg(SrcReg2); 949 else 950 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg) 951 .addReg(SrcReg1).addImm(Imm); 952 953 return true; 954 } 955 956 // Attempt to fast-select a floating-point extend instruction. 957 bool PPCFastISel::SelectFPExt(const Instruction *I) { 958 Value *Src = I->getOperand(0); 959 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 960 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 961 962 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 963 return false; 964 965 unsigned SrcReg = getRegForValue(Src); 966 if (!SrcReg) 967 return false; 968 969 // No code is generated for a FP extend. 970 updateValueMap(I, SrcReg); 971 return true; 972 } 973 974 // Attempt to fast-select a floating-point truncate instruction. 975 bool PPCFastISel::SelectFPTrunc(const Instruction *I) { 976 Value *Src = I->getOperand(0); 977 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 978 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 979 980 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 981 return false; 982 983 unsigned SrcReg = getRegForValue(Src); 984 if (!SrcReg) 985 return false; 986 987 // Round the result to single precision. 988 unsigned DestReg; 989 990 if (PPCSubTarget->hasSPE()) { 991 DestReg = createResultReg(&PPC::SPE4RCRegClass); 992 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 993 TII.get(PPC::EFSCFD), DestReg) 994 .addReg(SrcReg); 995 } else { 996 DestReg = createResultReg(&PPC::F4RCRegClass); 997 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 998 TII.get(PPC::FRSP), DestReg) 999 .addReg(SrcReg); 1000 } 1001 1002 updateValueMap(I, DestReg); 1003 return true; 1004 } 1005 1006 // Move an i32 or i64 value in a GPR to an f64 value in an FPR. 1007 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1008 // those should be used instead of moving via a stack slot when the 1009 // subtarget permits. 1010 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte 1011 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte 1012 // case to 8 bytes which produces tighter code but wastes stack space. 1013 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg, 1014 bool IsSigned) { 1015 1016 // If necessary, extend 32-bit int to 64-bit. 1017 if (SrcVT == MVT::i32) { 1018 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 1019 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned)) 1020 return 0; 1021 SrcReg = TmpReg; 1022 } 1023 1024 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1025 Address Addr; 1026 Addr.BaseType = Address::FrameIndexBase; 1027 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 1028 1029 // Store the value from the GPR. 1030 if (!PPCEmitStore(MVT::i64, SrcReg, Addr)) 1031 return 0; 1032 1033 // Load the integer value into an FPR. The kind of load used depends 1034 // on a number of conditions. 1035 unsigned LoadOpc = PPC::LFD; 1036 1037 if (SrcVT == MVT::i32) { 1038 if (!IsSigned) { 1039 LoadOpc = PPC::LFIWZX; 1040 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 1041 } else if (PPCSubTarget->hasLFIWAX()) { 1042 LoadOpc = PPC::LFIWAX; 1043 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 1044 } 1045 } 1046 1047 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1048 unsigned ResultReg = 0; 1049 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc)) 1050 return 0; 1051 1052 return ResultReg; 1053 } 1054 1055 // Attempt to fast-select an integer-to-floating-point conversion. 1056 // FIXME: Once fast-isel has better support for VSX, conversions using 1057 // direct moves should be implemented. 1058 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { 1059 MVT DstVT; 1060 Type *DstTy = I->getType(); 1061 if (!isTypeLegal(DstTy, DstVT)) 1062 return false; 1063 1064 if (DstVT != MVT::f32 && DstVT != MVT::f64) 1065 return false; 1066 1067 Value *Src = I->getOperand(0); 1068 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 1069 if (!SrcEVT.isSimple()) 1070 return false; 1071 1072 MVT SrcVT = SrcEVT.getSimpleVT(); 1073 1074 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && 1075 SrcVT != MVT::i32 && SrcVT != MVT::i64) 1076 return false; 1077 1078 unsigned SrcReg = getRegForValue(Src); 1079 if (SrcReg == 0) 1080 return false; 1081 1082 // Shortcut for SPE. Doesn't need to store/load, since it's all in the GPRs 1083 if (PPCSubTarget->hasSPE()) { 1084 unsigned Opc; 1085 if (DstVT == MVT::f32) 1086 Opc = IsSigned ? PPC::EFSCFSI : PPC::EFSCFUI; 1087 else 1088 Opc = IsSigned ? PPC::EFDCFSI : PPC::EFDCFUI; 1089 1090 unsigned DestReg = createResultReg(&PPC::SPERCRegClass); 1091 // Generate the convert. 1092 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1093 .addReg(SrcReg); 1094 updateValueMap(I, DestReg); 1095 return true; 1096 } 1097 1098 // We can only lower an unsigned convert if we have the newer 1099 // floating-point conversion operations. 1100 if (!IsSigned && !PPCSubTarget->hasFPCVT()) 1101 return false; 1102 1103 // FIXME: For now we require the newer floating-point conversion operations 1104 // (which are present only on P7 and A2 server models) when converting 1105 // to single-precision float. Otherwise we have to generate a lot of 1106 // fiddly code to avoid double rounding. If necessary, the fiddly code 1107 // can be found in PPCTargetLowering::LowerINT_TO_FP(). 1108 if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT()) 1109 return false; 1110 1111 // Extend the input if necessary. 1112 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { 1113 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass); 1114 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned)) 1115 return false; 1116 SrcVT = MVT::i64; 1117 SrcReg = TmpReg; 1118 } 1119 1120 // Move the integer value to an FPR. 1121 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); 1122 if (FPReg == 0) 1123 return false; 1124 1125 // Determine the opcode for the conversion. 1126 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1127 unsigned DestReg = createResultReg(RC); 1128 unsigned Opc; 1129 1130 if (DstVT == MVT::f32) 1131 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; 1132 else 1133 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; 1134 1135 // Generate the convert. 1136 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1137 .addReg(FPReg); 1138 1139 updateValueMap(I, DestReg); 1140 return true; 1141 } 1142 1143 // Move the floating-point value in SrcReg into an integer destination 1144 // register, and return the register (or zero if we can't handle it). 1145 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1146 // those should be used instead of moving via a stack slot when the 1147 // subtarget permits. 1148 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, 1149 unsigned SrcReg, bool IsSigned) { 1150 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1151 // Note that if have STFIWX available, we could use a 4-byte stack 1152 // slot for i32, but this being fast-isel we'll just go with the 1153 // easiest code gen possible. 1154 Address Addr; 1155 Addr.BaseType = Address::FrameIndexBase; 1156 Addr.Base.FI = MFI.CreateStackObject(8, 8, false); 1157 1158 // Store the value from the FPR. 1159 if (!PPCEmitStore(MVT::f64, SrcReg, Addr)) 1160 return 0; 1161 1162 // Reload it into a GPR. If we want an i32 on big endian, modify the 1163 // address to have a 4-byte offset so we load from the right place. 1164 if (VT == MVT::i32) 1165 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4; 1166 1167 // Look at the currently assigned register for this instruction 1168 // to determine the required register class. 1169 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1170 const TargetRegisterClass *RC = 1171 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 1172 1173 unsigned ResultReg = 0; 1174 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned)) 1175 return 0; 1176 1177 return ResultReg; 1178 } 1179 1180 // Attempt to fast-select a floating-point-to-integer conversion. 1181 // FIXME: Once fast-isel has better support for VSX, conversions using 1182 // direct moves should be implemented. 1183 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { 1184 MVT DstVT, SrcVT; 1185 Type *DstTy = I->getType(); 1186 if (!isTypeLegal(DstTy, DstVT)) 1187 return false; 1188 1189 if (DstVT != MVT::i32 && DstVT != MVT::i64) 1190 return false; 1191 1192 // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG. 1193 if (DstVT == MVT::i64 && !IsSigned && 1194 !PPCSubTarget->hasFPCVT() && !PPCSubTarget->hasSPE()) 1195 return false; 1196 1197 Value *Src = I->getOperand(0); 1198 Type *SrcTy = Src->getType(); 1199 if (!isTypeLegal(SrcTy, SrcVT)) 1200 return false; 1201 1202 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1203 return false; 1204 1205 unsigned SrcReg = getRegForValue(Src); 1206 if (SrcReg == 0) 1207 return false; 1208 1209 // Convert f32 to f64 if necessary. This is just a meaningless copy 1210 // to get the register class right. 1211 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg); 1212 if (InRC == &PPC::F4RCRegClass) { 1213 unsigned TmpReg = createResultReg(&PPC::F8RCRegClass); 1214 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1215 TII.get(TargetOpcode::COPY), TmpReg) 1216 .addReg(SrcReg); 1217 SrcReg = TmpReg; 1218 } 1219 1220 // Determine the opcode for the conversion, which takes place 1221 // entirely within FPRs. 1222 unsigned DestReg; 1223 unsigned Opc; 1224 1225 if (PPCSubTarget->hasSPE()) { 1226 DestReg = createResultReg(&PPC::GPRCRegClass); 1227 if (IsSigned) 1228 Opc = InRC == &PPC::SPE4RCRegClass ? PPC::EFSCTSIZ : PPC::EFDCTSIZ; 1229 else 1230 Opc = InRC == &PPC::SPE4RCRegClass ? PPC::EFSCTUIZ : PPC::EFDCTUIZ; 1231 } else { 1232 DestReg = createResultReg(&PPC::F8RCRegClass); 1233 if (DstVT == MVT::i32) 1234 if (IsSigned) 1235 Opc = PPC::FCTIWZ; 1236 else 1237 Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; 1238 else 1239 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; 1240 } 1241 1242 // Generate the convert. 1243 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1244 .addReg(SrcReg); 1245 1246 // Now move the integer value from a float register to an integer register. 1247 unsigned IntReg = PPCSubTarget->hasSPE() ? DestReg : 1248 PPCMoveToIntReg(I, DstVT, DestReg, IsSigned); 1249 1250 if (IntReg == 0) 1251 return false; 1252 1253 updateValueMap(I, IntReg); 1254 return true; 1255 } 1256 1257 // Attempt to fast-select a binary integer operation that isn't already 1258 // handled automatically. 1259 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1260 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1261 1262 // We can get here in the case when we have a binary operation on a non-legal 1263 // type and the target independent selector doesn't know how to handle it. 1264 if (DestVT != MVT::i16 && DestVT != MVT::i8) 1265 return false; 1266 1267 // Look at the currently assigned register for this instruction 1268 // to determine the required register class. If there is no register, 1269 // make a conservative choice (don't assign R0). 1270 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1271 const TargetRegisterClass *RC = 1272 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1273 &PPC::GPRC_and_GPRC_NOR0RegClass); 1274 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1275 1276 unsigned Opc; 1277 switch (ISDOpcode) { 1278 default: return false; 1279 case ISD::ADD: 1280 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; 1281 break; 1282 case ISD::OR: 1283 Opc = IsGPRC ? PPC::OR : PPC::OR8; 1284 break; 1285 case ISD::SUB: 1286 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; 1287 break; 1288 } 1289 1290 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); 1291 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1292 if (SrcReg1 == 0) return false; 1293 1294 // Handle case of small immediate operand. 1295 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) { 1296 const APInt &CIVal = ConstInt->getValue(); 1297 int Imm = (int)CIVal.getSExtValue(); 1298 bool UseImm = true; 1299 if (isInt<16>(Imm)) { 1300 switch (Opc) { 1301 default: 1302 llvm_unreachable("Missing case!"); 1303 case PPC::ADD4: 1304 Opc = PPC::ADDI; 1305 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1306 break; 1307 case PPC::ADD8: 1308 Opc = PPC::ADDI8; 1309 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1310 break; 1311 case PPC::OR: 1312 Opc = PPC::ORI; 1313 break; 1314 case PPC::OR8: 1315 Opc = PPC::ORI8; 1316 break; 1317 case PPC::SUBF: 1318 if (Imm == -32768) 1319 UseImm = false; 1320 else { 1321 Opc = PPC::ADDI; 1322 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1323 Imm = -Imm; 1324 } 1325 break; 1326 case PPC::SUBF8: 1327 if (Imm == -32768) 1328 UseImm = false; 1329 else { 1330 Opc = PPC::ADDI8; 1331 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1332 Imm = -Imm; 1333 } 1334 break; 1335 } 1336 1337 if (UseImm) { 1338 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 1339 ResultReg) 1340 .addReg(SrcReg1) 1341 .addImm(Imm); 1342 updateValueMap(I, ResultReg); 1343 return true; 1344 } 1345 } 1346 } 1347 1348 // Reg-reg case. 1349 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1350 if (SrcReg2 == 0) return false; 1351 1352 // Reverse operands for subtract-from. 1353 if (ISDOpcode == ISD::SUB) 1354 std::swap(SrcReg1, SrcReg2); 1355 1356 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 1357 .addReg(SrcReg1).addReg(SrcReg2); 1358 updateValueMap(I, ResultReg); 1359 return true; 1360 } 1361 1362 // Handle arguments to a call that we're attempting to fast-select. 1363 // Return false if the arguments are too complex for us at the moment. 1364 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args, 1365 SmallVectorImpl<unsigned> &ArgRegs, 1366 SmallVectorImpl<MVT> &ArgVTs, 1367 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1368 SmallVectorImpl<unsigned> &RegArgs, 1369 CallingConv::ID CC, 1370 unsigned &NumBytes, 1371 bool IsVarArg) { 1372 SmallVector<CCValAssign, 16> ArgLocs; 1373 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context); 1374 1375 // Reserve space for the linkage area on the stack. 1376 unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize(); 1377 CCInfo.AllocateStack(LinkageSize, 8); 1378 1379 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS); 1380 1381 // Bail out if we can't handle any of the arguments. 1382 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1383 CCValAssign &VA = ArgLocs[I]; 1384 MVT ArgVT = ArgVTs[VA.getValNo()]; 1385 1386 // Skip vector arguments for now, as well as long double and 1387 // uint128_t, and anything that isn't passed in a register. 1388 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 || 1389 !VA.isRegLoc() || VA.needsCustom()) 1390 return false; 1391 1392 // Skip bit-converted arguments for now. 1393 if (VA.getLocInfo() == CCValAssign::BCvt) 1394 return false; 1395 } 1396 1397 // Get a count of how many bytes are to be pushed onto the stack. 1398 NumBytes = CCInfo.getNextStackOffset(); 1399 1400 // The prolog code of the callee may store up to 8 GPR argument registers to 1401 // the stack, allowing va_start to index over them in memory if its varargs. 1402 // Because we cannot tell if this is needed on the caller side, we have to 1403 // conservatively assume that it is needed. As such, make sure we have at 1404 // least enough stack space for the caller to store the 8 GPRs. 1405 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 1406 NumBytes = std::max(NumBytes, LinkageSize + 64); 1407 1408 // Issue CALLSEQ_START. 1409 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1410 TII.get(TII.getCallFrameSetupOpcode())) 1411 .addImm(NumBytes).addImm(0); 1412 1413 // Prepare to assign register arguments. Every argument uses up a 1414 // GPR protocol register even if it's passed in a floating-point 1415 // register (unless we're using the fast calling convention). 1416 unsigned NextGPR = PPC::X3; 1417 unsigned NextFPR = PPC::F1; 1418 1419 // Process arguments. 1420 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1421 CCValAssign &VA = ArgLocs[I]; 1422 unsigned Arg = ArgRegs[VA.getValNo()]; 1423 MVT ArgVT = ArgVTs[VA.getValNo()]; 1424 1425 // Handle argument promotion and bitcasts. 1426 switch (VA.getLocInfo()) { 1427 default: 1428 llvm_unreachable("Unknown loc info!"); 1429 case CCValAssign::Full: 1430 break; 1431 case CCValAssign::SExt: { 1432 MVT DestVT = VA.getLocVT(); 1433 const TargetRegisterClass *RC = 1434 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1435 unsigned TmpReg = createResultReg(RC); 1436 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false)) 1437 llvm_unreachable("Failed to emit a sext!"); 1438 ArgVT = DestVT; 1439 Arg = TmpReg; 1440 break; 1441 } 1442 case CCValAssign::AExt: 1443 case CCValAssign::ZExt: { 1444 MVT DestVT = VA.getLocVT(); 1445 const TargetRegisterClass *RC = 1446 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1447 unsigned TmpReg = createResultReg(RC); 1448 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true)) 1449 llvm_unreachable("Failed to emit a zext!"); 1450 ArgVT = DestVT; 1451 Arg = TmpReg; 1452 break; 1453 } 1454 case CCValAssign::BCvt: { 1455 // FIXME: Not yet handled. 1456 llvm_unreachable("Should have bailed before getting here!"); 1457 break; 1458 } 1459 } 1460 1461 // Copy this argument to the appropriate register. 1462 unsigned ArgReg; 1463 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { 1464 ArgReg = NextFPR++; 1465 if (CC != CallingConv::Fast) 1466 ++NextGPR; 1467 } else 1468 ArgReg = NextGPR++; 1469 1470 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1471 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg); 1472 RegArgs.push_back(ArgReg); 1473 } 1474 1475 return true; 1476 } 1477 1478 // For a call that we've determined we can fast-select, finish the 1479 // call sequence and generate a copy to obtain the return value (if any). 1480 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) { 1481 CallingConv::ID CC = CLI.CallConv; 1482 1483 // Issue CallSEQ_END. 1484 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1485 TII.get(TII.getCallFrameDestroyOpcode())) 1486 .addImm(NumBytes).addImm(0); 1487 1488 // Next, generate a copy to obtain the return value. 1489 // FIXME: No multi-register return values yet, though I don't foresee 1490 // any real difficulties there. 1491 if (RetVT != MVT::isVoid) { 1492 SmallVector<CCValAssign, 16> RVLocs; 1493 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 1494 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1495 CCValAssign &VA = RVLocs[0]; 1496 assert(RVLocs.size() == 1 && "No support for multi-reg return values!"); 1497 assert(VA.isRegLoc() && "Can only return in registers!"); 1498 1499 MVT DestVT = VA.getValVT(); 1500 MVT CopyVT = DestVT; 1501 1502 // Ints smaller than a register still arrive in a full 64-bit 1503 // register, so make sure we recognize this. 1504 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) 1505 CopyVT = MVT::i64; 1506 1507 unsigned SourcePhysReg = VA.getLocReg(); 1508 unsigned ResultReg = 0; 1509 1510 if (RetVT == CopyVT) { 1511 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT); 1512 ResultReg = createResultReg(CpyRC); 1513 1514 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1515 TII.get(TargetOpcode::COPY), ResultReg) 1516 .addReg(SourcePhysReg); 1517 1518 // If necessary, round the floating result to single precision. 1519 } else if (CopyVT == MVT::f64) { 1520 ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1521 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), 1522 ResultReg).addReg(SourcePhysReg); 1523 1524 // If only the low half of a general register is needed, generate 1525 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be 1526 // used along the fast-isel path (not lowered), and downstream logic 1527 // also doesn't like a direct subreg copy on a physical reg.) 1528 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { 1529 ResultReg = createResultReg(&PPC::GPRCRegClass); 1530 // Convert physical register from G8RC to GPRC. 1531 SourcePhysReg -= PPC::X0 - PPC::R0; 1532 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1533 TII.get(TargetOpcode::COPY), ResultReg) 1534 .addReg(SourcePhysReg); 1535 } 1536 1537 assert(ResultReg && "ResultReg unset!"); 1538 CLI.InRegs.push_back(SourcePhysReg); 1539 CLI.ResultReg = ResultReg; 1540 CLI.NumResultRegs = 1; 1541 } 1542 1543 return true; 1544 } 1545 1546 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) { 1547 CallingConv::ID CC = CLI.CallConv; 1548 bool IsTailCall = CLI.IsTailCall; 1549 bool IsVarArg = CLI.IsVarArg; 1550 const Value *Callee = CLI.Callee; 1551 const MCSymbol *Symbol = CLI.Symbol; 1552 1553 if (!Callee && !Symbol) 1554 return false; 1555 1556 // Allow SelectionDAG isel to handle tail calls. 1557 if (IsTailCall) 1558 return false; 1559 1560 // Let SDISel handle vararg functions. 1561 if (IsVarArg) 1562 return false; 1563 1564 // Handle simple calls for now, with legal return types and 1565 // those that can be extended. 1566 Type *RetTy = CLI.RetTy; 1567 MVT RetVT; 1568 if (RetTy->isVoidTy()) 1569 RetVT = MVT::isVoid; 1570 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 1571 RetVT != MVT::i8) 1572 return false; 1573 else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits()) 1574 // We can't handle boolean returns when CR bits are in use. 1575 return false; 1576 1577 // FIXME: No multi-register return values yet. 1578 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && 1579 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && 1580 RetVT != MVT::f64) { 1581 SmallVector<CCValAssign, 16> RVLocs; 1582 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context); 1583 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1584 if (RVLocs.size() > 1) 1585 return false; 1586 } 1587 1588 // Bail early if more than 8 arguments, as we only currently 1589 // handle arguments passed in registers. 1590 unsigned NumArgs = CLI.OutVals.size(); 1591 if (NumArgs > 8) 1592 return false; 1593 1594 // Set up the argument vectors. 1595 SmallVector<Value*, 8> Args; 1596 SmallVector<unsigned, 8> ArgRegs; 1597 SmallVector<MVT, 8> ArgVTs; 1598 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1599 1600 Args.reserve(NumArgs); 1601 ArgRegs.reserve(NumArgs); 1602 ArgVTs.reserve(NumArgs); 1603 ArgFlags.reserve(NumArgs); 1604 1605 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) { 1606 // Only handle easy calls for now. It would be reasonably easy 1607 // to handle <= 8-byte structures passed ByVal in registers, but we 1608 // have to ensure they are right-justified in the register. 1609 ISD::ArgFlagsTy Flags = CLI.OutFlags[i]; 1610 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal()) 1611 return false; 1612 1613 Value *ArgValue = CLI.OutVals[i]; 1614 Type *ArgTy = ArgValue->getType(); 1615 MVT ArgVT; 1616 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) 1617 return false; 1618 1619 if (ArgVT.isVector()) 1620 return false; 1621 1622 unsigned Arg = getRegForValue(ArgValue); 1623 if (Arg == 0) 1624 return false; 1625 1626 Args.push_back(ArgValue); 1627 ArgRegs.push_back(Arg); 1628 ArgVTs.push_back(ArgVT); 1629 ArgFlags.push_back(Flags); 1630 } 1631 1632 // Process the arguments. 1633 SmallVector<unsigned, 8> RegArgs; 1634 unsigned NumBytes; 1635 1636 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 1637 RegArgs, CC, NumBytes, IsVarArg)) 1638 return false; 1639 1640 MachineInstrBuilder MIB; 1641 // FIXME: No handling for function pointers yet. This requires 1642 // implementing the function descriptor (OPD) setup. 1643 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 1644 if (!GV) { 1645 // patchpoints are a special case; they always dispatch to a pointer value. 1646 // However, we don't actually want to generate the indirect call sequence 1647 // here (that will be generated, as necessary, during asm printing), and 1648 // the call we generate here will be erased by FastISel::selectPatchpoint, 1649 // so don't try very hard... 1650 if (CLI.IsPatchPoint) 1651 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP)); 1652 else 1653 return false; 1654 } else { 1655 // Build direct call with NOP for TOC restore. 1656 // FIXME: We can and should optimize away the NOP for local calls. 1657 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1658 TII.get(PPC::BL8_NOP)); 1659 // Add callee. 1660 MIB.addGlobalAddress(GV); 1661 } 1662 1663 // Add implicit physical register uses to the call. 1664 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II) 1665 MIB.addReg(RegArgs[II], RegState::Implicit); 1666 1667 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live 1668 // into the call. 1669 PPCFuncInfo->setUsesTOCBasePtr(); 1670 MIB.addReg(PPC::X2, RegState::Implicit); 1671 1672 // Add a register mask with the call-preserved registers. Proper 1673 // defs for return values will be added by setPhysRegsDeadExcept(). 1674 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 1675 1676 CLI.Call = MIB; 1677 1678 // Finish off the call including any return values. 1679 return finishCall(RetVT, CLI, NumBytes); 1680 } 1681 1682 // Attempt to fast-select a return instruction. 1683 bool PPCFastISel::SelectRet(const Instruction *I) { 1684 1685 if (!FuncInfo.CanLowerReturn) 1686 return false; 1687 1688 if (TLI.supportSplitCSR(FuncInfo.MF)) 1689 return false; 1690 1691 const ReturnInst *Ret = cast<ReturnInst>(I); 1692 const Function &F = *I->getParent()->getParent(); 1693 1694 // Build a list of return value registers. 1695 SmallVector<unsigned, 4> RetRegs; 1696 CallingConv::ID CC = F.getCallingConv(); 1697 1698 if (Ret->getNumOperands() > 0) { 1699 SmallVector<ISD::OutputArg, 4> Outs; 1700 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1701 1702 // Analyze operands of the call, assigning locations to each operand. 1703 SmallVector<CCValAssign, 16> ValLocs; 1704 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context); 1705 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); 1706 const Value *RV = Ret->getOperand(0); 1707 1708 // FIXME: Only one output register for now. 1709 if (ValLocs.size() > 1) 1710 return false; 1711 1712 // Special case for returning a constant integer of any size - materialize 1713 // the constant as an i64 and copy it to the return register. 1714 if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) { 1715 CCValAssign &VA = ValLocs[0]; 1716 1717 unsigned RetReg = VA.getLocReg(); 1718 // We still need to worry about properly extending the sign. For example, 1719 // we could have only a single bit or a constant that needs zero 1720 // extension rather than sign extension. Make sure we pass the return 1721 // value extension property to integer materialization. 1722 unsigned SrcReg = 1723 PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt); 1724 1725 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1726 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg); 1727 1728 RetRegs.push_back(RetReg); 1729 1730 } else { 1731 unsigned Reg = getRegForValue(RV); 1732 1733 if (Reg == 0) 1734 return false; 1735 1736 // Copy the result values into the output registers. 1737 for (unsigned i = 0; i < ValLocs.size(); ++i) { 1738 1739 CCValAssign &VA = ValLocs[i]; 1740 assert(VA.isRegLoc() && "Can only return in registers!"); 1741 RetRegs.push_back(VA.getLocReg()); 1742 unsigned SrcReg = Reg + VA.getValNo(); 1743 1744 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 1745 if (!RVEVT.isSimple()) 1746 return false; 1747 MVT RVVT = RVEVT.getSimpleVT(); 1748 MVT DestVT = VA.getLocVT(); 1749 1750 if (RVVT != DestVT && RVVT != MVT::i8 && 1751 RVVT != MVT::i16 && RVVT != MVT::i32) 1752 return false; 1753 1754 if (RVVT != DestVT) { 1755 switch (VA.getLocInfo()) { 1756 default: 1757 llvm_unreachable("Unknown loc info!"); 1758 case CCValAssign::Full: 1759 llvm_unreachable("Full value assign but types don't match?"); 1760 case CCValAssign::AExt: 1761 case CCValAssign::ZExt: { 1762 const TargetRegisterClass *RC = 1763 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1764 unsigned TmpReg = createResultReg(RC); 1765 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) 1766 return false; 1767 SrcReg = TmpReg; 1768 break; 1769 } 1770 case CCValAssign::SExt: { 1771 const TargetRegisterClass *RC = 1772 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1773 unsigned TmpReg = createResultReg(RC); 1774 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) 1775 return false; 1776 SrcReg = TmpReg; 1777 break; 1778 } 1779 } 1780 } 1781 1782 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1783 TII.get(TargetOpcode::COPY), RetRegs[i]) 1784 .addReg(SrcReg); 1785 } 1786 } 1787 } 1788 1789 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1790 TII.get(PPC::BLR8)); 1791 1792 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1793 MIB.addReg(RetRegs[i], RegState::Implicit); 1794 1795 return true; 1796 } 1797 1798 // Attempt to emit an integer extend of SrcReg into DestReg. Both 1799 // signed and zero extensions are supported. Return false if we 1800 // can't handle it. 1801 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1802 unsigned DestReg, bool IsZExt) { 1803 if (DestVT != MVT::i32 && DestVT != MVT::i64) 1804 return false; 1805 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) 1806 return false; 1807 1808 // Signed extensions use EXTSB, EXTSH, EXTSW. 1809 if (!IsZExt) { 1810 unsigned Opc; 1811 if (SrcVT == MVT::i8) 1812 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; 1813 else if (SrcVT == MVT::i16) 1814 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; 1815 else { 1816 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); 1817 Opc = PPC::EXTSW_32_64; 1818 } 1819 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 1820 .addReg(SrcReg); 1821 1822 // Unsigned 32-bit extensions use RLWINM. 1823 } else if (DestVT == MVT::i32) { 1824 unsigned MB; 1825 if (SrcVT == MVT::i8) 1826 MB = 24; 1827 else { 1828 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); 1829 MB = 16; 1830 } 1831 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM), 1832 DestReg) 1833 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); 1834 1835 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). 1836 } else { 1837 unsigned MB; 1838 if (SrcVT == MVT::i8) 1839 MB = 56; 1840 else if (SrcVT == MVT::i16) 1841 MB = 48; 1842 else 1843 MB = 32; 1844 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1845 TII.get(PPC::RLDICL_32_64), DestReg) 1846 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); 1847 } 1848 1849 return true; 1850 } 1851 1852 // Attempt to fast-select an indirect branch instruction. 1853 bool PPCFastISel::SelectIndirectBr(const Instruction *I) { 1854 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1855 if (AddrReg == 0) 1856 return false; 1857 1858 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8)) 1859 .addReg(AddrReg); 1860 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8)); 1861 1862 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1863 for (const BasicBlock *SuccBB : IB->successors()) 1864 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); 1865 1866 return true; 1867 } 1868 1869 // Attempt to fast-select an integer truncate instruction. 1870 bool PPCFastISel::SelectTrunc(const Instruction *I) { 1871 Value *Src = I->getOperand(0); 1872 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 1873 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1874 1875 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) 1876 return false; 1877 1878 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 1879 return false; 1880 1881 unsigned SrcReg = getRegForValue(Src); 1882 if (!SrcReg) 1883 return false; 1884 1885 // The only interesting case is when we need to switch register classes. 1886 if (SrcVT == MVT::i64) { 1887 unsigned ResultReg = createResultReg(&PPC::GPRCRegClass); 1888 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1889 TII.get(TargetOpcode::COPY), 1890 ResultReg).addReg(SrcReg, 0, PPC::sub_32); 1891 SrcReg = ResultReg; 1892 } 1893 1894 updateValueMap(I, SrcReg); 1895 return true; 1896 } 1897 1898 // Attempt to fast-select an integer extend instruction. 1899 bool PPCFastISel::SelectIntExt(const Instruction *I) { 1900 Type *DestTy = I->getType(); 1901 Value *Src = I->getOperand(0); 1902 Type *SrcTy = Src->getType(); 1903 1904 bool IsZExt = isa<ZExtInst>(I); 1905 unsigned SrcReg = getRegForValue(Src); 1906 if (!SrcReg) return false; 1907 1908 EVT SrcEVT, DestEVT; 1909 SrcEVT = TLI.getValueType(DL, SrcTy, true); 1910 DestEVT = TLI.getValueType(DL, DestTy, true); 1911 if (!SrcEVT.isSimple()) 1912 return false; 1913 if (!DestEVT.isSimple()) 1914 return false; 1915 1916 MVT SrcVT = SrcEVT.getSimpleVT(); 1917 MVT DestVT = DestEVT.getSimpleVT(); 1918 1919 // If we know the register class needed for the result of this 1920 // instruction, use it. Otherwise pick the register class of the 1921 // correct size that does not contain X0/R0, since we don't know 1922 // whether downstream uses permit that assignment. 1923 unsigned AssignedReg = FuncInfo.ValueMap[I]; 1924 const TargetRegisterClass *RC = 1925 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1926 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 1927 &PPC::GPRC_and_GPRC_NOR0RegClass)); 1928 unsigned ResultReg = createResultReg(RC); 1929 1930 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) 1931 return false; 1932 1933 updateValueMap(I, ResultReg); 1934 return true; 1935 } 1936 1937 // Attempt to fast-select an instruction that wasn't handled by 1938 // the table-generated machinery. 1939 bool PPCFastISel::fastSelectInstruction(const Instruction *I) { 1940 1941 switch (I->getOpcode()) { 1942 case Instruction::Load: 1943 return SelectLoad(I); 1944 case Instruction::Store: 1945 return SelectStore(I); 1946 case Instruction::Br: 1947 return SelectBranch(I); 1948 case Instruction::IndirectBr: 1949 return SelectIndirectBr(I); 1950 case Instruction::FPExt: 1951 return SelectFPExt(I); 1952 case Instruction::FPTrunc: 1953 return SelectFPTrunc(I); 1954 case Instruction::SIToFP: 1955 return SelectIToFP(I, /*IsSigned*/ true); 1956 case Instruction::UIToFP: 1957 return SelectIToFP(I, /*IsSigned*/ false); 1958 case Instruction::FPToSI: 1959 return SelectFPToI(I, /*IsSigned*/ true); 1960 case Instruction::FPToUI: 1961 return SelectFPToI(I, /*IsSigned*/ false); 1962 case Instruction::Add: 1963 return SelectBinaryIntOp(I, ISD::ADD); 1964 case Instruction::Or: 1965 return SelectBinaryIntOp(I, ISD::OR); 1966 case Instruction::Sub: 1967 return SelectBinaryIntOp(I, ISD::SUB); 1968 case Instruction::Call: 1969 return selectCall(I); 1970 case Instruction::Ret: 1971 return SelectRet(I); 1972 case Instruction::Trunc: 1973 return SelectTrunc(I); 1974 case Instruction::ZExt: 1975 case Instruction::SExt: 1976 return SelectIntExt(I); 1977 // Here add other flavors of Instruction::XXX that automated 1978 // cases don't catch. For example, switches are terminators 1979 // that aren't yet handled. 1980 default: 1981 break; 1982 } 1983 return false; 1984 } 1985 1986 // Materialize a floating-point constant into a register, and return 1987 // the register number (or zero if we failed to handle it). 1988 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { 1989 // No plans to handle long double here. 1990 if (VT != MVT::f32 && VT != MVT::f64) 1991 return 0; 1992 1993 // All FP constants are loaded from the constant pool. 1994 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 1995 assert(Align > 0 && "Unexpectedly missing alignment information!"); 1996 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 1997 const bool HasSPE = PPCSubTarget->hasSPE(); 1998 const TargetRegisterClass *RC; 1999 if (HasSPE) 2000 RC = ((VT == MVT::f32) ? &PPC::SPE4RCRegClass : &PPC::SPERCRegClass); 2001 else 2002 RC = ((VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass); 2003 2004 unsigned DestReg = createResultReg(RC); 2005 CodeModel::Model CModel = TM.getCodeModel(); 2006 2007 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 2008 MachinePointerInfo::getConstantPool(*FuncInfo.MF), 2009 MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Align); 2010 2011 unsigned Opc; 2012 2013 if (HasSPE) 2014 Opc = ((VT == MVT::f32) ? PPC::SPELWZ : PPC::EVLDD); 2015 else 2016 Opc = ((VT == MVT::f32) ? PPC::LFS : PPC::LFD); 2017 2018 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2019 2020 PPCFuncInfo->setUsesTOCBasePtr(); 2021 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). 2022 if (CModel == CodeModel::Small) { 2023 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT), 2024 TmpReg) 2025 .addConstantPoolIndex(Idx).addReg(PPC::X2); 2026 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 2027 .addImm(0).addReg(TmpReg).addMemOperand(MMO); 2028 } else { 2029 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)). 2030 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 2031 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); 2032 // But for large code model, we must generate a LDtocL followed 2033 // by the LF[SD]. 2034 if (CModel == CodeModel::Large) { 2035 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2036 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 2037 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg); 2038 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 2039 .addImm(0) 2040 .addReg(TmpReg2); 2041 } else 2042 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 2043 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) 2044 .addReg(TmpReg) 2045 .addMemOperand(MMO); 2046 } 2047 2048 return DestReg; 2049 } 2050 2051 // Materialize the address of a global value into a register, and return 2052 // the register number (or zero if we failed to handle it). 2053 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { 2054 assert(VT == MVT::i64 && "Non-address!"); 2055 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; 2056 unsigned DestReg = createResultReg(RC); 2057 2058 // Global values may be plain old object addresses, TLS object 2059 // addresses, constant pool entries, or jump tables. How we generate 2060 // code for these may depend on small, medium, or large code model. 2061 CodeModel::Model CModel = TM.getCodeModel(); 2062 2063 // FIXME: Jump tables are not yet required because fast-isel doesn't 2064 // handle switches; if that changes, we need them as well. For now, 2065 // what follows assumes everything's a generic (or TLS) global address. 2066 2067 // FIXME: We don't yet handle the complexity of TLS. 2068 if (GV->isThreadLocal()) 2069 return 0; 2070 2071 PPCFuncInfo->setUsesTOCBasePtr(); 2072 // For small code model, generate a simple TOC load. 2073 if (CModel == CodeModel::Small) 2074 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc), 2075 DestReg) 2076 .addGlobalAddress(GV) 2077 .addReg(PPC::X2); 2078 else { 2079 // If the address is an externally defined symbol, a symbol with common 2080 // or externally available linkage, a non-local function address, or a 2081 // jump table address (not yet needed), or if we are generating code 2082 // for large code model, we generate: 2083 // LDtocL(GV, ADDIStocHA(%x2, GV)) 2084 // Otherwise we generate: 2085 // ADDItocL(ADDIStocHA(%x2, GV), GV) 2086 // Either way, start with the ADDIStocHA: 2087 unsigned HighPartReg = createResultReg(RC); 2088 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA), 2089 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); 2090 2091 unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV); 2092 if (GVFlags & PPCII::MO_NLP_FLAG) { 2093 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL), 2094 DestReg).addGlobalAddress(GV).addReg(HighPartReg); 2095 } else { 2096 // Otherwise generate the ADDItocL. 2097 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL), 2098 DestReg).addReg(HighPartReg).addGlobalAddress(GV); 2099 } 2100 } 2101 2102 return DestReg; 2103 } 2104 2105 // Materialize a 32-bit integer constant into a register, and return 2106 // the register number (or zero if we failed to handle it). 2107 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, 2108 const TargetRegisterClass *RC) { 2109 unsigned Lo = Imm & 0xFFFF; 2110 unsigned Hi = (Imm >> 16) & 0xFFFF; 2111 2112 unsigned ResultReg = createResultReg(RC); 2113 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 2114 2115 if (isInt<16>(Imm)) 2116 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2117 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) 2118 .addImm(Imm); 2119 else if (Lo) { 2120 // Both Lo and Hi have nonzero bits. 2121 unsigned TmpReg = createResultReg(RC); 2122 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2123 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) 2124 .addImm(Hi); 2125 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2126 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) 2127 .addReg(TmpReg).addImm(Lo); 2128 } else 2129 // Just Hi bits. 2130 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2131 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) 2132 .addImm(Hi); 2133 2134 return ResultReg; 2135 } 2136 2137 // Materialize a 64-bit integer constant into a register, and return 2138 // the register number (or zero if we failed to handle it). 2139 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, 2140 const TargetRegisterClass *RC) { 2141 unsigned Remainder = 0; 2142 unsigned Shift = 0; 2143 2144 // If the value doesn't fit in 32 bits, see if we can shift it 2145 // so that it fits in 32 bits. 2146 if (!isInt<32>(Imm)) { 2147 Shift = countTrailingZeros<uint64_t>(Imm); 2148 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 2149 2150 if (isInt<32>(ImmSh)) 2151 Imm = ImmSh; 2152 else { 2153 Remainder = Imm; 2154 Shift = 32; 2155 Imm >>= 32; 2156 } 2157 } 2158 2159 // Handle the high-order 32 bits (if shifted) or the whole 32 bits 2160 // (if not shifted). 2161 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); 2162 if (!Shift) 2163 return TmpReg1; 2164 2165 // If upper 32 bits were not zero, we've built them and need to shift 2166 // them into place. 2167 unsigned TmpReg2; 2168 if (Imm) { 2169 TmpReg2 = createResultReg(RC); 2170 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR), 2171 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); 2172 } else 2173 TmpReg2 = TmpReg1; 2174 2175 unsigned TmpReg3, Hi, Lo; 2176 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 2177 TmpReg3 = createResultReg(RC); 2178 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8), 2179 TmpReg3).addReg(TmpReg2).addImm(Hi); 2180 } else 2181 TmpReg3 = TmpReg2; 2182 2183 if ((Lo = Remainder & 0xFFFF)) { 2184 unsigned ResultReg = createResultReg(RC); 2185 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8), 2186 ResultReg).addReg(TmpReg3).addImm(Lo); 2187 return ResultReg; 2188 } 2189 2190 return TmpReg3; 2191 } 2192 2193 // Materialize an integer constant into a register, and return 2194 // the register number (or zero if we failed to handle it). 2195 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT, 2196 bool UseSExt) { 2197 // If we're using CR bit registers for i1 values, handle that as a special 2198 // case first. 2199 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2200 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2201 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2202 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2203 return ImmReg; 2204 } 2205 2206 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && 2207 VT != MVT::i1) 2208 return 0; 2209 2210 const TargetRegisterClass *RC = 2211 ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass); 2212 int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue(); 2213 2214 // If the constant is in range, use a load-immediate. 2215 // Since LI will sign extend the constant we need to make sure that for 2216 // our zeroext constants that the sign extended constant fits into 16-bits - 2217 // a range of 0..0x7fff. 2218 if (isInt<16>(Imm)) { 2219 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 2220 unsigned ImmReg = createResultReg(RC); 2221 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg) 2222 .addImm(Imm); 2223 return ImmReg; 2224 } 2225 2226 // Construct the constant piecewise. 2227 if (VT == MVT::i64) 2228 return PPCMaterialize64BitInt(Imm, RC); 2229 else if (VT == MVT::i32) 2230 return PPCMaterialize32BitInt(Imm, RC); 2231 2232 return 0; 2233 } 2234 2235 // Materialize a constant into a register, and return the register 2236 // number (or zero if we failed to handle it). 2237 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) { 2238 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 2239 2240 // Only handle simple types. 2241 if (!CEVT.isSimple()) return 0; 2242 MVT VT = CEVT.getSimpleVT(); 2243 2244 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 2245 return PPCMaterializeFP(CFP, VT); 2246 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 2247 return PPCMaterializeGV(GV, VT); 2248 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 2249 // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo 2250 // assumes that constant PHI operands will be zero extended, and failure to 2251 // match that assumption will cause problems if we sign extend here but 2252 // some user of a PHI is in a block for which we fall back to full SDAG 2253 // instruction selection. 2254 return PPCMaterializeInt(CI, VT, false); 2255 2256 return 0; 2257 } 2258 2259 // Materialize the address created by an alloca into a register, and 2260 // return the register number (or zero if we failed to handle it). 2261 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 2262 // Don't handle dynamic allocas. 2263 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 2264 2265 MVT VT; 2266 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 2267 2268 DenseMap<const AllocaInst*, int>::iterator SI = 2269 FuncInfo.StaticAllocaMap.find(AI); 2270 2271 if (SI != FuncInfo.StaticAllocaMap.end()) { 2272 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2273 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8), 2274 ResultReg).addFrameIndex(SI->second).addImm(0); 2275 return ResultReg; 2276 } 2277 2278 return 0; 2279 } 2280 2281 // Fold loads into extends when possible. 2282 // FIXME: We can have multiple redundant extend/trunc instructions 2283 // following a load. The folding only picks up one. Extend this 2284 // to check subsequent instructions for the same pattern and remove 2285 // them. Thus ResultReg should be the def reg for the last redundant 2286 // instruction in a chain, and all intervening instructions can be 2287 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll 2288 // to add ELF64-NOT: rldicl to the appropriate tests when this works. 2289 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2290 const LoadInst *LI) { 2291 // Verify we have a legal type before going any further. 2292 MVT VT; 2293 if (!isLoadTypeLegal(LI->getType(), VT)) 2294 return false; 2295 2296 // Combine load followed by zero- or sign-extend. 2297 bool IsZExt = false; 2298 switch(MI->getOpcode()) { 2299 default: 2300 return false; 2301 2302 case PPC::RLDICL: 2303 case PPC::RLDICL_32_64: { 2304 IsZExt = true; 2305 unsigned MB = MI->getOperand(3).getImm(); 2306 if ((VT == MVT::i8 && MB <= 56) || 2307 (VT == MVT::i16 && MB <= 48) || 2308 (VT == MVT::i32 && MB <= 32)) 2309 break; 2310 return false; 2311 } 2312 2313 case PPC::RLWINM: 2314 case PPC::RLWINM8: { 2315 IsZExt = true; 2316 unsigned MB = MI->getOperand(3).getImm(); 2317 if ((VT == MVT::i8 && MB <= 24) || 2318 (VT == MVT::i16 && MB <= 16)) 2319 break; 2320 return false; 2321 } 2322 2323 case PPC::EXTSB: 2324 case PPC::EXTSB8: 2325 case PPC::EXTSB8_32_64: 2326 /* There is no sign-extending load-byte instruction. */ 2327 return false; 2328 2329 case PPC::EXTSH: 2330 case PPC::EXTSH8: 2331 case PPC::EXTSH8_32_64: { 2332 if (VT != MVT::i16 && VT != MVT::i8) 2333 return false; 2334 break; 2335 } 2336 2337 case PPC::EXTSW: 2338 case PPC::EXTSW_32: 2339 case PPC::EXTSW_32_64: { 2340 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) 2341 return false; 2342 break; 2343 } 2344 } 2345 2346 // See if we can handle this address. 2347 Address Addr; 2348 if (!PPCComputeAddress(LI->getOperand(0), Addr)) 2349 return false; 2350 2351 unsigned ResultReg = MI->getOperand(0).getReg(); 2352 2353 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt, 2354 PPCSubTarget->hasSPE() ? PPC::EVLDD : PPC::LFD)) 2355 return false; 2356 2357 MI->eraseFromParent(); 2358 return true; 2359 } 2360 2361 // Attempt to lower call arguments in a faster way than done by 2362 // the selection DAG code. 2363 bool PPCFastISel::fastLowerArguments() { 2364 // Defer to normal argument lowering for now. It's reasonably 2365 // efficient. Consider doing something like ARM to handle the 2366 // case where all args fit in registers, no varargs, no float 2367 // or vector args. 2368 return false; 2369 } 2370 2371 // Handle materializing integer constants into a register. This is not 2372 // automatically generated for PowerPC, so must be explicitly created here. 2373 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { 2374 2375 if (Opc != ISD::Constant) 2376 return 0; 2377 2378 // If we're using CR bit registers for i1 values, handle that as a special 2379 // case first. 2380 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) { 2381 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2382 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2383 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2384 return ImmReg; 2385 } 2386 2387 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && 2388 VT != MVT::i1) 2389 return 0; 2390 2391 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2392 &PPC::GPRCRegClass); 2393 if (VT == MVT::i64) 2394 return PPCMaterialize64BitInt(Imm, RC); 2395 else 2396 return PPCMaterialize32BitInt(Imm, RC); 2397 } 2398 2399 // Override for ADDI and ADDI8 to set the correct register class 2400 // on RHS operand 0. The automatic infrastructure naively assumes 2401 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost 2402 // for these cases. At the moment, none of the other automatically 2403 // generated RI instructions require special treatment. However, once 2404 // SelectSelect is implemented, "isel" requires similar handling. 2405 // 2406 // Also be conservative about the output register class. Avoid 2407 // assigning R0 or X0 to the output register for GPRC and G8RC 2408 // register classes, as any such result could be used in ADDI, etc., 2409 // where those regs have another meaning. 2410 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2411 const TargetRegisterClass *RC, 2412 unsigned Op0, bool Op0IsKill, 2413 uint64_t Imm) { 2414 if (MachineInstOpcode == PPC::ADDI) 2415 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); 2416 else if (MachineInstOpcode == PPC::ADDI8) 2417 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); 2418 2419 const TargetRegisterClass *UseRC = 2420 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2421 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2422 2423 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, 2424 Op0, Op0IsKill, Imm); 2425 } 2426 2427 // Override for instructions with one register operand to avoid use of 2428 // R0/X0. The automatic infrastructure isn't aware of the context so 2429 // we must be conservative. 2430 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2431 const TargetRegisterClass* RC, 2432 unsigned Op0, bool Op0IsKill) { 2433 const TargetRegisterClass *UseRC = 2434 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2435 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2436 2437 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill); 2438 } 2439 2440 // Override for instructions with two register operands to avoid use 2441 // of R0/X0. The automatic infrastructure isn't aware of the context 2442 // so we must be conservative. 2443 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2444 const TargetRegisterClass* RC, 2445 unsigned Op0, bool Op0IsKill, 2446 unsigned Op1, bool Op1IsKill) { 2447 const TargetRegisterClass *UseRC = 2448 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2449 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2450 2451 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill, 2452 Op1, Op1IsKill); 2453 } 2454 2455 namespace llvm { 2456 // Create the fast instruction selector for PowerPC64 ELF. 2457 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, 2458 const TargetLibraryInfo *LibInfo) { 2459 // Only available on 64-bit ELF for now. 2460 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>(); 2461 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) 2462 return new PPCFastISel(FuncInfo, LibInfo); 2463 return nullptr; 2464 } 2465 } 2466